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Abstract

Social media have become an increasingly important source of information

about political, social and economic issues. While beneficial on many levels, the

decentralized nature of these media may expose societies to novel risks of manipu-

lation by third parties. To evaluate these risks, we study a model where a designer

sends information to agents who interact in a game, so as to affect its outcome. The

designer can communicate only with a limited number of agents, who then share in-

formation with each other on a network of social links before playing the game. We

characterize the equilibrium outcomes that can be induced by seeding this social

network with information. Our main result recasts this constrained information-

design problem in terms of an equivalent linear program, which is particularly

useful for applications. We show that a simple property of the network—the depth

of communication—fully determines the scope for belief manipulation. Finally, we

illustrate how a holistic use of linear-programming duality helps to characterize

the solution to the optimal seeding problem. Our theory offers insights into the

design of advertisement and political campaigns that are robust to (or leverage on)

information spillovers.
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1 Introduction

The information people get from their social networks shapes their beliefs as much as that

directly provided by institutional sources, such as news outlets or government agencies.

Information spillovers between agents therefore matter for any third party interested in

influencing beliefs in societies. For instance, political candidates may not safely assume

that private campaign events will not leak to the public. Foreign entities may try to

meddle with domestic politics by exploiting social media, which may be easier to infiltrate

than traditional media. The board of a company may communicate to its divisions and

lower ranks both directly and indirectly via the organization hierarchy.

In this paper, we examine the problem of a third party who uses information to

influence people’s beliefs and behaviors when information can spill over social relations.

We model such relations as an exogenous directed network and adopt an information-

design approach. We are especially interested in settings where the third party (hereafter,

the designer) can only target a subset of the population with her information campaign,

relying on the network to spread her messages. We characterize the behavioral outcomes

that the designer can achieve and how they depend on the structure of the social network.

We provide insights into the qualitative properties of optimal information targeting.

The model has three phases. First, the designer chooses what information to provide

to the agents she can target. For each of them, this information takes the form of a

private signal about some underlying state of the world. In the second phase, the agents

share information with their neighbors in the network. In the last phase, given what

they learned directly from the designer and indirectly from their neighbors, the agents

play a game whose payoffs depend on the underlying state. In contrast to the standard

information-design framework, our model restricts the set of agents the designer can

directly reach with signals and adds the second phase of information spillovers.

Modeling information spillovers on networks raises serious challenges, as they can

occur in many ways (see the related literature and Section 2.1). For instance, communi-

cation may be myopic or strategic and may rely on rich, coarse, or noisy messages. As

a first attempt at studying this kind of information-design problems, we ignore all these

intricacies and assume the simplest form of information spillovers: If there is a path (i.e.,

a chain of links) from one agent to another, then the latter will learn the private signal

received by the former—possibly through multiple rounds of communication, which we

leave implicit. This assumption helps us focus on the trade-offs caused by information

spillovers. Later in the paper, we consider richer and more realistic forms of spillovers.

Our first contribution is to characterize the set of feasible outcomes of the final game
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that the designer can induce. An outcome is a joint distribution between the agents’

actions and the state.1 We do this in two steps.

The first step is essential for the entire analysis. We show that every problem where

the designer is constrained to targeting a subset of agents can be transformed into an

auxiliary unconstrained problem which has the same feasible outcomes. In this problem,

the designer can target all agents, but faces a richer network that is uniquely derived from

the original network. Intuitively, the richer network captures the additional constraints of

having to rely on targeted agents as intermediaries in order to reach all agents. To prove

this result, we exploit an unexpected connection with the computer science literature on

cryptography, from which we borrow a technique known as the secret sharing method

(see Shamir (1979)).

The second step builds on the tradition of direct mechanisms (Myerson (1986)) and

characterizes all feasible outcomes of any unconstrained problem by an obedience condi-

tion adapted to our settings. Indeed, we can view the unconstrained designer as directly

recommending to each agent how to play in the final game. Obedience requires that each

agent i be willing to follow his recommendation conditional on the information he has. In

our setting, this is the information about the state and others’ behavior revealed by the

recommendation to i as well as to all agents connected to i through some path. We call

these agents i’s information sources. Importantly, obedience defines a system of linear

inequalities. Together, these two steps dramatically simplifies finding the feasible out-

comes for constrained problems, for which a direct-recommendation approach is invalid.

In contrast to Bergemann and Morris (2016), in our obedience notion the agents can act

on richer information sets and the designer may have to recommend mixed actions.

How do the feasible outcomes change depending on the social network and the set

of target agents? To answer this, we introduce a new order on networks based on the

idea of followers. Agent i is a follower of agent j if there is a path in the network from j

to i. Given this, a network is deeper than another if, for each agent, his followers in

the latter are also followers in the former. We show that this depth notion summarizes

the degree to which the information spillovers alone constrain the designer’s ability to

influence the agents’ behavior: Deeper networks shrink the set of feasible outcomes for

every final game. A network’s depth is also directly related to its capacity to aggregate

information: At the end of the information-spillover phase, each agent is more informed

(in a Blackwell sense) if and only if the network is deeper. We provide necessary and

1As another interpretation, the set of feasible outcomes describes everything that can happen in the

final game, across all possible (and unknown to the analyst) forms of information which the agents may

initially receive and then share over the social network.
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sufficient conditions on the original network and target set for the network in the auxiliary

unconstrained problem to be deeper.

Our second contribution is to study optimal outcomes—again relying on the uncon-

strained problem corresponding to our original problem. To this end, we extend to

the present setting an approach based on duality of linear programming that we devel-

oped in a companion paper Galperti and Perego (2018) for standard information-design

problems. The need to allow for mixed-action recommendations complicates the tasks

of establishing existence of solutions and of formulating the dual. Once this is done,

the interpretation, insights, and general optimality properties identified in Galperti and

Perego (2018) also apply here. Some extend the properties of optimal Bayesian persua-

sion discovered by Kamenica and Gentzkow (2011) to settings with multiple receivers

who interact strategically. Other are new, specific to this richer settings, and driven by

the information spillovers. We show that a holistic use of the various parts of duality

promises to be helpful in solving the kind of design problems studied here. We illustrate

this approach with examples of investment games.

In ongoing work, we extend the analysis to settings where the agents may also receive

information from exogenous sources, the designer is uncertain about the structure of the

social network, and information may flow stochastically over links. In terms of applica-

tions, we use our theory to better understand optimal targeting with rich information

policies and to study electoral campaigns that are robust to information leakage.

Related Literature. The closest to this paper is the literature on information design,

based on the seminal work of Kamenica and Gentzkow (2011) and Bergemann and Mor-

ris (2016) (see Bergemann and Morris (2018) for a survey). This literature considers

the problem of designing an information structure for one decision maker or a group of

strategic agents. Bergemann and Morris (2016) highlight another important interpreta-

tion of this problem: The set of feasible outcomes in their setting—and in our setting

as well—describes everything that can happen in equilibrium for a specific context if the

analyst cannot or is not willing to make any assumption on the information available to

the agents. This theory has found numerous applications to studying, for instance, po-

litical campaigns, rating systems, financial stress tests, and banking regulations. Other

papers have applied linear-programming methods to analyze information design. For a

comparison with this literature, see Galperti and Perego (2018) and references therein.

A key difference from this literature is that all papers assume that the designer

can provide information privately and directly to each agent and that the agents never

share any information coming from the designer. By contrast, we allow for information
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spillovers between agents and for constraints on the designer’s ability to communicate

directly with some agents. The first difference relaxes privacy and the designer’s com-

plete control over information; the second restricts the feasible information structures

and introduces indirect information provision through the network. These seem impor-

tant directions to extend the theory of information design for broader applicability to

economically relevant settings. Also, common sense suggests that information policies

are intrinsically fragile tools to shape incentives. One reason could be that agents share

their information. Thus, our paper allows us to study the robustness of information

policies to spillovers and how optimal policies change as the agents get better at sharing

information.

The paper is also related to the vast literature on social or observational learning.2

This literature is concerned with how people learn about some aspect of the world from

how their peers act on their information about it. This is a prominent form of information

spillovers. However, usually these papers assume a simple and exogenous information

structure for the agents (for example, independence across them and some distributional

assumption like normality). By contrast, in our paper not only information structures can

take any form, but also they are chosen by a strategic third party. This literature also had

to deal with the issue of how people learn from information that travels on social networks.

Several models exist, which acknowledge and try to address the complexity of this issue

(see, e.g., Golub and Jackson (2012) and Mueller-Frank (2013)). Our baseline assumption

on how information spillovers work overlooks most of this complexity, but it allows us to

focus on the information-design part of the problem. Relaxing this assumption seems a

direction worth pursuing.

Last but not least, there is a rich literature about optimal seeding or targeting of

the agents in some social network.3 A broad theme of this literature is which network

nodes (i.e., agents) should be targeted with an intervention that activates those nodes—

viewed as an on-off switch—and starts a contagion in the network. Usually, contagion

is modeled as a mechanical process and the third party’s goal is to achieve maximal

contagion (perhaps, within some deadline). A key difference of our paper is that the

considered intervention takes the form of information provision. How the agents respond

to information can be richer than simply being on or off and depends on their (often)

heterogeneous preferences. Thus, in our paper the question is not only whom to target,

2See Banerjee (1992), Bikhchandani et al. (1992), Smith and Sørensen (2000), Acemoglu et al. (2011),

Golub and Sadler (2017).
3See Granovetter (1978), Banerjee et al. (2013), Jackson and Storms (2018), Akbarpour et al. (2018),

Morris (2000), Sadler (2017).
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but also what information to provide to the targets taking into account what will leak

through the links. In so doing, this paper bridges the so far separate literatures on

information design and optimal seeding, thereby paving the way to a general theory of

optimal information targeting.

2 Model

This section introduces the model and then discusses its main assumptions. In short, a

third party called the “designer” (she) tries to influence the outcome of some game by

providing information to a subset of its players (he), whom she can reach with private,

direct, messages. These messages may then spread through social ties to the other players

before the game is played.

Primitives. There is a finite set of players N , where N is also the number of players.

There is a finite set of states Ω with typical element ω. Players have a common, full-

support, prior belief µ ∈ ∆(Ω). An information structure, denoted by (S, π), consists

of a finite and “sufficiently large” set of signals Si for each player i and a function

π : Ω→ ∆(S), where S = S1× · · · × SN .4 Without loss of generality, assume that for all

s ∈ S there exists ω ∈ Ω such that π(s|ω) > 0. We sometimes abuse notation by writing

π for the information structure (S, π). Let Π be the class of all information structures.

Information Spillovers. Players are organized in a commonly-known communication

network E, where E ⊆ N2 is the set of directed links between players. Specifically, if

(i, j) ∈ E, there is a link from i to j on which information can flow from i to j (but not

vice versa).5 Given E, player i’s neighborhood, denoted by Ni, consists of all players j

such that (j, i) ∈ E. A directed path from j to i is a sequence of players i1, . . . , im such

that i1 = j, im = i, and (ik, ik+1) ∈ E for all k = 1, . . . ,m− 1.

Information spillovers occur through the communication network as follows. For every

(S, π), as usual each player first observes privately his component of every realization

s ∈ S. This private information, however, can then spill over between neighbors in E.

More precisely, we adopt the following assumption.

Assumption 1 (Information Spillovers). If there exists a directed path from player j to

player i, then i learns j’s signal sj.

Under this assumption, spillovers are entirely governed by the network. As shown in

Section 5.1, Assumption 1 is consistent with a more explicit communication model where,

4Later, we will formally identify what “sufficiently large” means in our setting (see Lemma 1).
5As a convention, we assume that (i, i) ∈ E for every i.
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after receiving his private signal from π, each player announces truthfully his belief about

the vector (ω, s) to his neighbors over multiple rounds. For now, it is better to leave the

communication details in the background and focus on the consequences of information

spillovers. An immediate one is to transform any information structure π into a unique

structure π′. Denote this transformation with the function fE : Π → Π, where we add

the index E to emphasize the dependence on the network structure. To highlight the

difference between the initial information structure, π, and the final one, π′ = fE(π), we

denote signals from the former by s and signals from the latter by t.

Game and Equilibrium. After the communication phase, players play a game. Each

player i ∈ N has a finite set of actions Ai and a utility function ui : A× Ω → R, where

A = A1 × · · · × An. We denote the basic game—namely, the structure comprising only

the model primitives—with G = (Ω, (Ai, ui)
N
i=1, µ). This together with any information

structure π induces an incomplete-information game, (G, π). We focus on Bayes-Nash

equilibria (BNE). A (behavioral) strategy of player i in (G, π) is σi : Ti → ∆(Ai). A

profile σ is a BNE of (G, π) if for each i, ti ∈ Ti, and ai ∈ Ai with σi(ai|ti) > 0,

∑
a−i∈A−i,t−i∈T−i,ω∈Ω

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]σ(ai, a−i|ti, t−i)π(ti, t−i|ω)µ(ω) ≥ 0

for all a′i ∈ Ai, where σ(ai, a−i|ti, t−i) :=
∏N

j=1 σj(aj|tj). Let BNE(G, π) be the set of

BNE of (G, π).

Targeting Problem. The designer chooses the initial information to provide to the

subset of players she can reach, called the target set M ⊆ N .6 The designer is con-

strained by not being able to communicate privately and directly to the players outside

M . This is the only exogenous constraint on the designer. We can express this in terms

of information structures. We assume that she can costlessly commit to any π in the set

ΠM = {π ∈ Π : |Si| = 1 for i /∈M}.

The designer’s payoff function is v : A× Ω→ R. Her prior belief is also µ as for the

players. For every π ∈ Π, we define the value of π as

V (π) = max
σ∈BNE(G,π)

∑
a∈A,t∈T,ω∈Ω

v(a, ω)σ(a|t)π(t|ω)µ(ω).

The equilibrium selection in this definition is common to most of the information-design

literature (Bergemann and Morris (2018)). Given the information spillovers captured by

fE and the target set M , the value function of the designer’s problem is

V ∗E(M) = sup
π∈ΠM

V (fE(π)).

6We allow for the unconstrained problem, M = N , as a special case.
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In some settings, the designer may have the possibility of choosing the target set.

For instance, she may be constrained only in terms of the number m of players she can

target, but not their identity or location. That is, she can choose any M with m < N

members. In general, let M be some collection of feasible target sets. The optimal-

targeting problem consists in choosing M ∈ M to maximize V ∗E(M). Since there can

be only finitely many target sets, this problem reduces to comparing the finitely many

values V ∗E(M).

2.1 Discussion of the Model

A few comments on Assumption 1 are in order. Similarly to the literature on information

diffusion,7 in our model information flows between players mechanically and through an

exogenous network. The players communicate myopically and non-strategically, without

internalizing how communication may affect the play of the final game. This is clearly

restrictive, yet we view it as a useful starting point for several reasons. First, assuming

that information will flow whenever two players are linked lies at the polar opposite of

the standard and well-studied model of information design where information never flows

between players. This clean contrast helps better understand the qualitative implications

of information spillovers for the designer’s problem. A second reason is that, for the

case of an unconstrained designer who can target all agents, Assumption 1 identifies

a worst-case scenario: For a broad class of forms of communication between players—

strategic and not—the value of the designer’s problem is bounded below by V ∗E(N) (see

Section 5.1). Thus, our analysis takes a robustness connotation against the largest class

of information structures (i.e., ΠN = Π) and uncertainty on how information may spill

over due to strategic or technological considerations.

Another reason for Assumption 1 is that richer forms of communication are certainly

interesting, but also challenging conceptually and methodologically. For instance, in

a game of strategic communication on a network—followed by our final game—each

player can be both a sender and a receiver of information over multiple rounds. Also,

such games are likely to have multiple equilibria, including a babbling one. Such an

equilibrium renders the problem equivalent to the case of an empty network and so is

the best equilibrium from the designer’s viewpoint. Therefore, adopting the standard

selection of designer-preferred equilibrium leads to an uninteresting case. Identifying

other selection criteria that are appropriate for the settings considered here is beyond the

scope of this paper. Also, Bayesian updating on networks is known to be especially hard

7For example, see Akbarpour et al. (2018), Jackson and Storms (2018), and references therein.
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when it requires each player to indirectly infer others’ signals and avoid double-counting

them (see, for example, Mueller-Frank (2013) and Eyster and Rabin (2010)). Given

this, assuming myopic and non-strategic communication may be descriptively accurate

in some cases. For instance, the network complexity may render strategic thinking hard

for the players, or each may ultimately face a decision problem independent of others’

decisions.

The model allows for the possibility that not all information structures are available

to the designer. This adds a new kind of constraints to the information-design prob-

lem. Of course, different applications may call for different constraints on the available

information structures. A natural one in the context of the present paper—especially for

applications—is that the designer may be able to provide information only to a subset of

the players. For large social networks, assuming that a third party can directly communi-

cate with each player individually seems unrealistic. This may happen because reaching

each player involves some cost, or some players pay no attention to the designer (con-

sciously or not). The designer then has to choose which subset of players to target and

what information to provide them. Information spillovers add an interesting spin, since

targeted players become intermediaries that let the designer reach non-targeted players.

Thus, this paper adds a novel perspective on the old problem of optimal seeding, studied

extensively in sociology, economics, and computer science (see related literature).

3 The Scope for Manipulation

A necessary step to solving our targeting problem is to characterize the outcomes of the

game that the designer can induce with her initial information structure. These outcomes

are intended as joint distributions between the players’ actions and the state.

To proceed, we need some notation and terminology. Player j is called an information

source of player i if there is a directed path from j to i. In this case, i is called a follower

of j. Given E, we denote the set of i’s sources by Ei and the set of i’s followers by iE.8

Note that by convention i is a neighbor, source, and follower of himself. Given this,

Assumption 1 implies that, before having to choose an action, each player i learns the

signals of all his sources Ei. We will denote the vector of such signals by sEi . Thus,

given any initial information structure (S, π), the final information structure π′ = fE(π)

is defined by Ti = ×j∈EiSj and, for every ti = sEi , π
′(sEi |ω) =

∑
s−Ei

π(sEi , s−Ei |ω), for

8To remember this, think of Ei as the set of players who “come before” i in the network E—hence

his sources—and of iE as the set of players who “come after” i in the network E—hence his followers.
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every ω ∈ Ω, and every player i, where −Ei = N \ Ei.

We can now formalize the outcomes of the game induced by the designer. Recall that

each player acts on her signals by picking an action, possibly at random. Thus, we can

view each information structure as inducing, for every ω, a distribution over mixed-action

profiles. These profiles will then determine the actual final actions in a straightforward

way. Since by assumption each π has finite support, we can only consider finite-support

distributions. Denote typical elements of Ri = ∆(Ai) by αi and let R = ×i∈NRi.

Definition 1 (Outcome Function). An outcome function is a mapping x : Ω → ∆(R),

where x(·|ω) has finite support for every ω ∈ Ω.

Definition 2 (M -Feasible Outcome). An outcome function x is M -feasible for (G,E) if

there exists π ∈ ΠM and σ ∈ BNE(G, fE(π)) such that, for every ω ∈ Ω and α ∈ R,

x(α1, . . . , αN |ω) =
∑
s∈S

π(s|ω)
∏
i∈N

I{σi(sEi)) = αi}, (1)

where I{·} is the indicator function. Let XM(G,E) be the set of M -feasible outcome

functions for (G,E).

We denote the overall support of x by x = {α ∈ R : x(α|ω) > 0, for some ω ∈ Ω}.
Also, for every subset of players N ′ ⊂ N , let xN ′ represent the projection of x on the

components in N ′, that is, xN ′ = {α ∈ RN ′ : (α, α′) ∈ x, for some α′ ∈ R−N ′}.

3.1 From Constrained to Unconstrained Seeding

The communication constraints imposed by the target set give rise to specific challenges

for characterizing the feasible outcomes. By removing the ability to communicate directly

and privately to each player, they render invalid the logic behind standard revelation-

principle arguments which shows that feasible outcomes can be characterized in terms

of action recommendations to the players. To overcome these challenges, we will show

that our constrained-design problem is equivalent to another problem for which that

characterization is valid. In this auxiliary problem, the designer can target all players

(i.e., M = N), but faces a specific, richer, network directly derived from the original E.

To see the issue, consider the following case. There are three players. Player 1 and 2

are sources of player 3: E1 = {1}, E2 = {2}, and E3 = {1, 2, 3}. Suppose M = {1, 2}.
Given this, player 3’s behavior is influenced only indirectly by his joint observation of

player 1’s and 2’s signals through the network. Thus, it is possible that a3 depends on

(s1, s2) in such a way that neither s1 nor s2 alone is sufficient to pin a3 down. This
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implies that neither player 1 nor player 2 can perfectly predict player 3’s behavior. This

uncertainty on the part of player 1 and 2 may be essential to sustain specific outcomes.

If so, such outcomes cannot be sustained if the designer is restricted to communicating

in a language that explicitly recommends how the players should play the game. This

requires to reveal to either player 1 or 2 the behavior of player 3.

The challenge arises because targeted players serve as information intermediaries for

the designer to reach non-targeted players. Thus, we can view the signal to a targeted

player i as having two roles: It conveys to i the behavior the designer recommends him to

play; it also conveys to i’s followers part of the behavior the designer recommends them

to play. She may distribute these parts among multiple sources of a non-targeted player,

so that none of their signals can be reduced to equal the recommendation for that player.

This ability to communicate with a non-targeted player through multiple sources

is also the key to solving the problem. Intuitively, suppose a non-targeted player has

at least two sources who are not each other’s source—we shall call them independent

sources. Then, it may be possible to design signals for such sources so that together they

allow their follower to learn the information sent by the designer, yet each signal alone

reveals nothing about that information. Such “encrypted” information essentially allows

the designer to restore a direct and private communication with non-targeted players.

Therefore, it is as if these players are also in the target set.

This allows us to expand the target set in an auxiliary problem. The remaining

hurdle is to identify which players can be reached with encrypted information. The rest

of the players will essentially share all the information of some targeted player. We can

therefore also add them to the target set, provided that we add to the network a path

connecting each of them to the targeted player with whom they share all the information.

The next definition formalizes these ideas.

Definition 3 (M -Expansion). Given E, its M -expansion EM is defined as the network

such that, for all i, j ∈ N , (i, j) ∈ EM if Ei ∩M ⊆ Ej.
9

Thus, EM is always richer than the original network E and can be easily derived from it.

The second condition in the definition covers several cases. First, suppose that i ∈ M ,

j /∈M , and Ej = {i, j}. In this case, j knows i’s information because i is j’s only source.

At the same time, i knows j’s information because j never receives information other

than through i. Therefore, they commonly know each other’s information, which we can

capture in the auxiliary problem by adding a link backwards from j to i. Second, suppose

that i, j /∈M , i /∈ Ej, j /∈ Ei, and Ei ∩M = Ej ∩M = {k, k′}. In this case, both i and j

9Note that if (i, j) ∈ E, then Ei ∩M ⊆ Ej . Therefore, E ⊆ EM .
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receive information only through the same targeted players k and k′. Therefore, again i

and j know each other’s information; we can capture this by adding a link between them

in both directions. However, both i and j may learn information that neither k nor

k′ learn, because these sources are independent (i.e., k′ /∈ Ek and k /∈ Ek′) and that

information is appropriately encrypted. Intuitively, this can be done by sending to k a

signal containing an encoded message and to k′ the key to decode it.

Before stating the main result of this section, we need to introduce a minor assump-

tion. It is clear that if a non-targeted player has no source in the target set, it is impossible

for the designer to reach this player. This case seems uninteresting and trivial to analyze.

For this reason, we assume the following.

Assumption 2 (Reach). Given E, each possible M satisfies Ei ∩M 6= ∅ for all i.

Under this assumption, we obtain the following result.

Theorem 1 (Unconstrained Equivalence). XM(G,E) = XN(G,EM) for all (G,E).

Thus, by appropriately enriching the information spillovers, we can turn constrained

problems into unconstrained problems where the designer can target all players. This

result is crucial for reasons that will become clear in the next section. In proving this

result (Lemma 6), we exploit a connection with the cryptography literature, from which

we borrow a technique known as the secret sharing method. Secret sharing refers to the

problem of distributing a “secret” among a group of m players, each of whom is allocated

a “share” of the secret. The distribution is so that players learn the secret only if all m

players pool their shares. If one or more shares are missing, nothing is learned about the

secret. Thanks to this technique, the designer can exploit information intermediaries to

privately communicate with agents even if they are not in M .

The intuition for the Theorem 1 is as follows. First, one can show that the M -

expansion of a network does not change the targeted sources of every player. It follows

that the M -expansion does not change the constraints imposed by information spillovers

and so the set of M -feasible outcomes. The next step is the key. Suppose a non-targeted

player i has independent sources in the expanded network. Then—as described before—

it is possible to send encrypted information to i using only the flexibility allowed by the

information structures constrained to targeting M . The consequence is that it is as if i

can also be targeted by the designer. If a non-targeted player does not have independent

sources in the expanded network, he must have a bi-directional path to either a player

who has independent sources or to a targeted player. Either way, adding also this player

to the target set does not allow the designer to send him information he would not already
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get otherwise. Repeating this argument, one can expand the set of players who can be

targeted from M to the entire N .

3.2 Unconstrained Seeding and Robust Obedience

Motivated by Theorem 1, we now consider the problem of characterizing the feasible out-

comes for an unconstrained designer who can target all players. That is, we want to char-

acterize XN(G,E) for every basic game G and network E. Once the focus becomes the

unconstrained problem, we can follow the tradition of the literature on direct mechanisms

(in particular, Bergemann and Morris (2016)) and recast the problem as if the designer

directly recommends to each player how to play in G. In general, this can be a pure or

a mixed action. To state the following key definition, we extend each player i’s utility

function to mixed actions in the usual way, abusing notation to write ui(αi, α−i, ω).10

Definition 4 (Robust Obedience). The outcome function x is spillover-robust obedient

for (G,E) if, for each i = 1, . . . , N and αEi ∈ xEi ,∑
ω∈Ω

α−Ei∈x−Ei

[ui(αi, α−i;ω)− ui(ai, α−i;ω)]x(αi, α−i|ω)µ(ω) ≥ 0, ai ∈ Ai.11

To interpret this definition, imagine to divide both sides of the inequality by the total

probability that the profile of recommendations αEi arises under x and µ. The left-

hand side becomes the difference between player i’s expected utilities from action αi and

from ai, both conditional on learning the realization of αj for himself and his sources

under x. This realization may convey information about the α of the remaining players

as well as the state. Thus, the definition says that, conditional on all this information,

player i prefers to follow his recommendation to any other action.

We can now state our second main result. If the designer’s recommendations are

spillover-robust obedient (in short, robust obedient), no player will have an incentive to

deviate from his, irrespective of the information spillovers occurring after all recommen-

dations are released. Thus, robust obedience characterizes all outcomes the designer can

implement—by directly recommending his behavior to each player—taking into account

how information spillovers influence incentives.

10That is, ui(αi, α−i, ω) is the expected payoff for player i in state ω, where the expectation is taken

with respect to the distribution over action profiles given by (αi, α−i).
11Throughout the paper, we abuse the notation

∑
and write,

∑
ω,αN′ ui(αi, α−i;ω)x(αi, α−i|ω)µ(ω)

in place of
∑
ω∈Ω,αN′∈xN′ ui(αi, α−i;ω)x(αi, α−i|ω)µ(ω) for any N ′ ⊂ N .

13



Theorem 2 (Unconstrained Feasibility). The outcome function x is N-feasible for (G,E)

(i.e., x ∈ XN(G,E)) if and only if it is robust obedient for (G,E).

The intuition is simple. Suppose π and a BNE σ induce x. Note that by learning the

signals of his sources through the network, player i also learns the signals of his sources’

sources. Knowing σ (by the equilibrium assumption), player i can then predict the mixed

behavior of all his sources. By definition, in equilibrium he must best respond to this

behavior, as well as to his belief about all other players’ behavior and the state. But this

is robust obedience. Conversely, suppose x is robust obedient. First, we can interpret x

itself as an information structure. By robust obedience, it is a BNE of (G, fE(x)) for each

player to follow his recommendation, given what he learns through information spillovers

and that the others follow their recommendations.

The novelty of our result is that, to account for information spillovers, recommen-

dations have to be robust to communication between players as described by obedience.

Thus, robust obedience captures the basic economic trade-off caused by information

spillovers: As usual, the designer tries to directly influence the beliefs of each player,

but now she also has to worry that her message for one player may alter his followers’

beliefs. To see this, suppose there are two players, who are unconnected (i.e., N = 2 and

E = {(1, 1), (2, 2)}). Then, the designer can span the entire spectrum from conveying

directly to each player what the other will do, to keeping each player in the total dark

about his opponent’s behavior. Keeping player i uncertain about j’s behavior can help

relax i’s incentives to choose specific actions. Now add to E a link from player 1 to

player 2 (but not vice versa), so that the follower 2 will always learn the recommendation

to his source 1. The entire spectrum mentioned before continues to be feasible with re-

gard to player 1. With regard to player 2, instead, while before the designer could keep 2

uncertain about 1’s action as much as allowed by its dependence on her recommendation

to 2 himself and the state, now she can do so only for 1’s behavior whose randomness is

independent of both 2’s recommendation and the state.

In short, robust obedience highlights that information spillovers remove the designer’s

ability to keep the followers of a player uncertain about his behavior when and only

when she desires to link this behavior to the state or the behavior of others. While it

remains possible to implement uncorrelated outcomes that are independent of the state,

it becomes harder to implement outcomes that require some dependence on the state as

well as mutual uncertainty among players.

Different target sets and communication networks entail different restrictions on

reaching the players and patterns of information spillovers. However complex and rich
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these may be, by Theorem 1 and 2 we can always express the actual constraints imposed

on the designer in terms of linear inequalities. This is operationally useful for two reasons,

which will be developed later. First, it opens the door to tackling the designer’s problem

using powerful linear-programming methods—this is known for standard information de-

sign (Bergemann and Morris (2016)), but is a priori not obvious with target restrictions

and information spillovers. Second, Theorem 2 uncovers the underlying structure of the

designer’s problem, so that we can study how the set of feasible outcomes varies across

networks (see below).

Considering two extreme, though important, cases helps us further illustrate The-

orem 2. First, suppose the communication network is empty (more precisely, E =

{(i, i)}i∈N). As one may expect, this reduces our model to that in Bergemann and

Morris (2016). Since information spillovers are shut down, private signals never flow

from one player to another. Thus, the designer does not have to worry about the effects

that information conveyed to some player may directly have on others. The condition in

Definition 4 simplifies to, for all i and αi ∈ xi,∑
ω∈Ω

α−i∈x−i

[ui(αi, α−i, ω)− ui(ai, α−i, ω)]x(αi, α−i|ω)µ(ω) ≥ 0, ai ∈ Ai.

This condition is equivalent to the notion of obedience introduced by Bergemann and

Morris (2016), which characterizes Bayes Correlated Equilibria (BCE). Indeed, the in-

equality can be written as∑
ω∈Ω

α−i∈x−i

{∑
a∈A

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]
∏
j∈N

αj(aj)
}
x(αi, α−i|ω)µ(ω) ≥ 0, a′i ∈ Ai.

If for every a ∈ A we define x′(a|ω) =
∑

α−i∈x−i

∏
j∈N αj(aj)x(αi, α−i|ω), we can express

the latter condition as, for all i and ai ∈ Ai,∑
ω∈Ω,a∈A

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]x′(ai, a−i|ω)µ(ω) ≥ 0, a′i ∈ Ai.12

The other extreme case is the complete network (i.e., E = N2). Now each player is a

source for every other player (i.e., Ei = N for all i). Thus, it is as if, after receiving his

private signal, each player announces it publicly to everybody else. In terms of (obedient)

recommendations, this means that each player i learns the profile α−i everybody else is

playing. This reduces the obedience condition to∑
ω∈Ω

[ui(αi, α−i, ω)− ui(ai, α−i, ω)]x(αi, α−i|ω)µ(ω) ≥ 0, ai ∈ Ai,

12Some reader may recall that in Bergemann and Morris (2016) the designer recommends only pure

actions, not mixed actions. This restriction is without loss of generality in their setting, but not in ours.

When information spillovers are possible, in fact, the revelation principle needs to be slightly adapted

to become useful. We will return to this point in Section 5.
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for all i and (αi, α−i) ∈ x. From this perspective, obedient outcome functions for complete

networks can be viewed as public information structures, namely, as structures that allow

each player to perfectly predict all the others’ signals just from his private signal.

The constraints defining obedience can also be viewed as a combination of ex-ante

and ex-post requirements, based on what each player knows upon taking his action. To

see this, we can express all constraints in ex-ante form, but taking into account the

information on which players can act. That is, obedience is equivalent to requiring that,

for every i and δi : REi → Ai,∑
ω∈Ω
α∈x

[ui(αi, α−i;ω)− ui(δi(αEi), α−i;ω)]x(αi, α−i|ω)µ(ω) ≥ 0, (2)

This formulation highlights that, due to information spillovers, players can base their

deviations on richer information sets. In the extreme cases discussed above, for empty

networks δi can depend only on player i’s recommendation αi; for complete networks δi

can depend on the recommendations to everybody. These observations hint at a later

result showing that when the communication network becomes richer (in a sense to be

defined below), it shrinks the set of feasible outcomes, as it enlarges the set of possible

deviations for each player.

Importantly, in our setting the players’ richer information sets are statistically and

physically interdependent from the designer’s viewpoint. The private signal of one player

eventually enters the information set of other players. Therefore, the designer has to take

into account the direct effect of the same signal on multiple players, whose preferences can

be very different. This is on top of the usual information that a private signal may convey

about other players’ signals and hence behavior, through its statistical dependence on

those signals and the state. While the designer fully controls the latter—as in Bergemann

and Morris (2016)—here she has no control on whether one player’s private signal enters

his followers’ information sets. A consequence of this is that we have to allow the designer

to recommend mixed actions. While Section 5 will clarify why, this grants the designer the

possibility to keep i’s followers uncertain about i’s behavior at least by incentivizing i

to randomize. However, such randomizations are by definition independent of others’

randomizations and the state.

3.3 Network Depth and Information Aggregation

This section uses Theorem 2 to investigate how the set of feasible outcomes changes with

the communication network. To this end, we introduce the following order on networks.
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Definition 5. The communication network E is deeper than the communication net-

work E ′ if, for all i ∈ N , i’s followers in E ′ are also followers in E (i.e., iE
′ ⊆ iE).

This notion is more subtle than simply saying that E has “more links” than E ′. In fact,

this weaker order cannot rank communication networks in terms of how they affect the

set of feasible outcomes, as the next proposition shows.

Proposition 1. XN(G,E) ⊆ XN(G,E ′) for all G if and only if E deeper than E ′.

Intuitively, a deeper communication network constrains more the designer’s ability to

prevent “local” information from spreading “globally” in the network. While the designer

can always replicate information spillovers by essentially telling each player what he

may learn from his sources, she cannot undo spillovers that start from a more localized

information provision. This asymmetry determines the set inclusion in Proposition 1.

More broadly, this result demonstrates that the two extreme cases of empty and complete

networks are also extreme with respect to the set of feasible outcomes. The complete

network is clearly deeper than any other network, which is in turn deeper than the empty

network. Thus, the constraints imposed by information spillovers are maximal in one case

and minimal in the other (i.e., XN(G,N2) ⊆ XN(G,E) ⊆ XN(G,∅)). The following is

an immediate implication of Proposition 1.

Corollary 1. If E is deeper than E ′, then the designer is weakly worse off under E than

under E ′ (i.e., V ∗E(N) ≤ V ∗E′(N)).

Proposition 1 also sheds light on how to measure the informational influence of a

player. It shows that counting the number of his direct neighbors would not provide

a satisfactory measure of influence. This measure should instead take into account the

global informational impact that a player has in the communication network: This in-

cludes not only his neighbors, but also all players who indirectly follow him. While this

influence measure may seem demanding and—perhaps—difficult to compute in large net-

work, the “only if” part of our result shows that it is the right measure to use in order

to understand how information spillovers per se constrain the designer.

To appreciate the subtle aspects of our depth order, note that if E is more con-

nected than E ′ in the sense that E ′ ⊆ E—namely, E contains all the same links as

does E ′ and possibly more—then E is also deeper than E ′. The converse is not true,

however. For example, suppose that N = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 3)}, and

E ′ = {(1, 2), (2, 3), (4, 2)}. Then, neither network is contained in the other, yet E ′ is

deeper than E. Despite this, the difference is immaterial for our purposes.
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Remark 1. Suppose E is deeper than E ′. Let Ê = E ∪ E ′. Then, iE = iÊ for all i.13

Therefore, if E is deeper than E ′, we can without loss of generality assume that E ′ ⊆ E.

By determining how local spillovers become global phenomena, the depth of a network

also controls its capacity to aggregate information at the social level. This connection

between depth and information aggregation can be formalized as follows. Recall that

spillovers through the network E transform every initial information structure π into a

final information structure fE(π). Different networks may transform the same initial π

into different information structures, which one may try to order by how informative

they are for the players. To this end, we will say that π ∈ Π is more informative than

π′ ∈ Π for player i if the set of joint distributions between his action ai and the state ω

that i can achieve under π′ is a subset of that under π. Formally, define ∆π(Ω× Ai) as

the set of joint distributions, denoted by y, such that

y(ω, ai) =
∑
ti,t−i

γ(ai|ti)π(ti, t−i|ω)µ(ω), (ω, ai) ∈ Ω× Ai,

for some function γ : Ti → ∆(Ai). Given this, π is more informative than π′ for player i

if ∆π′(Ω× Ai) ⊆ ∆π(Ω× Ai).

Definition 6 (Information Aggregation). E aggregates more information than does E ′

if, for all π ∈ Π, fE(π) is more informative than fE′(π) for every players.

Proposition 2. Fix N . E is deeper than E ′ if and only if E aggregates more information

than E ′.

Propositions 1 and 2 can be directly applied to unconstrained design problems, but

they are also useful for constrained problems by Theorem 1. Consider two constrained

problems with networks E and Ê and the same target set M . If E
M

is deeper than

ÊM , then XM(G,E) ⊆ XM(G, Ê) as well as V ∗
E

(M) ≤ V ∗
Ê

(M). Given this, it would be

useful to know what properties of E and Ê determine that E
M

is deeper than ÊM . It

is not enough that E is deeper than Ê. To see this, suppose there are three players,

N = {1, 2, 3}, and M = {1, 2}. Let E = {(1, 3)} and Ê = {(1, 3), (2, 3)}. Clearly, Ê

is deeper than E. In this case, ÊM = {(1, 3), (3, 1)} and E
M

= E, so neither is deeper

than the other. The next result identifies the precise condition under which ranking of

the original networks coincides with the same ranking of their M -expansions.

13The argument is simple. Clearly, iE ⊆ iÊ. Now, consider arbitrary i and j such that (i, j) ∈ E′, but

(i, j) /∈ E. By construction, j ∈ iÊ. Because E is deeper than E′, j ∈ iE
′ ⊆ iE. Since j was arbitrary,

iE ⊇ iÊ.
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Proposition 3. Suppose E is deeper than Ê. Then, EM is deeper than ÊM if and only

if for all i /∈M and i /∈ Ej the following holds:

Êi ∩M ⊆ Êj ⇒ Ei ∩M ⊆ Ej.

The intuition is as follows. Suppose i is not a targeted player. If in Ê all targeted sources

of player i are also targeted sources of player j, then j knows i’s information. This should

be true also in EM for it to be deeper. So, in E, either i is already a source of j, or all

targeted sources of i must again be targeted sources of j.14

Another interesting comparative statics is in terms of the target set. Using Theorem 1

and Proposition 1, we immediately obtain the following.

Corollary 2. Fix E and consider arbitrary target sets M and M ′ that satisfy Assump-

tion 2. Then, XM(G,E) ⊆ XM ′(G,E) if and only if EM is deeper than EM ′.

That is, M constrains the designer more than does M ′ if and only if M leads to a deeper

network expansion than M ′. For instance, if M ⊆ M ′, we certainly have XM(G,E) ⊆
XM ′(G,E). Proposition 1 helps us understand how having a smaller target set constrains

the designer more. The smaller set forces the designer to rely more on information

intermediation—and hence information spillovers—to influence the players she cannot

target. This, in turn, tightens the obedience constraints and hence reduces the feasible

outcomes. More interestingly, even if M and M ′ are neither a subset of the other,

Proposition 1 still implies that M constrains the designer more than does M ′ if and only

if their network expansions can be ranked in terms of depth. The next result allows us

to predict this ranking from the primitives of the problem, similarly to Proposition 3.

Proposition 4. Fix E and consider arbitrary target sets M and M ′ that satisfy Assump-

tion 2. Then, EM is deeper than EM ′ if and only if for all i /∈ Ej
Ei ∩M ′ ⊆ Ej ⇒ Ei ∩M ⊆ Ej.

The intuition is similar to that for Proposition 3.

4 Optimal Manipulation

4.1 A Dual Approach

We start by formulating the designer’s problem given G and EM = E as a linear program.

We follow here the dual approach in Galperti and Perego (2018) for information-design

14Based on Remark 1, we can consider the following analog of Proposition 3: If Ê ⊆ E, then ÊM ⊆ EM

if and only if Êi ∩M ⊆ Êj implies Ei ∩M ⊆ Ej for all (i, j) /∈ E.
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problems without spillovers and target restrictions, adapting it accordingly. Given the

prior µ and any outcome function x, define the joint distribution over mixed-action

profiles and states that they induce:

χ(α, ω) = x(α|ω)µ(ω), α ∈ R,ω ∈ Ω.

Since by assumption x(·|ω) has finite support for every ω, so does χ overall. The problem

is then to choose a finite-support χ that solves

V ∗E(N) = sup
χ

∑
ω,α

v(α, ω)χ(α, ω)

subject to three sets of constraints:

• Obedience: for every i ∈ N and αEi ∈ suppχEi ,∑
ω,α−Ei

[ui(αi, α−i, ω)− ui(ai, α−i, ω)]χ(αi, α−i, ω) ≥ 0, ai ∈ Ai; (3)

• Prior consistency : for every ω ∈ Ω,∑
α

χ(α, ω) = µ(ω); (4)

• Positivity : for every α and ω,
χ(α, ω) ≥ 0.

Denote this primal problem by P . Note that there exist χ’s that satisfies the constraints

of P . This is because there exists at least one BNE following a completely uninformative

information structure, and its equivalent representation in terms of recommendations has

to satisfy all the constraints of P .

Compared to standard information design, P raises some complications. In the stan-

dard problem it is without loss of generality to focus on pure-action recommendations.

Consequently, the dimension of χ and the resulting set of constraints is exogenously

determined: χ ∈ RA×Ω. By contrast, in our case we have to allow for mixed-action

recommendations. Thus, even if we know that the support of χ has finitely many slots,

there are infinitely many ways to fill each with mixed recommendations. For these rea-

sons, it helps to express obedience in the following equivalent form: For every i ∈ N ,

αEi ∈ suppχEi , and ai, a
′
i ∈ Ai,∑

ω,α−Ei

[ui(ai, α−i, ω)− ui(a′i, α−i, ω)]αi(ai)χ(αi, α−i, ω) ≥ 0.15 (5)

15The term αi(ai) inside the brackets of (5) is superfluous when strictly positive, but its is a simple

way to handle the case of αi(ai) = 0 so that we can write a condition that always involves all ai’s.
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This form highlights that for each player obedience ultimately involves the primitive pure

actions. For a player to be willing to implement a specific mixed action, he must first

deem all pure actions in its support optimal given his information. If this holds, he

will be willing to implement any mixed action with that support (or a subset thereof).

Expression (5) also highlights that αEi is really only an information set. Therefore,

player i has to be willing to play ai whenever called upon doing it—as in Bergemann and

Morris (2016)—except that now this has to be the case conditional on also knowing αj

for j ∈ Ei. Thus, there is not a single obedience constraint for each ai, but potentially

multiple depending on this conditioning event.

Leveraging expression (5), we can show that it is without loss of generality to impose

a finite, exogenous, upper bound on the dimension of χ.

Lemma 1. Suppose x ∈ XN(G,E). There exists x′ ∈ XN(G,E) such that |x′i| ≤ |2Ai|
for every i and x′ induces the same joint distribution over A× Ω as does x:∑

α′∈x′
α′(a)x′(α′|ω)µ(ω) =

∑
α∈x

α(a)x(α|ω)µ(ω), a ∈ A, ω ∈ Ω.

This lemma has two implications. On the one hand, it is without loss of generality to

restrict attention to the subset of Π which contains only information structures with

the property that |Si| ≤ |2Ai | for all i.16 On the other hand, for analytical convenience

we can allow for outcome functions with unbounded supports, knowing that this does

not fictitiously inflate the designer’s payoff (which ultimately depends on the induced

distribution over A× Ω).

Despite the possibility of bounding the support of outcome functions, the elements of

the support are profiles of mixed actions, which form an uncountable space. Therefore,

extistance of a solution remains a non-trivial matter.

Proposition 5 (Existence). There exists χ such that∑
ω,α

v(α, ω)χ(α, ω) = V ∗E(N).

Given this, we can proceed to characterize the solutions of our problem.

As shown in Galperti and Perego (2018), it is instructive to consider the dual of

information-design problems. This is especially true for the richer problems considered

here. For reasons that will become clear shortly, consider any finite grid of action profiles

16It is worth noting the difference from standard information-design problem a lá Bergemann and

Morris (2016) where it is without loss of generality to restrict attention to information structure with

the property that |Si| ≤ |Ai|.
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Rk ⊂ R (where k = |Rk|). Let P(Rk) be the primal problem restricted to outcome

functions whose support must be contained in Rk. To state its dual, denoted by P∗(Rk),

define two sets of variables. The first contains the dual variables for the obedience

constraints and are denoted by λ. That is, λ(ai, a
′
i|αEi) corresponds to the obedience

constraint for player i when he is recommended to play αi in the profile αEi and he

contemplates deviating from ai to a′i. The second set contains the dual variables for

the prior-consistency condition and are denoted by p. That is, p(ω) corresponds to the

condition
∑

α χ(α, ω) = µ(ω). The proof of the next lemma follows similar arguments as

in Galperti and Perego (2018) and is therefore omitted.

Lemma 2. Fix a grid Rk. The dual information-design problem P∗(Rk) consists of

choosing p ∈ RΩ and λi(ai, a
′
i|αEi) for every ai, a

′
i ∈ Ai, α ∈ Rk, and i ∈ N so as to

minimize ∑
ω∈Ω

p(ω)µ(ω),

subject to, for all i ∈ N , α ∈ Rk, and ai, a
′
i ∈ Ai

λi(ai, a
′
i|αEi) ≥ 0,

and for all (α, ω) ∈ Rk × Ω

p(ω) ≥
∑
a∈A

v(a, ω) +
N∑
i=1

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i|αEi)

α(a). (6)

As well known, the solutions to P(Rk) and P∗(Rk) are related to each other by

complementary slackness conditions, which follow:

CS1. For all i ∈ N , α ∈ Rk, and ai, a
′
i ∈ Ai,

λi(ai, a
′
i|αEi)

 ∑
ω,α−Ei

[ui(ai, α−i, ω)− ui(a′i, α−i, ω)]αi(ai)χ(α, ω)

 = 0;

CS2. For all ω ∈ Ω,

p(ω)

{∑
α

χ(α, ω)− µ(ω)

}
= 0;

CS3. For all (α, ω) ∈ Rk × Ω,

χ(α, ω)

p(ω)−
∑
a∈A

v(a, ω) +
N∑
i=1

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i|αEi)

α(a)

 = 0.
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Of course, the challenge is that a priori we do not know which grid of action profiles

allows us to solve either the primal or the dual. However, we can at least partially

alleviate this issue using the dual and the complementary slackness conditions. Recall

that if P has a solution, then so does its dual. In particular, as shown in the proof of

Proposition 5, there exists an optimal Rk that leads to an overall optimal solution χRk
of P and an overall optimal solution (pRk , λRk) of its dual P∗. By Strong Duality, the

value of the two problems must be the same. More importantly, by Weak Duality for

every χRk that satify the constraints of P and (pRk , λRk) that satisfies the constraints of

P∗, we have ∑
ω∈Ω

pRk(ω)µ(ω) ≥
∑
ω∈Ω,α

v(α, ω)χRk(α, ω).

By Lemma 1 and Proposition 5, there exists a finite k such that the largest value of the

right-hand side of this inequality equals V ∗E(N) for all k ≥ k and so∑
ω∈Ω

pRk(ω)µ(ω) ≥ V ∗E(N),

with equality for some feasible (pRk , λRk). Importantly, this does not change if we let k

grow without bounds. Note that, in terms of the dual this does not change its objective,

as the state space remains fixed.

Thus, the complexity of identifying the grid is removed, as we can now study the

following relaxed dual to find V ∗E(N), which allows for all action profiles. The relaxed

dual information-design problem P∗ consists of choosing p ∈ RΩ and λi(ai, a
′
i|αEi) for

every ai, a
′
i ∈ Ai, α ∈ R, and i ∈ N so as to minimize∑

ω∈Ω

p(ω)µ(ω),

subject to, for all i ∈ N , α ∈ R, and ai, a
′
i ∈ Ai

λi(ai, a
′
i|αEi) ≥ 0,

and for all (α, ω) ∈ R× Ω

p(ω) ≥
∑
a∈A

v(a, ω) +
N∑
i=1

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i|αEi)

α(a). (7)

Finally, consider condition (CS3) for the relaxed problem: For all (α, ω) ∈ R× Ω,

χ(α, ω)

p(ω)−
∑
a∈A

v(a, ω) +
N∑
i=1

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i|αEi)

α(a)

 = 0.

It is easy to see that, for every α, χ(α, ω) can be positive only if it is possible to find λ’s

that render the term multiplying χ(α, ω) equal to zero. Otherwise, χ(α, ω) = 0. Also,
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note that equation (7) can impose a lower bound on p(ω). For instance, one can easily

see that if the set of pure-strategy Nash equilibria of the game identified by ω (denoted

by NE(Gω)) is not empty, then

p(ω) ≥ max
a∈NE(Gω)

v(a, ω).

These steps can help us identify the support of an optimal χ.17

In the companion paper Galperti and Perego (2018), we offer an economic interpreta-

tion of the dual that can be easily extended to the present contexts. This interpretation

offers insights into the trade-offs of designing information structures for games. One im-

portant difference introduced by information spillovers involves CS1. It states that the

designer can set λi(ai, a
′
i|αEi) > 0 only if, given the information conveyed by αEi , player i

is indifferent between ai and a′i. Setting λi(ai, a
′
i|αEi) > 0 may help the designer relax (7)

so as to achieve a lower dual objective. Thus, CS1 conveys a general principle on how to

optimally design information, as already noted in Galperti and Perego (2018). Clearly,

the stronger the information spillovers are, the harder it is to satisfy this indifference

condition. So, CS1 emerges as the condition where we can see how information spillovers

complicate the problem of designing an optimal information structure.

In Galperti and Perego (2018), we also derive some general properties of optimal

solutions that can be easily translated to the problem with target restrictions and infor-

maiton spillovers through its dual. We also provide a necessary condition for the solution

to take the form of full information about the state as well as the action of everybody.

Since such information structure is public, information spillovers become irrelevant and

the condition applies directly to the present settings.

In general, we view duality not as a substitute of the primal approach, rather as a

complement. The analyst should combine primal, dual, complementary slackness condi-

tions, and Strong Duality to enhance the understanding of information-design problems.

We now illustrate these methods with an example.

4.2 An Illustrative Example: Investment Games

This example is borrowed from Bergemann and Morris (2018). Its goal is to illustrate

the dual approach to the information-design problems considered in the present paper.

17Another possible solution strategy is to conjecture that the optimal χ never recommends mixed

actions to any player. One can solve the dual under this conjecture, use the CS conditions to derive χ,

and then check whether the value of the primal and the dual coincide. If so, Strong Duality implies that

we have a solution. Otherwise, the solution must rely on mixed-action recommendations. The example

below illustrates this.
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The basic game is as follows. Two firms have to choose whether to invest (y) in a

project or not (n): Ai = {y, n} for i ∈ N . The project can be either good or bad:

Ω = {g, b}. Firm i’s payoffs ui(a1, a2, ω) are described in Table 1. The designer (the

“government”) wants to foster investment, irrespective of the quality of the project:

v(a1, a2) = I{a1 = y}+ I{a2 = y},

where I{·} is the indicator function.

Firm 2

y n

Firm 1
y ε− 1, ε− 1 − 1, 0

n 0,−1 0, 0

ω = b

Firm 2

y n

Firm 1
y ε+ q, ε+ q q, 0

n 0, q 0, 0

ω = g

Table 1: Firms’ payoffs in G

The prior satisfies µ(g) = µ(b) = 1
2

and 0 < q < 1. Thus, without additional information

neither firm wants to invest. If ε > 0, the game features strategic complementarities;

if ε < 0, the game features strategic substitutabilities. Finally, ε is small so that y is

dominant in state g and n is dominant in state b: |ε| ≤ q − 1
2
.

Bergemann and Morris (2018) derived the optimal information structure when there

are no information spillovers (see also Galperti and Perego (2018) for a derivation using

duality). Table 2 presents the optimal x for the case of ε > 0, which features public

information. Intuitively, this is because with strategic complementarities each firm is

more willing to invest when recommended y knowing that, if the state is b, also the other

firm will invest, which reduces the loss of the bad decision. This higher willingness to

invest allows the designer to pool more the unfavorable state b with the favorable g in the

recommendation y, thereby increasing the overall chances of investment. Table 3 presents

the optimal x for the case of ε < 0, which features private information. Intuitively, this is

because with strategic substitutabilities instead each firm is more willing to invest when

recommended y knowing that, if the state is b, the other firm will not invest.

Now, suppose that there are information spillovers and the designer is unrestricted in

terms of the firms she can target. To consider an interesting case, suppose that E has a

link from firm 1 to firm 2 (but not vice versa): E1 = {1} and E2 = {1, 2}. It is immediate

to see that the x in Table 2 remains optimal in the case of strategic complementarities.

This is because public information is not affected by information spillovers. Therefore,
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Firm 2

y n

Firm 1
y q+ε

1−ε 0

n 0 1− q+ε
1−ε

x(a1, a2|ω = b)

Firm 2

y n

Firm 1
y 1 0

n 0 0

x(a1, a2|ω = g)

Table 2: Optimal x for strategic complements (i.e., ε > 0)

Firm 2

y n

Firm 1
y 0 q + ε

n q + ε 1− 2q − 2ε

x(a1, a2|ω = b)

Firm 2

y n

Firm 1
y 1 0

n 0 0

x(a1, a2|ω = g)

Table 3: Optimal x for strategic substitutes (i.e., ε < 0)

it remains feasible and optimal. By contrast, x in Table 3 is no longer feasible. When x

produces the recommendations (n, y) in state b, firm 2 learns that firm 1 is recommended

not to invest and so that the state must be b. Consequently, it is no longer obedient for

firm 2 to follow the recommendation to invest.

We can solve for the new optimal x for the latter case using our duality approach. For

simplicity, we conjecture that it is enough to consider only pure-action recommendations:

(y, y), (y, n), (n, y), and (n, n). We will derive a candidate solution under this conjecture

and then use Strong Duality to prove its optimality.

We start by calculating the right-hand side of the dual constraint (7). Let λ be the

vector of all dual variables of the form λ1(a1, a
′
1|a1) and λ2(a2, a2|a) for all a ∈ A. Also,

for every a, ω, and λ, define

w(a, ω, λ) = v(a) + [u1(a1, a2, ω)− u1(a′1, a2, ω)]λ1(a1, a
′
1|a1)

+[u2(a1, a2, ω)− u2(a1, a
′
2, ω)]λ2(a2, a

′
2|a).
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We have

w(a, g, λ) =



2 + [q + ε]λ1(y, n|y) + [q + ε]λ2(y, n|y, y) if a = (y, y)

1 + qλ1(y, n|y)− [q + ε]λ2(n, y|y, n) if a = (y, n)

1− [q + ε]λ1(n, y|n) + qλ2(y, n|n, y) if a = (n, y)

−qλ1(n, y|n)− qλ2(n, y|n, n) if a = (n, n),

w(a, b, λ) =



2− [1− ε]λ1(y, n|y)− [1− ε]λ2(y, n|y, y) if a = (y, y)

1− λ1(y, n|y) + [1− ε]λ2(n, y|y, n) if a = (y, n)

1 + [1− ε]λ1(n, y|n)− λ2(y, n|n, y) if a = (n, y)

λ1(n, y|n) + λ2(n, y|n, n) if a = (n, n).

We first refine the set of candidate solutions for the primal and the dual with a

sequence of claims.

Claim 1. p(g) ≥ 2 and p(b) ≥ 0.

Proof. Note that (y, y) is the unique Nash equilibrium of Gg and (n, n) is the unique

Nash equilibrium of Gb. Therefore, p(g) ≥ v(y, y) = 2 and p(b) ≥ v(n, n) = 0.

Claim 2. χ(n, n, g) = 0.

Proof. Since p(g) ≥ 2 and w((n, n), g, λ) ≤ 0 for all λ, the claim follows from CS3.

Claim 3. No information and full information are not a solution.

Proof. The lower bounds for p(g) and p(b) imply that the value of the problem, V ∗E ,

cannot be zero. This means that providing the firms with no information is not optimal,

because that would induce the outcome (n, n) for sure, contradicting χ(n, n, g) = 0. It is

also not optimal to provide full information, that is, χ(y, y, g) = χ(n, n, b) = 1
2
. In this

case, no firm is ever indifferent between the two actions and so λ ≡ 0. Given this, CS3

requires that p(b) = 0 and p(g) = 2. However, note that w((y, y), b, 0) = 2 > p(b), which

violates the dual constraint.

Claim 4. Either λ1(y, n|y) > 0 or λ2(y, n|y, y) > 0.

Proof. If λ1(y, n|y) = λ2(y, n|y, y) = 0, we have p(b) ≥ w((y, y), b, λ) = 2. This means

the value of the dual and hence V ∗E must be at least 2. This is impossible, as the designer

cannot get both firms to invest for sure.

Claim 5. [q + ε]χ(y, y, g) + qχ(y, n, g) = [1− ε]χ(y, y, b) + χ(y, n, b).
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Proof. Since firm 2 always has as much information as firm 1, if the latter is never indif-

ferent when recommended y, so is firm 2. This would imply λ1(y, n|y) = λ2(y, n|y, y) = 0

in contradiction with Claim 4. Therefore, firm 1 must be rendered indifferent after rec-

ommendation y. This requires the following:

[q + ε]χ(y, y, g) + qχ(y, n, g) = [1− ε]χ(y, y, b) + χ(y, n, b).

Claim 6. χ(y, y, g) > 0 and p(g) = 2 + [q + ε]λ1(y, n|y) + [q + ε]λ2(y, n|y, y) > 2.

Proof. The fact that either λ1(y, n|y) > 0 or λ2(y, n|y, y) > 0 implies that p(g) >

2—recall that |ε| < q—and hence V ∗E > 1. Therefore, χ(y, y, ω) > 0 for some ω. This

cannot be only ω = b. Otherwise, firm 2 learns that the state is b from the recom-

mendation (y, y) and so it would not follow its recommendation y, violating feasibility.

Therefore, we must have χ(y, y, g) > 0. The equation for p(g) follows from CS3.

Claim 7. λ1(n, y|n) = 0.

Proof. Suppose that firm 1 weakly prefers y when recommended y, which is necessary

for obedience, and is indifferent between the two actions when recommended n, which is

necessary for λ1(n, y|n) > 0 by CS1. This requires

[q + ε]χ(y, y, g) + qχ(y, n, g) ≥ [1− ε]χ(y, y, b) + χ(y, n, b)

and
qχ(n, y, g) = [1− ε]χ(n, y, b) + χ(n, n, b).

Summing the two conditions we get (using χ(n, n, g) = 0)

εχ(y, y, g) + q ≥ 1− εχ(y, y, b)− εχ(n, y, b) ≥ 1.

This is impossible since q < 1 and ε < 0. Therefore, we conclude that firm 1 must

strictly prefer n when recommended n and so λ1(n, y|n) = 0. Note that firm 1 must be

recommended n with positive probability: Otherwise, it always receives recommendation

y, which is uninformative and so can never be obediently followed by firm 1, contradicting

χ(y, y, g) > 0.

Claim 8. χ(n, n, b) > 0, so p(b) = 0 and λ2(n, y|n, n) = 0.

Proof. We now argue by contradiction. Suppose that χ(n, n, b) = 0. Then, by the

previous argument we must have χ(n, y, b) > 0. Otherwise, χ(n, y, ω) is positive only

for ω = g, which means that firm 1 is recommended n only in state g and so this
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recommendation cannot be obediently followed. Since χ(n, y, b) > 0, by CS3 we must

have
0 = p(b) = 1− λ2(y, n|n, y)⇒ λ2(y, n|n, y) = 1.

This implies that

w((n, y), g, λ) = 1 + qλ2(y, n|n, y) < 2 < p(g).

Therefore, we must have χ(n, y, g) = 0 by CS3. This implies that the profile (n, y) is

recommended only in state b. Since firm 2 learns this from learning (n, y), it cannot

obediently follow the recommendation y. This establishes the desired contradiction.

Claim 9. χ(n, y, b) = χ(n, y, g) = 0, so λ2(y, n|n, y) ≥ 1 as needed by the dual constraint.

Proof. That χ(n, y, b) = 0 follows from the argument for the previous claim. Using this,

we can also show that χ(n, y, g) = 0. If not, firm 2 learns from the recommendation

(n, y) that the state must be g. Given this, it strictly prefers y to n and hence we should

have λ2(y, n|n, y) = 0, which is not compatible with p(b) = 0 ≥ 1 − λ2(y, n|n, y) + [1 −
ε]λ1(n, y|n).

We have narrowed the set of candidate solutions enough to now guess one. We

know that firm 2 must be always recommended y in state g. Recommending firm 1

with some probability to not invest in g seems counterproductive, as it does not help to

convince firm 2 to invest and is missing the opportunity to induce firm 1 to invest in the

favorable state. Therefore, suppose that χ(n, y, g) = 0. Then, we must have χ(n, y, b) = 0

because otherwise the recommendation (n, y) reveals that the sate is b and firm 2 will

not follow the recommendation y obediently. In this case, we must have χ(y, y, g) = 1
2

and, since we know that χ(n, n, b) < 1
2
, we must also have χ(y, y, b) > 0. Given this,

the required indifference of firm 1 and firm 2 after recommendation (y, y) implies that

χ(y, y, b) = 1
2

[
q+ε
1−ε

]
(see Claim 5). Thus, the value of the primal is

2χ(y, y, g) + 2χ(y, y, b) = 1 +
q + ε

1− ε
.

Consider now the dual. Its candidate value is

1

2
p(b) +

1

2
p(g) = 1 +

1

2
[q + ε]λ1(y, n|y) +

1

2
[q + ε]λ2(y, n|y, y) > 1.

Given this, a candidate solution involves λ1(y, n|y) = 1, λ2(n, y|y, n) = 0, and

0 = p(b) = 2− [1− ε]λ1(y, n|y)− [1− ε]λ2(y, n|y, y)⇒ λ2(y, n|y, y) =
1 + ε

1− ε
.

This yields the value

1

2
p(b) +

1

2
p(g) = 1 +

1

2
[q + ε]

[
1 + ε

1− ε
+ 1

]
= 1 +

q + ε

1− ε
.
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By Strong Duality, we have a solution.

Remarkably, the unidirectional information spillovers render public information opti-

mal also for the case of strategic substitutabilities. Note that this is a priori not obvious:

In order to preserve some private information, the designer could recommend some firm

to play mixed actions conditional on some states. In this example, such recommendations

are not useful.

Finally, suppose the designer can only target one firm. Under our reach assumption,

there must exist at least a link from the targeted firm to the other firm. This implies that

the M -expansion is a complete network, so the designer is essentially constrained to use

public information structures. Thus, the optimal structure remains the one in Table 2.

5 Discussion and Extensions

5.1 Unconstrained Designer and Richer Forms of Spillovers

In this section, we consider richer forms of information spillovers than those assumed in

the baseline model. We show that for all these forms our previous results provide bounds

for the payoff of the information designer when she can target all players (i.e., for the

case of M = N). This is not true for a constrained designer (i.e., M ( N). However, this

bounds result may be useful, at least if one is interested in the metaphorical interpre-

tation of information design as a description of all feasible outcomes across all possible

information structures, which by definition impose no restriction on the information each

agent can receive.

Information spillovers in a social network can be described in the following general

way, which includes our baseline model as a special case. There is a finite number K

of communication rounds, where K is at least as large as the shortest path between

the two most distant players in the network (i.e., its diameter). At every round, each

player i can send (possibly at random) a message to player j if and only if j is a neighbor

of i. For every (π, S) let Mij(π, S) be the finite set of messages that player i can send

to his neighbor j at every round. We assume that S ⊆ Mij(π, S), so that each player

can convey at least as much information as what he can receive from the designer under

(π, S). More formally, let the initial history of player i be of the form h0
i = (π, si), where

si is a realization of π observed by i privately. Thus, the set of initial histories for player i

is H0
i = {(π, si) : π ∈ Π, si ∈ supp π}.18 For every round k ≥ 1, player i also observes

18We include π in the history for each player to allow for the possibility that communication behavior
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the profiles of messages from his neighbors. Given this, denote i’s histories of length k

recursively by Hk
i = {(hki ,mi) : hk−1

i ∈ Hk−1
i ,mi ∈ M i(h0

i )}, where M i = ×j∈NiMji(h
0
i ).

Let the collection of all i’s histories by Hi = ∪Kk=0H
k
i . Player i’s communication behavior

can then be described as a general function ξi that assigns to every history hi ∈ Hi a

distributions over messages, i.e., an element of ∆(×j∈NiMij(π, S)) for every (π, S) chosen

by the designer.

It can be easily seen that every information-spillover process of this form transforms

every initial information structure chosen by the designer into a final information struc-

ture. Indeed, fix the profile ξ = (ξi)
N
i=1. Then, for every ω, every π ∈ Π determines a

distribution over finitely many profiles of initial histories h0 = (h0
i )
N
i=1 across the players.

For every such profile, ξ induces a distribution over finitely many profiles of finite histo-

ries hK = (hKi )Ni=1. Interpreting every hKi as the signal realization of player i from these

compounded distributions, we obtain that every ω induces a finite distribution over such

profiles of final signals. This is again an element of Π. Therefore, ξ induces a mapping

fξ,E : Π → Π for the network E. Note that, for this to be true, it is not necessary to

know where ξ comes from; also, if ξ is commonly known among the players, so is the

final information structure fξ,E(π) for every π.19

Using this formalism, we can express the designer’s problem under general information

spillovers. Fixing fξ,E, this problem can be written as

V ∗ξ,E = sup
π∈Π

V (fξ,E(π)),

where recall that

V (π′) = max
σ∈BNE(G,π′)

∑
a∈A,t∈T,ω∈Ω

v(a, ω)σ(a|t)π′(t|ω)µ(ω).

Given this, let V ∗E be the value of the designer’s problem for the network E under As-

sumption 1, holding fixed the basic game G.

Theorem 3. Fix the basic game G and the network E. Let ξ be any profile of commu-

nication functions as described above. Then,

V ∗E ≤ V ∗ξ,E ≤ V ∗∅ .

The result implies that the analysis under our baseline assumption provides a lower

bound of the designer’s payoff for a large class of communication protocols in social

depends on π and to easily keep track of this dependence.
19We conjecture that the assumption that ξ is commonly known among the players can be relaxed

without changing our results. Intuitively, it seems that the uncertainty that player i has about the

communication behavior of others can be built into ξ itself.
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networks. Importantly, while such protocols can be very intricate to describe and analyze,

the lower bound of Theorem 2 is amenable to a relatively standard linear-programming

characterization. Of course, the implicit assumption here is that ξ describes the players’

communication behavior according to some well-defined equilibrium notion. But this

seems a minimal requirement for any analysis of communication in social networks.

The rest of this section presents in more detail some of the communication protocols

allowed by our formalism. It is also possible that some players in the network commu-

nicate according to one rule and others according to a different rule (e.g., some players

may be strategic, while others are not).

Truthful Belief Announcement

Suppose that at each round of communication after the designer chooses (π, S), every

player truthfully reveals to all his neighbors his current, Bayesian, posterior belief over

the space Ω× S. Note that S is included in the belief announcements, because learning

about the information of others is important for predicting their actions in the final game

following the communication phase.

It is easy to see that this communication protocol fits into the general model outlined

above. Since S is finite, at every round each player can have at most finitely many

different beliefs that he can announce. Moreover, this communication process converges

after finitely many rounds, whose number cannot exceed the diameter of the network.

To see this intuitively, note that in the first round, each player i announces a degenerate

belief with regard to his own private signal si to his neighbors. In the following round,

all i’s neighbors announce a degenerate belief about si to their neighbors. Continuing this

way, all followers of player i will hear a degenerate announcement of si within a number

of rounds that cannot exceed the diameter of the network. Therefore, all players’ beliefs

will be degenerate about the signals of their sources and so they will stop evolving in at

most as many rounds as the network diameter.

The following lemma verifies these intuitive observations. It shows that this com-

munication model can be a foundation for Assumption 1, where we directly assumed

that each player i learns the signals received by all players for which there exists a path

connecting them to player i.

Lemma 3. Fix a (S, π) and a signal realization s. For every i and hKi ∈ Hi consistent

with (s, π),
Prπ(ω, ŝ|hKi ) = Prπ(ω, ŝ|sEi), (ω, ŝ) ∈ Ω× S.
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Observational Social Learning

A vast literature in economics studies how people in social environments learn about

some underlying state of the world by observing the actions of their peers (see Golub and

Sadler (2017) for a literature review). For example, people choosing whether to attend

a political rally may learn about its appeal and importance by observing whether their

friends are planning to attend it or not. This social-learning process can be modeled

through a network framework where initially each of its members receives some signal

about the underlying state (e.g., by reading a newspaper article about the rally’s lineup of

speakers) and then chooses an action (e.g., to attend or not the rally), which is observed

by his neighbors in the network. To the extent that the actions of i’s neighbors reflect

their information—from external sources as well as their peers—they can be interpreted

as messages sent to i in our general communication model. Therefore, social learning

can be embedded in our framework in the communication phase that precedes the final

game. In the example, this game may be a local or national election. The social-learning

phase shapes the voters’ information about the candidates, which they may then use in

the voting booth. Note that their decision to attend political rallies may or may not take

into account its information spillovers on peers and any strategic consideration related to

the actual election. Either way, the resulting communication falls in the general family

covered by Theorem 3.

The approach of this paper and most of the social-learning literature differ in one

important respect. We envision a third party who may purposefully design the initial

signals that the agents receive before engaging in social learning.20 In the example, this

third party may choose what information to reveal about the rally speakers or agenda

and to whom to reveal it given a specific structure of the social connections in a country.

By contrast, most of the social-learning literature takes the agents’ initial information

structure as given and usually assumes for it a very specific form (e.g., independently

and identically distributed signals across all agents). We instead impose no restrictions

on the information structures the designer can choose. This flexibility, combined with

the richness of social-learning processes, may render it hard to provide any prediction on

what the designer can achieve. The lower bound in Theorem 3 can prove to be a useful

tool to bypass these intricacies.

20Of course, an interesting and important extension is to consider multiple competing designers of

initial signals.

33



Strategic Communication

Another possibility is to assume that the players are fully strategic during the communi-

cation phase of our model, anticipating how they will use their information in the final

game. This seems a reasonable scenario in settings with a limited number of players,

a simple network structure (e.g., a star), and experienced players. Though reasonable,

strategic communication involves specific modeling challenges in order to define the equi-

librium notion that determines the ξ played by the players. To see why, suppose ξ∗ is

a candidate equilibrium strategy in the communication phase. As long as players stick

to their strategy ξ∗, every possible path of play induces a final information structure

according to the corresponding function fξ∗,E as defined above. Given this, for every π

we can specify the continuation behavior through the BNE of (G, fξ∗,E(π)) preferred by

the designer as in the baseline model. However, suppose player i deviates from ξ∗i . This

deviation may or may not be detectable by the other players once the communication

phase ends. If not, a question arises of how to define the continuation of the game once

the players reach the basic game G: What beliefs should the players have? What actions

should they play?

These are important questions. Theorem 3 allows us to ignore them, however, at least

on a first pass. Suppose there exists a way of specifying the players’ off-path behavior and

beliefs so that ξ∗ describes their on-path strategic behavior in the communication phase

of the model, followed by the BNE of the resulting final game selected according to the

usual criterion. Depending on the specific setting, such equilibrium communication may

be very complex and may admit of multiple solutions. Nonetheless, Theorem 3 provides a

way to bound what the designer can achieve when facing strategic information spillovers,

which holds for all those solutions and does not require calculating equilibria.

Because of its generality, Theorem 3 also applies across a variety of scenarios with

strategic communication. For instance, communication between any two connected play-

ers may follow the rules of cheap talk à la Crawford and Sobel (1982) and Aumann and

Hart (2003) in each round. Note that in this case, each player can be simultaneously a

“sender” and a “receiver” and should take into account the entire network structure and

the equilibrium strategy of all players in the network. Alternatively, communication may

follow the rules à la Milgrom and Roberts (1986), where players use verifiable informa-

tion. Finally, communication may follow the model of Gentzkow and Kamenica (2016),

where each player strategically commits to a commonly observable communication strat-

egy at the beginning of the communication phase, taking into account that he competes

with all other sources of his followers to determine their beliefs for the final game G they
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will all play. It is reasonable to expect that such models are hard to analyze explicitly,

perhaps except in specific cases with very few players and simple networks. This is why

Theorem 3 seems a useful result.

5.2 A Direct Characterization of Feasibility for the Constrained-

Designer Problem

In this section, we provide a direct characterization of the feasible outcomes for an infor-

mation designer constrained to target only the agents in M ( N . Besides for complete-

ness, this clarifies why the direct-mechanism approach is not valid in this case.

Definition 7 (M -Mediated Obedience). The outcome function x : Ω→ R isM -mediated

obedient for (G,E) if there exists κ : Ω×R→ ∆(Z) with the following properties:

(1) Z = ×i∈NZi, where Zi is finite for every i and |Zj| = 1 for j /∈M ;

(2) for all i and zEi , there exists at most one αi ∈ xi such that κ(zEi , z−Ei |αi, α−i, ω) > 0

for some (z−Ei , α−i, ω);

(3) for every i, αi, and zEi ,∑
ω,α−i,z−Ei

[ui(αi, α−i, ω)− ui(a′i, α−i, ω)]κ(zEi , z−Ei |α, ω)x(αi, α−i|ω)µ(ω) ≥ 0, a′i ∈ Ai.

Theorem 4. Fix a basic game G, a network E, and a target set M . The outcome

function x is feasible if and only if it is M-mediated obedient.

This result shows that, in general, a direct characterization of feasibility for con-

strained problems requires a supplementary tool, κ, besides a direct-recommendation

mechanism, x. This tool keeps track of information intermediation, namely, what non-

targeted players learn from targeted players. Condition (1) captures the fact that only

targeted players can provide messages to non-targeted players. Condition (2) requires

that every player i should unambiguously figure out which mixed action the designer

wants him to implement from the messages i hears from his sources. Finally, condition (3)

requires that, given these messages, player i should not have a profitable deviation from

the recommended behavior.

One may wonder why κ is necessary and has to take this form. First, why is it

not enough to rely on the recommendations to targeted players in order to convey to

non-targeted players how they should play in the game? To see this, consider a situ-

ation with only two players and a network that contains only a link from player 1 to

player 2. Player 1 has a strictly dominant action independently of the state, and the

designer can only target player 1. In this case, any feasible outcome must involve player
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1’s taking that action. However, the designer can “use” player 1 to convey information

to player 2. Clearly, this requires a richer communication language than the constant

recommendation of the dominant action to player 1. A second question may be why

it is not enough, or correct, to let the designer recommend to the targeted players also

the suggested behavior for their non-targeted followers and simply let κ pass along these

recommendations. As noted earlier, the reason is that implementing this behavior may

require some non-targeted player to combine the pieces of information coming from mul-

tiple targeted players, without them being able to exactly predict his behavior based

only on the information each receives from the designer. Our approach based on the

equivalence in Theorem 1 allows us to entirely avoid these issues.

5.3 Relation to Bayes Correlated Equilibrium and Individual

Sufficiency

In this section, we briefly compare our work with Bergemann and Morris (2016) and, in

particular, their comparative statics results that relate the set of feasible outcomes with

the players exogenous information. Bergemann and Morris (2016) propose a ranking of

such information structures, called individual sufficiency, and show that a higher degree

of individual sufficiency corresponds to a smaller set of feasible outcomes. At a conceptual

level, the present paper and Bergemann and Morris (2016) ask fundamentally different

questions. They examine how information that players already have constrains what

the designer can do; we ask how the players’ ability to share any information they may

receive—especially from the designer—constrains what the designer can do. In fact, our

analysis focuses on the case where the players have no exogenous information. Different

networks affect what information each player receives from his neighbors, in addition

to the information he receives from the designer. But the important difference is that

the designer is also in control of the information those neighbors receive. Thus, the

information that player i receives from his neighbors is not entirely beyond the designer’s

control, in contrast to the exogenous information in Bergemann and Morris (2016).

Despite these differences, it is instructive to uncover the relation between our notion

of more information aggregation through the network and individual sufficiency. To this

end, consider any initial information structure (S, π) chosen by the designer. We say that

(S, π) is communication invariant under the network E if, for all i ∈ N , si is a sufficient

statistics for sEi . That is, letting (π′, T ) = fE(π), we have

Prπ′(ω, t|ti) = Prπ(ω, s|sEi) = Prπ(ω, s|si), (8)

where we leave the dependence of these probabilities on the prior µ implicit. Note that
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the first equality holds by the definition of how information spillovers work in our model

(Assumption 1), while the last equality is the substantive condition on the informative-

ness of the initial and final information structures. Communication invariance captures

the idea that the designer already gives each player as much information as he can learn

from the signals of his sources about both ω and the signals of all the other players. So, in

particular, given a communication-invariant π, its physical sctructure is formally changed

by information spillovers, but π is essentially unchanged in terms of its information con-

tent. Given this, since the designer cannot prevent the players from communicating, we

can conclude that essentially the designer is restricted to choosing information structures

that are communication invariant under E.

Now take any initial (S, π). Consider two networks E ′ and E where E is deeper

than E ′ and denote the respective functions f and f ′. Can we say that the information

structures f(π) and f ′(π) are ranked according to individual sufficiency as defined in

Bergemann and Morris (2016)? Note that, for every i, his signal space under f(π) is

Ti = ×j∈EiSj and his signal space under f ′(π) is T ′i = ×j∈E′iSj. Given this, let’s consider

Pr(t′i|ti, t−i, ω) = Pr(sE′i |sEi , (sEj)j 6=i, ω).

Since E ′i ⊆ Ei for all i when E is deeper than E ′, it follows that the right-hand side is

independent of (sEj)j 6=i and ω given sEi , which means that the left-hand side is indepen-

dent of t−i and ω given ti. Therefore, f(π) is individually sufficient for f ′(π) in a very

trivial and stark way: t′i is independent of t−i and ω given ti because t′i is deterministi-

cally pinned down by ti (as opposed to being ti plus some noise). Clearly, the notion of

individual sufficiency of Bergemann and Morris (2016) is much more general.
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A Proofs

A.1 Proof of Theorem 1

To prove Theorem 1, we first introduce and prove Lemmas 4, 5 and 6, and the interme-

diate equivalence result of Proposition 10. Lemma 4 characterizes the M -expansion of

E by showing that, in the process of expansion, while each player may gain new sources,

i.e. Ei ⊆ EM
i , none of these sources are original targets in M , i.e. EM

i ∩M = Ei ∩M .

Lemma 4. Let EM be the M-expansion of E. Then, EM
i ∩M = Ei ∩M , for all i ∈ N .

Proof of Lemma 4. Fix i and let EM be the M -expansion of E. We first show that

Ei ∩M ⊆ EM
i ∩M . To see this, note that E ⊆ EM , by definition of M -expansion. This

implies that Ei ⊆ EM
i . Hence, Ei ∩M ⊆ EM

i ∩M . Conversely, in order to show that

EM
i ∩ M ⊆ Ei ∩ M , it is enough to show that EM

i ∩ M ⊆ Ei. Suppose not, that is,

suppose that there is j ∈ M such that j ∈ EM
i but j /∈ Ei. Since j ∈ EM

i , there exists

a EM -path P = (k1, . . . km) from j to i, that is a sequence such that k1 = j, km = i,

and (kl, kl+1) ∈ EM , for all l ≤ m − 1. Since j /∈ Ei, it must be that (kl, kl+1) /∈ E,

for some l ≤ m − 1. Call these l’s the gaps of P . Choose path P so that the number

gaps is the smallest. This object is well-defined and we denote it P = (k1, . . . km). Along

path P , denote l the first gap from j to i, that is the gap l with the smallest index.

By construction, we have that (1) j ∈ Ekl , (2) (kl, kl+1) /∈ E, and (3) (kl, kl+1) /∈ EM .

Moreover, j /∈ Ekl+1
. If this was not the case, P would not be the EM -path from j to i

with the smallest number of gaps. Definition 3 and points (2) and (3) above imply that

Ekl ∩M ⊆ Ekl+1
. Yet, j ∈ Ekl ∩M and j /∈ Ekl+1

. We conclude that EM is not the

expansion of E, a contradiction. �

Thanks to Lemma 4, we know that the sets of original sources don’t change when

expanding the network from E to EM . Since π ∈ ΠM requires signals to non-targeted

players to be singletons, this means that from an informational point of view the in-

formation structures fE(π) and fEM (π) are equivalent. The next result formalizes this

idea.

Proposition 10. Fix (E,M) and let EM be the M-expansion of E. Then for all G,

XM(G,E) = XM(G,EM).

Proof of Proposition 10. Fix π ∈ ΠM , i ∈ N and let s := (s1, . . . , sn) be a possible

realization of π. We want to show that:

Prπ(s1, . . . , sn|sEi) = Prπ(s1, . . . , sn|sEMi )
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Note that (EM
i \ Ei) ∩ M = (EM

i ∩ M) \ (Ei ∩ M) = ∅. The first equality derives

from the distributive property of set intersection over set difference. The second equality

derives from Lemma 4. This implies that, since π ∈ ΠM , the set SEMi \Ei is a single-

ton and, equivalently, its only element sEMi \Ei realizes with probability 1. Therefore,

sEi and sEMi are identical up to elements sEMi \Ei that realize with probability 1. Hence

Prπ(s1, . . . , sn|sEi) = Prπ(s1, . . . , sn|sEMi ). Since i ∈ N and s were arbitrary, we have

that BNE(G, fE(π)) = BNE(G, fEM (π)). Since π ∈ ΠM was arbitrary, we conclude

that XM(G,E) = XM(G,EM). �

Lemma 4 is important in establishing an another important property of the M -

expansion of network E. EM is the M -expansion of itself. The next result formalizes

this idea.

Lemma 5. (i, j) ∈ EM if and only if EM
i ∩M ⊆ EM

j .

Proof of Lemma 5 Only if. Let (i, j) ∈ EM . Then, EM
i ⊆ EM

j , hence EM
i ∩M ⊆ EM

j .

If. Suppose EM
i ∩M ⊆ EM

j . By Lemma 4, EM
i ∩M = Ei ∩M and EM

j ∩M = Ej ∩M .

Thus, Ei ∩M ⊆ Ej ∩M . By Definition 3, this implies (i, j) ∈ EM . �

The next result constitutes the building block of the proof of our main theorem.

To prove this result, we borrow a technique from the computer science literature on

cryptography, known as the secret sharing method. Secret sharing refers to the problem

of distributing a “secret” among a group of n players, each of whom is allocated a “share”

of the secret. The distribution is so that players learn the secret if all players pool their

shares. If one or more shares are missing, nothing is learned about the secret.

Lemma 6. Fix (G,E,M) and some M ′ ⊇ M . Let i ∈ M ′ and (i, j) ∈ EM . Then

XM ′(G,E
M) = XM ′∪{j}(G,E

M).

Proof of Lemma 6.

(⊆). This direction is trivial since, by definition, ΠM ′ ⊆ ΠM ′∪{j}.

(⊇) If j ∈ M ′ there is nothing to show as, in such case, M ′ ∪ {j} = M ′. Therefore, let

j /∈ M ′. Fix π ∈ ΠM ′∪{j} and denote π’s signal space S1 × . . . × Sn. We want to find a

π̂ ∈ ΠM ′ such that BNE(G, fEM (π)) = BNE(G, fEM (π̂)). Denote the signal space of π̂,

Ŝ1 × . . . × Ŝn. We will construct π̂ using the technique behind Shamir’s secret sharing

scheme (Shamir (1979)). Let B(κ) := {0, 1}κ be the set of all binary number of length

k. Define κ := min{κ ∈ N : |Sj| ≤ |B(κ)|}. For notational convenience, let’s denote

B := B(κ) and choose an injective pub : Sj → B. This map represents the “public key”
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that allows players to translates binary numbers into signals for player j. We denote

⊕ the bitwise XOR operation.21 Let Q := Ej ∩M ′ and let q ≥ i, for all i ∈ Q. Let

Ŝi := Si × B × {pub} for all i ∈ Q; Ŝj := {s̄j}; and Ŝi := Si for all i /∈ N \ (Q ∪ {j}).
Note that π̂ ∈ ΠM ′ . For all s ∈ S, define ŝ(s) in the following way: ŝj(s) := s̄j; for

all i /∈ N \ (Q ∪ {j}), ŝi(s) = si; for all i ∈ Q, ŝi(s) = (si, bi, pub). bi ∈ B is random

and independent of ω and s and it is determined as follows: If i 6= q, elements of bi

are independent realizations of fair coin toss; if i = q, bq := pub(sj) ⊕
(
⊕i∈Q:i 6=q bi

)
.

The probability π̂(ŝ(s)|ω) is determined from π(s|ω). If |Q| > 1, bq is random and

independent of s and ω. Moreover, the construction of this secret sharing scheme implies

that (bi)i∈L ⊥ ω and (bi)i∈L ⊥ s for all L ∈ 2Q \ Q. That is, receiving all but one share

of the secret carries no information about sj. Instead, the vector (bi)i∈Q fully reveals sj

because
pub−1

(
⊕i∈Q bi

)
= sj.

This implies that, player l ∈ N learns sj from the observation of ŝEMl if and only if

j ∈ EM
l . To see this, note that, by construction, player l ∈ N learns sj if and only

if Q ⊆ EM
l . We are left to show that Q ⊆ EM

l if and only if j ∈ EM
l . Let’s first

assume that j ∈ EM
l . Then, EM

j ⊂ EM
l and Q = EM

j ∩M ⊂ EM
l . Conversely, assume

Q = EM
j ∩M ⊆ EM

l . By Lemma 5, (j, l) ∈ EM and thus j ∈ EM
l . We now discuss the

special case |Q| = 1 and show that it is taken care of. To see this, let Q = EM
j ∩M ′ = {i}.

By construction, bi reveals sj. Therefore, we need to show that j ∈ EM
i . To this purpose,

note that EM
j ∩M ′ = {i} implies that EM

j ∩M ⊂ EM
j ∩M ′ = {i} ⊆ EM

i . By Lemma 5,

(j, i) ∈ EM , hence j ∈ EM
i .

In summary, our construction is so that, for all s ∈ S, either ŝEMl (s) perfectly reveals

sj or it is completely uninformative about sj. Therefore, we have shown that for all s ∈ S
and l ∈ N , Prπ(s|sEMl ) = Prπ̂(ŝ(s)|ŝEMl (s)). This implies that any outcome x induced

by π can be also induced by π̂. Since π was arbitrary, this shows that XM ′∪{j}(G,E
M) ⊆

XM ′(G,E
M).

Proof of Theorem 1. Fix G,E and M . By Proposition 10, XM(G,E) = XM(G,EM).

We are left to show that XM(G,EM) = XN(G,EM). The following induction argument

proves the claim.

Basis Step. Let M1 = M . If M1 = N there is nothing to prove and the procedure

stops. Hence, let M1 ( N . Because of Assumption 2, there exists (i, j) ∈ E such that

i ∈ M1 and j /∈ M1. Since E ⊆ EM , (i, j) ∈ EM . Let M2 := M1 ∪ {j}. Since M2 ⊇ M1,

i ∈ M2 and (i, j) ∈ EM , we can invoke Lemma 6 to conclude that XM1(G,EM) =

21Given two vectors b, b′ ∈ B, b ⊕ b ∈ B. Component-by-component, elements of b and b′ are added

using the following rules: 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1.

42



XM2(G,EM). Finally, note that E and M2 satisfy Assumption 2.

Inductive Step. Suppose that XM1(G,EM) = XMt(G,E
M). If Mt = N there is

nothing to prove and the procedure stops. Hence, let Mt ( N . Because of Assumption

2, there exists (i, j) ∈ E such that i ∈ Mt and j /∈ Mt. Since E ⊆ EM , (i, j) ∈ EM . Let

Mt+1 := Mt ∪ {j}. Since Mt+1 ⊇Mt, i ∈Mt+1 and (i, j) ∈ EM , we can invoke Lemma 6

to conclude that XMt+1(G,EM) = XMt(G,E
M).

Because N is finite, this procedure stops after t̄ = |N \M | steps, concluding that

XMt̄
(G,EM) = XN(G,EM). �

A.2 Remaining Proofs

Proof of Theorem 2. Part 1 (⇒): Suppose (S, π) and σ ∈ BNE(G, f(π)) induce x.

Then, for every i and s ∈ S,∑
ω,s′

[ui(σi(s
′
Ei

), σ−i(s
′
E−i

)), ω)− ui(ai, σ−i(s′E−i), ω)]Prπ(ω, s′|(s′Ei)) ≥ 0, ai ∈ Ai.

where σ−i(s
′
E−i

) = (σj(s
′
Ej

))j 6=i. Using π, we can write this condition as∑
ω,s′−Ei

[ui(σi(s
′
Ei

), σ−i(s
′
E−i

)), ω)− ui(ai, σ−i(s′E−i), ω)]π(s′|ω)µ(ω)∑
ω′,s′′−Ei

π(s′′|ω′)µ(ω′)
≥ 0, ai ∈ Ai,

or equivalently,∑
ω,s′−Ei

[ui(σi(s
′
Ei

), σ−i(s
′
E−i

)), ω)− ui(ai, σ−i(s′E−i), ω)]π(s′|ω)µ(ω) ≥ 0, ai ∈ Ai.

Note that, for every i ∈ N and s, by knowing sEi player i knows the mixed action σj(sEj)

for all j ∈ Ei.

Given this and using the definition of x in (1), the last family of inequalities can be

written as follows: For all i and αEi ,∑
ω,α−Ei

[ui(αi, α−i, ω)− ui(ai, α−i, ω)]x(αi, α−i|ω)µ(ω) ≥ 0, ai ∈ Ai.

Thus, we conclude that if x is feasible, then it is obedient*.

Part 2 (⇐): Suppose x is obedient*. Note that x can be thought of as an information

structure in Π, by viewing each αi as a signal first. Given this, for every i, consider the

strategy σi : ×j∈Ei∆(Aj)→ ∆(Ai) defined by

σi(αEi) = αi, αEi ∈ ×j∈Ei∆(Aj).
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By our assumption that player i learns the signals of his parents in Ei, optimality for

each player i requires that, for every αEi ,∑
ω,α′−Ei

[ui(σi(α
′
Ei

), σ−i(α
′
E−i

), ω)− ui(ai, σ−i(α′E−i)), ω)]Prx(ω, α
′|αEi) ≥ 0, ai ∈ Ai,

where σ−i(α
′
E−i

) = (σj(α
′
Ej

))j 6=i. Given our construction of σ, this is equivalent to, for

every αEi and ai ∈ Ai,∑
ω,α′−Ei

[ui(αEi , α
′
−Ei , ω)− ui(ai, αEi\i, α′−Ei , ω)]

x(αEi , α
′
−Ei |ω)µ(ω)∑

ω′,α′′−Ei
x(αEi , α

′′
−Ei|ω′)µ(ω′)

≥ 0,

which holds because x is obedient*.

Proof of Proposition 1. Part 1 (⇐): Suppose E exhibits more influence than does

E ′ and x ∈ X(G,E) for some G. Then, by Theorem 2 and Remark 2, x satisfies for

every i = 1, . . . , N ,∑
ω∈Ω
α∈x

ui(αi, α−i;ω)x(αi, α−i|ω)µ(ω) ≥
∑
ω∈Ω
α∈x

ui(δi(αEi), α−i;ω)x(αi, α−i|ω)µ(ω),

for all δi ∈ Di = {δ̂i : ×j∈Ei∆(Aj) → Ai}. Note that iE ⊇i E ′ for every i ∈ N if and

only if Ej ⊇ E ′j for every j ∈ N . Indeed, if i ∈ E ′j, then j ∈i E ′ ⊆i E and so i ∈ Ej;
if j ∈i E ′, then i ∈ E ′j ⊆ Ej and so j ∈i E. Therefore, if E exhibits more influence

than E ′, then Ei ⊇ E ′i for all i ∈ N . Let D′i = {δi : ×j∈E′i∆(Aj) → Ai}. To prove that

x ∈ X(G,E ′) it suffices to show that the set of available deviations D′i is smaller than

Di for all i ∈ N . To show this, consider any δi ∈ D′i and define δ̂i : ×j∈Ei∆(Aj) → Ai

as δ̂i(αE′i , αEi\E′i) = δi(αE′i) for all αEi ∈ ×j∈Ei∆(Aj). Since Ei ⊇ E ′i for all i, δ̂i is a

well-defined function and δ̂i ∈ Di.

Part 2 (⇒): We prove this by contrapositive. The only relevant case to consider is

that E does not exhibit more influence than E ′ (and vice versa). This implies that for

some i, there exists a k such that k ∈ E ′i and k /∈ Ei, and for some j (possibly i = j),

there exists m such that m ∈ Ej and m /∈ E ′j. It follows that theres exists a player ik

such that ik 6= k and there is a direct link from k to ik in E ′ but not in E, and there

exists a player im such that im 6= m there is a direct link from m to im in E but not in

E ′.

Now consider the following game G. Let Ω = {0, 1} and µ(0) = µ(1) = 1
2
. Let

Ai = {0, 1
2
, 1} for all i ∈ N . For all j /∈ {k,m, ik, im}, the payoff function uj is such

that the action aj = 1
2

is strictly dominant. For j ∈ {k,m, ik, im}, the payoff function is

uj(a, ω) = −(aj − ω)2.

Consider the following two cases.
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Case 1: Suppose that all players in {k,m, ik, im} are distinct. Consider x such that

player k always matches the state, while all other players choose a = 1
2
. This x belong to

X(G,E), but clearly does not belong to X(G,E ′) because in E ′ player ik has to choose

a = 1
2

after learning ak = ω, which renders a = 1
2

strictly suboptimal and so x violates

obedience*. Consider x′ such that player m always matches the state, while all the other

players choose a = 1
2
. This x′ belong to X(G,E ′), but clearly does not belong to X(G,E)

because in E player im has to choose a = 1
2

after learning am = ω, which renders a = 1
2

strictly suboptimal and so x′ violates obedience*. The same argument works for the same

x and x′ for the following four alternative configurations of the network that satisfy the

aforementioned properties: (1) m = ik and k 6= im; (2) m 6= k and ik = im; (3) k = im

and m = ik; (4) im = k and m 6= ik.

Case 2: Suppose that m = k and ik 6= im. Consider x such that m and im always

match the state, while all other players choose a = 1
2
. This x belongs to X(G,E), but

clearly does not belong to X(G,E ′) because in E ′ player ik has to choose a = 1
2

after

learning ak = ω, which renders a = 1
2

strictly suboptimal and so x violates obedience*.

Consider x′ such that player m and ik always match the state, while all the other players

choose a = 1
2
. This x′ belong to X(G,E ′), but clearly does not belong to X(G,E)

because in E player im has to choose a = 1
2

after learning am = ω, which renders a = 1
2

strictly suboptimal and so x′ violates obedience*.

Proof of Proposition 2. Part 1 (⇐): Suppose that E exhibits more influence than

E ′. Recall that this implies that Ej ⊇ E ′j for every j ∈ N . We want to show that,

for every π ∈ Π, ∆fE(π′)(Ω × Ai) ⊆ ∆fE(π)(Ω × Ai) for all i. Fix any i. Recall that,

for every π, i’s set of types under fE(π) is T
fE(π)
i = ×j∈EiSπj and under fE(π′) it is

T
fE′ (π)
i = ×j∈E′iS

π
j , where Sπj is the set of types of player j under the common initial π.

Take y ∈ ∆fE′ (π)(Ω×Ai). We will show that y ∈ ∆fE(π)(Ω×Ai). Since y ∈ ∆fE′ (π)(Ω×Ai),
there exists γ′ : T

fE′ (π)
i → ∆(Ai) such that

y(ω, ai) =
∑
s

γ′(ai|sE′i)π(s|ω)µ(ω), (ω, ai) ∈ Ω× Ai.

Now define γ : T
fE(π)
i → ∆(Ai) from γ′ by letting

γ(ai|sEi) = γ′(ai|sE′i)

whenever (sEi)j∈E′i = sE′i—that is, γ depends only on the components in Ei that also

belong to E ′i and in the same way that γ′ depends on them. This is well defined because

Ei ⊇ E ′i. Clearly, this γ gives rise to the distribution y induced by γ′, which therefore

belongs to ∆fE(π)(Ω× Ai).
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Part 2 (⇒): We prove this by contrapositive. Again, the only relevant case to

consider is that E does not exhibit more influence than E ′ (and vice versa). This implies

that for some i, there exists a k such that k ∈ E ′i and k /∈ Ei, and for some j (possibly

i = j), there exists m such that m ∈ Ej and m /∈ E ′j. It follows that theres exists a

player ik such that ik 6= k and there is a direct link from k to ik in E ′ but not in E, and

there exists a player im such that im 6= m there is a direct link from m to im in E but

not in E ′.

First, take an information structure π1 such that k gets full information and all other

players always get fully uninformative signals. Then, under fE′(π1) player ik gets full

information, while under fE(π1) he still gets no information. Therefore, fE does not

aggregate more information than does fE′ . Now, take an information structure π2 such

that m gets full information and all other players always get fully uninformative signals.

Then, under fE(π2) player im gets full information, while under fE′(π2) he still gets no

information. Therefore, fE′ does not aggregate more information than does fE. This

proves the contrapositive.

Proof of Proposition 3. Suppose that EM is deeper than ÊM , i /∈ M , and i /∈ Ej. If

Êi ∩M ⊆ Êj, then i ∈ ÊM
j by the definition of M -expansion. Since ÊM

j ⊆ EM
j ,22 we

have i ∈ EM
j as well. Since i /∈ Ej, we must have added links to E according to the

definition of M -expansion that render i ∈ EM
j . For this to be the case, there must exist

some sequence {jk}mk=0 which satisfies j0 = i, jm = j, and Ejk ∩M ⊆ Ejk+1
. In turn, this

implies that Ei ∩M ⊆ Ej.

Now suppose that the condition in the proposition holds. Then, EM is deeper than

ÊM if i ∈ ÊM
j implies i ∈ EM

j . Fix any i and j that satisfy i ∈ ÊM
j . If i ∈ Êj, then since

Êj ⊆ Ej ⊆ EM
j we have i ∈ EM

j . Next, suppose i ∈ ÊM
j \ Êj and therefore it must be

that Êi ∩M ⊆ Êj. In this case, we must have i /∈ M : Indeed, if i ∈ M , Êi ∩M ⊆ Êj

implies that i ∈ Êj. If i belongs already to Ej, then again i ∈ EM
j . If instead i /∈ Ej, by

assumption Ei ∩M ⊆ Ej and therefore (i, j) ∈ EM , which implies i ∈ EM
j .

Proof of Proposition 4. Suppose that i /∈ Ej. If Ei ∩M ′ ⊆ Ej, then (i, j) ∈ EM ′ by

the definition of M ′-expansion and so i ∈ EM ′
j . By assumption, we also have Ei∩M ⊆ Ej,

so again i ∈ EM
j . This implies that, for all j, EM ′

j ⊆ EM
j and therefore EM is deeper

than EM ′ .

Suppose that EM ′
j ⊆ EM

j for all j. Consider i such that i /∈ Ej. Then, Ei ∩M ′ ⊆ Ej

implies by the same argument as before that i ∈ EM ′
j . Since then i ∈ EM

j \ Ej, we have

22Note that i is a source of j if and only if j is a follower of i.
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added links to E according to the definition of M -expansion that render i ∈ EM
j . For

this to be the case, there must exist some sequence {jk}mk=0 which satisfies j0 = i, jm = j,

and Ejk ∩M ⊆ Ejk+1
. In turn, this implies that Ei ∩M ⊆ Ej.

Proof of Lemma 1. Step 1. Consider any finite-support (S, π) and let σ be the

designer-preferred equilibrium of (G, fE(π)). For every i, every sEi determines a non-

empty subset of optimal actions Ai(sEi):

Ai(sEi) = arg max
ai∈Ai

Eπ,σ[ui(ai, a−i, ω)|sEi ].

Since Ai is finite, every (π, σ) can determine at most finitely many subsets Ai(sEi) for

every player i. This requires no more than |2Ai | signals for player i. Therefore, every

(π, σ) can determine at most finitely many profiles of optimal-action sets of the form

A(s) = ×i∈NAi(sEi). We conclude that if we are interested in only such profiles, it is

enough to consider information structures that satisfy |Si| = |2Ai | for every i.

Step 2. We now need to transition from profiles of optimal-action sets to distributions

over pure-action profiles, which is what ultimately matters for the designer. To this end,

we use Theorem 2. Recall that each recommendation profile α can be interpreted, first of

all, as a signal realization from the information structure x. Step 1 shows that, if we are

interested only in spanning the profiles of optimal-action sets, it is enough to consider xs

with finite support. But this may not be enough for the entire set of feasible outcomes

intended as joint distributions between actions and states that satisfy obedience.

Suppose that x is a feasible outcomes/satisfies obedience. That is, for every i, αEi ∈
xEi , and ai, a

′
i ∈ Ai,∑

ω,α−Ei

∑
a−i

[ui(ai, a−i, ω)− ui(a′i, a−i, ω]αEi(aEi)α−Ei(a−Ei)

x(αEi , α−Ei |ω)µ(ω) ≥ 0,

where αEi(aEi) = (αj(aj))j∈Ei and α−Ei(a−Ei) = (αj(aj))j /∈Ei . We want to construct an

alternative x′ that is also feasible/satisfies obedience and induces the same joint distri-

bution between pure-action profiles and states as does x.

From step 1, we know that we can identify finitely many profiles of sets Ax(α) =

×i∈NAxi (αEi), where we treat each α as a signal realization from x. Let Ax be the finite

collection of such profiles determined by x. In particular, we know that |Ax| ≤
∏

i∈N |2Ai|
independently of x. For every ω, construct x′ as follows. For every Ax ∈ Ax, define

αA
x,ω(a) =

∑
α∈Ax

α(a)
x(α|ω)∑

α′∈Ax x(α′|ω)
, a ∈ A.
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This is the average mixed-action profile in state ω, conditional on α belonging to Ax.

Given this, for every αA
x,ω so identified, let

x′(αA
x,ω|ω) =

∑
α∈Ax

x(α|ω), ω ∈ Ω.

It is immediate to see that x and x′ induce the same joint distribution over pure-action

profiles and states: For every a and ω,∑
α′∈x′

α′(a)x′(α′|ω)µ(ω) =
∑
Ax∈Ax

αA
x,ω(a)x′(αA

x,ω|ω)µ(ω)

=
∑
Ax∈Ax

[∑
α∈Ax

α(a)
x(α|ω)∑

α′∈Ax x(α′|ω)

] ∑
α̂∈Ax

x(α̂|ω)µ(ω)

=
∑
Ax∈Ax

[∑
α∈Ax

α(a)x(α|ω)µ(ω)

]
=
∑
α∈x

α(a)x(α|ω)µ(ω).

Let’s now consider obedience. If we can show that x′ also satisfies obedience, we are

done. Fix any player i, any α′Ei ∈ x′Ei , and ai, a
′
i ∈ Ai. Note that α′Ei must equal αA

x,ω
Ei

for

some someAx and ω. LetAx(α′Ei) contain all the profilesAx that are compatible with α′Ei ,

i.e., that satisfy αA
x,ω

Ei
= α′Ei . Letting ∆ui(ai, a

′
i; a−i, ω) = ui(ai, a−i, ω) − ui(a′i, a−i, ω),

we have∑
ω,α′−Ei

∑
a−i

∆ui(ai, a
′
i; a−i, ω)α′Ei(aEi)α

′
−Ei(a−Ei)

x′(α′Ei , α
′
−Ei |ω)µ(ω)

=
∑

ω,Ax∈Ax(α′Ei
)

∑
a−i

∆ui(ai, a
′
i; a−i, ω)αA

x,ω
Ei

(aEi)α
Ax,ω
−Ei (a−Ei)

x′(αA
x,ω

Ei
, αA

x,ω
−Ei |ω)µ(ω)

=
∑

ω,Ax∈Ax(α′Ei
)

∑
a−i

∆ui(ai, a
′
i; a−i, ω)

∑
α∈Ax

αEi(aEi)α−Ei(a−Ei)
x(αEi , α−Ei |ω)∑
α′∈Ax x(α′|ω)

×
×
∑
α∈Ax

x(αEi , α−Ei|ω)µ(ω)

=
∑

ω,Ax∈Ax(α′Ei
)

∑
α∈Ax

∑
a−i

∆ui(ai, a
′
i; a−i, ω)αEi(aEi)α−Ei(a−Ei)x(αEi , α−Ei |ω)

µ(ω)

=
∑

Ax∈Ax(α′Ei
)

∑
α∈Ax

∑
ω,a−i

∆ui(ai, a
′
i; a−i, ω)αEi(aEi)α−Ei(a−Ei)x(αEi , α−Ei |ω)µ(ω)

 .

Now, recall that for every α ∈ Ax, we have that the set of optimal actions for player i

conditional on αEi is the same. Since x satisfies obedience for player i, his αi assigns

positive probability only to actions that are optimal conditional on αEi . Therefore, the
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entire sum must be non-negative. This shows that x′ satisfies obedience for player i and

every α′Ei ∈ x′Ei . By the same argument, x′ satisfies obedience for all players.

Proof of Proposition 5. Let Y be the set of outcome functions χ that satisfy all the

constraints of the primal P . Since V ∗E(N) = supχ
∑

ω,α v(α, ω)χ(α, ω) where χ satisfies

|suppχ(·, ω)| ≤
∏

i∈N |2Ai | for all ω, for every n ≥ 1 there exists χn that satisfies the

same support property and

V ∗E(N) ≥
∑
ω,α

v(α, ω)χn(α, ω) ≥ V ∗E(N)− 1

n
.

Let Ki = |2Ai | for every i. To every such χn, there correspond finite subsets Ani ⊂
∆(Ai) such that |Ani | = Ki for all i which define a grid in ×i∈N∆(Ai) over which we can

restrict the construction of χn itself. (Note that the support of χn may not use the entire

grid, but it is without loss to allow for these extra elements that receive zero probability).

Thus, for every i and ki = 1, . . . , Ki, there is a sequence αki,ni ∈ ∆(Ai) where αki,ni ∈ Ani is

an element of the grid of player i with (fixed) Ki elements to construct χn. Also, for each

ω and every (k1, . . . , kN) where ki = 1, . . . , Ki for every i, we have a sequence of elements

χn(αk1,n
1 , . . . , αkN ,nN , ω) ∈ [0, 1]. Since all these sequences belong to a compact space, each

has a converging subsequence. Moreover, since we have finitely many sequences because

each Ki is fixed and finite, there exists an overall subsequence of indexes ñ such that the

following holds:

lim
ñ→∞

αki,ñi = α̂kii ∈ ∆(Ai), ki = 1, . . . , Ki, i ∈ N ;

lim
ñ→∞

χñ(αk1,ñ
1 , . . . , αkN ,ñN , ω) = χ̂(α̂k1

1 , . . . , α̂
kN
N , ω), ki = 1, . . . , Ki, ω ∈ Ω.

Since χñ ∈ Y for all ñ by assumption, it is easy to see that χ̂ ∈ Y by continuity of the

functions in the constraints that define Y . Finally, we have that

V ∗E(N) ≥
∑
ω,α̂

v(α̂, ω)χ̂(α̂, ω) = lim
ñ→∞

∑
ω,αñ

v(αñ, ω)χñ(αñ, ω)

≥ lim
ñ→∞

(
V ∗E(N)− 1

ñ

)
= V ∗E(N).

Therefore,
∑

ω,α̂ v(α̂, ω)χ̂(α̂, ω) = V ∗E(N), which implies that χ̂ is a solution to P .

Proof of Theorem 3. Part 1: Vξ,E ≤ V∅. Fix ξ. Since for every π, we have fξ,E ∈ Π,

if follows that
sup
π∈Π

V (fξ,E(π)) = sup
π′∈fξ,E(Π)

V (π′) ≤ sup
π∈Π

V (π) = V∅.

Part 2: VE ≤ Vξ,E. Let fE(Π) be the set of all information structures that can result

from information spillovers under our baseline assumption given network E. For every
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π ∈ fE(Π), the Bayesian posteriors of every player i satisfy the property that, for all

signal realizations s,
Prπ(ω, s|sEi) = Prπ(ω, s|si);

that is, there is nothing that player i can learn from his sources that is not already

contained in his private signal si. For such information structures, also any other form

of communication captured by ξ cannot add anything to what each player i learns from

si. That is, if π ∈ fE(Π), then

Prfξ,E(π)(ω, s|hi) = Prfξ,E(π)(ω, s|h0
i ) = Prπ(ω, s|si).

Therefore, if σ ∈ BNE(G, π′) for some π′ ∈ fE(Π), then we also have σ ∈ BNE(G, fξ,E(π′)).

Since fE(Π) ⊂ Π, we have⋃
π∈fE(Π)

BNE(G, π) ⊆
⋃

π∈fξ,E(Π)

BNE(G, π).

It follows that

VE = sup
π∈fE(Π)

{ max
σ∈BNE(G,π)

∑
a∈A,t∈T,ω∈Ω

v(a, ω)σ(a|t)π(t|ω)µ(ω)}

≤ sup
π∈fξ,E(Π)

{ max
σ∈BNE(G,π)

∑
a∈A,t∈T,ω∈Ω

v(a, ω)σ(a|t)π(t|ω)µ(ω) = Vξ,E.

Proof of Lemma 3. Define N0
i = {i} and Nn

i = ∪j∈Nn−1
i

Nj for n = 1, . . . , N . Note

that NN
i = Ei. Fix a signal realization s and the corresponding unique hK(s) = hK . For

every player i,

ξi(h
0
i )(ω, s) = Prπ(ω, s|si) = Prπ(ω, s|sN0

i
), (ω, s) ∈ Ω× S.

Note that ∑
ω,s−i

Prπ(ω, s|si) =

1 if si = si

0 otherwise.

Fix n ≥ 1. Given hni , suppose that for every player j,

ξj(h
n−1
j )(ω, s) = Prπ(ω, s|sNn−1

j
), (ω, s) ∈ Ω× S.

Note that ∑
ω,s−j

Prπ(ω, s|sNn−1
j

) =

1 if sNn−1
j

= sNn−1
j

0 otherwise.

Therefore,
ξi(h

n
i )(ω, s) = Prπ(ω, s|sNn

i
), (ω, s) ∈ Ω× S.

Since this is true for every i, by induction we have that

ξi(h
K
i )(ω, s) = Prπ(ω, s|sNN

i
) = Prπ(ω, s|sEi), (ω, s) ∈ Ω× S,

thus concluding the proof.

50



Proof of Theorem 4. Part 1 (⇒): Suppose (S, π) ∈ ΠM and σ ∈ BNE(G, f(π))

induce x. Then, for every i, h∞i (s), and s ∈ S,∑
ω,s′

[ui(σi(h
∞
i (s′)), σ−i(h

∞
−i(s

′)), ω)−ui(ai, σ−i(h∞−i(s′)), ω)]Prπ(ω, s′|h∞i (s)) ≥ 0, ai ∈ Ai.

By Lemma 3, each agent i learns the signals of all his parents (i.e., sEi) for all s ∈ S.

Therefore, the previous inequalities become, for all i and sEi ,∑
ω,s′−Ei

[ui(σi(h
∞
i (s′)), σ−i(h

∞
−i(s

′)), ω)−ui(ai, σ−i(h∞−i(s′)), ω)]Prπ(ω, s′|sEi) ≥ 0, ai ∈ Ai,

where −Ei = N \ Ei. The last inequalities can be written as, for all i and sEi ,∑
ω,s′−Ei

[ui(αi, α−i, ω)− ui(ai, α−i, ω)]
∏
j∈N

I{σj(h∞j (s′)) = αj}Prπ(ω, s′|sEi) ≥ 0, ai ∈ Ai.

Now note that∏
j∈N

I{σj(h∞j (s′)) = αj}Prπ(ω, s′|sEi) =
Prπ,σ((σj(h

∞
j (s′−Ei , sEi)) = αj)j∈N , ω, s

′
−Ei , sEi)

Prπ(sEi)
.

Using this, we can write the last inequalities as, for all i, αi, and sEi ,∑
ω,s′−Ei

[ui(αi, α−i, ω)−ui(ai, α−i, ω)]Prπ,σ((σj(h
∞
j (s′−Ei , sEi)) = αj)j∈N , ω, s

′
−Ei , sEi) ≥ 0, ai ∈ Ai,

or equivalently,∑
ω,s′−Ei

[ui(αi, α−i, ω)− ui(ai, α−i, ω)]Prπ,σ(s′−Ei , sEi |(σj(h
∞
j (s′−Ei , sEi)) = αj)j∈N , ω)×

Prπ,σ((σj(h
∞
j (s′−Ei , sEi)) = αj)j∈N , ω) ≥ 0, ai ∈ Ai,

or equivalently,∑
ω,s′−Ei

,α−i

[ui(αi, α−i, ω)−ui(ai, α−i, ω)]Prπ,σ(s′−Ei , sEi |(σj(h
∞
j (s′−Ei , sEi)) = αj)j∈N , ω)x(αi, α−i|ω)µ(ω) ≥ 0, ai ∈ Ai.

Now define Xi = Si for all i and κ : Ω× (×j∈N∆(Aj)))→ ∆(X) as

κ(x|α, ω) = Prπ,σ(x|(σj(h∞j (x)) = αj)j∈N , ω),

for every ω and α ∈ suppx(·|ω). If α /∈ suppx(·|ω) for any ω, κ can be defined in any

arbitrary way. Note that, as for Theorem 2, by knowing xEi = sEi , player i knows the

mixed action of all j ∈ Ei, in particular the unique αi that can give rise to xEi under κ.

In other words, for all i ∈ N and xEi in the support of κ,

Prκ(αi|xEi) =

1 if αi = σi(h
∞
i (x−Ei , xEi)),

0 else.
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This condition implies property (2) of κ. Given this, we obtain property (3) that, for all

i, αi, and all xEi ,∑
ω,x′−Ei

,α−i

[ui(αi, α−i, ω)− ui(ai, α−i, ω)]κ(x′−Ei , xEi |α, ω)x(αi, α−i|ω)µ(ω) ≥ 0, ai ∈ Ai.

Part 2 (⇐): Suppose x and κ satisfy conditions (1) and (2). First, we construct

πxκ ∈ ΠM , by letting Si = Xi for all i and

πxκ(s|ω) =
∑
α

κ(s|α, ω)x(α|ω), ω ∈ Ω and s ∈ S.

Since |Xi| = 1 for all i /∈ M , πxκ ∈ ΠM . Now, we construct the candidate equilibrium

strategies σ. Recall that by Lemma 3, for every realization s from πxκ, every h∞i (s)

fully reveals sEi = xEi to player i, which by property (2) of κ fully reveals the realized

αi under x. Let αi(sEi) be such a recommendation given sEi . For every i, consider

σi : H∞i → ∆(Ai) defined by
σi(h

∞
i (s)) = αi(sEi),

for every realization s under πxκ.

Given this, by property (3), for every i, αi, and xEi ,∑
ω,α−i,x−Ei

[ui(αi, α−i, ω)− ui(a′i, α−i, ω)]κ(xEi , x−Ei |α, ω)x(αi, α−i|ω)µ(ω) ≥ 0, a′i ∈ Ai,

which is equivalent to∑
ω,α−i,x−Ei

[ui(αi, α−i, ω)−ui(a′i, α−i, ω)]
κ(xEi , x−Ei |α, ω)x(αi, α−i|ω)µ(ω)∑

ω′,α′−i,x
′
−Ei

κ(xEi , x
′
−Ei |αi, α

′
−i, ω

′)x(αi, α′−i|ω′)µ(ω′)
≥ 0, a′i ∈ Ai,

or equivalently (using property (2) again) for all i and sEi ,∑
ω,s′−Ei

[ui((αj(sEj))j∈N , ω)− ui(a′i, (αj(sEj))j 6=i, ω)]Prπ(ω, s′|sEi) ≥ 0, a′i ∈ Ai.

Using the definition of σ, these last inequalities boil down to the equilibrium conditions

that, for all i and sEi ,

∑
ω,s′−Ei

[ui(σi(h
∞
i (s′)), σ−i(h

∞
−i(s

′)), ω)− ui(ai, σ−i(h∞−i(s′)), ω)]Prx(ω, s
′|sEi) ≥ 0, ai ∈ Ai.

Therefore, σ ∈ BNE(G, f(πxκ)).
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