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Abstract

The paper studies optimal screening problem in which an agent incurs a fixed cost of

lying when she misrepresents her private information. In this environment, local incen-

tive constraints are not binding in the optimal mechanism, and standard techniques for

solving screening problems are not applicable. Significantly, the problem can no longer be

dichotomized into two parts solved sequentially: an implementability part which involves

the envelope condition and monotonicity of the allocation, and an optimization part. We

develop a new methodology to tackle this problem and use it to characterize the optimal

mechanism and compute it in special cases. Our method involves a procedure that jointly

solves for the binding incentive constraints and the optimal allocation. The optimal mech-

anism has a number of interesting qualitative properties, such as lack of exclusion and

first-best efficient allocation being offered to high- and low-value types. Also, bunching

never arises, as the optimal quantity allocation is always increasing in type independently

of type distribution,
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1 Introduction

This paper studies a screening problem in which an uninformed principal interacts with a

privately informed agent who incurs a fixed cost of “lying” when she misrepresents her private

information to the principal. The analysis of the fixed cost of lying is novel and, as we argue

below, well-motivated, and produces qualitatively new and interesting results.

Whereas most literature on incentives and mechanism design assumes that a privately in-

formed party is unconstrained in her ability to misrepresent and manipulate her information,

several strands in this literature have explored alternative frameworks in which misrepresenta-

tion is costly. A notable direction in this research, which originated in the work of Lacker and

Weinberg (1989) and has been further developed by Maggi and Rodriguez-Clare (1995) and

Crocker and Morgan (1998) consider settings in which an agent incurs a cost of misrepresen-

tation increasing in the size of her “lie” or type misrepresentation.

Another strand of literature on honesty in mechanisms, which includes Alger and Ma (2003),

Alger and Renault (2006, 2007), and Severinov and Deneckere (2006) has explored situations

in which a principal has to deal with a population of agents some of whom are “honest” and are

not able to misrepresent their private information, whereas a complementary fraction consists

of fully “strategic” agents who behave in a standard fashion.

Thus, this paper differs from both of this literatures in studying a setting in which the cost

of misrepresentation or lying is finite and does not depend on the magnitude of a “lie.”

Misrepresentation costs may exist for several reasons. First, misrepresenting the truth may

require costly effort or actions either to manufacture evidence or, conversely, to hide evidence

that reveals the true state of the world and conceal one’s information. For example, a firm

seeking a loan or a contract or an individual applying for a grant or promotion may need to be

perceived as productive, highly competent and/or creditworthy. This goal may be attained by

manufacturing “evidence” exaggerating prior performance and concealing the risk of default

or non-performance. It is plausible that the cost of misrepresentation or the effort required for

the production of such favorable but inaccurate “evidence” is independent of the magnitude

of misrepresentation. For instance, the cost of misrepresentation or concealment could involve

the loss of future business, benefits or reputation that may have “once and for all” nature
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making it unrelated to the size of misrepresentation.

Second, the cost of misrepresenting the truth may have psychological or ethical nature.

A moral barrier, a feeling of shame or discomfort, or stress may prevent people from lying.1

Since being honest or not is often a binary decision, the size of a lie would not affect such

psychological costs.

Third, studies in cognitive science and neuroscience indicate that lying is costly because it

requires more cognitive resources (Christ et al. (2008)). Therefore, if the potential benefit of

lying is small, people tend not to think about it and stay honest as a default choice. On the

other hand, if temptation to lie is high enough, the individuals tend to take full advantage of

it regardless of the extent of the lie.

In a general sense, the effort or cost required for lying may not be largely affected by the

size of a lie. For example, for a consumer with a high valuation for a product, pretending to be

mildly interested in the product is not necessarily easier than pretending to be not interested

at all.

There is substantial experimental evidence supporting the hypothesis that individuals are

averse to lying and incur a cost when doing so. In particular, Abeler, Becker and Falk (2014)

measure intrinsic cost of lying in a setup where other motives such as reputational concerns,

altruism, efficiency concerns and conditional cooperation can be ruled out, and find that lying

costs are significant and widespread. Kajackaite and Gneezy (2017) report experimental data

indicating that intrinsic costs of lying are positive and finite. They conclude that “the evidence

suggests that lying is a “normal good” in which people compare the intrinsic cost and benefit

of the lie, and when the benefit from lying is higher than the intrinsic cost of lying, they

lie.” Abeler, Nosenzo and Raymond (2016) provide a meta-analysis of 72 experimental studies

with 32503 subjects and find that subjects obtain only about a quarter of the maximal payoff

they could obtain by making payoff maximizing reports. They examine a range of popular

explanations and conclude that the data is explained by a combination of lying cost and

reputational concern.

1Behavioral psychologists have identified and studied a number of physical symptoms associated with emo-

tional discomfort that people experience when lying, such as blushing, “feeling wrong”, gaze aversion, elevated

eye-blink rate, etc. See, for example, Ekman(1973, 1988, 2003), Porter and Ten Brinke (2008).
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While most experimental studies indicate that lying costs exist, the exact shape and na-

ture of these costs remains unclear. Gneezy, Kajackaite and Sobel (2018) study the effect of

the relation between the size of a lie and three different factors: payoffs, outcomes and the

likelihood. They find that while social identity (the likelihood factor) has an important impact

on lying costs, the other two factors have smaller effects on lying behavior, which indicates

that the distance between the report and the truth itself plays little role in the cost of lying.

On the other hand, Hilbig and Hessler (2013) find that people’s willingness to lie decreases

with the degree of the required distortion of the truth, which suggests that the cost of lying is

increasing in the size of lie. It is likely that in reality the cost of lying includes both fixed and

variable cost elements.

In this paper, we adopt the fixed cost of lying hypothesis as our working assumption. From

a theoretical perspective, it is important to understand the effect of the fixed cost of lying on the

optimal mechanism and pricing. As we show below, the introduction of a non-zero fixed cost

of lying reshapes the landscape of the optimal screening problem and produces qualitatively

new results.

The first significant difference with the standard screening problem is that local incentive

constraints are no longer binding where there is a fixed cost of lying. Indeed, imitating a close-

by type invariably yields a lower payoff than telling the truth. Therefore, we can no longer use

standard Mirrlees’ method and the Envelope Theorem to derive the agent’s surplus from the

first-order condition and use it to replace all incentive constraints.

Instead, we need to identify binding non-local incentive constraints in an optimal mecha-

nism. To describe them, we introduce a concept of a “targeted type” τ(θ) - a type or a set of

types to which type θ has a binding incentive constraint. Significantly, which constraints are

binding are endogenous, and so characterizing the targeted type τ(.) in the optimal mechanism

is one of the major challenges that we face.

Further, targeted types form endogenous “chains.” Specifically, if type θ targets some type

θ′ i.e., τ(θ) = θ′, and type θ′ targets some type θ′′ i.e., τ(θ′) = θ′′, then the types θ, θ′, θ′′

are part of a single chain. The optimal quantity allocation of any type in a chain is then

determined jointly with all other types in this chain.
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There are several properties of the solution that are worth mentioning. First, monotonicity

of the quantity allocation in type is no longer a necessary condition for implementation in

our set-up. Non-monotone allocations are implementable, even though the single-crossing

property (SCP) holds. However, we show that only quantity allocations increasing in type can

be optimal.

Second, the assigned quantities are strictly increasing in type without any additional re-

strictions on the parameters of the model. In the standard problem, ironing (flat segments

of the quantity profile) could happen if the probability distribution from which the types are

drawn does not satisfy monotone hazard rate condition. Here, however, the assigned quantity

is always strictly increasing in the optimal mechanism, regardless of the type distribution.

The reason behind this is two-fold. For one thing, optimality implies that increasing quantity

schedule is optimal. Further, fixed costs imply that one can always make the quantity schedule

at least slightly increasing, without violating any incentive constraints.

Third, in the optimal mechanism full allocative efficiency is achieved for an interval of low

types and an interval of high types who are assigned their first-best quantity, while downward

quantity distortion occurs for medium types. This result is in contrast to the “sacrifice efficiency

of low types to extract more rent from the high types” intuition from the standard screening

problem. Given a positive fixed cost, it is not worth for any type to imitate a low type even if the

latter is assigned her first-best quantity. Therefore, no distortion is needed for low types. The

intuition behind the efficiency of the allocation for the high-value types is somewhat similar:

it is not worth for anyone to imitate those types because, despite their high information rent,

they also pay a large transfer to the mechanism designer. So, with the addition of fixed costs,

the surplus from imitating those high types is negative.

Fourth, the efficiency of the allocation for the low types also means that there is no exclusion

in the sense that every type with positive valuation receive a positive quantity. Severinov

and Deneckere (2006) establish a no exclusion property when there is a positive fraction of

completely honest agent. This paper shows that this property also holds when there are

intermediate barriers to the agents’ opportunism in the form of a fixed cost.

Establishing these properties allows us to develop our methodology for characterizing the
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optimal mechanism, to formulate our problem as an optimal control one and derive the nec-

essary and sufficient conditions describing the optimal mechanism for general utility function

and type distribution. These first-order conditions come in the form of ordinary differential

equations for the optimal quantity q(θ) and the targeted type τ(θ). In the case of a quadratic

utility function and uniform type distribution we are able to derive a closed form solution and

exhibit the optimal mechanism explicitly.

The overall structure of the optimal mechanism involves an endogenous partition of the type

space into intervals such that any type in an interval targets some type in the adjacent lower

interval. As the fixed cost of lying decreases, the number of intervals in this partition increases,

binding incentive converge to the local ones i.e., τ(θ)→ θ, and the optimal quantity allocation

profile and transfers converge to the standard second-best. Conversely, the number of intervals

decreases as the fixed cost becomes large. In particular, for a range of costs this partition

contains only two elements. As the fixed costs increases further, binding incentive constraint

disappear and the quantity allocation becomes the first-best. While not being particularly

surprising, this limiting result provides an insight that second-best and first-best can be viewed

as the two extreme cases as lying costs vary. Our model provides a generalization which is

compatible with both cases, and also allows us to make predictions under limited honesty.

Thus the contribution of this paper is two-fold. First, we characterize the optimal screening

mechanism offered by a principal to an agent who has limited ability to misrepresent her

information in the form of a fixed cost of lying. We highlight important qualitative properties

of this mechanism, which include the first-best efficient allocation assigned to intervals of types

near the “top” and the “bottom.” Thus, the mechanism exhibits no exclusion in the sense that

all types whose marginal utility of the good exceeds the marginal cost of production consume a

positive quantity. So the standard exclusion property of optimal screening mechanisms is not

robust to a small cost of lying. We provide a closed form solution for the optimal mechanism

in a special but common case of linear-quadratic utility under uniform type distribution.

The second contribution of this paper is methodological and involves development of new

techniques to solve a class of principle-agent problems in which local incentive constraints are

not binding and which, in contrast to standard ones, cannot be dichotomized into two parts, an
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implementability part which involves an envelope condition and monotonicity of the allocation

requirement, and the second part involving an optimization. We believe that key elements

of our approach, such as the characterization of binding non-local incentive constraints and

the “targeted types,” as well as the techniques of solving for them, could also be useful for

solving other problems with binding non-local incentive constraints, potentially providing an

important analytical instrument for various applications.

The remainder of the paper is organized as follows. Section presents the formal model.

Section 3 exhibits important properties of optimal screening mechanism. Section 4 formulates

the screening problem as an optimal control and derives the optimality conditions for the

solution. Section 5 presents an example of uniform-quadratic case with closed form solution of

the optimal mechanism and comparative statics. Section 6 Concludes. All proofs are relegated

to an Appendix.

2 Model and Preliminaries

We will cast our model in the context of a relationship between a monopolistic seller, who acts

as a principal, and a privately informed buyer, who acts as an agent. However, our results

apply in any other principal/agent setting.

Thus, we consider a monopolistic profit-maximizing firm facing a consumer with privately

known preference parameter (value) θ distributed according to cdf F (θ) over the interval [0, 1].

A consumer with value θ gets utility u(q, θ)− t from consuming quantity/quality q of the good

in exchange for payment t. The consumer’s reservation utility is assumed to be zero. We also

make the following standard assumption on u(q, θ):

Assumption 1 (i) The function u(q, θ) is twice continuously differentiable, strictly increasing

in θ when q > 0, is strictly concave in q and satisfies u(0, θ) = 0 for all θ ∈ [0, 1];

(ii) uq(0, θ) > 0 for all θ > 0, uqq(q, θ) < 0.

(iii) There exists qm s.t. uq(q
m, θ) < 0 for all θ ∈ [0, 1].

(iv) There exist K > 0 and K > 0 such that K < uqθ < K for all q > 0 and θ ∈ [0, 1].

Assumption 1 implies that qfb(θ) ≡ arg maxq u(q, θ) is well-defined, finite, strictly positive for
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θ > 0 and increasing in θ.

We also assume that the firm has zero cost of production. This assumption is without

loss of generality. Indeed, if the firm instead faced a cost of production c(q), the model would

be equivalent to one in which the firm’s cost is identically zero, while the consumer’s utility

function is u(q, θ)− c(q).

The firm has all the bargaining power and designs a mechanism to maximize its expected

payoff. The consumer can either accept or reject the mechanism offered by the firm. In the

latter case she earns her reservation utility level of 0.

To this standard screening environment we now add a new element in the form of the fixed

cost of misrepresentation, or lying about one’s type. Specifically, we assume that the consumer

of type θ ∈ [0, 1] incurs a cost C if, being asked to report her value to the firm, she reports

some θ̂ 6= θ. Our goal is to characterize the firm’s optimal mechanism in this environment.

It is immediate to see that, under the fixed cost of lying assumption, the Revelation Prin-

ciple still applies provided that type announcement is considered to be a part of the alloca-

tion. So the mechanism designed by the firm is now described as a menu (q(θ), t(θ), A(θ)) ∈

IR+×IR×[0, 1] for θ ∈ [0, 1] where q(θ) is the quantity assigned to type θ, t(θ) is her payment to

the firm and A(θ) is the type announcement recommended by the mechanism to the consumer

of type θ.

Let 1(A(θ′) 6= θ) denote an indicator function equal to 1 when A(θ′) 6= θ and equal to zero

otherwise. Then the firm’s optimal mechanism solves the following problem:

max
q(θ),t(θ),A(θ)

∫ 1

0
t(θ)f(θ)dθ

subject to the following incentive and individual rationality constraints:

u(q(θ), θ)− t(θ)− C × 1(A(θ) 6= θ) ≥ u(q(θ′), θ)− t(θ′)− C × 1(A(θ′) 6= θ) ∀θ, θ′ ∈ [0, 1]

u(q(θ), θ)− t(θ)− C × 1(A(θ) 6= θ) ≥ 0 ∀θ ∈ [0, 1]

Let us first show that without loss of generality we can restrict considerations to mechanisms

in which there is no lying.

Theorem 1 Consider an incentive compatible, individually rational mechanism (q(θ), t(θ), A(θ))

such that for a set of types θ of a positive measure we have A(θ) 6= θ. Then there exists an al-
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ternative mechanism (q̂(θ), t̂(θ), Â(θ)) such that Â(θ) = θ for almost all θ and which is strictly

more profitable for the firm than the original mechanism.

Proof of Theorem 1:

Given incentive compatible, individually rational mechanism (q(θ), t(θ), A(θ)) which satis-

fies A(θ) 6= θ for all θ ∈ Θl, where Θl has a positive measure, consider an alternative mechanism

(q̂(θ), t̂(θ), Â(θ)) such that (q̂(θ), t̂(θ), Â(θ)) = (q(θ), t(θ), A(θ)) for all θ such that A(θ) = θ

and (q̂(θ), t̂(θ), Â(θ)) = (q(θ), t(θ) +C, θ) for θ such that A(θ) 6= θ. Clearly, (q̂(θ), t̂(θ), Â(θ)) is

strictly more profitable for the firm, provided that it is incentive compatible and individually

rational. The individual rationality of the new mechanism follows immediately from the indi-

vidual rationality of the original mechanism. So to complete the proof we only need to show

that the new mechanism is incentive compatible. Indeed, for all θ, θ′ ∈ [0, 1] we have:

u(q̂(θ), θ)− t̂(θ)− C × 1(Â(θ) 6= θ) = u(q̂(θ), θ)− t̂(θ) = u(q(θ), θ)− t(θ)− C × 1(A(θ) 6= θ)

≥ u(q(θ′), θ)− t(θ′)− C × 1(A(θ′) 6= θ) ≥ u(q̂(θ′), θ)− t̂(θ′)− C × 1(Â(θ′) 6= θ)

where the first equality holds because Â(θ) = θ for all θ ∈ [0, 1], the second equality holds by

definition of (q̂(θ), t̂(θ), ŷ(θ)), the first inequality holds because (q(θ), t(θ), A(θ)) is incentive

compatible, and the second inequality holds because t̂(θ′) ≥ t(θ′) and Â(θ′) 6= θ) for θ′ 6= θ.

Q.E.D.

Theorem 1 implies that the firm’s problem can be stated as follows:

max
q(θ)≥0,t(θ)

∫ 1

0
t(θ)f(θ)dθ (1)

subject to

u(q(θ), θ)− t(θ) ≥ u(q(θ′), θ)− t(θ′)− C ∀θ, θ′ ∈ [0, 1] (IC) (2)

u(q(θ), θ)− t(θ) ≥ 0 ∀θ ∈ [0, 1] (IR) (3)

We call (q(θ), t(θ)) an optimal mechanism if it solves the principal’s maximization problem

(1) subject to (2) and (3). We now have:

Theorem 2 An optimal mechanism exists. It is unique if uθqq(q, θ) ≥ 0 for all (q, θ).
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3 General Structure of the Optimal Mechanism

In this section we will establish a number of important general properties of an optimal mech-

anism. First, we need some additional notation. So, let qfb(θ) be the first-best quantity which

maximizes u(q, θ) and thus solves uq(q, θ) = 0. Given our assumptions qfb(θ) is uniquely de-

fined for all θ and is strictly positive and increasing for θ > 0. Also, let (q(.), t(.)) denote an

incentive compatible individually rational mechanism and let V (θ) = u(q(θ), θ) − t(θ) denote

the associated net payoff of the agent-type θ in this mechanism.

The first set of properties allow us to focus without loss of generality on the set of mechanism

that have regularity properties which simplify the task of deriving the optimal mechanism.

Theorem 3 There exists an optimal mechanism (q(.), t(.)) such that for all θ ∈ [0, 1]:

1. V (θ), q(θ) and t(θ) are continuous in θ, with t(θ) ≥ 0, for all θ ∈ [0, 1].

2. V (θ) is non-decreasing;

3. q(θ) is strictly increasing;

4. 0 < q(θ) ≤ qfb(θ) for all θ > 0;

The continuity and monotonicity results of Theorem 3 are standard in screening models

without lying costs. In particular, the continuity and monotonicity of V (.) and the monotonic-

ity of q(.) are usually a direct consequences of incentive compatibility. In fact, it-is well known

that the monotonicity of q(.) is a necessary and sufficient condition for implementability under

single-crossing assumption. This means, in particular, that “ironing” is used sometimes in the

optimal mechanism setting q(.) to be constant on certain intervals.

Yet, the nature of these monotonicity and continuity results and their significance are

different in our case. Particularly, the presence of fixed costs creates a gap between the payoff

that an agent gets by acting truthfully and the payoff that she gets by imitating a close-by type,

which makes it possible to implement non-monotone and discontinuous quantity schedules q(.)

and a discontinuous associated payoff function V (.).
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To show this, suppose q(.) and V (.) are continuous and monotone. Then if type θ imitated

type θ′+ ε for some small ε, she would get a payoff equal to V (θ+ ε) + u(q(θ+ ε), θ)− u(q(θ+

ε), θ+ ε)−C which is strictly less than her payoff V (θ). So, local incentive constraints are not

binding for any type θ, and we can change q(.) and V (.) slightly in each neighborhood and, in

particular, choose them to be decreasing on some interval and choose V (.) to be discontinuous

without violating local incentive constraint. To see that this can be done without violating

any global incentive and individual rationality constraints, consider a standard second-best

mechanism (qsb(θ), tsb(θ)) and associated net payoff function V sb(θ) which is optimal under

zero fixed costs. Now suppose that C > 0. Then no incentive constraints would be binding

in the mechanism (qsb(θ), tsb(θ). So we can modify it slightly and, in particular, introduce

intervals of non-monotonicity of q(.) and V (.) and discontinuity in V (.).

So, instead of relying on the analysis of incentive and/or individual rationality constraints,

the proof of Theorem 3 uses optimality arguments to rule out the non-monotonicities and

discontinuities in question. As an illustration, consider two close-by types θ1 and θ2, θ1 < θ2

and suppose that the allocation of θi, i ∈ {1, 2} is (q(θi), t(θi)) such that q(θ2) < q(θ1). It is

fairly easy to establish that q(θi) ≤ qfb(θi) by ruling out binding upwards incentive constraints

in an optimal mechanism. Then θ2 can be assigned the allocation (q(θ1), t′) such that t′ > t(θ2).

The transfer t′ can be chosen so that all incentive constraints of type θ2 hold and no type would

want to imitate θ2. In fact, we can then increase the quantity allocation of θ2 to q(θ1) + δ,

where δ is sufficiently small and further increase the transfer paid by θ2 by some small amount

without violating any incentive constraints. This modification increases the seller’s profits.

The no-exclusion property q(θ) > 0 is also due to the presence of fixed cost. Indeed, for

every θ > 0, there exists a sufficiently small q > 0 such that u(q, 1) − u(q, θ) < C. Then

assigning q to type θ in exchange for transfer u(q, θ) increases the seller’s expected profit

without violating any other type’s incentive constraint.

As we argued above, as implication of the continuity of the optimal allocation and payoff

in type is that local incentive constraints are not binding for any type. Yet, of course, some

incentive constraints must be binding, for otherwise the optimal mechanism would involves

first-best quantities and full surplus extraction by the principal. Thus, identifying and char-
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acterizing the set of binding incentive constraints is an important part in our analysis, and it

is especially challenging since those binding constraints are non-local. We deal with this issue

by, at first, establishing general properties of the binding incentive constraint correspondence

in the following two Theorems. Building on these results in later sections, we derive necessary

and sufficient conditions characterizing these constraints.

First let us define the targeted type correspondence τ(θ) in the mechanism (q(.), t(.)) as

follows:

τ(θ) =
{
θ′|u(q(θ), θ)− t(θ) = u(q(θ′), θ)− t(θ′)− C

}
(4)

In words, τ(θ) is the set of all such types θ′ that incentive constraint IC(θ, θ′) of type θ is

binding. Note that τ(θ) may be empty. If τ(θ) is non-empty which as we establish below, is

so when θ is sufficiently large, then we will call the types in τ(θ) as targeted types of type θ.

Also, for any set Θ ⊆ [0, 1], we let τ(Θ) = ∪θ∈Θτ(θ). The following Theorem provides basic

key properties of the τ(.) correspondence.

Theorem 4 1. For any fixed cost C, 0 < C < C ≡ maxθ∈[0,1] u(qfb(θ), 1) − u(qfb(θ), θ)

there exists θ̂c ∈ (0, 1) such that τ(θ) 6= ∅ iff θ ∈ [θ̂c, 1].

2. The correspondence τ(θ) is strictly increasing, upper hemicontinous and compact-valued

on [θ̂c, 1], with max τ(θ) < θ and min τ(θ) > 0.

3. For all θ ∈ [0,max τ(θ̂c)] ∪ [min τ(1), 1], we have q(θ) = qfb(θ).

4. If θ1, θ2 ∈ τ(θ) for some θ and θ1 < θ2, then q(θ′) = qfb(θ′) for all θ′ ∈ [θ1, θ2].

5. Let W = maxq,θ uθq(q, θ)× qfb(1). Then for any θ ∈ [θ̂c, 1], θ −max τ(θ) ≥ C
W

.

6. V (θ) = 0 for all θ ∈ [0, θ̂c], V (θ) > 0 for all θ ∈ (θ̂c, 1].

By Theorem 4 the screening problem is non-trivial iff C < C = maxθ∈[0,1] u(qfb(θ), 1) −

u(qfb(θ), θ). For each positive fixed cost below C only sufficiently high types have binding

incentive constraints pointing to some strictly lower types, and earn positive surpluses. More-

over, not all types are “targeted” i.e. have binding incentive constraints pointing to them.
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Figure 1: Chains of incentive constraint.

0 1τ(1)τ2(1)θ̂τM (1)τ(θ̂) θ

θ′ = τ2(θ)

In particular, high and low types are not targeted by any other types. This is intuitive, as

imitating a low type given any other type too little surplus that is not sufficient to cover the

fixed cost C. Likewise, imitating (or targeting) a high type does not given enough surplus for

another type to cover the fixed cost because high types are paying sufficiently high transfer

to the mechanism in exchange for a high quantity that they obtain. Figure ?? illustrates the

relationship between targeted type correspondence τ and quantity q in the optimal mechanism.

Since types below τ(θ̂) and above τ(1) are not targeted by any type, there is no reason for

principal to distort allocation of those types. As a result, they receive first best quantities.

Significantly, Theorem 4 shows that targeted type correspondence is strictly increasing and

compact-valued and that low and high types are not in its image, and are therefore assigned

the first-best quantities.

To illustrate the implication of an increasing targeted type correspondence, let us formally

define the high order targeted type recursively as follow: for any θ and integer k, τ0(θ) = θ,

τk(θ) = τ(τk−1(θ)). As illustrated in Figure 1, (τ(θ), ..., τk(θ), ...) is a chain of targeted types

originating from θ. Let M = max{k : τk(1) 6= ∅} be the length of such chain originating

from the highest type θ = 1. Since τ(.) is continuous and increasing in θ, it maps the interval

[τk(1), τk−1(1)] onto the interval [τk+1(1), τk(1)] or, equivalently, τk−1(.) maps the interval

[τ(1), 1] onto the interval [τk(1), τk−1(1)] for all k ∈ {1, ...,M − 1}. Thus the type space [θ̂, 1]

can be partitioned into a collection of adjacent intervals [τk(1), τk−1(1)] for k ∈ {1, ...,M − 1}

such that for every θ ∈ [τk+1(1), τk(1)], we have τ(θ) ∈ [τk+2(1), τk+1(1)], and the residual

interval [θ̂, τM−1(1)].

In the next Lemma we show how the optimal mechanism changes as C goes to zero. For

the purposes of this Lemma we slightly modify the notation and let q(θ|C), V (θ|C) be the
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quantity, the net payoff of the type θ, respectively, and let M(C) be the maximal length of a

chain of targeted types in the unique optimal mechanism under fixed cost C. Also, let qsb(θ)

and V sb(θ) be the optimal quantity and the net payoff of type θ in the solution to the standard

screening problem with zero cost of misrepresentation.

Lemma 1 We have limC↓0 q(θ|C) = qsb(θ), limC↓0 V (θ|C) = V sb(θ) for all θ ∈ [0, 1], and

limC↓0M(C) =∞.

4 Deriving the Optimal Mechanism

4.1 Reformulation of the Problem

In this section we reformulate our mechanism design problem of choosing the quantity/transfer

profile (q(.), t(.)) to solve (1) - (3) as a problem of choosing an optimal profile (q(.), τ(.), θ̂),

where τ(θ) is a “targeted type” which is defined in (4) and which in an incentive compatible

mechanism solves maxθ′ u(q(θ′), θ)−t(θ′)−C and θ̂ is the lowest type for which τ is non-empty,

so that V (θ) > 0 iff θ > θ̂. Lemma 2 states a condition under which τ(θ) is single-valued in

the optimal mechanism.

Lemma 2 Let (q(θ), t(θ)) be an optimal mechanism and (V (θ), τ(θ)) be the corresponding net

payoff function and targeted type correspondence. Suppose that G(θ, θ′)+V (θ′) ≡ u(qfb(θ′), θ)−

u(qfb(θ′), θ′) + V (θ′) is strictly quasi-concave in θ′, then τ(θ) is single-valued.

By Theorem 3, we may without loss of generality assume that q(.), t(.) and V (.) are

increasing and continuous, and hence almost everywhere differentiable. By Theorem 4 the

targeted type in τ(θ) is increasing and, therefore, satisfies the following first-order condition

for all θ ∈ [θ̂, 1]:

uq(q(τ(θ)), θ)q̇(τ(θ))− ṫ(τ(θ)) = 0 (5)

Then differentiating V (θ) = u(q(τ(θ)), θ)− t(τ(θ))− C at θ ∈ [θ̂, 1] and using (5) yields:

V̇ (θ) =uθ(q(τ(θ)), θ) + τ̇(θ)[uq(q(τ(θ)), θ)q̇(τ(θ))− ṫ(τ(θ))] = uθ(q(τ(θ)), θ) (6)
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In combination with V (θ) = 0 for θ ∈ [0, θ̂], (6) implies that for all θ ∈ [0, 1] we have:

V (θ) =

∫ max{θ,θ̂}

θ̂
uθ(q(τ(s)), s)ds (7)

So, for all θ ∈ [0, 1] we have:

t(θ) =u(q(θ), θ)− V (θ) = u(q(θ), θ)−
∫ max{θ,θ̂}

θ̂
uθ(q(τ(s)), s)ds. (8)

Using (8) yields the following expression for the seller’s expected profits:∫ 1

0
[u(q(θ), θ)−

∫ max{θ,θ̂}

θ̂
uθ(q(τ(s)), s)ds]f(θ)dθ =

∫ 1

0
u(q(θ), θ)f(θ)−

∫ 1

θ̂
(1− F (θ))uθ(q(τ(θ)), θ)dθ

(9)

Since q(θ) = qfb(θ) for all θ ∈ [0, τ(θ̂)] ∪ [τ(1), 1] we can rewrite (9) as follows:∫ 1

τ(1)
u(qfb(θ), θ)f(θ)dθ +

∫ τ(1)

τ(θ̂)
u(q(θ), θ)f(θ)dθ −

∫ 1

θ̂
(1− F (θ))uθ(q(τ(θ)), θ)dθ +

∫ τ(θ̂)

0
u(qfb(θ), θ)f(θ)dθ

=

∫ 1

τ(1)
u(qfb(θ), θ)f(θ)dθ +

∫ 1

θ̂
u(q(τ(θ)), τ(θ))f(τ(θ))τ̇(θ)− (1− F (θ))uθ(q(τ(θ)), θ)dθ

+

∫ τ(θ̂)

0
u(qfb(θ), θ)f(θ)dθ (10)

where the equality is obtained by making a change of variables in the second integral before

the equality from θ ∈ [τ(θ̂), τ(1)] to τ(θ).

Next, we use (5), the first-order condition (11) for τ , to derive the law of motion of q(.).

First, differentiate (8) to get:

ṫ(θ) = uq(q(θ), θ)q̇(θ) + uθ(q(θ), θ)− 1(θ ≥ θ̂)uθ(q(τ(θ)), θ) (11)

Combining (5) and (11) we obtain that for all θ ∈ [θ̂, 1],

[uq(q(τ(θ)), θ)− uq(q(τ(θ)), τ(θ))]q̇(τ(θ))− uθ(q(τ(θ)), τ(θ)) + 1(τ(θ) ≥ θ̂)uθ(q(τ(τ(θ))), τ(θ)) = 0

(12)

Finally, recall that the following boundary conditions must hold:

q(τ(1)) = qfb(τ(1)) (13)

q(τ(θ̂)) = qfb(τ(θ̂)) (14)

V (θ̂) = u(q(τ(θ̂)), θ̂)− u(q(τ(θ̂)), τ(θ̂))− C = 0 (15)

14



Figure 2: Structure of targeted types and informational rents under intermediate

costs of lying

0 1
τ(1)

θ̂
τ(θ̂)

τ(θ) = ∅
V (θ) = 0

τ(θ) 6= ∅
V (θ) > 0

We will refer to the problem of maximizing (10) with respect to choice variables (q(θ), τ(θ), θ̂)

subject to the differential equation (12) and the boundary conditions (13)-(15) as a relaxed

program. It is a relaxed program, because we have not imposed all incentive constraints on

it directly. Neither have we required q(.) and τ(.) to be increasing and τ(θ) < θ whenever

τ(θ) 6= ∅ which must be the case in the optimal mechanism. At the same time, the individual

rationality of the solution to the relaxed program follows directly from (8).

Furthermore, in the sequel we will solve the relaxed program and then establish that it

satisfies the omitted constraints and its solution uniquely defines a solution (q(.), t(.)) to our

original problem (1) - (3).

4.2 Solving for the Optimal Mechanisms: Intermediate Costs

In this section we solve the relaxed program formulated in the previous subsection and charac-

terize the optimal mechanism for a range of intermediate values of the fixed cost C under which

the optimal mechanism has a particularly simple structure, as shown in the next Theorem.

Theorem 5 There exists C ∈ (0, C) such that if C ∈ (C,C), then in the optimal mechanism

τ(1) < θ̂.

According to this Theorem, when C ∈ (C,C), then τ([0, 1]) ⊆ [0, θ̂]. Since τ(θ) = ∅ and

V (θ) = 0 for all θ < θ̂, it follows that τ(τ(θ)) = ∅ for all θ. Thus, the maximal length

of the chain of targeted types is 1, as illustrated in Figure 2, and the last term in (12) is

15



zero. Moreover, all types within the image of τ get zero net payoff, i.e. V (θ) = 0 for all

θ ∈ [τ(θ̂), τ(1)]. Therefore, Lemma 2 ensures that τ(.) is a single-valued function given the

following assumption.

Assumption 2 G(θ, θ′) ≡ u(qfb(θ′), θ)− u(qfb(θ′), θ′) is strictly strictly quasi-concave in θ′.

Assumption 2 holds for many commonly specified utility functions, for example, a linear

quadratic one, θq− q2

2 . A sufficient condition for it is concavity of the first-best quantity qfb(θ)

in θ together with uθθ ≥ 0.

Our next step is to derive a solution to the relaxed program- maximizing (10) subject to

(12) and (13)-(15)- via optimal control method. To this end, we will first make a change of

variables. Specifically, let Q(θ) = q(τ(θ)) be the quantity assigned to the targeted type of θ.

Note that finding a solution (q(θ), τ(θ), θ̂) to the relaxed program is equivalent to finding a

solution (Q(θ), τ(θ), θ̂). In particular, since Q̇(θ) = q̇(τ(θ))τ̇(θ), we can rewrite (12) as follows:

Q̇(θ) =
uθ(Q(θ), τ(θ))

uq(Q(θ), θ)− uq(Q(θ), τ(θ))
τ̇(θ) for all θ ∈ [θ̂, 1] (16)

Next, let us define scrap values S0(θ̂, τ(θ̂)) and S1(τ(1)):

S0(θ̂, τ(θ̂)) =

∫ τ(θ̂)

0
u(qfb(θ), θ)f(θ)dθ (17)

S1(τ(1)) =

∫ 1

τ(1)
u(qfb(θ), θ)f(θ)dθ (18)

Now we can rewrite our relaxed program as follows:

maxQ(θ),τ(θ),θ̂

∫ 1

θ̂
u(Q(θ), τ(θ))f(τ(θ))τ̇(θ)− (1− F (θ))uθ(Q(θ), θ)]dθ + S0(θ̂, τ(θ̂)) + S1(τ(1))

(19)

subject to (16) and the boundary conditions:

R1 ≡ Q(1)− qfb(τ(1)) = 0, (20)

R2 ≡ Q(θ̂)− qfb(τ(θ̂)) = 0, (21)

R3 ≡ u(Q(θ̂), θ̂)− u(Q(θ̂), τ(θ̂))− C = 0. (22)
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This problem is amenable to optimal control approach, with state variables Q(.) and τ(.),

control variable α satisfying τ̇(θ) = α, and a free boundary θ̂. Introducing the notation

h(θ,Q, τ) = uθ(Q,τ)
uq(Q,θ)−uq(Q,τ) , the Hamiltonian of this optimal control problem is given by:

H = u(Q, τ)f(τ)α− (1− F (θ))uθ(Q, θ) + λQh(θ,Q, τ)α+ λτα (23)

The linearity of the Hamiltonian (23) in the control variable α creates certain technical

difficulties, as it implies that α cannot be solved for directly from the standard first-order con-

ditions. However, Pontryagin’s Maximum principle still applies and requires that the optimal

control α maximizes the Hamiltonian (23).

Particularly, let us introduce the following switching function J(θ,Q(θ), τ(θ), λQ(θ), λτ (θ)):

J(θ,Q(θ), τ(θ), λQ(θ), λτ (θ)) = u(Q, τ)f(τ) + λQh(θ,Q, τ) + λτ (24)

Note that the switching function J can never be strictly positive, since then the optimal value

of α is infinity and, correspondingly, the value of the objective would be infinite. Optimality

requires the following “switching conditions” to hold:

J(θ,Q, τ, λQ, λτ ) < 0⇒ α = 0

J(θ,Q, τ, λQ, λτ ) = 0⇒ α ≥ 0

An interval of θ on which J < 0 is called a nonsingular arc. The optimal solution involves

setting α(θ) = 0 for all θ on a non-singular arc.

An interval of θ on which J vanishes (J = 0) is called a singular arc. On a singular

arc, the optimality conditions do not pin down the value of the optimal control α. As a

consequence, such problems of singular control are quite difficult to solve. Only a few solutions

have been developed up to now, most notably Merton (1969)’s celebrated portfolio choice

problem in finance, and trajectory optimization in aeronautics (see e.g. Bryson and Ho (1975)

Ch. 8). The approach we follow here is to recover the optimal control α along a singular arc

by differentiating the identity J = 0 with respect to θ until the control variable appears in a

non-trivial way, and then solve for it. Significantly, our solution is simplified by finding that

the whole domain in our case constitutes a singular arc, so that we do not have to characterize

the juncture points between singular and non-singular arcs.
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In addition, by Pontryagin’s Maximum principle the solution has to satisfy the following

costate equations:

− λ̇Q =
∂H

∂Q
= uq(Q, τ)f(τ)α− [1− F (θ)]uθq(Q, θ) + λQ

∂h

∂Q
α = (25)

uq(Q, τ)f(τ)α− [1− F (θ)]uθq(Q, θ) + λQ
uθq(Q, τ)[uq(Q, θ)− uq(Q, τ)]− uθ(Q, τ)[uqq(Q, θ)− uqq(Q, τ)]

[uq(Q, θ)− uq(Q, τ)]2
α

− λ̇τ =
∂H

∂τ
= uθ(Q, τ)f(τ)α+ u(Q, τ)f ′(τ)α+ λQ

∂h

∂τ
α = (26)

uθ(Q, τ)f(τ)α+ u(Q, τ)f ′(τ)α+ λQ
uθθ(Q, τ)[uq(Q, θ)− uq(Q, τ)] + uθ(Q, τ)uθq(Q, τ)

[uq(Q, θ)− uq(Q, τ)]2
α

In addition, the following transversality conditions have to hold for some γ1, γ2, γ3:

λQ(1) = γ1
∂R1

∂Q(1)
= γ1 (27)

λτ (1) = γ1
∂R1

∂τ(1)
+

∂S1

∂τ(1)
= −γ1q̇

fb(τ(1))− u(Q(1), τ(1)f(τ(1)) (28)

−λQ(θ̂) = γ2
∂R2

∂Q(θ̂)
+ γ3

∂R3

∂Q(θ̂)
= γ2 + γ3[uq(Q(θ̂), θ̂)− uq(Q(θ̂), τ(θ̂)] (29)

−λτ (θ̂) = γ2
∂R2

∂τ(θ̂)
+ γ3

∂R3

∂τ(θ̂)
+

∂S0

∂τ(θ̂)
= −γ2q̇

fb(τ(θ̂))− γ3uθ(Q(θ̂), τ(θ̂)) + u(Q(θ̂), τ(θ̂))f(τ(θ̂))

(30)

H(θ̂) = γ3
∂R3

∂θ̂
= γ3uθ(Q(θ̂), θ̂) (31)

Now, consider a singular arc where we have J = u(Q, τ)f(τ) + λQh(θ,Q, τ) + λτ = 0.

Then by (23) H(θ̂) = J(θ̂)α(θ̂) − [1 − F (θ̂)]uθ(Q(θ̂), θ̂) = −[1 − F (θ̂)]uθ(Q(θ̂), θ̂). It can be

easily verified that with γ3 = F (θ̂)− 1 and γ1 = γ2 = 0, transversality conditions (27)-(31) are

satisfied.

Differentiating the switching function J on a singular arc we get:

dJ

dθ
= λ̇Qh(θ,Q, τ)+λQ

(
∂h

∂θ
+
∂h

∂Q
Q̇+

∂h

∂τ
τ̇

)
+λ̇τ+uq(Q, τ)f(τ)Q̇+uθ(Q, τ)f(τ)τ̇+u(Q, τ)f ′(τ)τ̇ = 0

(32)
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Totally differentiating (32) yields:

−λ̇τ = λ̇Qh+ λQ

(
∂h

∂Q
Q̇+

∂h

∂τ
τ̇ +

∂h

∂θ

)
+ uq(Q, τ)f(τ)Q̇+ uθ(Q, τ)f(τ)τ̇ + u(Q, τ)f ′(τ)τ̇

(33)

From (25), (33) and τ̇ = α,

−λ̇τ =− uq(Q, τ)f(τ)τ̇h+ (1− F (θ))uθq(Q, θ)h− λQ
∂h

∂Q
τ̇h

+ λQ

(
∂h

∂Q
Q̇+

∂h

∂τ
τ̇ +

∂h

∂θ

)
+ uq(Q, τ)f(τ)Q̇+ uθ(Q, τ)f(τ)τ̇ + u(Q, τ)f ′(τ)τ̇

= (1− F (θ))uθq(Q, θ)h+ λQ

(
∂h

∂τ
τ̇ +

∂h

∂θ

)
+ uθ(Q, τ)f(τ)τ̇ + u(Q, τ)f ′(τ)τ̇ (34)

Substituting (26) for λ̇τ on the left-hand side of (34) and using τ̇ = α yields:

uθ(Q, τ)f(τ)τ̇ + u(Q, τ)f ′(τ)τ̇ + λQ
∂h

∂τ
τ̇ =

= (1− F (θ))uθq(Q, θ)h+ λQ

(
∂h

∂τ
τ̇ +

∂h

∂θ

)
+ uθ(Q, τ)f(τ)τ̇ + u(Q, τ)f ′(τ)τ̇

which, after collecting terms and using Q̇ = hτ̇ , simplifies to:

λQ
∂h

∂θ
= −(1− F (θ))uθq(Q, θ)h (35)

Using ∂h
∂θ =

−uθq(Q,θ)
uq(Q,θ)−uq(Q,τ)h in (35) yields:

λQ = (1− F (θ))(uq(Q, θ)− uq(Q, τ)) (36)

Next totally differentiate (36) to obtain:

λ̇Q = (1− F (θ))[uqq(Q, θ)Q̇− uqq(Q, τ)Q̇+ uθq(Q, θ)− uθq(Q, τ)τ̇ ]− f(θ)[uq(Q, θ)− uq(Q, τ)]

(37)

Now we can substitute (25) for λ̇Q in (37) to obtain:

uq(Q, τ)f(τ)τ̇ − [1− F (θ)]uθq(Q, θ) + λQ
∂h

∂Q
τ̇ =

− (1− F (θ))[uqq(Q, θ)Q̇− uqq(Q, τ)Q̇+ uθq(Q, θ)− uθq(Q, τ)τ̇ ] + f(θ)[uq(Q, θ)− uq(Q, τ)]

(38)
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Using (36), ∂h
∂Q =

uθq(Q,τ)−[uqq(Q,θ)−uqq(Q,τ)]h
uq(Q,θ)−uq(Q,τ) and Q̇ = hτ̇ and cancelling terms in the previous

equation yields the following differential equation:

τ̇ =
f(θ)(uq(Q, θ)− uq(Q, τ))

f(τ)uq(Q, τ)
(39)

Finally, using Q̇ = hτ̇ = uθ(Q,τ)
uq(Q,θ)−uq(Q,τ) τ̇ we obtain:

Q̇ =
f(θ)uθ(Q, τ)

f(τ)uq(Q, τ)
(40)

The system of ordinary differential equations (39) and (40) describes the dynamics of Q and

τ in the optimal mechanism. The following Theorem shows that (39) and (40) with boundary

conditions (20)-(22) uniquely characterize the optimal mechanism.

Theorem 6 Suppose that uθqq(q, θ) ≥ 0 for all (q, θ) ∈ R+× [0, 1]. For any C ∈ (C,C), there

is a unique triple (τ(θ), Q(θ), θ̂) such that (τ(θ), Q(θ)) is an increasing solution to the system

of ordinary differential equations (39) and (40) with boundary conditions (20)-(22), where in

particular τ(θ̂) is the smallest solution to (22).

This triple (τ(θ), Q(θ), θ̂) uniquely defines the optimal mechanism (q(.), t(.)) as follows:

q(θ) = qfb(θ) for all θ ∈ [0, τ(θ̂)] ∪ [τ(1), 1], q(θ) = Q(τ−1(θ)) for all θ ∈ [τ(θ̂), τ(1)], and t(.)

is given by (8).

The next Theorem shows comparative statics of the optimal mechanism. Further discussion

on comparative statics are given in the next subsection.

Theorem 7 Suppose that uθqq(q, θ) ≥ 0 for all (q, θ) ∈ R+ × [0, 1]. Given any Ci ∈ (C,C),

i ∈ 1, 2, let (qi(θ), ti(θ)) be the optimal mechanism and (τi(θ), Qi(θ), θ̂i) be the corresponding

triple. If C2 > C1, then:

(1) θ̂2 > θ̂1; (2) τ2(θ̂2) > τ1(θ̂1);

(3) τ2(θ) < τ1(θ) for θ ∈ [θ̂2, 1]; (4) q2(θ) > q1(θ) for θ ∈ [τ2(θ̂2), τ2(1)].
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4.3 Quadratic-Uniform Example

In this section we derive a closed-form solution to our problem for the case when u(q, θ) =

θq − q2

2 , θ is uniformly distributed on [0, 1], and length of chain M = 1. Details of derivation

are provided in Appendix C.

Given the quadratic-uniform assumptions and M = 1, differential equations (39)- (40)

and boundary conditions (20)-(22) imply that the optimal τ(θ) and Q(θ) satisfy the following

differential equations:

τ̇ =
θ − τ
τ −Q

(41)

Q̇ =
Q

τ −Q
(42)

with boundary conditions

Q(1) = τ(1) (43)

Q(θ̂) = τ(θ̂) (44)

Q(θ̂)[θ̂ − τ(θ̂)] = C (45)

Ordinary differential equation system (41)-(45) has the following parametric solution de-

fined for t ∈ [t̂, 1]:

θ(t) = b1

t− 1 + 3
√

1
5

2
t
√
5−1
2 +

3
√

1
5 − 1

2
t−
√
5+1
2

+

√
5 + 1

2
√

5
t
√
5−1
2 +

√
5− 1

2
√

5
t−
√
5+1
2 (46)

Q(t) = −b1
2
t (47)

τ(t) = b1

 t

2
−

1 +
√

1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−
√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−
√
5+1
2 (48)

b1 = −
1√
5
t̂
√
5−1
2 − 1√

5
t̂−
√
5+1
2

t̂−
1+
√

1
5

2 t̂
√
5−1
2 −

1−
√

1
5

2 t̂−
√
5+1
2

(49)

C = −b1
2

(
b1

(
t̂2

2
− 1√

5
t̂
√
5+1
2 +

1√
5
t̂−
√
5−1
2

)
+

√
5− 1

2
√

5
t̂
√
5+1
2 +

√
5 + 1

2
√

5
t̂−
√

5−1
2

)
(50)

where (θ(t), Q(t), τ(t)) characterize the implicit functions (Q(θ), τ(θ)) defined on θ ∈ [θ̂, 1],
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Figure 3: Optimal quantities, quadratic-uniform case.

with θ(t̂) = θ̂ and θ(1) = 1. The optimal quantity q(θ) for θ ∈ [τ(θ̂), τ(1)] can be computed

via the following relation: q(τ(t)) = Q(t).

The admissible cost range for this example (where τ(1) < θ̂) is (C,C), where C = 0.25 and

C ≈ 0.09. For C in this range, (Q(θ), τ(θ), q(θ)) and scalars (b1, t̂) are uniquely determined by

(46)-(50).

This solution exhibits several properties. The optimal quantity q(θ) is strictly increasing

in θ, which is consistent with the general property given by Theorem 3. In this particular

example, q(θ) is also strictly convex for θ ∈ [τ(θ̂), τ(1)].

For comparative statics, an increase in cost of lying create potential slackness of incentive

compatibility, which is filled by two forces to generate extra profit. First, principal generate

higher revenue by improving efficiency of the mechanism. As illustrated in Figure 3, opti-

mal quantities increase for the medium types. The interval of types with distorted quantity

[τ(θ̂), τ(1)], becomes narrower, and quantities converge to first best level as the cost goes to

C. Second, principal extracts more surplus from the agent. Note from Figure 4 that for

a higher C, the targeted type τ(θ) is lower for any given type. It reduces agent’s surplus

V (θ) =
∫ θ
θ̂ uθ(q(τ(θ′)), θ′)dθ′ in intensive margin. In addition, the cutoff type θ̂ is increasing in

C, which reduces agent’s surplus in extensive margin. As C goes to C, θ̂ converges to 1 and
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Figure 4: Optimal targeted types, quadratic-uniform case.

Figure 5: Optimal values of θ̂, τ(1) and τ(θ̂), quadratic-uniform case.

C θ̂ τ(1) τ(θ̂)

0.09 0.78 0.78 0.15

0.1 0.80 0.77 0.16

0.15 0.90 0.74 0.23

0.22 0.98 0.65 0.35

0.25 1 0.5 0.5
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all surplus is extracted.

Finally, this solution applies under the condition that any type in the image of τ gets

zero surplus in the optimal mechanism, i.e. τ(1) ≤ θ̂. The lower bound of cost of lying that

satisfies this condition is C ≈ 0.09. Figure 5 shows that θ̂ and τ(1) converge to each other as

C approaches the lower bound.

5 Optimal Mechanisms: low costs

The goal of this subsection is to reformulate our problem as an optimal control for low values

of fixed cost C. The objective on the right-hand side of (10) cannot be used directly for this

purpose because its associated law of motion in (12) contains a composite function τ(τ(θ)).

However, by introducing new variables and performing a change of variable of integration in

(10) we can obtain a formulation amenable to optimal control methods.

Recall from Section 3 that the interval [θ̂, 1] can be partitioned into a set of intervals

[τk(1), τk−1(1)] for k ∈ {1, ...,M − 1} where τ([τk(1), τk−1(1)]) = [τk+1(1), τk(1)], and the

residual interval [θ̂, τM−1(1)].

To handle the residual interval, note that there exists θ̂M ∈ [τ(1), 1] such that τM−1(θ̂M ) =

θ̂, and max{k : τk(θ) 6= ∅|θ ∈ [θ̂M , 1]} = M ; max{k : τk(θ) 6= ∅|θ ∈ [τ(1), θ̂M )} = M − 1. Let

M(θ) be the length of the chain of targeted types originating at θ ∈ [τ(1), 1]. We have:

M(θ) =


M if θ ∈ [θ̂M , 1]

M − 1 if θ ∈ [τ(1), θ̂M )

Now, consider the range of integration [θ̂, 1] in the middle term on the right-hand side of

(10). It can be represented as follows: [θ̂, 1] = ∪k∈{1,...,M−1}[τ
k(1), τk−1(1)]∪[τM−1(θ̂M ), τM−1(1)].

Any type in [τ(θ̂), τ(1)] is represented as an element of a chain of targeted types originating

from some type in [τ(1), 1].

.

Therefore, we can first rewrite the integral over [θ̂, 1] on the right-hand side of (10) as a

sum of integrals on a disjoint collection of intervals [τk(1), τk−1(1)], k ∈ {1, ...,M − 1} and

[θ̂, τM−1(1)], and then use a change of variables in each interval using the functions τk−1(.),
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k ∈ {1, ...,M − 1}, and τM−1(.), respectively, to rewrite it as a sum of integrals over the single

range [τ(1), 1] as follows:∫ 1

θ̂
u(q(τ(θ)), τ(θ))f(τ(θ))τ̇(θ)− (1− F (θ))uθ(q(τ(θ)), θ)dθ

=
M−1∑
k=1

∫ τk−1(1)

τk(1)
u(q(τ(θ)), τ(θ))f(τ(θ))τ̇(θ)− (1− F (θ))uθ(q(τ(θ)), θ)dθ

+

∫ τM−1(1)

θ̂
u(q(τ(θ)), τ(θ))f(τ(θ))τ̇(θ)− (1− F (θ))uθ(q(τ(θ)), θ)dθ

=
M−1∑
k=1

∫ 1

τ(1)
u(q(τk(θ)), τk(θ))f(τk(θ))τ̇k(θ)− (1− F (τk−1(θ)))uθ(q(τ

k(θ)), τk−1(θ))τ̇k−1(θ)dθ

+

∫ 1

θ̂M

u(q(τM (θ)), τM (θ))f(τM (θ))τ̇M (θ)− (1− F (τM−1(θ)))uθ(q(τ
M (θ)), τM−1(θ))τ̇M−1(θ)dθ

=

∫ 1

τ(1)

M(θ)∑
k=1

u(q(τk(θ), τk(θ))f(τk(θ))τ̇k(θ)− (1− F (τk−1(θ)))uθ(q(τ
k(θ), τk−1(θ))τ̇k−1(θ)dθ

(51)

Next, let Qk(θ) = q(τk(θ)) for k = 1, ...,M(θ). Substituting this into (51) and using the

result in (10) yields the following reformulated objective if our problem.∫ 1

τ(1)

M∑
k=1

u(Qk(θ), τk(θ))f(τk(θ))τ̇k(θ)− (1− F (τk−1(θ)))uθ(Q
k(θ), τk−1(θ))τ̇k−1(θ)dθ

+

∫ 1

θ̂M
u(QM (θ), τM (θ))f(τM (θ))τ̇M (θ)− (1− F (τM−1(θ)))uθ(Q

M (θ), τM−1(θ))τ̇M−1(θ)dθ

+S0(τM (θ̂M )) + S1(τ(1)) (52)

where S0(τM (θ̂M )) and S1(τ(1)) are the scrap values of our problem given by:

S0(τM (θ̂M )) =

∫ τM (θ̂M )

0
u(qfb(θ), θ)f(θ)dθ (53)

S1(τ(1)) =

∫ 1

τ(1)
u(qfb(θ), θ)f(θ)dθ (54)

Next, differentiating Qk(θ) = q(τk(θ)) and using (12) yields:

Q̇k(θ) = hk(θ,Qk(θ), τk(θ), τk−1(θ))τ̇k(θ) (55)

where hk(θ) ≡ uθ(Qk(θ)),τk(θ))−1(τk(θ)≥θ̂)uθ(Qk+1(θ),τk(θ))
uq(Qk(θ),τk−1(θ))−uq(Qk(θ),τk(θ))

.
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Now let αk(θ) = τ̇k(θ), k = 1, ...,M , be our control variables. So we finally obtain an

optimal control problem with objective (52), 2M state variables Q1, ..., QM , τ1, ..., τM , and

the “laws of motion:”

Q̇k(θ) = hk(θ,Qk(θ), τk(θ), τk−1(θ))αk(θ) (56)

τ̇k(θ) = αk(θ) (57)

and boundary conditions

τk+1(1) =τk(τ(1)) for k = 0, ...,M − 1 (58)

Qk+1(1) =Qk(τ(1)) for k = 1, ...,M − 1 (59)

Q1(1) =qfb(τ(1)) (60)

QM (θ̂M ) =qfb(τM (θ̂M )) (61)

u(QM (θ̂M ), τM−1(θ̂M ))−u(QM (θ̂M ), τM (θ̂M ))− C = 0 (62)

The boundary conditions (58) and (59) connect the upper bound of (τk+1, Qk+1) and the

lower bound of (τk, Qk). Conditions (60) and (61) ensure that the optimal quantity is first-best

at the end-points of the intervals of types which have no binding constraints pointing to them.

Condition (62) ensures that type θ̂ receive zero surplus.

The maximization problem (52)-(62) is an optimal control with state variables Qk(.) and

τk(.), control variable αk(θ), free boundaries θM , τ(1), and scrap values (53) and (54). The

Hamiltonian of the optimal control is as follows:

H =

M(θ)∑
k=1

u(Qk, τk)f(τk)αk − (1− F (τk−1))uθ(Q
k, τk−1)αk−1 + [λQkh

kαk + λτkα
k] (63)

The following Theorem states the general solution of the optimal control problem.

Theorem 8 The solution of optimal control problem (63) subject to (53)-(62) satisfies the

following system of differential equations of τ1, ..., τM ;Q1, ..., QM :

τ̇k =
f(θ)[uq(Q

k, τk−1)− uq(Qk, τk)]
f(τk)uq(Qk, τk)

k−1∏
s=1

uq(Q
s, τ s−1)

uq(Qs, τ s)
(64)
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Q̇k =


f(θ)[uθ(Qk,τk)−uθ(Qk+1,τk)]

f(τk)uq(Qk,τk)

∏k−1
s=1

uq(Qs,τs−1)
uq(Qs,τs)

if k < M(θ)

f(θ)uθ(Qk,τk)
f(τk)uq(Qk,τk)

∏k−1
s=1

uq(Qs,τs−1)
uq(Qs,τs)

if k = M(θ)

(65)

with boundary conditions (58)-(62).

Conditions (64) and (65) is a system of first order differential equations with 2M variables,

and with 2M + 2 boundary conditions from (58)-(62), we can solve it along with the free

boundaries θM and τ(1).

The following intermediate step of reaching (64) and (65) provides some intuition of these

optimality conditions.

uq(Q
k, τk)f(τk)τ̇k = [uq(Q

k, τk−1)− uq(Qk, τk)]
k∑
s=1

f(τk−s)τ̇k−s (66)

The left hand side of (66) is the marginal gain on efficiency for increasing Qk(θ) given the

relative density of τk(θ). The right hand side of (66) is the marginal cost on informational rent

for increasing Qk(θ). It reflects the nature of the trade-off: for an additional unit of quantity

assigned to τk(θ), informational rent has to be given to the type who targets τk(θ), i.e. τk−1(θ),

in order to prevent τk−1(θ) from imitating τk(θ). Furthermore, increase in informational rent

makes the contract of τk−1(θ) more attractive, so the same amount of informational rent has

to be given to τk−2(θ), and thus every preceding types in the chain, to prevent imitation.

Note that the number of partitions M is endogenous. To find it practically, start with

assuming M = 1 and solve the optimal control and the optimal θM . If τM (1) ≤ τM−1(θM ),

then M is the optimal number of partitions; otherwise, do the same process with M + 1.

6 Conclusion

The paper sheds light on the role of fixed cost of lying in screening frameworks. The introduc-

tion of a fixed cost of lying reshape the screening problem into a new class of principle-agent

problem with non-locally binding incentive constraints. We develop a method to represent the

problem as an optimal control, in which the binding non-local constraints, ”targeted types”,

and the physical allocations are jointly solved. We derive the optimality condition of the
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problem, which can be interpreted as an endogenous discretization of the standard optimal

screening. The model produces several qualitatively novel results. We show that the stan-

dard exclusion property is not robust to a small fixed cost of lying. On the contrary, full

efficiency is achieved for low types. We provide an example for the optimal mechanism given

linear-quadratic utility under uniform type distribution.

While this paper only characterizes the optimal screening mechanism given type-independent

fixed cost of lying, we believe that the important properties of our methodological approach,

such as the characterization of binding non-local incentive constraints and the targeted type

concept, also apply under more general cost of lying with non-zero fixed cost. In future work, I

hope to analyze a screening problem with more general structures of lying cost. Such a model

will be compatible with other screening problems in the literature, and provides a richer set of

testable predictions.

7 Appendix A

In this Appendix we provide proof to Theorems 2, 3, 4 and 5 through a series of Lemmas.

Theorem 2 follows from Lemmas 3 and 15.

Theorem 3 follows from Lemmas 4, 5, 10, 14, 19 and 23.

Theorem 4 follows from Lemmas 6, 8, 9, 16, 18, 22, 26 and Corollaries 1 and 3.

Theorem 5 follows from Lemmas 16 and 25.

Lemma 3 There exists an optimal mechanism solving the principal’s maximization problem

(1) subject to (2) and (3).

Proof of Lemma 3: First, we can restrict q(θ) to [0, Q̄] where Q̄ = max{Q, u(Q, 1) ≥ 0}.

Indeed, if some type θ is assigned an allocation (q(θ), t(θ)) such that q(θ) > Q, then t(θ) < 0

by individual rationality. So the principal would be better off by assigning the allocation

(t = 0, q = 0) to θ. This modification would not violate the incentive constraints of any

other type θ′ by the individual rationality of the mechanism. By the same argument we

can restrict t(θ) ≥ 0. Finally, individual rationality requires that t(θ) ≤ u(qfb(1), 1) where

qfb(1) = arg maxq u(q, 1).
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So, consider a space of bounded measurable, and hence integrable, functions (t(θ), q(θ)) :

[0, 1]2 7→ [0, u(qfb(1), 1)] × [0, Q̄]. endowed with pointwise convergence topology. This space

is compact by Tychonoff Theorem. Note that the objective (1) is continuous in this space.

Furthermore, the subset of this space satisfying the constraints (2) and (3) is compact. So by

Weierstrass Theorem, there exists a solution (q∗(.), t∗(.)) maximizing (1) subject to (2) and

(3). Q.E.D.

The next Lemma shows that the payment t is non-negative for almost every type.

Lemma 4 There exists an optimal mechanism (q(.), t(.)) such that t(θ) ≥ 0 for all θ ∈ [0, 1].

Proof of lemma 4: Suppose that (q(.), t(.)) is an incentive compatible individually rational

mechanism such that t(θ) < 0 iff θ ∈ Θ− where Θ− is some non-empty subset of [0, 1].

Then consider an alternative mechanism (q̃(.), t̃(.)) such that (q̃(θ), t̃(θ)) = (q(θ), t(θ)) for any

θ 6∈ Θ−. and (q̃(θ), t̃(θ)) = (0, 0) for any θ ∈ Θ−. So t̃(θ) ≥ 0 for all θ ∈ [0, 1]. Then mechanism

(q̃(.), t̃(.)) is individually rational and is incentive compatible for all θ 6∈ Θ−. If this mechanism

if not incentive compatible for some θ ∈ Θ− i.e., θ prefers to imitate some θ′ ∈ [0, 1] in it, then

θ ends up making a positive transfer to the firm instead of a negative transfer in the mechanism

(q(.), t(.)). So (q̃(.), t̃(.)) is more profitable (at least weakly) for the firm than (q(.), t(.)). Q.E.D

The next Lemma establishes continuity of V (.), t(.) and q(.). in an optimal mechanism.

Lemma 5 There exists an optimal mechanism (q(.), t(.)) such that V (.), q(.) and t(.) are

continuous at any θ ∈ [0, 1].

Proof of Lemma 5: Suppose that (q(.), t(.)) is an optimal mechanism such that V (.) is not

continuous at some θ∗. Then there exists a sequence θn → θ∗ such that limθn→θ∗ V (θn) = V ∗ 6=

V (θ∗). The limit V ∗ exists without loss of generality because, since t(θ) ≥ 0, V (θ) is bounded

above by u(qfb(θ), θ), and so we can always pass on to a converging subsequence. Furthermore,

since IR(θ) holds for all θ in (q(.), t(.)), we have V (θ) ≥ 0 for all θ and so V ∗ ≥ 0.

If V (θ∗) > V ∗, then let us replace the original mechanism (q(.), t(.)) with a modified

mechanism (q̃(.), t̃(.)) which differs from the original mechanism only in the transfer paid by

29



type θ∗. Particularly, we set t̃(θ∗) = t(θ∗) + ε for some small ε ∈ (0, V (θ∗)−V ∗
2 ). The seller’s

expected profit under (q̃(.), t̃(.)) is weakly greater than her payoff under the original mechanism

(q(.), t(.)).

Let us show that the mechanism (q̃(.), t̃(.)) is incentive compatible and individually rational.

First, it satisfies IR(θ) and IC(θ, θ∗) for all θ ∈ [0, 1], the latter -because t̃(θ∗) > t(θ∗). IR(θ∗)

holds since θ∗’s payoff in it is V (θ∗)− ε > V ∗ ≥ 0.

It remains to show that IC(θ∗, θ) hold in the modified mechanism for all θ ∈ [0, 1]. First,

IC(θ∗, θn) holds when n is sufficiently large since for such n, V (θn) < V ∗ + ε < V (θ∗)− ε and

u(.) is continuous in θ. Now, fix some θ ∈ [0, 1]. IC(θn, θ) holds for all θn i.e.:

V ∗ − ε > u(q(θn), θn)− t(θn) ≥ u(q(θ), θn)− t(θ)− C

Since u(.) is continuous, we have limθn→θ∗ u(q(θ), θn) = u(q(θ), θ∗). It follows that

V (θ∗)− ε = u(q(θ∗), θn)− t̃(θn) > u(q(θ), θ∗)− t(θ)− C

So, IC(θ∗, θ) also holds.

Now suppose, instead, that limθn→θ∗ V (θn) = V ∗ > V (θ∗). Fix some δ ∈ (0, V
∗−V (θ∗)

2 ).

Then there exists N large enough such that for all n ≥ N , V (θn) > V ∗ − δ. Now, define

a new mechanism (q̃(.), t̃(.)) which differs from (q(.), t(.)) only in transfers paid by types θn,

n ≥ N . Particularly, set t̃(θn) = t(θn)+δ for some large n. The seller gets weakly higher profits

under (q̃(.), t̃(.)) than under (q(.), t(.)). So we only need to show that the former mechanism

is incentive compatible and individually rational. In fact, the only constraints that we need to

check in (q̃(.), t̃(.)) are those of types θn, n ≥ N , who pay t̃(θn) = t(θn) + δ in this mechanism.

IR(θn) holds because the payoff of type θn in (q̃(.), t̃(.)) is equal to Ṽ (θn) > V ∗ − 2δ >

V (θ∗) > 0. Furthermore, IC(θn, θ) holds for all θ ∈ [0, 1] since IC(θ∗, θ) holds, Ṽ (θn) > V (θ∗)

and u(.) is continuous in θ.

Now let us show that t(.) is continuous in θ. The proof is by contradiction, so suppose t(.) is

discontinuous at some θ∗ ∈ [0, 1]. Since V (.) is continuous everywhere, there exists a sequence

θn converging to θ∗ such that limθn→θ∗ t(θn) = t∗ 6= t(θ∗) and limθ→θ∗ q(θn) = q∗ 6= q(θ∗).

We need to consider two cases. First, suppose that t(θ∗) < t∗. Then define a new mech-

anism (q̃(.), t̃(.)) which only differs from the original mechanism (q(.), t(.)) at θ∗. Precisely,
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set t̃(θ∗) = t∗ and q̃(θ∗) = q∗. The seller’s profits from (q̃(.), t̃(.)) is at least as large as from

(q(.), t(.)). Moreover, since IR(θn), IC(θn, θ) and IC(θ, θn) hold for all n and all θ ∈ [0, 1],

limθn→θ∗ t(θn) = t∗ = t̃(θ∗), limθn→ q(θn) = q∗ = q̃(θ∗), and u(.) is continuous it follows that

IR(θ∗, IC(θ∗, θ) and IC(θ, θ∗) hold for all θ ∈ [0, 1] in the modified mechanism.

Now suppose that t(θ∗) > t∗. Then fix some t̃ such that t∗ < t̃ < t(θ∗), and set q̃ so that

V (θ∗) = u(q̃, θ∗)− t̃. Because t̃ < t(θ∗), such q̃ exists with q̃ ∈ (min{q∗, q(θ∗)},max{q∗, q(θ∗)}).

Next, define a new mechanism (q̃(.), t̃(.)) which differs from the original mechanism (q(.), t(.))

only at θn for n ≥ N where N is sufficiently large. Particularly, set q̃(θn) = q̃ and t̃(θn) =

u(q̃, θn)−V (θn) for n ≥ N . Note that t̃(θn) ≈ t̃ > t∗ ≈ t(θn). So the new mechanism (q̃(.), t̃(.))

is more profitable for the seller than (q(.), t(.)).

We need to check that the new mechanism is individually rational and incentive compatible.

First, the net payoff of any type θ ∈ [0, 1] in the new mechanism, Ṽ (θ), satisfies Ṽ (θ) = V (θ).

So, IR(θ) and IC(θ, θ′) hold for all θ ∈ [0, 1] and θ′ 6= θn, n ≥ N , because the allocation

(q̃(.), t̃(.)) differs from (q(.), t(.)) only for θn such that n ≥ N .

It remains to consider IC(θ, θn), n ≥ N . Since IC(θ, θ∗) holds for all θ ∈ [0, 1] in both

mechanisms, we have V (θ) ≥ u(q(θ∗), θ) − t(θ∗) − C. Also, since IC(θ, θn) holds for all

θ, θn ∈ [0, 1] in the original mechanism, limθ→θ∗ t(θn) = t∗, limθ→θ∗ q(θn) = q∗, and u(.) is

continuous, it follows that for any θ, V (θ) ≥ u(q∗, θ) − t∗ − C. So,V (θ) = max{u(q(θ∗), θ) −

u(q(θ∗), θ∗)+V (θ∗)−C, u(q∗, θ)−u(q∗, θ∗)+V (θ∗)−C} > u(q̃, θ)−u(q̃, θ∗)+V (θ∗)−C where

the inequality holds because uqθ(q, θ) > 0 and q̃ ∈ (min{q∗, q(θ∗)},max{q∗, q(θ∗)}).

Finally, u(q̃, θ) − u(q̃, θ∗) + V (θ∗) − C ≈ u(q̃(θn), θ) − t̃(θn) − C by continuity. Therefore,

IC(θ, θn) hold for all θ ∈ [0, 1], θn, n ≥ N in the mechanism (q̃(.), t̃(.)). Q.E.D

Recall that, as defined in (4), τ(θ) is the set of all such types θ′ that incentive constraint

IC(θ, θ′) is binding. Also, for any Θ ⊆ [0, 1], τ(Θ) = ∪θ∈Θτ(θ).

By Lemma 5, by imitating type θ′ type θ gets a payoff u(q(θ′), θ) − t(θ′) − C, which is

continuous in θ′. So u(q(θ′), θ) − t(θ′) − C attains a maximum at some θ′ ∈ [0, 1]. Therefore,

τ(θ) = ∅ implies that there exists some ε > 0 such that V (θ) − u(q(θ′), θ) − t(θ′) − C > ε for

all θ′ ∈ [0, 1].

Lemma 6 establishes the upper hemicontinuity of τ(.).
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Lemma 6 The correspondence τ(θ) is upper hemicontinuous in an optimal mechanism.

Proof of Lemma 6: Let (θn, θ
′
n) be a sequence of vectors such that θ′n ∈ τ(θn) for all

n = 1, 2, ... and limn→∞(θn, θ
′
n) = (θ̃, θ̃′). We want to show that θ̃′ ∈ τ(θ̃). Define β((θ, θ′)) =

V (θ) − u(q(θ′), θ) + t(θ′) + C. Since θ′n ∈ τ(θn), β(θn, θ
′
n) = 0 for all n. Assumption 1 and

Lemma 5 implies that β(.) is continuous. Therefore we have β(θ̃, θ̃′) = limn→∞ β((θn, θ
′
n)) = 0,

which means θ̃′ ∈ τ(θ̃). Q.E.D.

Lemma 7 shows that if θ has no binding incentive constraint then her surplus must be zero.

Lemma 7 If τ(θ) = ∅, then V (θ) = 0.

Proof of Lemma 7: The proof is by contradiction. So suppose that for some θ ∈ [0, 1],

τ(θ) = ∅ and V (θ) > 0. The continuity of V (.), q(.) and t(.) established in Lemma 5 and

τ(θ) = ∅ imply that there exists ε > 0 such that V (θ) − u(q(θ′), θ) − t(θ′) − C < ε for all

θ′ ∈ [0, 1]. Therefore, the seller can increase her profit by raising t(θ) by min{ε, V (θ)}. This

modification clearly does not violate and IR or IC constraints. Q.E.D

The converse of Lemma 7 is as follows:

Lemma 8 If V (θ) = 0, then τ(θ′) = ∅ for all θ′ ∈ [0, θ).

Proof of Lemma 8: The proof is by contradiction. Suppose that τ(θ′) = θ′′ for some θ′ ∈ [0, θ)

and θ′′, so V (θ′) = u(q(θ′′), θ′) − t(θ′′) − C ≥ 0. But then V (θ) ≥ u(q(θ′′), θ) − t(θ′′) − C > 0

because uθ > 0, which contradicts V (θ) = 0. Q.E.D

Lemma 9 shows that for any positive cost of lying, there is a threshold θ̂ such that all types

below have slack incentive constraints and hence get zero surplus.

Lemma 9 For any C > 0, there exists θ̌ > 0 such that for any θ ∈ [0, θ̌], τ(θ) = ∅ and so

V (θ) = 0.

Proof of Lemma 9: Incentive compatibility of the mechanism for a given θ requires that

u(q(θ), θ)− t(θ) ≥ u(q(θ′), θ)− t(θ′)− C ∀θ′ ∈ [0, 1]

The left-hand side of this inequality is non-negative by individual rationality. Consider now

its right-hand side. Since u is continuous with u(q, 0) ≤ 0, u(q(θ′), θ̌) ≤ u(qfb(θ̌), θ̌) → 0 as
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θ̌ → 0. Since t(θ′) ≥ 0 by Lemma 4, we have u(q(θ′), θ̌)− t(θ′)−C < 0 for small enough θ̌ and

any θ′ ∈ [0, 1]. Since uθ > 0, it is also true that u(q(θ′), θ) − t(θ′) − C < 0 for θ ≤ θ̌ and any

θ′ ∈ [0, 1]. So τ(θ) = ∅ and, by Lemma 7, V (θ) = 0 for any θ ∈ [0, θ̌]. Q.E.D

Lemma 10 shows that the value function is non-decreasing

Lemma 10 V (θ) is non-decreasing in θ.

Proof of Lemma 10: Suppose that θ1 > θ2. If V (θ2) = 0, then obviously V (θ1) ≥ V (θ2) by

IR.

Now suppose that V (θ2) > 0. Then by Lemma 7 there exists θ′2 ∈ τ(θ2). Then V (θ1) ≥

u(q(θ′2), θ1) − t(θ′2) − C > u(q(θ′2), θ2) − t(θ′2) − C = V (θ2), where the first inequality holds

by IC(θ1, θ
′
2), and the second inequality holds because uθ > 0, and the equality holds because

θ′2 ∈ τ(θ2). Q.E.D

Lemma 11 shows that higher types wish to imitate types who are assigned higher quantities.

Lemma 11 Let θ1 > θ2 and suppose that there exist θ′1 ∈ τ(θ1) and θ′2 ∈ τ(θ2). Then

q(θ′1) ≥ q(θ′2).

Proof of Lemma 11: Since θ′1 ∈ τ(θ1), V (θ1) = u(q(θ′1), θ1)−t(θ′1)−C ≥ u(q(θ′2), θ1)−t(θ′2)−

C. Similarly, V (θ2) = u(q(θ′2), θ2)− t(θ′2)−C ≥ u(q(θ′1), θ2)− t(θ′1)−C. Combining these two

inequalities yields: u(q(θ′1), θ1)−u(q(θ′2), θ1) ≥ t(θ′1)− t(θ′2) ≥ u(q(θ′1), θ2)−u(q(θ′2), θ2). Since

θ1 > θ2 and uqθ > 0, it must be that q(θ′1) ≥ q(θ′2). Q.E.D

Lemma 12 shows that for any θ all binding incentive constraints pointing to θ must come

either from higher types or lower types, but not both.

Lemma 12 There do not exist θ, θ1, θ2 ∈ [0, 1] such that θ1 < θ < θ2 and θ ∈ τ(θ1) ∩ τ(θ2).

Proof of Lemma 12: The proof is by contradiction, so suppose that θ ∈ τ(θ1) ∩ τ(θ2) for

some θ1 < θ < θ2. Then V (θ) = u(q(θ), θ) − t(θ) > u(q(θ), θ1) − t(θ) − C = V (θ1) ≥ 0. So,

V (θ) > 0 and, by Lemma 7, there exists θ′ ∈ τ(θ). By Lemma 11 we have: (i) since θ > θ1,

q(θ′) ≥ q(θ); (ii) since θ < θ2, q(θ′) ≤ q(θ). So, q(θ) = q(θ′),
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Since IC(θ, θ′) is binding, we have u(q(θ), θ)− t(θ) = u(q(θ′), θ)− t(θ′)− C. Since q(θ) =

q(θ′), it follows that t(θ′) = t(θ) − C. But then IC(θ1, θ) and IC(θ2, θ) cannot be binding

because types θ1 and θ2 get strictly higher payoff by imitating θ′ rather than θ. Q.E.D

The next Lemma is as follows:

Lemma 13 If q(θ′) < qfb(θ′) for some θ′ ∈ [0, 1], then there exists θ ∈ (θ′, 1] such that

θ′ ∈ τ(θ), and there is no θ′′ ∈ [0, θ′) such that θ′ ∈ τ(θ′′).

If q(θ′) > qfb(θ′) for some θ′ ∈ [0, 1], then there exists θ ∈ (0, θ′) such that θ′ ∈ τ(θ), and

there is no θ′′ ∈ (θ′, 1] such that θ′ ∈ τ(θ′′).

Proof of Lemma 13: To prove the first claim, suppose that θ′ 6∈ τ((θ′, 1]). We claim that

there exists δ > 0 such that for all θ > θ′, V (θ) > u(q(θ′), θ) − t(θ′) − C + δ. Suppose not,

then there exists a sequence θn ∈ (θ′, 1] and θ∗ ∈ [θ′, 1] such that θn → θ∗ and limn→∞ V (θn)−

[u(q(θ′), θn)− t(θ′)−C] = 0. Since both V (.) and u(., .) are continuous, V (θ∗) = u(q(θ′), θ∗)−

t(θ′) − C which implies θ′ ∈ τ(θ∗). Straighforwardly, θ∗ 6= θ′. But that contradicts that

θ∗ ∈ (θ′, 1] and θ′ 6∈ τ([θ′, 1]).

Now let q̃(θ′) be the solution to u(q̃(θ′), 1) − u(q(θ′), 1) = δ if such exists and satisfies

q̃(θ′) ≤ qfb(θ′) and otherwise let q̃(θ′) = qfb(θ′).

Then the firm could generate more profit by offering an alternative mechanism (q̃(.), t̃(.)) in

which the allocation of type θ′ is given by q̃(θ′), t̃(θ′) = t(θ′) + u(q̃(θ′), θ′)− u(q(θ′), θ′) > t(θ′)

and all other elements remain the same as in the original mechanism (q(.), t(.)).

This modification does not affect the net payoff V (θ) of any type, so IR(θ) still hold for all θ.

Also, IC(θ, θ′) hold for any θ ∈ [0, θ′) in the mechanism (q̃(.), t̃(.)) because u(q̃(θ′), θ)− t̃(θ′) =

u(q̃(θ′), θ)−u(q̃(θ′), θ′)+u(q(θ′), θ′)− t(θ′) < u(q(θ′), θ)− t(θ′). The last inequality holds since

q̃(θ′) > q(θ′), θ < θ′ and uqθ > 0. For θ > θ′ , V (θ) > u(q(θ′), θ)− t(θ′)−C + δ ≥ u(q(θ′), θ)−

t(θ′)−C+u(q(θ′)+ ε̃, θ)−u(q(θ′), θ) ≥ u(q(θ′)+ε, θ)− t(θ′)−C > u(q̃(θ′), θ)− t̃(θ′)−C, which

implies IC(θ, θ′) is still slack for θ > θ′ . Lemma 12 then implies that there is no θ′′ ∈ [0, θ′)

such that θ′ ∈ τ(θ′′).

A symmetric argument shows that if q(θ′) > qfb(θ′) for some θ′, then there exists θ ∈ (0, θ′)

such that θ′ ∈ τ(θ) and that there is no θ′′ ∈ (θ′, 1] such that θ′ ∈ τ(θ′′). Q.E.D

Lemma 13 implies that q(θ′) = qfb(θ′) if θ′ 6∈ τ([0, 1]).
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Lemma 14 shows that optimal quantities never exceed the first-best level. So by Lemmas

12 and 13 only downward incentive constraints can be binding.

Lemma 14 For any θ′ ∈ [0, 1], q(θ′) ≤ qfb(θ′).

Proof of Lemma 14: Suppose that q(θ1) > qfb(θ1) for some θ1. Then by Lemma 13,

θ1 ∈ τ(θ0) for some θ0 ∈ [0, θ1). Therefore,

V (θ0) = u(q(θ1), θ0)− t(θ1)− C

Combining this with V (θ1) = u(q(θ1), θ1)− t(θ1) yields:

V (θ1) = V (θ0) + u(q(θ1), θ1)− u(q(θ1), θ0) + C > C.

Next we will show that there exists an infinite sequence {θn}∞n=0 such that for any n ≥ 1,

θn ∈ τ(θn−1), θn > θn−1, q(θn) ≥ qfb(θn) and V (θn) ≥ nC. We have established this for n = 1,

so it suffices to establish the following inductive step: if for some fixed k ≥ 1 these exists θk

satisfying these conditions, then there exists θk+1 for which these conditions also hold.

Indeed, since V (θk) ≥ kC, Lemma 7 implies that there exists some θk+1 ∈ τ(θk). Since

θk ∈ τ(θk−1) and θk > θk−1, Lemma 11 then implies that q(θk+1) ≥ q(θk). If θk+1 < θk, then

q(θk+1) ≥ q(θk) > qfb(θk) > qfb(θk+1), which contradicts Lemma 13. Therefore θk+1 > θk.

Then q(θk+1) ≥ qfb(θk+1) by Lemma 13.

Since θk+1 ∈ τ(θk), we have V (θk) = u(q(θk+1), θk) − t(θk+1) − C. Combining this with

V (θk+1) = u(q(θk+1), θk+1)− t(θk+1), we get:

V (θk+1) = V (θk) + u(q(θk+1), θk+1)− u(q(θk+1), θk) + C > V (θk) + C > (k + 1)C.

This completes the proof of the existence of the sequence {θn}∞n=0.

However, u(q(θn), θn) is bounded from above, and so t(θn) < 0 for sufficiently large n,

contradicts to Lemma 4. Q.E.D

Combining Lemmas 13 and 14 we get the following important Corollary:

Corollary 1 If θ′ ∈ τ(θ) for some θ, then θ′ < θ.

Relying on Corollary 1 we can now establish the uniqueness of the optimal mechanism.
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Lemma 15 Suppose that uθqq(q, θ) ≥ 0 for all (q, θ). Then the optimal mechanism is unique.

Proof of Lemma 15: By Corollary 1 only downwards incentive constrains may be binding.

So it is sufficient to establish the uniqueness of the solution to the relaxed problem in which

(1) is maximized subject to the individual rationality constraints (3) and downwards incentive

constraints i.e., (2) holding for all θ, θ′ ∈ [0, 1] s.t. θ ≥ θ′. The proof is by contradiction. So

suppose that there exist two solutions to this problem, (q1(.), t1(.)) and (q2(.), t2(.)). Then let

Vi(θ) ≡ u(qi(θ), θ)− ti(θ) be the agent’s net payoff function in the solution i ∈ {1, 2}.

Next, fix some λ ∈ (0, 1) and consider an allocation function λq1(.) + (1 − λ)q2(.) and a

net payoff function λV1(θ) + (1− λ)V2(θ). Let us demonstrate that this allocation and payoff

functions define a mechanism which is associated with a strictly higher payoff for the principal

and which satisfies (2) for all θ, θ′ ∈ [0, 1] s.t. θ ≥ θ′. The individual rationality of every type

θ in (3) is trivially satisfied since Vi(θ) ≥ 0 for all θ and i ∈ {1, 2}. Further, the transfer of

type θ in this mechanism, tλ(θ), is equal to

tλ(θ) = u(λq1(θ) + (1− λ)q2(θ), θ)− (λV1(θ) + (1− λ)V2(θ)) >

λu(q1(θ), θ) + (1− λ)u(q2(θ), θ)− (λV1(θ) + (1− λ)V2(θ) = λt1(θ) + (1− λ)t2(θ).

Since this inequality holds for all θ ∈ [0, 1], the principal gets a strictly higher payoff in this

mechanism.

Incentive compatibility condition in this mechanism is λV1(θ) + (1− λ)V2(θ) ≥

u(λq1(θ′) + (1− λ)q2(θ′), θ)− u(λq1(θ′) + (1− λ)q2(θ′), θ′) + (λV1(θ′) + (1− λ)V2(θ′))− C

(67)

Now, note that

u(λq1(θ′) + (1− λ)q2(θ′), θ)− u(λq1(θ′) + (1− λ)q2(θ′), θ′) =

∫ θ

θ′
uθ(λq1(θ′) + (1− λ)q2(θ′), t)dt ≤∫ θ

θ′
λuθ(q1(θ′), t) + (1− λ)uθ(q2(θ′), t)dt = λ(u(q1(θ′), θ)− u(q1(θ′), θ′)) + (1− λ)(u(q2(θ′), θ)− u(q2(θ′), θ′))

where the equalities hold by integration and the inequality holds because uθqq ≥ 0. Combining

this inequality with the fact that incentive constraints (2) holds in the mechanisms (q1(.), t1(.))

and (q2(.), t2(.)) implies that the incentive constraints (67) also hold. Q.E.D.
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The next Lemma establishes that the set of binding incentive constraints is non-empty

when C is not too high. First, define

G(θ, θ′) = u(qfb(θ′), θ)− u(qfb(θ′), θ′), (68)

We have:

Lemma 16 τ([0, 1]) 6= ∅ if C < C and τ([0, 1]) = ∅ if C > C, where

C = max
θ,θ′∈[0,1]

G(θ, θ′) = max
θ′∈[0,1]

G(1, θ′) (69)

Furthermore, if τ(θ) 6= ∅, then τ(θ) is compact-valued and τ(θ′) 6= ∅ for all θ′ > θ.

If C = C, then V (θ) = 0 for all θ ∈ [0, 1], and τ(θ) 6= ∅ only if θ = 1.

Proof of Lemma 16:

(i) To prove the first claim of the Lemma for C < C we argue by contradiction. So suppose

that τ([0, 1]) = ∅. Then for all θ ∈ [0, 1] V (θ) = 0 by Lemma 7, and q(θ) = qfb(θ) by Lemma

13. But then IC(1, θ) fails for some θ because C < C = maxθ,θ′ u(qfb(θ′), θ)− u(qfb(θ′), θ′).

(ii) The proof that τ([0, 1]) = ∅ if C > C is straightforward and is therefore omitted.

(iii) The compact-valuedness of τ(θ) 6= ∅ follows because θ′′ ∈ τ(θ) iff

θ′′ ∈ arg maxu(q(θ′′), θ)− t(θ′′)− C

The set of such maximizers is compact by Berge’s Maximum Theorem because q(.) and t(.)

are continuous functions.

(iv) Now, suppose that θ′′ ∈ τ(θ). Further, if τ(θ′) = ∅ for some θ′ > θ, then by Lemma

7 V (θ′) = 0. However, V (θ′) ≥ u(q(θ′′), θ′) − t(θ′′) − C > u(q(θ′′), θ) − t(θ′′) − C ≥ 0.

Contradiction.

(iv) Finally, if C = C, then with q(θ) = qfb(θ) and V (θ) = 0 for all θ ∈ [0, 1], all IC

constraints slack except IC(1, θ′), which is binding for some θ′. This mechanism achieves the

first-best profits for the principal so it is optimal. Q.E.D.

Lemma 17 shows that the binding IC correspondence is non-decreasing.

Lemma 17 Let θ1 > θ2. Suppose θ′1 ∈ τ(θ1), θ′2 ∈ τ(θ2), then θ′1 ≥ θ′2.
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Proof of Lemma 17: Suppose that contrary to our claim, θ′1 < θ′2.

Since θ′2 ∈ τ(θ2), Corollary 1 implies that θ′2 < θ2.

Since θ1 > θ2, Lemma 11 implies that q(θ′1) ≥ q(θ′2).

Let us consider two cases. First suppose that q(θ′1) > q(θ′2). Then let us define an al-

ternative mechanism (q̃(.), t̃(.)) which differs from (q(.), t(.)) only in the allocation of type θ′2.

Precisely, set q̃(θ′2) = q(θ′1) and t̃(θ′2) = t(θ′2)+u(q(θ′1), θ′2)−u(q(θ′2), θ′2) = u(q(θ′1), θ′2)−V (θ′2).

So, the net payoff of θ′2 in the modified mechanism is still equal to V (θ′2).

By Lemma 14, qfb(θ′1) ≥ q(θ′1). Since θ′2 > θ′1, it follows that qfb(θ′2) > qfb(θ′1) ≥ q(θ′1) =

q̃(θ′2) > q(θ′2). So, u(q(θ′1), θ′2)− u(q(θ′2), θ′2) > 0, and hence t̃(θ′2) > t(θ′2). Thus. the modified

mechanism (q̃(.), t̃(.)) is weakly more profitable for the principal than (q(.), t(.)).

To complete the proof, we need to check that no type has an incentive to imitate θ′2 in the

mechanism (q̃(.), t̃(.)).

If V (θ′2) = 0, then V (θ′1) = 0 by monotonicity of V (.), and so t̃(θ′2) = u(q(θ′1), θ′2) >

u(q(θ′1), θ′1) = t(θ′1). Therefore, since q̃(θ2) = q(θ′1) and IC(θ, θ′1) holds in the original mecha-

nism, ˜IC(θ, θ′2) holds in the mechanism (q̃(.), t̃(.)).

If V (θ′2) > 0, then there exists θ′′2 ∈ τ(θ′2). So,

u(q(θ′2), θ′2)− t(θ′2) = u(q(θ′′2), θ′2)− t(θ′′2)− C

Combining this with IC(θ′1, θ
′′
2) i.e., u(q(θ′1), θ′1)− t(θ′1) ≥ u(q(θ′′2), θ′1)− t(θ′′2)− C, we get:

t(θ′2)− t(θ′1) ≥ u(q(θ′2), θ′2)− u(q(θ′1), θ′1) + u(q(θ′′2), θ′1)− u(q(θ′′2), θ′2).

Substituting t̃(θ′2) = t(θ′2) + u(q(θ′1), θ′2)− u(q(θ′2), θ′2) into the last inequality we get:

t̃(θ′2)− t(θ′1) ≥ [u(q(θ′1), θ′2)− u(q(θ′1), θ′1)]− [u(q(θ′′2), θ′2)− u(q(θ′′2), θ′1)] > 0

The last inequality holds because uqθ > 0, θ′2 > θ′1, and q(θ′1) > q(θ′′2). The latter inequality

holds because q(θ′1) > q(θ′2) by assumption and also q(θ′2) ≥ q(θ′′2), which follows from Lemma

11 because θ2 > θ′2.

Thus, since t̃(θ′2) > t(θ′1) and q̃(θ′2) = q(θ′1), no type has incentive to deviate to θ′2 under

the new contract.
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Now, suppose that q(θ′1) = q(θ′2). Then a similar arguments shows that t(θ′2) > t(θ′1),

contradicts to the fact that θ′2 ∈ τ(θ2). (The only difference in this case is that we have to

show that q(θ′2) > q(θ′′2), which must be true because otherwise q(θ′2) = q(θ′′2) and t(θ′2) = t(θ′′2),

and this would contradict θ′′2 ∈ τ(θ′2)). Q.E.D.

Lemma 17 has the following important Corollary upon which we rely below:

Corollary 2 For any two types θ1, θ2 such that θ1 > θ2, τ(θ1) ∩ τ(θ2) is either empty or

consists of a single type θ′ such that θ′ = min τ(θ1) = max τ(θ2).

Lemma 18 shows that for any positive cost of lying, there is a threshold θ such that all

types below have zero surplus, are assigned their first-best quantities, and no type has binding

incentive towards them.

Lemma 18 For any C > 0, in the optimal mechanism (q(.), t(.)) there exists θ, θ, 0 < θ ≤

θ < 1, such that θ 6∈ τ([0, 1]) for any θ ∈ [0, θ] ∩ [θ, 1] and V (θ) = 0 for any θ ∈ [0, θ].

Proof of Lemma 18: Recall from (68) that G(θ′, θ) = u(qfb(θ), θ′)− u(qfb(θ), θ). Note that

G(1, θ) is continuous in θ and G(1, 0) = 0 because qfb(0) = 0. Therefore, there exists θ̃ > 0

such that G(1, θ)− C < 0 for any θ ∈ [0, θ̃]. Note that, since uθ > 0, G(θ′, θ) < G(1, θ) for all

θ′ ∈ [0, 1).

Let θ = min{θ̃, θ̌} where, as defined in Lemma 9, V (θ) = 0 for any θ ∈ [0, θ̌]. Now, let us

replace the original mechanism (q(.), t(.)) with an alternative mechanism (q̃(.), t̃(.)) in which

for all θ ∈ [0, θ] q̃(θ) = qfb(θ) and t̃(θ) = u(qfb(θ), θ), and the rest of the elements are the

same as in (q(.), t(.)). So, the mechanism (q̃(.), t̃(.)) is at least as profitable for the seller as

(q(.), t(.)).

In (q̃(.), t̃(.)) all IR constraints hold by construction. Let us now check that all IC hold.

First, no type has an incentive to imitate any type θ ∈ [0, θ] becauseG(θ′, θ) for all θ′, θ ∈ [0, 1]×

So, θ 6∈ τ([0, 1]) if θ ∈ [0, θ].

Now fix any pair (θ, θ′) ∈ [0, θ] × (θ, 1] Since V (θ) = 0 in both mechanisms (q(.), t(.)) and

(q̃(.), t̃(.)), q(θ′) = q̃(θ′) and t(θ′) = t̃(θ′), and IC(θ, θ′) holds in the mechanism (q(.), t(.)) it

follows that IC(θ, θ′) also holds in (q̃(.), t̃(.)).
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For the upper bound θ, let θ = max{θ′ : θ′ ∈ τ(1)}, note that this maximum exists as q and

t are continuous. Now for any θ′ ∈ τ([0, 1]), θ′ ≤ θ < 1, where the first inequality holds because

of Lemma 17 and the second inequality holds because of Corollary 1. Therefore, θ′ 6∈ τ([0, 1]

for any θ′ ∈ [θ, 1]. Q.E.D.

Lemma 19 establishes that there is no exclusion in the optimal mechanism.

Lemma 19 In an optimal mechanism, q(θ) > 0 for any θ > 0.

Proof of Lemma 19: Suppose that q(θ) = 0 for some θ > 0. Then t(θ) = 0. Lemma

18 implies that there exists θ′ ∈ (0, θ) such that q(θ′) = qfb(θ′) > 0. Now let us replace the

original mechanism (q(.), t(.)) with an alternative mechanism (q̃(.), t̃(.)) in which q̃(θ) = q(θ′)

and t̃(θ) = t(θ′) = u(q(θ′), θ′), and the rest of the elements are the same as in (q(.), t(.)). The

mechanism (q̃(.), t̃(.)) is at least as profitable for the seller as (q(.), t(.)). It is obvious that

(q̃(.), t̃(.)) satisfies all IR and IC constraints because (q(.), t(.)) does. Q.E.D.

From now on, assume that the type distribution F is continuous with full support on [0, 1].

For any θ′ ∈ [0, 1], define τ−1(θ′) = {θ ∈ [0, 1] : θ′ ∈ τ(θ)}. The next Lemma shows that

the inverse set of τ is a singleton.

Lemma 20 In an optimal mechanism, for any θ† ∈ [0, 1], τ−1(θ†) is either empty or consists

of a single type.

Proof of Lemma 20: The proof if by contradiction, so suppose that there exist θ1, θ2

such that θ1 < θ2 and θ† ∈ τ(θ1) ∩ τ(θ2).

Lemmas 16 and 17 and Corollary 2 imply that θ† = τ(θ) for all θ ∈ (θ1, θ2). Also, q(θ†) > 0

and V (θ) > 0 for all θ ∈ (θ1, θ2] because θ† = τ(θ1) .

Next, choose some θ̆1, θ̆2 such that θ1 < θ̆1 < θ̆2 < θ2.

Lemmas 16 and 17 and Corollary 2 imply that θ̆ = τ(θ) for all θ ∈ (θ1, θ2). Also, q(θ̆) > 0

and V (θ) > 0 for all θ ∈ (θ1, θ2] because θ̆ = τ(θ1) .

Next, choose some θ̆1, θ̆2 such that θ1 < θ̆1 < θ̆2 < θ2. Let us prove the following claim.

Claim 1. For any λ > 0 there exists δ > 0 such that for all (θ, θ′) ∈ [θ̆1, θ̆2]× [0, 1] \ [θ† −

λ, θ† + λ], we have V (θ) > u(q(θ′), θ)− t(θ′)− C + δ.
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Suppose not, then there exist λ > 0 such that for any δn > 0, δn → 0, there exists (θn, θ
′
n) ∈

[θ̆1, θ̆2]×[0, 1]\[θ†−λ, θ†+λ] such that V (θn) ≤ u(q(θ′n), θn)−t(θ′n)−C+δn. Since [θ†−λ, θ†+λ] is

compact (θn, θ
′
n) has a subsequence converging to some (θ∗, θ′∗) ∈ [θ̆1, θ̆2]×[0, 1]\(θ†−λ, θ†+λ).

By continuity of V (.), q(.) and t(.), V (θ∗) ≤ u(q(θ′∗), θ∗)− t(θ′∗)−C. Thus, θ′∗ ∈ τ(θ∗) which

contradicts that τ(θ) = θ† for all θ ∈ [θ̆1, θ̆2]. This completes the proof of Claim 1.

Next fix some λ > 0 and let δ(λ) satisfy the conditions of the above claim. Note that

limλ→0 δ(λ) = 0.

For θ ∈ [θ† − λ, θ† + λ], define ε(θ, λ) such that

[u(q(θ), θ̆1)− u(q(θ)− ε(θ, δ), θ̆1)]− [u(q(θ), θ)− u(q(θ)− ε(θ, δ), θ)] = δ(λ)

Given some small δ, consider an alternative mechanism (q̃, t̃) such that for θ′ ∈ [θ† −

λ(δ), θ†+ λ(δ)], q̃(θ′) = q(θ′)− ε(θ′, δ) and t̃(θ′) = t(θ′)− u(q(θ′), θ′) + u(q(θ′)− ε(θ′, δ), θ′); for

θ ∈ [θ̆1, θ̆2], t̃(θ) = t(θ) + δ. We will show that all IC and IR are satisfied in the new contract.

For θ′ ∈ [θ† − λ(δ), θ† + λ(δ)], Ṽ (θ′) = V (θ′), therefore IR are satisfied. For θ ∈ [θ̆1, θ̆2], since

V (θ) > 0, we have Ṽ (θ) = V (θ)− δ > 0 for small δ, therefore IR are satisfied.

Now we have to check that ˜IC(θ, θ′) are satisfied for θ ∈ [0, 1] and θ′ ∈ [θ†−λ(δ), θ†+λ(δ)].

First note that limδ→0 ε(θ
′, δ) = 0. For θ ≤ θ′, given Corollary 1 IC(θ, θ′) is slack, by continuity

˜IC(θ, θ′) is still slack for small δ. For θ > θ′ and θ 6∈ [θ̆1, θ̆2], ˜IC(θ, θ′) improves. For θ ∈ [θ̆1, θ̆2],

˜IC(θ, θ′) holds because:

Ṽ (θ) = V (θ)− δ = V (θ)− [u(q(θ′), θ̆1)− u(q(θ′)− ε(θ′, δ), θ̆1)] + [u(q(θ′), θ′)− u(q(θ′)− ε(θ′, δ), θ′)]

≥ u(q(θ′), θ)− t(θ′)− C − [u(q(θ′), θ̆1)− u(q(θ′)− ε(θ′, δ), θ̆1)] + [u(q(θ′), θ′)− u(q(θ′)− ε(θ′, δ), θ′)]

= u(q(θ′), θ)− t̃(θ′)− C − u(q(θ′), θ̆1) + u(q(θ′)− ε(θ′, δ), θ̆1)

≥ u(q(θ′), θ)− t̃(θ′)− C − u(q(θ′), θ) + u(q(θ′)− ε(θ′, δ), θ) ≥ u(q̃(θ′), θ)− t̃(θ′)− C

where the first equality holds because t̃(θ) = t(θ)+δ, the second equality holds by definition of

δ, the first inequality holds by IC(θ, θ′), the third equality holds by definition of t̃(θ′), and the

second inequality holds because θ ≥ θ̆1, and the last inequality holds because −u(q(θ′), θ) +

u(q(θ′)− ε(θ′, δ), θ) < 0.

For θ ∈ [0, 1] and θ′ 6∈ [θ† − λ(δ), θ† + λ(δ)], ˜IC(θ, θ′) since Ṽ (θ) = V (θ)− δ > u(q(θ′), θ)−

t(θ′)− C. The last inequality holds by definition of λ(δ).
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The change in seller’s profits from switching to the new mechanism is equal to [F (θ̆2) −

F (θ̆1)]δ−
∫ θ†+λ(δ)

θ†−λ(δ)
[u(q(θ′), θ′)−u(q(θ′)−ε(θ′, δ), θ′)]f(θ′)dθ′ ≥ [F (θ̆2)−F (θ̆1)]δ−[F (θ†+λ(δ))−

F (θ† − λ(δ))] maxθ′∈[θ†−λ(δ),θ†+λ(δ)][u(q(θ′), θ′′)− u(q(θ′)− ε(θ′, δ), θ′)]. Since limδ→0 λ(δ) = 0,

limδ→0[F (θ† + ∆(δ))− F (θ† −∆(δ))] = 0 and F (θ̆2)− F (θ̆1) > 0 as F is continuous with full

support. Finally,

limδ→0
δ

maxθ′∈[θ†−λ(δ),θ†+λ(δ)][u(q(θ′), θ′)− u(q(θ′)− ε(θ′, δ), θ′)]
= limδ→0

δ

uq(q(θ†), θ†)ε(θ′, δ)

=
uq(q(θ†),θ1)−uq(q(θ†),θ†)

uq(q(θ†),θ†)
> 0. So δ and maxθ′∈[θ†−λ(δ),θ†+λ(δ)][u(q(θ′), θ′)− u(q(θ′)− ε(θ′, δ), θ′)]

converge to zero at the same rate. Therefore, our alternative mechanism generates higher profit

while satisfying all IC and IR for small enough δ, contradiction. Q.E.D.

Lemmas 17 and 20 imply that the correspondence τ(.) is strictly increasing.

Corollary 3 Let θ1 > θ2. Suppose θ′1 ∈ τ(θ1), θ′2 ∈ τ(θ2), then θ′1 > θ′2.

Lemma 21 Define τ−k(.) = τ−1(τ−(k−1)(.)) for k = 1, 2, .... There exists K̄ < ∞ such that

for any θ τ−k(θ) = ∅ for some k ≤ K̄.

Proof of Lemma 21: Since τ(.) is increasing in its argument it is sufficient to establish the

claim of the Lemma for θ1 = τ(θ̂). We argue by contradiction, so suppose that the claim of the

Lemma is not true for θ1. Note that by Lemma 20 τ−k(θ) is either an empty set or a singleton

for any θ ∈ [0, 1] and any positive integer k. So there exists a sequence θk, k = 1, ...,∞ such

that θk+1 = τ−1(θk) for all k ≥ 1 i.e., u(q(θk+1), θk+1)− t(θk+1) = u(q(θk), θk+1)− t(θk)− C.

Corollary 1 implies that θk < θk+1. Since θk ∈ [0, 1] for all k, it follows that limk→∞ θk−θk+1 =

0. But then by continuity of q and t, limk→∞[u(q(θk+1), θk+1) − t(θk+1)] − [u(q(θk), θk+1) −

t(θk)] = 0 > −C, a contradiction. Q.E.D.

Lemma 22 If θ′1, θ
′
2 ∈ τ(θ̆0) for some θ̆0, with θ′1 < θ′2, then q(θ′) = qfb(θ′) for any θ′ ∈ [θ′1, θ

′
2].

Proof of Lemma 22:

Suppose that contrary to our claim, q(θ) < qfb(θ) for some θ ∈ [θ′1, θ
′
2]. Then by continuity

of q(.) there exist θ̆′1, θ̆
′
2 such that θ′1 < θ̆′1 < θ̆′2 < θ′2 and q(θ′) < qfb(θ′) for any θ′ ∈ [θ̆′1, θ̆

′
2].

Then by Lemmas 13 and 17, τ−1(θ) = {θ̆0} for all θ ∈ [θ̆′1, θ̆
′
2].
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Recall that τ−k(.) = τ−1(τ−(k−1)(.)) where k is a positive integer k. By Lemma 21 there

exists M ≥ 0 such that τ−k(θ̆0) is singleton for k ≤ M and empty for k > M . So, if M ≥ 1,

then for k ∈ {1, ...,M} let us define θ̆k = τ−k(θ̆0). Next, we prove three claims.

Claim 1. For any λ0 > 0 there exists δ0 > 0 such that for any (θ, θ′) ∈ [0, 1]\ [θ̆0−λ0, θ̆0 +

λ0]× [θ̆′1, θ̆
′
2], we have V (θ) > u(q(θ′), θ)− t(θ′)− C + δ.

Suppose not, then for some λ there exists sequences δ0
n > 0 : δ0

n → 0 and (θn, θ
′
n) ∈

[0, 1] \ [θ̆0 − λ, θ̆0 + λ]× [θ̆′1, θ̆
′
2] such that V (θn) ≤ u(q(θ′n), θn)− t(θ′n)− C + δn for all n.

Without loss of generality, suppose that (θn, θ
′
n) converges to some (θ∗, θ′∗) ∈ [0, 1] \ (θ̆0 −

λ, θ̆0 + λ) × [θ̆′1, θ̆
′
2]. Then by continuity of V (.), q(.) and t(.) we have V (θ∗) ≤ u(q(θ′∗), θ∗) −

t(θ′∗) − C, which contradicts the assumption that τ−1([θ̆′1, θ̆
′
2]) = {θ̆0}. This completes the

proof of Claim 1.

Claim 2. If M ≥ 1, then for any k ∈ {1, ...,M}, and any λk > 0 there exists λk−1 > 0

and δk > 0 such that for any (θ, θ′) ∈ [0, 1] \ [θ̆k − λk, θ̆k + λk]× [θ̆k−1 − λk−1, θ̆k−1 + λk−1], we

have V (θ) > u(q(θ′), θ)− t(θ′)− C + δk.

Suppose not, then there exists λk > 0 such that for any sequence δkn > 0 : δkn → 0, there

exists a sequence θn → θ∗ ∈ [0, 1]\(θ̆k−λk, θ̆k+λk) such that V (θn) ≤ u(q(θ̆k−1), θn)−t(θ̆k−1)−

C+ δkn. Then by continuity of V (.), q(.) and t(.) we have V (θ∗) ≤ u(q(θ̆k−1), θ∗)− t(θ̆k−1)−C.

So, θ̆k−1 ∈ τ(θ∗) which contradicts the fact that τ−1(θ̆k−1) = {θ̆k}.

Claim 3. There exists δM+1 > 0 and λM > 0 such that for any (θ, θ′) ∈ [0, 1] × [θ̆M −

λM , θ̆M + λM ], we have V (θ) > u(q(θ′), θ)− t(θ′)− C + δM+1.

Suppose not, then there exists a sequence δM+1
n > 0 : δM+1

n → 0 and a sequence θn →

θ∗(M+1) ∈ [0, 1] such that V (θn) ≤ u(q(θ̆M ), θn) − t(θ̆M ) − C + δM+1
n . Then by continuity of

V (.), q(.) and t(.) we have V (θ∗M+1) ≤ u(q(θ̆M ), θ∗(M+1)) − t(θ̆M ) − C. So, θ̆M ∈ τ(θ∗(M+1)

which contradicts the fact that τ−1(θ̆M ) = ∅. This completes the proof of Claim 3.

Note that if Claim 3 holds for some pair (δM+1, λM ), it also holds for (δ(M+1)′ , λM
′
) ≤

(δM+1, λM ). Also, by Claims 1 and 2, for any λM there exist (δM , λM−1) such that Claim 2

holds.

Now let δ = mink∈{1,...,} δ
k Note that if let λM converge to zero then δ also converges to

zero.
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Next, let us use the following iterative procedure to construct a strictly positive sequence

{δj , λ0
j , ..., λ

M
j }, j ∈ {1, ...,∞}, which converges to zero, and such that for all j: (i) δj ≤ λ0

j ≤

... ≤ λMj ; (ii) (δj , λ
M
j ) satisfy the condition of Claim 3; (iii) Given λkj , (δj , λ

k−1
j ) satisfy the

condition of Claim 2; (iv) Given λ0
j , δj satisfies the condition of Claim 1.

Step 1. Let ΩM be the non-empty set of (λM , δM+1) that satisfy the condition of Claim 3.

Define λ
M

= sup{λM : (λM , δM+1) ∈ ΩM , λM = δM+1}. Then let λMj = λ
M

j+1 for j ∈ {1, ...,∞}.

Note that, if (λM , δM+1) ∈ ΩM , then (λ̃M , δ̃M+1) ∈ ΩM if 0 � (λ̃M , δ̃M+1) ≤ (λM , δM+1).

Therefore, λMj is well-defined and is strictly positive and (λMj , δ) ∈ ΩM for all δ s.t. δ ≤ λMj .

Step 2. Suppose now that we have constructed {λk+1
j > 0}∞j=1 for k ≤ M − 1. Given

λk+1
j let Ωk(λk+1

j ) be the set of (λk, δk+1) that satisfy the conditions of claim 2. Then set

λ
k
j = sup{λk : (λk, δk+1) ∈ Ωk(λk+1

j ), λk = δk+1} and λkj = min{λk+1
j ,

λ
k
j

2 } for j ∈ {1, ...,∞}.

Analogously to Step 2, if (λk, δk+1) ∈ Ωk(λk+1
j ), then (λ̃k, δ̃k+1) ∈ Ωk(λk+1

j ) if 0 �

(λ̃k, δ̃k+1) ≤ (λk, δk+1). Therefore, λkj is well-defined and is strictly positive and (λkj , δ) ∈

Ωk(λk+1
j ) for all δ s.t. δ ≤ λkj .

Step 3. Given λ0
j > 0, let Ω(λ0

j ) be the set of δ0 that satisfy the conditions of Claim 1.

Then define δj = sup{δ ∈ ∆(λ0
j )} and set δj = min{λ0

j ,
δj
2 } for all j ∈ {1, ...,∞}. Note that if

δ0 ∈ ∆(λ0), then δ̃0 ∈ ∆(λ0) for any 0 < δ̃0 ≤ δ0. Therefore, δj is well-defined and is strictly

positive and δj ∈ Ω(λ0
j ).

Since δj ≤ λkj for all k ∈ {0, ...,M} we have (λkj , δj) ∈ Ωk(λk+1
j ) as required.

Now, for δj and for any θ ∈ [θ̆′1, θ̆
′
2] define ε(θ, δj) as a solution in ε to the following equation:

[u(q(θ) + ε, 1)− u(q(θ) + ε, θ)]− [u(q(θ), 1)− u(q(θ), θ)] = δj (70)

Note that the left-hand side of (70) is equal to zero when ε = 0 and is increasing in ε. So, there

exists N such that for all j ≥ N , δj is small enough and the solution to (70) is well-defined

with q(θ) + ε(θ, δj) < qfb(θ) (since q(θ) < qfb(θ)).

Now, given j : j ≥ N , consider an alternative mechanism (q̃j(.), t̃j(.)) which differs from

the original mechanism (q(.), t(.))) only as follows: for θ ∈ [θ̆′1, θ̆
′
2], q̃j(θ) = q(θ) + ε(θ, δj) and

t̃j(θ) = t(θ)+u(q(θ)+ε(θ, δj), θ)−u(q(θ), θ), and for θ ∈ ∪Mk=0[θ̆k−λkj , θ̆k+λkj ], t̃j(θ) = t(θ)−δj .

Below we show that: (i) the mechanism (q̃j(.), t̃j(.)) satisfies all IC and IR constraints; (ii)

(q̃j(.), t̃j(.)) is strictly more profitable for the principal than the original mechanism (q(.), t(.)))
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when j is sufficiently large.

First, IR constraints hold in (q̃j(.), t̃j(.)) because Ṽj(θ) > V (θ) for θ ∈ ∪Mk=0[θ̆k−λkj , θ̆k+λkj ],

and Ṽj(θ) = V (θ) for all other types θ.

Now let us consider incentive constraints. For θ 6∈ ∪Mk=0[θ̆k − λkj , θ̆k + λkj ] and θ′ ∈ [θ̆′1, θ̆
′
2],

Ṽj(θ) = V (θ) > u(q(θ′), θ)− t(θ′)− C + δj

=u(q(θ′), θ)− t(θ′)− C + [u(q(θ′) + ε(θ′, δj), 1)− u(q(θ′), 1)]− [u(q(θ′) + ε(θ′, δj), θ
′)− u(q(θ′), θ′)]

=u(q(θ′), θ)− t̃(θ′)− C + u(q(θ′) + ε(θ′, δj), 1)− u(q(θ′), 1)

≥u(q(θ′), θ)− t̃(θ′)− C + u(q(θ′) + ε(θ′, δj), θ)− u(q(θ′), θ) = u(q̃(θ′), θ)− t̃(θ′)− C

where the first inequality holds since θ 6∈ [θ̆0−λ0
j , θ̆

0+λ0
j ], the second equality holds by definition

of ε(θ′, δj), the third equality holds by definition of t̃j(θ
′), the second inequality holds because

θ ≤ 1 and the last equality holds by definition of q̃j(θ
′).

For θ ∈ ∪Mk=0[θ̆k − λkj , θ̆k + λkj ] and θ′ ∈ [θ̆′1, θ̆
′
2],

Ṽj(θ) = V (θ) + δj ≥ u(q(θ′), θ)− t(θ′)− C + δj

= u(q(θ′), θ)− t(θ′)− C + [u(q(θ′) + ε(θ′, δj), 1)− u(q(θ′), 1)]− [u(q(θ′) + ε(θ′, δj), θ
′)− u(q(θ′), θ′)]

= u(q(θ′), θ)− t̃j(θ′)− C + u(q(θ′) + ε(θ′, δj), 1)− u(q(θ′), 1)

≥ u(q(θ′), θ)− t̃j(θ′)− C − u(q(θ′), θ) + u(q(θ′)− ε(θ′, δj), θ) = u(q̃j(θ
′), θ)− t̃j(θ′)− C

where the first equality holds by definition of t̃j(θ), the first inequality holds by IC(θ, θ′),

the second equality holds by definition of ε(θ′, δj), the third equality holds because by definition

of t̃j(θ
′), the second inequality holds because θ ≤ 1 and the last equality holds by definition of

q̃j(θ
′).

For θ 6∈ ∪Mk=0[θ̆k − λkj , θ̆k + λkj ] and θ′ ∈ ∪Mk=0[θ̆k − λkj , θ̆k + λkj ],

Ṽj(θ) =V (θ) > u(q(θ′), θ)− t(θ′)− C + δj = u(q̃j(θ
′), θ)− t̃j(θ′)− C

Where the first inequality holds because θ 6∈ ∪Mk=0[θ̆k − λkj , θ̆k + λkj ] and the last equality

holds by by definition of t̃j(θ
′).

For θ ∈ ∪Mk=0[θ̆k − λkj , θ̆k + λkj ] and θ′ ∈ ∪Mk=0[θ̆k − λkj , θ̆k + λkj ],

Ṽj(θ) =V (θ) + δj ≥ u(q(θ′), θ)− t(θ′)− C + δj = u(q̃j(θ
′), θ)− t̃j(θ′)− C
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where the first equality holds by definition of t̃j(θ), the first inequality holds by IC(θ, θ′), the

last equality holds by definition of t̃j(θ
′). Thus, all ˜ICj(θ, θ

′) are satisfied.

The change in profit in the new mechanism is equal to∫ θ̆′2

θ̆′1

[u(q(θ′) + ε(θ′, δj), θ
′)− u(q(θ′), θ′)]f(θ′)dθ′ − F (∪Mk=0[θ̆k − λkj , θ̆k + λkj ])δj

≥ [F (θ̆′2)− F (θ̆′1)][u(q(θ′) + ε(θ′, δj), θ
′)− u(θ′, θ′)]− F (∪Mk=0[θ̆k − λkj , θ̆k + λkj ])δj

where θ′ = arg min
θ′∈[θ̆′1,θ̆

′
2]
u(q(θ′) + ε(θ′, δj), θ

′)− u(q(θ′), θ′).

Since limj→∞ λ
k
j = 0 for k = 0, ...,M , limj→∞ F (∪Mk=0[θ̆k − λkj , θ̆k + λkj ]) = 0 and F (θ̆′2) −

F (θ̆′1) > 0 as F is continuous with full support.

Finally, we have limj→∞
u(q(θ′)+ε(θ′,δj),θ

′)−u(θ′,θ′)
δj

=
uq(q(θ

′,θ′)
uq(q(θ

′),1)−uq(q(θ′,θ′) > 0 because q(θ′) <

qfb(θ′). Since δ and u(q(θ′) + ε(θ′, δ), θ′) − u(θ′, θ′) converge to zero at the same rate, we

conclude that when j is sufficiently large, this alternative mechanism generates a higher profit

while satisfying all IC and IR contradiction. Q.E.D.

Now we can show the following:

Lemma 23 q(θ) is strictly increasing in θ

Proof of Lemma 23: Let θ′2 > θ′1. By Lemma 20 τ−1(θ′1) and τ−1(θ′2) are either empty

or singleton. We need to consider five cases.

(i) If τ−1(θ′1) = τ−1(θ′2) = ∅, them by Lemma 13, q(θ′1) = qfb(θ′1) < qfb(θ′2) = q(θ′2).

(ii) If τ−1(θ′1) 6= ∅ and τ−1(θ′2) = ∅, Lemmas 13 and 14 imply that q(θ′1) ≤ qfb(θ′1) <

qfb(θ′2) = q(θ′2).

(iii) If τ−1(θ′1) = ∅ and τ−1(θ′2) 6= ∅, by continuity of V , q and t there exists θ′ such that

θ′1 < θ′ ≤ θ′2, q(θ′) = qfb(θ′) and τ−1(θ′) 6= ∅. Then using Lemma 11 we have q(θ′1) = qfb(θ′1) <

qfb(θ′) = q(θ′) ≤ q(θ′2).

(iv) If τ−1(θ′1) = τ−1(θ′2) = {θ} for some θ, then by Lemma 22, q(θ′1) = qfb(θ′2) < qfb(θ′1) =

q(θ′2)

(v) If τ−1(θ′1) and τ−1(θ′2) are non-empty and τ−1(θ′1) 6= τ−1(θ′2), then by Corollary 3

τ−1(θ′1) < τ−1(θ′2), and by Lemma 11 q(θ′2) ≥ q(θ′1). If q(θ′2) = q(θ′1) then we must have

t(θ′2) = t(θ′1) since τ−1(θ′1) and τ−1(θ′2) are non-empty. But this contradicts τ−1(θ′1) 6= τ−1(θ′2).

So, q(θ′2) > q(θ′1). Q.E.D.
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Lemma 24 Suppose there exist θ, θ and integer M ≥ 1 such that θ > θ, [θ, θ] ⊆ [τ(1), 1], and

τ s(θ) is single-valued for all θ ∈ [θ, θ] and s ∈ {1, ...,M}. Then for any such s and θ ∈ [θ, θ],

uq(q(τ
s(θ)), τ s(θ))f(τ s(θ))τ̇ s(θ) = [uq(q(τ

s(θ)), τ s−1(θ))−uq(q(τ s(θ)), τ s(θ))]
∑s

k=1 f(τ s−k(θ))τ̇ s−k(θ).

Proof of Lemma 24: Since τ(.) is strictly increasing and upper hemicontinuous and τ s(.) is

single-valued by assumption, τ s(.) must also be strictly increasing, continuous and differentiable

almost everywhere on [θ, θ].

The proof is by contradiction. So suppose that for some θ̃ ∈ (θ, θ) and s ∈ {1, ...,M} :

uq(q(τ
s(θ̃))), τ s(θ̃))f(τ s(θ̃))τ̇ s(θ̃) > [uq(q(τ

s(θ̃)), τ s−1(θ̃))− uq(q(τ s(θ̃)), τ s(θ̃))]
s∑

k=1

f(τ s−k(θ̃))τ̇ s−k(θ̃).

(71)

Leter we will consider the case where the opposite inequality holds.

Note that the left hand side of (71) is the marginal efficiency gain of raising q on a neigh-

borhood around τ s(θ̃), while its right hand side is the marginal increases in rent that the

principal needs to provide to the types in the neighborhoods around every predecessor of τ s(θ̃)

in the chain of targeted types, τ s−k(θ̃) for k = 1, ..., s. The multiplier f(τ s−k(θ̃))τ̇ s−k(θ̃) for

k = 0, ..., s, reflects the relative probability weight of the neighborhood around τ s−k(θ̃). So,

when (71) holds, the principal could get higher profits by increasing the quantities assigned to

the types around τ s(θ̃) and collecting the additional revenue generated thereby, while providing

increased rents required by types around τ s−k(θ̃), k = 1, ..., s.

The rest of the proof formalizes this intuition. We proceed through three steps. In Step 1,

we construct an alternative mechanism (q̃(.), t̃(.)) reflecting the aforementioned modification.

In Steps 2 and 3 we show, respectively, that this mechanism is incentive compatible and is

more proftiable for the principal than the original one, when the quantity changes for the

types around τ s(θ̃) are sufficiently small.

Step 1. Constructing an Alternative Mechanism.

First, (71) and the continuity of τ s(.) and q(.) imply that there exist σ > 0 and µ > 0 such
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that θ < θ̃ − σ < θ̃ + σ < θ and for all θ ∈ [θ̃ − σ, θ̃ + σ],

uq(q(τ
s(θ)), τ s(θ))

uq(q(τ s(θ)), τ s−1(θ))− uq(q(τ s(θ)), τ s(θ))
f(τ s(θ))τ̇ s(θ)−

s∑
k=1

f(τ s−k)τ̇ s−k(θ)− µ > 0 (72)

Note that q(τ s(θ)) < qfb(τ s(θ)) for all θ ∈ [θ̃ − σ, θ̃ + σ], for otherwise the first term in (72) is

zero while its second term is positive.

Next, for j = 1, 2, ...,∞, let θ0
lj = θ̃− σ

m√j and θ0
uj = θ̃+ σ

m√j be, respectively, the lower and

upper bounds of a j-neighborhood around θ̃, where m > 4 is a constant. Given the interval

[θ0
lj , θ

0
uj ], we iteratively define the upper bounds and lower bounds of neighborhoods around

the chain of targeted types originating from θ̃ as follow: for k = 1, ..., s, θklj = τ(θk−1
lj + 1

4√j )

and θkuj = τ(θk−1
uj −

1
4√j ). Note that limj→∞ θ

k
lj = limj→∞ θ

k
uj = τk(θ̃), with θkuj > θklj for large

enough j.

Let us now introduce quantity perturbations for the types in the set [θslj , θ
s
uj ]. Specifically,

for θ ∈ [θslj , θ
s
uj ], define a sequence εj(θ) as a solution in ε to the following equation:

[u(q(θ) + ε, θs−1
uj )− u(q(θ) + ε, θ)]− [u(q(θ), θs−1

uj )− u(q(θ), θ)] =
1

j
(73)

Note that the left-hand side of (73) is equal to zero when ε = 0 and is increasing in ε. So,

there exists N such that for all j ≥ N the solution to (73) is well-defined with q(θ) + εj(θ) <

qfb(θ) (since q(θ) < qfb(θ)).

Next consider alternative mechanism (q̃j(.), t̃j(.)) which differs from the original mechanism

(q(.), t(.))) only as follows: for θ ∈ [θslj , θ
s
uj ], q̃j(θ) = q(θ) + εj(θ) and t̃j(θ) = t(θ) + u(q(θ) +

εj(θ), θ)− u(q(θ), θ), and for θ ∈ ∪s−1
k=0[θklj , θ

k
uj ], t̃j(θ) = t(θ)− 1

j .

Let Ṽj(θ) = u(q̃j(θ), θ)− tj(θ) be the net utility of (truth-telling) type θ in the mechanism

(q̃j(.), t̃j(.)). Note that Ṽj(θ) = V (θ) + 1
j for θ ∈ ∪s−1

k=0[θklj , θ
k
uj ], and Ṽj(θ) = V (θ) for all other

types θ. So, IR constraints hold for all θ ∈ [0, 1] in (q̃j(.), t̃j(.)).

We will now show that when j is sufficiently large the mechanism (q̃j(.), t̃j(.)) is incen-

tive compatible and strictly more profitable for the principal than the original mechanism

(q(.), t(.))) .

Step 2. Establishing incentive compatibility of the alteranative mechanism.

We will show that incentive constraints in the mechanism (q̃j(.), t̃j(.)), denoted by ICj(θ, θ′),

hold for all (θ, θ′) ∈ [0, 1]2. The argument is given separately for several subsets of [0, 1]2.
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First, if θ ∈ [0, 1] and θ′ 6∈ ∪k=0,...,s[θ
k
lj , θ

k
uj ], then ICj(θ, θ′) holds because Ṽj(θ) ≥ V (θ),

q̃j(θ
′) = qj(θ

′), t̃j(θ
′) = tj(θ

′) and IC(θ, θ′) holds.

Second, if θ ∈ [0, 1] and θ′ ∈ [θ0
lj , θ

0
uj ], then τ−1(θ′) = ∅ since [θ0

lj , θ
0
uj ] ⊂ (θ, θ) ⊂ [τ(1), 1].

So, in the original mechanism incentive constraints IC(θ, θ′) are slack on this set of types, with

minimal slack δ > 0 over all θ ∈ [0, 1] and all θ′ ∈ [θ0
lj , θ

0
uj ]. In the mechanism, (q̃j(.), t̃j(.)),

Ṽj(θ) ≥ V (θ) for all θ ∈ [0, 1], and Ṽj(θ
′) = V (θ′) + 1

j for θ′ ∈ [θ0
lj , θ

0
uj ]. Therefore, ICj(θ, θ′)

holds for sufficiently large j i.e., when 1
j ≤ δ.

Third, consider IC(θ, θ′) where θ ∈ [θs−1
lj , θs−1

uj ] and θ′ ∈ [θslj , θ
s
uj ]. Recall that U(θ, θ′) =

u(q(θ′), θ)− t(θ′)− C. So, when j is sufficiently large, we have:

Ṽj(θ) = V (θ) +
1

j
≥ U(θ, θ′) +

1

j

= u(q(θ′), θ)− t(θ′)− C + [u(q̃j(θ
′), θs−1

uj )− u(q̃j(θ
′), θ′)]− [u(q(θ′), θs−1

uj )− u(q(θ′), θ′)] ≥

u(q(θ′), θ)− t(θ′)− C + [u(q̃j(θ
′), θ)− u(q̃j(θ

′), θ′)]− [u(q(θ′), θ)− u(q(θ′), θ′)] = u(q̃j(θ
′), θ)− t̃j(θ′)− C

where the first equality holds by definition of t̃j(θ), the first inequality holds by incentive

compatibility of the original mechanism, the second equality holds by definition of q̃j(θ
′) and

εj(θ
′), the second inequality holds because q̃j(θ

′) > q(θ′), θ ≤ θs−1
uj and uθq > 0, and the last

inequality holds by definition of t̃j(θ
′).

Fourth, if θ ∈ ∪s−1
k=0[θklj , θ

k
uj ] and θ′ ∈ ∪s−1

k=1[θklj , θ
k
uj ] , then Ṽj(θ) = V (θ) + 1

j and Ṽj(θ
′) =

V (θ′) + 1
j since both θ and θ′ get the same quantity as in the original mechanism but their

transfer is decreased by 1
j in (q̃j(.), t̃j(.)). Therefore, ICj(θ, θ′) holds because IC(θ, θ′) holds.

Fifth, to show that ICj(θ, θ′) holds for: (i) θ 6∈ ∪s−1
k=0[θklj , θ

k
uj ] and θ′ ∈ ∪s−1

k=1[θklj , θ
k
uj ], and

(ii) θ 6∈ [θs−1
lj , θs−1

uj ] and θ′ ∈ [θslj , θ
s
uj ], we need to establish the following Claim.

Claim 1. There exists a > 0 such that for any j, k = 0, ..., s− 1, θ ∈ [0, 1]/(θklj , θ
k
uj) and

θ′ ∈ [θk+1
lj , θk+1

uj ], in the original mechanism V (θ) ≥ U(θ, θ′) + a√
j
.

First, suppose that θ ≥ θkuj . Then we have:

V (θ)− U(θ, θ′) ≥ U(θ, τ(θkuj))− U(θ, θ′) =

∫ τ(θkuj)

θ′
uq(q(x), θ)q̇(x)− ṫ(x)dx

=

∫ τ(θkuj)

θ′
[uq(q(x), θ)− uq(q(x), τ−1(x))]q̇(x)dx =

∫ τ(θkuj)

θ′

∫ θ

τ−1(x)
uθq(q(x), r)q̇(x)drdx (74)
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The inequality holds because IC(θ, τ(θkuj)) holds in the original mechanism, the first equality

holds by definition, the second equality uses the first-order condition (5) which holds because

τ−1(x) ∈ [θklj , θ
k
uj ] ⊂ [τk(θ), τk(θ)] where τ is single-valued and continuous.

By Lemma 23, q is strictly increasing on (0,1), so there exists q̇ > 0 such that q̇(x) ≥ q̇ for

all x ∈ [θ′, τ(θkuj)]. By Assumption 1, uθq > K > 0. Therefore, using (74) we obtain:

V (θ)− U(θ, θ′) ≥ Kq̇
∫ τ(θkuj)

θ′
(θ − τ−1(x))dx ≥ Kq̇

∫ τ(θkuj)

τ(θkuj−
1
4√j

)
(θkuj − τ−1(x))dx

= Kq̇

∫ θkuj

θkuj−
1
4√j

τ̇(y)(θkuj − y)dy ≥
Kq̇τ̇
√
j

=
a√
j
, (75)

where the first inequality follows from (74), the second inequality holds because θ ≥ θkuj ,

θ′ ≤ θk+1
uj = τ(θkuj− 1

4√j ), and (θkuj− τ−1(x)) > 0 on the range of integration. The first equality

holds by a change of variable of integration x = τ(y). The third inequality holds because τ is

continuous and strictly increasing on [τk(θ), τk(θ)], and so τ̇(x) ≥ τ̇ for some τ̇ > 0. Finally,

the last equality holds as we set a = 1
2Kq̇τ̇ > 0.

A symmetrical argument establishes that the Claim also holds for θ ≤ θklj . �

Now, we will use Claim 1 to establish that ICj(θ, θ′) holds in the remaining two cases.

First, if θ 6∈ ∪s−1
k=0[θklj , θ

k
uj ] and θ′ ∈ ∪s−1

k=1[θklj , θ
k
uj ], we have Ṽj(θ) = V (θ), t̃j(θ

′) = t(θ′)− 1
j ,

and q̃j(θ
′) = q(θ′). Combining this with V (θ) ≥ U(θ, θ′) + a√

j
yields Ṽ (θ) ≥ U(θ, θ′)− 1

j + a√
j

i.e., ICj(θ, θ′) holds for sufficiently large j.

Second, for θ 6∈ [θs−1
lj , θs−1

uj ] and θ′ ∈ [θslj , θ
s
uj ], note by (73) that there exists some a < ∞

such that

lim
j→∞

j[(u(q(θ′) + εj(θ
′), θ)− u(q(θ′) + εj(θ

′), θ′))− (u(q(θ′), θ)− u(q(θ′), θ′))]

= lim
j→∞

[(u(q(θ′) + εj(θ
′), θ)− u(q(θ′) + εj(θ

′), θ′))− (u(q(θ′), θ)− u(q(θ′), θ′))]

[u(q(θ′) + εj(θ′), θ
s−1
uj )− u(q(θ′) + εj(θ′), θ′]− [u(q(θ′), θs−1

uj )− u(q(θ′), θ′)]

=
uq(q(θ

′), θ′)− uq(q(θ′), θ′)
uq(q(θ′), θ

s−1
uj )− uq(q(θ′), θ′)

< a (76)
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Therefore, for sufficiently large j,

Ṽj(θ) ≥ V (θ) ≥ U(θ, θ′) +
a√
j

=

u(q̃j(θ
′), θ)− t̃j(θ′)− C +

a√
j
− [u(q(θ′) + εj(θ

′), θ)− u(q(θ′), θ)− u(q(θ′) + εj(θ
′), θ′) + u(q(θ′), θ′)]

≥ u(q̃j(θ
′), θ)− t̃j(θ′)− C +

a√
j
− a

j
> u(q̃ij(θ

′), θ)− t̃ij(θ′)− C

where the first inequality holds by construction, the second inequality holds by Claim 1, the

first equality hold by definition of (q̃j(θ
′), t̃j(θ

′)), the third inequality holds for sufficiently large

j by (76), and the last inequality holds for sufficiently large j. This completes the proof of the

incentive compatibility of the mechanism (q̃j(.), t̃j(.)) for sufficiently large j.

Step 2. Establishing that the the mechanism (q̃j(.), t̃j(.)) is is more profitable

for the principal than the original mechanism.

We start by proving the following.

Claim 2. For any k = 0, ..., s and i = u, l, limj→∞
m
√
j|τ−(s−k)(θsij)− θkij | = 0.

We will establish this for i = l. The other cases follows by symmetric arguments. For large

j, we have

θslj =τ(θs−1
lj +

1
4
√
j

)

=τ(τ(...τ(θklj +
1
4
√
j

)...) +
1
4
√
j

)

≈τ(τ(...τ(θklj) +
1
4
√
j
τ̇(θ̃k)...) +

1
4
√
j

)

≈τ(τ(...τ2(θklj) +
1
4
√
j
τ̇(θ̃k+1)(τ̇(θ̃k) + 1))...) +

1
4
√
j

)

≈τ s−k(θklj) +
1
4
√
j

[1 + τ̇(θ̃s−1) + τ̇(θ̃s−1)τ̇(θ̃s−2) + ...+

s−1∏
r=k

τ̇(θ̃r)]
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Therefore,

τ−(s−k)(θsij)− θkij =τ−(s−k)(θslj)− τ−(s−k)(τ s−k(θklj))

≈τ̇−(s−k)(θ̃k)[θsij − τ s−k(θklj)]

≈τ̇−(s−k)(θ̃k)
1
4
√
j

[1 + τ̇(θ̃s−1) + τ̇(θ̃s−1)τ̇(θ̃s−2) + ...+

s−1∏
r=k

τ̇(θ̃r)]

=
1
4
√
j

1∏s−1
r=k τ̇(θ̃r)

[1 + τ̇(θ̃s−1) + τ̇(θ̃s−1)τ̇(θ̃s−2) + ...+
s−1∏
r=k

τ̇(θ̃r)]

Since for each k, θ̃k ≡ τk(θ̃) ∈ [τk(θ), τk(θ)] where τ is continuous and strictly increasing,

it follows that τ̇(θ̃k) is bounded below from 0 and bounded above. Therefore,

limj→∞
m
√
j|τ−(s−k)(θsij)−θkij | = limj→∞

j( 1
m
− 1

4
)∏s−1

r=k τ̇(θ̃r)
[1+τ̇(θ̃s−1)+τ̇(θ̃s−1)τ̇(θ̃s−2)+...+

s−1∏
r=k

τ̇(θ̃r)] = 0

as m > 4. �

The change in profit in the new mechanism is equal to

Πj =

∫ θsuj

θslj

[u(q(θ) + εj(θ), θ)− u(q(θ), θ)]f(θ)dθ − 1

j

s−1∑
k=0

∫ θkuj

θklj

f(θ)dθ

=

∫ τ−s(θsuj)

τ−s(θslj)
[u(q(τ s(θ)) + εj(τ

s(θ)), τ s(θ))− u(q(τ s(θ)), τ s(θ))]f(τ s(θ))τ̇ s(θ)− 1

j

s−1∑
k=0

f(τk(θ))τ̇k(θ)dθ

− 1

j
Ωj

≈1

j

∫ τ−s(θsuj)

τ−s(θslj)

uq(q(τ
s(θ)), τ s(θ))

uq(q(τ s(θ), θ
s−1
uj )− uq(q(τ s(θ)), τ s(θ))

f(τ s(θ))τ̇ s(θ)−
s−1∑
k=0

f(τk(θ))τ̇k(θ)dθ

− 1

j
Ωj (77)

where Ωj =
∑s−1

k=0[F (θkuj) − F (τ−(s−k)(θsuj))] + [F (τ−(s−k)(θslj)) − F (θklj)], the second equality

is derived using change of variables, and the approximation comes from the definition of εj at
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(73) and limj→∞ εj = 0. Given inequality (72), we have

limj→∞j
1+ 1

mΠj

= j
1
m

∫ τ−s(θsuj)

τ−s(θslj)

uq(q(τ
s(θ)), τ s(θ))

uq(q(τ s(θ), θ
s−1
uj )− uq(q(τ s(θ)), τ s(θ))

f(τ s(θ))τ̇ s(θ)−
s−1∑
k=0

f(τk(θ))τ̇k(θ)dθ − j
1
mΩj

> j
1
m

∫ τ−s(θsuj)

τ−s(θslj)
[

uq(q(τ
s(θ)), τ s(θ))

uq(q(τ s(θ), θ
s−1
uj )− uq(q(τ s(θ)), τ s(θ))

− uq(q(τ
s(θ)), τ s(θ))

uq(q(τ s(θ), τ s−1(θ))− uq(q(τ s(θ)) + τ s(θ))
]

f(τ s(θ))τ̇ s(θ)dθ

+j
1
m [τ−s(θsuj)− τ−s(θslj)]µ− j

1
mΩj (78)

Claim 1 and continuity of F (.) imply limj→∞j
1
mΩj = 0. Claim 1 also implies limj→∞j

1
m [τ−s(θsuj)−

τ−s(θslj)] = limj→∞j
1
m [θ0

uj−θ0
lj ] = 2σ. Finally, for any θ ∈ [τ−s(θsuj)−τ−s(θslj)], limj→∞τ

s−1(θ) =

limj→∞θ
s−1
uj = θ̃s−1, which means the term in the integral of (78) converges to 0. It implies

limj→∞j
1+ 1

mΠj = 2σµ > 0

change of profit is positive for large enough j, which contradicts the optimality of the original

mechanism.

Q.E.D.

Lemma 25 shows that for a range of C, any type θ ∈ τ([0, 1]) gets zero surplus.

Lemma 25 There exists C ∈ (0, C), such that in the optimal mechanism for any C ∈ [C,C]

we have: if θ′ ∈ τ([0, 1]) then V (θ′) = 0.

Proof of Lemma 25: Recall from (68) that G(θ, θ′) = u(qfb(θ′), θ)− u(qfb(θ′), θ′), and

C ≡ G∗(θ) = max
θ′

G(θ′, θ)

Since G(., .) is continuous in both arguments and uθ > 0, G∗(θ) is continuous and strictly

increasing.

Define

Θ̂(C) = {θ ∈ [0, 1] : G∗(θ)− C ≥ 0}

Then for any C ∈ (0, C) the set Θ̂(C) is non-empty. Furthermore, since G∗(θ) is continuous and

strictly increasing in θ, there exists θC ∈ (0, 1) such that Θ̂(C) = [θC , 1], with limC→C θ
C → 1.
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Next, let us show that there exists C ∈ (0, C) such that whenever C ∈ (C,C):

(i) V (θ) = 0 for all θ 6∈ Θ̂(C),

(ii) Θ̂(C) ∩ τ(Θ̂(C)) = ∅.

To establish (i), suppose that V (θ) > 0 for some θ 6∈ Θ̂(C). Then consider an alternative

mechanism (q̃(.), t̃(.)) which differs from the original mechanism (q(.), t(.)) only in transfers.

Particularly, t̃(θ) = u(q(θ), θ) for θ 6∈ Θ̂(C) and t̃(θ) = max{u(q(θ), θC)−C, t(θ)} for θ ∈ Θ̂(C).

The mechanism (q̃(.), t̃(.)) is (weakly) more profitable for the seller then (q(.), t(.)). So we

only need to verify that (q̃(.), t̃(.)) satisfies IR and IC constraints. For θ 6∈ Θ̂(C), IR(θ) is

binding by construction. If θ ∈ Θ̂(C) and t̃(θ) = t(θ) then IR(θ) holds in (q̃(.), t̃(.)) because

it holds in (q(.), t(.)). If t̃(θ) = u(q(θ), θC) − C > t(θ), then θ gets a payoff u(q(θ), θ) −

u(q(θ), θC) + C > 0. So all IR constraints hold.

Now consider IC constraints. Fix any pair (θ, θ′) ∈ ([0, 1] \ Θ̂(C))× Θ̂(C). IC(θ, θ′) holds

in the mechanism (q̃(.), t̃(.)) because by reporting her type truthfully type θ gets zero payoff.

At the same time, t̃(θ′) ≥ u(q(θ′), θC) − C, and so type θ’s payoff from imitating θ does not

exceed u(q(θ′), θ)− u(q(θ′), θC) ≤ 0.

Now fix any pair (θ, θ′) ∈ Θ̂(C) × ([0, 1] \ Θ̂(C)). If t̃(θ) = t(θ), then IC(θ, θ′) holds in

(q̃(.), t̃(.)) because it holds in (q(.), t(.)) and t̃(θ′) ≥ t(θ′). Now suppose that t̃(θ) = u(q(θ), θC)−

C > t(θ). Then IC(θ, θ′) holds iff u(q(θ), θ)− u(q(θ), θC) + C ≥ u(q(θ′), θ)− u(q(θ′), θ′)− C.

Note that q(θ′) ≤ qfb(θ′). So,this inequality holds if C ≥ C
2 .

Next, IC(θ, θ′) holds for any pair (θ, θ′) ∈ ([0, 1] \ Θ̂(C) × ([0, 1] \ Θ̂(C)), because q(θ′) ≤

qfb(θ′) and so, by definition of C

u(q(θ′), θ)− t̃(θ′)− C = u(q(θ′), θ)− u(q(θ′), θ′)− C ≤ u(qfb(θ′), θ)− u(qfb(θ′), θ′)− C ≤ 0

Finally, consider a pair (θ, θ′) ∈ Θ̂(C) × Θ̂(C). If t̃(θ) = t(θ), then IC(θ, θ′) holds in

(q̃(.), t̃(.)) because it holds in (q(.), t(.)) and t̃(θ′) ≥ t(θ′).

Now suppose that t̃(θ) = u(q(θ), θC) − C > t(θ). Since t̃(θ′) ≥ u(q(θ′), θC) − C, IC(θ, θ′)

holds if u(q(θ), θ)− u(q(θ), θC) +C ≥ u(q(θ′), θ)− u(q(θ′), θC). This inequality clearly holds if

q(θ) ≥ q(θ′). Now, if q(θ) < q(θ′), let us rewrite the last inequality as follows:

C ≥ u(q(θ′), θ)− u(q(θ), θ)− (u(q(θ′), θC)− u(q(θ), θC)) (79)
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Since q(.) is continuous in θ by Lemma 5 The right-hand side of inequality (79) converges to

zero as C increase to C̄. So the inequality (79) holds strictly when C is sufficiently close to C̄.

This completes the proof of incentive compatibility of the mechanism (q̃(.), t̃(.)), and hence of

statement

Next, let us establish claim (ii): Θ̂(C) ∩ τ(Θ̂(C)) = ∅. The proof is by contradiction, so

suppose there exists θ′ ∈ Θ̂(C) ∩ τ(Θ̂(C)). Then there exists θ ∈ Θ̂(C) such that IC(θ, θ′) is

binding. But as we have shown above, this does hold in the optimal mechanism when C is

close to C. In particular, in this case (79) holds strictly. A contradiction. Q.E.D.

Lemma 26 Let W = maxq,θ uθq(q, θ) × qfb(1). Then θ − τ(θ) ≥ C
W

for all θ. So, τ(θ) = ∅

when C ≥W .

Proof of Lemma 26: Take any θ such that τ(θ) 6= ∅. By definition of τ(.), we have

u(q(τ(θ)), θ)− u(q(τ(θ)), τ(θ)) = C + V (θ)− V (τ(θ))

Using V (θ) =
∫ θ
θ̂ uθ(q(τ(s)), s)ds in the above equation and rearranging yields:∫ θ

τ(θ)
uθ(q(τ(θ)), s)ds−

∫ θ

τ(θ)
uθ(q(τ(s)), s)ds =

∫ θ

τ(θ)

∫ q(τ(θ))

q(τ(s))
uθq(q, s)dqds = C

(80)

Since q(θ) ≤ qfb(1) for all θ and uθq ≤ K, the previous equation implies that

θ − τ(θ) ≥ C

Kqfb(1)
≡ C

W
,

which establishes the claim of the Lemma. Q.E.D.

8 Appendix B

In this Appendix we provide proof to Lemmas 1, 2 , Theorem 6, 7 and 8.

Proof of Lemma 1: First, let us rewrite the problem (1)-(3) as the following equivalent

problem using the net payoff function V (θ) = u(q(θ), θ)− t(θ):

max
q(θ),V (θ)

∫ 1

0
[u(q(θ), θ)− V (θ)]f(θ)dθ (81)
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subject to:

V (θ)− V (θ′) ≥ u(q(θ′), θ)− u(q(θ′), θ′)− C ∀ θ, θ′ ∈ [0, 1] (82)

V (θ) ≥ 0 ∀ θ ∈ [0, 1] (83)

q(θ) ≥ 0 ∀ θ ∈ [0, 1] (84)

By Lemmas 4, 5 and 14, we can without loss of generality restrict q(.) to belong to the space

of continuous functions from [0, 1] to [0, qfb(1)] and V (.) to belong to the space of continuous

functions from [0, 1] to [0, u(qfb(1), 1)]. Let K = max{qfb(θ), u(qfb(1), 1)} and let C([0, 1])[0,K]

be the space of continuous functions from [0, 1] to [0,K].

Endow C([0, 1])[0,K] with weak-∗ topology.2 By Alaoglu Theorem the space C([0, 1])[0,K]

is compact in the weak∗ topology, and by Tychonoff’s Theorem the product C([0, 1])[0,K] ×

C([0, 1])[0,K] is compact in the product topology generated by the weak∗ topology. Further, for

every value of the fixed cost C, the set of functions (q(.), V (.)) ∈ C([0, 1])[0,K] × C([0, 1])[0,K]

that satisfy the constraints (82)-(84) is a closed subset of C([0, 1])[0,K] × C([0, 1])[0,K], and

is therefore compact in the product topology generated by the weak∗ topology. Also, this

set varies continuously with the fixed costs C. Thus, the correspondence {(q(.), V (.)) ∈

C([0, 1])[0,K]×C([0, 1])[0,K] : (q(.), V (.)) satisfy (82)-(84)} specifying the set of admissible quan-

tity and surplus functions for fixed cost C is continuous in C and compact valued.

Let (q(.|C)), V (.|C))) be the solution to problem (81)-(84). By Theorem 2 the solution

exists and is unique. Since the objective function (81) is continuous in q(.), V (.) and C, by

Berge’s Maximum Theorem (q(.|C), V (.|C)) is upper hemicontinuous in C. This implies that

limC↓0(q(θ|C), V (θ|C)) = (q(θ|0), V (θ|0)) ≡ (qsb(θ), V sb(θ)) for all θ ∈ [0, 1].

Further, (qsb(θ), V sb(θ)) = (q(θ|0)), V (θ|0)) is the standard second-best solution to our

problem for C = 0. Note that qsb(θ) is continuous and qsb(0) = 0 < qsb(1) = qfb(1). Therefore,

there exist θ, θ ∈ [0, 1], θ < θ, such that qsb(θ) is strictly increasing and V sb(θ) > 0 on [θ, θ].

Since limC↓0 V (θ|C) = V sb(θ) > 0 for θ ∈ [θ, θ], Lemma 7 implies that there exists Ĉ > 0 such

that τ(θ|C) 6= ∅ for all C ∈ (0, Ĉ) and θ ∈ [θ, θ].

2A sequence xn(θ) converges to x(θ) in the weak∗ topology iff
∫ 1

0
xn(θ)y(θ)dF (θ) →

∫ 1

0
x(θ)y(θ)dF (θ) for all

y ∈ L2(F ).
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Now to show that limC↓0M(C) = ∞, fix any pair (θ, θ′) s.t. θ ∈ (θ, θ] and θ′ < θ, and

consider the corresponding incentive constraint (82). Putting all terms on one side and taking

the limit as C → 0 we get:

lim
C↓0

(
V (θ|C)− V (θ′|C) + C − u(q(θ′|C), θ) + u(q(θ′|C), θ′)

)
=

V sb(θ)− V sb(θ′)− u(qsb(θ′), θ)− u(qsb(θ′), θ′) =

∫ θ

θ′
uθ(q

sb(s), s)ds− u(qsb(θ′), θ) + u(qsb(θ′), θ′) > 0

where the last inequality holds because qsb(.) is increasing, strictly on (θ, θ). So, for any

θ ∈ (θ, θ] and θ′ < θ we have τ(θ|C) > θ′ when C is sufficiently small. Hence, limC↓0 τ(θ|C) = θ

for θ ∈ [θ, θ].

Finally, fix some integer M > 0 and let εM = θ−θ
M . Since limC↓0 τ(θ|C) = θ for θ ∈ [θ, θ],

there exists CM > 0 such that τk−1(θ|C) − τk(θ|C) ≤ εM for any k = 1, ...,M and hence

τM (θ|C) ≥ θ for all C ∈ (0, CM ]. By Corollary 3, τM (1|C) > τM (θ|C) ≥ θ for C ∈ (0, CM ].

Since M was chosen arbitrarily, it follows that τM (1|C) 6= ∅ for any M < ∞ when C is

sufficiently small i.e., limC↓0M(C) =∞.

Q.E.D.

Proof of Lemma 2: The proof is by contradiction. So suppose that there exists θ and

θ1, θ2 ∈ τ(θ) such that θ1 < θ2. By Lemma 22, q(θ′) = qfb(θ′) for all θ′ ∈ [θ1, θ2], while by

strict quasi-concavity of (G + V ), G(θ, θ′) + V (θ′) > min{G(θ, θ1) + V (θ1), G(θ, θ2) + V (θ1)}

for all θ′ ∈ (θ1, θ2). So, u(qfb(θ′), θ) − t(θ′) > min{u(qfb(θ1), θ) − t(θ1), u(qfb(θ2), θ) − t(θ2)},

contradicting that θ1, θ2 ∈ τ(θ). Q.E.D.

Proof of Theorem 6:

Let (q(θ), t(θ)) be an optimal mechanism, which exists and is unique by Theorem 2. Con-

sider the triple (τ(θ), Q(θ), θ̂) where τ(θ) is defined by (4), θ̂ = max{θ : V (θ) = 0} and

Q(θ) = q(τ(θ)) for θ ∈ [θ̂, 1]. Let us show that the triple (τ(θ), Q(θ), θ̂) is an increasing

solution to the relaxed program.

Since the optimal mechanism is unique, τ(θ) must be strictly increasing by Theorem 4,

and q(θ) must be strictly increasing by Theorem 3, and so Q(θ) = q(τ(θ)) is also strictly

increasing. Since Ci ∈ (C,C), Theorem 5 implies that τ(θ) < θ̂ for all θ ∈ [θ̂, 1], and so
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Q̇(θ) = uθ(Q(θ),τ(θ))
uq(Q(θ),θ)−uq(Q(θ),τ(θ)) τ̇(θ) for all θ ∈ [θ̂, 1], which is equivalent to (12).

Consider any θ ∈ [θ̂, 1]. Then τ(θ) is single-valued by Assumption 2. Also, τ−1(θ) = ∅ by

Theorem 5, and so [τ(θ̂), τ(1)] ∪ [θ̂, 1] = ∅. Therefore, Lemma 24 with M = 1 implies that for

all θ ∈ [θ̂, 1], uq(q(τ(θ)), τ(θ))f(τ(θ))τ̇(θ) = [uq(q(τ(θ)), θ) − uq(q(τ(θ)), τ(θ))]f(θ), which is

equivalent to equation (39). In combination with Q̇(θ) = uθ(Q(θ),τ(θ))
uq(Q(θ),θ)−uq(Q(θ),τ(θ)) τ̇(θ) this yields

(40).

Boundary conditions (20) and (21) hold because by Theorem 4, q(θ) = qfb(θ) for θ ∈

[0, τ(θ̂)] ∪ [τ(1), 1]. Boundary condition (22) holds because by Theorem 4 V (θ) = 0 for

θ ∈ [0, θ̂] and τ(θ̂) < θ̂, and therefore V (θ̂) = u(q(τ(θ̂)), θ̂) − t(τ(θ̂)) − C = u(q(τ(θ̂)), θ̂) −

u(q(τ(θ̂)), τ(θ̂))− C = 0.

Finally, let us show that τ(θ̂) must be the smallest solution to (22). Conditions (21) and

(22) imply G(θ̂, τ(θ̂)) ≡ u(qfb(τ(θ̂)), θ̂)) − u(qfb(τ(θ̂)), τ(θ̂)) = C. By Assumption 2 there are

at most two solutions to this equation. If we set τ(θ̂) to be equal to the larger solution, then

G2(θ̂, τ(θ̂)) < 0. Therefore, there exists θ′ < τ(θ̂), s.t. if we set q(θ′) = qfb(θ′) and V (θ′) = 0

it follows that u(q(θ′), θ̂) − t(θ′) = G(θ̂, θ′) − C > G(θ̂, τ(θ̂)) − C = 0, violating IC(θ̂, θ′).

Therefore, τ(θ̂) must be the smaller solution of (22).

To summarize the above, we have shown that the optimal mechanism induces a triple

(τ(θ), Q(θ), θ̂) which constitutes an increasing solution to the relaxed program. Thus, to com-

plete the proof it is sufficient to show that an increasing solution to the relaxed program is

unique. We establish this below via a sequence of Claims.

First, fix some θ̂i and Cj where i, j ∈ {1, 2} and let Let Γ(θ̂i, Cj) = {θ′ : G(θ̂i, θ
′) ≡

u(qfb(θ′), θ̂) − u(qfb(θ′), θ′) = Cj} i.e., Γ(θ̂i, Cj) is the set of types satisfying the boundary

condition (22). Suppose that Γ(θ̂i, Cj) 6= ∅ for i, j ∈ {1, 2}. Note that Γ(θ̂i, Cj) contains at

most two elements because G(θ̂i, θ
′) ≡ u(qfb(θ′), θ̂) − u(qfb(θ′), θ′) is strictly quasi-concave in

θ′ by Assumption 2,

Claim 1: If θ̂1 > θ̂2 and C1 < C2, then minΓ(θ̂1, Cj) < minΓ(θ̂2, Cj) and minΓ(θ̂i, C1) <

minΓ(θ̂i, C2).

Proof of Claim 1:

SinceG(.) is strictly quasi-concave andG(θ̂i,minΓi) > G(θ̂i, 0) = 0, it follows thatG2(θ̂i,minΓi) ≥
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0. On the other hand, we have G1(θ̂i,minΓi) = uθ(q
fb(minΓi), θ̂i) > 0. The last two inequali-

ties together imply Claim 1. �

Claim 2: Suppose that there exist (θ̂1, τ̂1) and (θ̂2, τ̂2) such that for i = 1, 2, (Qi(θ)), τi(θ))

is an increasing solution to the system of differential equations (39) and (40) on [θ̂i, 1] that

satisfies boundary conditions τi(θ̂i) = τ̂i, Qi(θ̂i) = qfb(τ̂i) and Qi(1) = qfb(τi(1)). Let qi(θ) =

Qi(τ
−1
i (θ)) for θ ∈ [τ̂i, τi(1)].

Then the following “no-crossing” property holds:

If there exists θ† ∈ [max{τ̂1, τ̂2},min{τ1(1), τ2(1)}] such that q2(θ†) < q1(θ†), then q2(θ) <

q1(θ) for all θ ∈ [max{τ̂1, τ̂2},min{τ1(1), τ2(1)}].

Proof of Claim 2:

The proof is by contradiction, so suppose that there exists θ′ ∈ [max{τ̂1, τ̂2},min{τ1(1), τ2(1)}]

such that q2(θ′) = q1(θ′) ≡ q′ and q̇2(θ′) 6= q̇1(θ′). Without loss of generality we can assume

q̇2(θ′) > q̇1(θ′). Differential equations (39) and (40) and q̇i = Q̇i
τ̇i

imply uθ(q′,θ′)

uq(q′,τ
−1
2 (θ′))−uq(q′,θ′)

>

uθ(q′,θ′)

uq(q′,τ
−1
1 (θ′))−uq(q′,θ′)

. Since uθq > 0, τ−1
1 (θ′) > τ−1

2 (θ′). Let θ̃′ = τ−1
1 (θ′).

Next we consider the following two cases:

Case 1: q2(θ) > q1(θ) for θ ∈ (θ′,min{τ1(1), τ2(1)}].

First note that (40) i.e., Q̇i(θ) = f(θ)uθ(Qi,τ)
f(τ)uq(Qi,τ) and Q̇i(θ) > 0 in combination imply that qi(θ) ≤

qfb(θ) for all θ ∈ (τ̂i, τi(1)). It follows that τ1(1) > τ2(1), for otherwise q2(τ1(1)) > q1(τ1(1)) =

qfb(τ1(1)), where the inequality hold by case assumption, and the equality holds by boundary

condition (20), violating q2(.) ≤ qfb(.).

While τ1(1) > τ2(1), we also have τ1(θ̃′) = θ′ < τ2(θ̃′) since θ̃′ = τ−1
1 (θ′) > τ−1

2 (θ′).

Therefore there exists θ̃′′ ∈ (θ̃′, 1) such that τ1(θ̃′′) = τ2(θ̃′′) ≡ θ′′ and τ̇1(θ̃′′) > τ̇2(θ̃′′). By

(39) the latter is equivalent to
f(θ̃′′)(uq(Q1(θ̃′′),θ̃′′)−uq(Q1(θ̃′′),θ′′))

f(τ1(θ′′))uq(Q1(θ̃′′),θ′′)
>

f(θ̃′′)(uq(Q2(θ̃′′),θ̃′′)−uq(Q2(θ̃′′),θ′′))

f(τ2(θ′′))uq(Q2(θ̃′′),θ′′)
.

Then from uqq < 0 and uθqq ≥ 0 it follows that Q1(θ̃′′) > Q2(θ̃′′), or equivalently q1(θ′′) >

q2(θ′′). However, this contradicts the case assumption since θ′′ ∈ (θ′, τ2(1)).

Case 2: There exists θ′′ ∈ (θ′,min{τ1(1), τ2(1)}] such that q2(θ) > q1(θ) for θ ∈ (θ′, θ′′),

q2(θ′′) = q1(θ′′) ≡ q′′ and q̇2(θ′′) < q̇1(θ′′).

Given q̇2(θ′′) < q̇1(θ′′), a similar argument to that in Case 1 yields that τ−1
1 (θ′′) < τ−1

2 (θ′′), and

τ2(τ−1
1 (θ′′)) < τ2(τ−1

2 (θ′′)) = θ′′ = τ1(τ−1
1 (θ′′)). Let θ̃′′ = τ−1

1 (θ′′). Note that θ̃′′ > θ̃′ as θ′′ > θ′.
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Since τ1(θ̃′) < τ2(θ̃′) and τ2(θ̃′′) < τ1(θ̃′′), there exists θ̃′′′ ∈ [θ̃′, θ̃′′] such that τ1(θ̃′′′) = τ2(θ̃′′′) ≡

θ′′′ and τ̇1(θ̃′′′) > τ̇2(θ̃′′′). A similar argument to the in Case 1 yields Q1(θ̃′′′) > Q2(θ̃′′′), or

equivalently q1(θ′′′) > q2(θ′′′). But by the case assumption q1(θ′′′) < q2(θ′′′). Contradiction.

Claim 3: If there exists θ̃′ ∈ [max{θ̂1, θ̂2}, 1] such that τ2(θ̃′) < τ1(θ̃′), then τ2(θ) < τ1(θ)

for all θ ∈ [max{θ̂1, θ̂2}, 1].

Proof of Claim 3:

The proof is by contradiction, so suppose the Claim is not true. Then there exists a “crossing

point” θ̃′ ∈ [max{θ̂1, θ̂2}, 1] such that τ2(θ̃′) = τ1(θ̃′) ≡ θ′ and τ̇1(θ̃′) 6= τ̇2(θ̃′). Without loss of

generality we can assume τ̇1(θ̃′) > τ̇2(θ̃′). Then from the differential equation (39) it follows

that Q1(θ̃′) > Q2(θ̃′), or equivalently q1(θ′) > q2(θ′).

Note that θ̃′ < 1 for otherwise we would have θ′ = τ1(1) = τ2(1) and qfb(θ′) = q1(θ′) =

q2(θ′) which contradicts q1(θ′) > q2(θ′).

Now consider the following two cases:

Case 1: τ1(θ) > τ2(θ) for θ ∈ (θ̃′, 1].

Since τ1(1) > τ2(1), we have q1(τ2(1)) ≤ qfb(τ2(1)) = q2(τ2(1)), which combined with q1(θ′) >

q2(θ′) violates Claim 2, the no-crossing property of q.

Case 2: There exists θ̃′′ ∈ (θ̃′, 1] such that τ1(θ) > τ2(θ) for θ ∈ (θ̃′, θ̃′′), τ1(θ̃′′) = τ2(θ̃′′) ≡ θ′′

and τ̇1(θ̃′′) < τ̇2(θ̃′′).

Using τ̇1(θ̃′′) < τ̇2(θ̃′′) and τ1(θ̃′′) = τ2(θ̃′′) in differential equation (39) yields Q1(θ̃′′) < Q2(θ̃′′),

or equivalently q1(θ′′) < q2(θ′′), which combined with q1(θ′) > q2(θ′) violates Claim 2, the

no-crossing property of q.

Claim 4: Suppose there exist (θ̂1, τ̂1) 6= (θ̂2, τ̂2) such that for i = 1, 2, (Qi(.), τi(.)) is an in-

creasing solution to differential equations (39)-(40) with boundary conditions (21)- (22). Then

θ̂2 > θ̂1 if and only if τ̂2 > τ̂1.

Proof of Claim 4:

Suppose not, then without loss of generality we have θ̂2 ≥ θ̂1 and τ̂1 ≥ τ̂2 with at least one strict

inequality. Then τ1(θ̂2) ≥ τ1(θ̂1) and τ1(θ̂1) ≥ τ2(θ̂2) with at least one strict inequality, from

which it immediately follows that τ1(θ̂2) > τ2(θ̂2), and so q1(τ1(θ̂1)) = qfb(τ1(θ̂1)) ≥ q2(τ1(θ̂1)).
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By Claim 3 (the “no-crossing” property of τ), τ1(1) > τ2(1), and therefore q2(τ2(1)) =

qfb(τ2(1)) > q1(τ2(1)). The last inequality in combination with q1(τ1(θ̂1)) ≥ q2(τ1(θ̂1)) contra-

dict the no-crossing property of q in Claim 2.

Uniqueness. Now we can establish the uniqueness of the solution to the relaxed program

with the help of Claims 1-4. Again the proof is by contradiction, so suppose the solution is

not unique. Then there exist θ̂1 and θ̂2, θ̂1 6= θ̂2 s.t. (Q1(θ), τ1(θ)) and (Q2(θ), τ2(θ))) solve the

system of differential equations (39) and (40) with corresponding boundary conditions (20)-

(22) where τ̂i ≡ τi(θ̂i) = min Γi. Without loss of generality suppose that θ̂1 > θ̂2. Claim 4

implies that τ̂1 > τ̂2. However, this contradicts Claim 1. Q.E.D.

Proof of Theorem 7:

Part (1) and (2):

Claim 3 in Proof of Theorem 6 implies that θ̂2 ≤ θ̂1 if and only if τ2(θ̂2) ≤ τ1(θ̂1), but that

contradicts to Claim 1 in Proof of Theorem 6 given C2 > C1. Therefore, it must be the case

that both θ̂2 > θ̂1 and τ2(θ̂2) > τ1(θ̂1).

Part (3) and (4):

Part (2) and boundary condition (21) implies q2(τ2(θ̂2)) = qfb(τ2(θ̂2)) > q1(τ2(θ̂2)), therefore

part (4) follows from the no-crossing property of q from Claim 2 in Proof of Theorem 6. Now

since q1(τ2(1)) < q2(τ2(1)) = qfb(τ2(1)), it must be the case that τ1(1) > τ2(1), and part (3)

follows from the no-crossing property of τ from Claim 2 in Proof of Theorem 6.

Q.E.D.

Proof of Theorem 8: By Pontryagin’s Maximum principle the solution has to satisfy the

following adjoint equations:

For k = 1,

−λ̇Q1 = uq(Q
1, τ1)f(τ1)α1 − [1− F (θ)]uθq(Q

1, θ) + λQ1

∂h1

∂Q1
α1 (85)
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For k > 1,

−λ̇Qk = uq(Q
k, τk)f(τk)αk − [1− F (τk−1)]uθq(Q

k, τk−1)αk−1 + λQk
∂hk

∂Qk
αk + λQk−1

∂hk−1

∂Qk
αk−1

(86)

For k = M(θ),

−λ̇τk = uθ(Q
k, τk)f(τk)αk + u(Qk, τk)f ′(τk)αk + λQk

∂hk

∂τk
αk (87)

For k < M(θ),

−λ̇τk =uθ(Q
k, τk)f(τk)αk + u(Qk, τk)f ′(τk)αk + λQk

∂hk

∂τk
αk

− [1− F (τk)]uθθ(Q
k+1, τk) + λQk+1

∂hk+1

∂τk
αk+1 (88)

The linearity of the Hamiltonian (23) in the control variable αk creates certain technical

difficulties, as it implies that αk cannot be solved for directly from the standard first-order

conditions of optimality. However, Pontryagin’s Maximum principle still applies and requires

that the optimal control αk maximizes the Hamiltonian (63).

Particularly, let us introduce the following switching function :

Jk(Qk, τk, Qk+1, λQk , λτk , h
k) =


u(Qk, τk)f(τk) + λQkh

k + λτk − (1− F (τk))uθ(Q
k+1, τk) if k < M(θ)

u(Qk, τk)f(τk) + λQkh
k + λτk if k = M(θ)

(89)

Note that Jk can never be strictly positive, since then the optimal value of αk is infinity and,

correspondingly, the value of the objective would be infinite. Optimality requires the following

“switching conditions” to hold:

Jk(Qk, τk, Qk+1, λQk , λτk , h
k) < 0⇒ αk = 0

Jk(Qk, τk, Qk+1, λQk , λτk , h
k) = 0⇒ αk ≥ 0

An interval of θ on which Jk vanishes (Jk = 0) is called a singular arc. On a singular arc, the

optimality conditions do not pin down the value of the optimal control αk. As a consequence,

such problems of singular control are notoriously difficult to solve. Only a few solutions have
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been developed up to now, most notably Merton (1969)’s celebrated portfolio choice problem

in finance, and trajectory optimization in aeronautics (see e.g. Bryson and Ho (1975) Ch. 8).

An interval of θ on which J < 0 is called a nonsingular arc. As pointed above, αk(θ) = 0 for

all θ on a non-singular arc. Pontryagin’s Maximum principle yields the remaining optimality

conditions along such an arc.

The approach we follow here is to recover the optimal control αk along a singular arc by

differentiating the identity Jk = 0 with respect to θ until the control variable appears in a

non-trivial way, and then solve for it.

Now, consider a singular arc where we have Jk = 0. Differentiating the switching function

Jk on a singular arc we get:

For k = M(θ),

dJk

dθ
=λ̇Qkh

k + λQk [
∂hk

∂τk−1
τ̇k−1 +

∂hk

∂Qk
Q̇k +

∂hk

∂τk
τ̇k] + λ̇τk

+ [uq(Q
k, τk)f(τk)Q̇k + uθ(Q

k, τk)f(τk)τ̇k + u(Qk, τk)f ′(τk)τ̇k] = 0 (90)

For k < M(θ),

dJk

dθ
=λ̇Qkh

k + λQk [
∂hk

∂τk−1
τ̇k−1 +

∂hk

∂Qk
Q̇k +

∂hk

∂τk
τ̇k +

∂hk

∂Qk+1
Q̇k+1] + λ̇τk

+ [uq(Q
k, τk)f(τk)Q̇k + uθ(Q

k, τk)f(τk)τ̇k + u(Qk, τk)f ′(τk)τ̇k]

− [1− F (τk)][uθq(Q
k+1, τk)Q̇k+1 + uθθ(Q

k+1, τk)τ̇k]

+ f(τk)uθq(Q
k+1, τk)τ̇k = 0 (91)

Given (88), (91) and αk = τ̇k, for k < M(θ):

λ̇Qkh
k + λQk [

∂hk

∂τk−1
τ̇k−1 +

∂hk

∂Qk
Q̇k +

∂hk

∂Qk+1
Q̇k+1]− λQk+1

∂hk+1

∂τk
αk+1

− [1− F (τk)]uθq(Q
k+1, τk) + Q̇k+1uq(Q

k, τk)f(τk)Q̇k = 0 (92)

Given (86), (92) and Q̇k = hkτ̇k, for k = 2, ...,M(θ)− 1:

λQK [
∂hk

∂Qk+1
Q̇k+1 +

∂hk

∂τk−1
τ̇k−1] =λQk−1hk

∂hk−1

∂Qk
τ̇k−1 + λQk+1

∂hk+1

∂τk
τ̇k+1

− hk[1− F (τk−1)]uθq(Q
k, τk−1)τ̇k−1 + [1− F (τk)]uθq(Q

k+1, τk)Q̇k+1

(93)
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Analogously, for k = 1:

λQ1

∂h1

∂θ
= λQ2

∂h2

∂τ1
τ̇2 − h1[1− F (θ)]uθq(Q

1, θ) + [1− F (τ1)]uθq(Q
2, τ1)Q̇2 (94)

and for k = M(θ):

λQK
∂hk

∂τk−1
τ̇k−1 = λQk−1hk

∂hk−1

∂Qk
τ̇k−1 − hk[1− F (τk−1)]uθq(Q

k, τk−1)τ̇k−1 (95)

Given ∂hk

∂τk−1 = −hk uθq(Q
k,τk−1)

uq(Qk,τk−1)−uq(Qk,τk)
and ∂hk−1

∂Qk
=

−uθq(Qk,τk−1)

uq(Qk−1,τk−2)−uq(Qk−1,τk−1)
, rewrite

(95) so that for k = M(θ):

λQK = λQk−1

uq(Q
k, τk−1)− uq(Qk, τk)

uq(Qk−1, τk−2)− uq(Qk−1, τk−1)
+ [1− F (τk−1)][uq(Q

k, τk−1)− uq(Qk, τk)]

(96)

For k = M(θ)−1, (96) implies λQk+1 = λQk
uq(Qk+1,τk)−uq(Qk+1,τk+1)
uq(Qk,τk−1)−uq(Qk,τk)

+[1−F (τk)][uq(Q
k+1, τk)−

uq(Q
k+1, τk+1)], combined with (93):

λQK [
∂hk

∂Qk+1
Q̇k+1 +

∂hk

∂τk−1
τ̇k−1]

=λQk−1hk
∂hk−1

∂Qk
τ̇k−1

+ (λQk
uq(Q

k+1, τk)− uq(Qk+1, τk+1)

uq(Qk, τk−1)− uq(Qk, τk)
+ [1− F (τk)][uq(Q

k+1, τk)− uq(Qk+1, τk+1)])
∂hk+1

∂τk
τ̇k+1

− hk[1− F (τk−1)]uθq(Q
k, τk−1)τ̇k−1 + [1− F (τk)]uθq(Q

k+1, τk)Q̇k+1 (97)

Given ∂hk

∂τk−1 = −hk uθq(Q
k,τk−1)

uq(Qk,τk−1)−uq(Qk,τk)
, ∂hk

∂Qk+1 =
−uθq(Qk+1,τk)

uq(Qk,τk−1)−uq(Qk,τk)
and hk = uθ(Qk(θ),τk(θ))−uθ(Qk+1(θ),τk(θ))

uq(Qk(θ),τk−1(θ))−uq(Qk(θ),τk(θ))
,

rewrite (97) so that for k = M(θ)− 1:

λQK = λQk−1

uq(Q
k, τk−1)− uq(Qk, τk)

uq(Qk−1, τk−2)− uq(Qk−1, τk−1)
+ [1− F (τk−1)][uq(Q

k, τk−1)− uq(Qk, τk)]

(98)

Condition (98) applies to any k = 2, ...,M(θ) recursively.
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Given ∂h1

∂Q2 =
−uθq(Q2,τ1)

uq(Q1,θ)−uq(Q1,τ1)
, ∂h

1

∂θ = −h1 uθq(Q
1,θ)

uq(Q1,θ)−uq(Q1,τ1)
and ∂h2

∂τ1
= −h2 uθq(Q

2,τ1)

uq(Q2,τ1)−uq(Q2,τ2)
,

Rewrite (94):

− λQ1h1[
uθq(Q

2, τ1)

uθ(Q1, τ1)− uθq(Q2, τ1)
Q̇2 +

uθq(Q
1, θ)

uq(Q1, θ)− uq(Q1, τ1)
]

=λQ2

uθq(Q
2, τ1)

uq(Q2, τ1)− uq(Q2, τ2)
h2τ̇2

− h1[1− f(θ)]uθq(Q
1, θ) + [1− F (τ1)]uθq(Q

2, τ1)Q̇2 (99)

Combining (99) with (98) for k = 2 and rearrange:

λQ1 = [1− F (θ)][uq(Q
1, θ)− uq(Q1, τ1)] (100)

From (98) and (100), for any k = 1, ...,M(θ):

λQK = [uq(Q
k, τk−1)− uq(Qk, τk)]

k∑
s=1

[1− F (τk−s)] (101)

Differentiating (101):

λ̇QK =− [uq(Q
k, τk−1)− uq(Qk, τk)]

k∑
s=1

f(τk−s)τ̇k−s

+ [uqq(Q
k, τk−1)Q̇k −Qk, τk)Q̇k + uθq(Q

k, τk−1)τ̇k−1 − uθq(Qk, τk)τ̇k]
k∑
s=1

[1− F (τk−s)]

(102)
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From (86) and (101), for k > 1:

λ̇Qk =− uq(Qk, τk)f(τk)τ̇k + [1− F (τk−1)]uθq(Q
k, τk−1)τ̇k−1

− ([uq(Q
k, τk−1)− uq(Qk, τk)]

k∑
s=1

[1− F (τk−s)])
∂hk

∂Qk
τ̇k

− ([uq(Q
k−1, τk−2)− uq(Qk−1, τk−1)]

k−1∑
s=1

[1− F (τk−1−s)])
∂hk−1

∂Qk
τ̇k−1

=− uq(Qk, τk)f(τk)τ̇k + [1− F (τk−1)]uθq(Q
k, τk−1)τ̇k−1

+ [uqq(Q
k, τk−1)hkτ̇k − uqq(Qk, τk)hkτ̇k − uθq(Qk, τk)τ̇k]

k∑
s=1

[1− F (τk−s)]

+ uθq(Q
k, τk−1)τ̇k−1

k−1∑
s=1

[1− F (τk−1−s)]

=− uq(Qk, τk)f(τk)τ̇k+

+ [uqq(Q
k, τk−1)hkτ̇k − uqq(Qk, τk)hkτ̇k + uθq(Q

k, τk−1)τ̇k−1 − uθq(Qk, τk)τ̇k]
k∑
s=1

[1− F (τk−s)]

(103)

From (102) and (103), for k > 1:

uq(Q
k, τk)f(τk)τ̇k = [uq(Q

k, τk−1)− uq(Qk, τk)]
k∑
s=1

f(τk−s)τ̇k−s (104)

From (85) and (100), for k = 1:

λ̇Q1 =− uq(Q1, τ1)f(τ1)τ̇1 − [1− F (θ)]uθq(Q
1, θ) + [1− F (θ)][uq(Q

1, θ)− uq(Q1, τ1)]
∂h1

∂Q1
τ̇1

=− uq(Q1, τ1)f(τ1)τ̇1 − [1− F (θ)][uqq(Q
1, θ)h1τ̇1 − uqq(Q1, τ1)h1τ̇1 + uθq(Q

1, θ)− uθq(Q1, τ1)τ̇1]

(105)

From (102) and (105),

uq(Q
1, τ1)f(τ1)τ̇1 = [uq(Q

1, θ)− uq(Q1, τ1)]f(θ) (106)

which means (104) applies to all k = 1, ...,M(θ).
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Now Let A(k) = f(θ) +
∑k

s=1 f(τ s)τ̇ s. Then from (104) we have:

τ̇k =
uq(Q

k, τk−1)− uq(Qk, τk)
f(τk)uq(Qk, τk)

A(k − 1) (107)

and

A(k) =A(k − 1) + f(τk)τ̇k

=A(k − 1)
uq(Q

k, τk−1)

uq(Qk, τk)

=f(θ)

k∏
s=1

uq(Q
s, τ s−1)

uq(Qs, τ s)
(108)

recursively. From (107) and (108),

τ̇k =
f(θ)[uq(Q

k, τk−1)− uq(Qk, τk)]
f(τk)uq(Qk, τk)

k−1∏
s=1

uq(Q
s, τ s−1)

uq(Qs, τ s)
(109)

and since Q̇k = hkτ̇k,

Q̇k =


f(θ)[uθ(Qk,τk)−uθ(Qk+1,τk)]

f(τk)uq(Qk,τk)

∏k−1
s=1

uq(Qs,τs−1)
uq(Qs,τs)

if k < M(θ)

f(θ)uθ(Qk,τk)
f(τk)uq(Qk,τk)

∏k−1
s=1

uq(Qs,τs−1)
uq(Qs,τs)

if k = M(θ)

(110)

Q.E.D

9 Appendix C

This Appendix presents derivation of the solution of ordinary differential equation system

(41)-(45).

First, let us make a change of variables:

y = τ −Q, z = τ +Q (111)

Then the system (41)-(42) is equivalent to the following system:

ẏy = θ − z (112)

ż =
θ

y
− 1 (113)
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Differentiating (112) yields:

ÿy + (ẏ)2 = 1− ż = 2− θ

y
(114)

Let us make another change of variables: w = y2

4 . Then (114) becomes:

ẅ = 1− x

4
√
w

(115)

The general solution to the differential equation (115) is parametric. Specifically, let b1, b2 and

b3 be some constants and t ∈ [0,∞) be a parameter. Then:

θ(t) = b1t+ b2t
√
5−1
2 + b3t

−
√
5+1
2 (116)

y2(t)

4
≡ w(t) =

(
1

2
b1t+

√
5− 1

4
b2t
√
5−1
2 −

√
5 + 1

4
b3t
−
√
5+1
2

)2

(117)

Note that we must have 0 ≤ y < θ, since y = τ −Q, τ < θ, and the optimal quantity Q cannot

be greater than its first-best level, which in this case is equal to τ . So,

y(t) =

∣∣∣∣∣b1t+

√
5− 1

2
b2t
√
5−1
2 −

√
5 + 1

2
b3t
−
√
5+1
2

∣∣∣∣∣ (118)

We can without loss of generality take that θ(1) = 1. Indeed, if θ(t1) = 1 for some

t1 ∈ (0,∞), t1 6= 1, then we can replace the parameter t with the parameter s = t
t1

, and

replace the constants b1, b2, b3 with constants b′1, b
′
2, b
′
3 such that b′1 = b1t1, b′2 = b2t

√
5−1
2

1 and

b′3 = b3t
−
√
5+1
2

1 . Then we would have θ(s) = θ(t) and y(s) = y(t) for all t ∈ [0,∞), with

θ(s)s=1 = 1.

Using θ(1) = 1 in (116) yields b1 + b2 + b3 = 1. Also, θ(1) = 1 and the boundary condition

τ(1) = Q(1) imply that y(1) = 0. In turn, the latter implies that b1 +
√

5−1
2 b2 −

√
5+1
2 b3 = 0.

Now, we can solve for b2 and b3 in terms of b1 to obtain:

b2 = −b1
5 + 3

√
5

10
+

√
5 + 1

2
√

5
.

b3 = b1
3
√

5− 5

10
+

√
5− 1

2
√

5
.
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Then (116) and (118) become:

θ(t) = b1

t− 1 + 3
√

1
5

2
t
√
5−1
2 +

3
√

1
5 − 1

2
t−
√
5+1
2

+

√
5 + 1

2
√

5
t
√
5−1
2 +

√
5− 1

2
√

5
t−
√
5+1
2 (119)

y(t) =

∣∣∣∣∣∣b1
t− 1 +

√
1
5

2
t
√

5−1
2 −

1−
√

1
5

2
t−
√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−
√
5+1
2

∣∣∣∣∣∣ (120)

At first, let us suppose that the expression under the absolute value sign on the right-hand

side of (120) is positive i.e:3

y(t) = b1

t− 1 +
√

1
5

2
t
√

5−1
2 −

1−
√

1
5

2
t−
√

5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−
√
5+1
2 (121)

Next, we solve the differential equation (113) for z, which we will also parameterize by t.

So, we have z′(t) ≡ dz
dt = z′(θ)θ′(t). By (119) and (121), y(t) = θ′(t)t. Then (113) can be

rewritten as:

z′(t) =

(
θ

y
− 1

)
θ′(t) =

θ

θ′(t)t
θ′(t)− θ′(t) =

θ

t
− θ′(t). (122)

Substituting (119) for θ(t) we obtain:

z′(t) = b1

(
− 1√

5
t
√
5−3
2 +

1√
5
t−
√
5+3
2

)
+

√
5− 1

2
√

5
t
√
5−3
2 +

√
5 + 1

2
√

5
t−
√
5+3
2 (123)

Integrating (123) yields:

z(t) = b1

−1 +
√

1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−
√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−
√
5+1
2 + k (124)

where k is a constant of integration. Now, let us show that equation (112), ˙y(θ)y = θ − z,

implies that the constant of integration k is equal to zero. Note that y′(t) = ˙y(θ)θ′(t). So we

can rewrite (112) as y′(t)y = (θ − z)θ′(t). Since y = θ′(t)(t), the previous equation can be

rewritten as follows: y′(t)t = (θ − z)

Next, from (121) we obtain:

y′(t)t = b1

(
t− 1√

5
t
√
5−1
2 +

1√
5
t−
√
5+1
2

)
+

1−
√

1
5

2
t
√
5−1
2 +

1 +
√

1
5

2
t−
√
5+1
2 (125)

3Later we will show that this is, indeed, the case since the opposite case when this expression is negative

leads to a contradiction.
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Also, (119) and (129) yield:

θ(t)− z(t) = b1

(
t− 1√

5
t
√
5−1
2 +

1√
5
t−
√
5+1
2

)
+

√
5− 1

2
√

5
t
√
5−1
2 +

√
5 + 1

2
√

5
t−
√
5+1
2 − k (126)

Equating (125) and (126) yields k = 0.

Furthermore, observe that z(t) − y(t) = −b1t. Since z(t) − y(t) = 2Q(t), it follows that

Q(t) = − b1
2 t and so b1 < 0.

Now, let us confirm that, as claimed, the expression under the absolute value sign on the

right-hand side of (120) is positive. The proof is by contradiction, so suppose otherwise i.e.,

y(t) = −b1

t− 1 +
√

1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−
√
5+1
2

− 1√
5
t
√
5−1
2 +

1√
5
t−
√
5+1
2 (127)

Then (119) and (127) yield y(t) = −θ′(t)t and so, instead of (122), we now have:

z′(t) =

(
θ

y
− 1

)
θ′(t) =

θ

−θ′(t)t
θ′(t)− θ′(t) = −θ

t
− θ′(t) =

θ

t
− θ′(t)− 2

θ

t
. (128)

Substituting (119) for θ(t) in (128) and integrating yields:

z(t) = b1

−1 +
√

1
5

2
t
√

5−1
2 −

1−
√

1
5

2
t−
√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−
√
5+1
2

− 2b1

t− 1 + 3
√

1
5√

5− 1
t
√
5−1
2 −

3
√

1
5 − 1

√
5 + 1

t−
√
5+1
2

+

√
5 + 1√

5(
√

5− 1)
t
√
5−1
2 −

√
5− 1√

5(
√

5− 1)
t−
√
5+1
2 + k2

(129)

where k2 is a constant of integration.

Since in this case y = −θ′(t)t, the equation y′(t)y = (θ − z)θ′(t) (i.e., equation (112)

parameterized by t) can be rewritten as −y′(t)t = (θ−z). Differentiating (127) and combining

the results with (119) and (129) the latter equation can be rewritten as:

−2b1

t− 1 + 3
√

1
5√

5− 1
t
√

5−1
2 −

3
√

1
5 − 1

√
5 + 1

t−
√
5+1
2

+

√
5 + 1√

5(
√

5− 1)
t
√
5−1
2 −

√
5− 1√

5(
√

5− 1)
t−
√
5+1
2 + k2 = 0

which cannot hold on any neighborhood of t.

Thus, we have confirmed that y(t) is given by (121), and hence y(t) = θ′(t)t. Since y(t) ≥ 0,

it follows that θ′(t) > 0.
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So, to complete the solution, it remains to characterize b1 and t̂ such that t̂ < 1 and y(t̂) = 0

and y(t) ≥ 0 for all t ∈ [t̂, 1]. We will then have θ̂ = θ(t̂) < 1. For this, we need to compute

y′(t) and y′′(t). We have:

y′(t) = b1 +
(
√

5− 1)− 2b1

2
√

5
t̂
√
5−3
2 +

(
√

5 + 1) + 2b1

2
√

5
t̂−
√
5+3
2 (130)

y′′(t) = −3−
√

5

2

(
√

5− 1)− 2b1

2
√

5
t̂
√
5−5
2 −

√
5 + 3

2

(
√

5 + 1) + 2b1

2
√

5
t̂−
√
5+5
2 (131)

Using (121) and (125) we obtain:

y(t)− ty′(t) = b1

t− 1 +
√

1
5

2
t
√
5−1
2 −

1−
√

1
5

2
t−
√
5+1
2

+
1√
5
t
√
5−1
2 − 1√

5
t−
√
5+1
2

− b1
(
t− 1√

5
t
√
5−1
2 +

1√
5
t−
√
5+1
2

)
−

1−
√

1
5

2
t
√
5−1
2 −

1 +
√

1
5

2
t−
√
5+1
2 =

b1

(
−
√

5− 1

2
√

5
t
√
5−1
2 −

√
5 + 1

2
√

5
t−
√
5+1
2

)
+

3−
√

5

2
√

5
t
√
5−1
2 − 3 +

√
5

2
√

5
t−
√
5+1
2 (132)

As established above, b1 < 0. In fact, let us show that b1 ∈ [−
√

5+1
2 ,−1).

First, let us rule out b1 < −
√

5+1
2 . Observe that if b1 < −

√
5+1
2 , then by (130) y′(t) < 0

for all t ≥ 1. Since y(1) = 0, it follows that y(t) < 0 for all t > 1 and y(1 − ε) > 0 for

sufficiently small ε > 0. Further, observe from (121) that y(t) > 0 when t is sufficiently small,

with limt→0+ y(t) = ∞. Finally, (132) implies that y′(t) < 0 if y(t) = 0. So, if b1 < −
√

5+1
2

then there does not exist t̂ 6= 1 such that y(t̂) = 0.

Consider now b1 ∈ [−
√

5+1
2 , 0]. Note that in this case: (i) by (131), y′′(t) < 0 for all t;

(ii) y(t) < 0 when t is sufficiently small, with limt→0+ y(t) = −∞, (iii) y(t) < 0 when t is

sufficiently large, with limt→∞ y(t) = −∞. (iv) By (130) y′(1) = b1 + 1.

So, if b1 ∈ (−1, 0], then y′(1) > 0. This, in combination with (i)-(iii) above, implies that if

b1 ∈ (−1, 0], then there exists a unique t̂, t̂ 6= 1 such that y(t̂) = 0 and, moreover, t̂ > 1 and

y(t) > 0 for all t ∈ (1, t̂). But we also have y(t) = θ′(t)t and θ(1) = 1. So θ(t) > 1 for all

t ∈ (1, t̂). This contradicts the fact that θ(t) ∈ [0, 1]. Hence, we can rule out b1 ∈ (−1, 0].

Similarly, we can rule out b1 = −1 because in this case y(t) = 1 only if t = 1.

Finally, if b1 ∈ [−
√

5+1
2 ,−1), then (i)-(iv) above imply that there exists t̂, t̂ < 1 such that

y(t̂) = 0, and y(t) > 0 for all t ∈ (t̂, 1). Also, since y(t) = θ′(t)t and θ(1) = 1, it follows that
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θ(t) ∈ [0, 1) for all t ∈ (t̂, 1). Moreover,

θ(t)− y(t) = b1

(
− 1√

5
t
√

5−1
2 +

1√
5
t−
√
5+1
2

)
+

√
5− 1

2
√

5
t
√
5−1
2 +

√
5 + 1

2
√

5
t−
√
5+1
2 =

=

√
5− 1− 2b1

2
√

5
t
√

5−1
2 +

√
5 + 1 + 2b1

2
√

5
t−
√
5+1
2 (133)

To summarize, θ(t)− y(t) > 0 and θ(t) ≤ 1 for all t ∈ [t̂, 1] when b1 ∈ [−
√

5+1
2 ,−1], as required

for the solution. We conclude that b1 ∈ [−
√

5+1
2 ,−1).

Thus, the two remaining parameters completing the solution are t̂ ∈ (0, 1) and b1 ∈

[−
√

5+1
2 ,−1). They are jointly determined as the solutions to the two equations: y(t̂) = 0

where y(t̂) is given by (127) and the boundary condition Q(t̂)(θ(t̂)− τ(t̂)) = C.

Setting (127) to zero at t̂ yields:

b1 = −
1√
5
t̂
√
5−1
2 − 1√

5
t̂−
√
5+1
2

t̂−
1+
√

1
5

2 t̂
√
5−1
2 −

1−
√

1
5

2 t̂−
√
5+1
2

(134)

Differentiating (134) we obtain for t̂ ∈ (0, 1):

∂b1

∂t̂
= −

√
5−1

2
√

5
t̂
√
5−3
2 +

√
5+1

2
√

5
t̂−
√

5+3
2

t̂−
1+
√

1
5

2 t̂
√
5−1
2 −

1−
√

1
5

2 t̂−
√
5+1
2

+

(
1√
5
t̂
√
5−1
2 − 1√

5
t̂−
√
5+1
2

)(
1− 1√

5
t̂
√
5−3
2 + 1√

5
t̂−
√
5+3
2

)
(
t̂−

1+
√

1
5

2 t̂
√
5−1
2 −

1−
√

1
5

2 t̂−
√
5+1
2

)2

=

3−
√

5
2
√

5
t̂
√
5−1
2 − 3+

√
5

2
√

5
t̂−
√

5+1
2 + t̂−2(

t̂−
1+
√

1
5

2 t̂
√
5−1
2 −

1−
√

1
5

2 t̂−
√
5+1
2

)2 > 0 (135)

where the last inequality follows from the fact that 3−
√

5
2
√

5
t̂
√
5−1
2 − 3+

√
5

2
√

5
t̂−
√
5+1
2 + t̂−2 = 0 for

t̂ = 1 and
∂

(
3−
√

5
2
√
5
t̂

√
5−1
2 − 3+

√
5

2
√
5
t̂−
√
5+1
2 +t̂−2

)
∂t̂

= (3−
√

5)(
√

5−1)

4
√

5
t̂
√
5−3
2 + (

√
5+1)(3+

√
5)

4
√

5
t̂−
√
5+3
2 −2t̂−3 < 0

for t̂ ∈ (0, 1).

Recall that Q(t̂) = τ(t̂) = − b1
2 t̂. Also, since y(t̂) = 0, θ(t̂) is given by the right-hand side

of (133). Using this, we can rewrite the boundary condition Q(t̂)(θ(t̂)− τ(t̂)) = C as follows:

F (b1, t̂, C) ≡ −b1
2

(
b1

(
t̂2

2
− 1√

5
t̂
√
5+1
2 +

1√
5
t̂−
√
5−1
2

)
+

√
5− 1

2
√

5
t̂
√
5+1
2 +

√
5 + 1

2
√

5
t̂−
√
5−1
2

)
− C = 0

(136)
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Next, from (135) and (136) we get dF
dC = −1 < 0 and

dF (b1(t̂), t̂, C)

dt̂
= −b1

2
y(t̂)− ∂b1

∂t̂

(
b1
2
t̂2 +

√
5− 1− 4b1

4
√

5
t̂
√
5+1
2 +

√
5 + 1 + 4b1

4
√

5
t̂−
√
5−1
2

)
> 0.

The last inequality holds since: (i) y(t̂) = 0; (ii) ∂b1
∂t̂

> 0 as shown in (135); (iii) the multiplier

of ∂b1
∂t̂

, b1
2 t̂

2 +
√

5−1−4b1
4
√

5
t̂
√
5+1
2 +

√
5+1+4b1

4
√

5
t̂−
√
5−1
2 , is negative when t̂ = 1 and b1 < −1 and is

increasing in t̂ at any t̂ ∈ (0, 1) and b1 < −1.

Next, applying l’Hospital’s rule to (134) we obtain:

lim
t̂→1

b1(t̂) = −
limt̂→1

(√
5−1

2
√

5
t̂
√
5−3
2 +

√
5+1

2
√

5
t̂−
√

5+3
2

)
limt̂→1

(
1− 1√

5
t̂
√

5−3
2 + 1√

5
t̂−
√
5+3
2

) = −1.

So, limt̂→1 F (b1(t̂), t̂, C) = 1
4 − C.

On the other hand, limt̂→0 b1(t̂) = −
√

5+1
2 , and so limt̂→0 F (b1(t̂), t̂, C) = −C,

From the above we conclude that for C ∈ (0, 1
4) there exist a unique solution t̂ ∈ (0, 1) to

the equation F (b1(t̂), t̂, C) = 0 and that dt̂
dC > 0.

Now let us establish the interval of C on which our solution applies. The upper bound of

C is equal to 1
4 , since for C > 1

4 none of the incentive constraints are binding. To establish

the lower bound of C, Cm, note that our solution applies when θ̂ ≥ τ(1). At Cm we then have

θ̂ = τ(1) = Q(1). Let t̂m, and b1,m denote the parameter values where the latter condition

holds. Then we can rewrite the boundary condition Q(θ̂)(θ̂ − τ(θ̂)) = C as follows:

Q(t̂m)(Q(1)−Q(t̂m)) = Cm

(b1,m)2

4
t̂m(1− t̂m) = Cm (137)

So, Cm, t̂m, and b1,m are determined by (134), (137) and condition θ(t̂m) = τ(1) = Q(1)

Since τ(1) = Q(1) = − b1,m
2 , we can equate the latter to θ(t̂m) as given by (133), since y(t̂m) = 0,

to obtain:

b1,m

(
−1

2
+

1√
5
t̂

√
5−1
2

m − 1√
5
t̂
−
√
5+1
2

m

)
=

√
5− 1

2
√

5
t̂

√
5−1
2

m +

√
5 + 1

2
√

5
t̂
−
√

5+1
2

m (138)

Using (134) in (138) and simplifying yields:
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−
(

1√
5
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2

m − 1√
5
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2

m

)(
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2
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1√
5
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√
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2

m − 1√
5
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−
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5+1
2

m

)
=(√

5− 1

2
√

5
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√
5−1
2

m +
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5 + 1

2
√

5
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−
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5+1
2

m

)t̂m − 1 +
√

1
5

2
t̂

√
5−1
2

m −
1−

√
1
5

2
t̂
−
√
5+1
2

m

 (139)

The last equation simplifies to:

t̂
√

5+1
m (1−

√
5) + t̂

√
5

m − t̂m(1 +
√

5) + 2
√

5t̂

√
5−1
2

m − 1 = 0 (140)

The approximate root of the last equation in (0, 1) is t̂m = 0.187169. Then from (134) we

obtain b1,m ≈ −1.554 and from (137), Cm ≈ 0.0918.

Let us now establish some useful comparative statics results. First, we have:

dθ̂

dC
=

∂θ̂

∂b1

∂b1

∂t̂

dt̂

dC
+ θ′(t̂)

dt̂

dC
=

t̂− 1 + 3
√

1
5

2
t̂
√
5−1
2 +

3
√

1
5 − 1

2
t̂−
√
5+1
2

 ∂b1

∂t̂

dt̂

dC
> 0 (141)

The second equality follows from the fact that θ′(t̂) = y(t̂)

t̂
= 0 and (119), while the last

inequality holds because, as established above, ∂b1
∂t̂

> 0, dt̂
dC > 0, and t̂ −

1+3
√

1
5

2 t̂
√
5−1
2 +

3
√

1
5
−1

2 t̂−
√

5+1
2 = 0 if t̂ = 1 and

∂

(
t̂−

1+3
√

1
5

2
t̂

√
5−1
2 +

3
√

1
5−1

2
t̂−
√
5+1
2

)
∂t̂

< 0 for any t̂ ∈ (0, 1).

We can now confirm that θ̂ > τ(1) for C ∈ (Cm,
1
4). We have shown above that dθ̂

dC > 0.

Next, since τ(1) = Q(1) = − b1
2 , we have dτ(1)

dC = −1
2
db1
dt̂

< 0 where b1 is given by (134). So,

since θ̂ = τ(1) at C = Cm, it follows that θ̂ > τ(1) when C ∈ (Cm,
1
4), as required.

To obtain the comparative statics for τ(θ̂), recall that τ(θ̂) = Q(θ̂) = − b1
2 t̂. Therefore,

dτ(θ̂)
dC = dτ(θ̂)

dt̂
dt̂
dC =

(
− b1

2 −
1
2 t̂
∂b1
∂t̂

)
dt̂
dC . Using (134) and (135) we obtain:
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Let G(t̂) be the numerator of the last equation in (142). Note that G(1) = 0, and ∂G
∂t̂

=

1√
5
t̂
√
5−1
2 − 1√

5
t̂−
√
5+1
2 − 4

10 t̂
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5−2 − 4
10 t̂
−(
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5+2) + 4
5 t̂
−2 = 1√

5
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5−1
2 − 1√

5
t̂−
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5+1
2

− 4
10 t̂
−2(t̂−

√
5 − 1)(1 − t̂

√
5). So, ∂G

∂t̂
< 0 for all t̂ ∈ (0, 1). Hence, G(t̂) > 0 for all t̂ ∈ (0, 1),

which by (142) means that − b1
2 −

1
2 t̂
∂b1
∂t̂

> 0 for t̂ ∈ (0, 1). Since dt̂
dC > 0, we conclude that

dτ(θ̂)
dC > 0.

Finally, let us show that Q is convex in τ . Note that τ(t) = y(t) + Q(t) = y(t) − b1
2 t.

Therefore, dy
dτ = y′(t)

τ ′(t) = y′(t)

y′(t)− b1
2

and d2y
dτ2

=
d
dy
dτ
dt
τ ′(t) =

− b1
2
y′′(t)

(y′(t)− b1
2

)3
. From (130), τ ′(t) = y′(t)− b1

2 =

1
2b1 + (

√
5−1)−2b1

2
√

5
t̂
√
5−3
2 + (

√
5+1)+2b1

2
√

5
t̂−
√
5+3
2 which is equal to b1

2 + 1 > 0 when t = 1. Since

y′′(t) < 0 by (131), it follows that y′(t) − b1
2 > 0 for t ∈ (0, 1). So, d2y

dτ2
< 0. Since Q = τ − y,

we have dQ
dτ = 1− dy

dτ =
− b1

2

y′(t)− b1
2

> 0 and d2Q
dτ2

= −d2y
dτ2

> 0.

Also, since Q(t) = q(τ(t)), we have Q′(t) = q′(τ(t))τ ′(t). So, since Q′(t) > 0 and τ ′(t) > 0,

it follows that q′(θ) ≡ q′(τ(t)) > 0. Finally, differentiating Q′(t) = q′(τ(t))τ ′(t) we get:

0 = Q′′(t) = q′′(τ(t))(τ ′(t))2 + q′(τ(t))τ ′′(t). Since τ ′′(t) = y′′(t) < 0, we conclude that q′′(θ) ≡

q′′(τ(t)) > 0 for θ ∈ (τ(θ̂), τ(1)). So q(θ) is strictly increasing and convex for θ ∈ (τ(θ̂), τ(1)).
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