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Abstract

We study a principal-agent relationship in which the agent has private informa-

tion about the future profitability of the relationship or a currently operated project,

but is biased in favor of continuing the project. When the principal retains liqui-

dation rights over the relationship or project and must introduce distortions in the

liquidation policy itself in order to elicit the agent’s private information. The op-

timal policy consists of a threshold which, if the profitability falls below, triggers

liquidation. When the agent reports a higher growth rate of the projects prof-

itability, the optimal threshold will be either decreasing over time and approach the

principal’s first-best level (i.e., the distortions from eliciting the agent’s information

are temporary) or will be increasing and divergent over time (i.e., liquidation at

later times takes place at unboundedly inefficient levels). A simple condition on the

relative profitability of the project across agent types tells us when the distortions

are temporary or permanent. These results are robust to the use of transfers (e.g.,

wage payments) provided that a limited liability condition is respected for the agent.

They are also robust to the use of direct auditing methods to assess profitability. The

model provides a tractable way to analyze contractual distortions in the pretense of

private information, and in particular, shows that contracts simultaneously front-

and back-loaded across a menu of options in the same principal-agent relationship.
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1 Introduction

In many economic partnerships, there is an asymmetry in information about the long-

term profitability of the relationship. When a company is considering the acquisition

of another firm, the manager at the firm being acquired will have superior information

about his company’s long-term profitability. When a regulator interacts with firm using

an environmentally dangerous production technology, the firm has more information

about the long-term damage to the environment than the regulator does. To elicit this

information, the principal can enact standards which determine when the relationship

will end: if the profitability falls below the standard, the relationship is ended. In this

paper we study how the nature of private information determines these standards and

examine when they are becoming more stringent or lenient over time.

More formally, the goal of our paper is to understand how persistent private in-

formation about future profitability introduce distortions in a dynamic principal-agent

framework. We study a situation where the flow profitability to the principal of a project

run by the agent changes stochastically over time. The agent has private information

about the drift of this process and would like to keep the project running as long as

possible. When the principal controls liquidation rights to the project, he can elicit the

agent’s private information by setting profitability standards (or thresholds) which, if

the project falls below, triggers a shut-down.

We show that the nature of these standards can be radically different depending

on how magnitude of the drift of profitability. When the expected drift of profitability

is not too high, the liquidation threshold converges to the principal’s preferred level-

i.e., the distortions introduced by the agent’s private information are temporary. More

surprisingly, when the expected profitability of the more optimistic agent is large enough,

the liquidation threshold is increasing over time-i.e., the distortions are persistent and

growing even though the agent only has private information at the beginning of the

relationship. A simple condition gives us exactly when the threshold is increasing or

decreasing.

Our model gives a clear illustration of the forces at play that drives this front- or

back-loading of distortions. When determining the liquidation policy of the high type,

the principal takes into account what payoffs the policy would generate for the low type.

Thus, we deciding the optimal liquidation policy, the principal must consider the direct

incentives (using the expectation of the agent reporting truthfully) and also the counter

factual for a low type agent claiming to be a high type (which uses the expectation of

the low type agent). These forces lead to different placements of distortions over time.
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With our continuous time framework, we are able to get a clean and tractable way to

study this although the economic insights we gain are certainly not unique to our model.

Briefly, the intuition is as follows. If the drift of the high type is large enough, then

as time progresses the value of liquidation increases relative to the direct payoff loss

the principal. The likelihood a low type ascribes to being at a particular profitability

level is increasing relative to the likelihood a high type will be there. By back-loading

distortions, the principal is getting the most “bang for his buck.” When the drift of the

high type is low, this relative likelihood (for a fixed payoff level) is decreasing as time

goes on. Thus introducing distortions does relatively little to decrease the low types

payoffs when compared to the direct loss of inefficient liquidation to the principal.

The model also illustrates how the specification of payoffs drastically changes the

resulting mechanism. In most of the previous literature, the agent knows the profitability

of the project and this profitability is static. The principal observes noisy realizations

of the profitability. However, in our model the agent’s information is instead about the

long-term profitability of the project and current profitability is perfectly observed by

the principal. This allows for low type agents to still be profitable to the principal and for

high type agents to become unprofitable. In many situations, this is a more reasonable

payoff framework: a firm might know that the long-term profitability of a dial-up internet

access business is low, but still operates the business today because current demand is

profitable. In our model, these two different payoff structures lead to very different

mechanisms.

We also show that these features of the optimal thresholds are robust to a number

of extensions of the model, including auditing and limited liability transfers. In all these

extensions, we find the same front- and back-loading forces at play and the resulting

liquidation policies are qualitatively the same and illustrate the usefulness of our model

and solution methods to analyzing a number of economically important situations.

We describe the literature in Section 2 and the model in Section 3. Our main results

are presented in Section 4 and various extensions are explored in Section 5. All proofs

are relegated to the Appendix.

2 Literature

Our work ties into a rich literature on agency problems and continuous-time techniques.

Seminal papers such as Demarzo and Sannikov (2006) and Sannikov (2007) studied

agency problems in continuous time and showed how continuous time techniques add

a great deal of tractability to the problem. Unlike their models, we do not allow for
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transfers or moral hazard, instead choosing to focus on the problem of eliciting an agent’s

private information. Papers by Garrett and Pavan (2012) and Pavan, Segal and Toikka

(2014) have looked at the dynamic mechanism design problem in which the agent’s type

is private information and is non-stationary. Unlike our model, they allow for arbitrary

transfers and the methods they use are quite different from our own. Our model focuses

on the simpler issue of how to temporally place distortions depending on the agent’s

private information.

Our model most closely fits in the literature on dynamic mechanism design without

transfers. Kuvalekar and Lipnowski (2016) study a situation with some similarities to

ours. They model a continuous-time principal-agent game without transfers in which

there is symmetric uncertainty about an agent’s type and the agent tries to stay hired

as long as possible. Whereas they focus on equilibrium outcomes when there is learn-

ing about the profitability of the relationship, we instead look at how to elicit private

information when the current profitability of the relationship is known but its future

distribution is private information of the agent.

Madsen (2017) studies a model with similar features to our own: a principal seeks

to elicit private information from an agent who desires to remain employed. While our

model looks at a situation in which it is common knowledge when the agent’s private

information is received, Madsen studies a situation in which the arrival of the agent’s

information is private knowledge, which yields a much richer use of transfers. Another

key difference is the payoff specification: in Madsen the agent’s information is about the

flow profitability of the state whereas in our model the agent’s information is about the

drift of the flow profitability. This difference will be key to our results (and which we

will discuss more in Section 3).

Looking at a delegation model in a similar spirit to ours, Guo (2016) studies a model

of experimentation in which the agent has private information about a likeliehood a

project is good. Aside from technical differences (our is a stopping problem, her’s a

bandit problem), we model different payoff structures and misalignment of the principal

and agent’s incentives. Fong (2007) also studies a mechanism design model without

transfers with adverse selection. Her model, unlike ours, allows for moral hazard. She

finds that the optimal mechanism consists of a score, which if it falls too low results in

the termination of the agent. The tools available to the mechanism designer are the same

as in our model. However, the difference in the payoff structure drives the difference of

our results. In her model, the payoff to the principal is a function only of the agent’s

type and action. In our model, the agent’s type will not impact the current payoffs

to the principal but instead the principal’s beliefs about future payoffs. This change
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to the payoffs separates our model from most of the previous literature and yields the

qualitative difference in our mechanism from previous mechanisms in the literature.

On a technical side, our paper makes use of techniques from Peskir (2005) and finite-

horizon option pricing models. We are able to use techniques where the optimization

problem depends on time to solve our infinite-horizon problem with adverse selection.

Our use of Lagrangian techniques in optimal stopping problems draws on constrained

optimal stopping problems such as in McClellan (2017).

3 Model

We study the long-term relationship between a principal P and an agent A in an infinite-

horizon continuous-time model. There is a payoff-relevant variable Xt for the principal,

where Xt is a diffusion process given by

Xt = µθt+ σBt,

and Bt is a standard Brownian motion which is defined on a probability space (Ω,F ,P)

satisfying the usual conditions1 and X0 is known to both P and A. The drift of Xt

depends on a state of nature θ ∈ Θ. A learns θ at t = 0 (and we will refer to θ as A’s

type). It is common-knowledge that A learns θ but that P does not.

The focus of our paper is to find the optimal mechanism for P to elicit the private

information of A. We study situations in which transfers are infeasible and assume that

P ’s decision is only when to irrevocably fire the agent or liquidate the project. Formally,

we define an admissible mechanism to be FXt -measurable stopping time τ such that the

game ends at time τ . We assume that the terminal payoff at (τ,Xτ ) to both P,A is

zero.2 The payoff of the principal for an arbitrary stopping rule τ is given by

Eθ,X0 [

∫ τ

0
e−rsuP (Xs)ds].

A’s payoff is given by

Eθ,X0 [

∫ τ

0
e−rsuA(Xs)ds],

1See Karatzas and Shreve (1991).
2This assumption can be relaxed as long as terminal payoffs depend only on Xτ and A’s terminal

payoffs are positive.
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where we assume that uA(Xs) > 0 ∀Xs. For simplicity, we assume that uP (Xs) = Xs and

uA(XS) = α ∈ R+.3 In order to simplify notation slightly, we will drop the dependence

of the expectations on X0.

We allow P full commitment power, so the revelation principle applies.4 This leads

us to define a mechanism for P , which is a stopping time that depends on the agent’s

report.

Definition 1. A stopping mechanism is a menu {τθ}θ∈Θ where τθ is an FXt -measurable

stopping rule. The stopping mechanism is incentive compatible (IC) if for each type

(θi, θk) ∈ Θ×Θ, we have

Eθi [
∫ τθi

0
e−rtαdt] ≥ Eθi [

∫ τθk

0
e−rtαdt]

3.1 Remarks

The restriction to only allow P to liquidate the project both simplifies the problem and is

realistic modeling choice for many economic settings: in large firms, wage levels are often

fixed while the termination decisions are more flexible. Additionally, in the interaction

between a regulator and a firm, monetary transfers may often be limited in scope while

the regulatory power to shut down production at a plant has more bite behind it. Our

assumptions on the payoffs fit both of these settings well: the employee with a fixed wage

desires to be employed as long as possible while the firm cares about the profitability of

the employee. As we will see in Section 5, the structure of the optimal mechanism will

be robust to the addition of non-negative transfers from the principal to the agent.

A’s only action in the game is to report θ at t = 0. Mathematically, the problem is

similar to that of a static mechanism design problem, where the set of FXt -measurable

stopping rules corresponds to the good to be allocated. A richer model in the vein of

Garrett and Pavan (2016) or Madsen (2016) might allow for continual changes to θ which

A must be incentivized to report; we explore this somewhat in Section 5. Instead, the

goal of our model will be to narrow in on the role of perfectly persistent information. To

this end, we ignore issues of moral hazard, which will introduce more distortions in the

3The results are not dependent to our particular utility functions. Our specification that A derives

positive utility allows us to not be concerned with the possibility of P operating the project longer to

punish A.
4When the P has many interactions with different agents (e.g, a manager in a large firm interacting

with many employees or a government agency regulating many companies), this commitment assumption

can be motivated by reputational concerns. Even when such strong commitment is not possible, we can

view this problem as providing an upper-bound on the payoff P might get.
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optimal contracts, in order to narrow in on the effect of persistent private information

(one could interpret our model as a situation in which the agent’s actions are observable

to P ). Given the static nature of A’s private information, the persistence of distortions

over the course of the mechanism is all the more surprising in the absence of moral hazard

concerns.

Before moving on, it is important to note a key feature of our model: the role of Xt,

which is both payoff relevant and conveys information about θ. In much of the continuous

time principal-agent and delegation literature, the principal’s payoffs are given by dXt, so

that Xt is equal to the principal’s accumulated payoffs. Taking expectations, this means

that the principal’s flow payoff at any given is µθ. In contrast, our model defines the flow

payoffs of the principal to be Xt. This seemingly minor change to the payoff structure

leads to very different results when it comes to the optimal mechanism. If we were to

model uP as depending only on θ, then we can show that the optimal mechanism features

τh = τ`-i.e.,there is no use designing screening mechanisms. Thus this dual role of Xt is

a driving force behind our results. Additionally, we believe that in many situations Xt

rather than dXt is the appropriate flow payoff. The dXt payoff specification means that

the agent knows what the expected profitability of the project and the profitability never

changes. Instead, our Xt payoff specification means that the agent’s private information

is about the expected path of future payoffs, which are changing over time. This allows

for the profitability of the project to change over time. For a regulator observing the

level of pollution produced by a firm, their flow payoff is determined by the cumulative

level of pollution, not the change in pollution. For a firm observing a projects level of

demand Xt, it is the level not change in demand that determines flow payoffs. Our model

allows for ` types to be profitable for P and for h types to become unprofitable for P .

4 Baseline Mechanisms

4.1 First-Best

As a benchmark, we analyze the problem where there is no private information. Because

A’s only action is to report his type at t = 0, he has no role when there is no private

information. The problem with no asymmetric information then simplifies to a Markov

single-decision maker problem with P ’s preferences where the only state variable is Xt.

As is standard, the optimal mechanism for P will take the form a threshold rule, in

which P shuts-down at the first time Xt ≤ b for some b ∈ R. Additionally, because of the

tractable nature of Brownian motion, we can get an closed form solution for the optimal

threshold.
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Proposition 1. The optimal stopping policy for θi is given τi = inf{t : Xt = bi} where

bi = σ2

µi+
√
µ2+2rσ2

− µi
r . The optimal threshold bi is decreasing in µi.

It is easy to see why bi decreasing in µ: for projects that are expected to be more

profitable in the future, P is willing to accept larger losses today since the option value

of continuing is higher. The solution to bi also reveals that the optimal threshold is

decreasing in r: when the discount rate is high, it is better to cut one’s losses today

rather than continue waiting in the hope that Xt will be profitable in the future.

The result illustrates where the tension in our agency problem arises from: P would

like to keep the project running longer when µθ is high, but this creates incentives for A

to misreport µθ when he knows µθ to be low.

As is usual in one-dimensional single-decision maker stopping problems, the optimal

solution takes a simple threshold form while, as we will see in the next section, thresh-

old rules are not optimal when agency considerations come into play. The first-best

contract highlights the fact that the non-standard solution to the problem with agency

considerations is driven by the presence of private information and not the base model

itself.

4.2 Private Information

We introduce the private information of A by looking at the case when A learns θ ∈ Θ =

{θ`, θh}, where θ` < θh. We can write P ’s problem of eliciting A’s private information as

sup
τh,τ`

∑
i=h,`

P(θi) · Eθi [
∫ τ

0
e−rtXtdt]

subject to ∀i, k

IC(i, k) : Eθi [
∫ τi

0
e−rtαdt] ≥ Eθi [

∫ τk

0
e−rtαdt].

Intuitively, we expect that the high types incentive constraint will be slack: Since A

only want to maximize the time until shut-down, A’s incentives and P ’s incentives are

more aligned (since P would always want to wait longer before shutting-down the high

type). As we will verify that this intuition is correct later, we begin by studying the

optimal τh subject to `’s IC. Let W` be equal to the utility ` gets from choosing τ` (this

is determined by P in his choice of τ`). Then the IC constraint for ` can be rewritten as

IC(`, h) : Eθ` [
∫ τh

0
e−rtαdt] ≤W`.
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In order to solve this problem, we will transform it into an optimal stopping problem of

a more standard form. Our first step is to modify the payoffs. We note that for A, we

have

Eθ` [
∫ τh

0
e−rtαdt] =

α

r
(1− Eθ` [e

−rτ ]).

For P , we note that by Ito’s Lemma, we have that

de−rtXt = −re−rtXtdt+ e−rt(µdt+ σdBt).

By integrating from 0 to t, rearranging terms and taking expectations, we get that

Eθh [

∫ τ

0
e−rsXsds] =

µh
r2

+
X0

r
− Eθh [e−rτ (

µh
r

+Xτ )
1

r
].

Two features separate the problem from being written in a standard optimal stopping

format: the presence of IC constraints and the different expectation operators in the IC

constraint. In order to tackle the first feature, we construct a Lagrangian with Lagrange

multiplier λ ≥ 0 (corresponding to the IC constraint), which is written as

L = sup
τ

µ

r2
− Eθh [e−rτ (

µh
r

+Xτ )
1

r
]− λ(

α

r
(1− Eθ` [e

−rτ ])−W`) +
X0

r

= sup
τ

[λαEθ` [e
−rτ ]− Eθh [e−rτ (

µh
r

+Xτ )] + (
µh
r

+X0 + λ(W` − α))]
1

r
.

From here on out we will drop the constants µh
r +X0 +λ(W`−α) and the factor 1

r from

L.

We have one final step in order to transform P ’s problem into a standard optimal

stopping problem: to transform the Lagrangian into a single expectation. The use of

Brownian motion allows us to use Girsanov’s theorem to change the measure for θ` into

a measure for θh. By Oskendal Theorem 8.6.4, the Radon-Nikodym derivative5 is

Mt = exp(−µh − µ`
σ2

(Xt −X0) +
µ2
h − µ2

`

2σ2
t).

This change of measure allows us to convert the θ` expectation into a θh expectation as

Eθ` [e
−rτλα] = Eθh [e−rτλαMt]

This allows us to write P ’s problem as

5We will subsequently assume that X0 = 0 in order to not carry additional notation.
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V (t,X) := sup
τ

Eθh [e−r(τ−t)G(τ,Xτ )]

where G(τ,Xτ ) := λαe−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t − (µhr +Xτ ) is our gain function from stopping

at (τ,Xτ ).

With the above manipulations, we can now view P ’s problem as an unconstrained

optimal stopping problem. Standard optimal stopping arguments allow us to show that

the space of R+ × R can be partitioned into an open continuation set C and a closed

stopping set D where

C = {(t,X) : V (t,X) > G(t,X)}
D = {(t,X) : V (t,X) = G(t,X)}

We define P ’s strategy with the sets C. This leads to a natural conjecture that C
will take the form C = {(t,X) : X > bh(t)} for some function bh(t) (which we will call a

threshold function). We will verify this conjecture and solve for the optimal bh(t) below.

Solving for V is technically complicated by the fact that our gain function G depends

on both Xt and t. The natural formulation of the problem leads to a free-boundary

problem; however this will involve solving a partial differential equation, which can often

be difficult to solve. Fortunately, we can make use of a change-of-variable formula for

local-times on curves from Peskir (2005) in order to solve for the optimal policy. This

formula, previously used in option pricing, will prove useful in our settings.

With this formulation of P ’s problem, we can clearly illustrate the forces driving

our main result. By quick inspection, we note that for a fixed X, the Radon-Nikodym

derivative Mt is disappearing (exploding) as t→∞ if |µh| < (>)|µ`|. This fact will turn

out to lead to very different stopping rules. The intuition for our main result is quite

simple and is elucidated by Mt. Let us divide the space R+ × R into H and L where

H = {(t,X) : X ≥ µh+µ`
2 t} and L = {(t,X) : X < µh+µ`

2 t}. For (t,X) ∈ H, we

have Mt > 1, so that the probability that θ` reaches (t,X) is less than the probability

of the same event under the measure for θh. Similarly, for (t,X) ∈ L, we have that

Mt < 1, so that the probability that θh reaches (t,X) is less than the probability for

θ`. As −Xt + µh+µ`
2 t→∞, the relative probability that ` has reached this point rather

than h approaches infinity. This means that, for large t, by shutting-down immediately,

P is reducing `’s incentives more than he is harming his own (since he evaluates the

shut-down policy with h’s expectation). In the other direction, as −Xt + µh+µ`
2 t→ −∞,

the relative probability that h has reached this point rather than ` approaches infinity.
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Therefore, shutting down at this point harms P infinitely more than it decreases `’s

incentives. This makes shut-down at this point costly for P with no benefit.

This quick analysis indicates the role of |µh| and |µ`|. If µh+µ` < 0, then the benefits

to stopping are decreasing over time for a fixed X-i.e., after a long enough time, no `

types would be expected to be at X; hence, punishment here carries on a small impact `’s

ex-ante incentives relative to the distortion loss by early-shut down to P . This decreases

the need for inefficient shut-down at this point and drives the shut-down policy towards

the first-best for P as t increases. In the opposite direction, if µh + µ` > 0, then the

benefits to stopping are increasing over time.

Given the above discussion, we split the analysis up into two cases: that of |µh| > |µ`|
and |µh| < |µ`|. Our results below will analyze the long-term behavior of the optimal

mechanism in each case. We will find that when |µh| > |µ`|, the optimal policy features

increasing distortions, in that shut-down occurs at higher X at t increases while when

|µh| < |µ`|, the shut-down policy converges to P ’s first best solution. The intuition

behind this result follows from the previous paragraphs: P wants to shut-down when the

probability of reaching X at time t from `’s perspective is high relative the probability

from h’s perspective. How these relative probabilities move is qualitatively different

depending on the relative sizes of |µh|, |µ`|. Remarkably, whether or not |µh| > |µ`| is

both necessary and sufficient to know whether agency distortions via inefficient shut-

down are permanent or transitory. Our main result, given below, proves the intuition

above to be correct.

Theorem 1. The optimal mechanism is such that:

• If |µh| < |µ`|, then bh(t) is a decreasing and continuous function of t which con-

verges to bFBh as t→∞.

• If |µh| > |µ`|, then bh(t) is an increasing and continuous function of t and bh(t)→
∞ as t→∞.

• If |µh| = |µ`|, then bh(t) = b`(t) = b∗.

For `, the stopping rule is a static threshold τ` = {t : Xt = b`} where b` ∈ R+ and

b` < bFB` . If |µh 6= |µ`|, then the thresholds b` and bh cross exactly once.

There are two routes to satisfy the IC constraint for `: to increase `’s utility from

reporting truthfully and to decrease `’s utility from reporting to be h. Both are used in

the optimal mechanism. We can see the first route being used in the fact that b` < bFB` ,

while the second route comes in through inefficient shut-down with bh (evident from

11



the fact that bh is not equal to the first-best). Interestingly, increasing the utility of

a correct report by ` results in a constant distortion across time while decreasing the

utility a misreport creates time-varying distortions. This result is tied to the fact that

when increasing the utility of a correct report, P and ` evaluate the policy using the

same expectation. However, when decreasing the utility of a misreport, P and ` evaluate

the policy using different expectations. Because the distortions in `’s mechanism are

purely to provide utility to ` (and not to screen as in h’s mechanism), `’s mechanism is

stationary. Thus we see that the reason for the changing standards in h’s mechanism are

used as a method to screen out ` types.

More generally, our model speaks to how to design dynamic standards in screening

problems. Interestingly, our results tell us that it is not the size of µθ alone that deter-

mines the structure of the optimal stopping rule, but the relation between |µh| and |µ`|.
Thus, whether or not h should face increasing or decreasing standards depends on the

relative sizes of µh, µ`.

Note that our model can easily be recast to fit a moral-hazard story at t = 0. Suppose

that P wants A to take some costly action which ensures the state to be θh rather than

θ`. Thus we can replace our IC constraints with

Eθh [

∫ τ

0
e−rtα]− c ≥ Eθ` [

∫ τ

0
e−rtα]

so that, use the same Lagrangian approach, the problem is equivalent to solving

V m(t,X) := sup
τ

Eθh [e−r(τ−t)Gm(τ,Xτ )]

where Gm(τ,Xτ ) := λαe−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t− (µh+λα
r +Xτ ). Using the same arguments as

in the proof of Theorem 1, we will get the optimal stopping policy is of the same form

as bh(t).

4.3 Front-Loaded Inefficiencies: |µh| < |µ`|

We begin by analyzing the case when |µh| < |µ`|. The optimal policy in this case features

front-loaded inefficiencies and the shut-down policy is asymptotically P ’s first-best level,

implying that the distortions introduced by the asymmetric information at t = 0 dissipate

over time. The reason for this comes from the fact that the Radon-Nikodym derivative

is decreasing in t for a fixed X. Intuitively, this the payoff to “punishing” an ` type that

misreported (given by the term λMt) by shutting down at X is decreasing in t for a fixed

X. P would optimally like to minimize inefficiencies by shutting down at beliefs which
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` finds more likely than h. For |µh| < |µ`|, such only occurs at lower X as t increases;

but for low enough X, P would already optimally shut-down, thereby allowing him to

punish ` while taking efficient actions.

In order to verify the above arguments, we need to derive several properties about

the optimal stopping boundary bh(t). We begin by showing that this boundary is both

continuous and decreasing.

Lemma 1. If |µh| < |µ`|, then bh(t) is a decreasing and continuous function of t.

Proof. All proofs are in the Appendix.

Next we note that bh(t) is bounded below by bFBh . If for some t′, we have bh(t′) < bFBh ,

then P could modify the shut-down policy to be bh(t′) = bFBh for all t′ > t. This

would preserve IC (since higher shut-down thresholds always decrease A’s utility) and

be strictly better for P by definition of bFBh .

Lemma 2. bh(t) is bounded below by bFBh .

With this in hand, we can look at the long-term properties of bh(t). We show that for

large t, we have bh(t)→ bFBh -i.e., the distortions introduced by the mechanism disappear

in the long-run. Looking at Mt, we can see that Mt → 0 if Xt is bounded below since
µ2
h−µ

2
`

2 < 0. This means that the distortion term is vanishing as times goes on, leading

us to correctly conjecture that the optimal threshold must approach the principal’s first-

best.

Lemma 3. bh(t) converges to bFBh at t→∞.

This type of policy shows us that the mechanism front-loads distortions. The rea-

soning behind this is simple. Let µ` be sufficiently negative. Then for large t and

bh(t) > bFBh , ` will assign a small probability to ever making it this far. Thus the deci-

sion to shut-down above the efficient level has only a small impact on `’s IC constraints.

However, P evaluates the performance of bh(t) relative to an expectation with respect to

µh. From the perspective of µh, Xt > bh(t) becomes infinitely more likely than it is from

`’s perspective. Thus the ratio of the benefit to slackening `’s IC constraint becomes to

the loss to P approaches zero. Thus long-run distortions have no bite and in order to

satisfy IC constraints, distortions must be front-loaded.

In some sense, these seems intuitive. Because P must only satisfy time zero con-

straints, it is natural to expect that all optimal mechanisms front-load distortions. How-

ever, as we will see in the next subsection, this is not always the case.
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Figure 1: The optimal thresholds when |µh| < |µ`|. As we can see h’s threshold is

decreasing over time and approaches the principal’s first-best solution for h while `’s

threshold is stationary.

4.4 Back-Loaded Inefficiencies: |µh| > |µ`|

The more surprising result in Theorem 1 is when |µh| > |µ`| the optimal mechanism for

h involves increasingly ex-post inefficient shut-down, implying the distortions caused by

asymmetric information are increasing over time. Again, we can understand this result

as coming from the optimal placement of inefficiencies. As t increases, an observation

of Xt = X (for some fixed X) becomes increasingly likely to have come from θ` when

compared to θh; hence, while shutting down at such X may be ex-post inefficient, from

an ex-ante perspective they maximize the benefit of more shut-down in relaxing the IC

constraint relative to inefficiency of early-shut down.

As in the previous subsection, we begin by verifying the above arguments and show

that the optimal stopping boundary is both continuous and increasing.

Lemma 4. If |µh| > |µ`|, then bh(t) is increasing and continuous in t.

This readily supplies the result that distortions will be persistent over time. Our

goal for the rest of the subsection will be to study how they change over time. In

order to do this, we use a change of variable. We define Zt = Xt − µh+µ`
2 t, which is

a monotonic transformation of Mt and therefore can be interpreted as a measure of

the relative probability assigned to (t,Xt) by ` relative to h. Since Zt is measurable

14



with respect to FXt , we can define an equivalent problem (and transforming utilities

properly) where the agent reports the drift of Zt rather than Xt and we find a stopping

rule which is measurable with FZt . This process is useful because the drifts of h, ` are

symmetric around zero: h views the drift of Zt as µ̃ := µh−µ`
2 and ` views the drift of Zt

as −µ̃ = µ`−µh
2 . Our modified gain function for Z is given by

G̃(Z, t) = λαe−
2µ̃

σ2Zt − (Zt +
µh
r

+
µh + µ`

2
t).

We define the shut-down barrier for this problem in (t, Zt) space as bZh (t). We can then

apply a similar argument as in Lemma 1 to show that the shut-down threshold bZh (t) for

the Z process is decreasing in t.

Lemma 5. If |µh| > |µ`|, then bZh (t) is decreasing and continuous in t.

Assuming that bZh is differentiable, this implies that
∂bZh (t)
∂t < 0 ⇐⇒ b′h(t) < µh+µ`

2 .

This result allows us to show that bh(t) is not growing “too” fast. However, this still

allows for the possibility that bh(t) is converging to some higher stationary threshold,

similar to the structure when |µh| < |µ`|. Our next result shows that this is not the case.

Lemma 6. The threshold bh(t) is diverging: lim
t→∞ bh(t) =∞.

0 5 10 15 20 25 30

−10

−5

0

5

t

X

bh
b`

X0 + µh+µ`
2 t

bFBh

Figure 2: The optimal thresholds when |µh| > |µ`|. As we can see h’s threshold is

increasing over time while `’s threshold is stationary.
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This mechanism has similar features to that of “up-or-out” contracts, in which an

employee is given a set amount of time to reach certain benchmarks and is fired if they

fail to meet these goals. While these types of contracts are often interpreted as a response

to moral hazard considerations, our model illustrates how such contracts can actually be

useful as a screening tool even when such moral hazard considerations are absent.

We might naturally wonder whether or not this persistent distortion is an artifact of

the fact that Xt is both payoff-relevant and carries information about the value of θ. If

instead of an agency problem R was just uncertain about the value of θ, would we get a

similar result to the diverging stopping boundary? As the next proposition shows, this

is not the case. The logic is simple: as t→∞, a low Xt implies that the state is almost

certainly θ`. If it is not optimal to stop at Xt when θ = θ` with probability one, then it

is not optimal to stop when θ is uncertain.

Proposition 2. In the single-decision learning problem, the optimal stopping boundary

b satisfies b(t) ≤ bFB` .

4.5 No Screening: |µh| = |µ`|

We now confront the final case, when |µh| = |µ`| (which implies µ` = −µh). Note that,

in this knife-edge case, we have

Mt = exp(−2µh
σ2

Xt),

which is independent of t. It is straightforward then to show that the solution for h’s

mechanism is a static threshold. Together with the fact that `’s mechanism is also a

static threshold, IC implies that bh(t) = b`(t) = b∗ for some b∗ ∈ R-i.e., there is no use

screening types! This surprising result comes from the fact that the time dimension no

longer impacts the relative likelihood of being at a particular state X. Thus the relative

loss to P and loss to ` from shutting down is independent of time, making time based

distortions inefficient. Therefore, the best that P can do is offer h a stationary threshold.

4.6 Optimal Boundary

Up unto this point, we have left the exact nature of bh(t) unanswered. The proofs for

this section will be the most technically involved, as it involves finding the solution to a

free-boundary problem with a partial differential equation. However, using insights from

the option pricing literature, we can solve for the optimal boundary by formulating the

following free-boundary problem:
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LV (t,X) = rV (t,X)

V (t, bh(t)) = G(t, bh(t))

∂V (t,X)

∂X
|X=bh(t) =

∂G(t,Xt)

∂X

V (t,X) > G(t,X) ∀(t,X) ∈ C
V (t,X) = G(t,X) ∀(t,X) ∈ D,

where the infinitesimal generator is given by L = ∂
∂t + µh

∂
∂X + σ2

2
∂2

∂X2 . The second and

third line specify that the value function must, as is standard, satisfy be continuous and

satisfy smooth-pasting on the boundary.

Since our state variable is given by (t,X), we have to deal with solving a PDE for

V . As is well known, this is in general a difficult problem. However, because it is a PDE

involving time, we can use a change-of-variable formula for local times on a curve from

Peskir (2005) to get some traction on the problem. This formula has found use in the

option-pricing literature and allows for a more in depth derivation of optimal stopping

boundaries for value functions which depend on time, as ours does. By using this formula

and applying the smooth-pasting principles we derive in the Appendix, we can pin down

bh(t) to be the solution to an integral equation.

Proposition 3. The optimal threshold function bh(t) is the solution to the Volterra

integral equation

G(t, bh(t)) = −
∫ ∞
t

e−r(s−t)E[
(
LG(s,Xs)− rG(s,Xs)

)
1(Xs < b(s))ds] (1)

The function bh(t) is the unique solution to 1 in the class of functions {c : R+ → R :

c ∈ C1 and − µh − rG(t, c(t)) < 0 ∀t ∈ [0,∞)}.

The integral equation 1 can also be written as

λαe
µh−µ`
σ2 (−bh(t)+

µh+µ`
2

) − µh
r
− bh(t)

= r

∫ ∞
t

e−r(s−t)(Eθh,bh(t)[Xs1(Xs < bh(s))] + rλαPθ`,bh(t)(Xs < bh(S))ds

Since we are dealing with an infinite horizon problem, it is difficult to solve this

integral equation. If we were to solve a version of the equation for a finite time model,
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we would be able to work backwards to calculate bh(t). To be more specific, suppose that

at time T the game ends (i.e., the agent is fired) and both players receive a continuation

value of zero. Solving such a finite time model can be done by adapting techniques from

finite horizon option pricing.

Proposition 4. Fix a T ∈ R+. Then the solution to the finite time horizon problem

threshold bTh converges pointwise to the optimal infinite time horizon solution bh as T →
∞.

The first part of the proposition tells us that we can use these finite-time horizon

solutions as valid approximations of the optimal policy. These solutions will have integral

equations of a similar form to the one above. The benefit of these finite-time horizon

solutions is that we can easily solve bh(t) by evaluating the optimal boundary at T and

solving backwards.

5 Extensions

In order to test the robustness of our results, we now look at a number of different

extensions. The model, as studied so far, is quite simple in the tools it allows the

principal. As we will see, the optimal mechanisms will have qualitatively the same

structure even when we allow the principal a wider range of mechanism tools with which

to choose from, illustrating how the dynamics of the optimal mechanism aren’t dependent

on the fine details of the model.

5.1 Costly Auditing

In many real-life situations, the principal can choose to acquire costly information prior

to the shut-down decision. For example, if θ describes the future profitability of a firm’s

division, then the principal could hire an outside auditor learn the state of the division.

In order to reflect this situation, we modify the model by allowing for costly state verifi-

cation. For simplicity, we move back to the case with Θ = {θ`, θh}. When P decides to

audit, he pays a cost C and learns the type of A. Let τ be the decision to either shut-

down or audit the agent and dτ be a decision variable which takes value 1 if P audits at

τ and value 0 otherwise. A mechanism in this extension is a menu of such pairs:

Definition 2. A mechanism with costly auditing is a menu of stopping times and

decision rules {(τθ, dθτ ))}θ∈Θ where τθ and dθτ are FXt -measurable.
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The utility of P is then given by

E[

∫ τ

0
e−rtXtdt+ e−rτ (Ṽ (Xτ )− C)dτ ],

where Ṽ (Xτ ) is the continuation value post-audit for P for some policy (we will conjecture

the form of Ṽ below). If P audits and discovers A be a different type than he claimed,

he will immediately shut-down; if P discovers that A truthfully reported, then A will

be allowed to continue and will receive some continuation value Wτ determined by the

mechanism used after the audit. Thus the utility of A can be written as

Eθi [
∫ τj

0
e−rtαdt+ e−rτjWτ1(j = i)dτj ].

Similar to Section 5, we conjecture that h’s IC constraint will be slack and thus we

focus on studying τh when `’s IC constraint binds. Since h’s IC constraint has been

dropped, we know that after auditing P will institute the first-best policy, we can replace

Ṽ (Xτ ) with V FB(Xτ ). By using the same techniques as that section, we can write P ’s

problem as an optimal stopping problem with the gain function

G(τ,Xτ ) = λαe−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t − (
µh
r

+Xτ ) + (V FB(Xτ )− C)dτ

As before, we will have two qualitatively different contracts, depending on |µh| and

|µ`|. Note that that the Radon-Nikodym derivative term has not changed with the

addition of costly auditing. Our arguments on the nature of bh(t) will go through almost

verbatim. Thus the only real difference is to find the optimal choice of dτ . But since we

are considering only the IC constraints of a deviating choice, the choice of shut-down or

audit is equivalent to him: once P finds he has deviated through an audit, shut-down is

immediate. Therefore, the audit choice is only dependent on the size of the continuation

value relative to the audit cost. For any τ , the decision rule dτ which maximizes G(τ,Xτ )

is given by

dτ = 1(V FB(Xτ ) > C)

If bh(t) is approaching P ’s first best level and is decreasing, then eventually the audit

cost becomes too costly relative to shut-down (since the continuation value is small). The

value V FB(bh(t)) − C will be decreasing in t, making auditing less attractive. If bh(t)

is increasing, then the value of the continuation value relative to audit cost is growing

over time, making auditing more attractive. This naturally leads to cutoff times T1, T2
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Figure 3: Optimal mechanism when |µh| > |µ`|. We see that the optimal stopping barrier

for h is still increasing, but that after t′ = 7.2 P audits rather than shut-down.

such that if bh(t) is decreasing, auditing only happens before T1 and if bh(t) is increasing,

auditing only happens after T2.

Proposition 5. If |µh| > |µ`|, then bh(t) is increasing and ∃t′ such that dτ = 1(τ > t′).

If |µh| < |µ`|, then bh(t) is decreasing, approaches bFBh as t → ∞, and ∃t′′ such that

dτ = 1(τ < t′′). For `’s menu choice, τ` = inf{t : Xt = b`} for some b` ∈ R and dτ` = 0

always.

This result shows that in the long-run, inefficient shut-down happens only when

|µ`| < |µh| and the shut-down inefficiency approaches zero. This might seem to go against

our previous results. However, from P ’s perspective, auditing is always inefficient; the

mechanism has already separated the types so there is not need for auditing. So while the

shut-down inefficiency vanishes in the long-run, the inefficiency from auditing vanishes

if and only if |µh| < |µ`|. In this way, our previous results go through with the addition

of auditing. By using auditing, P is essentially able to put a cap on the inefficiency

needed to provide punishments to a deviating ` type. Given the strain that the optimal

mechanism may put on the plausibility of our assumption that P can perfectly commit,

this cap helps justify the form of the optimal mechanism even when the ability of the

principal to keep promises ex-post is limited.

20



5.2 Transfers

We might wonder if the restriction to not allowing for monetary transfers will drastically

affect the model. If we allow for any kind of monetary transfers, then, because both

parties are risk-neutral, P can achieve his first best by constructing Cremer-Mclean type

mechanisms. Therefore, a more natural question is whether or not monetary transfers

when combined with limited liability will have a large impact. We begin by assuming

that A still receives a flow utility α which P can reward in addition to with transfers.

Formally, transfers Wt are an FXt -measurable control variable which leads to utility for

player i of

E[

∫ τ

0
e−rt(ui(Xt) + βidWt)dt+ e−rτβi(Wτ −Wτ−)]

where βP = −1 and βA = 1. Since the discount rate is the same for P,A it is without

loss to only focus on wage structures with payments at t = τ (i.e.,Wτ− = 0).

In fact, wages have little role in the model. Because there is no moral hazard and

agent’s prefer to keep the project going, wages only serve to incentivize the reporting of

information. Since `’s IC constraint is the one that is likely to bind, wages will be used

to incentivize ` to report truthfully. Since it is only used to make ` report truthfully

(and assuming h’s IC constraints aren’t binding), there is no need to condition payments

on incoming information. Therefore the optimal wage to ` can be paid out at t = τ .

Additionally, no wage will ever be paid to h since adding a wage only increases `’s

temptation value of declaring himself to be h and decreases P ’s payoffs.

5.3 Multiple Reports

We have assumed so far that the agent receives all private information at time t = 0.

In many real life situations though, information is received randomly over time. To

incorporate this into the model, we allow the state to change over time. More specifically,

the state follows a Markov chain which may potentially change states at a time τγ which

exponentially distributed with parameter γ. For simplicity, we assume that Θ = {θh, θ`}
and that, conditional on the state switching, the probability of staying θi conditional on

the current state being θi is ρi and ρ` = 1. Importantly, we assume that the time at

which the state may change is observed by both A and P , although only A observes the

realization of the state.

This assumption on the observability of the times at which the agent acquires infor-

mation is needed to keep track of the potential deviations the agent might make. For such

problems, in which the agent’s potential deviations are simple, the Lagrangian approach
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used in the previous section works well. This assumption is plausible in many economic

situations. If Xt is the profitability of a division within the firm, then τγ may correspond

to a loss of personnel or some public market shift which may potentially affect the firm’s

profitability.

The gain function at time τγ when the type changes from i to k is given by V k
i (W i

i ,W
k
i , Xτγ )

where W k
i is the expected continuation utility given to A who reported to be type k at

t = 0 and reports to be type i at τγ . If W i
i ,W

k
i are not incentive compatible, then we

set V k
i to be −∞. We can treat W j

i as a decision variable of P at time τγ . This allows

us to write out the principal’s problem at time t = 0 as

sup
(τi,W i

k)i,k=h,`

∑
i=h,`

∑
k=h,`

Eθi [
∫ τ∧τγ

0
e−rtXtdt+ 1(τγ < τ)e−rτ

γ
V k
i (W i

k, Xt)]P(θi, θk)

subject to ∀ i, k = h, `

IC(θi, θk) : Eθi [

∫ τi∧τγ

0
αdt+ 1(τγ < τ)e−rτ

γ
(ρiW

i
i + (1− ρi)W i

k)]

≥ Eθi [
∫ τk∧τγ

0
αdt+ 1(τγ < τk)e

−rτγ (ρiW
k
i + (1− ρi)W k

k )]

Let us consider the problem type-by-type and conjecture that IC(θh, θ`) is slack. Let

w` be the utility given to ` in his optimal mechanism. Then P ’s problem can be written

as

sup
(τ,Wh

h ,W
h
` )

Eθh [

∫ τ∧τγ

0
e−rtXtdt+ 1(τγ < τ)e−rτ

γ
V (W h

` ,W
h
h , Xτγ )]

subject to

IC(θ`, θh) : Eθ` [
∫ τ∧τγ

0
e−rtαdt+ 1(τγ < τ)e−rτ

γ
W h
` ] ≤ w`

where V (W h
h ,W

h
` , Xτγ ) := ρhV

h
h (W h

h ,W
h
` , Xτγ ) + (1 − ρh)V `

h (W h
h ,W

h
` , Xτγ ). Define

Ṽ (W h
` , Xt) := sup

Wh
h

V (W h
h ,W

h
` , Xt). Since W h

h doesn’t enter the constraint set of the

problem for `, we can replace V with Ṽ , thereby simplify our problem to be the choice of

τ and W h
` . Using the same arguments as in Section 4.2, the solution to above problem

will also solve (for some Lagrange multiplier λ ≥ 0)

sup
(τ,Wh

` )
Eθh [e−rτ

(
λαMt − (

µh
r

+Xt) +

∫ τ

0
e−(r+γ)tγ(λW h

` Mt + Ṽ (W h
` , Xt)

)
dt],
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where Mt is the Radon-Nikodym derivative. Using the same techniques as in Section 4.2,

we see that the optimal stopping boundary for h follows the same increasing/decreasing

pattern before and after τγ .

Proposition 6. If the agent reports the state to be i at t = 0, then τ = inf{t : Xt ≤
bi(t)} where bh(t) is increasing if and only if µh+µ`

2 > 0 while b`(t) is a constant threshold.

After the first reporting opportunity, the optimal stopping boundary is again increasing

after a report of θh if and only if µh+µ`
2 > 0. The optimal stopping boundary after a

report of ` is constant.

Thus we see that the qualitative features of the optimal mechanism are robust to the

public arrival of new information. The key assumption is that the time of the potential

state change is observable by both P and A. If this doesn’t hold, then it is difficult to

know what the agent’s best deviation on when to report a state change is. While Madsen

(2016) explored this in a setting where P ’s flow payoff is equal to dXt, further analysis

in our model is beyond the technical means so far used.

6 Conclusion

We introduce a simple principal-agent model in which the agent has private information

about the expected profitability of a project. Our model illustrates how the principal

places distortions in order to elicit the agent’s information and how the nature of these

distortions depends on the parameters of the problem. When high types’ drifts are high

enough, back-loading distortions minimizes the expected probability that they are real-

ized but leads to increasing ex-post inefficiency. On the other hand, high types’ drifts are

low enough, the threshold for h is decreasing over time as later termination provides less

and less incentives to prevent a ` type from imitating h (and so the threshold approaches

the principal’s first best). The use of Lagrangian techniques and Girsanov’s Theorem

gives us a clear picture of the tensions in the model. We find that high types are offered

one of two types of contracts: up-or-out or asymptotically stationary. Our framework

allows us see what features of persistent private information drive the characteristics of

the optimal mechanism and a clear picture as to why private information may create

persistent distortions.

Additionally, we find that the qualitative structure of the optimal mechanism is robust

to a number of extensions. While the up-or-out mechanisms might strain the commitment

assumption, we believe that it illustrates a natural force in agency problems: that the

principal wants to introduce distortions where they provide the most bang for their buck.
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We believe that generally this characterization of when distortions are front- or back-

loaded would carry over when we limit the commitment power of the principal. This

finding might help explain why some professions feature up-or-out structures (e.g., limit

on time to reach promotion or tenure) while some feature less stringent standards as

time goes on.
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7 Appendix

7.1 First-Best

Proof of Proposition 1. With symmetric information, P ’s problem is a single-decision

maker problem given by

sup
τ

(
µi
r

+X0 − Eθi,X0 [e−rτi(
µi
r

+Xτi)])
1

r

It is easy to see that τi will take the form of a static threshold τi = inf{t : Xt ≤ bi}.
The expected discounted time until τ when starting at X0 is given by

e−R(b−X0) where R =
−µi −

√
µ2
i + 2rσ2

σ2

Taking first-order conditions and solving gives us the optimal bi.

To verify that ∂bi
∂µi

< 0, we note that

∂bi
∂µi

= −1

r
− σ2(1 +

µi√
µ2
i + 2rσ2

) < 0

7.2 Front-Loaded Distortions

Lemma 7. V (t,X) is convex in x.

Proof. Starting at (t,X), it is straightforward to verify that the gain function e−rτG(τ,Xτ )

is convex in x. Therefore, we know that Ex[e−rτG(τ,Xτ )] is convex in x. Moreover,

V (t,X) = sup
τ

Ex[e−rτG(τ,Xτ )] is convex in x since it is the sup over a set of convex

functions.

Lemma 8. Smooth pasting holds in X: ∂V (t,X)
∂X |X=bh(t) = Gx(t,X).

Proof. Let τε be the optimal stopping rule when at (t,X + ε) and X = bh(t). Then we

know that
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V (t,X + ε)− V (t,X) ≤ EX+ε[e
−r(τε−t)(G(τε, Xτε + ε))]− EX [e−r(τε−t)(G(τε, Xτε))]

= EX+ε[e
−r(τε−t)(λα(e

µh−µ`
σ2 (

µh+µ`
2

τε−Xτε−ε) − e
µh−µ`
σ2 (

µh+µ`
2

τε−Xτε ))− ε)]

= EX+ε[e
−r(τε−t)(ε(λαe

µh−µ`
σ2 (

µh+µ`
2

τε−Xτε )µh − µ`
σ2

− 1) + o(ε2))]

⇒ V (t,X + ε)− V (t,X)

ε
≤ EX+ε[e

−r(τε−t)Gx(τε, X) +
o(ε2))

ε
]

Taking ε → 0, we have ∂+V (t,X)
∂X ≤ ∂G(t,X)

∂X (convexity of V implies that the right

derivative exists).

To get the reverse inequality, we use the fact that V (t,X + ε) > G(t,X + ε) and

V (t,X) = G(t,X) to see that

V (t,X + ε)− V (t,X)

ε
≥ G(t,X + ε)−G(t,X)

ε

Taking ε→ 0, we have ∂+V (t,X)
∂X ≥ ∂G(t,X)

∂X , completing the proof ( ∂−V (t,X)
∂X = Gx(t,X)

follows immediately from the definition of D.).

Lemma 9. Smooth-pasting holds in t: ∂V (t,X)
∂t |X=bh(t) = Gt(t,X).

Proof. Let (t,X) ∈ ∂C. Let τδ be the optimal stopping rule at (t+ δ,X) (as we will see

in the proof of Lemma 1, (t+ δ,X) ∈ C) and define τ = τδ − δ. Then we know that

V (t+ δ,X)− V (t,X) ≤ E[e−r(τ+δ−(t+δ))G(τ + δ,Xτ+δ)]− E[e−r(τ−t)G(τ,Xτ )]

= E[e−r(τ−t)(λαe−
µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 (τ+δ) − (
µh
r

+Xτ ))]

− E[e−r(τ−t)(λαe−
µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 τ − (
µh
r

+Xτ ))]

= E[e−r(τ−t)λαe−
µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 τ ](e
µ2
h−µ

2
`

2σ2 δ − 1).

Dividing both sides by δ and taking δ → 0, we get that

∂+V (t,X)

∂t
≤ E[e−r(τ−t)λαe−

µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 τ ]
µ2
h − µ2

`

2σ2
.

Because e−
µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 τ is always positive and is a martingale, we have that
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∂+V (t,X)

∂t
≤ λα

µ2
h − µ2

`

2σ2
e−

µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t = Gt(t,X).

For the reverse inequality, we note that V (t,X) = G(t,X) and V (t+ δ,X) > G(t+

δ,X) (by definition of C), which implies that

V (t+ δ,X)− V (t,X)

δ
≥ G(t+ δ,X)−G(t,X)

δ

Taking δ → 0 gives us that ∂+V (t,X)
∂t ≥ G(t,X) and implies that ∂+V (t,X)

∂t = Gt(t,X).

Checking that ∂−V (t,X)
∂t = Gt(t,X) follows immediately from the definition of D.

Proof of Lemma 1. We will show that V (t′, X) ∈ C ⇒ V (t,X) ∈ C for t′ < t. We know

that the optimal stopping rule given that the current state is (t,X) will be measurable

with respect to the process starting at (t,X) (and ignoring all past events). This allows

us to create an isomorphism from such stopping rules starting at t and t′ by the mapping

τ = τ ′ + (t− t′). Take a large T and define τT = τ ∧ T and τ ′T = τT + (t′ − t).

We claim that V (t,X)−λαe−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t is increasing in t. To see this, note that

E[e−r(τT−t)(λαe−
µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 τ − (
µh
r

+Xτ ))]− λαe−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t

= E[e−r(τT−t)(−(
µh
r

+XτT ))) + λαe−
µh−µ`
σ2 XτT +

µ2
h−µ

2
`

2σ2 τT (e−r(τT−t) − 1)]

= E[e−r(τ
′
T−t

′)(−(
µh
r

+Xτ ′))) + λαe
−µh−µ`

σ2 Xτ ′
T

+
µ2
h−µ

2
`

2σ2 (τ ′T+(t−t′))
(e−r(τ

′
T−t

′) − 1)]

> E[e−r(τ
′−t′)(−(

µh
r

+Xτ ′T
))) + λαe

−µh−µ`
σ2 Xτ ′

T
+
µ2
h−µ

2
`

2σ2 τ ′T (e−r(τ
′
T−t

′) − 1)]

= E[e−r(τ
′
T−t

′)(λαe
−µh−µ`

σ2 Xτ ′
T

+
µ2
h−µ

2
`

2σ2 τ ′T − (
µh
r

+Xτ ′T
))]− λαe−

µh−µ`
σ2 Xt′+

µ2
h−µ

2
`

2σ2 t′

where equality holds by the fact that Mt = e−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t is a martingale and

τT , τ
′
T are bounded by T so the Optimal Sampling Theorem implies that

e−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t = E[e−
µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 τ ]

By taking the sup over τ and τ ′ and T →∞, we get our desired result.

Thus we have that
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V (t,X)−G(t,X) = V (t,X)− λαe−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t +
µh
r

+X

≥ V (t′, X)− λαe−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t′ +
µh
r

+X

= V (t′, X)−G(t′, X) > 0

So V (t′, X) ∈ C ⇒ V (t,X) ∈ C, implying that bh is decreasing.

We now want to show that bh is continuous. For the sake of contradiction, suppose

that bh had a jump at t. Fix an X ∈ (bh(t+), bh(t−)) and consider some t′ > t. Note

that we can rewrite the difference between V and G as

V (t′, X)−G(t′, X) =

∫ X

bh(t′+)

∫ u

bh(t′+)
[VXX(t′, w)−GXX(t′, w)]dwdu. (2)

By Ito’s Lemma, we know that

VXX(t′, X)−GXX(t′, X) =
2

σ2
[rV (t′, X)−Vt(t′, X)−µhVX(t′, X)]−λα(µh − µ`)2

σ4
e−

µh−µ`
σ2 X+

µ2
h−µ

2
`

2σ2 t′ .

Using Lemmas 9 and 10, we have that for t′ close to t

VX(t′, X) ≈ GX(t,X) = −λαµh − µ`
σ2

e−
µh−µ`
σ2 X+

µ2
h−µ

2
`

2σ2 t′ − 1,

Vt(t
′, X) ≈ Gt(t′, X) =

µ2
h − µ2

`

2σ2
λαe−

µh−µ`
σ2 X+

µ2
h−µ

2
`

2σ2 t′ .

Substituting these into equation 2, we have

V (t′, X)−G(t′, X) ≈
∫ X

bh(t′+)

∫ u

bh(t′+)

[ 2

σ2
(rV (t′, w)− λαe−

µh−µ`
σ2 X+

µ2
h−µ

2
`

2σ2 t′(
µ2
h − µ2

`

σ2
− µh

µh − µ`
σ2

))

− λα(µh − µ`)2

σ4
e−

µh−µ`
σ2 X+

µ2
h−µ

2
`

2σ2 t′]dwdu
=

∫ Z

bh(t′+)

∫ u

bh(t′+)

[ 2

σ2
(rV (t′, w) + µh)]dwdu,

Note that for it be optimal to stop at X, it must be that de−rtG(t,X) < 0, which implies

(by Ito’s Lemma) that
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−rG(t,X) +Gt(t,X) + µhGX(t,X) +
σ2

2
GXX(t,X) < 0.

Using our functional form for G, this simplifies to µh+rG(t,X) > 0. Since V (t,X) >

0, this implies that µh + rV (t,X) > 0. Since G(t,X) is decreasing in X and µh +

rG(t, bh(t−)) > 0, there exists a c, δ > 0 such that µh + rG(t,X) > c for all X ∈
[bh(t+), bh(t+) + δ]. Therefore, we can conclude that

V (t′, X)−G(t′, X) ≈
∫ Z

bh(t′+)

∫ u

bh(t′−)

[ 2

σ2
(rV (t′, w) + µh)]dwdu

≥
∫ bh(t′+)+δ

bh(t′+)

∫ bh(t′+)+δ

bh(t′+)

[ 2

σ2
(rV (t′, w) + µh)]dwdu

≥
∫ bh(t′+)+δ

bh(t′+)

∫ bh(t′+)+δ

bh(t′+)
cdwdu

> c
δ2

2
> 0

Therefore, we can conclude that (given a small enough ε) for all t′ ∈ [t, t+ ε], we have

V (t′, X)−G(t′, X) > c
δ2

3
> 0.

Taking t′ → t, since X > bh(t+), we have that V (t,X) > G(t,X), a contradiction of

(t,X) ∈ D. Therefore we cannot have a jump in bh(t).

Proof of Lemma 2. Suppose that bh crosses bFBh . Since bh is decreasing, it will never rise

above bFBh again. Now consider the alternative stopping rule b̂h which is defined as

b̂h(t) =

{
bh(t) if t ≤ sup{s : b(s) > bFBh },
bFBh if t > sup{s : b(s) > bFBh }.

Because this shut-down rule leads to quicker shutdown, b̂h is less attractive for ` than bh
was. Additionally, from time sup(s : bh(s) > bFBh ) onward, b̂h leads to a higher utility

for the principal since it delivers the first best outcome. Therefore, bh cannot have been

optimal.
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Proof of Lemma 3. We want to show that for G̃ε(x) = ε− (µhr +x), the function Ṽ (x) ≈
V (t,X) for t large enough.

Because bh(t) is decreasing and bounded below by bFBh , we know that bh(t) is con-

verging to some constant line b = sup{b : b ≤ bh(t) ∀t}. Let τ(b) = inf{s ≥ t : Xt = b}.
For large t, we will show that b > bFBh is strictly sub-optimal.

For large t, the Radon-Nikodym derivative Mt = e−
µh−µ`
σ2 Xt+

µ2
h−µ

2
`

2σ2 t → 0 unless Xt →
−∞ and thus the distortion term becomes negligible. Since Xt is bounded below, we can

conclude that Mt → 0 and hence we have

V (t,X) = sup
τ≥t

E[e−r(τ−t)(λαe−
µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 τ − (
µh
r

+Xτ ))]

≈ E[e−r(τ(b)−t)(λαe−
µh−µ`
σ2 Xτ(b)+

µ2
h−µ

2
`

2σ2 τ(b) − (
µh
r

+Xτ(b)))].

Let t be large enough and ε = λαe−
µh−µ`
σ2 b+

µ2
h−µ

2
`

2σ2 t. Then we have

V (t,X) = sup
τ≥t

E[e−r(τ−t)(λαe−
µh−µ`
σ2 Xτ+

µ2
h−µ

2
`

2σ2 τ − (
µh
r

+Xτ ))]

≤ sup
τ≥t

E[e−r(τ−t)(λαe−
µh−µ`
σ2 b+

µ2
h−µ

2
`

2σ2 t − (
µh
r

+Xτ ))]

= sup
τ≥t

E[e−r(τ−t)(ε− (
µh
r

+Xτ ))].

Let τε = argsupτ≥t E[e−rτ
∗
(ε− (µhr +Xτ∗))]. Since this problem is time-homogeneous,

the optimal stopping policy will take a threshold form, τε = inf{s ≥ t : Xs = bεh}
for some bεh. As t → ∞, we have ε → 0; it is easy to show that bεh → bFBh . Let

τ(b) := inf{s ≥ t : Xt ≤ b}. Then, since b > bFB, for small ε we know that

V (t,X) < E[e−r(τ(b)−t)(ε− (
µh
r

+ b)
)
]

< E[−e−r(τ(bFB)−t)(
µh
r

+ bFB)]

< E[e−r(τ(bFB)−t)(λαe−
µh−µ`
σ2 bFB+

µ2
h−µ

2
`

2σ2 τ(bFB) − (
µh
r

+ bFB))],

where the final line is the payoff that P would get from using the stopping rule τ(bFB),

contradicting the the optimality of V . Therefore, we cannot have b > bFB.
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7.3 Back-Loaded Distortions

Proof of Lemma 4. We claim that V (t,X)
e−rt −λαe

−(µh−µ`)
σ2 Xt+

µ2
h−µ

2
`

2σ2 t is decreasing in t. This

follows from a slight modification of the proof of Lemma 1 and noting that
µ2
h−µ

2
`

2σ2 > 0.

Suppose that V (t,X)−G(t,X) > 0. We want to show that V (t′, X)−G(t′, X) > 0 for

t′ < t. This follows from a similar argument as in Lemma 1.

Proof of Lemma 5. We claim that Ṽ (Z,t)
e−rt + µh+µ`

2 t is increasing in t.

Let t′ < t and define τ ′ = τ + (t′ − t). Then we know that

E[e−r(τ−t)(λαe−
2µ̃

σ2Zτ − (
µ

r
+ Zτ +

µh + µ`
2

τ)] +
µh + µ`

2
t

= E[e−r(τ−t)(λαe−
2µ̃

σ2Zτ − (
µ

r
+ Zτ +

µh + µ`
2

(τ − t))− t(e−r(τ−t) − 1)
µh + µ`

2
]

= E[e−r(τ
′−t′)(λαe−

2µ̃

σ2Zτ ′ − (
µ

r
+ Zτ ′ +

µh + µ`
2

(τ ′ − t′))− t(e−r(τ ′−t′) − 1)
µh + µ`

2
]

≥ E[e−r(τ
′−t′)(λαe−

2µ̃

σ2Zτ ′ − (
µ

r
+ Zτ ′ +

µh + µ`
2

(τ ′ − t′))− t′(e−r(τ ′−t′) − 1)
µh + µ`

2
]

= E[e−r(τ
′−t′)(λαe−

2µ̃

σ2Zτ ′ − (
µ

r
+ Zτ ′ +

µh + µ`
2

τ ′)] +
µh + µ`

2
t′

Taking the sup over τ , we get our desired result. Therefore, we have that

Ṽ (t, Z)− G̃(t, Z) =
Ṽ (Z, t)

e−rt
+
µh + µ`

2
t− (λαe−

2µ̃

σ2Z − (
µ

r
+ Z))

≥ Ṽ (t′, Z) +
µh + µ`

2
t′ − (λαe−

2µ̃

σ2Z − (
µ

r
+ Z))

= Ṽ (t′, Z)− G̃(t′, Z) > 0.

Therefore, Ṽ (t′, Z) ∈ C ⇒ Ṽ (t, Z) ∈ C.
We now want to show that bZh (t) is continuous in t. For the sake of contradiction,

suppose that there was a jump at t. Let our value function be Ṽ (t, Z). It follows from the

same arguments as in Lemma 9 that at the boundary of C, we have ∂Ṽ (t,Z)
∂Z = ∂G̃(t,Z)

∂Z =
−2µ̃
σ2 λαe

− 2µ̃

σ2Z − 1. We note that Ṽ (t, Z) ≥ 0 (since otherwise the principal to could wait

never stop and guarantee himself a payoff of zero) and Ṽt(t,X) ≤ 0 (since µh+µ`
2 > 0).

Fix Z ∈ (bh(t−), bh(t+)).Note that

Ṽ (t′, Z)− G̃(t′, Z) = ert
∫ Z

b(t′−)

∫ u

bh(t′−)
(ṼZZ(t′, w)− G̃ZZ(t′, w))dwdu
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By Ito’s Lemma and our previous claims, we have that for t′ close to t,

ṼZZ(t, Z)− G̃ZZ(t, Z) =
2

σ2
[rṼ (t, Z)− Ṽt(t, Z)− µ̃VZ(t, Z)]− λα4µ̃2

σ4
e−

2µ̃

σ2Z

=
2

σ2
[rṼ (t, Z)− Ṽt(t, Z)− µ̃(

−2µ̃

σ2
λαe−

2µ̃

σ2Z − 1)]− λα4µ̃2

σ4
e−

2µ̃

σ2Z

≥ 2

σ2
[rṼ (t, Z) + µh]

> 0

since µh > 0 and which implies that Ṽ (t′, Z) − G̃(t′, Z) > 2 µ̃
σ2

(Z−bh(t′−))2

2 > 0; taking

t′ → t, we have Ṽ (t, Z)− G̃(t, Z) > 0 a contradiction of D. Therefore, there cannot have

been a jump and bZh (t) must be continuous.

Proof of Lemma 6. Suppose for the sake of contradiction that ∃ b̄ such that b̄ > bh(t) ∀t.
This implies that for any fixed Xt, we have that λαe

µh−µ`
σ2 (−Xτ+

µh+µ`
2

τ) →∞ as t→∞.

Since µh is positive, with positive probability it will never cross b̄ and as we increase Xt,

we will have that the probability it will never cross b̄ is e−
2µh
σ2 (Xt−b̄), which approaches 1

as Xt →∞.

Given a > 0, b, the density of the first-passage time of a Brownian motion starting at

zero at time t is given by

f(t′) =
a√

2π(t′ − t)3
e
− (a+b(t′−t))2

t′−t

Therefore, the density of the first-crossing time of b̄ when starting at time t and X

is given by

f(t′|t,X) =
Xt − b̄√

2π(t′ − t)3
e
− (Xt−b̄−µh(t′−t))2

σ2(t′−t)

Fix a small δ > 0. Since the gain function G is decreasing in X, for large t the value

function V (t,X) will be bounded above by the expected utility of stopping at b̄, when

the payoff of stopping at b̄ is G(t, b̄ − δ) (since the process is stopping sooner and at a

higher payoff).
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V (t,X) ≤
∫ ∞
t

e−r(t
′−t)(λαe

µh−µ`
σ2 (−(b̄−δ)+µh+µ`

2
t′) − (

µh
r

+ b̄− δ))f(t′|X)dt′ (3)

=

∫ ∞
0

e−rsλαe
µh−µ`
σ2 (−(b̄−δ)+µh+µ`

2
(t+s)Xt − b̄√

2πs3
e−

(Xt−b̄−µhs)
2

σ2s ds

−
∫ ∞

0
e−rs(

µh
r

+ b̄− δ)Xt − b̄√
2πs3

e−
(Xt−b̄−µhs)

2

σ2s ds

If we take X = µh+µ`
3 t+ b̄, we can see that the exponential terms in the second line of 3

are equal to

µh − µ`
σ2

(−b̄+ δ) +
µ2 − µ2

`

2σ2
(t+ s)− (µh − µ`)2

9σ2s
t2 + 2µh

µh + µ`
3σ2

t−
µ2
h

σ2
s2

Dropping the constant µh−µ`
σ2 (−b̄+ δ) and factoring out 1

σ2 , we are left with

µ2 − µ2
`

2
(t+ s)− (µh − µ`)2

9s
t2 + 2µh

µh + µ`
3

t− µ2
hs

2

which can be made arbitrarily negative for all s by taking t → ∞. Using a similar

argument for the third line of 3, we can see that the upper bound on V (t,X) can be

made arbitrarily small by taking t large enough. However, for large t, we have that

G(t, b̄ + µh+µ`
2 t) → ∞, contradicting the fact that V (t,X) > G(t,X). Therefore, bh

cannot be bounded above.

7.4 Binding Constraint

The previous Lemmas completely characterize the solution to the relaxed problem in

which IC(h, `) is dropped. In order to complete the proof of Theorem 1 we only need to

verify that the solution to the relaxed problem doesn’t violate IC(h, `).

Proposition 7. The solution to the relaxed problem satisfies IC(h, `).

Proof. It is clear that IC(`, h) must bind in our relaxed problem; otherwise, P could get

his first-best which violates IC(`, h).

Suppose that the solution to the relaxed problem did violate IC(h, `) and let Jhh be

the utility that h gets from bh(t) in the relaxed problem.
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Now lets define a relaxed version of the relaxed problem: lets find the optimal b̂h(t)

only under the constraint that it delivers Jhh to h. Using Lagrangian techniques, we get

sup
τ

Eθh [e−r(τ−t)(λαhh − (
µh
r

+Xτ ))].

which has a solution of a static threshold-i.e., b̂h(t) = b̂h ∈ R. Because this delivers Jhh to

h and Jhh is less than the utility he would get from b`(t) (which is also a static threshold

b`), we know that b̂h > b`. This shows that IC(`, h) is satisfied and b̂h is allowable in

our original relaxed problem with only IC(`, h). Moreover, it yields at least as much

utility as bh(t) and IC(`, h) is slack, a contradiction. Therefore, we cannot have IC(h, `)

violated.

7.5 Optimal bh(t)

Proof of Proposition 3. Since bh(t) is continuous, we can use the change of variable for-

mula from Peskir (2005) to show that

e−r(T−t)V (T,XT ) =V (t,X) +

∫ T

t
e−r(s−t)(LV (s,Xs)− rV (s,Xs))1(Xs 6= bh(s))ds

+ YT +
1

2

∫ T

t
∆XV (s,Xs)1(Xs = bh(s))d`s,

where ∆sVZ(s, bh(s)) = VZ(s, bh(s)+) − VZ(s, bh(s)−), YT is a martingale and `s is the

local time of Xs which is given by

`s = Ps,X − lim
ε↓0

1

2ε

∫ s

t
1(bh(u)− ε < Xu < bh(u) + ε).

By the principle of smooth fit, the last integrand is equal to zero. If we take Pt,X
expectations of both sides, we have

E[e−r(T−t)V (T,XT )] = V (t,X)+

∫ T

t
e−r(s−t)E[(LV (s,Xs)−rV (s,Xs))1(Xs 6= bh(s))]ds.

Evaluating V (t,X) at bh(t), we have that

Ee−r(T−t)[V (T,XT )] = G(t, bh(t)) +

∫ T

t
e−rsE[

(
LG(s,Xs)− rG(s,Xs)

)
1Xs<bh(s)]ds.
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Taking T →∞, we get our desired solution. To complete the proof, we only need to check

the uniqueness of bh(t) within an appropriate class of functions is verified in Lemma 11.

Lemma 10. The function bh(t) is the unique solution to 1 in the class of functions

{c : R+ → R : c ∈ C1 and − µh − rG(t, c(t)) < 0 ∀t ∈ [0,∞)}.

Proof. Let c(t) be another function in the relevant class which solves the integral equation

such that ∀t G(t, c(t)) ≥ 0. We will show that c and b coincide. Let us define U(t,X) as

U(t,Xt) =

∫ ∞
t

e−r(s−t)E[(LG(s,Xs)− rG(s,Xs))1(Xs < c(s)))]ds.

and V c(t,X) as

V c(t,Xt) =

{
U(t,Xt) if Xt > c(t),

G(t,Xt) if Xt ≤ c(t).

By standard arguments, we know that LV c(t,Xt) − rV c(t,Xt) = 0 for Xt ≥ c(t).

Using the change-of-variable formula, we know that

V c(t,Xt) =

∫ ∞
t

e−r(s−t)E[(LG(s,Xs)− rG(s,Xs))1(Xs < c(s)))]ds

− 1

2

∫ ∞
t

e−r(s−t)∆xV
c
x (t+ s, c(t+ s))Ex[`cs(Xs)].

By definition of V c and U , we have that

1(Xt ≤ c(t))G(t,Xt) + 1(Xt > c(t))U(t,Xt) =U(t,Xt)−
1

2

∫ ∞
t

e−rs∆xV
c
x (t+ s, c(t+ s))Ex[`cs(Xs)]

⇒ 21(Xt ≤ c(t))(U(t,Xt)−G(t,Xt)) =

∫ ∞
t

e−rs∆xV
c
x (t+ s, c(t+ s))Ex[`cs(Xs)].

Thus, if U(t,Xt) = G(t,Xt) for all Xt ≤ c(t), then it must be that V c is C1 at Xt = c(t).

Define a stopping time τ+
c = inf{s ≥ t : Xs ≥ c(s)} and lets consider an Xt < c(t).

We know that, since c(t) solves the integral equation, U(τc, Xτc) = G(τc, Xτc). Moreover,

it is straightforward to show that both U,G are C1 and hence, satisfy
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e−rTU(T,XT ) = U(t,X) +

∫ T

t
e−r(s−t)

(
LU(s,Xs)− rU(s,Xs)

)
1(Xs 6= c(s))ds+ Y U

t

(4)

e−rTG(T,XT ) = G(t,X) +

∫ T

t
e−r(s−t)

(
LG(s,Xs)− rG(s,Xs)

)
1(Xs 6= c(s))ds+ Y G

t

(5)

for some martingales Y U
t , Y

G
t . Taking T → ∞ and expectations of both sides when

evaluated at X = c(t), we get

0 = U(t,X) + E[

∫ ∞
t

e−r(s−t)
(
LU(s,Xs)− rU(s,Xs)

)
1(Xs 6= c(s))ds]

= U(t,X) + E[

∫ ∞
t

e−r(s−t)
(
LU(s,Xs)− rU(s,Xs)

)
1(Xs < c(s))ds]

= U(t,X)−G(t,X)

where the first equality follows from definition of U and the second equality follows from

the fact that c(t) solves equation 1; therefore, at X = c(t), we have U(t,X) = G(t,X).

Replacing T with τ+
c and taking expectations on 4, we have

E[e−rτ
+
c U(τ+

c , Xτ+
c

)] = U(t,X) + E[

∫ τc

t
e−r(s−t)

(
LU(s,Xs)− rU(s,Xs)

)
1(Xs < c(s))ds]

E[e−rτcG(τ+
c , Xτ+

c
)] = G(t,X) + E[

∫ τ+
c

t
e−r(s−t)

(
LG(s,Xs)− rG(s,Xs)

)
1(Xs 6= c(s))ds]

Using our change-of-variable formula, we have
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U(t,Xt) = EXt [e−r(τ
+
c −t)U(τ+

c , Xτ+
c

)]− EXt [
∫ τ+

c

t
e−r(s−t)

(
LG(s,Xs)− rG(s,Xs)

)
1(Xs < c(s))ds]

= EXt [e−r(τ
+
c −t)G(τ+

c , Xτ+
c

)]− EXt [
∫ τ+

c

t
e−r(s−t)

(
LG(s,Xs)− rG(s,Xs)

)
1(Xs < c(s))ds]

= G(t,Xt) + EXt [
∫ τ+

c

t
e−r(s−t)

(
LG(s,Xs)− rG(s,Xs)

)
ds]

− EXt [
∫ τ+

c

t
e−r(s−t)

(
LG(s,Xs)− rG(s,Xs)

)
1(Xs < c(s))ds]

= G(t,Xt).

Thus, we have our desired result and so V c is C1 at c(t).

Now we want to show that V (t,X) ≥ V c(t,X). To do this, we define τ−c = inf{s ≥
t : Xs ≤ c(s)}. Again using the change-of-variable formula, we have

e−r(s−t)V c(s,Xs) = V c(t,Xt) +

∫ ∞
t

e−r(s−t)[LG(s,Xs)− rG(s,Xs)]1(Xs ≤ c(s))ds+M c
t ,

where M c
t is a martingale. Then replacing s with τc and taking expectations, we have

V c(t,Xt) = E[e−rτ
−
c V c(τ−c , Xτ−c

)].

Hence by definition of V , we have V (t,X) ≥ V c(t,X).

Let us now show that c(t) ≥ b(t). Pick an X < min{b(t), c(t)} such that LG(t,X)−
rG(t,X) < 0 (remember LG(s,Xs)− rG(s,Xs) < 0 at Xs = b(s)) and define a stopping

rule τ+
b = inf{s ≥ t : Xs ≥ b(s)} and τ− = inf{s ≥ t : LG(s,Xs) − rG(s,Xs) ≥ 0}.

Using the change of variable formula, we have

E[e−r(τ
+
b ∧τ−−t)V c(τ+

b ∧ τ−, Xτ+
b ∧τ−

)] = G(t,Xt) + E[

∫ τ+
b ∧τ−

t
e−r(s−t)

(
LG(s,Xs)− rG(s,Xs)

)
1(Xs < c(s))ds]

E[e−r(τ
+
b ∧τ−−t)V (τ+

b ∧ τ−, Xτ+
b ∧τ−

)] = G(t,Xt) + E[

∫ τ+
b ∧τ−

t
e−r(s−t)

(
LG(s,Xs)− rG(s,Xs)

)
ds]

With the fact that V (t,X) ≥ V c(t,X), we have that

E[

∫ τ+
b ∧τ−

t
e−r(s−t)[LG(s,Xs)−rG(s,Xs)]ds] ≥ E[

∫ τ+
b ∧τ−

t
e−r(s−t)

(
LG(s,Xs)−rG(s,Xs)

)
1(Xs < c(s))].
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By the continuity of c, b, this implies that c(t) ≥ b(t) for all t. Now suppose that

c(t) > b(t) for some t. Pick an x ∈ (b(t), c(t)). By using the change-of-variable formula,

we have that

E[e−r(τ
−
b −t)G(τ−b , Xτ−b

)] = V c(t,X) + E[

∫ τ−b

t
e−r(s−t)(LG(s,Xs)− rG(s,Xs))1(Xs < c(s))],

E[e−r(τ
−
b −t)G(τ−b , Xτ−b

)] = V (t,X).

This, together with the fact that V (t,X) ≥ V c(t,X), implies that

E[

∫ τ−b

t
e−r(s−t)(LG(s,Xs)− rG(s,Xs))1(Xs < c(s))] ≥ 0.

Since LG(s,Xs)− rG(s,Xs) < 0 for Xs < c(s) by assumption, the continuity of c(t), b(t)

implies that c(t) = b(t).

Lemma 11. Let bT (t) be the optimal stopping threshold when the end date is T . Take

at S ∈ R+. Then for a large enough T , the policy bT (t) approximates the optimal policy

b∞(t) over [0, S].

Proof. The stopping policy for time horizon S is a valid stopping rule in the finite horizon

case.

Let τS be the optimal stopping rule when the horizon is S and τ∞ be the optimal

stopping rule when the horizon is infinite.

E[e−rτSG(τS , XτS )] < E[e−rτ∞G(τ∞, Zτ∞)]

E[e−rτSG(τS , XτS )] > E[e−r(τ∞∧S)G(τ∞ ∧ S,Zτ∞∧S)]

Taking the limit as S →∞, we have that lim
S→∞ E[e−rτSG(τS , XτS )] = E[e−rτ∞G(τ∞, Zτ∞)].

Suppose that τS doesn’t converge pointwise to τ∞. Let t be such that lim
S→∞ bS(t) 6= b∞(t).

Using the change of variable formula, we know that

V S(t,X) = E[e−r(τ∞∧S)G(τ∞∧S,Zτ∞∧S)]−Et,X [

∫ τ∞∧S

t
e−rsr(Zs+

µh + µ`
2

s−e−2 µ̃

σ2Zs)1(Xs < bS(s))]

Taking the limit as S →∞ and using lim
S→∞ V S(t,X) = V∞(t,X), we have that
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lim
S→∞ Et,X [

∫ τ∞∧S

t
e−rsr(Zs +

µh + µ`
2

s− λαe−2 µ̃

σ2Zs)1(Xs < bS(s))] = 0

Therefore (using the continuity of b and the positivity of G), we must have for each

s, lim
S→∞ b

S(s) ≥ b∞(s). Suppose that for some large S, we have bS(s) > b∞(s) + ε. Pick

an x ∈ (b∞(s) + ε, bS(s)). By G ≥ 0 at b∞(t), we must have

Zs +
µh + µ`

2
s− λαe−2 µ̃

σ2Zs < −µh
r

7.6 Extensions

Proof of Lemma 7. Take any realization ω of Xt for θN−1 such that τ = s. Then θi will

assign the same probability to ω′, which at each point t is equal to X(ω′t) = X(ωt) −
(µθN−1

− µθi)t. Since this is strictly lower, this means that the X(ω′) will cross b before

τ . Since earlier stopping lowers A’s utility, it must be that the expected utility of θi is

lower than that of θN−1.

Proof of Proposition 5. The proof that bh(t) is increasing if and only if µh+µ`
2 follows

directly from the proofs of Lemmas 1 and 4 (adding a dτ (V FB(Xτ ) − C) to the direct

payoffs of P ). Thus, we only need to argue that there exists cutoff times which determine

whether or not auditing takes place. To see, this note that for an arbitrary τ , the optimal

dτ is equal to 1 if and only if V FB(Xτ ) > C. Since V FB(Xτ ) is increasing in Xτ , there

exists a cutoff Xc such that dτ = 1 ⇐⇒ Xτ > Xc. When bh(t) is increasing, there is

a t′ such that auditing only happens after t′; when bh(t) is decreasing, this means that

there exists a time t′′ such that audity only happens before t′′.

Proof of Proposition 6. We proceed similar to how we did in Section 4.2. Let us begin

by arguing that bh(t) must be increasing if and only if µh+µ`
2 > 0. We claim that

V (t,X)−λαMt is increasing in t if µh+µ`
2 < 0. Let t′ < t and fix an arbitrary W h

` policy

as a function of s,Xs which is IC after the report. Note that
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E[e−r(τT−t)(λαMτT − (
µh
r

+XτT ))−
∫ τT−t

0
e−rsγ(λW h

` (s,Xs)Ms + Ṽ (W h
` (s,Xs), Xs))ds]− αMt

= E[e−r(τT−t)(λαMτ (1− er(τT−t))− (
µh
r

+Xτ ))−
∫ τt−t

0
e−rsγ(λW h

` (s,Xs)Mτ + Ṽ (W h
` (s,Xs), Xt))dt])

> E[e−r(τ
′
T−t

′)(λαMτ ′T
(1− er(τ ′T−t′))− (

µh
r

+Xτ ))−
∫ τ ′T−t

′

0
e−rsγ(λW h

` (s,Xs)Ms + Ṽ (W h
` (s,Xs), Xs))ds]

− E[e−r(τ
′
T−t

′)(λαMτ ′T
− (

µh
r

+XτT ))−
∫ τ ′T−t

′

0
e−rsγ(λW h

` (s,Xs)Ms + Ṽ (W h
` (s,Xs), Xs))ds]− αMt′

Taking T →∞ and making the same arguments as in Lemma 1, we can conclude that

bh(t) is decreasing. Similar arguments as in Lemma 4 lead us to conclude that bh(t) is

increasing when µh+µ`
2 > 0. The rest of the proposition follows from the same arguments

as in Section 4.2.
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