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Abstract

We characterize the necessary and sufficient conditions of profit max-

imization for aggregate market behavior when participants on the sup-

ply side vary and individual firm supply is unobservable. Our approach

is non-parametric. We use the conditions on market behavior to exam-

ine whether the United States cement industry could have been profit

maximizing between 1993 and 1998. We find that the U.S. cement in-

dustry always rejects profit maximization when firms are required to

make weakly positive profits. We also provide a measure of necessary

profit loss to measure how far the industry is from profit maximization.

We find errors from profit maximization that are as large as $755.1

million.

∗We thank Laurens Cherchye, Thomas Demuynck, Bram De Rock, and Hendrik vanOss
for useful advice and suggestions. All remaining errors are our own.
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1 Introduction

The theory of competitive markets requires individual firms to maximize

profits. However, due to data limitations, it is often difficult or impossible

to evaluate whether individual firms actually are profit maximizing. For ex-

ample, data on individual firm behavior are often proprietary. On the other

hand, market level data on the participants in an industry and the aggregate

net outputs are often obtainable. Responding to data limitations, we study

necessary and sufficient conditions for market supply to be generated by profit

maximizing individual firms. We assume that each observation consists of:

1. The observed prices of production net outputs,

2. The observed market supply (aggregate production),

3. The firms participating in the market.

It is well known that supply at the economy level exhibits the same behavior

as individual supply, due to the fact that profit maximization aggregates.1 This

would seem to imply that testing profit maximization at the economy level is

a trivial exercise, since there are well-known tests of profit maximization for

individual firms (see Afriat (1972); Hanoch and Rothschild (1972); Diewert

and Parkan (1983); Varian (1984)); at least, if we had no data on market

participants. However, when the set of participants changes, the aggregate

technology also necessarily changes. When a firm goes bankrupt, or exits the

market, their production technology “disappears” from the marketplace. So,

in this context, we would not expect economy-level production to mimic the

behavior of an individual producer.

Our innovation is to take seriously the fact that individual firms participat-

ing in the market may vary from period to period. Were individual production

observable, the well-known weak axiom of profit maximization (WAPM) tests

1This is in stark contrast to individual demand, whereby aggregate demand is known to
carry very few of the properties that individual demand enjoys. See Sonnenschein (1972);
Mantel (1974); Debreu et al. (1974). Brown and Matzkin (1996) use “rich” data and show
how to set up some empirical implications of market demand.
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whether individual firms profit maximize. It is an easy test, only asking that

no observed production bundle generate higher profits at given prices than the

observed production at those prices. A difficulty in our case is obviously that

individual firm production is unobservable, and must be somehow inferred. In

this paper, we provide necessary and sufficient conditions for when it is pos-

sible that there exist hypothetical firm production levels which are consistent

with profit maximization and aggregate to the observed market supply.

We introduce a condition which is closely related to the Weak Axiom of

Profit Maximization (WAPM), and indeed; if the set of market participants is

identical in every period, it coincides with WAPM. The conditions for market

supply differ from WAPM because we have no method of directly observing

individual production. Instead, we only know which firms were operating in a

given period. Roughly, the test asserts that if market supply is profit maximiz-

ing, then there could not exist an arbitrager who could profit from buying and

selling the market supply as prices vary in the dataset. The difference from a

test of WAPM is that the arbitrager must have been able to make these trades

with any firm that is present in the market.

We also provide additional tests for alternative hypotheses. For exam-

ple, we examine the additional restrictions imposed when there are known

constraints on the production technology (such as those requiring outputs be

nonnegative) and profit is required to be non-negative (which is the same as

requiring that firms can do nothing). Further, with a dynamic structure, we

propose a test which allows for the possibility that technology of market par-

ticipants increases throughout time. In the case of increasing technology, the

condition that characterizes market profit maximization rules out the exis-

tence of an arbitrager who can only sell at prices at some later period. This

differs from the case of a static technology which rules out the existence of an

arbitrager who makes profits selling at any set of the observed prices.

This paper also develops a notion of necessary profit loss to quantify the

size of violations of profit maximization within the market. We consider two

measures: One for the market as a whole and one for firms. The first measure

computes the minimum profit an arbitrager would make by trading a unit of
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the market supply. The measure for firms gives the smallest weighted profit

an arbitrager could make by selling the market supply to a single firm. Both

measures of necessary profit loss essentially quantify how large the deviation

of profits are expected to be for any set of production technologies used to

estimate firm supply in the market.

Lastly, we show that these conditions can and do refute profit maximiza-

tion in practice. In the empirical application, we examine whether the United

States cement industry could have been profit maximizing between 1993 and

1998 using yearly data on net-outputs, average yearly prices, and firm par-

ticipants. The United States cement industry is a concentrated industry and

there is a large amount of regional heterogeneity in prices and demand. Thus,

a priori we hypothesize that the cement market in the United States is a likely

candidate to refute profit maximization using market supply data. We con-

firm this hypothesis in the empirical section. We find from 1993-1998 that the

market necessary profit loss is $755.1 million for conditions that most closely

resemble the cement market.2 In particular, this occurs for a test where tech-

nology is static, firms make non-negative profits, and there are restrictions on

what is an input/output.3

It is interesting to compare the magnitude of these errors with those found

in a related meta-analysis. In particular, Ryan (2012) examines how welfare

estimates change by estimating a structural model with and without dynamic

components. Ryan (2012) finds that a static model of the cement industry

would underestimate welfare costs by at least $300 million. Although we do

not know the sign of the errors in aggregate profit maximization, we show

that the errors from using aggregate data are at least $755.1 million. This

suggests that it is important to use information on regional competition and

heterogeneity when it exists. Moreover, one should be cautious when interpret-

ting estimates assuming profit maximization behavior for aggregate data when

there is regional competition or pricing heterogeneity. In particular, the errors

2Within the paper, we use 1996 dollars for comparison to the work of Ryan (2012).
3Surprisingly, we find that if we allow firm technology to weakly increase over time,

then the data can be rationalized by profit maximization. However, for the time period we
observe there is very little technological change as we discuss in Section 5.2.
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that result by failing to incorporate regional competition and heterogeneity for

the U.S. cement industry are more than twice as large as the discrepeancies

between static and dynamic models.

While we are the first to consider the revealed preference conditions for

market supply datasets, similar conditions have been studied in models of

household behavior. For example the work of Cherchye, De Rock, and Ver-

meulen (2007), Cherchye, De Rock, and Vermeulen (2009), and Cherchye,

De Rock, and Vermeulen (2011) study models when household consumption

is observed, but the individual consumption within the household is unob-

served. This is similar to the case of market supply, except that one must now

account for how households aggregate their preferences. This paper is also

related to work examining the testable restrictions on market behavior. For

example, Carvajal, Deb, Fenske, and Quah (2013) and Carvajal, Deb, Fenske,

and Quah (2014) study testable restrictions for models of oligopolistic behav-

ior. To the best of our knowledge, this paper is one of the first to examine

conditions where the set of participants change in revealed preference tests.

In contrast, there are statistical models that study how market participants

change allowing entry and exit following the work of Tamer (2003).

The remainder of the paper proceeds as follows. Section 2 defines the model

market profit maximization, characterizes the model, and provides intuition

and examples for the result. Section 3 provides characterizations when there

is a priori knowledge on the technology of firms, firms are required to make

non-negative profits, and when the technology is increasing. Section 4 defines

a measure of necessary profit loss that measures in dollars how large errors

of profit maximization would be for any technology. Section 5 outlines the

empirical analysis on the cement industry and provides the results. Section 6

contains our final remarks.

2 Description of Model and Main Result

We consider a model of profit maximization with market level data. Let

there be a finite set of commodities given by k ∈ {1, . . . , K}. There is also
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a finite set of potential firms, indexed by F . A market supply observation

is a triple consisting of 〈P, π, y〉, where P ⊆ F and P 6= ∅ comprises the

participants in the market, π ∈ <K+ lists the market prices, and y ∈ <K

gives the net outputs in the market. We will sometimes refer to y as the

market supply. A market supply dataset is a finite collection of market supply

observations, {〈P j, πj, yj〉}Jj=1.

In this paper, we examine whether a market supply dataset could have

been generated by profit maximizing firms. For a market supply dataset and

a firm f ∈ F , we define the set of observations in which firm f is a participant

as Of = {j : f ∈ P j}. This object is important since a firm will only have a

chance to violate profit maximization when it participates in the market.

Definition 1. We say a market supply data set is profit rationalizable if for

every f ∈ F , there is a production possibility set Yf ⊆ <k such that firm f is

profit maximizing for each j ∈ Of , so there is yjf ∈ Yf where

πj · yjf ∈ arg max
y∈Yf

πj · y

and the sum of net outputs accross all firms equals the market supply so for

all j ∈ {1, . . . , J} ∑
f∈P j

yjf = yj.

Below, we provide a characterization of the benchmark model of profit

rationalizability since it is easiest to understand. Later in the paper, we provide

characterizations when there are constraints on the technology, profits are

non-negative, and technology can be weakly increasing. The condition for the

benchmark model of profit rationalizability requires that there is now way to

shift industry production across firms in a way that violates a “no arbitrage”

condition. In particular, the statement of the result gives a condition on

transition matrices over the periods each firm participates. A transition matrix

is a nonnegative matrix whose rows sum to 1; for example, Λ ∈ <n × <n is a

transition matrix if for all i,
∑

l Λi,l = 1. Below is the formal statement of the

main result.
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Theorem 1. A market supply dataset is profit rationalizable if and only if

for every (f, j) ∈ F × J , every µj ∈ <K, and every transition matrix Λ(f) ∈
<Of×Of

, if for every j ∈ J and every f ∈ P j,∑
`∈Of

Λ(f)l,jπ
l = πj + µj, (1)

then
J∑
j=1

µj · yj ≤ 0.

The result in Theorem 1 is essentially a “no arbitrage” condition. To see

this intuitively, suppose there is some firm, f̃ , that is present in every period,

so that Of̃ = {1, . . . , J}. Moreover, consider the existence of an arbitrager in

the market who is trying to make a profit by buying yj for prices in the j-th

period and selling Λ(f)`,j percent of yj in the `-th period. The arbitrager can

attempt to do this in every period, but will only make a profit when

J∑
j=1

J∑
`=1

Λ(f)`,j
(
π` − πj

)
· yj > 0.

The ability of an arbitrager to make a profit is prevented by Theorem 1 by

plugging in the expression of µj from Equation 1.

While the intuition above is for a single firm, a similar intuition follows for

the general problem. The difference is it must be possible to carry out the

arbitrage for any firm in the dataset. To see this, note that Equation 1 says

that the difference in trades depends only on the date, j, the trade takes place,

but it does not depend on the firm. Thus, the arbitrager must have been able

to make the same series of trades with any firm and still be able to make a

profit.

To better understand the result of Theorem 1 in practice, we also consider

some structured examples.

Example 1. If there is only one firm that participates in every period, then

Theorem 1 implies the weak axiom of profit maximization. Suppose there
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is exactly one firm, f1, that participates in every period. For observations

`, j ∈ {1, . . . , J} with ` 6= j, let Λ(f1)j,` = 1 and for all m 6= j let Λ(f1)m,m = 1.

This choice of transition matrix implies that

πj · y` ≤ πj · yj.

Any other statement of the weak axiom of profit maximization follows through

choosing an appropriate transition matrix. Therefore, this condition is equiv-

alent to the standard profit maximization condition.

Example 2. Suppose there are two firms f1 and f2 where P 1 = {f1} and

P 2 = {f2}. Note here both conditions are trivially satisfied since Λ matrix

is a one for each individual. This is essentially the case of one observation

per firm. Even if P 2 = {f1, f2}, there are no restrictions on supply data since

market supply can act as though f1 does not participate in P 2.

Example 3. We now consider a novel application of Theorem 1. Suppose we

see two firms produce separately and a researcher wants to examine if they are

profit maximizing when they both participate in the market. Let F = {f1, f2}
and suppose there are three observations, with P 1 = {f1}, P 2 = {f2}, and

P 3 = {f1, f2}. In the following, coneY indicates the convex cone spanned by

a set Y .

Corollary 1. Suppose that π1, π2, π3 are distinct vectors with the property that

cone{π1, π3} ∩ cone{π2, π3} = cone{π3}. Then the market supply dataset is

profit rationalizable if and only if π3 · (y1 + y2) ≤ π3 · y3.

Proof. Because of the cone condition, the only transition matrices for which

for each i = 1, 2,
∑

l∈Ofi Λ(fi)l,3π
l = π3 + µ3 are those for which Λ(fi)l,3 = 0

when l 6= 3. To see this, suppose false, so that Λ(f1)1,3π
1 + Λ(f1)3,3π

3 =

π3 + µ3 = Λ(f2)2,3π
2 + Λ(f2)3,3π

3. Suppose without loss that Λ(f2)3,3 ≥
Λ(f1)3,3 and observe that then Λ(f1)1,3π

1 = Λ(f2)2,3π
2+(Λ(f2)3,3−Λ(f1)3,3)π

3,

demonstrating that Λ(f1)1,3π
1 is in the convex cone spanned by π2 and π3, from

which we conclude by hypothesis that Λ(f1)1,3 = 0. Similarly then, as π2 and

π3 are distinct, it follows that Λ(f2)2,3 = 0 and that Λ(f2)3,3 = Λ(f1)3,3.
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Let us refer to this number, Λ(f1)3,3 as α, where obviously α ∈ [0, 1].

Hence, for any such matrix, the constraint reads: (1−α)π3 ·y1 +(1−α)π3 ·
y2 − (1− α)π3 · y3 ≤ 0.

This simple result can be generalized.4 Suppose that there are n firms,

and n + 1 observations. Suppose that for i = 1, . . . , n, P i = {fi} and that

P n = {f1, . . . , fn}. If each of π1, . . . , πn+1 are distinct, and there is a pair of

firms, i, j, for which cone{πi, πn+1} ∩ cone{πj, πn+1} = cone{πn+1}, then the

only implication of the model is that πn+1 · (
∑n

i=1 y
i) ≤ πn+1 · yn+1.

Of course, Corollary 1 fails absent its hypotheses. Here, we present some

simple examples. As a first trivial example, suppose that π1 = π2. Suppose

data are profit rationalizable. Then for any y3f1 , y
3
f2

for which y3f1 +y3f2 = y3 and

which rationalize the observations, we must have π1 ·y1 ≥ π1 ·y3f1 and π2 ·y2 ≥
π2 ·y3f2 ; but since π1 = π2, we obtain the requirement that π1 ·(y1+y2) ≥ π1 ·y3.

This example is generated by the transition matrices:

Λ(f1) =

[ 1 3

1 0 1

3 0 1

]
and

Λ(f2) =

[ 2 3

2 0 1

3 0 1

]
.

A more complicated example is as follows. Suppose, for example, that

π2 + π3 = π1. Up to normalization, this means that π1 lies in the relative

interior of the convex cone spanned by π2 and π3. This is the basic case where

the hypotheses of Corollary 1 fail.

Consider the following transition matrices:

4The conditions for this result are similar to the conditions in Cherchye, Demuynck, and
De Rock (2018) that characterize what datasets allow GARP to differ from WARP.
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Λ(f1) =

[ 1 3

1 0 1

3 1 0

]
and

Λ(f2) =

[ 2 3

2 0 1

3 0 1

]
.

In this case, the antecedent condition of Theorem 1 is satisfied with µ1 =

−π2, µ2 = −π2, and µ3 = π2. Therefore, Theorem 1 implies that

π2 · y3 ≤ π2 · (y1 + y2).

We can work out why this inequality is a necessary implication of profit ra-

tionalizability. If y3f1 + y3f2 = y3 and is chosen to rationalize the data, then by

profit maximization, the following three inequalities must hold:

π1 · (y3f1 − y
1) ≤ 0

π3 · (y1 − y3f1) ≤ 0

π2 · (y3f2 − y
2) ≤ 0.

Summing these inequalities, and substituting π1 = π2 + π3 and y3 = y3f1 + y3f2
yields the desired result.

Example 4. Finally, let us construct one more example, where there are four

observations: F = {f1, f2} and P 1 = {f1}, P 2 = {f1}, P 3 = {f2}, P 4 =

{f1, f2}.
Suppose now that π1 + π2 = π3. Consider the transition matrices:

Λ(f1) =


1 2 4

1 0 0 1

2 0 0 1

4 0 0 1
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and

Λ(f2) =

[ 3 4

3 0 1

4 0 1

]
.

Observe that these transition matrices imply, by virtue of Theorem 1, that

(π1 + π2) · y4 ≤ π1 · y1 + π2 · y2 + π3 · y3.

Similarly, for the transition matrices:

Λ(f1) =


1 2 4

1 0 0 1

2 0 0 1

4 1 0 0


and

Λ(f2) =

[ 3 4

3 0 1

4 1 0

]
we obtain the necessary inequality

π4 · y1 + π1 · y4 + π2 · y4 + π4 · y3 ≤ π1 · y1 + π2 · y2 + π3 · y3 + π4 · y4.

Thus, the transition matrix places restrictions on the data that differ from the

traditional weak axiom of profit maximization.

3 Additional Structure on Technology

We are often interested in imposing additional structure on the notion of

profit rationalizability. Three further conditions follow. Here, < denotes the

extended real numbers (that is, the real numbers together with −∞ and ∞).

• Firm constraints for a, b ∈ <K, a ≤ b:We ask that for all f ∈ F and all
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j ∈ Of , yjf ∈ [a, b].5

• Nonnegative profits: We ask that for all f ∈ F , all j ∈ Of , πj · yjf ≥ 0.

• Technological Change: We as that for all f and ` < j that technologies

satisfy Y `
f ⊆ Y j

f .

The firm constraints condition allows us to impose exogenous technolog-

ical constraints on inputs and outputs. For example, the definition of profit

rationalizability allows for the possibility that an output could be produced in

negative amounts. To eliminate this possibility, we simply ask that outputs

are nonnegative. Similarly, we would ask that inputs be nonpositive.

The nonnegative profits constraint is equivalent to allowing each firm the

possibility of doing nothing. In other words, it requires 0 ∈ Y f or that the

firm can choose to costlessly do nothing. See Corollary 6.5 of Chambers and

Echenique (2016). Lastly, the technological change condition treats the market

supply dataset similar to a time series and imposes that there are technological

innovations.

3.1 Firm Constrained Production

Within a given industry, one may want to put constraints on which goods

are produced and used as inputs. In our application, we consider profit max-

imization of the United States cement industry. Within the cement industry

most firms produce cement, and use raw materials, energy, and labor to create

cement. Therefore, we need conditions that hold when the inputs and outputs

are known a priori for the firms.

The next result characterizes profit maximization with constraints on net

outputs. These conditions strengthen those of Theorem 1. These new terms ef-

fectively increase the set of possible transition matrices that need to be checked

for the inequality that generalizes the weak axiom of profit maximization.

Therefore, this places additional requirements on profit maximization. The

formal statement of the result is below. For a vector x ∈ RK
, we denote by

5Here, [a, b] ≡ {x ∈ <K : ak ≤ xk ≤ bk}
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Sx ≡ {k ∈ K : xk ∈ <}; that is, Sx denotes the coordinates for which x is

real-valued.

Theorem 2. A market supply dataset is profit rationalizable and satisfies firm

constraints for a ≤ b if and only if for every (f, j) ∈ F ×J , for every µj ∈ <K,

for every αjf ∈ RSa
+ and βjf ∈ RSb

+ , and every transition matrix Λ(f) ∈ <Of×Of
,

if for every j ∈ J and every f ∈ P j,∑
`∈Of

Λ(f)l,jπ
l = πj + µj + (αjf , 0−Sa)− (βjf , 0−Sb

),

then ∑
j∈J

µj · yj +
∑
j∈J

∑
f∈P j

αjf · aSa −
∑
j∈J

∑
f∈P j

βjf · bSb
≤ 0.

Of course, in Theorem 2, we could impose firm-specific constraints. A

careful reader may go through the proof and observe exactly how the alge-

braic manipulations would change. For our purposes, it would only serve to

complicate the equations. Theorem 2 differs from Theorem 1 by the presence

of αjf and βjf . The addition of the α and β terms to the equation in Theorem 2

increases the set of transition matrices that need to be verified over in the

inequality.

An important application of Theorem 2 is the case in which we have knowl-

edge that some commodities operate as outputs, and some as inputs. In this

case, an input would naturally be restricted to have ak = −∞ and bk = 0, and

an output would naturally be restricted to have ak = 0 and bk = +∞. For

example in our main application, it is reasonable to assume that cement is an

output, rather than an input. On the other hand, it is reasonable to assume

labor is an input, rather than an output.

Let us label the inputs as IN ⊆ {1, . . . , K} and the outputs as OUT ⊆
{1, . . . , K}; for convenience suppose that IN∩OUT = ∅. We say that the data

set is rationalizable with constraints induced by (IN,OUT) if it is rationalizable

with constraints such that for every k ∈ IN, ak = −∞ and bk = 0, for every

k ∈ OUT, ak = 0 and bk = +∞, and for every k /∈ IN ∪ OUT, ak = −∞
and bk = +∞. For the vector x ∈ <K and a set S ⊆ {1, . . . , K}, we use the
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notation x|S to be all entries of x for dimensions in the set S. We have the

following immediate corollary of Theorem 2.

Corollary 2. A market supply dataset is profit rationalizable and satisfies firm

constraints induced by (IN,OUT) if and only if for every (f, j) ∈ F × J , for

every µj ∈ <K and every transition matrix Λ(f) ∈ <Of×Of
, if for every j ∈ J

and every f ∈ P j,

(
∑
`∈Of

Λ(f)l,jπ
l)|IN ≥ (πj + µj)|IN

(
∑
`∈Of

Λ(f)l,jπ
l)|OUT ≤ (πj + µj)|OUT

(
∑
`∈Of

Λ(f)l,jπ
l)|{1,...,K}\IN∪OUT = (πj + µj)|{1,...,K}\IN∪OUT

then ∑
j∈J

µj · yj ≤ 0.

3.2 Non-negative profits

Another sensible restriction to place on firms is that they have non-negative

profit. This condition is identical to allowing a firm to produce nothing in any

given observation. In practice, this may also help place enough structure on

the technology to align with intuition. In the case of examining the U.S.

cement industry, non-negative profits will help insure that the technology of

each firm present in the market produces some cement.

Definition 2. We say a market supply data set is non-negative profit ratio-

nalizable when there is a production possibility set Yf ⊆ <K such that firm

f is profit maximizing for each j ∈ Of with non-negative profits, so there is

yjf ∈ Yf where

πj · yjf ∈ arg max
y∈Yf

πj · y and πj · yjf ≥ 0

and the sum of net outputs accross all firms equals the market supply so for
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all j ∈ {1, . . . , J} ∑
f∈P j

yjf = yj.

As in the other cases, there is a simple dual characterization for non-

negative profit rationalization. The result bellow differs from Theorem 1 and

Theorem 2. The main difference is that each the constraint on transition

matrices can now be any scale of πj where the scale can vary for each firm.

Intuitively, this means that an arbitrager could now purchase more than one

unit of the market net output in an attempt to make a profit from some series

of trades.

Theorem 3. A market supply dataset {〈P j, πj, yj〉}Jj=1 is non-negative profit

rationalizable if and only if for every (f, j) ∈ F × J , for every µj ∈ <K, for

every γjf ≥ 1, and every transition matrix Λ(f) ∈ <Of×Of
, if for every j ∈ J

and every f ∈ P j, ∑
`∈Of

Λ(f)l,jπ
l = γjfπ

j + µj,

then ∑
j∈J

µj · yj ≤ 0.

3.3 Technological Change

Lastly, we allow for unobserved technological change at each firm. As for

the case of non-negative profit maximization, there is no change in the dataset

required for testing. However, this will restrict what entries of the transition

matrix Λ(f) ∈ <Of×Of
can be non-zero. For the following definition, we allow

each firm to have some unobserved technological shift at each time period.

Therefore, let Of be considered as an ordered object so `, j ∈ Of with ` < j

can be read as observation ` occurs before observation j.

Definition 3. We say a market supply data set is profit rationalizable with

technological schocks when there exist production possibility sets Y j
f ⊆ <K

such that firm f is profit maximizing for each j ∈ Of , so there is yjf ∈ Y j
f
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where

πj · yjf ∈ arg max
y∈Y j

f

πj · y,

the sum of net outputs accross all firms equals the market supply so for all

j ∈ {1, . . . , J} ∑
f∈P j

yjf = yj,

and technology is increasing so that for all `, j ∈ Of with ` < j then Y `
f ⊆ Y j

f .

This requires that the firm technology is improving with each time period.

The result below of Theorem 4 now requires that the transition matrix is

lower triangular. This means that for every firm f ∈ F that if j > ` that

Λ`,j = 0. In terms of the story of an arbitrager, this condition requires that

the arbitrager can only sell the market net output at periods in the future.

Thus, this condition prevents the arbitrager from making sales for prices that

occured in the past and is a weaker condition than Theorem 1.

Theorem 4. A market supply dataset {〈P j, πj, yj〉}Jj=1 is profit rationalizable

with technolofical shocks if and only if for every (f, j) ∈ F × J , for every

µj ∈ <K and every lower triangular transition matrix Λ(f) ∈ <Of×Of
, if for

every j ∈ J and every f ∈ P j,∑
`∈Of

Λ(f)l,jπ
l = πj + µj,

then ∑
j∈J

µj · yj ≤ 0.

4 Necessary Profit Loss

Before performing the empirical analysis, we develop the notion of an ap-

proximate profit maximizing firm and show how to use this to find measures

of necessary profit loss for the market and firms. We define necessary profit

loss to be the smallest amount of profit lost from imperfect optimization. This
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gives a measure of how far the market is from profit maximization in a simi-

lar spirit to efficiency indexes developed by Afriat (1967), Varian (1990), and

Färe and Grosskopf (1995). The main difference of necessary profit loss from

other efficiency measures is that necessary profit loss is an additive measure of

imperfect optimization. Our focus on the minimal amount of necessary profit

loss is primarily for convenience since it can be checked by linear programming

and is easy to interpret. For example, any welfare measure that incorporates

firm profits and assumes profit maximization will necessarily have errors that

are at least as large as the necessary profit loss in the market.

Before defining an approximate profit maximizer, recall that a profit max-

imizing firm f ∈ F with technology Yf is profit maximizing at observation

j ∈ Of when there is a yjf ∈ Yf such that

πj · yf ≤ πj · yjf

for all y ∈ Yf . An approximate profit maximizer is similar to the a standard

profit maximizer, except we allow the firm to make profit maximization er-

rors. Formally, the firm f ∈ F with technology Yf at observation j ∈ Of is

approximately profit maximizing at level εjf ∈ <+ when

πj · y ≤ πj · yjf + εjf

for all y ∈ Y f . In other words, the firm may only approximately profit maxi-

mize with errors up to εjf dollars. This is related to other work studying ap-

proximate maximizers in revealed preference theory (Dziewulski, 2018; Allen

and Rehbeck, 2018), but we consider these ideas in the case of profit max-

imization. Note that the approximation error is both observation and firm

specific.

We now use the approximation errors when firms profit maximize to defi-

nition a notion of neccessary profit loss (NPL). We consider NPL that depend

on the whole market and those the depend on individual firms. The necessary

profit loss in the market (m-NPL) will be the total amount of profit that is

necessarily lost by all firms. The firm level necessary profit loss (f-NPL) is
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defined to be the smallest worst case profit loss of a firm in the market. These

measures address how far the market and firms are respectively from the con-

ditions of profit maximizers. We now give formal definitions of the m-NPL

and f-NPL.

Definition 4. The market necessary profit loss (m-NPL) of a market supply

dataset {〈P j, πj, yj〉}Jj=1 is defined as

min
yjf∈<K ,εjf∈<+

∑
f∈F

∑
j∈Of

εjf

s.t. πj · y`f ≤ πj · yjf + εjf ∀f ∈ F and ∀j, ` ∈ Of∑
f∈P j

yjf = yj ∀j ∈ J

Definition 5. The firm necessary profit loss (f-NPL) of a market supply

dataset {〈P j, πj, yj〉}Jj=1 is defined as

min
yjf∈<K ,εjf∈<+

max
f∈F

∑
j∈Of

εjf


s.t. πj · y`f ≤ πj · yjf + εjf ∀f ∈ F and ∀j, ` ∈ Of∑

f∈P j

yjf = yj ∀j ∈ J

The m-NPL and f-NPL are both zero when firms are profit maximizing and

non-zero otherwise. One interpretation of these numbers is that the m-NPL

gives a lower bound on errors for industry level welfare comparisons which

include profit and use market data. Similarly the f-NPL provides a bound on

errors for any welfare comparisons which include profits made by an individual

firm. One can impose nonnegative profit maximization, increasing technology,

and firm constraints when checking for either NPL by varying the constraints.6

Before proceeding, we give dual formulations of both the m-NPL and the

6This is easily incorporated since non-negative profits require that πj ·yjf ≥ 0 . Similarly
the constraints on inputs require yf,k ≤ 0 and outputs are constrained so yf,k ≥ 0.
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f-NPL. In particular, the dual formulation of the m-NPL affords a meaningful

use of the variables in Theorem 1.

Theorem 5. The m-NPL is given by:

max
µj∈<K

J∑
j=1

µj · yj

subject to ∑
`∈Of

Λ(f)l,jπ
l = πj + µj, ∀j ∈ J and ∀f ∈ P j

where each Λ(f) ∈ <Of×Of
is a transition matrix.

In terms of interpretation, the m-NPL is the most profit an arbitrager can

make from a series of trades as described after Theorem 1. Mathematically, the

variables Λ(f) and µj are dual variables (Lagrange multipliers). At optimal

solutions to the original mNPL problem (say y∗, ε∗), or to the dual problem

(say Λ∗(f), µ∗), the standard complementary slackness conditions hold, so that

for f ∈ F and j, l ∈ Of with j 6= l, Λ(f)j,l > 0 only in the case the constraint

binds; that is when the optimal y∗ and ε∗ has

πj · yj∗f + εj∗f = πj · yl∗f .

Further, Λ(f)j,l specifies the rate at which the m-NPL would decrease were

we to allow a small violation of this particular profit maximization constraint.

Thus, if Λ(f)j,` > 0 and it were possible to increase production of outputs

holding other inputs fixed, then the m-NPL would decrease. Likewise, the

variable µjk specifies the rate at which the m-NPL would decrease were we

to decrease yjk. In particular, if µjk < 0, this means that decreasing yjk would

actually increase the m-NPL, so that increasing yjk would decrease the m-NPL.

The next theorem gives the dual characterization of the f-NPL. Here, the

notation β ∈ ∆(F ) is a member of <F+ whose coordinates sum to one (so, a

probability on F ). Relative to the arbitrager interpretation after Theorem 1,

this gives a particular weighted average of a cycle of trades across firms. In
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particular, this gives the lowest weighted average of profit that an arbitrager

could earn.

Theorem 6. The f-NPL is given by

max
µj∈<K

J∑
j=1

µj · yj

subject to

βf
∑
`∈Of

Λ(f)l,jπ
l = βfπ

j + µj, ∀j ∈ J and ∀f ∈ P j

where each Λ(f) ∈ <Of×Of
is a transition matrix and β ∈ ∆(F ).

5 Empirical Analysis

We use the tests developed in Section 2 to examine whether the cement

industry in the United States between 1993 to 1998 is profit maximizing.7 We

chose to examine the cement industry because a priori we believe it is a good

candidate to refute profit maximization. The cement industry is well known

to be a concentrated industry and prices can vary depending on the region,

thus one would not expect market level data to satisfy profit maximization.8

However, since the conditions for a market supply profit maximization place

no restrictions on technology, it is possible that the U.S. cement industry is

profit rationalized by some set of technologies. If we were able to find such a

rationalization, then it would say that the conditions for profit maximization

are weak and may not be informative in practice. Empirically, we find that

the US cement industry from 1993-1998 is not profit maximizing with any

technology when assuming firms make non-negative profits. This shows the

7Additionally we have data from 1980-1998. For data quality reasons, we focus on the
time period from 1993-1998. Results for the full set of data are in Appendix C.

8For example, the largest four firms accounted for 32.5% of production in 1997 (Ryan,
2012). That prices vary by state can be seen looking at the cement entry of the United
States Geological Survey Minerals Yearbook.
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conditions are strong enough to refute profit maximization within an industry

where violations are thought to occur. The rest of this section details these

results and provides details on the size of violations from profit maximization

using the necessary profit loss measure introduced in Section 4.

5.1 U.S. Cement Industry Overview

As mentioned before, the United States cement industry is a good can-

didate to refute profit maximization since it is a concentrated industry and

the price can vary with the region. At a high level, the cement manufactur-

ing process uses inputs of raw materials, energy, and labor to product cement

as an output. We include information from all of these inputs in the main

analysis. We treat cement as a homogeneous good as it has strict standards of

production.9 As a percentage of total mass, the main raw material is limestone

(approximately 84%) while other materials make up the rest of the physical

inputs.10

In addition to the cement industry being a good candidate to refute profit

maximization, it is also of economic importance. The cement industry ac-

counted for 1.3% of all U.S. anthropogenic carbon dioxide emissions in 2000

(Van Oss and Padovani, 2003). This fact has lead to the cement industry re-

ceiving wide attention when studying environmental policy (See Ryan (2012)

and Fowlie, Reguant, and Ryan (2016)). This literature studies responses of

cement production to changes in environmental policy using regional data since

the market is concentrated and there is variation in prices across regions. To

gain traction on these problems, the economic models often impose functional

form restrictions on the production technology for each firm.11 This paper

complements the existing literature by showing that even without specifying

9For the study, we examine sales of all cement which includes both Portland and masonry
cement. Both Portland and masonry cement have strict standards of production by ASTM
International (International, 2018a,b).

10The percentage of total mass of limestone in the production of cement is derived from
Table 3 in Van Oss and Padovani (2002). The interested reader can find additional details
on the cement industry in Van Oss and Padovani (2002).

11The restrictions of Ryan (2012) and Fowlie, Reguant, and Ryan (2016) are on the cost
function which effectively limits the technology of each firm.

21



structure on the technology at each firm, industry wide cement production is

not profit maximizing.

We now discuss the data used to conduct the empirical analysis. We in-

clude information on output, raw material inputs, energy inputs, and labor

inputs. The complete list of goods we include in the analysis is summarized in

Table 1. We examine the cement industry using yearly aggregate data for the

cement industry. The data on the amounts of inputs and outputs are readily

available from the U.S. Mines Geological Yearbook and the Portland Cement

Association. The U.S. Mines Geological Yearbook also contains information

on the prices of cement and raw materials. The average yearly price of energy

inputs was collected from the American Energy Review. We use average yearly

manufacturing wages from the St. Louis Federal Reserve as the price of labor

inputs. Lastly, we gathered information on the firms that participate in the

cement industry from the Portland Cement Association. Additional details on

data collection are collected in Appendix B.

Final Product Raw Materials Energy Labor

Cement Limestone Coal Hours Worked

Marl Oil

Clay/Shale Natural Gas

Sand Electricity

Iron Ore

Gypsum

Table 1: Goods Included in Model

From Theorem 1, the main difference of a test of market level profit max-

imization is that firms may leave/enter the industry and their production is

unobserved. We provide some descriptive details on firm entry between 1993-

1998. For this time period, there are 118 different firms that participated in

the cement industry. We display in Table 2 the number of firms that partici-

pate in the cement industry each year and how many entered/left the industry

relative to the previous year. There is some entry/exit in the industry during

this time period, but not much. Also, there are a large number of firms (118)
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relative to the number of time periods (6) so that one might expect the test

to be weak.

Year 1993 1994 1995 1996 1997 1998

Number of Firms 115 115 117 115 115 115

Entering Firms - 1 2 0 0 0

Exiting Firms - 1 0 2 0 0

Table 2: Firm Participation from 1993-1998

5.2 Results

We examine a variety of different structural conditions when examining

profit maximization. We examine both when there is a static technology and

when technology improves. We examine each of these conditions with the

restrictions of non-negative profits and restricting goods to be inputs/outputs.

In particular cement is restricted to be an output while the other goods are

inputs. The results on the m-NPL are presented in Table 3. We note that

the weakest test of this model with improving technology is able to profit

rationalize the model without restricting profits to be non-negative. However,

the restriction of allowing all firms to have weakly improving technology every

period is likely too weak. The reason this test is likely too weak is that the

main technology used in the production of cement are large kilns to produce

heat that facilitates the chemical reactions. During the time period from 1993-

1998, only seven kilns were updated and 1/7 is present for the entire period

from 1993-1998. Thus, we believe the static technology better represents the

data.

Unrestricted Input/Output Input/Output and

Non-negative Profits

Static Technology 348.0 348.0 755.1

Improving Technology 0 0 109.0

Table 3: m-NPL in millions of 1996 dollars
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For models that assume a static technology, the m-NPL is $755.1 million

when one has restrictions on inputs/outputs and non-negative profit maxi-

mization. One interesting feature of the test is that the constraints on which

goods are inputs and outputs do not affect the analysis. For some comparison

on the magnitude of the m-NPL, the dynamic structural work of Ryan (2012)

finds welfare errors of $300 million when comparing the results to a static

structural model that incorporates regional pricing and competition. These

values are not directly comparable since Ryan (2012) uses a structural model

while the analysis here is non-parametric. However, the magnitude of error

from assuming profit maximization of the industry is more than twice the size

of the errors from dyanamic vs. static considerations. Since most welfare

calculations include industry profit, this could have large effects on welfare

comparisons if one assumes profit maximization at the aggregate when there

is regional price variation and competition.

Next, we examine the f-NPL in Table 4. The f-NPL is substantially smaller

than the m-NPL, which is expected as it is a measure for a single firm. Also,

we note that the m-NPL is not too far from the number of firms times the

f-NPL. This suggests that the best way to distribute profit maximizing errors

is to give about the same amount of error to each firm. The error in profit

maximization to a firm is $6.566 million.

Unrestricted Restricted Restricted and

Non-negative Profits

Static Technology 3.026 3.026 6.566

Improving Technology 0 0 0.948

Table 4: f-NPL in millions of 1996 dollars

6 Conclusion

In this paper, we show how to conduct a test of market profit maximization

when a researcher has knowledge of market supply, market prices, and firm

participation. Roughly the test examines whether there could be an arbitrager
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who could make a profit by selling a unit of the market supply to any firm

in the industry at prices in the other periods. We extend the test to exam-

ine restrictions on technologies, non-negative profit maximization, and weakly

increasing technologies. We then develop a notion of an approximate profit

maximizer and necessary profit loss that measure how far the market and firms

are from profit maximization in terms of optimization error. We use this test

and measure to show that the U.S. Cement industry is not profit maximizing

when assuming non-negative profits and that the necessary profit loss for the

market is $755.1 million dollars for the conditions that most closely match the

market (static technology, input/output, and non-negative profits).

Finally, a word on our notion of data. It is possible that, over time, firms

merge or change names, or otherwise change structure. If we believe two firms

consolidate to form a larger one, we can provide a test of the merger hypothesis

(though we have not done so here) by assuming their two technologies are

merged into the (setwise) sum of the individual technologies. But our test is

specifically for given data, in terms of given firms. Our point is that one can

investigate more general models (where firms change names or merge), but

one has to specify these relationships in the data from the outset.

Appendix A Proofs

We first prove the result of Theorem 2. We note that Theorem 1 is a special

case of Theorem 2 as the constraints could all be a = −∞ and b =∞.

Proof of Theorem 2. First, let us establish that a profit rationalizable market

supply dataset with firm constraints a, b satisfies the condition. Let the profit

rationalizable market supply dataset be given, and suppose that for each j ∈ J
and f ∈ P j, yjf ∈ <K profit rationalizes the dataset and satisfies the constraints

a ≤ yjf ≤ b.

So, for each j ∈ J , let µj ∈ <k and for each f ∈ F , let Λ(f) ∈ <Of×Of
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such that ∑
l∈P f

Λ(f)l,jπ
l = πj + µj + ((αjf )Sa , 0−Sa)− ((βjf )Sb

, 0−Sb
).

Observe that

J∑
j=1

µj · yj

=
J∑
j=1

µj · (
∑
f∈P j

yjf )

=
J∑
j=1

∑
f∈P j

µj · yjf

=
F∑
f=1

∑
j∈Of

µj · yjf

=
F∑
f=1

∑
j∈Of

((∑
l∈Of

Λ(f)l,jπ
l

)
− πj − ((αjf )Sa , 0−Sa) + ((βjf )Sb

, 0−Sb
)

)
· yjf .

Observe then that this expression is the same as:

F∑
f=1

∑
j∈Of

∑
l∈Of

Λ(f)l,jπ
l · yjf −

F∑
f=1

∑
j∈Of

(
πj + ((αjf )Sa , 0−Sa)− ((βjf )Sb

, 0−Sb
))
)
· yjf

=
F∑
f=1

∑
l∈Of

∑
j∈Of

Λ(f)l,jπ
l · yjf −

F∑
f=1

∑
j∈Of

(
πj + ((αjf )Sa , 0−Sa)− ((βjf )Sb

, 0−Sb
))
)
· yjf

=
F∑
f=1

∑
j∈Of

∑
l∈Of

Λ(f)j,lπ
j · ylf −

F∑
f=1

∑
j∈Of

(
πj + ((αjf )Sa , 0−Sa)− ((βjf )Sb

, 0−Sb
))
)
· yjf .

The first equality here results from interchanging the summation of l and

j, and the second by relabelling the summation via l and j as j and l (using

the fact that they are dummy variables).

Finally, observe that for each f ∈ F and j ∈ Of , we have
∑

l∈Of Λ(f)j,lπ
j ·
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ylf ≤ πj · yjf , since Λ(f) is a transition matrix, and by profit maximization, for

any l ∈ Of , πj · ylf ≤ πj · yjf . Consequently, the entire expression is less than:

−
F∑
f=1

∑
j∈Of

(((αjf )Sa , 0−Sa)− ((βjf )Sb
, 0−Sb

)) · yjf

Using the fact that each of (αjf )Sa ≥ 0 and (βjf )Sb
≥ 0, we then obtain that

this expression is less than or equal to:

−
F∑
f=1

∑
j∈Of

(αjf )Sa · aSa +
F∑
f=1

∑
j∈Of

(βjf )Sb
· bSb

establishing the result.

This concludes one direction.

Conversely, let (〈P j, πj, yj〉)Jj=1 be a market supply data set. We will show

that if it satisfies the condition of the theorem, it is profit rationalizable with

constraints.

To this end, observe that by Varian (1984), (〈P j, πj, yj〉)Jj=1 is profit ratio-

nalizable with constraints if and only if for each j ∈ J and each f ∈ P j, there

is y(f)j ∈ <K such that the following inequalities are satisfied:

1. For all j ∈ J ,
∑

f∈P j y
j
f = yj

2. For all f ∈ F , and all j, l ∈ Of , πj · ylf ≤ πj · yjf

3. For all f ∈ F and all j ∈ Of , a ≤ yjf ≤ b

The first equation, for each j, can be rewritten thusly: For all j ∈ J and

all k ∈ {1, . . . , K},
∑

f∈P j y
j
f,k = yjk. We therefore have a list of real-valued

linear inequalities whose compatibility is necessary and sufficient for profit

rationalizability.

Therefore, suppose by means of contradiction that the data are not profit

rationalizable with constraints. In particular, then, there is no solution to

the list of linear inequalities; and by a Theorem of the Alternative (e.g.
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Lemma 1.14 of Chambers and Echenique (2016)), for each j ∈ J and each

k ∈ {1, . . . , K}, there is ν(j, k) ∈ < for each f ∈ F and j, l ∈ Of , there

is θ(f, j, l) ∈ <+, for each j ∈ J , each k ∈ Sa, and each f ∈ P j, there is

η(j, k, f) ∈ <+, and for each j ∈ J , each k ∈ Sb, and each f ∈ P j, there is

δ(j, k, f) ∈ <+ such that:

1. For each j ∈ J , k ∈ Sa∩Sb, and f ∈ P j: ν(j, k)+
∑

l∈Of ,l 6=j[θ(f, j, l)π
j
k−

θ(f, l, j)πlk] + η(j, k, f)− δ(j, k, f) = 0

2. For each j ∈ J , k ∈ Sa \Sb, and f ∈ P j: ν(j, k) +
∑

l∈Of ,l 6=j[θ(f, j, l)π
j
k−

θ(f, l, j)πlk] + η(j, k, f) = 0

3. For each j ∈ J , k ∈ SB \SA, and f ∈ P j: ν(j, k)+
∑

l∈Of ,l 6=j[θ(f, j, l)π
j
k−

θ(f, l, j)πlk]− δ(j, k, f) = 0

4. For each j ∈ J , k ∈ {1, . . . , K} \ (Sa ∪ Sb), and f ∈ P j: ν(j, k) +∑
l∈Of ,l 6=j[θ(f, j, l)π

j
k − θ(f, l, j)πlk] = 0

5.
∑

j∈J
∑K

k=1 ν(j, k)yjk+
∑

j∈J
∑

k∈Sa

∑
f∈P j η(j, k, f)ak−

∑
j∈J
∑

k∈Sa

∑
f∈P j δ(j, k, f)bk >

0.

Observe first that we may write νj ≡ ν(j, ·) ∈ <k, ηjf ∈ <
Sa
+ , δjf ∈ <

Sb
+ . The

equations then read:

1. For each j ∈ J and f ∈ P j,
∑

l∈Of ,l 6=j[θ(f, l, j)π
l − θ(f, j, l)πj] = νj +

(ηjf , 0S−a)− (δjf , 0S−b)

2.
∑

j∈J ν
j · yj +

∑
j∈J
∑

f∈P j η
j
f · (a|Sa)−

∑
j∈J
∑

f∈P j δ
j
f · (b|Sb

) > 0.

Now, the existence of ν, θ, η, δ terms satisfying these inequalities implies

(by rescaling) the existence of µ and λ terms such that:

1. For each j ∈ J and f ∈ P j,
∑

l λ(f, j, l) < 1

2. For each j ∈ J ,
∑

l∈Of ,l 6=j[λ(f, l, j)πl − λ(f, j, l)πj] = µj + (αjf , 0S−a) −
(βjf , 0S−b)
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3.
∑

j∈J µ
j · yj +

∑
j∈J
∑

f∈PJ α
j
f · a|Sa −

∑
j∈J
∑

f∈P j β
j
f · b|Sb

> 0.

So, clearly we define Λ(f)j,l = λ(f, j, l) for ` 6= j, and for any j ∈ Of ,
Λ(f)j,j = 1 −

∑
l∈Of ,l 6=j λ(f, j, l). Observe that each Λ(f) ∈ <Of×Of

is a

transition matrix; yet violates the inequalities listed in the theorem for µj

terms.

Proof of Theorem 3. First, let us establish that a non-negative profit rational-

izable market supply dataset satisfies the condition. Let the market supply

dataset be given, and suppose that for each j ∈ J and f ∈ P j, yjf ∈ <K profit

rationalizes the dataset and yjf satisfies non-negative profit conditions.

For all j ∈ J and for all f ∈ F , let µj ∈ <k and γjf ≥ 1, and Λ(f) ∈ <Of×Of

such that ∑
l∈Of

Λ(f)l,jπ
l = γjfπ

j + µj.

Observe that

J∑
j=1

µj · yj

=
J∑
j=1

µj ·

∑
f∈P j

yjf


=

J∑
j=1

∑
f∈P j

µj · yjf

=
J∑
j=1

∑
f∈P j

(∑
l∈Of

Λ(f)l,jπ
l − πj + (1− γjf )π

j

)
· yjf .

by adding and subtracting πj · yjf for each firm.

Performing the inner product of the γ terms with y, we obtain

J∑
j=1

∑
f∈P j

(1− γjf )π
j · yjf ≤ 0
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since γjf ≥ 1 for all f ∈ F and j ∈ {1, . . . , J} and profit is non-negative for

each firm. It follows that

J∑
j=1

∑
f∈P j

(∑
l∈Of

Λ(f)l,jπ
l − πj + (1− γjf )π

j

)
· yjf

≤
J∑
j=1

∑
f∈P j

((∑
l∈Of

Λ(f)l,jπ
l

)
− πj

)
· yjf

by using the above inequality and re-arrangement. The remainder of the proof

follows from re-arranging the summations as in Theorem 2.

Conversely, let {〈P, π, y〉}Jj=1 be a market supply dataset. We will show that

if it satisfies the condition of Theorem 3, it is non-negative profit rationalizable.

To this end, observe that by Varian (1984), (〈P j, πj, yj〉)Jj=1 is non-negative

profit rationalizable if and only if for each j ∈ J and each f ∈ P j, there is

yjf ∈ <K such that the following inequalities are satisfied:

1. For all j ∈ J ,
∑

f∈P j y
j
f = yj

2. For all f ∈ F , and all j, l ∈ Of , πj · ylf ≤ πj · yjf .

3. For all f ∈ F , all j ∈ Of that 0 ≤ πj · yjf .

The first equation, for each j, can be rewritten thusly: For all j ∈ J

and all k ∈ {1, . . . , K},
∑

f∈P j y
j
f,k = yjk. Similarly, the inequalities from

three can be rewritten for all j ∈ J as 0 ≤
∑K

k=1 π
j
ky

j
f,k. Therefore, we have

a list of real-valued linear inequalities whose compatibility is necessary and

sufficient for non-negative profit rationalizability. Therefore, suppose by means

of contradiction that the data are not profit rationalizable. In particular, then,

there is no solution to the list of linear inequalities; and by a Theorem of the

Alternative, for each j ∈ J and each k ∈ {1, . . . , K}, there is ν(j, k) ∈ <, for

each f ∈ F and j, l ∈ Of , there is θ(f, j, l) ∈ <+, and for each f ∈ F and

j ∈ Of there exists γ(f, j) such that

1. For each j ∈ J , k ∈ {1, . . . , K}, and f ∈ P j: ν(j, k)+
∑

l∈Of ,l 6=j[θ(f, j, l)π
j
k−

θ(f, l, j)πlk] + γ(f, j)πjk = 0
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2.
∑

j∈J
∑K

k=1 ν(j, k)yjk > 0.

Relative to Theorem 2, this adds the restriction of profit maximization.

Similar to the case of known net inputs and net outputs, it only changes the

restrictions on the Lagrange multipliers. We may write νj ≡ ν(j, ·) ∈ <k.
Thus, the equations read:

1. For each j ∈ J ,
∑

l∈Of ,l 6=j[θ(f, l, j)π
l − θ(f, j, l)πj] = νj + γ(f, j)πj

2.
∑

j∈J ν
j · yj > 0.

Now, the existence of ν, θ, and γ terms satisfying these inequalities implies

(by rescaling) the existence of µ, λ, and γ̃ terms such that:

1. For each j ∈ J and f ∈ P j,
∑

l λ(f, j, l) < 1

2. For each j ∈ J ,
∑

l∈Of ,l 6=j[λ(f, l, j)πl − λ(f, j, l)πj] = µj + γ̃(f, j)πj

3.
∑

j∈J µ
j · yj > 0.

So, clearly we define Λ(f)j,l = λ(f, j, l) for ` 6= j, and for any j ∈ Of ,
Λ(f)j,j = 1 −

∑
l∈Of ,l 6=j λ(f, j, l). Observe that each Λ(f) ∈ <Of×Of

is a

transition matrix; yet violates the inequalities listed in the theorem for µj

terms.

Proof of Theorem 4. First, let us establish that a non-negative profit rational-

izable market supply dataset satisfies the condition. Let the market supply

dataset be given, and suppose that for each j ∈ J and f ∈ P j, yjf ∈ <K profit

rationalizes with technology shocks the dataset.

For all j ∈ J and for all f ∈ F , let µj ∈ <k and Λ(f) ∈ <Of×Of
be a lower

triangular transition matrix such that∑
l∈Of

Λ(f)l,jπ
l = πj + µj.
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Observe that

J∑
j=1

µj · yj

=
J∑
j=1

µj ·

∑
f∈P j

yjf


=

J∑
j=1

∑
f∈P j

µj · yjf

=
J∑
j=1

∑
f∈P j

(∑
l∈Of

Λ(f)l,jπ
l − πj

)
· yjf .

The remainder of the proof follows from re-arranging the summations as in

Theorem 2.

Conversely, let {〈P, π, y〉}Jj=1 be a market supply dataset. We will show that

if it satisfies the condition of Theorem 4, it is profit rationalizable with tech-

nological shocks. To this end, observe that by Varian (1984), (〈P j, πj, yj〉)Jj=1

is non-negative profit rationalizable if and only if for each j ∈ J and each

f ∈ P j, there is yjf ∈ <K such that the following inequalities are satisfied:

1. For all j ∈ J ,
∑

f∈P j y
j
f = yj

2. For all f ∈ F , and all j, ` ∈ Of with ` < j, πj · ylf ≤ πj · yjf

where the main difference if yjf must create more profit than earlier observed

relations since Y `
f ⊆ Y j

f

The first equation, for each j, can be rewritten thusly: For all j ∈ J and all

k ∈ {1, . . . , K},
∑

f∈P j y
j
f,k = yjk. Therefore, we have a list of real-valued linear

inequalities whose compatibility is necessary and sufficient for non-negative

profit rationalizability. Therefore, suppose by means of contradiction that the

data are not profit rationalizable. In particular, then, there is no solution to

the list of linear inequalities; and by a Theorem of the Alternative, for each

j ∈ J and each k ∈ {1, . . . , K}, there is ν(j, k) ∈ < and for each f ∈ F and

j, l ∈ Of with ` < j, there is θ(f, j, l) ∈ <+ such that
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1. For each j ∈ J , k ∈ {1, . . . , K}, and f ∈ P j: ν(j, k)+
∑

`∈Of ,`≤j θ(f, j, l)π
j
k−∑

`∈Of ,j≤` θ(f, l, j)π
l
k = 0

2.
∑

j∈J
∑K

k=1 ν(j, k)yjk > 0.

Relative to Theorem 2, this relaxes the number of comparisons made across

time periods by the θ multipliers.

1. For each j ∈ J ,
∑

`∈Of ,j≤` θ(f, l, j)π
l
k −

∑
`∈Of ,`≤j θ(f, j, l)π

j
k = νj

2.
∑

j∈J ν
j · yj > 0.

Now, the existence of ν, θ terms satisfying these inequalities implies (by

rescaling) the existence of µ and λ terms such that:

1. For each j ∈ J and f ∈ P j,
∑

l 6=j λ(f, j, l) < 1

2. For each j ∈ J ,
∑

l∈Of ,l 6=j[λ(f, l, j)πl − λ(f, j, l)πj] = µj

3.
∑

j∈J µ
j · yj > 0.

So, clearly we define Λ(f)j,l = λ(f, j, l) for ` < j, Λ(f)j,` = 0 if j > `, and

for any j ∈ Of , Λ(f)j,j = 1 −
∑

l∈Of ,l 6=j λ(f, j, l). Observe that each Λ(f) ∈
<Of×Of

is a lower triangular transition matrix; yet violates the inequalities

listed in the theorem for µj terms.

Proof of Theorem 5. We apply Theorem 3.1 of Gale (1989). We seek, for all

j ∈ {1, . . . , J}, all f ∈ P j, and all k ∈ {1, . . . , K}, εjf and yjf,k such that

1. For each j ∈ J and f ∈ P j, εjf ≥ 0

2. For each f ∈ F and binary {j, l} ⊆ Of , πj · yjf + εjf − πj · y
f
l ≥ 0

3. For each j ∈ J , f ∈ P j, and k ∈ {1, . . . , K},
∑

f∈P j y
j
f,k = yjk
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to maximize
∑

f∈F
∑

j∈Of ε
j
f .

Applying Theorem 3.1 of Gale (1989), we obtain, for each εjf ≥ 0 constraint,

a multiplier αjf ≥ 0, for each constraint of type 2 (an ordered pair j, l with

j 6= l), a multiplier Λ(f)j,l ≥ 0, and for constraints of type 3, a multiplier

µjk ∈ <.

Our goal is then to maximize
∑

j∈J µ
j·yj subject to for all j ∈ J and f ∈ P j,∑

l Λ(f)j,lπ
j + µj =

∑
l∈Of ,l 6=j Λ(f)l,jπ

l and αjf +
∑

l∈Of ,l 6=j Λ(f)j,l ≤ 1, or

removing the αjf constraint,
∑

l∈Of ,l 6=j Λ(f)j,l ≤ 1. By creating a term Λ(f)j,j

for each j ∈ J and f ∈ P j, we see we obtain exactly the optimization problem

in Theorem 5.

Proof of Theorem 6. We remark that the proof relies on the same technique

as in the proof of Theorem 5. First, the original problem can be reformulated

as the linear program

min ε

subject to:

1. For all f ∈ F and j ∈ Of , εjf ≥ 0.

2. For all f ∈ F and j, l ∈ Of , πj · yjf + εjf ≥ πj · ylf .

3. For all j ∈ J ,
∑

f∈P j y
j
f = yj.

4. For all f ∈ F , ε−
∑

j∈Of ε
j
f ≥ 0.

Applying Theorem 3.1 of Gale (1989), we obtain, for each εjf ≥ 0 constraint,

a multiplier αjf ≥ 0, for each constraint of type 2 (an ordered pair j, l with

j 6= l), a multiplier Λ(f)j,l ≥ 0, for constraints of type 3, a multiplier µjk ∈ <,

and for constraints of type 4 we obtain a multiplier of βf ≥ 0.

Our goal is to maximize
∑

j∈J µ
j · yj subject to for all j ∈ J and f ∈ P j,∑

l Λ(f)j,lπ
j + µj =

∑
l∈Of ,l 6=j Λ(f)l,jπ

l and αjf − βf +
∑

l∈Of ,l 6=j Λ(f)j,l ≤ 0,

and
∑F

f=1 βf ≤ 1. Note that at least one βf > 0. To see this, suppose all βf

are zero so by complementary slackness, it would follow for each f ∈ F that
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ε−
∑

j∈Of ε
j
f > 0. In this case though, ε would not be at a minimum. Since at

least one βf > 0 we can assume the inequality is equal since we can divide by∑F
f=1 βf without changing the solution so that β ∈ ∆(F ). Similarly, we can

remove the αjf term to get that
∑

l∈Of ,l 6=j Λ(f)j,l ≤ βf . We can now create a

term Λ(f)j,j for each j ∈ J and f ∈ P j. We now see that the conditions from

Theorem 6 match those for the dual problem.

Appendix B Data Collection Methods

To perform the analysis in the main text, we use data from a variety of

sources. In particular, data from 1980-1998 was collected from: the United

States Geological Survey (USGS) Minerals Yearbook, the American Energy

Review, the Portland Cement Association (PCA), the United States Bureau of

Labor Statistics (US BLS), and the St. Louis Federal Reserve. In the following

paragraphs, we describe what data was used from each source and how the

data was processed for use in the test of profit maximization of aggregate

cement production.

Much of the data was collected from the United States Geological Survey

(USGS) Minerals Yearbooks published between 1980-1998. Most entries for a

given material (e.g. cement) in the USGS Mineral Yearbook have information

on various industry and regional level statistics for the current year and several

previous years. There are often inconsistencies with the data if one looks across

different years since the Mineral Yearbook is often published before firms in

the industry have responded to the surveys issued by the USGS.12 For this

reason, when we use information from the USGS Minerals Yearbook we take

the information from the latest year it appears in a yearbook entry.

The data on industry wide production of cement was gathered from the

USGS Minerals Yearbook entry on cement. The entry on cement contains data

on output, price, raw materials inputs, and energy inputs. For example, the

12We are grateful for Henrick vanOss for pointing out this detail in a personal correspon-
dence.
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information on production and unit value of cement for 1995 were collected

from Table 1 in the USGS cement entry from 1999. We treat the unit value as

the average price of cement in the United States for a given year in the main

analysis.

The data on raw material input quantities for cement was also collected

from the USGS Mineral Yearbook entry on cement. For example, the informa-

tion on input quantity in 1998 was collected from Table 6 in the 1999 yearbook

entry on cement. The data categories are not always consistent across years so

we discuss how inputs are grouped into those mentioned in Table 1 in the main

text. First, when inputs are split between clinker and cement production, we

add these entries to produce the total quantity inputs for a given year. The

inputs of sand and gypsum match the associated labels in the yearbook entry

on cement. We differ from the yearbook entry since we treat all cement rock

as marl and all ferrous material as iron ore. We make this distinction to match

the data from the cement yearbook entry to the associated prices we use for

the different materials. We also include coral into the category “limestone” for

analysis since later entries in the yearbook do not make a distinction between

coral and limestone. Similarly, we treat clay and shale as the same good since

the price information is on the price of common clay and shale.

The cement entry in the USGS mineral yearbook also contains the infor-

mation on the quantity of different energy inputs. For example, we collect

data on fuel usage for 1998 from Table 7 in the cement yearbook entry from

1999. Quantities for oil and natural gas are recorded directly from the ta-

ble. The quantity of “coal” used in the analysis is the sum of coal, coke, and

petroleum coke. We aggregate these quantities together since earlier data does

not always make these distinctions. Therefore, we have comparable amounts

of “coal” across different time periods. Also, we make the assumption that

all coal is bituminous to match the amount of coal to a single price from the

American Energy Review. This seems a reasonable first approximation since

looking at previous yearbook entries, we see that virtually all coal used is bi-

tuminous (e.g. over 94% in 1995). We note that in 1991 there is no record of

energy usage in the cement industry. This is the only missing data of all ma-
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terials from 1980-1998. Therefore, the the largest dataset we use to examine

profit maximization includes data from 1980-1990 and 1992-1998.

The final piece of information we gather from the cement entry of the

USGS yearbook is electricity usage. For example, electricity usage for 1998

was collected from Table 8 of the cement yearbook entry in 1999. We treat the

electricity category as the sum of all purchased energy by cement plants in a

given year. For example, the electricity usage is the sum of purchased energy

from all plants plus the energy purchased for plants that grind materials.

So far, we have accounted for all quantity amounts with the exception of

labor. We measure labor as total hours worked which is derived using the

information on the amount of cement produced with information from the

Portland Cement Association (PCA). In particular, PCA records the average

number of labor hours needed to produce a thousand metric tons of cement.

Total labor hours for a given year is generated by multiplying the quantity of

cement produced by the labor hours per metric ton from PCA.

The above paragraphs documents how we obtained data on the quantities

produced from various data sources. However, we have not mentioned the unit

of measurement for each input/output. From 1980-1999, the USGS changed

the units that inputs/outputs were measured in from English/U.S. engineering

units to metric units. For the analysis, we measure all inputs/outputs in metric

units when appropriate. Therefore, we often had to apply a conversion factor

to these measurements for different years. All the information on the change

of units and measurement units used in different time periods are recorded in

Table 5. There are four main types of unit changes those for mass (cement,

limestone, marl, clay/shale, sand, iron ore, gypsum, and coal), liquid volume

(oil), and gaseous volume (natural gas). We also report the degree of precision

to which the units are rounded. The measurement of electricity is constant

in million-kilowatt hours. Finally, we report labor to the nearest hour after

transforming the amount of cement from short tons to metric tons.

We now discuss how we collect data on raw material input prices. Raw

material input prices are treated as the unit value or freight on board price

of the different goods. These values are collected from the USGS Minerals
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Yearbook. Limestone and calcareous marl unit values were collected from the

crushed stone/stone yearbook entries. For example, the unit values for 1998

were collected from Table 2 in the 1999 crushed stone yearbook entry. The

information on prices of both limestone and calcareous marl are not always

available before 1993 which is why we restrict to analysis to the years 1993-1998

in the main text. From 1980-1992, the unit values of limestone and calcareous

marl are only available on odd years. However, even years from 1980-1992 still

contain information on the unit value of all crushed stone. Thus, when we

analyze profit maximization for the larger period from 1980-1998, we treat the

price of limestone and calcareous marl as the average unit value for all crushed

stone in the even years between 1980-1992.

The price of common clay/shale is obtained from the Clay and Shale/Clay

yearbook entry from the USGS Minerals yearbook. The yearbook makes no

distinction between the prices of these goods, so they are aggregated into a

single commodity in the analysis. This information is not recorded in a table

and the yearbook entry only contains one year of data. For an example, the

unit value of clay/shale from 1998 is collected from the section on Prices under

the heading “Common Clay and Shale” in the 1998 yearbook entry.

The price of ferrous material is treated as the average freight-on-board

mine value of usable iron ore. This number is obtained from the Iron Ore

entry of the USGS Minerals yearbook. For example, the unit value for 1998

is gathered from the first paragraph under the heading “Prices” in the 1998

yearbook entry. The price of sand is treated as freight on board (f.o.b.) price

of sand. We obtain the average f.o.b. price of sand from the Construction

Sand and Gravel entry of the USGS Minerals Yearbook. This information is

generally in a separate section on prices. For example, the 1996 price of sand

is the f.o.b. price of sand collected from the subsection on prices in the 1996

yearbook entry. The prices of sand were not reported in even years up to 1992

but were instead estimated. This is another data limitation that motivates

looking at the restricted sample from 1993-1998 in the main text.

Lastly, the price of gypsum was taken as the per unit value of uncalcined

gypsum used in the portland cement industry. The yearbook entry on gypsum
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has additional information that allows us to look more closely at the unit

value of gypsum for the cement industry. For example, the price of gypsum

in 1993 was taken calculating the unit value of uncalcined gypsum used in

for portland cement derived from Table 4 in 1994 yearbook entry. As in

the case of the cement yearbook entry, many entries switched measurement

units from the English/U.S. engineering units to metric units. Most of the

conversions are from dollars per short ton to dollars per metric ton, where we

use the conversion from Table 5. We also make use of the conversion from

long tons to metric tons for iron ore from 1980-1983 where the conversion is

1.01605metric ton
long ton

.

We obtain energy prices from the American Energy Reviews Published

in 2011, 1998, and 1982. This includes prices for coal, oil, natural gas, and

electricity purchase. As with the other data sources, there are discrepancies in

prices when one looks across the different publications. We take the entry from

the most recent publication in keeping with the previous analysis. The prices

of oil for 1995-1998 are recovered from the No. 4 Residual Fuel Oil prices to

end users in Table 5.22 of the 2011 American Energy Review. Other prices are

recovered from the analogous tables in different American Energy Reviews.

There is an exception where prices of oil from 1980-1981 are wholesale prices

of No. 4 residual fuel oil as the price to end user was not recorded. These

prices are recorded in dollars per gallon which we convert to dollars per liter

using the conversion factor in Table 5.

We take the price of coal to be the price of bituminous coal. The prices of

coal from 1980-1998 are all recovered from the nominal prices of bituminous

coal from Table 7.9 in the 2011 American Energy Review. The prices of coal

are recorded in dollars per short ton which we convert to dollars per metric

ton using the conversion from Table 5. For electricity consumption, we treat

price as the average retail prices of electricity in the industrial sector. The

prices from 1980-1998 are all collected from Table 8.10 of the American Energy

Review of 2011. These prices are recorded in terms of dollars per kilowatthour

which agree with the units from the cement yearbook entry.

The final set of prices needed is the price of labor. We treat the price of

40



labor as the yearly average hourly wage for manufacturing employees from the

St. Louis Federal Reserve. In particular, we use monthly level data to generate

an average yearly hourly wage using data that is not seasonally adjusted. We

choose to use this data rather than the seasonally adjusted data so that all units

begin in nominal unscaled dollars and then are converted to real prices by a

common conversion factor. This data can be obtained from of Labor Statistics

(2018a).

Thus far, all of the entries for prices have been nominal prices. To convert

prices into real purchasing power, we use the information of the Consumer

Price Index (CPI) acquired from the U.S. Beaurau of Labor and Statistics

(of Labor Statistics, 2018b). We normalize the value to 1996 dollars.

Appendix C Extended Analysis 1980-1990 &

1992-1998

We repeat the analysis from Section 5.2, but for data from 1980-1990 &

1992-1998. We leave out 1991 since we do not have energy inputs for this

year. We note that over this period there is more entry/exit than in the years

from just 1993-1998. In particular, there are 166 distinct firms in the market

during this extended time period. All of the information on entry and exit

from 1980-1998 is present in Table 6. We include 1991 even though we do not

use it in the analysis for completeness. For the year 1980-1990, the entry and

exit is much more common than 1993-1998. Since there is more variation from

firms, we hypothesize adding these years may have little effect to the analysis.

We show the results replicating the analysis from Section 5.2 below in

Table 7 and Table 8. We see that the additional data only changes the mea-

sures of NPL for the static model of profit maximization with input/output

constraints. However, the errors more than double in magnitude when we in-

crease the range on the data. For this expanded dataset, we find a m-NPL of

$1.7 billion and a f-NPL of $12.8 million. This shows that as one expands the

time period over which the analysis is performed, then the errors will increase
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Year 1980 1981 1982 1983 1984 1985
Number of Firms 146 144 140 140 138 133
Entering Firms - 7 2 3 1 0
Exiting Firms - 9 6 3 3 5
Year 1986 1987 1988 1989 1990 1991
Number of Firms 130 129 124 120 116 116
Entering Firms 0 4 1 0 0 0
Exiting Firms 3 5 6 4 4 0
Year 1992 1993 1994 1995 1996 1997
Number of Firms 116 115 115 117 115 115
Entering Firms 1 0 1 2 0 0
Exiting Firms 1 1 1 0 2 0
Year 1998
Number of Firms 115
Entering Firms 0
Exiting Firms 0

Table 6: Firm Participation from 1980-1998

in non-trivial magnitudes.

Unrestricted Input/Output Input/Output and

Non-negative Profits

Static Technology 348.0 348.0 1,746

Improving Technology 0 0 109.0

Table 7: m-NPL for full dataset in millions of 1996 dollars

Unrestricted Restricted Restricted and

Non-negative Profits

Static Technology 3.026 3.026 12.83

Improving Technology 0 0 0.948

Table 8: f-NPL for full dataset in millions of 1996 dollars
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Färe, R., and S. Grosskopf (1995): “Nonparametric tests of regularity,

Farrell efficiency, and goodness-of-fit,” Journal of Econometrics, 2(69), 415–

425.

Fowlie, M., M. Reguant, and S. P. Ryan (2016): “Market-based emis-

sions regulation and industry dynamics,” Journal of Political Economy,

124(1), 249–302.

Gale, D. (1989): The theory of linear economic models. University of Chicago

press.

Hanoch, G., and M. Rothschild (1972): “Testing the assumptions of pro-

duction theory: a nonparametric approach,” Journal of Political Economy,

80(2), 256–275.

International, A. (2018a): “ASTM C150/C150M-18 Standard Specifica-

tion for Portland Cement,” .

(2018b): “ASTM C91/C91M-18 Standard Specification for Masonry

Cement,” .

Mantel, R. R. (1974): “On the characterization of aggregate excess de-

mand,” Journal of Economic Theory, 7(3), 348–353.

44



of Labor Statistics, U. B. (2018a): “Average Hourly Earnings of Pro-

duction and Nonsupervisory Employees: Manufacturing [CES3000000008],”

.

(2018b): “Consumer price index - all urban consumers, 1956-2016,”

.

Ryan, S. P. (2012): “The costs of environmental regulation in a concentrated

industry,” Econometrica, 80(3), 1019–1061.

Sonnenschein, H. (1972): “Market excess demand functions,” Economet-

rica, 40(3), 549–563.

Tamer, E. (2003): “Incomplete simultaneous discrete response model with

multiple equilibria,” The Review of Economic Studies, 70(1), 147–165.

Van Oss, H. G., and A. C. Padovani (2002): “Cement manufacture and

the environment: part I: chemistry and technology,” Journal of Industrial

Ecology, 6(1), 89–105.

(2003): “Cement manufacture and the environment part II: environ-

mental challenges and opportunities,” Journal of Industrial ecology, 7(1),

93–126.

Varian, H. R. (1984): “The nonparametric approach to production analy-

sis,” Econometrica, 52(3), 579–597.

(1990): “Goodness-of-fit in optimizing models,” Journal of Econo-

metrics, 46(1-2), 125–140.

45


