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Abstract

A decision maker faces a choice problem under uncertainty and may hire experts to collect

information regarding the realized state. The experts choose how much (costly) effort to exert, which

determines the quality of information they obtain. Efforts and signal realizations are unobservable;

moreover, payments can’t be contingent on the realized state. The decision maker thus has to

design a contract that induces the experts to ‘monitor each other’ by making payments contingent

on the entire vector of reports. We characterize the information structures that the decision maker

can implement. In the special case of binary states and signals we characterize the least costly

contract that implements a given information structure and study the tradeoff between the value

of information and its cost. In particular, we show that discriminating between the experts is a

common feature of an optimal contract.
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1 Introduction

In the classic principal-agent problem, the principal relies on the correlation between the agent’s un-

observable effort and the observed output to motivate the agent to work. Consider the case where

the principal is a decision maker (DM, henceforth) facing a choice among several alternatives whose

attractiveness is uncertain; and where the agent is an expert who has no stake in the decision but is

capable of collecting relevant information at a cost that increases with informativeness. The ‘output’

in this case can be thought of as the combination of the expert’s signal and the ex-post realized state:

If the expert’s recommendation turned out to be a good one then output is high, while a bad advice

corresponds to low output. Incentives can then be provided based on the correlation between effort and

outcomes in a way that resembles the classic case (see below for references to this type of models).

But what if the expert privately observes the data he collects, and, moreover, compensations cannot

wait until the DM learns the state or her payoff? To illustrate, suppose that a policy maker contemplates

between several proposals to reduce global warming. An expert is tasked with predicting the effectiveness

of each of the alternatives. How can the policy maker guarantee that the expert conducts a thorough

investigation if the latter has exclusive access to the collected data, and given that uncertainty will be

resolved only in the far future? As a second example, consider a political candidate who hires a pollster

to estimate public sentiment on a certain issue. The true ‘state’ will likely never be revealed so is not

contractible, and the pollster may be able to misrepresent the data when reporting the results.

A potential solution for the DM, and the one we study in this paper, is to hire several experts and

have them ‘monitor each other’. The basic idea goes as follows: When an expert exerts a high effort he

gets an accurate signal of the state, so if all experts exert high efforts and truthfully report their signals

then (under reasonable assumptions) these signals are likely to be close to each other. Thus, by paying

high compensations in the event of matching signals and low compensations when a mismatch occurs

the DM can incentivize the experts to work hard and to reveal what they find. Put differently, the

contract creates a coordination game between the experts, and nature’s unknown realized state serves

as a focal point; if an expert believes that other experts’ reports are likely to concentrate around this

focal point, then he has an incentive to collect information so that his report will match the state as

well; the DM in turn learns about the state through the experts’ reports.1

In our model, uncertainty is captured by a finite state-space with a common prior belief shared by

the DM and all the experts. All parties are risk-neutral. The DM offers a contract which specifies the

payment for each expert as a function of the vector of reported signals she receives from the experts. We

assume limited liability – negative payments are not allowed. Each expert then chooses what experiment

to conduct and, upon obtaining the results, what signal to report to the DM. Throughout we assume that

experts’ signals are independent conditional on the state of nature. We say that a contract implements

a given vector of information structures if in the game it induces it is an equilibrium for the experts to

choose their respective structures and to truthfully report their signals.

The contribution of this paper can be divided into two parts. The first is a detailed study of the

1Similar ideas of peer-monitoring appeared in papers by Gromb and Martimort [18], Rahman [33], and Bohren and
Kravitz [7]; we discuss the relation to these papers in the related literature section below.
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case in which the state-space and signal-space for each expert are binary, and the information structures

available to the experts are symmetric between the two states. The information structure of each expert

in this case is summarized by a single number – the probability of the signal matching the state, which

we assume to be increasing in effort. We are interested in properties of the optimal contract in this

environment. Our analysis is based on the Grossman-Hart [19] approach: As a first step, for each vector

of information structure find the least costly way for the DM to implement it. Second, once the cost

function is obtained, maximize the difference between the value of information and its cost over all

implementable vectors of information structures.

Even in this simple environment, and with a convex cost function for effort, the first-order condi-

tion with respect to effort is not sufficient to guarantee incentive compatibility. The problem is the

manipulability of the experts’ reports: Even if there is no profitable deviation from the required effort

level under truthful reporting, an expert may nevertheless find it profitable to reduce his effort and

misreport his signal. In particular, the first-order approach does not apply in our environment. This

is reminiscent of the situation in the standard moral hazard setup when the agent can ‘burn’ output:

Incentive compatibility forces the contract to be monotonic in output even when monotonicity is not

implied by the first-order condition (See, e.g., Bolton and Dewatripont [8, page 148]).

Despite this difficulty, it turns out that finding the DM’s cost function boils down to solving a

linear program whose solution can be characterized: The least costly way to implement any vector of

information structures involves paying the experts only in the event where they all report the same signal.

This gives an expert the maximal incentive to work relative to the expected cost of the contract with

that expert. From this we derive an explicit formula for the cost function. An interesting observation

that we can already make at this point is that the expected payment to an expert in the least costly

contract increases in that expert’s own effort, but decreases in other experts’ efforts. This implies in

particular that inducing higher effort (and thus obtaining better information) is not necessarily more

costly for the DM, a somewhat counterintuitive result.

We then move on to study the value of information for the DM. Instead of focusing on a particular

decision problem, our approach here is to compare informativeness according to the Blackwell [5] crite-

rion, i.e., to look for properties of the value of information that all decision makers agree on. The main

result of this part is the following: If two sets of experts have the same average accuracy2 of signals, and

in one of these sets the spread of accuracies is larger than the other, then the former is more Blackwell

informative than the latter. For example, ignoring the cost, every decision maker in every decision prob-

lem prefers two experts with respective accuracies 7
8 and 5

8 over two experts each with accuracy of 3
4 ,

and the latter over 3 experts with accuracy of 2
3 each. This result, which is of independent interest and

may be useful in other applications,3 expresses non-concavity in the value of information of a different

type than in the classic result of Radner and Stiglitz [31] (see also Chade and Schlee [11]).

This non-concavity in the value of information makes solving for the optimal contract a particularly

2Accuracy is measured as the increase in the probability that the signal matches the state relative to the uninformative
structure where this probability is 1

2
.

3In voting, for example, this result implies that few well-informed voters outperform many little-informed voters, given
that the average accuracy in the two groups is the same.
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difficult task, as it implies that first-order conditions are not sufficient for optimality. We emphasize

that this is a separate problem from the failure of the first-order approach discussed above; here the

issue is that the mapping from efforts’ vectors to DM’s utility is not well-behaved. Yet, there are several

properties of optimal contracts that we can deduce from comparing the cost and value of information.

For the case of two experts, we show that arbitrarily close to any decision problem there is a decision

problem in which the optimal contract requires uneven compensations to experts. This conclusion

holds uniformly across all cost-of-effort functions. The intuition comes directly from the non-concavity

result described above: A given total effort generates the least amount of information when divided

equally between the experts.4 Thus, discrimination between experts naturally follows from optimality

considerations and need not be the result of prejudice or bias.5

Another property of optimal contracts is that they never involve many low-effort experts. More

precisely, we show that if the derivative of the cost function is positive at zero effort, then the cost of

hiring n experts uniformly diverges to +∞ as n grows. This implies that a given “budget of effort”

should never (i.e., for no decision problem) be divided among many experts, as this is both more costly

and less informative than dividing it between a small number of experts. In particular, for the case

in which full learning of the state is implementable, we derive a uniform upper bound on the optimal

number of experts.

In the second part of the paper we leave the binary-binary model in order to obtain a general

characterization of the information structures that the DM can induce the experts to produce. This

result is achieved with minimal structural assumptions about the environment. Instead of modeling

the experts as choosing efforts and reporting strategies, we assume that each expert simply chooses an

information structure from a given set of such structures; in subsection 3.1 and Appendix B we show

that an effort and reporting model, as in the binary-binary framework, can be translated into this more

abstract formulation. The characterization of implementable vectors of information structures follows

Rahman ([32], [33]): An obvious necessary condition for m = (m1, . . . ,mn) to be implementable is that

no expert i can deviate to another structure m′i which is less costly than mi and generates the same

distribution over signal vectors as mi (when combined with m−i). We show that if this condition holds

then, under our assumptions, for each deviation m′i there is a contract which renders it unprofitable.

A version of the minmax theorem then implies that there is a single contract that simultaneously

discourages all deviations. Hence, this condition is also sufficient.

From this basic characterization, and using the particular structure of our environment (conditional

independence, especially), we derive easy-to-check sufficient conditions for implementability. Suppose

that m−i is such that the conditional distributions of s−i given the various states of nature, viewed as

vectors in RS−i , are linearly independent. Then it is easy to see that the mapping from i’s choice mi

to the distribution of the vector s of all n signals is one-to-one. Thus, if m is such that this condition

holds for all i, then it follows from the above characterization that m is implementable regardless of the

cost function. Note that linear independence ‘typically’ holds whenever the number of states is smaller

4On the other hand, the cost is typically convex and hence minimized at the equal split point. This is why our result
holds only for a dense set of decision problems and not everywhere.

5A similar point in a very different context is made in Winter [39].
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than the number of possible s−i’s for each i.6 An interesting corollary of this result is that in a sense

implementation becomes easier when more information is requested. Namely, we show that if m satisfies

the above linear independence conditions (and hence is implementable with every cost), then so is every

m′ in which m′i is more informative than mi, i = 1, . . . , n. Thus, if a certain m is not implementable

then it’s not because too much is asked from the experts but rather too little.

An obvious shortcoming of the type of contracts we study is that they do not implement the desired

equilibrium uniquely; after all, the experts can coordinate their reports without collecting any informa-

tion. Full implementation is impossible here, since for every contract a zero-effort equilibrium exists.

However, the ‘good’ equilibrium with information acquisition has an appeal that is not captured by the

abstract description of the game, but stems from the context of the problem. Collecting information

creates a focal course of action even when ex-ante none of the options stands out. If the likelihood of

successful coordination increases in the focality of one of the actions, as the theory of Schelling [36]

suggests, then we should expect agents to be willing to incur a cost in order to create a focal point. We

further discuss this issue in the concluding section.

1.1 Related literature

This paper combines elements from several strands of literature, including moral hazard, monitoring

design, value of information, and costly information acquisition. There are two previous papers we are

aware of that explicitly consider peer-monitoring of information providers: In Bohren and Kravitz [7]

the principal faces an infinite stream of identical decision problems, each with a fixed positive payoff

if her action matches the state and a payoff of 0 otherwise. The principal can hire workers to verify

the state at a cost, and the main interest is in the optimal rate of monitoring – how often should two

workers (and not just one) be assigned to the same problem to make sure that reports about the state are

genuine, and how the optimal monitoring structure depends on the commitment power of the principal.

The second paper is Gromb and Martimort [18] who study a model of delegated expertise and compare

the case of a single expert with two signals to the case of two experts with one signal each. The DM

in their model can either undertake a project or not, and the ex-post outcome (the state) is observable

and contractible when the project is undertaken. In the two experts case the optimal contract involves

payments contingent not only on the outcome of the project, but also on whether the two reports agree.

This additional instrument makes hiring two experts better for the DM than hiring just one. Gromb

and Martimort’s focus is on the implications of the possibility of collusion between the experts for the

optimal contract and the principal’s payoff.7

In the above two papers the workers/experts face a binary choice of either exerting effort or not, so

there is no scope to study the tradeoff between the quality of information and its cost. The richness of

our environment uncovers properties such as the non-monotonicity of the DM’s cost function and the

asymmetry of the optimal contract that cannot be discussed in these previous models. Moreover, we do

not restrict attention to a particular decision problem as the other papers do, and instead study general

6Our linear independence condition resembles that of Crémer and McLean [13], see below for more on the differences
between the results.

7Collusion here means that the experts play other equilibria than the one intended by the principal.
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properties of optimal contracts that are satisfied uniformly across all problems. Finally, the second part

of this paper on implementability has no parallel in these previous works.

Rahman [33] emphasizes the ability of a principal to monitor workers by secretly recommend actions

and base compensations on reported signals as well as on these recommendations.8 In the leading

example he shows how this can be used to ‘monitor the monitor’: If a worker was (secretly) asked to

shirk and the monitor reported otherwise then the monitor gets punished. The current paper suggests

that an alternative solution for the principal is to hire two monitors and pay them only if their reports

match. While this still requires the principal to secretly ask the worker to shirk sometimes (to keep the

monitors uncertain), the payments need not depend on the recommendation.

The second part of this paper is based on Rahman’s characterization of implementability in [32] and

[33]. Specifically, our Theorem 3 can be deduced from the results in [32], see in particular Theorem

2 of that paper. For completeness we provide a full proof that uses the additional structure of our

environment. This structure also allows us to get the simple sufficient conditions for implementability

in Proposition 5 and its corollaries. The linear independence condition of Proposition 5 resembles that

of Crémer and McLean [13] in their work on full extraction of surplus in auctions. While the results are

related, note that our proposition does not pertain to efficient or revenue-maximizing implementation.

Moreover, in our model the experts choose the information structure, while in Crémer and McLean

the information structure is exogenously given and agents only choose which signal to report to the

auctioneer. A recent work of Bikhchandani and Obara [4] extends the results of Crémer and McLean

to environments where agents can acquire additional information, but their interest is also in efficiency

and full surplus extraction. We refer the reader to [33, Section VI] for a thorough discussion of the

connection between the characterization of implementability and previous works in mechanism design

and repeated games.

There are two additional papers in which a decision maker hires a group of disinterested experts to

collect information. In Dewatripont and Tirole [14] two ‘advocates’ may bring information in favor of

opposite alternatives. Since each of the advocates is restricted to investigate a different (independent)

dimension of the state, it is impossible to generate incentives by comparing their messages. Instead,

Dewatripont and Tirole assume that collecting information sometimes generates ‘hard evidence’ that

cannot be presented otherwise. Khanna et al. [22] suggest a mechanism that induces a group of experts

to acquire costly information and truthfully reveal their signals. They further show that if agents can

communicate (using cheap-talk messages) before submitting their reports then there is no equilibrium

in which agents lie about their signals. However, their mechanism uses the ex-post realized state, so

cannot be applied in our setup.

There are quite a few papers in which a single expert is hired to collect (costly) information. See

Osband [29], Zermeño, [40], Rappoport and Somma [34], Chade and Kovrijnykh [10], Carroll [9], Clark

[12], and Häfner and Taylor [20], among others. These models differ from each other in various dimen-

sions, but in all of them the set of contractible variables is sufficient to provide incentives, so monitoring

the expert is not necessary. Since in our model payments can only depend on the unverifiable reports

8See also Strausz [37] on the connection between Rahman’s paper and the classic mechanism design framework of
Myerson [28].
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of the experts, clearly there is no way for the DM to provide incentives with a single expert.

The experts in our model have no stake in the choice of the DM, which separates our framework from

most of the extensive literature on ‘cheap talk’ and ‘Bayesian persuasion’. But there are several papers

in this literature demonstrating that the receiver can significantly improve the quality of information

she gets by comparing messages from multiple senders. Some examples are Krishna and Morgan [23],

Battaglini [3], and Gentzkow and Kamenica [15]. Another strand of relevant literature studies the design

of committees when committee members may acquire information prior to voting on an issue they all

care about, e.g. Persico [30], Martinelli [26], Gerardi and Yariv [16], and Gershkov and Szentes [17].

In these papers incentives to collect information are provided through the voting rule and not through

transfers.

Finally, the classic works of Alchian and Demsetz [1] and Holmstrom [21] offer different views regard-

ing the role of principals. The first paper argues that monitoring workers is one of the main roles of the

owner of a firm. The DM in our model does not directly monitor the experts e.g. for lack of appropriate

knowledge/technology, and instead relies on the experts to monitor each other. However, our results on

optimal contracts (Corollary 2, in particular) imply that sometimes experts should be hired only for the

sake of monitoring other experts, i.e., their input is not taken into account at all in the decision-making

process. This can be seen as a form of ‘specialization in monitoring’ that the theory of Alchian and

Demsetz implies. The second paper argues that the principal role is to break the budget-balance con-

straint and shows that group penalties when output is low can incentivize effort. The optimal contract

we derive has the same flavor of group penalties, where no expert is getting paid unless all signals agree,

though budget-balance is not straightforward to define in our setup of information provision.

2 A binary-binary model

2.1 The setup

A decision maker (DM) faces a decision problem under uncertainty. There are two possible states –

Black (B) or White (W ). The prior probability of state B is γ, and we assume that 1
2 ≤ γ < 1 (the

case 0 < γ < 1
2 can be obtained by reversing the labels of the states).

The DM hires a set N of |N | = n risk-neutral experts to collect information about the realized state.

Each expert i ∈ N chooses an effort level ei ∈
[
0, 1

2

]
. The cost of effort is described by the function

c :
[
0, 1

2

]
→ R. We assume that c is strictly increasing, strictly convex, three times continuously

differentiable, and that c(0) = 0. Let C be the set of all cost functions with these properties.

Each expert privately observes a signal from Si = {b, w}, where the distribution over signals condi-

tional on each state depends on the effort level that the expert exerts. Specifically, if i chooses ei then

he observes the ‘correct’ signal with probability 0.5 + ei and the ‘wrong’ signal with probability 0.5− ei.
Thus, i’s information structure is described by the stochastic matrix
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mi(ei):=

b w

B 0.5 + ei 0.5− ei
W 0.5− ei 0.5 + ei

Note that no effort leads to uninformative signal, and that informativeness increases with effort. We

assume that signals for different experts are independent conditional on the state. Given the vector of

effort levels e = (e1, . . . , en), denote by m(e) the information structure obtained by observing the signals

of all the experts.

The experts have no stake in the decision, and the DM may offer monetary compensation for their

efforts. However, effort is unobservable and realized signals are privately observed by the experts and

are unverifiable. Moreover, compensations occur immediately after the experts report their signals, so

transfers can’t be contingent on the true state. We consider ‘direct mechanisms’ in which each expert

submits a report si ∈ Si and gets compensated based on the entire vector of reports s ∈ S := ×ni=1Si.

Thus, a contract is a list x = (x1, . . . , xn) with each xi : S → R+. Note that we assume that payments

are non-negative, which captures ‘limited liability’ on the part of the experts.

A contract x induces a game between the experts. A pure strategy for expert i in this game

is a pair (ei, ri), where ei ∈
[
0, 1

2

]
is i’s effort level and ri : Si → Si is the report that i sends

to the DM as a function of the signal he observed. The payoff to expert i given strategy profile

(e, r) = ((e1, . . . , en), (r1, . . . , rn)) is

Ui(e, r; xi) := E(e,r) [xi(s)]− c(ei), (1)

where the distribution of s used to calculate the expectation is derived from the strategies (e, r) by

P(e,r)(s) =
∑

s′∈r−1(s)

γ ∏
{j :s′j=b}

(0.5 + ej)
∏

{j :s′j=w}

(0.5− ej) + (1− γ)
∏

{j :s′j=w}

(0.5 + ej)
∏

{j :s′j=b}

(0.5− ej)

 .
It will be convenient to introduce the following notation. For every subset of experts A ⊆ N and

every efforts’ vector e let e(A) =
∏
j∈A(0.5+ej) and ē(A) =

∏
j∈A(0.5−ej). Thus, e(A) is the probability

that all experts in A obtain the ‘correct’ signal, and ē(A) is the probability they all obtain the ‘wrong’

signal. Given a vector of signals s ∈ S denote sb = {j : sj = b} and sw = N \ sb = {j : sj = w}.
Finally, let r∗ = (r∗1 , . . . , r

∗
n) denote the vector of truthful reporting strategies. Using this notation we

have that

P(e,r∗)(s) = γe
(
sb
)
ē (sw) + (1− γ)e (sw) ē

(
sb
)
.

Say that a contract x implements the vector of efforts e = (e1, . . . , en) if (e, r∗) is an equilibrium of

the game induced by x with payoff functions as in (1); using Myerson’s [28] terminology, x implements

e if honesty (truthful reporting) and obedience (choosing the desired effort level) is a best response for

each expert given that all other experts are honest and obedient. Efforts’ vector e is implementable if

there exists a contract x that implements it.
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2.2 Cost of information

There would typically be many contracts x that implement a given e. Let ψi(e) be the minimal expected

payment that the DM would need to make to expert i in a contract that implements e. Formally, ψi(e)

is the value of the minimization problem (COST) given by

ψi(e) = min
xi

E(e,r∗)[xi(s)] (COST)

s.t. (ei, r
∗
i ) ∈ arg max

(e′i,r
′
i)

{
Ui
(
(e′i, r

′
i), (e−i, r

∗
−i); xi

)}
and xi(s) ≥ 0 ∀s ∈ S.

The following theorem gives the solution to program (COST) and the cost function of the DM ψi(e).

To state the result it will be useful to write b (w) for the vector of reports s ∈ S in which si = b (si = w)

for all i. Also, we will use the shorter notation N−i = N \ {i} and N−ij = N \ {i, j}.

Theorem 1. Let e = (e1, . . . , en) be such that 0 < ei < 0.5 for every i. Then e is implementable, and

a solution to program (COST) is given by

x∗i (s) =
1

γ(1− γ) [e(N−i)2 − ē(N−i)2]
×

γē(N−i)[(0.5− ei)c′(ei) + c(ei)] + (1− γ)e(N−i)[(0.5 + ei)c
′(ei)− c(ei)] if s = b,

γe(N−i)[(0.5− ei)c′(ei) + c(ei)] + (1− γ)ē(N−i)[(0.5 + ei)c
′(ei)− c(ei)] if s = w,

0 otherwise.

Furthermore, the cost function for the DM is given by

ψi(e) =

[
γē(N) + (1− γ)e(N)

][
γe(N−i) + (1− γ)ē(N−i)

]
c′(ei) + (2γ − 1)e(N−i)ē(N−i)c(ei)

γ(1− γ)
[
e(N−i)2 − ē(N−i)2

] .

Proof. We break the proof into four steps. Proofs of auxiliary lemmas appear in Appendix A.

Step 1: Simplifying the constraints

Lemma 1 below shows that one can replace the incentive compatibility constraint in (COST) by three

linear constraints: Equation (2) is the first-order condition with respect to effort at ei; by convexity of

c it is necessary and sufficient for deviations to other effort levels to be unprofitable (assuming honest

reporting). Inequality (3) guarantees that deviating to zero effort and constant reporting ri ≡ b is not

profitable. Similarly, inequality (4) is the constraint associated with the deviation to zero effort and

constant reporting ri ≡ w.

Lemma 1. A contract xi : S → R+ is feasible for program (COST) if and only if it satisfies the following

9



constraints:9

∑
s−i∈S−i

[
γe
(
sb−i
)
ē
(
sw−i
)
− (1− γ)e

(
sw−i
)
ē
(
sb−i
) ][

xi (b, s−i)− xi (w, s−i)
]

= c′(ei), (2)

∑
s∈S

P(e,r∗)(s)xi(s)− c(ei) ≥
∑

s−i∈S−i

P(e−i,r∗−i)
(s−i)xi (b, s−i) , (3)

∑
s∈S

P(e,r∗)(s)xi(s)− c(ei) ≥
∑

s−i∈S−i

P(e−i,r∗−i)
(s−i)xi (w, s−i) . (4)

The constraints (2)-(4), together with the objective E(e,r∗)[xi(s)] and the non-negativity constraints

define a linear program that, given Lemma 1, is equivalent to (COST). We refer to this auxiliary

program as (AUX):

min
xi

E(e,r∗)[xi(s)] (AUX)

s.t. (2)− (4) and xi(s) ≥ 0 ∀s ∈ S.

Step 2: x∗i is feasible for (AUX)

First, since c is convex and satisfies c(0) = 0 we have that c(ei) ≤ eic
′(ei). This implies that x∗i in

the statement of the theorem is non-negative. Second, plugging x∗i to the constraints (2)-(4) gives

[
γe (N−i)− (1− γ)ē (N−i)

]
x∗i (b)−

[
γē (N−i)− (1− γ)e (N−i)

]
x∗i (w) = c′(ei),

[
γe(N) + (1− γ)ē(N)

]
x∗i (b) +

[
γē(N) + (1− γ)e(N)

]
x∗i (w)− c(ei) ≥

[
γe (N−i) + (1− γ)ē (N−i)

]
x∗i (b) ,

and

[
γe(N) + (1−γ)ē(N)

]
x∗i (b) +

[
γē(N) + (1−γ)e(N)

]
x∗i (w)− c(ei) ≥

[
γē (N−i) + (1−γ)e (N−i)

]
x∗i (w) ,

respectively. We leave it for the interested reader to verify that these all indeed are satisfied.10 It follows

that x∗i is feasible for (AUX).

Step 3: The dual of (AUX) and a feasible solution

The dual of program (AUX) is given by the following:

max
z1,z2,z3

{c′(ei)z1 + c(ei)(z2 + z3)} (DUAL)

s.t. z2, z3 ≥ 0, and for every s−i ∈ S−i[
γe(sb−i)ē(s

w
−i)− (1− γ)e(sw−i)ē(s

b
−i)
]
z1 − P(e,r∗)(w, s−i)z2 + P(e,r∗)(b, s−i)z3 ≤ P(e,r∗)(b, s−i) (5)

9As is standard, (si, s−i) with si = b or si = w denotes the vector of reports (or signals) in which i reports si and all
other experts report according to s−i.

10We note that the middle constraint holds as equality and that the last inequality boils down to c(ei) ≤ eic′(ei).
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and

[
γe(sb−i)ē(s

w
−i)− (1− γ)e(sw−i)ē(s

b
−i)
]
z1 − P(e,r∗)(w, s−i)z2 + P(e,r∗)(b, s−i)z3 ≥ −P(e,r∗)(w, s−i). (6)

Lemma 2 below introduces a particular vector z∗ = (z∗1 , z
∗
2 , z
∗
3) and argues that it is feasible for

(DUAL). To prove the lemma we first show that the constraint (5) associated with s−i = b−i is satisfied

at z∗ (with equality), and then argue that constraints (5) associated with other s−i’s are less stringent

at z∗ and hence satisfied as well. A similar argument applies for the set of constraints (6), with w−i

taking the role of b−i.

Lemma 2. Let

z∗1 =
(γē(N) + (1− γ)e(N)) (γe(N−i) + (1− γ)ē(N−i))

γ(1− γ) [e(N−i)2 − ē(N−i)2]
,

z∗2 =
(2γ − 1)e(N−i)ē(N−i)

γ(1− γ) [e(N−i)2 − ē(N−i)2]
, and z∗3 = 0.

Then z∗ = (z∗1 , z
∗
2 , z
∗
3) is feasible for (DUAL).

Step 4: x∗i is optimal for (COST)

The value of the objective of (AUX) at x∗i is

E(e,r∗)[x
∗
i (s)] = P(e,r∗)(b)x

∗
i (b) + P(e,r∗)(w)x∗i (w),

and that of the objective of (DUAL) at z∗ is

c′(ei)z
∗
1 + c(ei)z

∗
2 .

It is immediate to check that these two values coincide (and also coincide with the formula for ψi(e)

given in the statement of the theorem). Therefore, by the weak duality theorem of linear programming,

x∗i is optimal for (AUX). From Lemma 1 it now follows that x∗i is optimal for (COST) as well, which

completes the proof.

Before proceeding it is worth making several remarks regarding Theorem 1:

Remark 1. If the cost function c satisfies c′(0.5) < +∞ then the theorem remains true for any vector

e with 0 < ei ≤ 0.5, i.e., even if some experts’ signals fully reveal the state. The only difference in the

proof is that the equality in the first-order condition (2) is replaced by a greater-or-equal inequality, but

at the optimum this constraint binds so the result is unchanged.

Remark 2. If ei = 0 for some expert i then xi ≡ 0 solves (COST) and ψi(e) = 0. In addition, the

signals obtained from zero-effort experts are uninformative. We can therefore restrict attention only

to experts that exert strictly positive efforts. However, for e to be implementable it is necessary (and

sufficient) that at least two experts exert effort. See Section 3 for a more general characterization of

implementable information structures.
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Remark 3. Consider the case of a uniform prior γ = 0.5. The cost function ψi(e) in this case boils

down to

ψi(e) =
e(N) + ē(N)

e (N−i)− ē (N−i)
c′(ei).

Moreover, the cost-minimizing contract is not unique, and one of the solutions to program (COST) is

given by

xi (b) = xi (w) =
c′(ei)

e (N−i)− ē (N−i)
,

and xi(s) = 0 otherwise. Note that this solution is different than x∗i (with γ = 0.5) given in the

statement of the theorem. With the above solution both constraints (3) and (4) do not bind, i.e., there

is an optimal solution to the relaxed program containing only the local effort constraint (2) which is

feasible for the original program (COST). This however is not true whenever γ 6= 0.5: The optimal

solution in the relaxed program with constraint (2) alone violates one of the ‘global’ constraints (3) or

(4).

Remark 4. Consider a variant of our model in which the DM directly observes the experts’ signals,

or, alternatively, that experts’ reports are freely verifiable. Experts here only choose efforts (and not

reporting strategies), so incentive compatibility is characterized by the first-order condition (2) only. We

distinguish between two cases: If γ = 0.5 then it should be clear from the previous Remark 3 that the

cost function ψi(e) remains unchanged, and so nothing changes in our subsequent analysis. But when

γ > 0.5 it is not hard to show that the cost-minimizing contract is given by xi(b) = c′(ei)
γe(N−i)−(1−γ)ē(N−i)

and xi(s) = 0 for all other s ∈ S. That is, experts are paid only if they all obtain the ex-ante more

likely signal. This in turn gives an expected payment to expert i of

γe(N) + (1− γ)ē(N)

γe (N−i)− (1− γ)ē (N−i)
c′(ei).

The (strictly positive) difference between this last expression and ψi(e) of Theorem 1 is the additional

rent that expert i derives due to the exclusive access he has to the signal.

Remark 5. As the optimal contract x∗i pays positive amounts only in the events s = b and s = w,

it is interesting to think in which of these two the payment is higher. A direct comparison shows that

x∗i (b) > x∗i (w) if and only if c(ei) < c′(ei)[ei + 0.5 − γ]. Thus, for a given ei, if state B is sufficiently

likely (γ large enough) then the payment at the less likely event w is higher, while if the prior is close

to uniform then the payment at the more likely event b is higher (recall that c(ei) < eic
′(ei)). To

understand why, note that the binding constraint which determines how the total payment is divided

between these two events is (3, which requires that a deviation to no effort and constant reporting of b is

not profitable. As γ increases this deviation becomes more attractive, which forces the relative payment

in the less likely event s = w to increase.

A corollary of Theorem 1 is that the total expected payment to an expert in the least costly contract

increases in that expert’s own effort and decreases in other experts’ efforts (the proof is in Appendix

A).
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Corollary 1. For any interior e and two experts i 6= j it holds that ∂ψi(e)
∂ei

> 0 and
∂ψj(e)
∂ei

< 0.

Let ψ(e) =
∑n
i=1 ψi(e) be the total expected cost for the DM in the least costly contract that

implements e. Corollary 1 implies that in ∂ψ(e)
∂ei

= ∂ψi(e)
∂ei

+
∑
j 6=i

∂ψj(e)
∂ei

the first term is positive and the

second is negative. As we shall see below (e.g. in Proposition 2), it may happen that the second effect

is stronger, so that the expected cost to the DM is decreasing in the effort required from i.

2.3 Value of information

Finding the cost of obtaining information, we now consider the value of information for the DM. A

decision problem can be described by a set of possible alternatives and a utility function that maps each

alternative-state pair to the reals. Any decision problem induces a function v : ∆({B,W}) → R that

assigns to each belief the maximal achievable expected utility for the DM given that belief.11 For any

decision problem the induced function v is the point-wise maximum of a family of linear functions and is

therefore convex and continuous. Conversely, any convex and continuous v can be obtained from some

decision problem (see, e.g., Azrieli and Lehrer [2]). It will be convenient to work directly with the ‘value

function’ v rather than explicitly modeling decision problems. We denote by q ∈ [0, 1] the DM’s belief

that the state is B and identify ∆({B,W}) with [0,1]. Let V be the set of all convex and continuous

functions v : [0, 1]→ R.

Example 1. Suppose that the set of available alternatives is {B,W} (same as the set of states) and

that the DM gets a utility of 1 if her choice matches the state and a utility of 0 otherwise. Then the

induced v is given by v(q) = max{q, 1− q}.

Example 2. Suppose that the DM needs to choose between a safe alternative S and a risky alternative

R. Choosing S yields a sure utility of 0, while choosing R yields a utility of 1 in state B and a utility of

-1 in state W . The corresponding v is then v(q) = 0 for 0 ≤ q ≤ 0.5 and v(q) = 2q − 1 for 0.5 < q ≤ 1.

Example 3. Let the set of alternatives be the unit interval [0, 1], and the utility function be u(a,B) =

−(1 − a)2 and u(a,W ) = −a2 for every alternative a ∈ [0, 1]. Then it is well-known and easy to check

that when the DM’s belief is q her optimal choice is a = q. This gives v(q) = −q(1− q).

After receiving the vector of signals s from the information structure m(e), the DM updates her belief

using Bayes rule and chooses the alternative that maximizes her expected utility. If we let Me denote

the distribution over posterior beliefs induced by m(e) (and the prior γ), then the value of information

structure m(e) in decision problem v ∈ V is

Vv(e) :=

∫ 1

0

v(q)dMe(q).

Our goal in this section is to formulate a condition on a pair of efforts’ vectors e, e′ which guarantees

that Vv(e) ≥ Vv(e
′) for every v ∈ V (i.e., for every decision problem); this will later allow us to

11Existence of a maximum is guaranteed under appropriate compactness and continuity assumptions.
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draw general conclusions about which effort vectors may be optimal for the DM. As is well-known since

Blackwell [5], this relation between information structures can also be described through their stochastic

matrices (the ’garbling’ condition), or by the distributions over posteriors Me,Me′ they induce (the

‘mean-preserving spread’ condition). We will describe this relation by saying that m(e′) is a garbling of

m(e), or that m(e) is more informative than m(e′).

For the rest of this section we assume (without loss) that efforts are ordered in decreasing order from

highest to lowest. Consider two efforts’ vectors e = (e1 ≥ e2 ≥ . . . ≥ en) and e′ = (e′1 ≥ e′2 ≥ . . . ≥ e′m).

Say that e dominates e′ if ei ≥ e′i for every i = 1, . . . ,max{m,n}, and that e weakly majorizes e′ if∑k
i=1 ei ≥

∑k
i=1 e

′
i for every k = 1, . . . ,max{m,n}, where, in case m 6= n, the shorter of the two vectors

is appended with zeroes.12 Domination clearly implies weak majorization, but the converse is not true:

e = (3/8, 1/8) majorizes e′ = (1/4, 1/4) but does not dominate it.

A classic result of Blackwell and Girschick [6, Theorem 12.3.1 on page 332] says that if information

structure P is more informative than P ′ and Q is more informative than Q′, and if each of the pairs

(P,Q) and (P ′, Q′) are independent conditional on the state, then the combined information (P,Q)

is more informative than the combined information (P ′, Q′). This implies that if e dominates e′ then

m(e) is more informative than m(e′). Thus, for every decision problem v, Vv is non-decreasing in each

expert’s effort. The next Theorem 2, which may be of independent interest, strengthen this conclusion

by showing that if e weakly majorizes e′ then m(e) is more informative than m(e′). In other words, for

every v ∈ V the value of information Vv is a Schur-convex function of effort vectors. Roughly speaking,

a function is Schur-convex if it is (1) symmetric and (2) convex in a restricted set of directions.13 In

particular, except for pathological examples, the value of information is not concave in efforts. We note

that a different kind of non-concavity in the value of information has been shown by Radner and Stiglitz

[31] (see also Chade and Schlee [11]).

Theorem 2. If e weakly majorizes e′ then m(e) is more informative than m(e′).

Proof. Suppose that e weakly majorizes e′. First, we may assume without loss of generality that both

have the same number n of experts; otherwise, add zero-effort experts to the shorter of the two. Second,

it is without loss to assume that
∑
i ei =

∑
i e
′
i: If e weakly majorizes e′ and

∑
i ei >

∑
i e
′
i then there

exists e′′ such that (i) e′′ (exactly) majorizes e′, and (ii) e dominates e′′ (Marshal et al. [25, Proposition

A.9 on page 177]). By Blackwell and Girschick’s result m(e) is more informative than m(e′′), so the

case of unequal total effort follows from the case of equal total effort.

Now, for two vectors z, z′ ∈ Rn say that z′ is obtained from z by a Pigou-Dalton (PD) transfer if

there are coordinates i, j with zi ≥ zj and 0 ≤ δ ≤ zi− zj such that z′j = zj + δ, z′i = zi− δ, and z′k = zk

for every k 6= i, j. Also, say that z′ can be obtained from z by a sequence of PD transfers if there are

L and vectors z1, . . . , zL such that z1 = z, zL = z′, and zl is obtained from zl−1 by a PD transfer for

every l = 2, . . . , L. It is well known (see, e.g., Marshal et al. [25, Proposition A.1 on page 155]) that if

z (exactly) majorizes z′ then z′ can be obtained from z by a sequence of PD transfers.14

12The definition of weak majorization allows the total sum
∑n

i=1 ei to be strictly larger than
∑n

i=1 e
′
i, while majorization

requires that the two sums are equal. For our results it is sufficient to assume weak majorization.
13Thus, symmetry and convexity imply Schur-convexity. Schur-convexity implies symmetry but not convexity.
14The converse of this statement is true as well, but is not needed for our purposes.
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Therefore, to complete the proof we only need to show that if e′ is obtained from e by a PD transfer

then m(e) is more informative than m(e′). But since a PD transfer changes the efforts of only two

experts, it follows from Blackwell and Girschick’s result that we may ignore all other experts and

consider only the case n = 2. This is established in the following lemma, whose proof appears in the

appendix.

Lemma 3. Suppose that e1 ≥ e2 and e′1 ≥ e′2 are such that e1 + e2 = e′1 + e′2 and e1 ≥ e′1 (i.e., e′ is

obtained from e by a PD transfer). Then m(e1, e2) is more informative than m(e′1, e
′
2).

2.4 Optimal contracts

We now consider the DM’s problem of maximizing the difference between the value of information and

its cost. Recall that the primitives of the model are the cost of effort function c ∈ C from which ψ is

derived, and the value function v ∈ V from which V is derived. For any e let πc,v(e) = Vv(e) − ψc(e)
be the net expected utility of the DM given efforts’ vector e, where, by convention, πc,v(e) = −∞ when

e is not implementable. We sometimes omit the subscripts c and v when no confusion may arise. For

expositional reasons we focus here on the case of a uniform prior γ = 0.5; similar results continue to

hold when γ 6= 0.5.

Even though the arguments of π are efforts’ vectors, we refer to a maximizer of this function as an

optimal contract. One can think of a contract as specifying both the required efforts e and the payments

x that implement e in the least costly way.

2.4.1 Two experts

We start with the case in which the DM is able to hire only two experts (n = 2). From Theorem 1 we

know that every 0 < e = (e1, e2) < 0.5 is implementable, and that the cost of implementing any such e

is

ψ(e1, e2) =

(
1

2
+ 2e1e2

)(
c′(e1)

2e2
+
c′(e2)

2e1

)
.

If c′(0.5) < +∞ then this formula remains true for 0 < e1, e2 ≤ 0.5. If ei = 0 and ej > 0 then e is not

implementable, while the no-effort vector can be implemented at zero cost: ψ(0, 0) = 0.

Our first result here is that ‘typically’ the optimal contract involves discriminating between the

experts. That is, in the optimal contract the DM will offer different compensations to the two experts,

and this will result in the experts exerting different effort levels. The intuition for this result comes

directly from Theorem 2: Getting two signals of the same accuracy from the experts is less valuable

than getting one more accurate and one less accurate signals, subject to the two combinations having

the same average accuracy. However, the cost of the former option is lower than the cost of the latter,

so we cannot immediately conclude that equal efforts are not optimal. Nevertheless we show that near

any decision problem v there is another decision problem ṽ such that, for every cost function c, the

maximizer of πc,ṽ is not on the diagonal e1 = e2.

15



Proposition 1. Fix v ∈ V and ε > 0. Then there is ṽ ∈ V such that

(i) |ṽ(q)− v(q)| ≤ ε for all q ∈ [0, 1]; and

(ii) For every c ∈ C, if e = (e1, e2) > 0 is a maximizer of πc,ṽ then e1 6= e2.

Proof. Given v ∈ V and ε > 0, let v′ ∈ V be given by v′(q) = εmax{q, 1 − q}, and let ṽ = v + v′.15

Then ṽ ∈ V as the sum of two convex and continuous functions, and |ṽ(q) − v(q)| = |v′(q)| ≤ ε for all

q ∈ [0, 1].

Fix some c ∈ C and 0 < e1 = e2 < 0.5. Let δ̄ > 0 be a small number and consider πc,ṽ(e1 + δ, e2− δ)
for δ ∈ [−δ̄, δ̄]. We show that this function has a strict local minimum at δ = 0, which implies that

(e1, e2) is not a maximizer of πc,ṽ.

First, from Theorem 2 we know that for all δ ∈ [−δ̄, δ̄]

Vv(e1 + δ, e2 − δ) ≥ Vv(e1, e2). (7)

Second, a direct calculation gives

Vv′(e1 + δ, e2 − δ) =

{
ε(0.5 + e1 + δ) if 0 ≤ δ ≤ δ̄
ε(0.5 + e2 − δ) if − δ̄ ≤ δ ≤ 0.

Also, since ψc is symmetric and differentiable, the derivative dψc(e1+δ,e2−δ)
dδ is zero at δ = 0. It follows

that the right-derivative at δ = 0 of the difference

Vv′(e1 + δ, e2 − δ)− ψc(e1 + δ, e2 − δ)

is +ε and the left-derivative of this difference at δ = 0 is −ε. Thus, for all δ 6= 0 sufficiently close to

zero,

Vv′(e1 + δ, e2 − δ)− ψc(e1 + δ, e2 − δ) > Vv′(e1, e2)− ψc(e1, e2). (8)

Summing up, for all δ 6= 0 sufficiently close to zero,

πc,ṽ(e1 + δ, e2 − δ) = Vv(e1 + δ, e2 − δ) + Vv′(e1 + δ, e2 − δ)− ψc(e1 + δ, e2 − δ) ≥

Vv(e1, e2) + Vv′(e1 + δ, e2 − δ)− ψc(e1 + δ, e2 − δ) >

Vv(e1, e2) + Vv′(e1, e2)− ψc(e1, e2) = πc,ṽ(e1, e2),

where the first equality is by linearity of expectation, the weak inequality is by (7), the strict inequality

is by (8), and the last equality is again by linearity of expectation.

Finally, e1 = e2 = 0.5 is not optimal (when implementable) since the DM can learn the state at a

lower cost by choosing e1 = 0.5 and e2 < 0.5 (this is easy to verify directly).

In the next proposition we derive an additional property of optimal contracts, namely that there

is a lower bound on the effort that an expert should be asked to exert. More precisely, given the cost

15Recall that v′ is obtained from a decision problem with two alternatives as in Example 1.
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Figure 1: The left and right panels show the bound f for the cost functions c(ei) =
e2i
2 and c(ei) =

e2i
2 +ei,

respectively. The optimal contract is never (for no decision problem) below the red curves or to the left
of the blue curves. If v is the maximum of two linear functions that cross at the prior γ = 0.5 then the
optimal contract is on these curves.

function c, if expert 1 is asked to exert effort e1 > 0 then there is a positive number f(e1) such that

it is never (i.e., for no decision problem) optimal to ask expert 2 to exert effort less than f(e1). The

same bound applies for e1 when e2 is held fixed. These bounds are illustrated in Figure 1 for the cost

functions c(ei) =
e2i
2 (left panel) and c(ei) =

e2i
2 + ei (right panel).

The intuition for this result is that if e2 is close to zero then the report of expert 2 is almost

independent of the state, and hence the distribution over pairs of signals (s1, s2) (that determines the

expected payment) does not change much when expert 1 increases his effort; in the extreme case where

e2 = 0 the distribution over (s1, s2) is uniform for every e1. Thus, in order to induce expert 1 to exert

e1 the payment needs to be very large when the reports match. It follows that for small e2 the increase

in the expected payment needed to incentivize expert 2 to increase his effort is overwhelmed by the

resulting decrease in the expected payment to expert 1 (recall Corollary 1). Therefore, increasing e2

both reduces the cost and provides more information for the DM.

Proposition 2. Let c ∈ C be such that the derivative c′ is convex on [0, 0.5). Then for every e1 ∈ (0, 0.5)

there is a unique f(e1) ∈ (0, 0.5) such that ∂ψ(e1,f(e1))
∂e2

= 0. The function f : (0, 0.5) → (0, 0.5) is

continuous, strictly increasing, and defines a lower bound for the effort in an optimal contract: For any

v ∈ V, if (e1, e2) is a maximizer of πc,v then e2 ≥ f(e1) and e1 ≥ f(e2).

Proof. The partial derivative with respect to e2 of the cost function is given by

∂ψ(e1, e2)

∂e2
=
∂ψ1(e1, e2)

∂e2
+
∂ψ2(e1, e2)

∂e2
=
−c′(e1)

4e2
2

+ c′(e2) +
0.5 + 2e1e2

2e1
c′′(e2).
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Fixing 0 < e1 < 0.5, ∂ψ
∂e2

is clearly negative when e2 is sufficiently close to zero and positive when e2 is

sufficiently close to 0.5. Furthermore,

∂2ψ(e1, e2)

∂e2
2

= 2c′′(e2) +

(
e2 +

1

4e1

)
c′′′(e2) +

c′(e1)

2e3
2

is strictly positive for any e1, e2 > 0 (recall that c′ is assumed to be convex), so ψ is coordinate-wise

convex. It follows that there is a unique f(e1) satisfying ∂ψ(e1,f(e1))
∂e2

= 0. We get that ψ(e1, ·) is strictly

decreasing for e2 ∈ [0, f(e1)] and strictly increasing for e2 ∈ [f(e1), 0.5]. It is immediate to see from the

above derivatives that f is continuous and strictly increasing. By symmetry, the same f applies when

e2 is held fixed and e1 varies.

Now, suppose that e = (e1, e2) satisfies e2 < f(e1). Define e′ = (e1, f(e1)). Then ψ(e) > ψ(e′)

by the definition of f(e1) and Vv(e) ≤ Vv(e
′) for any v ∈ V since e′ dominates e. It follows that

πc,v(e) < πc,v(e
′). A similar argument applies when e1 < f(e2).

In the special case where v is the maximum of two linear functions that cross at the prior γ = 0.5

(as in Examples 1 and 2 above) we can say more about the location of the optimal contract, since the

value of information in this case depends only on the maximum of the two efforts. This implies that one

of the experts will be hired only for monitoring purposes, and the effort required from that expert will

be chosen to minimize the total cost of the contract. In Figure 1 this means that the optimal contract

is located on the red or blue curves.

Corollary 2. Suppose c ∈ C satisfies the assumption in Proposition 2, and let f be the function defined

in that proposition. If v ∈ V is the maximum of two linear functions that cross at the prior γ = 0.5,

and if (e1, e2) > 0 is a maximizer of πc,v, then either e1 > e2 and e2 = f(e1) or e2 > e1 and e1 = f(e2).

Proof. We start with the following simple lemma.

Lemma 4. If v ∈ V is the maximum of two linear functions that cross at the prior γ = 0.5 then there

are α > 0, β ∈ R such that V (e1, e2) = αmax{e1, e2}+β, i.e., V is increasing and linear in the accuracy

of the more accurate signal.

Suppose now that (e1, e2) > 0 is a maximizer of πc,v, and consider first the case e1 > e2. From

Proposition 2 we have e2 ≥ f(e1). We claim that this inequality must hold as equality. Indeed,

suppose by contradiction that e2 > f(e1). Then max{e1, e2} = max{e1, f(e1)}, so by Lemma 4

V (e1, e2) = V (e1, f(e1)). Also, ψ(e1, e2) > ψ(e1, f(e1)) by the definition of f(e1). Hence πc,v(e1, e2) <

πc,v(e1, f(e1)), contradicting the optimality of (e1, e2). By a similar argument, if e2 > e1 is a maximizer

then e1 = f(e2) must hold. Finally, e1 = e2 can’t be optimal when v is the maximum of two linear

functions that cross at γ = 0.5 by the same argument as in the proof of Proposition 1 (for the function

v′).
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2.4.2 Many experts

We now consider the case where the DM may hire any number of experts. Our main insight here is that

hiring many low-effort experts is dominated (less informative and more costly) by hiring few high-effort

experts. To formalize this, for each t̄ ∈ (0, 0.5) and n̄ ≥ 2 denote by e (t̄, n̄) the constant efforts’ vector

with n̄ experts each of which exerts effort t̄.

Proposition 3. Suppose c′(0) > 0 and fix some t̄, n̄. Every e = (e1, . . . , en) > 0 with n ≥ 2ψc(e(t̄,n̄))
c′(0)

and ei ≤ n̄t̄
n for all i is more costly and less informative than e (t̄, n̄). In particular, any such e is not

optimal for any decision problem v ∈ V.

Proof. First, for every e = (e1, . . . , en) > 0 we have

e(N) + ē(N)

e(N \ {i})− ē(N \ {i})
=

(
1

2
+ ei

) e(N \ {i}) + ē(N)
1
2 +ei

e(N \ {i})− ē(N \ {i})
≥ 1

2
+ ei ≥

1

2
,

which implies

ψc(e) = [e(N) + ē(N)]

n∑
i=1

c′(ei)

e(N \ {i})− ē(N \ {i})
≥ 1

2

n∑
i=1

c′(ei).

Convexity of c implies that c′(ei) > c′(0) for all i, so ψc(e) >
n
2 c
′(0). It follows that if n ≥ 2ψc(e(t̄,n̄))

c′(0)

then ψc(e) > ψc (e (t̄, n̄)).

Second, if e satisfies the assumptions of the proposition then n ≥ 2ψc(e(t̄,n̄))
c′(0) ≥ 2

c′(0)
n̄
2 c
′ (t̄) > n̄. This

also implies that ei ≤ t̄n̄
n < t̄ for all i. Thus, any such e is weakly majorized by e (t̄, n̄), so by Theorem

2 e (t̄, n̄) is more informative than e.

Corollary 3. Suppose c′(0) > 0 and c′(0.5) < +∞. Then for every decision problem v ∈ V the optimal

contract has at most 4c′(0.5)
c′(0) experts.

Proof. Apply Proposition 3 for t̄ = 0.5 and n̄ = 2.

We conclude this section with the following result which generalizes Proposition 1 from two experts

to any even number of experts.

Proposition 4. Let n ≥ 2 be even and fix v ∈ V and ε > 0. Then there is ṽ ∈ V such that

(i) |ṽ(q)− v(q)| ≤ ε for all q ∈ [0, 1]; and

(ii) For every c ∈ C, if e = (e1, . . . , en) > 0 is a maximizer of πc,ṽ among all vectors of n experts then

there are 1 ≤ i, j ≤ n such that ei 6= ej .

Sketch of proof:

Define the function v′ in the same way as in the proof of Proposition 1. Consider any e1 = . . . = en > 0.

Then it is not hard to check that the function Vv′(e1 + δ, e2, . . . , en−1, en − δ) of δ has a strict local

minimum at δ = 0, and, moreover, the right derivative is strictly positive and left derivative is strictly

negative at that point. Defining ṽ = v + v′ and repeating the argument in the proof of Proposition 1

completes the proof. Note that if n is odd then the optimal action for the DM in the decision problem

19



v′ is independent of δ (for δ close to 0), which implies that Vv′(e1 + δ, e2, . . . , en−1, en − δ) is smooth at

δ = 0, hence the failure of the argument.

3 Characterization of implementability

We now leave the binary-binary model of the previous section and consider a more general framework.

Our goal in this section is to characterize the information structures that the DM can implement. An

important observation is that in our setup what matters for the DM is not the efforts that the experts

exert per-se, but rather the mappings from states to distributions over reported signals that the experts’

strategies induce; indeed, these mappings determine both the transfers from the DM to the experts and

the expected utility of the DM in the decision problem she faces. Therefore, in the current section we

will assume that experts directly choose information structures (i.e., mappings from states to reported

signals) rather than efforts and reporting strategies. In subsection 3.1 below we illustrate using the

model of the Section 2 how the question of implementability can be translated into the framework of

the current section, and in Appendix B we provide a more general treatment of the connection between

the two frameworks.

The set of possible states of nature is Ω = {ω1, . . . , ωK}, and the prior belief over Ω is γ = (γ1, . . . , γK)

with γk > 0 for all k = 1, . . . ,K. The DM may obtain information regarding the state of nature from

a group of n ≥ 2 experts, where N = {1, . . . , n} denotes the set of experts. The finite set of signals

that expert i may observe is Si, with a typical element denoted by si. Each expert i chooses a mapping

mi : Ω→ ∆(Si) from a set Mi of such mappings. As is standard, we view each mi ∈Mi as a stochastic

matrix with K rows and |Si| columns, where mi(k, si) is the probability that signal si ∈ Si realizes

conditional on the state being ωk ∈ Ω. The set Mi is viewed as a subset of RK|Si| endowed with the

standard Euclidean norm ‖·‖. The cost of choosing mi ∈Mi is described by the function Ci : Mi → R+.

We make the following assumptions:16

(A1) Mi is a non-empty, closed, and convex polyhedral set.

(A2) Ci is convex on Mi.

(A3) Ci is Lipschitz continuous on Mi: There is β > 0 such that |Ci(mi) − Ci(m′i)| ≤ β‖mi −m′i‖ for

every mi,m
′
i ∈Mi.

17

Let S = S1 × . . . × Sn with s = (s1, . . . , sn) ∈ S denoting a vector of signal realizations, and let

M = M1× . . .×Mn with a typical element m = (m1, . . . ,mn). Any m ∈M induces a distribution over

S that we denote by Pm:

Pm(s) =

K∑
k=1

γk

n∏
i=1

mi(k, si). (9)

16In subsection 3.1 and in Appendix B we show that properties (A1)-(A3) naturally follow from standard assumptions
on the technology and cost of collecting information. If one starts from a model of efforts and reports then there are
additional properties that the resulting Mi and Ci satisfy. For example, the induced Mi is closed under garblings and the
induced Ci is monotonically increasing in the Blackwell ordering. We do not include these assumptions here as they are
not needed to prove the results of this section.

17It is worth pointing out that convexity of Ci implies that it is Lipschitz on any closed subset of the relative interior
of Mi (Rockafellar [35, Theorem 10.4]). Therefore, (A3) only has a bite on the relative boundary of Mi.
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The expectation operator relative to this distribution is denoted by Em. Note that (9) assumes that

signals of different experts are independent conditional on the state of nature.

A contract is a list x = (x1, . . . , xn), where xi : S → R+ is the payment to i given s ∈ S. Each

contract induces a game between the experts. The set of strategies for expert i is Mi and his payoff

given strategy profile m is

Ui(m; xi) := Em[xi(s)]− Ci(mi). (10)

Definition 1. Say that m∗ ∈ M is implementable if there exists a contract x such that m∗ is an

equilibrium of the game induced by x.

Example 4. Suppose Ω = {ω1, ω2, ω3}, γ =
(

1
3 ,

1
3 ,

1
3

)
, n = 2, and S1 = S2 = {0, 1}. Let m∗1,m

∗
2,m2 be

given by

m∗1:

0 1
ω1 3/4 1/4
ω2 1/2 1/2
ω3 1/4 3/4

m∗2:

0 1
ω1 3/4 1/4
ω2 1/2 1/2
ω3 1/4 3/4

m2:

0 1
ω1 1/2 1/2
ω2 1 0
ω3 0 1

It is straightforward to check that P(m∗1 ,m
∗
2) = P(m∗1 ,m2).

18 In other words, given that expert 1 chooses

m∗1, the distribution over pairs of signals is the same when expert 2 chooses m2 as when he chooses

m∗2. Hence, if C2(m∗2) > C2(m2), then (m∗1,m
∗
2) can’t be implemented since for every contract x2 it is

profitable for expert 2 to deviate from m∗2 to m2.

Example 4 suggests a necessary condition for implementation of m∗: There can’t be an expert i and

mi ∈ Mi such that both Pm∗ = P(mi,m∗−i)
and Ci(mi) < Ci(m

∗
i ). In the following theorem we apply

an idea of Rahman [32, 33] to show that this condition is also sufficient. The proof shows that, if the

condition is satisfied, then for every possible deviation mi of i there exists a contract xi that will make

this deviation unprofitable. Of course, the difficulty is to find one xi that simultaneously discourages

all possible deviations. The existence of such contract is a consequence of the minmax theorem.

Theorem 3. Under assumptions (A1)-(A3), m∗ is implementable if and only if for every i ∈ N and

every mi ∈Mi either Pm∗ 6= P(mi,m∗−i)
or Ci(mi) ≥ Ci(m∗i ) (or both).

Proof. The ‘only if’ part is obvious, so we only prove the ‘if’ part. Fix m∗ and i. Let D > 0 be a large

constant to be determined later. Define the function f : Mi × [0, D]S → R by

f(mi, xi) =
(
E(mi,m∗−i)

[xi(s)]− Em∗ [xi(s)]
)

+ (Ci(m
∗
i )− Ci(mi)) . (11)

Thus, f(mi, xi) is the payoff gain (or loss) for expert i when he chooses mi rather than the prescribed

m∗i , all other experts choose according to m∗−i, and given contract xi. The following lemma gives some

basic properties of f .

18For example, if (s1, s2) = (0, 0) then P(m∗1 ,m
∗
2)

(0, 0) = 1
3

(
3
4
∗ 3

4
+ 1

2
∗ 1

2
+ 1

4
∗ 1

4

)
= 7

24
and P(m∗1 ,m2)(0, 0) =

1
3

(
3
4
∗ 1

2
+ 1

2
∗ 1 + 1

4
∗ 0
)

= 7
24

.
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Lemma 5. The function f defined in (11) is concave and continuous in mi for each fixed xi, and affine

(and continuous) in xi for each fixed mi.

By assumption (A1) and Lemma 5 the conditions of the minmax theorem (see Rockafellar [35,

Corollary 37.6.2]) are satisfied and therefore

max
mi∈Mi

min
xi∈[0,D]S

f(mi, xi) = min
xi∈[0,D]S

max
mi∈Mi

f(mi, xi). (12)

We now show that for D large enough the left-hand side of (12) equals zero. Note first that f

vanishes whenever mi = m∗i , and hence that

max
mi∈Mi

min
xi∈[0,D]S

f(mi, xi) ≥ 0. (13)

To show the other inequality, define the mapping T : Mi → RS by T (mi)(s) = P(mi,m∗−i)
(s)−Pm∗(s)

for each s ∈ S. In words, T sends each mi to the difference between the distribution over S that it

induces (together with m∗−i) and the distribution over S that the desired m∗i induces (together with

m∗−i). Note that T is affine. For each mi let m̄i be its projection to the (non-empty, compact, convex,

polyhedral) set Mi ∩Ker(T ), where Ker(T ) is the kernel of T . We will need the following lemma.

Lemma 6. There is β′ > 0 such that ‖T (mi)‖S ≥ β′‖mi − m̄i‖ for every mi ∈Mi, where ‖ · ‖S is the

standard Euclidean norm on RS .

Now, given some mi ∈Mi define the contract xi by

xi(s) =

{
D if T (mi)(s) < 0

0 if T (mi)(s) ≥ 0.

Thus, according to xi the expert gets paid D at signal realizations that are more likely to occur under

m∗ than under (mi,m
∗−i), and gets nothing at the other realizations. With these mi, xi we have

f(mi, xi) = D

 ∑
{s : T (mi)(s)<0}

(
P(mi,m∗−i)

(s)− Pm∗(s)
)+ (Ci(m

∗
i )− Ci(mi))

= −D
2

∑
s∈S

∣∣∣P(mi,m∗−i)
(s)− Pm∗(s)

∣∣∣+ (Ci(m
∗
i )− Ci(mi))

≤ −
D
√
|S|

2
‖T (mi)‖S + (Ci(m

∗
i )− Ci(mi))

≤ −
D
√
|S|

2
‖T (mi)‖S + (Ci(m̄i)− Ci(mi))

≤ −
D
√
|S|

2
β′‖mi − m̄i‖+ β‖mi − m̄i‖ =

(
−
D
√
|S|

2
β′ + β

)
‖mi − m̄i‖,

where the first equality is by the definition of xi, the second equality follows from the fact that both

P(mi,m∗−i)
and Pm∗ are distributions (sum-up to 1), the first inequality by a standard relation between
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the l1 and l2 norms, the next inequality from the fact that m̄i ∈ Ker(T ) and the assumption of the

theorem, and the last inequality from Lemma 6 and (A3). Therefore, if D = 2β

β′
√
|S|

then for each

mi ∈Mi there is xi ∈ [0, D]S such that f(mi, xi) ≤ 0, i.e.,

max
mi∈Mi

min
xi∈[0,D]S

f(mi, xi) ≤ 0.

Combined with (13) we proved that maxmi∈Mi
minxi∈[0,D]S f(mi, xi) = 0.

It follows from the minmax equality (12) that for D large enough minxi∈[0,D]S maxmi∈Mi f(mi, xi) =

0. That is, there exists xi ∈ [0, D]S such that f(mi, xi) ≤ 0 for every mi ∈ Mi. Repeating the same

argument for each expert i we get a contract x that implements m∗.

When is it the case that a given profile m∗ can always be implemented, regardless of the cost

functions? Theorem 3 implies that this is the case whenever for every i the mapping mi 7−→ P(mi,m∗−i)

is one-to-one on Mi. Denote by Pm∗−i|ωk the distribution over S−i induced by m∗−i conditional on state

ωk, that is, Pm∗−i|ωk(s−i) =
∏
j 6=im

∗
j (k, sj). In the next proposition we view each Pm∗−i|ωk as a vector

in R|S−i|.

Proposition 5. Assume (A1)-(A3). Given m∗ ∈ M , if for every i ∈ N the K vectors
{
Pm∗−i|ωk

}K
k=1

are linearly independent then m∗ is implementable.

Proof. We show that if the vectors
{
Pm∗−i|ωk

}K
k=1

are linearly independent then Pm∗ 6= P(mi,m∗−i)
for

every mi 6= m∗i . By Theorem 3 this is sufficient to complete the proof.

Suppose that for some mi we have Pm∗ = P(mi,m∗−i)
. Fix some si ∈ Si. Then for every s−i ∈ S−i

the probability of (si, s−i) is the same under m∗i and mi, that is

K∑
k=1

γk

∏
j 6=i

m∗j (k, sj)

m∗i (k, si) =

K∑
k=1

γk

∏
j 6=i

m∗j (k, sj)

mi(k, si).

Denoting yk = m∗i (k, si)−mi(k, si) (1 ≤ k ≤ K) we get that for every s−i

K∑
k=1

γkykPm∗−i|ωk(s−i) = 0,

but by linear independence this implies that yk = 0 for all k. It follows that mi(k, si) = m∗i (k, si) for

every k, and since si was arbitrary we get m∗i = mi.

We conclude with the following two corollaries of Proposition 5. The first one shows that increasing

informativeness cannot hinder implementability. The second shows that in the special case of K = 2

states implementation of any (informative) structure is possible.

Corollary 4. Suppose that m∗ satisfies the assumption of Proposition 5, so it is implementable regard-

less of the cost functions. Let m∗∗ be such that, for each i ∈ N , m∗∗−i is (weakly) more informative than

m∗−i in the sense of Blackwell. Then m∗∗ also satisfies the assumption of Proposition 5 and is therefore
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implementable regardless of the cost functions. In particular, if m∗∗i is (weakly) more informative than

m∗i for every i ∈ N then m∗∗ is implementable regardless of the cost functions.

Proof. Let m∗ and m∗∗ be as in the corollary and fix i. Then there is a stochastic matrix p with

dimensions |S−i| × |S−i| such that m∗∗−ip = m∗−i. Suppose that {yk}Kk=1 are real numbers such that for

all s−i
K∑
k=1

ykPm∗∗−i|ωk(s−i) = 0.

Then for every s−i

K∑
k=1

ykPm∗−i|ωk(s−i) =

K∑
k=1

yk
∑
s′−i

Pm∗∗−i|ωk(s′−i)p(s
′
−i, s−i) =

∑
s′−i

p(s′−i, s−i)

K∑
k=1

ykPm∗∗−i|ωk(s′−i) = 0,

which by assumption implies that {yk}k are all zero. Thus, {Pm∗∗−i|ωk}
K
k=1 are linearly independent.

Corollary 5. Suppose K = 2 and let m∗ be such that, for all i ∈ N , m∗i is not completely uninformative

(constant). Then m∗ is implementable.

Proof. Fix i. Since for each j 6= i the distribution over Sj conditional on ω1 is different than the

distribution over Sj conditional on ω2 under m∗j , it follows that Pm∗−i|ω1
6= Pm∗−i|ω2

. Since both are

distributions they must be linearly independent.

Note that implementability of any positive efforts’ vector in the binary-binary model of Section 2

can be viewed as a special case of Corollary 5 (assuming c is Lipschitz).

3.1 Connection between the models

Consider a version of the binary-binary model of Section 2 in which expert i’s choice of effort is restricted

to [0,0.25] rather than [0,0.5].19 What is the set of mappings from states to distributions over reports

that i can induce by playing some (possibly mixed) strategy? Denote by α the probability of a b report

given state B, and by β the probability of a w report in state W , so that mappings from states to

distributions over reports can be identified with matrices of the form

b w

B α 1− α
W 1− β β

If i truthfully reports his signal then we have α = β and these increase from 0.5 when ei = 0 to 0.75

with full effort of ei = 0.25. If the reporting strategy is ri(b) = w and ri(w) = b then again α = β and

they range from 0.5 with no effort to 0.25 with full effort. When ri ≡ b we get α = 1 and β = 0, and

when ri ≡ w we have α = 0 and β = 1 (these are true for any effort level). These are all the mappings

from states to distributions over reports that i can generate with pure strategies; they are depicted by

19This modification helps illustrate the idea.
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the blue interval and two dots in Figure 2. It follows that by playing mixed strategies i can induce any

mapping in the convex hull of the blue set, that is, any point inside the black dashed line in the figure.

Note that this set is equal to the set of all garblings of the most informative structure bi(0.25), and

that it satisfies all the requirements of assumption (A1). We can think of i as choosing from this set of

information structures instead of choosing (mixtures of) efforts and reports.

However, there are typically many different mixed strategies that induce the same information struc-

ture. For example, mixing between the pure strategies (ei = 1/14, r∗i ) and (ei = 0, ri ≡ b) with

probabilities 7/8 and 1/8, respectively, yields the mapping

7
8×

b w
B 4/7 3/7
W 3/7 4/7

+ 1
8×

b w
B 1 0
W 1 0

=

b w
B 5/8 3/8
W 1/2 1/2

This mapping is the red dot in Figure 2. The same mapping can be induced by mixing between

(ei = 1/8, r∗i ), (ei = 0, ri ≡ b), and (ei = 0, ri ≡ w) with probabilities 1/2, 5/16 and 3/16, respectively:

1
2×

b w
B 5/8 3/8
W 3/8 5/8

+ 5
16×

b w
B 1 0
W 1 0

+ 3
16×

b w
B 0 1
W 0 1

=

b w
B 5/8 3/8
W 1/2 1/2

If i chooses the former mixed strategy then his expected cost of effort is 7
8c
(

1
14

)
, while choosing the

latter mixture costs 1
2c
(

1
8

)
. Clearly, i has no reason to choose the more costly of these two mixtures,

as both lead to the same distribution over vectors of signals and hence to the same expected payment.

More generally, i would always choose the least costly mixture to induce a given information structure.

Therefore, the relevant cost function is the convexification of the cost of mappings induced by pure

strategies.20 In particular, the cost function is convex, so (A2) is satisfied. Lipschitz continuity (A3)

holds as well whenever c is Lipschitz continuous. See Appendix B for more details on the connection

between the two frameworks.

4 Concluding remarks

As already mentioned in the introduction, our notion of implementation only requires that honesty and

obedience is an equilibrium, and does not rule out the existence of other equilibria in the game induced

by the contract. In particular, if all experts other than i exert zero effort, so that their reports are

independent of the state, then regardless of the contract i’s best response is to exert zero effort as well.

Thus, for any contract there exists a no-effort equilibrium.21 There may also be other equilibria with

more or less effort than the one intended by the planner. However, as the following proposition shows,

at least in some environments the problem is less severe than it may seem.

20There may be several pure strategies that induce the same mapping, for example all levels of effort induce the same
information when combined with constant reporting of b; the relevant cost is obviously the minimal one.

21It is possible that no-effort equilibria exist only in mixed strategies. The same argument applies also for indirect
(finite) mechanisms.
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r_i=br_i=br_i=br_i=br_i=br_i=br_i=br_i=br_i=b

e_i=0, r*_ie_i=0, r*_ie_i=0, r*_ie_i=0, r*_ie_i=0, r*_ie_i=0, r*_ie_i=0, r*_ie_i=0, r*_ie_i=0, r*_i

e_i=0.25, r*_ie_i=0.25, r*_ie_i=0.25, r*_ie_i=0.25, r*_ie_i=0.25, r*_ie_i=0.25, r*_ie_i=0.25, r*_ie_i=0.25, r*_ie_i=0.25, r*_i

e_i=0.25, r_i(b)=w, r_i(w)=be_i=0.25, r_i(b)=w, r_i(w)=be_i=0.25, r_i(b)=w, r_i(w)=be_i=0.25, r_i(b)=w, r_i(w)=be_i=0.25, r_i(b)=w, r_i(w)=be_i=0.25, r_i(b)=w, r_i(w)=be_i=0.25, r_i(b)=w, r_i(w)=be_i=0.25, r_i(b)=w, r_i(w)=be_i=0.25, r_i(b)=w, r_i(w)=b

(((((((((0.6250.6250.6250.6250.6250.6250.6250.6250.625, , , , , , , , , 0.50.50.50.50.50.50.50.50.5)))))))))

r_i=wr_i=wr_i=wr_i=wr_i=wr_i=wr_i=wr_i=wr_i=w

Figure 2: The set of information structures i can generate by playing pure strategies in the binary-binary
model (with effort bounded by 0.25) is the blue interval and two corner dots. The black dashed line
shows the boundary of the convex hull of this set – this is the set of information structures i can generate
by playing pure or mixed strategies.
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Proposition 6. Consider the binary-binary model of Section 2 with a uniform prior γ = 0.5, and

suppose that either (1) c′ is strictly concave, or (2) c′ is strictly convex, c′(0) = 0 and n ∈ {2, 3}. Let

e = (e1, . . . , en) be such that 0 < ei < 0.5 for every i. Then in the game induced by the optimal contract

x∗ of Theorem 1, (e, r∗) is the only equilibrium with truthful reporting and positive levels of effort.

Proof. Fix an interior e and let x∗ be the least costly contract that implements e derived in Theorem 1.

Consider the game in which each expert i only chooses effort level ei and the realized signal is truthfully

reported to the mechanism. Then it is immediate to verify that this is a supermodular game in the

sense of Milgrom and Roberts [27] (see Theorem 4 in that paper). By Topkis [38, Theorem 4.2.1], the

set of equilibria is a lattice. It follows that if e′ and e′′ are both equilibria then their coordinate-wise

maximum is an equilibrium as well, so if there are two equilibria with positive efforts then there are two

equilibria with positive efforts with one dominating the other. However, we now show that under the

conditions of the proposition there can’t be two equilibria with positive efforts in which one dominates

the other; since e is one equilibrium, the result follows.

Suppose by contradiction that 0 < e′i ≤ e′′i for all i, that e′ 6= e′′, and that both are equilibria under

x∗. Then for each i the first-order condition with respect to effort must hold at both e′ and e′′. This

gives

[
e′ (N−i)− ē′ (N−i)

]x∗i (b) + x∗i (w)

2
= c′(e′i) and

[
e′′ (N−i)− ē′′ (N−i)

]x∗i (b) + x∗i (w)

2
= c′(e′′i ).

Therefore, for each expert i we have

e′ (N−i)− ē′ (N−i)
e′′ (N−i)− ē′′ (N−i)

=
c′(e′i)

c′(e′′i )
.

Now, suppose that c′ is strictly concave. Then c′(x)
x is strictly decreasing on [0,0.5], which implies

that
c′(e′i)
c′(e′′i ) ≥

e′i
e′′i

for all i, with strict inequality whenever e′i < e′′i . Thus,

e′ (N−i)− ē′ (N−i)
e′′ (N−i)− ē′′ (N−i)

≥ e′i
e′′i

for all i with strict inequality for at least one expert (recall that e′ 6= e′′). Cross-multiplying and

summing-up these n inequalities gives

n∑
i=1

e′′i
[
e′ (N−i)− ē′ (N−i)

]
>

n∑
i=1

e′i
[
e′′ (N−i)− ē′′ (N−i)

]
.

However, it is not hard to check that this last inequality is inconsistent with 0 < e′i ≤ e′′i for all i, hence

the desired contradiction.

In the other case where c′ is strictly convex and c′(0) = 0 we have that c′(x)
x is strictly increasing, so[

e′ (N−i)− ē′ (N−i)
][

e′′ (N−i)− ē′′ (N−i)
] =

c′(e′i)

c′(e′′i )
≤ e′i
e′′i
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holds for every i with strict inequality at least once. If the number of experts is either n = 2 or n = 3

then similarly to the previous paragraph we get a contradiction.

As mentioned in the last proof, under the optimal contract x∗ of Theorem 1 (and assuming truthful

reporting), the game of effort choices is supermodular. It follows that the game has a largest equilibrium

that dominates all other equilibria. Furthermore, it is immediate to check that the payoff of each expert is

increasing in other experts’ efforts, so by Theorem 7 in Milgrom and Roberts [27] the largest equilibrium

Pareto-dominates all other equilibria. Thus, in environments with multiple positive-efforts equilibria,

if the DM wants to implement an equilibrium other than the largest one then she should be more

concerned about over-investment than about under-investment.22

Theorem 1 derives an explicit formula for the cost function in the binary-binary model. Initial

attempts to extend this derivation to environments with more states and/or signals suggest that the

problem may be significantly more difficult. Even if the precise form of the cost-minimizing contract is

not tractable, it would be interesting to know if it has similar properties to the contract in the binary-

binary case, e.g. whether it creates a relatively simple coordination game between the experts. Another

potentially tractable model to consider is one in which signals are normally distributed with precision

that increases in effort.

There is also much still to be done within the binary-binary framework. We have abstracted from

many important features of the moral hazard literature: The experts (and DM) are risk neutral, the

role of outside options is not considered,23 and so does the role of reputation/career concerns. We leave

these interesting issues for future work.

Finally, as mentioned before, Theorem 2 expresses convexity in the value of information and is there-

fore related to the works of Radner and Stiglitz [31] and Chade and Schlee [11]. An equivalent statement

of this Theorem is that if e, e′ are two effort vectors such that observing the signal of one randomly

(uniformly) chosen expert from e is more informative than observing the signal of one randomly chosen

expert from e′, then observing the signals of all experts in e is more informative then observing the

signals of all experts in e′. One may think that this is true for more general vectors of information

structures, but this is not the case.24 Still, non-concavity is likely to pose serious challenges for solving

problems involving maximization of the value of information in other environments as well.
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A Missing proofs

Proof of Lemma 1:

If xi is feasible for (COST) then clearly it must satisfy constraints (2)-(4), so it is feasible for (AUX)

as well. Conversely, suppose that xi satisfies (2)-(4). Then the first-order condition (2) guarantees that

deviations (e′i, r
∗
i ) (i.e., deviations only from the required effort level ei without misreporting of observed

signals) are not profitable. Indeed, convexity of c implies that Ui
(
(e′i, r

∗
i ), (e−i, r

∗
−i); xi

)
is concave in

e′i, so the first-order condition is both necessary and sufficient for optimality.

Next, consider deviations (e′i, ri) with ri ≡ b, i.e., i reports b regardless of his signal. If there exists

such a profitable deviation then the deviation to (0, ri) is profitable as well, since it gives i the same

expected transfer as (e′i, ri) at a minimal cost. But inequality (3) says that (0, ri) is not profitable, so

(e′i, ri) is not profitable as well. A similar argument applies for deviations (e′i, ri) with ri ≡ w.

Finally, consider deviations (e′i, ri) with ri(b) = w and ri(w) = b (i.e., the report is opposite from

the observed signal). Then

P((0,r∗i ),(e−i,r∗−i))
≡ ei
ei + e′i

P((e′i,ri),(e−i,r
∗
−i))

+
e′i

ei + e′i
P(e,r∗),

that is, the distribution of reported vectors of signals when i exerts zero effort and reports truthfully is a

convex combination of the distributions when i is honest and obedient and when he plays the proposed

deviation (assuming all others are honest and obedient). This implies that

E((0,r∗i ),(e−i,r∗−i))
[xi(s)] =

ei
ei + e′i

E((e′i,ri),(e−i,r
∗
−i))

[xi(s)] +
e′i

ei + e′i
E(e,r∗)[xi(s)]. (14)

Therefore,

Ui ((e, r∗); xi) ≥ Ui
(
(0, r∗i ), (e−i, r

∗
−i); xi

)
= E((0,r∗i ),(e−i,r∗−i))

[xi(s)] =

ei
ei + e′i

E((e′i,ri),(e−i,r
∗
−i))

[xi(s)] +
e′i

ei + e′i
E(e,r∗)[xi(s)] ≥

ei
ei + e′i

Ui
(
(e′i, ri), (e−i, r

∗
−i); xi

)
+

e′i
ei + e′i

Ui ((e, r∗); xi) ,
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where the first inequality is by the first paragraph of this proof, the first equality follows from c(0) = 0,

the next equality is by (14), and the last inequality is by non-negativity of the cost function. It follows

that Ui ((e, r∗); xi) ≥ Ui
(
(e′i, ri), (e−i, r

∗
−i); xi

)
, so (e′i, ri) is not a profitable deviation.

Proof of Lemma 2:

To simplify the notation, we write P instead of P(e,r∗) when no confusion may arise. Also, it will be

convenient to write P(s−i|B) = e(sb−i)ē(s
w
−i) and P(s−i|W ) = ē(sb−i)e(s

w
−i) for the conditional probability

of s−i given each state of nature. Using this notation, constraint (5) for s−i = b−i at z∗ becomes

[
γP(b−i|B)− (1− γ)P(b−i|W )

]
z∗1 − P(w, b−i)z

∗
2 ≥ P(b),

or, more explicitly,

[γe (N−i)− (1− γ)ē (N−i)] z
∗
1−[γ(0.5− ei)e (N−i) + (1− γ)(0.5 + ei)ē (N−i)] z

∗
2 ≤ γe(N)+(1−γ)ē(N).

It is tedious but straightforward to verify that this constraint holds with equality.

Now, consider constraint (5) at z∗ for some other s−i. After a slight rearrangement it becomes

γP(s−i|B)− (1− γ)P(s−i|W )

P(b, s−i)
z∗1 −

P(w, s−i)

P(b, s−i)
z∗2 ≤ 1.

Thus, to establish this inequality it is sufficient to show that γP(s−i|B)−(1−γ)P(s−i|W )
P(b,s−i)

is maximized at

s−i = b−i and that P(w,s−i)
P(b,s−i)

is minimized at s−i = b−i (note that z∗1 , z
∗
2 ≥ 0). For the coefficient of z∗1

we have

γP(s−i|B)− (1− γ)P(s−i|W )

P(b, s−i)
=

γP(s−i|B)− (1− γ)P(s−i|W )

γ(0.5 + ei)P(s−i|B) + (1− γ)(0.5− ei)P(s−i|W )
=

1

(0.5 + ei) + 1−γ
γ (0.5− ei)P(s−i|W )

P(s−i|B)

− 1
γ

1−γ (0.5 + ei)
P(s−i|B)
P(s−i|W ) + (0.5− ei)

,

which clearly increases in the likelihood ratio P(s−i|B)
P(s−i|W ) , and is hence maximal at s−i = b−i. And for the

coefficient of z∗2 we have

P(w, s−i)

P(b, s−i)
=
γ(0.5− ei)P(s−i|B) + (1− γ)(0.5 + ei)P(s−i|W )

γ(0.5 + ei)P(s−i|B) + (1− γ)(0.5− ei)P(s−i|W )
=
γ(0.5− ei) P(s−i|B)

P(s−i|W ) + (1− γ)(0.5 + ei)

γ(0.5 + ei)
P(s−i|B)
P(s−i|W ) + (1− γ)(0.5− ei)

,

which decreases in P(s−i|B)
P(s−i|W ) and so minimized at s−i = b−i. This proves that (5) holds at z∗ for every

for every s−i ∈ S−i.
The proof that constraints (6) hold at z∗ is similar. First, it is not hard to check that for s−i = w−i

constraint (6) is satisfied with equality at z∗. Next, for any other s−i we can rewrite the constraint as

γP(s−i|B)− (1− γ)P(s−i|W )

P(w, s−i)
z∗1 − z∗2 ≥ −1.
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The coefficient of z∗1 is decreasing in the likelihood ratio P(s−i|W )
P(s−i|B) and hence minimized at s−i = w−i.

It follows that (6) is satisfied for every s−i at z∗. This completes the proof.

Proof of Corollary 1:

First,

∂ψi
∂ei

=

[
γe(N−i) + (1− γ)ē(N−i)

][
− γē(N−i) + (1− γ)e(N−i)

]
+ (2γ − 1)e(N−i)ē(N−i)

γ(1− γ)
[
e(N−i)2 − ē(N−i)2

] c′(ei)

+

[
γē(N) + (1− γ)e(N)

][
γe(N−i) + (1− γ)ē(N−i)

]
γ(1− γ)

[
e(N−i)2 − ē(N−i)2

] c′′(ei).

The first term simplifies to just c′(ei) > 0, and the second term is clearly positive, which proves that
∂ψi
∂ei

> 0.

As for the other derivative ∂ψi
∂ej

with j 6= i, note first that the denominator γ(1−γ)
[
e(N−i)

2−ē(N−i)2
]

of ψi is increasing in ej , and that the second term (2γ − 1)e(N−i)ē(N−i)c(ei) in the numerator of ψi is

decreasing in ej . To prove that the derivative is negative it is therefore enough to prove that the ratio[
γē(N) + (1− γ)e(N)

][
γe(N−i) + (1− γ)ē(N−i)

]
e(N−i)2 − ē(N−i)2

decreases in ej . After some rearranging, the numerator of the derivative of this ratio with respect to ej

becomes{
2γ(1− γ)

[
e(N−i)e(N−j)− ē(N−i)ē(N−j)

]
− 2eje(N−ij)ē(N−ij)

[
γ2(0.5− ei) + (1− γ)2(0.5 + ei)

]}
×{

e(N−i)
2 − ē(N−i)2

}
−

2
{
e(N−i)e(N−ij) + ē(N−i)ē(N−ij)

}
×{

γ2ē(N)e(N−i) + (1− γ)2e(N)ē(N−i) + γ(1− γ)
[
e(N)e(N−i) + ē(N)ē(N−i)

]}
.

Eliminating some of the clearly negative terms, we get that this expression is bounded above by

2γ(1− γ)
[
(e(N−i)e(N−j)− ē(N−i)ē(N−j))

][
e(N−i)

2 − ē(N−i)2
]
−

2γ(1− γ)
[
e(N−i)e(N−ij) + ē(N−i)ē(N−ij)

][
(e(N)e(N−i) + ē(N)ē(N−i))

]
.

It is immediate to verify that this last expression is negative, which completes the proof.

Proof of Lemma 3:

Fix e1 ≥ e2. The set of possible signals in the information structures m(e1, e2) can be identified

with {∅, 1, 2, 12}, corresponding to the coalition of experts who got signal b. For each signal A in

this set denote by pe(A) = 1
2 [e(A)ē(Ac) + ē(A)e(Ac)] the probability that signal A is observed, and by

qe(A) =
1
2 e(A)ē(Ac)

pe(A) the posterior probability that the state is B after signal A is observed (assuming

a uniform prior). We view the posterior of state B as a [0, 1]-valued random variable which takes the
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values {qe(A)} with corresponding probabilities {pe(A)}. The cumulative distribution function (cdf) of

this variable is

Fe(t) =
∑

{A: qα(A)≤t}

pe(A).

Let e′1 ≥ e′2 be obtained from (e1, e2) by a PD transfer, i.e., e1 + e2 = e′1 + e′2 and e1 ≥ e′1.

The probabilities pe′(A) and qe′(A), and the cdf Fe′(t) are defined in an analogous way to the above

definitions. By Blackwell and Girshick [6, Theorem 12.4.1 on page 332], m(e) is more informative than

m(e′) if and only if ∫ x

0

Fe(t)dt ≥
∫ x

0

Fe′(t)dt (15)

holds for every x ∈ [0, 1]. To complete the proof we now show that (15) holds at the four atoms of Fe, i.e.

at the points x = qe(∅), qe(1), qe(2), and qe(12). Since Fe and Fe′ are non-decreasing step-functions this

would imply that (15) holds for every x ∈ [0, 1]. Indeed, if
∫ x

0
Fe(t)dt <

∫ x
0
Fe′(t)dt at some x ∈ [0, 1],

then the same must be true at one of the jumps of Fe adjacent to x.

We will need the following simple observations, whose proofs can be found at the end of this proof:

(a) qe(∅) ≤ qe(2) ≤ 1
2 ≤ qe(1) ≤ qe(12).

(b) qe′(∅) ≤ qe′(2) ≤ 1
2 ≤ qe′(1) ≤ qe′(12).

(c) qe(∅) ≤ qe′(∅), qe(2) ≤ qe′(2), qe′(1) ≤ qe(1), and qe′(12) ≤ qe(12).

(d) Fe(t) = 1− Fe(1− t) and Fe′(t) = 1− Fe′(1− t) for every t ∈ [0, 1].

1. x = qe(∅):
From observations (b) and (c) it immediately follows that qe(∅) is smaller than the four possible posteriors

under e′. Thus, Fe′(t) = 0 for every t ∈ [0, qe(∅)], which implies
∫ qe(∅)

0
Fe′(t)dt = 0. Inequality (15) at

x = qe(∅) follows.

2. x = qe(2):

From observation (a) we have that
∫ qe(2)

0
Fe(t)dt = [qe(2)− qe(∅)]pe(∅), and from observations (b) and

(c) we have that either
∫ qe(2)

0
Fe′(t)dt = [qe(2) − qe′(∅)]pe′(∅) or

∫ qe(2)

0
Fe′(t)dt = 0. In the latter case

there is nothing to prove, so suppose the former is true. We therefore need to show that

[qe(2)− qe(∅)]pe(∅) ≥ [qe(2)− qe′(∅)]pe′(∅),

or equivalently that

qe(2)[pe(∅)− pe′(∅)] ≥ qe(∅)pe(∅)− qe′(∅)pe′(∅). (16)

Using the equality e1 + e2 = e′1 + e′2, simple algebra gives that the right-hand side of (16) is equal to
1
2 (e1e2 − e′1e′2). Also, it is easy to verify that pe(∅)− pe′(∅) = e1e2 − e′1e′2, so (16) becomes

qe(2)(e1e2 − e′1e′2) ≥ 1

2
(e1e2 − e′1e′2).

Since the area of a rectangle with a given perimeter decreases in the difference between its length and
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its width, we have that e1e2 − e′1e′2 ≤ 0, and by observation (a) we have that qe(2) ≤ 1
2 . This proves

(16).

3. x = qe(1):

This inequality is the “mirror image” of the inequality of the previous case. Indeed, using the symmetry

of Fe around 0.5 (observation (d)) and a simple change of variables we get that

∫ qe(1)

0

Fe(t)dt = qe(1)−
∫ 1

0

Fe(t)dt+

∫ 1−qe(1)

0

Fe(t)dt,

and similarly that ∫ qe(1)

0

Fe′(t)dt = qe(1)−
∫ 1

0

Fe′(t)dt+

∫ 1−qe(1)

0

Fe′(t)dt.

Now, since the expected posterior is equal to the prior, we have that
∫ 1

0
Fe(t)dt =

∫ 1

0
Fe′(t)dt. Thus,

inequality (15) at x = qe(1) is equivalent to
∫ 1−qe(1)

0
Fe(t)dt ≥

∫ 1−qe(1)

0
Fe′(t)dt. But notice that

1− qe(1) = qe(2), so the last inequality is the same as the one proved for x = qe(2).

4. x = qe(12):

As in the previous case, it is simple to show that inequality (15) at x = qe(12) is equivalent to the

inequality at x = qe(∅) proven above. We omit the details.

Proofs of observations (a)-(d):

(a): The posterior probability of state B is clearly nondecreasing (with respect to set inclusion) in the

coalition of experts who obtained signal b. Thus, to prove observation (a) we only need to check that

qe(2) ≤ 1
2 ≤ qe(1). The latter inequality immediately follows from e1 ≥ e2, since

qe(2) =
1

1 + (0.5+e1)(0.5−e2)
(0.5+e2)(0.5−e1)

and qe(1) =
1

1 + (0.5+e2)(0.5−e1)
(0.5+e1)(0.5−e2)

.

(b): The proof is identical to that of observation (a) (recall that e′1 ≥ e′2).

(c): We have

qe(∅) =
1

1 + (0.5+e1)(0.5+e2)
(0.5−e1)(0.5−e2)

and qe′(∅) =
1

1 +
(0.5+e′1)(0.5+e′2)
(0.5−e′1)(0.5−e′2)

,

so we need to show that (0.5+e1)(0.5+e2)
(0.5−e1)(0.5−e2) ≥

(0.5+e′1)(0.5+e′2)
(0.5−e′1)(0.5−e′2) . The latter is equivalent to (0.5 + e1)(0.5 +

e2)(e′1e
′
2 − e1e2) ≥ (0.5− e1)(0.5− e2)(e′1e

′
2 − e1e2), which follows from e′1e

′
2 ≥ e1e2.

Next,

qe(2) =
1

1 + (0.5+e1)(0.5−e2)
(0.5−e1)(0.5+e2)

and qe′(2) =
1

1 +
(0.5+e′1)(0.5−e′2)
(0.5−e′1)(0.5+e′2)

,

so qe(2) ≤ qe′(2) is equivalent to (0.5+e1)(0.5−e2)
(0.5−e1)(0.5+e2) ≥

(0.5+e′1)(0.5−e′2)
(0.5−e′1)(0.5+e′2) , which follows from e1 ≥ e′1 and

e2 ≤ e′2. The rest of the inequalities are proved in a similar fashion, the details are omitted.

(d): Fe(t) is the probability that the posterior of state B is less or equal to t, while 1 − Fe(1 − t) is

the probability that the posterior of state W is less or equal to t. Since the prior and the information
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structure are symmetric between the two states, these two probabilities must be equal. The same

argument holds for Fe′ .

Proof of Lemma 4:

Suppose that e1 ≥ e2. Then the posterior probability of state B is greater or equal to q = 0.5

when expert 1 sends signal b and less or equal to q = 0.5 when he sends signal w. Thus, the optimal

choice for the DM is independent of expert 2’s signal, which implies that V (e1, e2) = V (e1). Finally,

the distribution over posteriors induced by m1(e1) has a mass of 0.5 at the posterior q = 0.5 + e1 and a

mass of 0.5 at q = 0.5− e1. Therefore,

V (e1) = 0.5v(0.5 + e1) + 0.5v(0.5− e1).

Since v is the maximum of two linear functions that cross at q = 0.5 there are numbers α1, β1, α2, β2,

with α1 > α2 such that

v(0.5 + e1) = α1(0.5 + e1) + β1

and

v(0.5− e1) = α2(0.5− e1) + β2.

Thus,

V (e1) = 0.5(α1(0.5 + e1) + β1) + 0.5(α2(0.5− e1) + β2) =
α1 − α2

2
e1 +

0.5α1 + β1 + 0.5α2 + β2

2
.

The case e2 > e1 is similar.

Proof of Lemma 5:

The mapping mi 7→ P(mi,m∗−i)
is affine, and therefore E(mi,m∗−i)

[xi(s)] is affine in mi for any fixed xi.

Since Ci is convex (assumption (A2)) it follows that f(mi, xi) is concave in its first argument, and since

Ci is continuous (assumption (A3)) it follows that f(mi, xi) is continuous in its first argument. Finally,

f is clearly affine and continuous in xi for any given mi.

Proof of Lemma 6:

Let g : Rp → Rq be a non-constant linear function and define the set K = Ker(g)⊥
⋂
P , where

Ker(g)⊥ is the orthogonal complement of Ker(g) (the kernel of g) and P is the unit sphere of Rp. Let

α = minz∈K ‖g(z)‖q, where the minimum is attained due to compactness and continuity. Moreover,

α > 0 by construction. Fix some y ∈ Rp and let ȳ be the projection of y to Ker(g). We claim that

‖g(y)‖q ≥ α‖y − ȳ‖p. Indeed, the inequality is trivially satisfied when y ∈ Ker(g), and if y /∈ Ker(g)

then

‖g(y)‖q = ‖g(y)− g(ȳ)‖q = ‖g(y − ȳ)‖q = ‖y − ȳ‖p
∥∥∥∥g( y − ȳ

‖y − ȳ‖p

)∥∥∥∥
q

≥ α‖y − ȳ‖p,

where the first equality follows from ȳ ∈ Ker(g), the second and third follow from the linearity of g,

and the inequality is by the definition of α.
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Now, the above conclusion remains valid if g is affine rather than linear, so we may apply this to the

function T of the lemma. Thus, denoting by m̃i the projection of mi to Ker(T ), there is α > 0 such

that ‖T (mi)‖S ≥ α‖mi − m̃i‖ for every mi ∈ Mi. Finally, since Mi is polyhedral (assumption (A1)),

there is α′ > 0 such that ‖mi− m̃i‖ ≥ α′‖mi− m̄i‖ for all mi ∈Mi. The product β′ = αα′ then satisfies

the required inequality.

B An alternative general framework

The purpose of this appendix is to show how the model of Section 3 can be derived from a more primitive

framework in which experts choose how much effort to exert and what to report to the DM (as in the

binary-binary model of Section 2). In particular, we show that assumptions (A1)-(A3) of Section 3 are

consequences of standard assumptions in this basic framework; and that the notion of implementability

of information structures m∗ in Definition 1 is equivalent to implementability of strategies that induce

m∗ in this basic framework.

As in the model of Section 3, the set of possible states of nature is Ω = {ω1, . . . , ωK}, and the

common prior over Ω is γ = (γ1, . . . , γK). The set of experts is N = {1, . . . , n}, and Si is the set

of signals that expert i ∈ N may observe. Each expert i chooses an effort level ei ∈ [0, ē]. Every ei

determines a mapping mi(ei) : Ω→ ∆(Si), which we identify with a stochastic matrix with K rows and

|Si| columns. Here mi(ei)(k, s
i) is the probability that signal si ∈ Si realizes conditional on the state

being ωk ∈ Ω, given effort level ei.

We assume that informativeness increases with effort: If ei > e′i then mi(ei) is strictly more infor-

mative than mi(e
′
i) in the sense of Blackwell [5]. We will also need to assume that the technology mi is

continuous on [0, ē]. The cost of exerting effort ei is ci(ei), where ci : [0, ē]→ R+ is strictly increasing.

Let S = S1 × . . . × Sn. A contract is a list x = (x1, . . . , xn) with xi : S → R+ for each i ∈ N . A

contract x defines a game between the experts: A pure strategy for expert i is a pair (ei, ri), where ei

is i’s effort level and ri : Si → Si determines the report that i sends to the DM as a function of the

signal he observes. It is convenient to think of ri as a (stochastic) matrix of dimensions |Si| × |Si|, with

ri(s
′
i, si) equals 1 if ri(s

′
i) = si and equals zero otherwise. Notice that the information that the DM

receives from i under the strategy (ei, ri) is a garbling of the information that i privately observes, and

that the stochastic matrix that describes this information structure is the product bi(ei)ri.

We denote a pure strategy profile by (e, r) = ((e1, . . . , en), (r1, . . . , rn)). Each (e, r) induces a

distribution over the vector of signals s ∈ S that the DM observes, denoted P(e,r):

P(e,r)(s) =

K∑
k=1

γk

n∏
i=1

(mi(ei)ri)(k, si). (17)

Note that (17) assumes that different experts’ signals are independent conditional on the state. The

payoff to expert i given pure strategy profile (e, r) is

E(e,r)[xi(s)]− ci(ei). (18)
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Experts can also use mixed strategies. To avoid unnecessary technical issues we only consider finite-

support distributions over pure strategies. When i plays the mixed strategy σi that assigns probability

λl to the pure strategy (eli, r
l
i) (l = 1, . . . L,

∑
l λl = 1), the induced information structure is the convex

combination mi(σi) :=
∑
l λ
lmi(e

l
i)r

l
i. With abuse of notation we denote the expected cost of such a

mixed strategy σi by ci(σi) =
∑
l λ
lci(e

l
i). The payoff in (18) is extended to profiles of mixed strategies

as usual.

Let Mi be the set of all information structures (i.e., mappings from Ω to ∆(Si)) that can be induced

by some (pure or mixed) strategy of i:

Mi = {mi(σi) : σi is a strategy of expert i} . (19)

For each mi ∈Mi let Ci(mi) be the cost of the least costly way for i to induce mi:

Ci(mi) = inf {ci(σi) : σi induces mi} . (20)

Lemma 7. The set Mi defined in (19) satisfies assumption (A1) of Section 3. The cost function Ci

defined in (20) satisfies assumption (A2) of Section 3.

Proof. First, every mi ∈ Mi is a convex combination of garblings of information structures from the

image of mi. Since informativeness increases with effort, and since the set of garblings of a given

information structure is convex, it follows that every mi ∈Mi is a garbling of mi(ē). Conversely, every

garbling of mi(ē) can be induced as a mixture of pure strategies of the form (ē, rli) and is therefore in

Mi. It follows that Mi is equal to the set of all garblings of mi(ē), which proves that Mi is a closed and

convex polyhedral set. Thus, (A1) is satisfied.

Next, for every ei ∈ [0, ē] let Mi(ei) = {mi(ei)ri}ri be the set of information structures that can

be induced by exerting effort ei and then applying some (pure) reporting strategy. For mi that can be

induced by some pure strategy define Ei(mi) = min{ei ∈ [0, ē] : mi ∈Mi(ei)}, where the minimum is

attained due to continuity of mi. The composite function ci◦Ei, defined for all mi’s that can be induced

by pure strategies, describes the cost required to induce each such mi using pure strategies only. The

cost function Ci is then the convexification of ci ◦ Ei defined over the convex-hull Mi of the domain of

ci ◦ Ei. In other words, Ci is the largest convex function on Mi that is point-wise below ci ◦ Ei. This

implies convexity (A2).

Lemma 7 only concerns assumptions (A1) and (A2). In order to conclude that Ci is Lipschitz

continuous on Mi (assumption (A3)) we need to impose further restrictions on the primitives of the

environment. From the proof of the Lemma 7 we have that Ci is the convexification of the composite

function ci ◦ Ei. Since Mi is polyhedral, it follows from Laraki [24] that a sufficient condition for Ci to

be Lipschitz is that ci ◦Ei is Lipschitz. This latter condition is satisfied whenever (1) ci is Lipschitz on

[0, ē]; and (2) for every pure reporting strategy ri, the mapping ei 7→ mi(ei)ri is either constant on the

entire interval [0, ē], or it is one-to-one and its inverse is Lipschitz on its image. We omit the proof, but
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will assume for the next result that ci ◦ Ei is continuous.

Consider the game of Section 3 with Mi from (19) and Ci from (20). We have the following.

Lemma 8. Fix a contract x. Then m∗ ∈ M is an equilibrium of the game of Section 3 if and only

if there is an equilibrium σ such that25 m(σ) = m∗. In particular, m∗ is implementable according to

Definition 1 if and only if there is a contract x and an equilibrium σ of the game induced by x such that

m(σ) = m∗.

Proof. First, note that since ci ◦Ei is continuous, it follows from standard arguments that the infimum

in (20) is attained.

Suppose that σ is an equilibrium of the game induced by x and let m∗ = m(σ). Consider a deviation

m′i ∈ Mi for expert i. Let σ′i be a strategy for i such that mi(σ
′
i) = m′i and Ci(m

′
i) = ci(σ

′
i) (existence

of such σ′i follows from the first sentence of this proof). Then the payoff to i by choosing m′i in the game

of Section 3 is the same as his payoff for choosing σ′i in the game of this appendix, and his payoff by

choosing m∗i in the game of Section 3 is at least his payoff for choosing σi in the game of this appendix.

Since σi is a best response to σ−i, it follows that deviating to m′i is not profitable, hence m∗ is an

equilibrium of the game of Section 3.

To prove the converse, start with an equilibrium m∗ of the game of Section 3, and consider σ such

that mi(σi) = m∗i and ci(σi) = Ci(mi) for every i. Then it is immediate to check in a similar way to the

previous paragraph that σ is an equilibrium of the game of this appendix. This completes the proof.

25The notation m(σ) = m∗ means that mi(σi) = m∗i for every i ∈ N .
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