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Abstract

Consider an analyst who observes an agent taking a sequence of actions. The analyst pon-
ders whether the sequence of actions observed could have been taken by a rational, Bayesian
agent. Although the analyst observes the chosen actions, he does not have direct access to
the agent’s information and must therefore consider a multitude of possibilities. Could some
gradual release of information have led the agent to optimally take that sequence of actions?

We show that a sequence of actions cannot be rationalized by any information structure
if and only if it can be proved to be dominated via a deviation argument. This argument
prescribes a way of deviating that would leave the agent better off in any possible scenario,
regardless of the information the she might have. As an application of this characterization,
we show that an increase in the agent’s risk-aversion leads to less predictive power: more
sequences of actions can be rationalized. We also show results that simplify the analyst’s
search for a deviation argument and demonstrate how these arguments can be used to partially
identify utility parameters without making assumptions on the agent’s information.

1 Introduction

As information arrives over time, people may take actions that seemingly go against their own
past choices. How can we judge someone’s sequence of choices without knowing what they
knew? A permissive criterion would allow for any sequence of choices that can be explained by
the piecemeal arrival of some information. The purpose of this paper is to characterize, for a
general decision problem, the sequences of actions which can be rationalized by such a criterion.

We consider the following model: There is a set of states of the world Ω. The agent starts
with a prior p ∈ ∆(Ω), sees a signal s1 that provides her some information about the actual state
of the world, and then chooses an action a1, following which the agent sees another informative
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signal s2, chooses an action a2 and so on, until the agent chooses a final action aT . A terminal
payoff, represented by an arbitrary function u : A1 × · · · × AT ×Ω→ R, is then realized.

An analyst knows the utility function u, and observes the chosen sequence of actions (a1, . . . , aT ).
The analyst does not know the agent’s prior p ∈ ∆(Ω) or her signal generating process π : Ω →
∆(S), where S = S1 × · · · ST . The analyst asks- does there exist any p and (π, S) for which the
sequence of choices (a1, . . . , aT ) could have been optimally chosen by a Bayesian agent?

To understand the setting and what our criterion allows, consider the following simple exam-
ple:

Example 1. A CEO faces an opportunity to invest in a project with uncertain payoffs: there is
a return of 4 if the project meets favorable conditions in the future (good state) and 0 if not (bad
state). The project bears fruits on two rounds of investment, and each round of investment costs
1 unit. The CEO has three options: not invest, invest in the first round and pull back in the
second, or investment in both periods. The finals payoffs can be summarized as follows:

Not Invest Invest & Pull back Invest & Invest

Good 0 -1 2

Bad 0 -1 -2

Suppose that we learn that the CEO invested in the first round, incurring the initial cost, but
then pulled back. Some might interpret that as evidence of incompetence, saying that in no state
can this sequence of actions be justified. They might say that even if the CEO was not sure about
the state of the world, not investing would surely have been a better choice. These critics would
be ignoring a simple explanation: it might be that the CEO initially received good news about
the investment, but after the first round of investment learnt that the project was likely to fail.

In Example 1, the action sequence (invest, pull back) is what we will call apparently dominated-
there exists another sequence of actions, (not invest, ∅), under which the agent does strictly better
in every state of the world.1 It will be easy to show that any action sequence that cannot be
rationalized is apparently dominated, however, as Example 1 shows, the converse is not true. In
fact in Example 1 all three possible sequences of choices can be rationalized, which illustrates how
permissive the criterion is. However, it is not vacuous, and can exclude some dynamic choices.
For instance, consider the following example:

Example 2. A firm can bet on one of two technologies, X or Y . The firm can also postpone the
decision, but by doing so its payoff is discounted by a factor δ, where 0 < δ < 1. Payoffs are as
follows:

x y wx wy
X 5 3 5δ 3δ

Y 3 5 3δ 5δ

1Generally, an action sequence is apparently dominated if there exists another action sequence (or a lottery over
action sequences) that does strictly better in every state of the world.
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Note that both wx and wy are apparently dominated, which does not necessarily rule them out.
We learn that the firm has decided to wait instead of making an immediate bet. Under what
values of δ can this choice be rationalized? By waiting, the firm can get at most 5δ. By making
an immediate decision, the firm is guaranteed to get at least 3. Hence, if δ < 3/5, waiting cannot
be rationalized.

But this is not the full story. If the firm makes an immediate decision to randomize equally
between x and y, it is guaranteed an expected payoff of 4, no matter the state. Therefore waiting
cannot be rationalized when δ < 4/5. On the other hand, if δ > 4/5, waiting can be explained
by the following information: it could be that the firm starts with an even prior and then fully
learns the state of the world in the second period. Thus, waiting can be rationalized precisely
when δ > 4/5.

There are two key lessons to take from Example 2. First, in order to rationalize an action
sequence we constructed one information structure that made the firm pick the action w (with
positive probability). Second, in order to show that the action sequence wx (or wy ) cannot
be rationalized we chose one alternate action in the form of a 50-50 bet on x and y. Generally
speaking, if we were to exclusively operate in the space of information structures, the former task
is relatively easy, the latter much less so. Allow us to explain.

An action sequence can be rationalized when there exists a prior p and an information struc-
ture (π, S) for which an optimizing agent could end up choosing that action sequence. In logical
parlance, the task involves the antecedent "there exist" p and (π, S) such that an optimal strategy
picks the action sequence with positive probability. On the other hand, showing that an action
sequence cannot be rationalized amounts to proving that for any p and (π, S), a Bayesian opti-
mizing strategy would never go down that path. Again, in logical parlance, we need to show that
"for all" p and (π, S) the corresponding optimal strategy would never pick that action sequence
with positive probability, an extremely high dimensional space to rule out.

In order to simplify the complexity of the latter task, in Example 2 for δ < 4
5 , we appealed to a

simpler deviation argument—instead of waiting, choose a deviation rule that makes an immediate
50-50 bet; this improves the payoff of an agent who had decided to wait. The challenge now is—for
any arbitrary set of states, actions and utility function, in order to show that an action sequence
cannot be rationalized, can we generalize the deviation argument that appropriately respects the
sequentiality of the decision problem? The construction of this deviation argument forms the
crux of our paper. frac Formally, a deviation rule is an adapted mapping from actions to lotteries
over actions, D : A → ∆(A). Adaptedness simply requires that deviations today can only be a
function of past actions and past deviations, and not the future course of actions or deviations. In
Example 1, if we map (invest, pull back) to (not invest, ∅) then adaptedness demands that we have
to map (invest, invest) also to (not invest, ∅). As a result, the deviation is not uniformly better, and
so (invest, pull back) can in fact be rationalized. In Example 2, the (perhaps intuitively appealing)
mapping wx 7→ x wy 7→ y, x 7→ x and y 7→ y is not adapted and hence not a valid deviation
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rule. However, the mapping wx 7→ 1
2 x +

1
2y, wy 7→ 1

2 x +
1
2y, x 7→ y and y 7→ y is adapted, and

is eventually used to show that action sequences wx and wy cannot be rationalized if δ < 4/5.
We say that a deviation rule uniformly improves upon an action sequence if it strictly in-

creases payoff along that actions sequence without worsening payoffs elsewhere on the decision
tree. If an action sequence can be uniformly improved upon by a deviation rule then it is truly
dominated. In Example 1 the action sequence (invest, pull back) cannot be uniformly improved
upon and hence is not truly dominated, whereas in Example 2 the action sequences wx and wy
can be uniformly improved upon by the deviation rule described above and hence are truly dom-
inated. Our main result establishes the following equivalence:

Theorem. An action sequence cannot be rationalized if and only if it is truly dominated.

The theorem can be viewed as a form of duality—it replaces the "for all" quantifier with
the "there exists" quantifier and vice-versa. In order to show that an action sequence can be
rationalized the analyst can construct one information structure for which the action sequence
receives positive weight under an optimal strategy. In order to show that an action sequence
cannot be rationalized the analyst can now construct one deviation rule that dominates it.

What is the static counterpart of the theorem? The agent takes only one action and then
payoffs are realized. The set of actions which can be rationalized are precisely those that are
a best-response to some belief over states. The theorem then reduces to the celebrated Wald-
Pearce Lemma (Wald [1949] and Pearce [1984]), which states that the actions which are never a
best-response, and hence cannot be rationalized, are strictly dominated by some mixed strategy.
Here, the rule would recommend deviating from the dominated action to the dominating mixed
strategy. In this sense, our result is a dynamic generalization of the Wald-Pearce Lemma.

The concept of deviation rules is bereft of information since it must work for all sequential
information structures. For any strategy of the agent σ : S → ∆(A), the composition mapping
D ◦σ uniformly improves upon the action sequence that cannot be rationalized.2 Moreover, the
adaptedness property condenses all potential inductive arguments on how deviations from the
agent’s strategy can be constructed that respect the sequentiality of the problem.

To determine whether an action sequence can be rationalized, one can investigate directly,
using the definition, or indirectly, using deviation rules. Which solution is simpler may depend
on the particular problem, but in Section 6 we show three results that together drastically sim-
plify the task of looking for deviation rules. The first result formalizes an intuitive process of
backward induction. The second result restricts the search to deviation rules that partition action
sequences in two classes: repulsive and absorbing. The agent is never recommended to deviate
from absorbing sequences, and always recommended to deviate from absorbing sequences. In
particular, "chains of deviations" are unnecessary. Finally, we show that it is possible to find a

2Note that D ◦ σ refers to the strategy that is obtained by first deciding what an agent following σ would have
done, and then deviating from that as prescribed by D .
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single deviation rule that simultaneously dominates every truly dominated action sequence.
There are two ways of thinking about the applicability of the framework. First, it provides

a minimal test of Bayesian rationality. Could investing in the first round only in Example 1
or waiting in Example 2 be justified by any possible learning? And second, assuming Bayesian
rationality, it can help the analyst (or the econometrician) partially identify missing pieces of
information from the agent’s preferences. For instance, the firm’s choice to wait in Example 2
helps identify the cost of waiting to be δ > 4

5 . In fact in more detailed examples, the notion of
true dominance restricts an unknown parameter to satisfy a system of inequalities which encloses
it in smaller set of possibilities.

Finally, we apply our main theorem to show that the set of actions sequences that can be
rationalized is an increasing function of risk aversion—the more risk averse the agent, the harder
it is to rule out action sequences as explained by some dynamic arrival of information. Using our
theorem and an elegant observation by Weinstein [2016], the proof of this result is straightfor-
ward.

2 Model and definitions

2.1 Notation

A stochastic mapping from X to a finite set Y is a function α : X → ∆(Y ), where ∆(Y ) is the set
of probability distributions over Y . We represent the probability assigned to y at the point x by
α(y |x). The composition of two stochastic maps α : X → ∆(Y ) and β : Y → ∆(Z) is given by

β ◦ α(z |x) =
∑
y∈Y

β(z |y)α(y |x).

Moreover, for a lottery α ∈ ∆(X ) and stochastic mapping β : X → ∆(Y ), we write

β ◦ α(y) =
∑
x∈X

β(y |x)α(x)

to be the probability with which y is chosen by (α, β).
For a real valued function u : Y → R and for a lottery over X , α ∈ ∆(X ), we denote by

u(α) =
∑
x∈X

α(x)u(x) the expected value of u(.) under the distribution α.

Throughout the text we consider a finite number of time periods t = 1, . . . ,T . For a collection
of sets (X t )

T
t=1, we will use the following notation

X t =

t∏
τ=1

Xτ X =
T∏
τ=1

Xτ

with elements xt ∈ X t and x ∈ X . Finally, a stochastic map α : X → ∆(Y ) is said to be adapted if
the marginal probability of the first t terms of y depends only on the first t terms of x; formally,
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Information

π : Ω→∆(S1×·· ·×ST )

Nature
draws ω

Agentsees s1

Agent
chooses a1

Agentsees s2

Agent
chooses a2

Agent gets
u(a,ω)
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Figure 1: The timeline of signals and actions

if the function ∑
yt+1,...,yT

α(y1, yt , . . . , yt+1, . . . yT |x1, . . . , x t , x t+1, . . . xT )

is constant in x t+1, . . . , xT .

2.2 Agent’s problem

In each time period t , the agent chooses an action at from a finite set At . Payoffs are determined
after period T by a utility function u(a, ω), which depends on the entire action sequence a =
(a1, . . . , aT ) ∈ A and a potentially unknown state of the world ω. There are no other restrictions
on the utility function.

The agent is informed about the underlying state of world over time through a sequence of
signals. The timeline of the dynamic decision problem is expressed in Figure 1. Every period,
before taking an action, the agent observes a signal that is (potentially) correlated with the state
of the world and with the signals she has observed in the past. Formally, the sequence of signals
is generated by a sequential information structure:

Definition 1. A sequential information structure is a sequence of finite sets of signals (St )Tt=1 and
a stochastic mapping π : Ω→ ∆ (S).3

We will often refer to the sequential information structure simply as π, the set of signals shall
be implicit. The agent’s strategy maps the sequence of signals into a lottery over actions every
period, with the restriction that the agent cannot base the choice of an action on signals that have
not yet been revealed, which we call adaptedness.

Definition 2. A strategy for the agent is an adapted stochastic mapping σ : S → ∆ (A).4

Given the sequential information structure π and agent’s strategy σ, the probability that the
agent takes a given sequence of actions in each state of the world ω is given by σ ◦π(a|ω). Finally,

3We can equivalently define the sequential information structure period-by-period as follows. Let π = (πt )Tt=1 be a
family of stochastic mappings where π1 : Ω→ ∆(S1), and πt : Ω × S t−1 → ∆(St ) ∀ 2 ≤ t ≤ T . With the exception of
zero probability events, we can deduce the two definitions are equivalent. The minor distinction does not affect the
agent’s utility and is therefore irrelevant for our results. For a proof, see Lemma 3 in de Oliveira [2018].

4As with information structures, an equivalent way to think the agent’s strategy is a family of stochastic mappings
σ = (σt )

T
t=1, where σ1 : S1 → ∆(A1), and σt : S t × At−1 → ∆(At ) ∀ 2 ≤ t ≤ T . It is possible to deduce one

formulation from the other.

6



given a prior p ∈ ∆(Ω), she can evaluate her expected payoff:

U
(
σ, π, p

)
=

∑
ω∈Ω

p(ω)
∑
a∈A

σ ◦ π (a|ω) u(a, ω).

The agent’s problem then is to choose an optimal σ given π and p. We say that an action sequence
can be rationalized if it can be chosen with positive probability by an optimizing agent for some
prior and some information structure.

Definition 3. An action sequence a ∈ A can be rationalized if there exists a triplet
(
σ, π, p

)
such

that:

1. σ ∈ argmax
σ̂

U (σ̂, π, p) and

2. σ ◦ π ◦ p(a) > 0.5

This definition is permissive in the sense that an action sequence is considered to be rational-
ized even if its probability is very small, so long as it is positive. Moreover, because the agent
sees a signal before choosing the first action, any two interior prior beliefs p and p ′ result in the
same criterion, since we can always consider a signal distribution which updates from p to p ′ with
positive probability. In that sense the choice of prior in addition to the choice of the sequential
information structure in the definition above arms the analyst with more instruments than she
requires to rationalize an action sequence. However, fixing a prior that puts zero probability on
some states loses generality, since updated beliefs must also put zero probability on those states.6

To deduce that an action sequence cannot be rationalized requires the analyst to work through
all possible (π, p), and show that the corresponding optimal strategy σ will not pick that action
sequence with positive probability. Since the set of all sequential information structures is quite
large, this can pose a challenge. Our main goal is to find an alternative way to characterize the set
of action sequences that cannot be rationalized.

3 The static problem

To fix ideas it is easiest to start from the simple case of T = 1. In this static problem, the agent
starts with a prior p, observes a signal s , and takes an action a following which a payoff u(a, ω)
is realized. Letting

q(ω |s) =
π(s |ω)p(ω)
π ◦ p(s)

5Here σ ◦ π ◦ p(a) =
∑
ω
σ ◦ π (a|ω) p (ω) (see Section 2.1)

6This logic can be pushed further: to determine the set of actions that can be rationalized going forward, the only
relevant aspect of a belief is the set of states that have zero probability. So, a behavioral model where agents may violate
the martingale condition of beliefs could rationalize the same set of action sequences as the Bayesian model, as long
as its belief process agrees with the Bayesian belief process on which states have zero probability. We are grateful to
Andrew Caplin for pointing this out to us.
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denote the posterior belief of the agent upon seeing s , we can rewrite the agent’s expected utility
from choosing strategy σ as:

U (σ, π, p) =
∑
ω,a,s

u(a, ω)σ(a |s)π(s |ω)p(ω) =
∑
ω,a,s

u(a, ω)σ(a |s)q(ω |s)π ◦ p(s) (1)

This makes the agent’s problem separable in s , so it reads simply as follows: for each s , choose an
action a in order to maximize ∑

ω∈Ω

u(a, ω)q(ω |s). (2)

Therefore an action can be rationalized if and only if it is a best-response to some posterior belief
q . Hence, to find if an action can be rationalized, we can restrict attention to the case where
the agent starts with a "prior q" and learns nothing thereafter. In particular, if an action can be
rationalized, there is a triplet (σ, π, p)whereσ is optimal and chooses that action with probability
1. To summarize:

Remark 1. Let T = 1. Then the following statements are equivalent:

1. a is a best-response to some belief q;

2. There exists (σ, π, p) such that σ maximizes (1) with σ(a) > 0.

3. There exists (σ, π, p) such that σ maximizes (1) with σ(a) = 1.

It is worth trying to extrapolate the contents of Remark 1 to the case of T > 1. It is easy to
see that the equivalence between parts 2 and 3 no longer holds in Example 1. Specifically, (invest,
pull back) can be rationalized with positive probability but never with probability 1. Moreover, if
we simply invoke a static information structure wherein the agent learns all possible information
prior to taking all the actions, the same example shows that parts 1 and 2 of Remark 1 fail to be
equivalent as well. In a nutshell, the sequential structure of the problem matters.

3.1 The Wald-Pearce Lemma

An elegant result by Wald [1949] and Pearce [1984] characterizes what it means for an action to
be rationalized in the static model. The result states that, in a two-player game,

Lemma 1 (Wald-Pearce). An action is never a best-response if and only if it is strictly dominated by
some mixed strategy.

In our context, think of a game where Player 1 is our agent, choosing action a, and Player
2 is Nature, choosing state ω. A mixed strategy α ∈ ∆(A) strictly dominates a if and only if
u(α,ω) > u(a, ω) for all ω ∈ Ω, where u(α,ω) is the expected utility of following that mixed
strategy. An action a is then said to be strictly dominated if there exists a mixed strategy α that
strictly dominates it.

Given Remark 1, a is never a best response if and only if it cannot be rationalized. Therefore
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Corollary 1. For T = 1, an action a cannot be rationalized if and only if it is strictly dominated.

The key idea behind the Wald-Pearce lemma is that it is possible to invert the order of quanti-
fiers in the statement "for all q ∈ ∆(Ω), there exists α ∈ ∆(A) such thatEq [u(a, ω)] < Eq [u(α,ω)]".
This can be seen, for example, by constructing a zero-sum game where nature picks the belief q
and the agent picks an alternative action α (possibly mixed). Using the min-max theorem, we get
that

min
q

max
α
Eq [u(α,ω) − u(a, ω)] = max

α
min
q
Eq [u(α,ω) − u(a, ω)]

When a cannot be rationalized, the above expression is positive and bounded away from zero.
More specifically, positivity of the left hand side is equivalent to a not being rationalized and
positivity of the right hand side is equivalent to it being strictly dominated.

The two theoretical challenges for us therefore are (i) to formulate the right notion of what
it means for an action sequence to be dominated in the sequential model, and (ii) to establish the
appropriate inversion of quantifiers for our framework.

3.2 A generalization of Wald-Pearce

The inversion of quantifiers result that wewill need can be interpreted as an intuitive set-generalization
of the Wald-Pearce Lemma, as follows. Consider a two-player game with finitely many strategies,
where player 1 chooses a ∈ A and player 2 chooses b ∈ B . Let player 1’s payoffs be given by
u(a, b). We first generalize the main definitions.

Definition 4. Let B̃ ⊂ B.

1. a ∈ A is a best-response for B̃ if there exists β ∈ ∆(B) such that β(B̃) > 0 and a is optimal for
player 1 given that player 2 plays β.

2. a ∈ A is strictly dominated at B̃ if there exists α ∈ ∆(A) such that u(α, b) > u(a, b) for all
b ∈ B, with a strict inequality for all b ∈ B̃.

In this language, saying that a is a best-response for the entire set B is the same as saying
that a is a best-response to some belief, and saying that a is strictly dominated at the entire set B
just means that a is strictly dominated. Hence these definitions generalize the ones used in the
Wald-Pearce Lemma.

Now, if a is never a best-response for a subset B̃ ⊂ B , it may still be that a is a best response to
some belief on B . But in that case that belief must put probability zero on the set B̃ for even a tiny
probability of player 2 choosing an action from B̃ would invalidate a as a possible choice. The
only way this can happen is if a is strictly dominated at B̃ . The generalization of the Wald-Pearce
Lemma thus follows.

Lemma 2. a is never a best-response for B̃ if and only if a is strictly dominated at B̃.
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The min-max formulation of Lemma 2 would be:

inf
β:β(B̃)>0

max
α
E [u(α, β) − u(a, β)] = max

α
inf

β:β(B̃)>0
E [u(α, β) − u(a, β)]

The value of the above expression is in fact always zero. Unlike the Wald Pearce Lemma and its
application to Corollary 1, the min-max approach to prove Lemma 2 does not work. Because of
the strict inequality under "inf" the set of βs under consideration is not compact, and hence the
min-max theorem cannot be applied. The result however is still true. A separating hyperplane
argument (using a generalization of Farka’s lemma due to Motzkin) is invoked to prove it, details
of which are provided in the appendix.

4 Deviation rules and true dominance

4.1 A necessary but not sufficient condition

An obvious notion of dominance that does not rely on information structures is the following:
a sequence of actions is "dominated" if there exists another sequence of actions that does strictly
better in every state of the world. We will refer to this as apparent dominance. Recollect that
the payoff from a randomized action sequence α ∈ ∆(A) is denoted by u(α,ω) =

∑
a∈A

α(a)u(a, ω),

where α(a) refers to the probability of action sequence a under α.

Definition 5. An action sequence a ∈ A is apparently dominated if there exists a randomized action
sequence α ∈ ∆(A) such that

u(α,ω) > u(a, ω) ∀ ω ∈ Ω

Perhaps unsurprisingly, every action sequence that cannot be rationalized is apparently dom-
inated, making it a necessary condition for our endeavored characterization. That is, if an action
sequence is not apparently dominated we can always find an information structure such that the
optimal strategy corresponding to it chooses the action sequence with positive probability. The
following Lemma formalizes the claim.

Proposition 1. Suppose a ∈ A cannot be rationalized. Then, amust be apparently dominated.

Proof. Suppose a is not apparently dominated. By Lemma 1, theWald-Pearce Lemma, amust be a
best-response to some static "belief p". Letting p be the prior and π be completely uninformative,
the best response to (p, π) is the strategy that always chooses a. �

Even though apparent dominance is a fairly demanding condition, it is possible for an appar-
ently dominated action sequence to be rationalized. In Example 1, the action sequence a1 = invest
and a2 = pull back is apparently dominated by the action sequence a1 = not invest and a2 = ∅. Yet
it is easy to construct an information structure where it will be optimal for the agent to choose
(invest, pull back) with positive probability- the first period signal tells the agent that the good

10



state is highly likely, only to reveal in period two through the second signal that bad state is now
more likely.

Notice that the apparent dominance of (invest, pull back) can be established simply by com-
paring its payoffs with that of not invest. The payoffs for (invest, invest) are therefore irrelevant.
Yet, when the state good is very likely, these payoffs are precisely what motivates the agent to do
the initial investment. When we see that the agent chose (invest, pull back), the fact that the agent
could have ended up choosing (invest, invest) makes those payoffs relevant.

Therefore we need more than just apparent dominance for it to be impossible for an action
sequence to be rationalized. In addition to improving upon the action sequence under considera-
tion, that "more" also needs to evaluate other sequences of actions that the agentmight expected to
have chosen. This motivates the definition of a deviation rule, which prescribes not only how the
agent should deviate in the observed action sequence, but in every other possible action sequences
as well.

4.2 Deviation rules and true dominance

A deviation rule is an adapted mapping D : A→ ∆(A), where recollect that being adapted means
that the marginal distribution on At , the (potentially random) deviation strategy for the first t
periods, depends only At , the first t elements of the original strategy from which the agent is
deviating. We can think of the deviation rule as a list of alternative actions the agent would take
as a function of the actions she originally intended to take. Importantly, a deviation rule is a fully
prescribed plan so that if σ is the original strategy, then D ◦ σ(a|s) too is a well defined strategy.

Now we are in a position to define the appropriate notion of dominance for our model.

Definition 6. A deviation rule D : A→ ∆ (A) dominates an action sequence a if

1. u (D (a) , ω) > u (a, ω) for all ω ∈ Ω.

2. u
(
D

(
b
)
, ω

)
> u

(
b, ω

)
for all b ∈ A and ω ∈ Ω.

We say that a is truly dominated if there exists a deviation rule that dominates it.

Notice that there’s no visible time dimension in the definition above; time is implicit in the
condition that D must be adapted (see Section 4.3 for examples). For T = 1, the same definition
applies, but the condition that D is adapted becomes vacuous. In that case, if a is strictly domi-
nated by α, we can define a deviation rule Dα which takes a to α and does not change any other
actions. Dα then dominates a according to the definition above. When T > 1, the adaptedness
restriction prevents the construction of such a simple deviation rule—if D specifies a change for
the first action in the sequence a, then it must specify the same change for all sequences b which
share that same first action, and so on. While the second condition and the embedded notion of
adaptedness in the definition have no bearing when T = 1, they impose meaningful restrictions
when T > 1, encapsulating the distinction between true dominance and apparent dominance.
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Figure 2: Deviation rules for Examples 1 and 2

4.3 Discussion

To better grasp the definitions of deviation rule and true dominance, here we illustrate the con-
cepts in the context of our examples. As in a (single player) extensive-form game, the sequences
of actions can be depicted as a decision tree. Each complete sequence of actions corresponds to
a terminal node. Thus any mapping from sequences of actions into sequences of actions can be
depicted as arrows between terminal nodes.

Figures 2a and 2b depict the decision tree for Example 1. Since the sequence of actions (invest,
pull back) is apparently dominated by not investwemay try to find a deviation rule that dominates
(invest, pull back). The simplest such proposal would be that the agent should choose not invest
whenever she was going to choose (invest, pull back), as shown in Figure 2a. However, at the time
when the agent is choosing to invest, she may not yet know whether she will pull back in the
future. The impracticality of this proposal is reflected in the fact that this "deviation rule" is not
adapted. If we want the agent to never invest whenever she was going to choose (invest,pull back),
we must also recommend that she never invest when she was going to choose (invest, invest),
as in 2b. But although the deviation rule in 2b is now adapted, it no longer leads to a uniform
improvement in payoffs; it violates part 2 of Definition 6.

Similarly, in the waiting example, the "deviation rule" depicted in Figure 2c is not adapted,
since it represents the infeasible advice "whatever you would choose in the second period, choose
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3, 0

l

0, 3

r

L

1, 4

l

4, 1

r

R

(a) Adapted and improves upon Ll & Lr

3, 0

l

1, 1

r

L

2, 2

l

3, 1

r

R

(b) Adapted and improves upon Lr

Figure 3: Deviation rules with history dependence

in the first period already". The deviation rule in Figure 2d represents the advice "if you were
thinking about waiting, choose x instead", which is adapted. When δ < 3

5 , it dominates wx
and wy, but when δ > 3

5 it does not dominate wx nor wy, because x may give a strictly lower
payoff than wy. For the tightest possible statement, we therefore constructed the deviation rule
wx 7→ 1

2 x +
1
2y, wy 7→ 1

2 x +
1
2y, x 7→ y and y 7→ y which (simultaneously) truly dominates wx

and wy if and only if δ < 4
5 .

Our examples so far have featured simple first period deviations. Figure 3 shows how his-
tory dependent deviations may be required to establish that an action sequence is truly domi-
nated. In Figure 3a both (L, l ) and (L, r ) are truly dominated by the deviation rule depicted there:
(L, l ) 7→ (R, r ), (L, r ) 7→ (R, l ), (R, l ) 7→ (R, l ), and (R, r ) 7→ (R, r ). It may be described as the
prescription: "Never choose L; always switch to R instead. If you were going to choose L, switch
your second-period choice; if you were going to choose R, stick to your second-period choice".
Analogously, Lr is shown to be truly dominated in 3b by the same deviation rule, but note that
here Ll is not truly dominated. We will talk more about the significance of the difference between
the two examples in Figure 3 in Section 6.

5 The main result

We now state our main result.

Theorem 1. A sequence of actions cannot be rationalized if and only if it is truly dominated.

The theorem provides a tight characterization of the set of action sequences that cannot be
rationalized. Through its duality formulation, it simplifies their identification by requiring the
analyst to construct one deviation rule as opposed to treading through the family of all sequential
information structures.

The steps involved in establishing this result are divided into two subsections. First, we state
the obedience principle: any sequential information structure is equivalent to a canonical informa-
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tion structure, wherein at each point in time the agent is recommended an action which is in her
own interest to follow. Second, we translate the problem into a game between the analyst and a
coalition between the agent and nature, and then use the generalization of the Wald-Pearce Lemma
to invert quantifiers.

5.1 Obedience principle

The set of all possible signals can be a very large space to work with. We can in fact restrict
attention to a set of canonical signal structures, without any loss of generality. In keeping with
the tradition in mechanism design, we call this result the obedience principle. It is analogous to
the obedience principle in Myerson [1986], Forges [1986], Kamenica and Gentzkow [2011], and
Bergemann and Morris [2016].

First, we define the subset of canonical sequential information structures. In what follows,
let I dA refer to the identity mapping from A to A.

Definition 7.
(
σ, π, p

)
is an obedient triple if S = A and σ = I dA.

An obedient triple is given by a prior, an information structure which always recommends
an action, and a strategy of the agent which always obeys the recommendation. When an action
sequence can be rationalizedwith an obedient triple, we say that it has an obedient rationalization.
We can now state and prove the obedience principle.

Lemma 3 (Obedience principle). If a can be rationalized then it has an obedient rationalization.

Proof. Suppose that a is rationalized by
(
σ, π, p

)
. We show that a is also rationalized by

(
I dA, α ◦ π, p

)
.

First, note that
σ ◦ π ◦ p (a) = I dA ◦ (σ ◦ π) ◦ p (a)

by associativity of composition. Hence if a is chosen with positive probability under
(
σ, π, p

)
, it

also is under
(
I dA, σ ◦ π, p

)
. Nowwemust show that I dAwill be optimal for

(
σ ◦ π, p

)
whenever

σ is optimal for
(
π, p

)
. Suppose that an alternate strategy D : A → ∆(A) does better than I dA

when facing
(
σ ◦ π, p

)
. In terms of payoff, it is easy to check thatU

(
I dA, σ ◦ π, p

)
= U

(
σ, π, p

)
and U

(
D, σ ◦ π, p

)
= U

(
D ◦ σ, π, p

)
. So if

(
D, σ ◦ π, p

)
gives a higher expected payoff than(

I dA, σ ◦ π, p
)
, then the deviation

(
D ◦ σ, π, p

)
gives a higher payoff than

(
σ, π, p

)
as well, im-

plying that σ was not optimal. �

5.2 Proof of Theorem 1

The "only if" direction: if a is truly dominated, it cannot be rationalized. Let D be a deviation rule
which shows that a is truly dominated. We show that any strategy that plays a with positive
probability cannot be optimal. Indeed, given an arbitrary (σ, π, p), we can define an alternative
strategy σ̃ = D ◦ σ. Now consider how the expected payoff of the agent changes by switching
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from σ to σ̃. Let γ denote the joint distribution over (b, ω) which is induced by (σ, π, p). The
difference in payoffs then becomes

U (σ̃, π, p) −U (σ, π, p) = Eγ[u(D(b), ω)] − u(b, ω)]].

For each (b, ω), this difference is non-negative, with strict inequality for b = a. Hence if γ puts
positive probability on a, the overall difference will be strictly positive, meaning that the agent
benefits strictly from deviating to σ̃. The exact inequalities that show σ̃ to be an improvement
over σ are presented in Claim 1 in the appendix.

The "if" direction: if a cannot be rationalized, it is truly dominated. Given an action sequence
a which cannot be rationalized, we must find a deviation rule D which shows that it is truly
dominated. Letting Γ(a) = {(σ, p, π)|σ ◦ π ◦ p(a) > 0}, we can write the statement "a cannot be
rationalized" as

∀ (σ, π, p) ∈ Γ(a) ∃ σ̂ s .t .U (σ̂, π, p) > U (σ, π, p).

By the Obedience Principle (Lemma 3), the statement "a cannot be rationalized" is equivalent
to the statement "a cannot be rationalized by an obedient triple". This means that we can, without
loss, restrict attention to π : A → A and to σ = I dA in the statement above. Moreover, given
that the set of signals is now A, all other strategies σ̂, are simply the set of all deviation rules
D : A→ ∆A. Incorporating these, we get the equivalent statement

∀ p ∈ ∆(Ω) & π : A→ ∆(A) s.t. π ◦ p(a) > 0 ∃ D : A→ ∆(A) s .t . : U (D, π, p) > U (I dA, π, p)

Our goal is to switch the order of quantifiers in this statement, which would produce the
strategy σ̂ and hence the deviation rule we seek. Notice that trying to use a min-max theorem to
achieve this inversion of quantifiers would run into multiple problems, outlined previously. That
is, if we wrote

inf
(π,p)

π◦p(a)>0

max
D

[
U

(
D, π, p

)
−U

(
I dA, π, p

) ]
the objective function wouldn’t be convex in the vector (π, p), the set we are minimizing over
would not be compact, and the value of the infimum would actually be zero,

To make the objective function bilinear requires only a simple change of variables: Let γ ∈
∆(A × Ω) be the joint distribution on A × Ω induced by the pair (π, p). That is, γ(b, ω) =
π(b|ω)p(ω). The set of joint distributions we are considering is exactly those γ whose marginal
probability on a is strictly positive. Doing this, the objective function becomes

Eγ[u(D(b), ω)] − u(b, ω)]],

which is bilinear in (D, γ).
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In the spirit of Section 3.2, to get around the other problems, we construct an auxiliary game
with the eventual purpose of appealing to Lemma 2. Consider a finite game where Player 1
chooses mixed strategy D and Player 2 chooses the mixed strategy γ, where the pure strategy
counterparts are pure deviation rules and elements of A × Ω respectively.7 A non-trivial step in
establishing the validity of deviation rules as the mixed strategy counterparts of pure deviation
rules is in showing that the set of all stochastic adapted mappings is the convex hull of the set of
all pure adapted mappings; the proof of this is presented in Lemma 5 in the appendix.

Player 1’s expected payoff from a mixed strategy profile is the expression above. We can
interpret this as a zero-sum game of the analyst against nature, where nature chooses both the
state and a sequence of actions of the agent, and the analyst chooses a deviation rule.

Now, the statement that a cannot be rationalized can be rewritten as

∀ γ ∈ ∆(A ×Ω) with γ(a) > 0,∃ D : A→ ∆(A) s.t. Eγ[u(D(b), ω)] − u(b, ω)]] > 0.

Note that 0 is the payoff of the strategy D = I dA, which is available to Player 1. Hence, the state-
ment above means that the strategy I dA is never a best-response for the set {a}×Ω (see Definition
4). By Lemma 2, Player 1 must have available some strategy D∗ which strictly dominates I dA at
the set {a} ×Ω. This is equivalent to saying that D∗ is a deviation rule which dominates a.

6 Relevant deviations rules

Suppose we are given a sequence of actions a and we want to find a deviation rule that dominates
it, if that’s possible. Searching within all adapted mappings D : A→ ∆ (A) might be a daunting
task, but in practice there are many ways of making this search easier. Here we discuss three
results that facilitate this search.

6.1 Backward induction

It is tempting to frame the solution to our problem in a recursive or inductive form. Here we
show that a natural backward inductive approach can be useful in thinking about true dominance,
and that eventually our notion of deviation rules subsumes the inductive construction. The fol-
lowing simple result shows how we can derive conclusions about a decision problem by looking
at particular subproblems.

Proposition 2 (Informal). If (at+1, . . . , aT ) is truly dominated in the subproblem obtained by fixing
(a1, . . . , at ), then (a1, . . . , aT ) is truly dominated in the original problem.

Proposition 2 gives a method of finding truly dominated sequences by backward induction.
That is, we first fix (a1, . . . , aT −1) and then find which actions aT are truly dominated in the

7A pure deviation rule is an adapted mapping D : A→ A, where adaptedness requires that for b = D(a),
(
b1, ..., bt

)
can only be a function of (a1, ..., at ) for all t = 1, 2, ...,T .
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single-period problem that follows.8 Let ÃT be the last period actions that survived (that is can
be rationalized), and now fixing (a1, . . . , aT −2) we find which sequences (aT −1, aT ) ∈ AT −1 × ÃT

are truly dominated in this two-period problem, and so on. This exercise helps the analyst in
two ways. First, it directly simplifies her search for the set of action sequences that cannot be
rationalized, and second, as we will prove in the next subsection, it informs her that the construc-
tion of deviation rules for other action sequences should not take these truly dominated action
sequences in their support. For example, if action sequence if the (aT −1, aT ) is truly dominated in
the subproblem, the analyst immediately knows that whole action sequence a is truly dominated
in the original problem, and moreover, that in order to construct a deviation rule for any other
action sequence b that maybe truly dominated, the associated deviation rule does not have to put
any weight on a.

There are however two clear caveats to making the backward induction method the primary
approach to solving our problem. First, in its final stages the method described above can be
almost as complex as the original problem. Second, a naive application of it might lead to mis-
identification of the set of action sequences that can be rationalized, as the following conjecture
exposits:

Conjecture 1. Suppose that (i) the sequence of actions (a1, . . . , at ) can be chosen with positive prob-
ability, and (ii) (at+1, . . . , aT ) can be rationalized in the subproblem obtained by fixing (a1, . . . , at ).
Then (a1, . . . , aT ) can be rationalized.

This conjecture is false; the decision tree in Figure 3b is a simple counterexample. Both L and
R can be chosen in the first period, and in the decision that follows action L, both l and r can be
chosen. This could lead the analyst to believe that (L, r ) can rationalized. However, the deviation
rule depicted in the figure shows otherwise. The problem with the naive inductive reasoning is
that a choice of L can only be rationalized if the agent is sure about the state being the first one,
choosing r would then require an inconsistent belief. Such indifference in payoffs (both (L, l )
and (R, r ) yield 3 in the first state), require a comparison of the full sequence of actions. Thus,
in general, it is apt to define true dominance along entire sequence of actions, and employ the
induction argument to construct simple deviation rules whenever possible.

6.2 Simple deviations

Is there a systematic way of ruling out poor candidate deviation rules? Intuitively speaking, if a is
truly dominated, it seems futile to recommend deviating to the tree which contains a. Moreover,
it also seems unnecessary to forms chains of deviations: if it makes sense to deviate towards some
action sequence b, then perhaps it alsomakes sense not to deviate away from it. Here we formalize
these intuitions by thinking of a deviation rule as aMarkov chain. Recollect that for D(b) ∈ ∆(A),
we refer to D

(
a|b

)
∈ [0, 1] the weight put on a by the probability distribution D(b).

8Since this is a "static" problem, it is the same as looking for actions which are strictly dominated by some other
action.
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Definition 8. Given a deviation rule D, we say that

1. a is repulsive if D
(
a|b

)
= 0 for all b ∈ A

2. a is absorbing if D (a|a) = 1

The term absorbing is directly borrowed from the Markov chains taxonomy, and the notion
of repulsiveness is closely related to the idea of accessibility. In Markov chains we say a "state" a
is accessible from state b in n steps if Dn (

a|b
)
> 0, where Dn represents the application of the

deviation rule n times. The "state" a is then said to be inaccessible from b if Dn (
a|b

)
= 0 ∀n.

Now, it is easy to see that a is repulsive if and only if it is inaccessible from all other "states" b.
We can now use this terminology to define removal of parent nodes from decision problem.

Definition 9. A deviation rule D removes (a1, . . . , at ) if

1. b is repulsive whenever
(
b1, . . . , bt

)
= (a1, . . . , at )

2. b is absorbing whenever
(
b1, . . . , bt

)
, (a1, . . . , at ).

Proposition 3. If a = (a1, . . . , aT ) is a truly dominated action sequence, then there exists a deviation
rule D that dominates a and removes (a1, . . . , at ) for some t > 1.

As a thought experiment, let us apply this result to Example 1 from the introduction. Sup-
pose we’re trying to show that (invest, pull back) is truly dominated. There are a total of 15 pure
decision rules to consider, and in principle we would need to look for a dominating deviation
rule among all their mixtures.9 Using the theorem above, we can simplify this search dramati-
cally. First, suppose that D removes a1 = invest. There is a single deviation rule that does that,
namely the one that always deviates to not invest, see Figure 4a. Now, suppose that D removes
(a1, a2)=(invest, pull back). Then (invest, invest) will be absorbing, and by adaptedness it is the
only candidate for a deviation from (invest, pull back). Therefore, we have again a single candidate
for D , namely the one that recommends deviating from (invest, pull back) to (invest, invest) and
does not recommend any other deviation, see Figure 4b. Thus the theorem tells us that we only
have to consider two deviations.

6.3 One deviation to rule them all

Although we proved Theorem 1 by showing that there exists a deviation rule for each truly
dominated action sequence, it is in fact easy to find a single deviation rule that simultaneously
dominates every truly dominated action sequence. This can be done rather simply by defining a
new deviation rule which is a strict convex combination of the ones found for each truly domi-
nated action sequence. Even more, it is possible to find a deviation rule that not only dominates
every truly dominated action sequence, but also never recommends playing an action sequence
that is truly dominated. We can formalize these claims as follows.

9There are 3 action sequences so a total of 27 possible (pure) deviation mappings, but not all of them are adapted.
It can be checked that exactly 15 combinations are possible for mappings that are adapted.
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invest pull back

invest not invest

(a)

invest pull back

invest not invest

(b)

Figure 4: relevant deviations for investment example

Proposition 4. There exists a deviation rule D such that

1. every truly dominated action sequence is repulsive

2. every truly dominated action sequence is dominated by D.

7 Applications

We now present two applications of our theorem and framework. First, we use Theorem 1 to
show that set of truly dominated action sequences increases with risk aversion—the more risk
averse the agent, the more action sequences can be rationalized. Second, we modify Example 2
to show how a systematic investigation of deviation rules can be helpful to partially identify a
parameter in the agent’s preferences.

7.1 Impact of risk aversion

The set of action sequences that can be rationalized is inextricably connected with the agent’s
utility function. In our earlier examples, we interpreted the payoffs as objectively given. But it
may also be interesting to think of the decision problem as specifying outcomes, with the final
payoffs being determined by the agent’s utility function over those outcomes. In that case, there
might be a legitimate question of how much information about an agent’s preferences would be
needed in order to rule out an action sequence.

Here we show that the set of actions which can be rationalized increases with risk aversion.
Thus, if we can rule out an action sequence for an agent with a utility function u, we can also
rule out that action sequence for all agents who have a utility function v which is less risk averse
than u. Recall that v is less risk averse than u if and only if there exists an increasing and convex
function f : R → R such that v = f ◦ u. Using this fact, Weinstein [2016] shows that the set
of rationalizable strategies increases with risk aversion. Using Theorem 1, the same logic can be
applied here.
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Corollary 2. Let v, u : A × Ω → R be two utility functions, with v less risk averse than u. If a
cannot be rationalized for u, then it cannot be rationalized for v.

Proof. Let f be an increasing convex function such that v = f ◦ u. By Theorem 1, a cannot be
rationalized for v if and only if there exists a deviation rule D : A→ ∆(A) such that u(D(b, ω) >
u(b, ω) for all b and ω, with a strict inequality for b = a. The same deviation rule will work for
v , since

v
(
D

(
b
)
, ω

)
=

∑
b′∈A

f ◦ u(b′, ω)D(b′ |b)

> f

[∑
b′∈A

u(b′, ω)D(b′ |b)

]
= f

(
u

(
D(b), ω

) )
> f

(
u

(
b, ω

) )
= v

(
b, ω

)
where the second inequality is strict for b = a. Hence a is truly dominated for v , and therefore
cannot be rationalized for v . �

Note that the corollary is stated purely in terms of what actions can be rationalized. But the
proof is in terms of deviation rules, and we are not aware of any proof that avoids using deviation
rules. Thus we used both directions of our theorem: first, the hard direction to show that there
exists a deviation rule for u, then the easy direction to show that a cannot be rationalized for v .

7.2 Partial identification of preferences

Suppose that the utility function of the agent depends on a parameter δ ∈ D, known to the agent
but unknown to the analyst. The set of action sequences which can be rationalized would then
depend on δ. Therefore, if the analyst observes a certain action sequence being taken, she can
rule out values of δ that would be inconsistent with that observation. Let A (δ) denote the action
sequences which can be rationalized for a given value of δ. Upon observing an action sequence
a, the analyst would deduce that the true value of δ must lie in the set

D (a) = {δ |a ∈ A (δ)} .

We can use deviation rules as a method of approaching the set D (a) of possible parameters, as
follows. Given a deviation rule D , we can define the set DD (a) of utility parameters for which D
dominates a. This set is typically much easier to characterize than A (δ). Moreover, the following
results precisely characterizes the extend of partial identification permissible in our minimalistic
framework.

Corollary 3. D (a) ⊂ DD (a) for any deviation rule D, and D (a) =
⋂

D DD (a)
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Proof. D (a) ⊂ DD (a) by construction, and D (a) =
⋂

D DD (a) follows immediately from Theo-
rem 1. �

Thismethodwas already used in Example 2 whenwe showed that the cost could not be greater
than 4

5 upon observing that the agent chose to wait. The only deviation rule needed there was the
one that recommended randomizing 50-50 in the first period instead of waiting. Although it was
fairly straightforward to find the relevant deviation rule in that example, in some cases a more a
systematic analysis of deviation rules may be needed.

Consider, for instance, a modified version of Example 2 which adds a second project, and
where the decision to wait is split into two possibilities:

x y x ′ y ′ wx wy w ′x ′ w ′y ′

X 5 3 6 0 5δ 3δ 6δ 0

Y 3 5 0 6 3δ 5δ 0 6δ

Here the agent can choose to invest in a project in the first period, or choose to wait and select
which one of the two projects to keep available (w or w ′).

Now suppose that the analyst observes that the agent has chosen wx . The deviation rule of
Example 2 would still tell us that we cannot have δ < 4

5 . But when δ > 4
5 , the argument we used

to establish thatwx could be rationalized relied on the information structure which conveyed full
information in the second period. But if the agent expects to have full information in the second
period, w ′ would now be superior to w . This indicates that the deviation rule which takes w to
w ′ could be relevant. So we consider two deviation rules, defined as follows:

a wx wy
D1

1
2 x +

1
2y

1
2 x +

1
2y

D2 w ′x ′ w ′y ′

where it is to be understood that both deviation rules keep action sequences other thanwx andwy
unchanged. We can write down the change in payoff for each deviation rule u (D (a) , ω)−u (a, ω)
for each state:

ω X Y

a wx wy wx wy

No Deviation 0 0 0 0

D1 4 − 5δ 4 − 3δ 4 − 3δ 4 − 5δ

D2 δ −3δ −3δ δ

αD1 + (1 − α)D2 α (4 − 6δ) − δ 4α − 3δ 4α − 3δ α (4 − 6δ) − δ

Notice that D2 alone does not dominate any sequence, since u
(
D2

(
wy

)
,X

)
− u

(
wy,X

)
=

−3δ < 0. But when we consider a randomization between D1 and D2, we may be able to ex-
clude some values of δ that are greater than 4

5 . Indeed, a mixed deviation rule αD1 + (1 − α)D2
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dominates wx when the system of inequalities

α (4 − 6δ) − δ > 0

4α − 3δ > 0

has a solution α ∈ [0, 1], which happens precisely when δ < 8
9 . Therefore we learn that when wx

is chosen, we must have δ > 8
9 . In fact, an information structure can be constructed to show that

for all those values of δ it is indeed possible to rationalize wx .
For this modified example, in terms of the notation we presented,D(wx) =

[ 8
9, 1

)
. Essentially

deviation rules construct a system of inequalities which help approximate, in fact because of our
theorem precisely identify, the set D (a) for an observed sequence of actions a.

8 Final remarks

This paper set out to provide a simple theory of what it means for a sequence of actions to be
rationalized when information observed by the agent is not available to the outside observer.
Allowing for any possible sequential information structure, we asked when an action sequence
can be chosen with positive probability by an optimizing agent. To answer this questions we (i)
introduced the notion of true dominance, and (ii) proved a duality result that helps simplify the
search for action sequences that cannot be rationalized.

The question we ask is related to the large literature on revealed preferences which seeks
to identify parameters that can rationalize a given choice dataset (see Chambers and Echenique
[2016]). While most of the literature focuses on identifying utility functions that can explain
some choices, we take the utility function as given and ask when can choices be explained via
information. To that end we allow the dynamic information process to be arbitrary, and make
minimal assumptions on actions, states, and utility function. Another recent paper that allows for
general dynamic information processes is Chambers and Lambert [2018]. Their focus however
is on eliciting prior and subsequent beliefs of an agent about an impending final outcome, which
is fundamentally different than our paper.

In the spirit of revealed preference analysis, Caplin and Dean [2015] consider a setup where
the agent can endogenously acquire information at a cost, and the the analyst can observe the
state-dependent stochastic choice of the agent. They ask when the observed choices can be ratio-
nalized by some cost of information. A necessary conditions in their paper for an action to be
rationalized states that no systematic reassignment of actions can lead to a higher expected utility.
The property termed no improving action switches is analogous to our notion of deviation rule,
the latter infuses the systematic reassignment with the adaptedness condition in order to respect
the sequentiality of the problem.

Shmaya and Yariv [2016] also explore the empirical implications of the Bayesian assumption.
They consider an experimental setting where the sequence of realized signals and the agent’s
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mapping from signals to actions are observable to the analyst, but the agent has a subjective
signal generating process in mind. They show that without making any assumptions on the
signal generating process "anything goes"- all mappings from signal histories into actions may be
optimal for a Bayesian agent. Theirs is a simple decision problem, where the agent reports the
most likely state given her beliefs. We find that with richer settings the sequential decision model
can indeed make predictions, even when the analyst can only observe the realized path of actions
(as opposed to their entire map from signals to actions).

The question of which action sequences can be rationalized can be expressed in terms of
communication equilibria (Myerson [1986] and Forges [1986]).10 The reformulated question
becomes: what actions sequences can occur with positive probability in a communication equi-
librium of a single-player game? Under this interpretation, our Obedience Principle (Lemma 3)
is a particular case of the revelation principle of Myerson and Forges (see Propositions 1,2 and 3
in Sugaya and Wolitzky [2018]), though our restricted context allows for a much simpler proof.
Myerson introduced the notion of codominated actions, which also extends the notion of a dom-
inated action in a static multiplayer game to a multi-stage game. Although it seems reasonable to
conjecture that the codomination procedure would eliminate all truly dominated action sequences
under generic payoffs11, it only gives a sufficient condition for true dominance in general—there
may be actions which are not codominated but are never chosen with positive probability in any
communication equilibrium. For example, in Figure 3b, no actions are codominated, but the
sequence of actions AR is truly dominated.

A Bayesian persuasion or information design approach (following Kamenica and Gentzkow
[2011], Bergemann and Morris [2016], Ely [2017] and Doval and Ely [2018]), extended straight-
forwardly to our sequential environment could be of independent interest. Beyond characteriz-
ing the set of actions sequences that can be rationalized by some information, we can construct
bounds on the probability with which an action sequence can be taken. For instance in Example
1, it can be shown the highest probability with which a Bayesian agent can take the action se-
quence (invest, pull back) for any prior and sequential information structure is given by 30 percent.
Therefore, one can conclude that under certain assumptions, if more than 30 percent of agents in
a large enough population take the action sequence (invest, pull back), these choices would reject
the Bayesian model of information processing. These and related questions are promising areas
for future work.

10Formally, in communication games the mediator starts with no information, and only acquires information
through the incentivized reports of players. But this framework can easily be extended to one where the mediator
starts with information, by adding to the game a dummy player who takes no actions, has constant payoff, but knows
the state of the world since the beginning of the game. All that this dummy player does is report the state to the
mediator at the beginning of the game.

11By generic, we mean that no two action sequences can give the same payoffs in the same state. This is a strong
restriction, violated by many applications of interest.
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9 Appendix

The appendix presents a formal proofs of Lemma 2 and completes the missing claims in the proof
of Theorem 1.

9.1 Generalized Wald-Pearce

To generalize theWald-Pearce Lemma, we invoke a generalization of Farka’s lemma due toMotzkin:
it says that for any system of linear inequalities that does not have a solution, we can find a direct
contradiction from a suitably chosen linear combinations of those inequalities.

Proposition 5 (Motzkin’s Transposition). For matrices A, B and vectors a, b , the following system
of inequalities

Ax > a, Bx > b

does not have a solution if and only if at least one of the following two systems of inequalities has a
solution in vectors α, β:

αT A + βT B = 0, αT a + βT b > 0 α, β > 0 (3)

αT A + βT B = 0, αT a + βT b > 0 α, β > 0, β , 0 (4)

For our purposes, the following implication of Motzkin’s Transposition Theorem will be
sufficient.

Corollary 4. The system of inequalities

Ax > 0, Bx > 0

does not have a solution if and only if there exist α and β such that

αT A + βT B = 0, α, β > 0, β , 0.

The original reference for Proposition 5 and Corollary 4 is Motzkin [1936] and a more ac-
cessible proof can be found in Nemirovski and Roos [2009]. We can now prove Lemma 2, that is
the generalization of the Wald-Pearce Lemma.

Statement of Lemma 2: Consider a finite game between player 1 with strategy set A and player 2
with strategy set B . Fix a ∈ A and B̃ ⊂ B . Then, a is never a best-response for B̃ if and only if a
is strictly dominated at B̃ .

Proof of Lemma 2. a is never a best-response for B̃ if and only there is no solution β ∈ RB to the
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following system of inequalities: ∑
b ∈B̃

β
(
b
)
> 0 (5)

β
(
b
)
> 0 ∀b ∈ B (6)∑

b

[
u

(
a, b

)
− u

(
a ′, b

) ]
β

(
b
)
> 0 ∀a ′ ∈ A (7)

β
(
b
)
6 1 ∀b ∈ B . (8)∑

b ∈B

β
(
b
)
= 1 (9)

If the system which includes (5), (6), and (7) has a solution, then so does the system which
includes (8) and (9) as well. This can be seen by normalizing β by dividing it by

∑
b ∈B β

(
b
)
,

which we already know must be strictly positive from condition 5. Hence we can ignore the last
two inequalities.

Now we can apply Motzkin’s Transposition Principle (specifically Corollary 4) to the system
given by (5), (6), and (7). Thence this system does not have a solution if and only if there exist
k ∈ R++, v ∈ RB+, and w ∈ RA+ such that

vb +
∑
a′∈A

[
u

(
a, b

)
− u

(
a ′, b

) ]
wa + k1B′

(
b
)
= 0 ∀b ∈ B .

Equivalently, we can say that there exists w ∈ RA+ such that, for all b ∈ B ,∑
a′∈A

[
u

(
a, b

)
− u

(
a ′, b

) ]
wa 6 0,

with a strict inequality when b ∈ B ′. Since that inequality is strict sometimes, we have thatw , 0.
Defining α (a) = wa∑

wa′
, we have that α strictly dominates a at B ′. �

We now strengthen the conclusion of Lemma 2 by showing that we can use a single dominat-
ing strategy.

Lemma 4. Let Ã ⊂ A be the set of all actions which are dominated at B̃ , ∅. Then there exists a
mixed strategy α ∈ ∆ (A) with support inside A\Ã which dominates every a ∈ Ã at B̃.

Proof. We will first prove the following first claim: For any a1 ∈ Ã, there exists α1 ∈ ∆ (A) such
that α1 (a1) = 0 and α1 dominates a1 at B̃.

Let a1 ∈ Ã and pick α ∈ ∆ (A) such that∑
a∈A

α (a) u
(
a, b

)
> u

(
a1, b

)
for all b ∈ B , with a strict inequality when b ∈ B̃ . Since the inequality is strict for at some b , we
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must have α (a1) < 1. Hence we can rearrange the inequalities as∑
a∈A\{a1 }

α (a)
1 − α (a1)

u
(
a, b

)
> u

(
a1, b

)
for all b ∈ B , strict for b ∈ B̃ . This proves the first claim.

Now let a2 be another strategy which is dominated at B̃ . Our second claim is that a2 is still
dominated at B̃ in the game where a1 is removed. Indeed, let α1 be as in the first claim. Then,
given any α ∈ ∆ (A)

u
(
α, b

)
= α (a1) u

(
a1,b

)
+

∑
a∈A\{a1 }

α (a) u
(
a, b

)
6 α (a1)

∑
a∈A\{a1 }

α1 (a1) u
(
a, b

)
+

∑
a∈A\{a1 }

α (a) u
(
a, b

)
which means that for any α that dominates a2 at B̃ there is an α2 that also dominates a2 at B̃ such
that α2 (a1) = 0, proving the second claim.

Now, since a2 is dominated at B̃ in the game with a1 removed, we can apply the first claim
again and find a strategy α2 that puts probability zero on a2 (and also on a1) and that dominates
a2 at B̃ . If we keep applying this argument, we eventually reach the last action an ∈ Ã, which
will be dominated by a mixed strategy αn with support on A\Ã. Removing an from the game
and using this strategy αn, we can find a strategy αn−1 with support on A\Ã that dominates an−1,
and so on. Thus we find for each a ∈ Ã a mixed strategy αa ∈ ∆ (A) with support in A\Ã that
dominates a. Letting α be a strict convex combination of all αa , we have that α has support in
A\Ã and dominates every action a ∈ Ã at B̃ . �

9.2 Completing the proof of Theorem 1

There are two pieces in the proof of Theorem 1, referred to in Section 5.2, that we prove here.

Claim 1. Fix (π, p). If a is truly dominated by D and strategy σ is such that σ ◦ π ◦ p(a) > 0, then
the strategy σ̃ = D ◦ σ provides a strictly higher expected payoff.

Proof of "if" direction. We show that the agent strictly benefits from switching from the strategy
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σ to the strategy σ̂:

U
(
σ, π, p

)
=

∑
b∈A\{a}

∑
ω∈Ω

u
(
b, ω

)
σ ◦ π

(
b|ω

)
p (ω)

+
∑
ω∈Ω

u (a, ω)σ ◦ π (a|ω) p (ω)

<
∑

b∈A\{a}

∑
ω∈Ω

u
(
D

(
b
)
, ω

)
σ ◦ π

(
b|ω

)
p (ω)

+
∑
ω∈Ω

u (D (a) , ω)σ ◦ π (a|ω) p (ω)

=
∑
b∈A

∑
ω∈Ω

u
(
D

(
b
)
, ω

)
σ ◦ π

(
b|ω

)
p (ω)

=
∑
b∈A

∑
ω∈Ω

u
(
b, ω

)
D ◦ σ ◦ π

(
b|ω

)
p (ω)

=
∑
b∈A

∑
ω∈Ω

u
(
b, ω

)
σ̂ ◦ π

(
b|ω

)
p (ω)

= U
(
σ̂, π, p

)
�

Lemma 5. The set of all adapted mappings is the convex hull of the set of all pure adapted mappings.

Proof. This result follows from Kuhn’s Theorem (see Kuhn [1953] and Theorem 4.1 in Myerson
[1991]). Consider a game where the two players alternate moves:

1. Player 1 chooses x1 ∈ X1,

2. Player 2 chooses y1 ∈ Y1,

3. Player 1 chooses x2 ∈ X2,

4. Player 2 chooses y2 ∈ Y2,

5. etc.

The information sets for Player 2 correspond to the histories
(
x t , y t−1

)
for t = 1, . . . ,T . A

behavioral strategy for Player 2maps each history
(
x t , y t−1

)
into amixture over Player 2’s possible

moves Yt . We can represent this as a collection of stochastic maps, αt : X t × Y t−1 → ∆ (Yt )

for t = 1, . . . ,T . A pure strategy can then be formally represented as a collection of functions
ft : X t ×Y t−1 → Yt . But this representation specifies what Player 2 would do in histories which
are prevented by the strategy itself. Following Kuhn [1953] say that two pure strategies of Player
2 are equivalent if, for every strategy of Player 1, they induce the same probability distribution
over outcomes (terminal nodes). Two pure strategies that specify the same decisions on paths that
they may reach are equivalent, so we can represent an equivalence class of such pure strategies by
a collection of functions gt : X t → Yt , or equivalently, by an adapted function g : X → Y .
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Now, a stochastic mapping α : X → ∆ (Y ) can be equivalently represented by a behavioral
strategy (αt )

T
t=1, where αt : X t × Y t−1 → ∆ (Yt ) (for details, see de Oliveira [2018], Lemma 3).

Kuhn’s Theorem states that there exists a mixed strategy which induces, for every distribution
over X , the same distribution over Y as (αt )

T
t=1, and hence α. By the remark above, we can write

this mixed strategy as a probability distribution over adapted functions g : X → Y . �

9.3 Proofs for relevant deviations

9.3.1 Backward induction

When stating Proposition 2, we informally referred to a "subproblem". We begin by defining this
concept precisely.

Definition 10. We refer to the collection of action sets A1, . . . ,AT , together with the utility function
u : A×Ω→ R, as the agent’s decision problem.The subproblem obtained by fixing (a1, . . . , at ) is the
subcollection of action sets At+1, . . . ,AT , togetherwith the utility function v : At+1×· · ·×AT ×Ω→ R

defined by
v (at+1, . . . , aT , ω) = u (a1, . . . , at , at+1, . . . , aT , ω)

Thus, a sequence (at+1, . . . , aT ) is truly dominated in the subproblem if there exists a deviation
rule D : At+1 × · · · × AT → ∆ (At+1 × · · · × AT ) such that

v (D(at+1, . . . , aT ), ω) > v (at+1, . . . , aT , ω) for all ω ∈ Ω and

v
(
D(bt+1, . . . , bT ), ω

)
> v

(
bt+1, . . . , bT , ω

)
for all bt+1 ∈ At+1, . . . , bT ∈ AT , ω ∈ Ω.

Proof of Proposition 2 . Here we will use the following notation: given b =
(
b1, . . . , bT

)
, we will

let b
��
t =

(
b1, . . . , bt

)
.

Let D : At+1 × · · · × AT → ∆ (At+1 × · · · × AT ) be a deviation rule for the subproblem such
that D dominates (at+1, . . . , aT ). Then we can define F : A → ∆ (A) to recommend the same
deviations as D in the subproblem, and recommend no deviations elsewhere. Formally,

F
(
c|b

)
=


D

(
ct+1, . . . , cT |bt+1, . . . , bT

)
if b

��
t = a|t = c|t

I
(
c|b

)
otherwise

where I is the identity (= 1 if c = b, and zero otherwise). Also, recall that for a stochastic
mapping, F

(
c|b

)
is the probability that F (b) ∈ ∆(A) puts on the action sequence c. Now, we

claim that F is adapted and also dominates a. To show that F is adapted, we must show that∑
c s+1,...,cT F

(
c|b

)
does not depend on

(
bs+1, . . . , bT

)
. We show this separately for s > t and s < t .

So fix b =
(
b1, . . . , bT

)
and (c1, . . . , c s ) and suppose s > t . Then b

��
t and c|t are uniquely

determined, and every term in the sum for F is given by D or every term in the sum is given by
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I . Hence we have

∑
c s+1,...,cT

F
(
c|b

)
=


∑

c s+1,...,cT D
(
ct+1, . . . , cT |bt+1, . . . , bT

)
if b

��
t = a|t = c|t∑

c s+1,...,cT I
(
c|b

)
otherwise

In either of those cases, the sum on the right does not depend on
(
bs+1, . . . , bT

)
, since both D and

I are adapted.
Now suppose s < t . If c| s , a| s or b

��
t , a|t , then we already know that F

(
c|b

)
= I

(
c|b

)
,

so again
∑

c s+1,...,cT F
(
c|b

)
=

∑
c s+1,...,cT I

(
c|b

)
does not depend on

(
bs+1, . . . , bT

)
. But if c| s = a| s

and b
��
t = a|t , some terms of the sum have c|t = a|t and others have c|t , a|t . In that case, we can

write

∑
c s+1,...,cT

F
(
c|b

)
=

∑
{c |c |t,a |t }=a |t

D
(
ct+1, . . . , cT |bt+1, . . . , bT

)
+

∑
{c |c |t,a |t }

I
(
c|b

)
=

∑
ct+1,...,cT

D
(
ct+1, . . . , cT |bt+1, . . . , bT

)
+

∑
{c |c |t,a |t }

I (c|a)

= 1 + 0

=
∑

c s+1,...,cT

I
(
c|b

)
So we have shown that, whenever s < t , we have

∑
c s+1,...,cT F

(
c|b

)
=

∑
c s+1,...,cT I

(
c|b

)
. Summa-

rizing all cases, we have shown

∑
c s+1,...,cT

F
(
c|b

)
=


∑

c s+1,...,cT D
(
ct+1, . . . , cT |bt+1, . . . , bT

)
if s > t and b

��
t = a|t = c|t∑

c s+1,...,cT I
(
c|b

)
otherwise

In either case, the sum on the right-hand side does not depend on
(
bs+1, . . . , bT

)
, since D and I

are adapted. Hence F is adapted as well.
To see that F dominates a, notice that u

(
F

(
b
)
, ω

)
= u

(
I
(
b
)
, ω

)
= u

(
b, ω

)
if b

��
t , a|t .

When b
��
t = a|t , we have that u

(
F

(
b
)
, ω

)
> u

(
b, ω

)
for all b and with strict inequality for b = a,

since there F recommends the same deviation as D . �

9.3.2 Simple deviations

We will need a few lemmata before proving Proposition 3. The proof is by induction, and the
first lemma is a version of Proposition 3 involving only the first period action.

Lemma 6. If a = (a1, . . . , aT ) is a truly dominated action sequence, then there exists a deviation rule
D that dominates a, satisfying D

(
b
)
= I

(
b
)
whenever b1 , a1

Proof. The argument here is similar to the proof of Proposition 2. Let F be a deviation rule that
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dominates a and let

D
(
b
)
=


F

(
b
)

when b1 = a1

I
(
b
)

when b1 , a1
.

It is easy to check that D is also adapted and dominates a. To show adaptedness, we can show, as
in Proposition 2, that

∑
c2,...,cT

D
(
c|b

)
=


∑

c2,...,cT F
(
c|b

)
if b1 = a1∑

c2,...,cT I
(
c|b

)
if b1 , a1

so adaptedness of D follows from adaptedness of F and I . To see that D dominates a, notice that

u
(
D

(
b
)
, ω

)
=


u

(
F

(
b
)
, ω

)
when b1 = a1

u
(
b, ω

)
when b1 , a1

.

�

The key idea behind lemmata that follow is to regard a deviation rule as the transition prob-
abilities of a Markov chain, with the set of action sequences A as the set of "markov states" (not
to be confused with the "states of nature", ω ∈ Ω). We can then label action sequences according
to their properties as markov states:

Definition 11. Let D be a deviation rule. We say that an action sequence a ∈ A is

1. recurrent if, starting from a, the probability of eventually returning to a is one;

2. transient if, starting from a, the probability of eventually returning to a is less than one;

3. absorbing if D(a|a) = 1;

4. repulsive if, for every b ∈ A, D(a|b) = 0.

Note that absorbing implies recurrent and repulsive implies transient, but the converse in
each case is not true. This is standard terminology for Markov chains, with the exception of the
definition of "repulsive" (see Kemeny, Snell, and Knapp [1976]). The idea that follows relates
payoff dominance of action sequences to their properties as Markov states. The intuition here is
that if D dominates a then it must have a tendency to move the agent away from a, so that a will
be transient.

Lemma 7. Let D be a deviation rule that dominates a. Then a is a transient state for D.

Proof. If a is a recurrent state, then there exists a stationary probability α ∈ ∆ (A) such that
D ◦ α = α and α (a) > 0 (Theorem 6.9 in Kemeny, Snell, and Knapp [1976]). Now define
a distribution γ ∈ ∆ (A ×Ω) by γ

(
b, ω

)
= α

(
b
)
p (ω), where p ∈ ∆ (Ω) is arbitrary. Then
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γ (a) > 0 and Eγ
[
u

(
D

(
b
)
, ω

) ]
= Eγ

[
u

(
b, ω

) ]
, which contradicts the fact that D dominates

a. �

The following fundamental construction is what allows us to turn transient action sequences
to the stronger property of being repulsive. Herewe use the notationDk tomean the composition
of D with itself k times.

Lemma 8. Let D be any deviation rule. Then

D∞
(
c|b

)
= lim

n

1
n

n∑
k=1

Dk (
c|b

)
is a well defined deviation rule. Moreover,

1. D∞ = D ◦ D∞ = D∞ ◦ D = D∞ ◦ D∞

2. If b is dominated by D, then it is also dominated by D∞;

3. If b is transient for D, then it is also repulsive for D∞;

4. If b is absorbing for D, then it is also absorbing for D∞

Proof. The proof that the limit exists and of (1) follows that of the Ergodic Theorem for Markov
Chains, (see Theorem 6.1 in Kemeny, Snell, and Knapp [1976]). The proof of (4) follows straight-
forwardly, by construction. Here we prove parts (2) and (3).

If D dominates a, then for every b ∈ A and ω ∈ Ω,

u
(
Dk (

b
)
, ω

)
=

∑
c

u (D (c) , ω)Dk−1 (
c|b

)
>

∑
c

u (c, ω)Dk−1 (
c|b

)
...

> u
(
D

(
b
)
, ω

)
This shows that Dk dominates a as well. Combining the inequalities for different k and taking
the limit, we conclude that u

(
D∞

(
b
)
, ω

)
> u

(
D

(
b
)
, ω

)
as well, so D∞ dominates a.

To prove (3), suppose b is transient. We must show that D∞(b|a) = 0 for all a ∈ A. If
a is recurrent, then we must have Dk (

b|a
)
= 0 for all k, otherwise b would be recurrent as

well (see Lemma 4.23 in Kemeny, Snell, and Knapp [1976]). If a is transient, then we have that
limk Dk (

b|a
)
= 0 (by Proposition 5.3 in Kemeny, Snell, and Knapp [1976]). Hence, in either

case, we have that D∞
(
b|a

)
= 0, so b is repulsive for D∞. �

A given deviation rule D induces a deviation rule up to each period t , which we will denote
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by Dt . That is,

Dt
(
c1, . . . , ct |b1, . . . , bt

)
=

∑
ct+1,...,cT

D
(
c1, . . . , cT |b1, . . . , bT

)
where bt+1, . . . , bT can be chosen arbitrarily, since D is adapted.

Lemma 9. If D
(
b
)
= I

(
b
)
whenever b1 , a1 and D1 (a1 |a1) < 1, then D∞1 (a1 |a1) = 0.

Proof. Let λ = D1 (a1 |a1) < 1 and notice that

D2
1 (a1 |a1) =

∑
b1

D1
(
a1 |b1

)
D1

(
b1 |a1

)
= D1 (a1 |a1)D1 (a1 |a1)

since D1
(
a1 |b1

)
= 0 whenever b1 , a1. From this, we deduce that Dk

1 (a1 |a1) = λ
k . Hence

D∞1 (a1 |a1) = lim
n

1
n

n−1∑
k=0

Dk
1 (a1 |a1) = lim

n

1
n

(
1 − λn

1 − λ

)
= 0.

�

Proof of Proposition 3. Suppose a = (a1, . . . , aT ) is truly dominated. We want to show that there
exists a deviation rule D that dominates a and that there exist t such that D removes (a1, . . . , at ).
We proceed by induction on T . The idea is that starting from a deviation rule D that dominates
a, we will show that D∞ removes (a1, . . . , at ) for some t .

LetT = 1. Then, obviously there exists a deviation rule D such that D
(
b1

)
= I

(
b1

)
whenever

b1 , a1 and D (a1 |a1) < 1. Thus from Lemma 9, we have D∞1 (a1 |a1) = 0.
Next, suppose that result holds for T − 1 where T ≥ 2. We want to show that it is true for

T . Using Lemma 6, let D dominate a such that D
(
b
)
= I

(
b
)
whenever b1 , a1. Now there are

two possible cases to consider: D1 (a1 |a1) < 1 and D1 (a1 |a1) = 1.
If D1 (a1 |a1) < 1, then from Lemma 9 we know that D∞1 (a1 |a1) = 0, and thus D∞

(
b|a

)
= 0

for b1 = a1. Moreover, recollect from Lemma 8 part (4), we know that D∞
(
b
)
= I

(
b
)
for

b1 , a1. Therefore, we can conclude that D∞ removes a1.
Now, suppose D1 (a1 |a1) = 1, which means that the deviation rule D takes every sequence

starting with a1 to another sequence starting with a1. Therefore, it naturally defines a deviation
rule for the subproblem that fixes a1. Further, it is easy to see that the induced deviation rule
shows (a2, . . . , aT ) to be truly dominated in the subproblem (just reverse the construction in the
proof of Proposition 2).

Note that the subproblem is of length T − 1, so using the induction hypothesis, we know
that there exists a deviation rule F and a t such that F dominates (a2, . . . , aT ) and F removes
(a2, . . . , at ). Thus, in original problem the deviation rule G, defined by G

(
b
)
= I

(
b
)
whenever

b1 , a1, andG
(
c|b

)
= F

(
c2, . . . , cT |b2, . . . , bT

)
if b1 = a1, dominates a and removes (a1, . . . , at ).

�

32



9.3.3 One deviation to rule them all

Proof of Proposition 4. Let Σ denote the set of truly dominated action sequences. For each a ∈ Σ,
pick a deviation rule that dominates a, and let D be a strict convex combination of all those
deviation rules. Then D simultaneously dominates all a ∈ Σ and by Lemma 8, so does D∞. By
Lemma 7 every a ∈ Σ is transient for D . By Lemma 8, part (3), every a ∈ Σ is repulsive for D∞.

�
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