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Abstract A principal has to allocate a prize without monetary transfers. She

wants to give it to the most valuable agent but does not know any agent’s value.

Agents’ information is described by a network: Each agent knows her own value

and the values of her neighbors. Given a principal’s prize allocation rule, agents

compete for the prize and send messages about themselves (application) and about

their neighbors (references) to the principal. They can lie, but only to a certain

extent. Can full implementation be obtained? This means, is there a prize alloca-

tion rule such that the best agent gets the prize in every equilibrium? Bayesian-

monotonicity and the revelation principle fail in this setup. I propose a mechanism

which allocates the prize as a function of “best” applications and “worst” refer-

ences. This mechanism fully implements the principal’s objective if the network

is complete. In environments where agents only lie if it increases their chances of

winning, an extended version of the mechanism fully implements the principal’s

objective for a larger class of networks.
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Sanjeev Goyal, Matt Jackson, Claudia Herresthal, Mikhail Safronov, seminar participants
in Berlin, Cambridge, Málaga, Northwestern Kellogg, Paris School of Economics, Stan-
ford and Warsaw, and participants in the 3rd Annual Conference on Network Science and
Economics, CTN Annual Workshop 2017, ESEM 2017, VfS Annual Conference 2017, Bi-
NoMa Workshop 2018, Barcelona GSE Summer Forum: Networks Workshop 2018. While
working on this paper, I received financial support from the University of Hamburg and
the Cambridge INET-Institute.

1



1 Introduction

Consider a setting in which a principal has to allocate a prize without mone-

tary transfers. She wants to give it to the most valuable of all agents but does

not know any agent’s value. All agents want the prize and their information

is described by a network: Each agent knows her own value and the values of

agents whom she is linked to. The distribution of values is common knowl-

edge, and there are a minimum and a maximum possible value any agent can

have. Given a principal’s prize allocation rule, agents compete for the prize

and send messages about themselves (applications) and about their network

neighbors (references) to the principal. Agents can lie but only to a certain

extent. Given a network, can full implementation be obtained? This means,

is there a prize allocation rule such that the best agent gets the prize in every

equilibrium? This paper develops a mechanism which always allocates the

prize to the best agent in every equilibrium if every agent knows every other

agent (complete knowledge network). An extended version of the mechanism

always allocates the prize to the best agent in every equilibrium for a larger

class of networks, with the additional assumption that agents only lie if lying

increases their chances of winning.

The setting resembles several economic environments. An employer has

to select an applicant, a manager has to decide whom to promote, or a

committee has to assign the prize to the best researcher. Often this decision

is based on statements about candidates’ qualifications only and candidate-

specific monetary transfers to the principal are precluded. Candidates for the

prize can have information about each other, for example, two individuals

who have worked together know each others’ abilities. There are a minimum

and a maximum possible value for individuals’ qualifications if, for example,

they are rated according to scales with an upper and a lower bound. In case

the principal is informed about the knowledge network, she can solicit an

application and references about neighbors from each candidate. Candidates

face a limit to lying when there are psychological or physical costs from lying,

or when applications and references have to be supported with evidence.

Evidence is often not fully conclusive from the principal’s point of view, for
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example, individuals can distort and frame evidence in different ways. A

limit to lying in the context of mechanism design has first been analyzed

by Green and Laffont (1986) and is a case of what has been termed “hard

evidence” or “partially verifiable information” by the literature.

An important monotonicity property, widely used for full implementation,

is not satisfied in our model. Maskin-monotonicity, the respective condition

for the complete knowledge network, and Bayesian-monotonicity, the respec-

tive condition for any incomplete knowledge network, fail because every agent

prefers a higher over a lower probability of getting the prize for any profile of

agents’ values. As the monotonicity condition does not hold, it follows from

Maskin (1999) and Jackson (1991) that there would be no fully implementing

mechanism in our setting, if agents did not face a limit to lying.

The limit to lying leads to a failure of the revelation principle in our

model because “worse” agents cannot fully imitate “better” agents (see sec-

tion 4.2). The failure of the revelation principle implies that if there is full

implementation, then it is not necessarily achieved via truthful revelation.

Indeed, the mechanisms which I use for full implementation induce equilibria

in which agents lie.

I first show that a mechanism which allocates the prize as a function of

applications only does not achieve full implementation for any knowledge

network: If all agents have a sufficiently high value, then all claim to have

the maximum possible value and the principal cannot distinguish between

them. Thus, full implementation in our setting can only be obtained if every

agent has at least one neighbor because there must be at least one reference

for every agent.

Similarly, a mechanism which allocates the prize as a function of refer-

ences only does not achieve full implementation for any knowledge network:

If all agents have a sufficiently low value, then there is an equilibrium in which

every agent depicts all neighbors as having the minimum possible value and

the principal cannot distinguish between agents.

I then propose the simple mechanism πso which allocates the prize as

a function of “best” applications and “worst” references. The mechanism

awards the prize to the agent who sends the best application and the worst

3



reference about her is weakly better than the worst reference about any agent

who sends a best application. Full implementation is achieved if every agent

knows every other agent (complete knowledge network): The best agent can

send the best possible application. Furthermore, if many agents can claim

to have the maximum possible value, then the best agent can send worse

references about every other agent than any agent can send about the best

agent. This is because of the limit to lying.

For every incomplete knowledge network, the mechanism πso guarantees

the existence of a “salient” dominant strategy equilibrium such that the best

agent gets the prize. In this equilibrium, every agent fully exaggerates –

positively about herself and negatively about her neighbors. However, there

also exist equilibria such that the best agent does not get the prize for some

profiles of agents’ values: Suppose exactly two agents claim to have the

maximum possible value and they are not linked to each other. Then the

references from their neighbors determine which of the two gets the prize. For

some value profiles, these neighbors are certain not to get the prize because

they cannot send a weakly better application. In this case, the neighbors are

indifferent between all references they can send and the best agent does not

get the prize for some equilibria.

Consequently, I study the model with the additional assumption of partial

honesty. Partial honesty means that agents only lie if lying increases their ex-

pected probability of winning. This concept has first been introduced to the

implementation literature by Dutta and Sen (2012). With partial honesty,

mechanism πsoh, an extended version of πso, fully implements the principal’s

objective for a larger class of networks. If the network is connected and for

every agent and each of her neighbors it is true that 1) the agent is linked to

all the neighbors of her neighbor, or 2) the neighbor is linked to every other

agent, then πsoh fully implements with partially honest agents. Condition 1)

means that the agent knows all the values which her neighbor knows, and

2) means that the neighbor knows every value. Networks which satisfy these

conditions are for example the star network, the complete network, and the

Dutch windmill, as depicted in the following figure.

I find that the property of full implementation with πsoh and partially
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(a) Star (b) Dutch Windmill (c) Complete Network

honest agents is non-monotonic in the number of links in the network. There

is a network which is a supergraph of the star and a subgraph of the complete

network such that πsoh is not fully implementing: for one equilibrium, the

best agent and another agent who is not linked to the best agent both get the

prize with probability .5. Both of them claim to have the maximum possible

value and they receive the same untruthful reference. Each agent who sends

an untruthful reference about the awarded agents expects herself to be the

falsely awarded agent such that lying is optimal for her. Hence, more links,

that is more information and more messages, are not always beneficial for

full implementation.

Finally, I discuss the effect of noise in the communication between the

agents and the principal on full implementation. If the principal receives

agents’ messages with a random noise term, then there is a unique equilibrium

with mechanism πso in which every agent fully exaggerates – positively about

herself and negatively about her neighbors. This leads to full implementation

in expectation for every network with mechanism πso.

I describe two applications of the model: employee performance evalua-

tion (360 degree feedback) and peer review processes in academia. Our results

relate to the interpretation of self- and other-ratings by an employer and to

the evaluation of proposals/papers and reports by an academic principal (ed-

itor, conference organizer, or funding institution), given that the principal

wants to identify the best employee/researcher and can rely on a limit to

lying.

This paper contributes to the following strands of literature. First, con-

sider the literature on mechanism design for allocation and persuasion prob-

lems, and on implementation of social choice functions with one principal,

multiple agents, and partially verifiable information. Determining agents’ in-
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formation and message space by a network is new to this literature. Lipman

and Seppi (1995), Glazer and Rubinstein (2001), Ben-Porath and Lipman

(2012), and Kartik and Tercieux (2012) assume that all agents are fully in-

formed or have the same information about the state of the world. A network

allows for differentially informed agents. In Deneckere and Severinov (2008)

agents have partially verifiable information about their own type but not

about other agents’ types. The network structure of information in our set-

ting means that agents have partially verifiable information about themselves

but also about their neighbors. The latter is necessary for full implementa-

tion in our setup. Koessler and Perez-Richet (2017) show for a general setup

that a social choice is partially implementable if every type has a message

available which no other type wants to or is able to imitate. They call this

the evidence base condition. This condition is not satisfied in our setting.

Only a few papers in economics combine mechanism design and network

theory. Renou and Tomala (2012) study the implementation of social choice

functions for different communication networks between agents and a mech-

anism designer. Dziubiński et al. (2016) analyze optimal network protection

against an attacker when the network is unknown to the defender and im-

perfectly to the nodes in the network. The paper closest to ours is recent

subsequent work by Bloch and Olckers (2018). In their setting, the princi-

pal’s objective is to extract a complete ordinal ranking of agents in a social

network. They focus on truthful mechanisms and analyze the network struc-

tures for which there is an equilibrium such that the outcome corresponds to

the principal’s objective.

Recently, a literature on peer review systems in academia where review-

ers also compete for the prize has developed in computer science. Some of

the proposed peer review systems have been implemented for conferences

(Nierstrasz, 2000) or grant allocations by the National Science Foundation

(Merrifield and Saari, 2009). These systems rely on references only and do

not award the prize to the best agent in all equilibria. Sometimes, even

the existence of one desirable equilibrium is not guaranteed. Consequently,

Kurokawa et al. (2015) and Aziz et al. (2016) have focused on the design of

a references-based mechanism without a limit to lying which guarantees one
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desirable, truthful equilibrium. Such a mechanism cannot fully implement

in our setting. Moreover, this literature assumes that an agent’s value is

determined by other agents’ potentially heterogeneous preferences over the

set of agents, and not, as in this paper, by a principal’s preference ordering

over agents or by an unambiguous true state of the world.

This paper proceeds as follows. In Section 2, I introduce the model. Sec-

tion 3 discusses employee performance evaluation and peer review processes

in academia as two applications. Section 4 shows why Maskin-/Bayesian-

monotonicity and the revelation principle fail in our setup, and that a mech-

anism which uses either applications or references only does not fully imple-

ment. Section 5 presents the main analysis. In Subsection 5.1, I introduce

mechanism πso which relies on both applications and references. I show that

πso fully implements if the network is complete. In Subsection 5.2, mecha-

nism πsoh, an extension of πso, is proposed. I characterize a class of networks

for which πsoh fully implements if agents are partially honest. Subsection 5.3

discusses that πso fully implements in expectation in all networks if commu-

nication is noisy. Finally, Section 6 concludes.

2 The Model

A principal has to assign an indivisible prize to one agent out of a set of

agents N = {1, ..., n} where n ≥ 3. Agent i gets utility vi > 0 from receiving

the prize and 0 from not receiving it.

Agents differ in their suitability to receive the prize. There exists a com-

bination of characteristics which is the ideal match for the prize. This ideal

is common knowledge. Agent i’s suitability to receive the prize is measured

by her distance di to the ideal. We assume that there is a maximum possible

distance to the ideal and w.l.o.g we normalize it to 1. Then di ∈ [0, 1] for all

i ∈ N with 1 being the worst possible fit and 0 the ideal match. We assume

that each di is independently and identically drawn from a continuous full

support distribution without atoms over [0, 1].1 The distribution is common

1This way of modeling heterogeneity captures n-dimensional characteristics. Consider
any compact subset C ⊂ Rn. Let c∗ ∈ C be the ideal match for the principal. Agent
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knowledge. The principal’s utility is strictly decreasing in the distance of

the agent who receives the prize. Hence, for any realization of distances, the

best possible outcome for the principal is to assign the prize to agent i with

di = mink∈N dk whom we refer to as the global minimum g. With probability

1, a realization of distances is such that di 6= dj for all i and j 6= i and we

restrict the analysis to such cases.

The principal does not know the distance of any agent but only the dis-

tribution. Every agent exactly knows her own distance and the distances of

certain other agents as specified by a graph which is common knowledge. The

graph is undirected and given by a set of links L among the agents. Links

signify familiarity. If link ij ∈ L, then agent i and agent j exactly know

each other’s distance. The set of neighbors of agent i is Ni := {j |ij ∈ L}.
Regarding the distances of agents who are not her neighbors, agent i only

knows the distribution. Agent i’s type is θi =
(
di, (dj)j∈Ni

)
and summarizes

her knowledge. Agent i’s type space is Θi = [0, 1]|Ni|+1. A type profile is

denoted by θ and the set of all feasible type profiles by Θ. If a profile or set

contains all elements except for agent i’s, we conventionally mark the profile

or set with subscript −i. Given type realization θ, agent i’s posterior that

θ−i ∈ Θ′−i ⊂ Θ−i is the conditional probability p(Θ′−i|θi) derived from the

distribution of distances. We assume in the following that every agent has

at least one neighbor. Without this assumption, the principal could never

identify the global minimum with probability 1. The reason will become

obvious in Subsection 4.2. Note that this assumption does not require the

graph to be connected.

The principal designs a mechanism with the objective to “always” identify

the global minimum. Any mechanism is a pair (M,π) where M =
∏

i∈N Mi

is a set of message profiles and π specifies an outcome for every message

profile m ∈M . The message space for agent i is Mi = Θi. Thus any message

mi ∈Mi of agent i is such thatmi =
(
mii, (mij)j∈Ni

)
withmii,mij ∈ [0, 1] for

all j ∈ Ni. Agent i makes statement mii about her own distance which we call

i’s characteristic is ci ∈ C, iid from a continuous, full support distribution without atoms
over C. Then agent i has a Euclidean distance di to c∗ and we normalize the maximum
possible distance to 1.
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her application and statement mij about the distance of her neighbor j ∈ Ni

which we call her reference about j. Since M is fixed for all mechanisms

the principal considers, we simply refer to π as the mechanism. We assume

that the principal can choose any π : M → [0, 1]n with
∑

i∈N πi(m) = 1 for

all m ∈ M . Outcome π(m) is a probability distribution over N with πi(m)

being the probability that agent i receives the prize if the message profile is

m. Probabilities sum up to 1 for every m because the principal has to assign

the prize.2 The principal does not use transfers.

Any mechanism π induces the following static Bayesian game Γ(π) among

the agents. Agent i’s action set at θi is message set Mi(θi) ⊂ Mi. Message

mi ∈ Mi(θi) if and only if mik ∈ [max {0, dk − b} ,min {dk + b, 1}] for all

mik ∈ mi with exogenous and commonly known b ∈ (0, 1
2
). This means agents

can lie about each true distance maximally by ±b and an agent’s action set

varies with her type. Such type-dependent action sets are a setting of what

has been termed “hard evidence” in the literature.

The limit to lying is an abstraction of psychological or physical lying

costs or of inconclusive evidence: “Cheating” within certain bounds but not

beyond might be morally acceptable. Framing inconclusive evidence more

positively or negatively than consistent with the truth might be possible but

only up to a certain limit. Different types might have access to some same

pieces of evidence, as is the case with degree certificates. Both an applied

economist and a theorist have a PhD in Economics.

Agent i’s strategy is a function m̂i that specifies mi ∈ Mi(θi) for every

θi ∈ Θi. We restrict ourselves to pure strategies. A strategy profile is denoted

by m̂. Let m̂−i(θ−i) be the strategies of all agents other than i at θ−i.

Given m̂−i, agent i’s expected utility at θi from choosing mi ∈M(θi) is

Ui(mi, m̂−i|θi) = vi

∫
θ−i

πi(mi, m̂−i(θ−i)) dp(θ−i|θi).

A strategy profile m̂ is a Bayesian Nash equilibrium of Γ(π), if for all i,

2This assumption implies that this is not a separable environment as defined by Jackson
et al. (1994).
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mi ∈Mi(θi), and θi

Ui(m̂i(θi), m̂−i|θi) ≥ Ui(mi, m̂−i|θi).

It will be useful to denote agent i’s expected probability of receiving the

prize at θi when choosing mi ∈M(θi) given m̂−i as

Πi(mi, m̂−i|θi) =

∫
θ−i

πi(mi, m̂−i(θ−i)) dp(θ−i|θi).

Clearly, a strategy profile m̂ is a Bayesian Nash equilibrium of Γ(π) if

and only if for all i, mi ∈Mi(θi), and θi

Πi(m̂i(θi), m̂−i|θi) ≥ Πi(mi, m̂−i|θi).

The goal of the principal is to design π such that the global minimum

gets the prize with probability 1 given graph L. We say that mechanism

π fully implements the principal’s objective in L if every equilibrium m̂ of

Γ(π) is such that πg(m̂(θ)) = 1 with probability 1. We say that mechanism

π partially implements the principal’s objective in L if there exists an equi-

librium m̂ of Γ(π) such that πg(m̂(θ)) = 1 with probability 1. Note that if

mechanism π is partially implementing, then there can exist other equilibria

of Γ(π) in which the global minimum does not get the prize with probability

1.

3 Two Applications

We map the model to two applications. The first application is 360 degree

feedback, a method widely used by companies to evaluate employee perfor-

mance. The second one is the peer review process in academia.

Example 1. 360 degree feedback.

360 degree feedback describes a process in which information about an

employee is gathered from different sources including the employee himself

and, for example, co-workers, subordinates, and managers. Nowadays, the
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information from each source is usually collected through electronic ques-

tionnaires which include mostly numerical ratings and some open questions

and written comments.

The method is a popular tool for employee evaluation and development.

A 2013 survey (3D Group, 2016) conducted among 112 companies, including

Boeing, Monsanto, PepsiCo, FedEx and Dell, reports that 34% of the sur-

veyed companies use 360 degree feedback for pay and promotion decisions.

79% of the surveyed companies expect their use of 360 degree feedback to re-

main constant or to increase. Roughly 65% of the companies hire an external

service provider to implement the 360 degree feedback. Established consul-

tancies and software providers specialized in human capital management like

Cornerstone OnDemand ($482 million revenue and 1891 employees in 2017

(Cornerstone OnDemand, 2018)) and SABA (1000 employees (Saba Software,

2018)), as well as small specialized firms like 3D Group (3D Group, 2018)

or ETS (Expert Training Systems, 2018) offer 360 degree feedback products.

The natural concern for vendors and companies using 360 degree feedback is

how to correctly interpret the questionnaires and how “reliable” the ratings

are.

The following precise situation is an example for our model. A human

resource manager has to pick one employee as the team leader, for a promo-

tion or as employee of the month, all of which is desirable for each employee.

To identify the “best” employee, the manager asks every candidate i for a

self-rating and for a rating of the other candidates who i has worked with.

Ratings are confidential and only seen by the manager. A limit to lying arises

if the manager asks for justification of ratings.

Example 2. Peer-review in academia.

Peer review is essential to many selection processes in academia. We

explain how the review processes for conferences and journals relate to our

model.

Consider the peer review processes in the run-up for top conferences in

the field of artificial intelligence (e.g. AAAI, IJCAI, AAMAS) or at the
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intersection of economics and computation (e.g. ACM EC).3 The principal

in this context is the conference organizer who awards different “prizes” like

slots for presentation and the best paper award. A double blind peer review

process determines which of the submitted papers get accepted and which

paper gets the best paper award. Within the framework of our model, a

paper submission is an application. Each submitted paper is reviewed by

4-5 referees who usually have submitted a paper themselves and are thus

competing with other submissions. Each referee has to grade a paper in

different categories like readability, novelty, importance of the contribution,

technical quality, and also conclude a general grade which is often numerical.

All grades in a report have to be justified. Finally, all papers are ranked

according to their scores and whether a paper gets selected depends on its

score rank.

The review process for journal publications does not map as closely to

the model as the one for conferences, but shows the same mechanisms and

incentives. An author submits a paper (an application) to a journal for

publication and an editor (the principal) selects peer reviewers who write

reports about the paper. Peer reviewers who work on topics related to the

paper are competing with the author for publication. Reports have to be

well grounded and justified. Some journals require each referee to assign an

overall numerical grade to the paper.

Within our model, the “true distance” of a paper corresponds to the true

quality of the research it presents. The paper is the “application”. The

“application” and the “references” are not necessarily truthful. An author

can try to hide critical assumptions or oversell the contribution. Referees can

criticize assumptions and results in an exaggerated way. However, there is a

natural limit to lying. All claims have to be supported with some evidence.

Results in the paper need to be supported by proofs, and criticism by a

referee has to be supported by examples.

3I thank Ben Golub and Marcin Dziubiński for insightful discussions on this topic.
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4 Unsuccessful Mechanisms

This section first shows that some popular and intuitive mechanisms fail to

fully implement the principal’s objective. First, mechanisms which rely on

Maskin-/Bayesian-monotonicity fail, because Maskin-/Bayesian-monotonicity

is violated in our setup (Subsection 4.1). This implies that full implementa-

tion would be impossible in our setup without hard evidence (Jackson, 1991;

Maskin, 1999). Thus, any successful mechanism must exploit the hard ev-

idence. The presence of hard evidence leads to a failure of the revelation

principle such that truthful implementation might not be possible.

Consequently, we study mechanisms which make use of the hard evidence

and which implement via non-truthful equilibria. Mechanisms which rely on

either applications or references only still fail to implement (Subsections 4.2

and 4.3). However, they fail for different type realizations such we continue to

show in Section 5 that mechanisms which combine applications and references

are successful in full implementation.

4.1 Mechanisms relying on Maskin- or

Bayesian-Monotonicity

Maskin- or Bayesian-monotonicity guarantee in many setups that a fully im-

plementing mechanism exists. Popular mechanisms which rely on Maskin-

or Bayesian monotonicity for full implementation are “consensus” mecha-

nisms. In such mechanisms, if there is a consensus, this is mji = mki for

all i, j, k in our setup, then the principal chooses the outcome according to

the consensus. A concern with such mechanisms there might be equilibria

where the consensus is not truthful such that the principal picks the “wrong”

outcome. Maskin-/Bayesian-monotonicity is used to rule out undesired equi-

libria in settings of complete/incomplete information among agents. For

Maskin- and Bayesian-monotonicity to be satisfied, agents’ preferences over

outcomes must change across different type realizations. In our setup, no

agent experiences a preference reversal over outcomes for any two type real-

izations. Every agent always strictly prefers a higher over a lower expected
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probability of winning. Thus, Maskin- and Bayesian-monotonicity fail and

cannot be used to rule out undesirable consensus equilibria. The failure of

Maskin- and Bayesian-monotonicity implies that if our setup did not feature

hard evidence (the limit to lying), then full implementation would be im-

possible (Jackson, 1991; Maskin, 1999). Kartik and Tercieux (2012) show

that hard evidence can recover full implementation for complete information

settings among agents, if Maskin-monotonicity fails. For incomplete infor-

mation settings among agents, the conditions under which hard evidence

recovers full implementation, if Bayesian monotonicity fails, are less clear.

Koessler and Perez-Richet (2017) take some steps in this direction.

The hard evidence in our setup leads to a failure of the revelation princi-

ple, as will be shown in the next subsection. This issue has first been pointed

out by Green and Laffont (1986). Thus, if full implementation is possible,

then it is not necessarily achievable via truthful revelation mechanism. In the

following, we focus on mechanisms which exploit the hard evidence property

and which do not have truthful equilibria.

4.2 Applications only

Suppose the principal uses a mechanism π which exploits the hard evidence

but only relies on applications and disregards all references. Then the princi-

pal does not identify the global minimum with probability 1 for type realiza-

tions where many agents have distances less than b. We define the following

applications-only mechanism.

Definition 1. Applications-Only Mechanism πs

For any m ∈M ,

choose B1(m) ⊆ N such that i ∈ B1(m) if and only if mii = mink∈N mkk.

Let πsi (m) = 1
|B1(m)| for all i ∈ B1(m) and πsi (m) = 0 for all i /∈ B1(m).

In words, for any m, the principal identifies all agents who send the

best application and assigns the prize with equal probability to one of them.

Observe that B1(m) is never empty.
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Lemma 4.1. Let D(θ) = {i | di ≤ b} for all θ. For any L, every equilibrium

m̂ of Γ(πs) is such that with probability 1

πsg(m̂(θ)) = 1 if dg > b, and

πsi (m̂(θ)) = 1
|D(θ)| for all i ∈ D(θ) if dg ≤ b.

Proof. Assume m̂ is an equilibrium. Suppose that g has dg > b and ex-

pects with positive probability that πsg(m̂(θ)) < 1. Then g can deviate to

m′g with m′gg = dg − b such that πsg(m
′
g, m̂−g(θ−g)) = 1. For any other

case which g expects with positive probability and for which g ∈ B1(m̂(θ)),

B1(m′g, m̂−g(θ−g)) ⊂ B1(m̂(θ)) such that g would not do worse. Thus,

Π(m′g, m̂−g|θg) > Π(m̂g(θg), m̂−g|θg) and m̂ is not an equilibrium.

Suppose g has dg ≤ b and agent i with di ≤ b expects with positive prob-

ability that πsi (m̂(θ)) < 1
|D(θ)| . Then i can deviate to m′i with m′ii = 0 such

that πsi (m
′
i, m̂−i(θ−i)) ≥ 1

|D(θ)| . For any other case which i expects with pos-

itive probability and for which i ∈ B1(m̂(θ)), B1(m′i, m̂−i(θ−i)) ⊂ B1(m̂(θ)).

Thus Π(m′i, m̂−i|θi) > Π(m̂i(θi), m̂−i|θi) and m̂ is not an equilibrium.

Suppose g has dg ≤ b and agent i with di ≤ b expects with positive prob-

ability that πsi (m̂(θ)) > 1
|D(θ)| . Then some agent j with dj ≤ b would expect

with positive probability that πsj (m̂(θ)) < 1
|D(θ)| which is a contradiction.

At this point, it is convenient to explain why the revelation principle does

not hold in our model. The revelation principle would claim for our setup

that if m̂ is an equilibrium of Γ(πs), then truthful revelation is an equilibrium

of Γ(πs◦m̂) where the principal first executes the equilibrium strategies m̂ for

the agents after they have announced their types and, second, the principal

executes πs. The revelation principle fails because better types have actions

available which worse types do not have available and which worse types

prefer over any of their available actions. This illustrated by the following

example.

Suppose n = 3, L complete and b = .2. First observe that any strat-

egy profile m̂ such that m̂ii(θi) = max {0, di − b} for all θi and all i is an

equilibrium of Γ(πs). Assume now the principal uses mechanism πs ◦ m̂,

the distance realization is d1 = .7, d2 = .8, d3 = .9 and all agents report

their types truthfully. Then agent 2 has an incentive to deviate to m′2 with
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m′22 = .6 because m̂22(m′2) = .6− .2 < m̂11(θ1) = .7− .2 < m̂22(θ2) = .8− .2
such that πs2(m̂(m′2, θ−2)) = 1 > πs2(m̂(θ)) = 0. Thus, truthful revelation is

not an equilibrium.4

4.3 References only

Suppose next the principal disregards all applications and only consults refer-

ences. Then the principal only identifies the global minimum with probability
1
n

for any dominant strategy equilibrium and any graph, in case all agents are

sufficiently bad (dg ≥ 1−b). If the graph is complete, then every equilibrium

has this property. We define the following references-only mechanism. Let

r̄i(m) = maxj∈Ni
mji, this means r̄i is the worst (maximum) reference about

i given m.

Definition 2. References-Only Mechanism πo

For any m ∈M ,

choose B2(m) ⊆ N such that i ∈ B2(m) if and only if r̄i = mink∈N r̄k.

Let πoi (m) = 1
|B2(m)| for all i ∈ B2(m) and πoi (m) = 0 for all i /∈ B2(m).

Thus, for any m, the principal identifies all agents who receive the least

bad worst reference, in other words, the min-max reference, and assigns the

prize with equal probability to one of them. Observe that B2(m) is never

empty.

For our next result, we define a dominant message and dominant strategy.

Let M−i(Θ
′
−i) :=

⋃
θ−i∈Θ′−i

M−i(θ−i) where Θ′−i ⊂ Θ−i and M−i(θ−i) is set

the of message profiles which agents j 6= i can send if they have types θ−i.

4Strausz (2016) argues that the validity of the revelation principle can be recovered
in settings with hard evidence if the mechanism can be adjusted such that an agent
can claim to be any type, and the outcome function then specifies which evidence has
to be submitted and how the prize is assigned. The separation of type and evidence
announcement by making the evidence requirement part of the outcome function is is a
reformulation of the problem which shifts the untruthfulness from the type announcements
to the evidence requirement in the outcome function. That is if the revelation principle fails
in the original setup, then the sufficiency condition for the existence of an implementing
mechanism with truthful evidence requirement fails. Thus, the difficulty from finding
an implementing mechanism with untruthful equilibria is translated into the difficulty of
designing the “untruthful” outcome function. The problem is equivalent and forfeits the
simplifying purpose of the revelation principle.
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Definition 3. Dominance

A message mi ∈M(θi) is dominant at θi if Πi(mi,m−i|θi) ≥ Πi(m
′
i,m−i|θi)

for all m′i ∈ M(θi), all m−i ∈ M−i(Θ
′
−i) and all Θ′−i ⊂ Θ−i for which

p(Θ′−i|θi) > 0.

A strategy m̂i is dominant, if m̂i(θi) is a dominant message at θi for all

θi.

A dominant strategy equilibrium is a Bayesian Nash equilibrium in which

every agent agent chooses a dominant strategy.

In words, a message mi ∈ M(θi) is dominant at θi if it maximizes agent

i’s expected utility for all messages agents j 6= i can send for any type profile

which agent i expects with positive probability to be the true type realization.

A strategy is dominant if it only consists of dominant messages.

Lemma 4.2. For any L, every dominant strategy equilibrium m̂ of Γ(πo) is

such that πoi (m̂(θ)) = 1
n

for all i ∈ N if dg ≥ 1− b.
If L is complete, then every equilibrium m̂ of Γ(πo) is such that

πog(m̂(θ)) = 1 if dg < 1− b, and πoi (m̂(θ)) = 1
n

for all i ∈ N if dg ≥ 1− b.

Proof. Observe that dg ≥ 1− b implies di ≥ 1− b for all i ∈ N . Consider θi

such that di, dj ≥ 1 − b for all j ∈ Ni. Then no message mi with mij < 1

for some j ∈ Ni is dominant at θi because if m−i is such that r̄j(mi,m−i) <

r̄k(mi,m−i) = 1 for j ∈ Ni and all k 6= j, then Π(m′i,m−i|θi) > Π(mi,m−i|θi)
for m′i with m′ij = 1 for all j ∈ Ni. Thus every dominant strategy equilibrium

m̂ is such that m̂ij(θi) = 1 for all j ∈ Ni and all i such that πoi (m̂(θ)) = 1
n

for all i if dg ≥ 1− b.
Next, assume L is complete. Suppose there is an equilibrium m̂ such that

πog(m̂(θ)) < 1 if dg < 1 − b. Then however g can deviate to m′g with m′gj =

min {dj + b, 1} for all j 6= g such that r̄g(m
′
g, m̂−g(θ−g)) < r̄k(m

′
g, m̂−g(θ−g))

for all k 6= g and πog(m
′
g, m̂−g(θ−g)) = 1.

Suppose there is an equilibrium m̂ such that πoi (m̂(θ)) < 1
n

for some

i ∈ N if dg ≥ 1 − b. Then however i can deviate to m′i with m′ij = 1 for all

j 6= i such that r̄i(m
′
i, m̂−i(θ−i)) ≤ r̄k(m

′
i, m̂−i(θ−i)) = 1 for all k 6= i and

πoi (m
′
i, m̂−i(θ−i)) ≥ 1

n
.
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5 Full Implementation with Applications and

References

When the principal consults both applications and references and accounts

for the limit of lying, then the principal’s objective can be fully implemented

in certain networks and environments.

In Subsection 5.1, we introduce mechanism πso which is a combination

of πs and πo and thus takes into account both applications and references.

Mechanism πso fully implements in the complete graph. Moreover, for every

graph, there is a “salient” dominant strategy equilibrium m̂ of Γ(πso) such

that πsog (m̂(θ)) = 1 with probability 1. However, for certain graphs there also

exist dominant strategy equilibria of Γ(πso) such that the global minimum is

identified with probability 0 for some type realizations.

In Subsection 5.2, we show that if agents are partially honest, then mech-

anism πsoh which is an extension of πso fully implements the principal’s ob-

jective for a larger class of graphs, among which are the star, windmill graphs

and the complete graph. We provide sufficient conditions on the graph for

full implementation with πsoh.

Finally, in Subsection 5.3, we present that if communication is noisy, then

πso fully implements the principal’s objective in every graph in expectation.

5.1 The Complete Graph

We first define mechanism πso which is a combination of πs and πo and thus

relies both on applications and references and exploits the limit of lying.

This mechanism fully implements in the complete graph. In other graphs,

however, only partial implementation is guaranteed.

Definition 4. Applications-And-References Mechanism πso

For any m ∈M ,

first choose B1(m) ⊆ N such that i ∈ B1(m) if and only if mii =

mink∈N mkk.

Second choose B2(m) ⊆ B1(m) such that
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if mink∈N mkk > 0, then B2(m) = B1(m), and

if mink∈N mkk = 0, then i ∈ B2(m) if and only if r̄i(m) = mink∈B1(m) r̄k(m).

Let πsoi (m) = 1
|B2(m)| for all i ∈ B2(m) and πsoi (m) = 0 for all i /∈ B2(m).

Thus, for any m, the principal first identifies all agents who send the best

application. If the best application is larger than zero, then she assigns the

prize with equal probability to one of the agents with the best application.

If the best application is zero, then she consults the references and identifies

the agent who receives the min-max reference among all agents with the best

application. Finally, she assigns the prize with equal probability to agents

who send the best application and who receive the min-max reference among

the best applying agents. Observe that B2(m) is never empty.

Proposition 5.1. Let L be complete. Then every equilibrium m̂ of Γ(πso) is

such that πsog (m̂(θ)) = 1 for all θ.

The proof of Proposition 5.1 trivially follows from the proofs of Lemmata

4.1 and 4.2. Applications ensure that the global minimum is selected with

probability 1, if dg > b, and references ensure that the global minimum is

selected with probability 1, if dg ≤ b.

The full implementation result for the complete graph is in line with

Kartik and Tercieux (2012) who show that there is a mechanism which fully

implements the principal’s objective, if the hard evidence satisfies a cer-

tain monotonicity condition and agents have full information. The evidence

structure of our setup satisfies their monotonicity condition if the graph is

complete. Kartik and Tercieux (2012) use a mechanism which induces an

“integer game” among the agents to prove their result. Such mechanisms

involve a more complicated and unnatural message space compared to our

setup where agents only choose messages from their type set.

Mechanism πso partially implements for all graphs. For every graph, there

is a “salient” dominant strategy equilibrium m̂ such that πsog (m̂(θ)) = 1 for

all θ. We explain what is meant by “salient” after we have stated and proved

the result.
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Proposition 5.2. For any L, strategy profile m̂ such that m̂ii(θi) = max {di − b, 0}
and m̂ij(θi) = min {dj + b, 1} for all j ∈ Ni, all θi and all i is a dominant

strategy equilibrium of Γ(πso) for which πsog (m̂(θ)) = 1 for all θ.

Proof. We first show thatmi withmii = max {di − b, 0} andmij = min {dj + b, 1}
for all j ∈ Ni is a dominant message at θi for all θi and all i. For any

m′i ∈Mi(θi) and any m−i, if i ∈ B2(m′i,m−i), then also i ∈ B2(mi,m−i) and

B2(mi,m−i) ⊆ B2(m′i,m−i). Thus πsoi (mi,m−i) ≥ πsoi (m′i,m−i) and mi is

at least as good as any m′i ∈ Mi(θi) for any m−i. Hence, m̂ is a dominant

strategy equilibrium.

Given m̂, m̂gg(θg) < m̂kk(θk) for all k 6= g, if dg > b, and m̂gg(θg) = 0

and r̄g(m̂(θ)) < r̄k(m̂(θ)) for all k 6= g, if dg ≤ b. Thus πsog (m̂(θ)) = 1 for all

θ.

The dominant strategy equilibrium m̂ defined in Proposition 5.2 is “salient”

in the following sense. Each agent’s strategy is a simple behavioral rule: al-

ways exaggerate to the maximum, positively about oneself and negatively

about one’s neighbors.

Mechanism πso, however, does not fully implement for all L. For some

graphs, there exist dominant strategy equilibria in which the global minimum

is identified with probability 0 for some type realizations. The following

example illustrates this.

Example 3. Assume N = {1, 2, 3} and L = {12, 23}, thus the graph is a

line. Consider m̂ such that

• m̂ii(θi) = max {0, di − b} for all θi and all i,

• m̂i2(θi) = min {d2 + b, 1} for all θi and i = 1, 3,

• m̂21(θ2) = d3 and m̂23(θ2) = d1, if d2 − dj > 2b and dj ≤ b for j = 1, 3,

and m̂2j(θ2) = min {dj + b, 1} for j = 1, 3 otherwise.

We know from the proof of Proposition 5.2 that m̂1 and m̂3 are dominant

strategies and that m̂2(θ2) is a dominant message if not both d2 − dj > 2b
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and dj ≤ b for all j = 1, 3. We show next that m̂2(θ2) is also a dominant

message if both d2 − dj > 2b and dj ≤ b for j = 1, 3.

If both d2 − dj > 2b and dj ≤ b for j = 1, 3, then m22 > mkk for k 6= 2

and thus πso2 (m2,m−2) = 0 for any m2 ∈ M2(θ2) and any m−2 ∈ M−2(θ−2).

Hence, every m2 ∈M2(θ2) is dominant if d2−dj > 2b and dj ≤ b for j = 1, 3.

Then m̂ is a dominant strategy equilibrium.

For all θ where d2−dj > 2b and dj ≤ b for j = 1, 3, m̂11(θ1) = m̂33(θ1) = 0

and the principal consults the references about 1 and 3 from 2. Agent 2 is

lying about 1 and 3 in a way that the worse agent receives the better reference.

Then πsog (m̂(θ)) = 0.

5.2 Partially honest agents

In the previous example, full implementation with mechanism πso fails be-

cause agent 2 is indifferent between all her messages when she knows that

πso2 (m2,m−2) = 0 for all m2 ∈M2(θ2). In this case, the principal cannot infer

the truth through references about the best applicants in every equilibrium

because agent 2 has multiple best responses. If agents follow a tie-breaking

rule when multiple messages maximize their expected probability of winning,

then the principal can account for the tie breaking rule in her mechanism and

deduce the truth.

One such tie-breaking rule is partial honesty as first introduced to the

implementation literature by Dutta and Sen (2012). Partial honesty means

that agents only lie if lying increases their expected probability of winning

and otherwise they tell the truth. Such preferences have a lexicographic

character: agents first care about maximizing their expected probability of

winning, and second about telling the truth.

The assumption of partial honesty is justified in situations when agents

first care about their own success and second that the chosen outcome matches

the true state. For example, an employee could prioritize being the one pro-

moted, but if he knows that he will not be promoted, then he is in favor of

promoting the most qualified person. In academic environments, a researcher

might care most about her own work being recognized, but if she knows that
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her work will not be selected, then she wants the best work to get recognition.

With partially honest agents, Maskin-/Bayesian-monotonicity and the

revelation principle still fail in our setting. Dutta and Sen (2012) find that

partial honesty can recover full implementation for complete information

setting among the agents, if Maskin-monotonicity is not satisfied. Korpela

(2014) shows that for a setting like ours without the hard evidence structure,

incentive-compatibility of the principal’s objective is sufficient and necessary

for a fully implementing mechanism to exist if all agents are partially honest.

The principal’s objective in our setting is not incentive-compatible, as follows

from the failure of the revelation principle. This implies that if there was no

hard evidence in our setting, full implementation would be impossible even

if all agents are partially honest.

In Definition 5, we present a mechanism which fully implements the prin-

cipal’s objective for class of graphs in our setup, if all agents are partially

honest. Thus, our hard evidence structure recovers full implementation. It

has not been determined which exact properties of our hard evidence struc-

ture are responsible for this and we leave this for future research.

Let Γh denote the game in which all agents are partially honest and

everything else is as in the base game introduced in Section 2. With partially

honest agents, the equilibrium definition has to be extended. The strategy

profile m̂ is an equilibrium of Γh(π) if for all i, all θi and all mi ∈Mi(θi)

1. Π(m̂i(θi), m̂−i|θi) ≥ Π(mi, m̂−i|θi), and

2. m̂i(θi) = θi if Π(θi, m̂−i|θi) ≥ Π(mi, m̂−i|θi).

In words, a strategy profile is an equilibrium, if given the others’ strate-

gies, every agent for each of her types chooses a message which maximizes

her expected probability of winning, and which is the truth if the truth max-

imizes her expected probability of winning.

Before introducing mechanism πsoh, a tweaked version of πso which yields

full implementation for a class of graphs, we show with Example 4 that the

previous mechanism πso is not successful with partially honest agents because

existence of an equilibrium is not guaranteed.
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Example 4. Assume n = 3, L complete, and b = .2. Consider θ such that

d1 = .4, d2 = .5 and d3 = .6. Suppose m̂ is an equilibrium of Γh(πso). Then

πso1 (m̂(θ)) = 1, otherwise 1 would deviate to m′1 with m′11 = .2 such that

πso1 (m′1, m̂−1(θ−1)) = 1. Hence, 2 and 3 say the truth because πso2 (m̂(θ)) =

πso3 (m̂(θ)) = 0. If 2 and 3 say the truth, then πso1 (θ1, m̂−1(θ−1)) = 1 and 1

must say the truth as well. If all agents say the truth, however, 2 deviates

to m′2 with m′22 = .3 such that πso2 (m′2, m̂−2(θ−2)) = 1. Thus no equilibrium

exists for the complete network.

We tweak πso to ensure equilibrium existence. The adjusted mechanism

πsoh forms B1(m) and B2(m), in the same way as πso. Mechanism πsoh in-

cludes another subset B3(m) ⊆ B2(m) with the purpose of incentivizing the

global minimum to “prove” that she is better than every neighbor or to con-

flict with some neighbor. We say agent i proves better than her neighbor j

with message mi if mij −mii > 2b because in this case the principal knows

with probability 1 that di < dj. We say agent i conflicts with neighbor j if

mij 6= mjj or mii 6= mji.

Definition 5. Applications-References-Honesty Mechanism πsoh

For any m ∈M ,

first choose B1(m) ⊆ N such that i ∈ B1(m) if and only if mii =

mink∈N mkk.

Second choose B2(m) ⊆ B1(m) such that

if mink∈N mkk > 0, then B2(m) = B1(m), and

if mink∈N mkk = 0, then i ∈ B2(m) if and only if r̄i(m) = mink∈B1(m) r̄k(m).

Third choose B3(m) ⊆ B2(m) such that i ∈ B3(m) if and only if 1) or 2)

is satisfied:

1) mii 6= mji or mij 6= mjj for some j ∈ Ni

2) mij −mii > 2b for all j ∈ Ni

Finally, choose πsoh(m) as follows.
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If B3(m) 6= ∅, then πsohi (m) = 1
|B3(m)| for all i ∈ B3(m).

The following allocations are “punishment allocations”:

If B3(m) = ∅ and

• |B2(m)| > 1, then πsohi (m) = 1
|B2(m)| for all i ∈ B2(m).

• B2(m) = {i}, then πsohi (m) = 0, and

– if there is j /∈ Ni, then πsohj (m) = 1
|N |−|Ni|−1

for all j /∈ Ni.

– if all j 6= i are in Ni and mij −mii > 2b for some j ∈ Ni,

then J = {j ∈ Ni|mij −mii > 2b} and πsohj (m) = 1
| J | for all

j ∈ J .

– if all j 6= i are in Ni and mij −mii ≤ 2b for all j ∈ Ni,

then πsohj (m) = 1
|N |−1

for all j 6= i.

For any m, the construction of B1(m) and B2(m) for πsoh is the same as

for πso. For B3(m), the principal selects all agents from B2(m) who prove

better than all their neighbors, or who conflict with some neighbor. For every

equilibrium of Γh which we establish in the following, B3(m) is never empty

and only agents who are in B3(m) are selected with positive probability. The

outcomes for B3(m) = ∅ are punishment allocations to prevent deviations

from equilibria in which B3(m) 6= ∅.
Our first result for πsoh is that πsoh partially implements the principal’s

objective for every L. This means that an equilibrium of Γh(πsoh) exists

for all L. The extension of πso by B3(m) successfully restores equilibrium

existence when all agents are partially honest.

Proposition 5.3. Mechanism πsoh partially implements the principal’s ob-

jective in every L.

The proof of proposition 5.3 consists of three steps. First, we define a

strategy profile m̂h. Second, we show that πsohg (m̂h(θ)) = 1 for all θ and

third, that m̂h is an equilibrium of Γh(πsoh).
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We will refer to agent i with di < dj for all j ∈ Ni and |Ni| < n− 1 as a

local minimum with partial information, to agent i with di < dj for all j ∈ Ni

and |Ni| = n − 1 as a local minimum with full information, and to agent i

with di > dj for some j ∈ Ni as non-minimal. Observe that, given a type

realization, if there exists a local minimum with full information, then this

is the global minimum and all other agents are non-minimal. If there does

not exist a local minimum with full information, then there exists at least

one local minimum with partial information and some local minimum with

partial information is the global minimum. Every local minimum with partial

information expects with positive probability to be the global minimum. A

neighbor of a local minimum is non-minimal.

Strategy profile m̂h is such that every local minimum either proves that

she is better than each of her neighbors or lies to the full extent about herself

and her neighbors. Every non-minimal agent says the truth. Specifically, let

m̂h with m̂i for all i be such that

• if i is non-minimal, then m̂i(θi) = θi.

• if i is a local minimum with partial information, then

– m̂ii(θi) = max {0, di − b}, and

– m̂ij(θi) = min {dj + b, 1} for all j ∈ Ni,

if dj − di ≤ 2b for some j ∈ Ni, and

– m̂ij(θi) = dj for all j ∈ Ni, if dj − di > 2b for all j ∈ Ni.

• if agent i is a local minimum with full information, then

– m̂ii(θi) = max {0, di − b} and m̂ij(θi) = min {dj + b, 1} for all

j ∈ Ni,

if dj − di ≤ 2b for some j ∈ Ni, and

– m̂i(θi) = θi, if dj − di > 2b for all j ∈ Ni.

Lemma 5.4. πsohg (m̂h(θ)) = 1 for all θ.
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The formal proof is in the appendix, and we explain the intuition here.

Observe first that the global minimum is always a local minimum. Every

neighbor of a local minimum is non-minimal and says the truth.

If dg > b, g sends the unique best application. In case dj − dg ≤ 2b for

some j ∈ Ng, g conflicts with a neighbor because she exaggerates. In case

dj − dg > 2b for all j ∈ Ng, g proves better than all her neighbors. Thus

B3(m̂h(θ)) = {g}.
If dg ≤ b, every local minimum i with di ≤ b sends a best application.

The global minimum uniquely receives the min-max reference because refer-

ences about all local minima are from truthful non-minimal agents. Again,

g conflicts with a neighbor if dj − dg ≤ 2b for some j ∈ Ng because g exag-

gerates, and proves better than all neighbors if dj − dg > 2b for all j ∈ Ng.

Thus B3(m̂h(θ)) = {g}.

Lemma 5.5. The strategy profile m̂h is an equilibrium of Γh(πsoh).

The formal proof is provided in the appendix. We explain the intuition

here. We show that given m̂−i, m̂i(θi) maximizes i’s expected probability

of winning and that the truth does not maximize i’expected probability of

winning if m̂i(θi) is not the truth for every θi. From this we can conclude

that m̂h is an equilibrium of Γh(πsoh).

Agent i who is a local minimum with full information knows that she is the

global minimum and that πsohi (m̂h(θ)) = 1. Trivially, her message maximizes

her expected probability of winning. Agent i only does not say the truth, if

dj − di ≤ 2b for some j ∈ Ni. If she then deviates to the truth m′i, i neither

conflict with a neighbor nor does she prove better than all of her neighbors

any longer. Thus B2(m′i, m̂−i(θ−i)) = {i} and B3(m′i, m̂−i(θ−i)) = ∅ such

that πsohi (m′i, m̂−i(θ−i)) = 0.

Agent i who is a local minimum with partial information expects with pos-

itive probability that she is g and that πsohi (m̂h(θ)) = 1. We show in the ap-

pendix that, in case i is not g, B3(m′i, m̂−i(θ−i)) = {g} and πsohi (m′i, m̂−i(θ−i)) =
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0 for any m′i ∈Mi(θi). In each case m̂i(θi) maximizes her probability of win-

ning and thus it maximizes her expected probability of winning.

If di > 0, then i expects with positive probability that she is g and that

there is another local minimum j with dj < di + b. If this is the case and i

deviates to the truth m′i, then i loses against j and πsohi (m′i, m̂−i(θ−i)) = 0.

If di = 0, then i knows that she is g and that πsohi (m̂h(θ)) = 1. Agent i only

does not say the truth, if dj−di ≤ 2b for some j ∈ Ni. If she then deviates to

the truth m′i, i neither conflict with a neighbor nor does she prove better than

all of her neighbors. Thus B2(m′i, m̂−i(θ−i)) = {i} but B3(m′i, m̂−i(θ−i)) = ∅
such that πsohi (m′i, m̂−i(θ−i)) = 0. Hence, if i does not say the truth, then

deviating to the truth strictly decreases her expected probability of winning.

Agent i who is non-minimal knows that she is not g and that πsohi (m̂h(θ)) =

0. There is no m′i ∈ Mi(θi) such that πsohi (m′i, m̂−i(θ−i)) > 0 and thus the

truth maximizes i’s expected probability of winning.

If di > b, then any application of i is worse than mgg. If di ≤ b and g is

a neighbor of i, then r̄i(m
′
i, m̂−i(θ−i)) = di + b > dg + b, and in case g is not

a neighbor of i, then r̄i(m
′
i, m̂−i(θ−i)) ≥ di > r̄g(m

′
i, m̂−i(θ−i)) = dg for all

m′i ∈Mi(θi). Thus, i /∈ B3(m′i, m̂−i(θ−i)) for any m′i ∈Mi(θi).

Agent i can also not achieve a positive probability of winning through

punishment allocations for anym′i ∈Mi(θi). For agent i to causeB3(m′i, m̂−i(θ−i)) =

∅ and B2(m′i, m̂−i(θ−i)) = {j} with j 6= i, it is necessary that j ∈ Ni

and di − dj ≤ 2b. If there is k /∈ Nj or dk − dj > 2b for k ∈ Nj, then

πsohi (m′i, m̂−i(θ−i)) = 0. If there is no k /∈ Nj or dk − dj ≤ 2b for all k ∈ Nj,

then j conflicts with all of her neighbors, and there is no deviation by i such

that B3(m′i, m̂−i(θ−i)) = ∅ and B2(m′i, m̂−i(θ−i)) = {j}.
Hence, m̂h is an equilibrium of Γh(πsoh).

Next, we find that πsoh fully implements the principal’s objective for a

class of graphs. We provide sufficient conditions for the properties of L for

πsoh to be fully implementing (Theorem 5.6).

Theorem 5.6. Mechanism πsoh fully implements with partially honest agents

in L, if L is connected and such that for all i ∈ N and all j ∈ Ni
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1. Nj\i ⊂ Ni, or

2. j is linked to every k 6= j.

In words, the sufficient conditions on L for πsoh to be fully implementing

with partially honest agent are the following: First, L is connected, and,

second, for every agent i and every neighbor j ∈ Ni, it is true that i is linked

to all the other neighbors of j or that j is linked to every other agent.

Let superscript ∗ denote that L satisfies the conditions of Theorem 5.6.

We first point out two important implications regarding the information

structure in L∗. If agent i is linked to all the other neighbors of j, then

i knows what j knows and thus i knows θj. If agent i is not linked to all

the other neighbors of j, then i does not know θj; agent j, however, has full

information and knows every agents’ type.

The formal proof for Theorem 5.6 is in the appendix and we provide the

intuition here. The first step in the proof is to show that there is at least

one agent who has full information in any L∗. Second, we prove that every

equilibrium m̂ of Γh(πsoh) is such that with probability 1, B3(m̂(θ)) 6= ∅ and

thus for all i ∈ N , πsohi (m̂(θ)) > 0 if and only if i ∈ B3(m̂(θ)). The third

part of the proof then shows that every equilibrium m̂ of Γh(πsoh) is such

that B3(m̂(θ)) = {g} with probability 1.

This third part consists of several sub-considerations.

If g is agent i with full information and πsohi (m̂(θ)) < 1, then there is a

deviation m′i such that πsohi (m′i, m̂−i(θ−i)) = 1.

Next, we consider that g is agent i with partial information. If di > b

and πsohi (m̂(θ)) < 1 with positive probability, then there is a deviation m′i

such that Π(m′i, m̂−i|θi) > Π(m̂i(θi), m̂−i|θi). Finally we suppose di ≤ b. We

find that in this case with probability 1 every equilibrium m̂ has the follow-

ing properties: Every local minimum l with dl ≤ b sends m̂ll(θl) = 0 and

m̂lj(θl) > dl + b for all j ∈ Nl with dj ≤ b. Every j who is a neighbor of a

local minimum l with dl ≤ b, or who is non-minimal with dj ≤ b says the

truth because Π(m̂j(θj), m̂−j|θj) = 0. Thus g is local minimum l with dl ≤ b

who sends m̂ll(θl) = 0, has r̄l(m̂(θ)) < r̄k(m̂(θ)) for all k 6= l in B1(m̂(θ))

and hence B2(m̂(θ)) = {g}. From B3(m̂(θ)) 6= ∅ and B3(m̂(θ)) ⊆ B2(m̂(θ))
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follows that B2(m̂(θ)) = {g}. This concludes the proof.

Corollary 5.7 provides further insight into which graphs satisfy the con-

ditions of theorem 5.6.

Corollary 5.7. L satisfies the conditions of Theorem 5.6 if and only if given

L, there is a partition of N into cliques C1, ..., CK with K ≥ 1 such that

• every i ∈ C1 is linked to all j 6= i.

• every i ∈ Ck is linked to j ∈ Cl if and only if k = l for all k, l > 1.

In words, every agent in C1 is linked to every other j ∈ N , and every agent

in Ck is linked to every other agent in Ck and to every other agent in C1,

and is not linked to any agent in other cliques. The proof is straightforward.

Proof. Take any L such that the conditions of Theorem 5.6 are satisfied.

First, assign every i who is linked to all j 6= i to C1. Second, assign i ∈ N\C1

and every j ∈ Ni who is not linked to all k 6= j to C2; observe that all agents

in C2 are fully linked among each other because Nj\i ⊂ Ni and Ni\j ⊂ Nj

for all j ∈ C2 as no agent in C2 is linked to all other agents in N ; moreover

agents in C2 do not have any links to agents in {N\C1} \C2. Third, assign

i ∈ {N\C1} \C2 and every j ∈ Ni who is not linked to all k 6= j to C3 and so

on, until all agents are assigned. This is a partition as described by Corollary

5.7.

Consider L such that there is a partition of N which satisfies the condi-

tions of Corollary 5.7. Graph L is connected because of C1. Each i ∈ C1 is

linked to all the neighbors of each of her neighbors because i is linked to every

other agent. Each i ∈ Ck for all k > 1 is linked to all the other neighbors

of j ∈ Ni if j ∈ Ck, or j has full information if j ∈ C1; this is true for all

j ∈ Ni.

The following graphs are examples of L∗. Note that any L∗ has maximum

diameter 2.5

5Suppose agent i is linked to one agent k who has full information. This means k is
linked to every agent and thus i has at most distance 2 to every other agent. Suppose
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(a) Star (b) Dutch Windmill (c) Complete Graph

Figure 2: Examples of L∗ for n = 9

The mechanism πsoh, however, does not fully implement for all graphs.

In particular, the full implementation property of mechanism πsoh is non-

monotonic in the number of links of the graphs. For an incomplete super-

graph of the star, full implementation with πsoh fails. For the complete

graph, full implementation with πsoh is recovered. This shows that more in-

formation together with more communication is not always beneficial for full

implementation.

Proposition 5.8. There is L which is a supergraph of the star and a subgraph

of the complete graph such that πsoh does not fully implement in L.

For the proof, we first define L and n. Second, we present a strategy

profile m̂l and show that m̂l is an equilibrium of Γh(πsoh). Finally, we find

Θ′ ⊂ Θ with positive measure such that πsohg (m̂l(θ)) = .5 for all θ ∈ Θ′.

Proof. Let n = 5 and L be as in Figure 3.

Define the following strategy profile m̂l.

Let m̂5(θ5) be such that

• if d5 < dj for all j 6= 5 and dj − d5 ≤ 2b for some j 6= 5, then

m̂55(θ5) = max {0, d5 − b} and m̂5j(θ5) = min {dj + b, 1} for all j 6= 5,

• if d5 < dj and dj − d5 > 2b for all j 6= 5, or if d5 ≥ dj for some j 6= 5,

then m̂5(θ5) = θ5.

agent i is not linked to an agent with full information. This means that agent i is linked
to all the neighbors of each of her neighbors. Then agent i is linked to every agent and
has distance 1 to every other agent because L is connected.
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Figure 3

In words, agent 5 fully exaggerates, if 5 is a local minimum and some neigh-

bor’s distance is relatively close to hers. Agent 5 says the truth, if she is a

local minimum and all neighbors’ distances are far, or if she is non-minimal.

Let m̂i(θi) for all i 6= 5 be such that

• if di < dj for all j ∈ Ni and

– if dj − di ≤ 2b for some j ∈ Ni, then

m̂ii(θi) = max {0, di − b} and m̂ij(θi) = min {dj + b, 1} for all

j ∈ Ni,

– if dj − di > 2b for all j ∈ Ni, then

m̂ii(θi) = max {0, di − b} and m̂ij(θi) = dj for all j ∈ Ni.

• if di ≥ dj for some j ∈ Ni and

– if di > b, or dj = 0 for some j ∈ Ni, or dj > b for all j ∈ Ni\5,

then m̂i(θi) = θi,

– if di ≤ b and dj > 0 for all j ∈ Ni and dj ≤ b for some j ∈ Ni\5,

then m̂ii(θi) = 0,

m̂ij(θi) = b for all j ∈ Ni with dj ≤ b, and

m̂ij(θi) = dj for all j ∈ Ni with dj > b.
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In words, agent i 6= 5 who is a local minimum sends the best possible ap-

plication, and if some neighbor’s distance is close, worst possible references,

or if each neighbor’s distance is far, truthful references. If agent i 6= 5 is

non-minimal, and is sufficiently bad (di > b), or knows to be linked to g

(dj = 0 for some j ∈ Ni), or all j ∈ Ni\5 are sufficiently bad (dj > b), then

i says the truth. If agent i 6= 5 is non-minimal, is sufficiently good (di ≤ b),

does not know to be linked to g (dj > 0 for all j ∈ Ni), and some j ∈ Ni\5 is

sufficiently good (dj ≤ b), then i sends the best application equal to 0, false

references equal to b about sufficiently good neighbors, and true references

about sufficiently bad neighbors.

Next, we show that m̂l is an equilibrium of Γh(πsoh). A more detailed

version of this is in the appendix.

Let m̂l(θ) = m.

First, consider the strategy of agent 5. If 5 is g, then πsoh5 (m) = 1. If

5 is not g, then πsoh5 (m) = 0, and for no m′5, 5 ∈ B2(m′5,m−5) because ei-

ther mgg < d5 − b or mgg = 0 and mg5 > dg + b. Agent 5 cannot gain via

punishment allocations neither because if B2(m′5,m−5) = {j} for j 6= 5 and

B3(m′5,m−5) = ∅, then πsohk (m′5,m−5) = 1 for k /∈ Nj. Agent 5 only does

not say the truth, if 5 is g and dj − d5 ≤ 2b for some j 6= 5. Deviating to

the truth then either leads to B2(m′5,m−5) = {5} and B3(m′5,m−5) = ∅, or

5 /∈ B3(m′5,m−5) 6= ∅. In either case, πsoh5 (m′5,m−5) = 0.

Second, consider the strategy of agent i 6= 5, if she is a local minimum.

Observe that no j ∈ Ni is in B2(m) because either mii < mjj or both mii = 0

and mij > di + b.

Suppose i is g. If j /∈ Ni says the truth, then B3(m) = {i} and πsohi (m) =

1. If j /∈ Ni does not say the truth, then mii = mjj = 0. If all j ∈ Ni send

truthful references, then r̄i(m) < r̄j(m) for j /∈ Ni and hence B3(m) = {i}.
If some j ∈ Ni sends references equal to b, then r̄i(m) = r̄j(m) for j /∈ Ni

and B3(m) = {i, j} for j /∈ Ni. In the last case, j ∈ B3(m′i,m−i) for j /∈ Ni

and πsohi (m′i,m−i) ≤ πsohi (m) for all m′i ∈Mi(θi).

Suppose i is not g. Then j /∈ Ni is g. If di > b, or if di ≤ b and all j ∈ Ni
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say the truth, then B3(m) = {g} and πi(m) = 0 and there does not exist

m′i 6= mi such that B3(m′i,m−i) 6= {g}. If di ≤ b and some j ∈ Ni does not

say the truth, then r̄i(m) = r̄g(m) = b and B3(m) = {g, i} and there does

not exist m′i 6= mi such that g /∈ B3(m′i,m−i).

Thus mi maximizes i’s expected probability of winning. We show next

that deviating to the truth, if mi is not the truth, strictly decreases i’s

expected probability of winning.

If di > 0, then i expects with positive probability to be g and that

j /∈ Ni is also a local minimum with dj ∈ (di,min {di + b, 1}) such that

πsohi (m) ≥ 1
2
. A deviation to the truth m′i causes i to lose against j /∈ Ni

and πsohi (m′i,m−i) = 0. If di = 0, i is g and πsohi (m) = 1. In this case, agent

i only does not say the truth in case dj ≤ 2b for some j ∈ Ni. A deviation

to the truth m′i leads to i ∈ B2(m′i,m−i) and B3(m′i,m−i) = ∅ such that

πsohi (m′i,m−i) = 0.

Third, consider the strategy of agent i 6= 5, if she is non-minimal and

says the truth such that πsohi (m) = 0. In this case, there is no m′i ∈ Mi(θi)

such that i ∈ B2(m′i,m−i) because mgg < m′ii or r̄g(m
′
i,m−i) < r̄i(m

′
i,m−i)

for all m′i ∈ Mi(θi). Agent i can also not gain through the punishment

allocations. For all m′i ∈ Mi(θi) and for j /∈ Ni, B3(m′i,m−i) = {j} if j

is g, or j /∈ B2(m′i,m−i) if j is not g, and B3(m′i,m−i) = {5} if 5 is g, or

5 /∈ B1(m′i,m−i) if 5 is not g. So the truth maximizes agent i’s expected

probability of winning.

Finally, consider the strategy of agent i 6= 5, if she is non-minimal and

does not say the truth. Suppose g /∈ Ni. If dg > 0, then r̄i(m) = r̄g(m) = b

such that B3(m) = {g, i}. For any m′i 6= mi, g ∈ B3(m′i,m−i). If dg = 0,

then B3(m) = {g} and B3(m′i,m−i) = {g} for all m′i 6= mi.

Suppose g ∈ Ni. Then i /∈ B3(m) 6= ∅ and πi(m) = 0. For all m′i 6= mi,

k /∈ B2(m′i,m−i) because mgg = 0 and mgk > dg + b for all k ∈ Ng. If 5 is g,

then B3(m′i,m−i) = {g} for all m′i 6= mi because 5 conflicts with all j ∈ N5\i.
Thus mi maximizes agent i’s expected utility. A deviation to the truth

strictly decreases agent i’s expected utility because i assigns strictly positive

probability to g /∈ Ni and dg > 0 such that B3(m) = {g, i}. For this case,
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deviating to the truth m′i results into B3(m′i,m−i) = {g}.

For all θ, either B3(m̂l(θ)) = {g} or B3(m̂l(θ)) = {g, j} where j /∈ Ng and

thus πsohg (m̂l(θ)) = 1 or πsohg (m̂l(θ)) = 1
2
.

If 0 < d1 < dj < d5 ≤ b for all j = 2, 3, 4, then m̂5(θ5) = θ5, m̂ii(θi) = 0

for all i 6= 5, m̂1j(θ1) = dj + b for all j ∈ N1, and m̂ij(θ1) = b for all j ∈ Ni

and all i = 2, 3, 4. Thus B3(m̂l(θ)) = {1, 3}. The lie is optimal for 2 and 4

because each of them assigns a positive probability to the other one being g

which would mean B3(m̂l(θ)) = {2, 4}.

5.3 Noisy communication

When communication is noisy, then the simpler mechanism πso achieves full

implementation in expectation for every L, independent of partial honesty.

The reason is that fully exaggerating about oneself and about neighbors

becomes the unique expected utility maximizing message for any strategy

profile of others. For simplicity, we drop the assumption of partial honesty

again for this section.

We define noisy communication in the following way. For any mi which

agent i sends the principal receives message m̃i with m̃ik = mik + εik for all k

and all i where εik is a statement-specific noise term which is independently

and identically drawn from a continuous distribution with mean 0 and full

support on [−mik, 1 − mik] with likelihood strictly decreasing in the abso-

lute size of the error. We denote the game with noisy communication and

everything else as in the base game by Γn. Thus, an agent’s action set in

Γn(π) is still restricted by the limit to lying. However, for any statement

mik chosen by agent i, the principal receives the noisy version m̃ik where m̃ik

can take any value in [0, 1] with higher likelihood for values closer to mik.

Let m̃ denote the message profile received from the principal when agents

choose message profile m. The outcome then is a function of m̃ and agent

i’s probability of receiving the prize is given by πi(m̃).

Proposition 5.9. The unique equilibrium of Γn(πso) for any L is m̂ such
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that m̂ii(θi) = max {0, di − b} and m̂ij(θi) = min {dj + b, 1} for all j ∈ Ni,

all θi and all i. The mechanism πso fully implements the principal’s objective

in expectation for all L.

The proof follows immediately from the following observation. Any agent

i for any θi, any mi ∈ Mi(θi) and any m̂−i expects with positive probability

that m̃ii ≤ m̃kk for all k 6= i and that if m̃ii = 0, then r̄i(m̃) < r̄k(m̃) for

all k 6= i for whom m̃kk = 0. This probability is maximized if and only if

mii = max {0, di − b} and mij = min {dj + b, 1} for all j ∈ Ni. This means

given πso, the unique expected utility maximizing message for any m̂−i is

mii = max {0, di − b} and mij = min {dj + b, 1} for all j ∈ Ni.

Given the unique equilibrium m̂ of Γn(πso), the expected message profile

which the principal receives is E[m̃] = m̂(θ) and thus the expected probability

with which the global minimum gets the prize for any θ is E[πsog (m̃)] =

πsog (E[m̃]) = πsog (m̂(θ)) = 1.

6 Conclusion

This paper studies how a principal can allocate a prize to the best agent

in every equilibrium, if transfers and disposal of the prize are not possible,

and if agents have a limit to lying. The limit to lying is essential – without

it, full implementation would be impossible in our setting. Two intuitive

mechanisms which allocate the prize as a function of either applications or

references only do not achieve full implementation. We propose mechanism

πso which allocates the prize as a function of the best application and worst

references. This mechanism partially implements the principal’s objective

in all networks in dominant strategies and fully implements in the complete

network. If agents are partially honest, then mechanism πsoh is partially im-

plementing in all networks, and fully implementing in for a class of networks.

If communication is noisy, then πso fully implements in expectation in all

networks.

We achieve all our implementation results via untruthful equilibria. This

raises an important issue. If agents have a limit to lying, then the concern in
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the literature about truthful revelation might not be justified. The principal

can equally well, maybe better, achieve her goals, if agents are dishonest.

Dishonesty is not harmful in our setting because agents are dishonest in

predictable ways. We can find many real world examples where agents are

dishonest in predictable ways. If an individual is asked to submit support-

ing materials for an application, then anyone most likely submits the most

positive evidence, although this evidence is an outlier to the top – think of

your best teaching evaluations versus your average teaching evaluation. A

concern for further research is then how the principal can ensure a limit to

lying and determine its extent.

Another question raised by this paper is the effect of tie-breaking rules

other than partial honesty in case agents have multiple best replies. For

example, favoritism or spitefulness are two important behavioral considera-

tions. Moreover, the assumption that knowledge between two linked agents

is perfect should be challenged. If knowledge is imperfect, then the num-

ber of references for each individual should gain importance. A theoretical

question which needs more investigation is which exact properties of hard

evidence are important for full implementation in Bayesian settings.
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Appendix

Proof of Lemma 5.4.

Proof. For any θ, g is a local minimum. Every local minimum sends her best

possible application unless she has full information and dj − dg > 2b for all

j ∈ Ng in which case she says the truth. This implies that if m̂gg(θg) > 0, then

m̂gg(θg) is the unique best application and B1(m̂h(θ)) = B2(m̂h(θ)) = {g}.
If m̂gg(θg) = 0, then g ∈ B1(m̂h(θ)) and g uniquely receives the min-max

reference among all agents in B1(m̂h(θ)) because the neighbors of every local

minimum are non-minimal and send truthful references about all agents in

B1(m̂h(θ)). Thus B2(m̂h(θ)) = {g} as well. It is left to show that g is also in

B3(m̂h(θ)). The global minimum lies about her neighbors if dj − dg ≤ 2b for

j ∈ Ng. Then g conflicts with her neighbors because her neighbors are non-

minimal and send truthful applications. If dj−dg > 2b for all j ∈ Ng, then the

global minimum says the truth about her neighbors and m̂gj(θg)− m̂gg(θg) >

2b for all j ∈ Ng. Hence, B3(m̂h(θ)) = {g} and πsohg (m̂h(θ)) = 1 for all θ.

Proof of Lemma 5.5.

Proof. Let m̂h = m̂ and m̂(θ) = m. We show in turn that, given m̂−i, mi

maximizes i’s expected probability of winning and mi = θi if the truth maxi-

mizes i’s probability of winning for θi =local minimum with full information,

θi =local minimum with partial information, and θi =non-minimal.

Consider first that agent i is a local minimum with full information. Then

agent i knows that she is the global minimum and that πi(m) = 1. Trivially,

mi maximizes i’s expected probability of winning. If mi is not the truth,

then the distance of some neighbor j ∈ Ni is close to di. By unilaterally

deviating to the truth m′i, agent i would not conflict with any of her neigh-

bors anymore because her neighbors are non-minimal and say the truth. At

the same time, agent i would not prove to be better than all of her neigh-

bors because dj − di ≤ 2b for some j ∈ Ni and hence i /∈ B3(m′i,m−i) but

B2(m′i,m−i) = {i}. Then agent i would be selected with probability 0 and
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deviating to the truth would strictly decrease i’s expected probability of win-

ning.

Consider second that agent i is a local minimum with partial information.

Then agent i expects with positive probability to be the global minimum and

hence that πi(m) = 1. If she is not the global minimum, then πi(m) = 0

and another local minimum agent g who is not her neighbor is the global

minimum. For any other m′i 6= mi, first, g still sends the overall best ap-

plication because mii is already i’s best application, second, g still receives

the min-max reference among agents in B1(m′i,m−i) because i can neither

change the references about herself nor about g or any other agent in B1(m)

who are all local minima , and third, g still conflicts with every neighbor

j ∈ Ng for whom dj − dg ≤ 2b. Hence for any m′i 6= mi, B3(m′i,m−i) = {g}.
Thus mi maximizes i’s expected probability of winning.

Next, observe that Π(mi, m̂−i|θi) > Π(θi, m̂−i|θi) if mi is not the truth.

Agent i expects with strictly positive probability that she is the global mini-

mum and that there exists another local minimum j with dj ∈ (di, di + b) who

sends mjj = max {0, dj − b}. Suppose this is indeed the case. If di > 0 and

i deviates to the truth m′i = θi with m′ii = di, then her application is worse

than j’s and B3(m′i,m−i) 6= ∅ but i /∈ B3(m′i,m−i) such that πi(m
′
i,m−i) = 0.

If di = 0, agent i only does not say the truth in case she has a neighbor k with

dk − di ≤ 2b. By deviating to the truth m′i = θi, agent i still sends the best

application and receives the min-max reference but neither conflicts with a

neighbor nor proves better than all her neighbors. Thus B3(m′i,m−i) = ∅
and B2(m′i,m−i) = {i} such that πi(m

′
i,m−i) = 0.

Consider third that agent i is non-minimal. Agent i knows that she is

not the global minimum g and that πi(m) = 0. We show that there does not

exist a message m′i such that Π(m′i, m̂−i|θi) > 0.

First, observe that there does not exist m′i such that i /∈ B2(m′i,m−i) and

hence i never gets selected with πi(m
′
i,m−i) > 0 as a member of B2(m′i,m−i)

or B3(m′i,m−i) for any m′i. If di > b, then agent i’s best feasible application

is strictly worse than the best application of the global minimum and hence
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i /∈ B1(m′i,m−i) for any m′i. If di ≤ b, then agent i can choose m′ii = 0

and, consequently, will be in B1(m′i,m−i). However, i /∈ B2(m′i,m−i) for

any m′i: If g is a neighbor of i, then the maximum reference about i is

ri(m
′
i,m−i) = di + b and i can increase the maximum reference about g to at

most rg(m
′
i,m−i) = dg + b which is still strictly less than ri(m

′
i,m−i). If g is

not a neighbor of i, then i cannot increase the maximum reference about g

and rg(m
′
i,m−i) = dg < ri(m

′
i,m−i) ∈ {di, di + b} for any m′i.

Second, observe that there does not exist m′i such that i gets selected

with πi(m
′
i,m−i) > 0 if B3(m′i,m−i) = ∅ and B2(m′i,m−i) = {j} where

j 6= i. For agent j to be in B2(m′i,m−i) and not in B3(m′i,m−i), j must

send the best application, must receive the min-max reference among all

agents in B1(m′i,m−i) in case the best application is zero, and must not

conflict with any neighbor where mjk − mjj ≤ 2b for some k ∈ Nj, given

(m′i,m−i). The only candidate agents j to be in B2(m′i,m−i) are those who

did already sent mjj = mink∈N mkk before any deviation of agent i. These

are the global minimum g and other local minima l with dl ≤ b. Before any

deviation of i, g and every l conflict with each of their neighbors k ∈ Nj

for whom mjk − mjj ≤ 2b for j = l, g . In order for j ∈ B2(m′i,m−i) and

j /∈ B3(m′i,m−i), m
′
i must be such that j does not conflict any more with

any of her neighbors k ∈ Nj and mjk −mjj ≤ 2b for some k. For such m′i

to exist, i must be a neighbor of j and mji − mjj ≤ 2b. Assume such m′i

exists. If there exists some agent k 6= i who is not a neighbor of j, then still

πi(m
′
i,m−i) = 0. If every agent k 6= i is a neighbor of j and there is some k

for whom mjk −mjj > 2b, then still πi(m
′
i,m−i) = 0. If every agent k 6= i is

a neighbor of j and mjk −mjj ≤ 2b for all k, then such m′i cannot exist: By

assumption, |Nj| ≥ 2 because |N | ≥ 3. So even if agent i chooses a message

such that she does not conflict with agent j, there is at least one other agent

k with whom agent j is conflicting and j cannot be in B2(m′i,m−i) without

being in B3(m′i,m−i).

Thus, Π(m′i, m̂−i|θi) = 0 for every m′i 6= mi and the true message mi

maximizes i’s expected probability of winning.

Then m̂h is an equilibrium.
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Proof of Theorem 5.6.

Proof. Let the graph be connected and such that for all i and all j ∈ Ni,

Nj\i ⊂ Ni, or j is linked to all k 6= j. If i is linked to all neighbors k 6= i of

her neighbor j ∈ Ni, then i knows j’s type. If i is not linked to all neighbors

k 6= i of j ∈ Ni but j is linked to all k 6= j, then i does not know j’s type.

Agent j however knows every agent’s type.

First, we show that there exists at least one agent who is linked to every

other agent and thus has full information. If Nj\i ⊂ Ni for all j ∈ Ni, then

i has full information. To see why, suppose i does not have full information.

But then there must exist some k ∈ Nj for some j ∈ Ni to whom i is

not linked, meaning k /∈ Ni, because the graph is connected. This is a

contradiction. If Nj\i ⊂ Ni not for all j ∈ Ni, then there is some j ∈ Ni who

has full information. Let F be the set of all agents with full information in

L.

Second, we show that every equilibrium m̂ is such that B3(m̂(θ)) 6= ∅
with probability 1.

Suppose to the contrary that there is an equilibrium m̂ such thatB3(m̂(θ)) =

∅ and f ∈ B2(m̂(θ)) for some θ and f ∈ F . We show that there exist m′f such

that Π(m′f , m̂−f |θf ) > Π(m̂f (θf ), m̂−f |θf ) and thus m̂ is not an equilibrium.

As f knows the type of every agent, f knows m = m̂(θ) and that B3(m) =

∅ and f ∈ B2(m) and thus πf (m) ≤ 1
2
. As B3(m) = ∅ and f ∈ B2(m), m

must be such that f sends the best application, gets the min-max reference

if mff = 0, and does neither conflict with any neighbor nor proves better

than all of her neighbors.

If mff > max {0, df − b}, then f can deviate to m′ff = max {0, df − b}
and m′fj = mfj for all j ∈ Nf . The deviation leads to B3(m′f ,m−f ) = {f}
and πf (m

′
f ,m−f ) = 1.

If mff = max {0, df − b}, then f can deviate to m′ff = mff and m′fk > 0

such that m′fk 6= mfk for all k /∈ B2(m) and m′fj = mfj for all j 6= k, f . This

leads to B3(m′f ,m−f ) = {f} and πf (m
′
f ,m−f ) = 1. If every k 6= f is also

in B2(m), then deviating to m′ff = mff and m′fk > 0 such that m′fk 6= mfk
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for exactly one k 6= f and m′fj = mfj for all j 6= k, f . Then πf (m
′
f ,m−f ) ≥

1/2 > 1/n = πf (m) because after f ’s deviation either B3(m′f ,m−f ) = {f}
(if mff = 0) or B3(m′f ,m−f ) = {f, k} (if mff > 0).

Thus, there always exists a deviation m′f such that Π(m′f , m̂−f |θf ) >

Π(m̂f (θf ), m̂−f |θf ) if f ∈ B2(m̂(θ)) and B3(m̂(θ)) = ∅. Then, m̂ is not an

equilibrium.

Next, suppose there is an equilibrium m̂ for which m̂(θ) = m such that

B3(m) = ∅ and f /∈ B2(m) for all f ∈ F has positive probability. Then

B3(m) = ∅ and j ∈ B2(m) with j /∈ F has positive probability. Agent j

always has a neighbor f ∈ F .

We show that there exist m′j such that Π(m′j, m̂−j|θj) > Π(mj, m̂−j|θj)
and thus m̂ is not an equilibrium.

If B3(m) = ∅ and f /∈ B2(m), then πf (m) = 0 because either the prize is

assigned to all agents in B2(m) or to an agent k /∈ Nj if B2(m) = {j}. Thus,

f must say the truth. As j does not conflict with f it must be true that

mjf = df = mff and mjj = dj = mfj. Also j must send a best application,

hence mjj = dj < df = mff since dj 6= df .

If df > mjj = dj > 0, then j can deviate tom′jj < dj, m
′
jf > mjj such that

m′jf 6= df for all f and m′jk = mjk for all k 6= f . Then B3(m′j,m−j) = {j}
and πj(m

′
j,m−j) = 1. If πj(m) > 0 and it is not the case that j ∈ B2(m)

and B3(m) = ∅, then either j ∈ B3(m) or B2(m) = {k} for k /∈ Nj and

B3(m) = ∅. In these cases deviating to m′j either leads to B3(m′j,m−j) =

{j} or to B2(m′j,m−j) = {k} for k /∈ Nj and B3(m′j,m−j) = ∅ and thus

πj(m
′
j,m−j) ≥ πj(m). Observe that after the deviation j now sends a better

application than before and j surely conflicts with f . The certain conflict

with f stems from the fact that in each of the two cases, either mff ≤ mjj

if f ∈ B3(m) or mff = df if f /∈ B3(m) because f only lies if this increases

her chances of receiving the prize.

If mjj = dj = 0, then j can deviate to m′jj = 0, m′jk = mjk for all

k 6= f , and m′jf > b such that m′jf 6= df for all f . If j ∈ B2(m) and

B3(m) = ∅, then B3(m′j,m−j) = {j}. If πj(m) > 0 and not j ∈ B2(m) and

B3(m) = ∅, then either j ∈ B3(m′j,m−j) ⊆ B3(m) or still B2(m′j,m−j) = {k}
for k /∈ Nj and B3(m′j,m−j) = ∅ and thus πj(m

′
j,m−j) ≥ πj(m). Again
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j surely conflicts with f after the deviation because either mff = mjj if

f ∈ B3(m) or mff = df if f /∈ B3(m) because f only lies if this increases her

chances of receiving the prize.

Hence, if there is a positive probability that m̂(θ) = m such that B3(m) =

∅, f /∈ B2(m) for all f and j ∈ B2(m) where j is an agent with par-

tial information, then there always exists m′j such that Πj(m
′
j, m̂−j|θj) >

Πj(m̂j(θj), m̂−j|θj). Then m̂ is not equilibrium.

Hence, every equilibrium m̂ is such that B3(m) 6= ∅ and thus πi(m) > 0

if and only if i ∈ B3(m) for all i ∈ N with probability 1.

Next, we show that every equilibrium m̂ is such that B3(m) = {g} with

probability 1.

Suppose to the contrary that there is an equilibrium m̂ in which with

positive probability m̂(θ) = m such that B3(m) 6= {g} where g is f ∈ F . If

B3(m) 6= {f}, then f can deviate to m′ff = max {0, df − b} (the best possible

application in the population), and any m′fj 6= mjj if m′ff > 0 or m′fj > df +b

such that m′fj 6= mjj if m′ff = 0 for all j ∈ Nf . Then B3(m′f ,m−f ) = {f}
and hence m̂ is not an equilibrium. Thus, every equilibrium m̂ is such that

with probability 1 B3(m) = {g}where m̂(θ) = m if g is some f ∈ F .

Suppose second that there is an equilibrium m̂ in which with positive

probability m̂(θ) = m such that B3(m) 6= {g} where g is local minimum

agent i /∈ F . Observe that every j ∈ Ni must also be linked to all other

k ∈ Ni and hence knows θi because i does not have full information.

If di > b and mii = 1, then i can deviate to any m′i such that m′ii = di− b
and m′if = 1 for all f ∈ F . If i is g and B3(m) 6= {i}, then after the

deviation i sends the best application and surely conflicts with any f ∈ F .

Thus B3(m′i,m−i) = {i}. The conflict with f is certain: If df = 1 and

mff = 1, then the truth is equally good as any lie and f says the truth with

mfi = di 6= m′ii in any equilibrium. If df = 1 and mff < 1, then obviously

m′if 6= mff . If df < 1, then the truth is at least as good as any lie with

mff = 1 and thus f strictly prefers the truth and sends mff < 1 = m′if in
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any equilibrium. In any other case where i ∈ B3(m) also B3(m′i,m−i) = {i}
for the same reasons as above.

If di > b and mii < 1, then i can deviate to any m′i such that m′ii =

di − b and m′if > mii and m′if 6= df for all f . After the deviation, i surely

conflicts with any f ∈ F because in any equilibrium either mff ≤ mii if

f ∈ B3(m) or f says the truth with mff = df if f /∈ B3(m). If i is g and

B3(m) 6= {i}, then B3(m′i,m−i) = {i}. In any other case where i ∈ B3(m),

then i ∈ B3(m′i,m−i) ⊆ B3(m).

Hence, Π(m′i, m̂−i|θi) > Π(m̂i(θi), m̂−i|θi) in both cases and m̂ was not

an equilibrium. Thus, every equilibrium m̂ is such that with probability 1

B3 = {g} if g is local minimum agent i with partial information and di > b.

Next assume di ≤ b.

Suppose agent i expects with positive probability that m̂(θ) = m for

which some agent j with dj > b is in B3(m). Agent i can only assign a

positive probability to this if mii > 0 and mjj > 0 for all j /∈ F who are in Ni.

Then i can deviate to any m′i such that m′ii = 0 and m′if > max {di + b,mii}
with m′if 6= df for all f ∈ F . After the deviation, i surely conflicts with any

f ∈ F because again either mff ≤ mii or mff = df . If j ∈ B3(m) with

dj > b, then B3(m′i,m−i) = {i}. In any other case where i ∈ B3(m), also

B3(m′i,m−i) = {i}. Thus, Π(m′i, m̂−i|θi) > Π(m̂i(θi), m̂−i|θi) if di ≤ b and m̂

is not an equilibrium.

Hence, there is no equilibrium m̂ in which with positive probability m̂(θ) =

m such that some j ∈ B3(m) with dj > b if j is not g. Thus, every equilib-

rium m̂ is such that with probability 1 j is not in B3(m) and πj(m) = 0 for

all such j. Then, every j with dj > b who is non-minimal says the truth in

every equilibrium m̂.

Next, we show that every f ∈ F with df ≤ b also says the truth in every

equilibrium m̂. Let C = {i, Ni\F}. Let f1(A) be agent i ∈ A ⊆ F such that

di ≤ dk for all k ∈ A and any A ⊆ F . Thus f1(A) is the “best” agent in

A ⊆ F . Let D = {i|i ∈ F, di ≤ b}.
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Suppose df ≤ b for some f ∈ F .

Suppose m̂ is an equilibrium in which with positive probability m̂(θ) = m

such that mkk > 0 for all k ∈ C. In this case and if all k /∈ Ni have dk > b

and say the truth, then agent f1(F ) chooses mf1 such that B3(m) = {f1}
to maximize πf1 . Then, i can deviate to any m′i with m′ii = 0 and m′if >

max {di + b,mii} such that m′if 6= df for all f which leads to B3(m′i,m−i) =

{i}. In any other case where i ∈ B3(m), also B3(m′i,m−i) = {i}. Thus,

Π(m′i, m̂−i|θi) > Π(m̂i(θi), m̂−i|θi) and m̂ is not an equilibrium. Then every

equilibrium m̂ must be such that mkk = 0 for some k ∈ C with probability

1.

Suppose m̂ is an equilibrium in which with positive probability m̂(θ) = m

such that mkk = 0 for some k ∈ C, maxl∈Cmlf ≤ dk + b for all f ∈ A ⊆ D

and all k ∈ C who send mkk = 0, and maxl∈Cmlf > dk + b for all f ∈ D\A
and some k ∈ C who sends mkk = 0. In words, at least one agent in C sends

a zero application, the references agents in C send about agents in A ⊆ D

are weakly less than dk + b for all k ∈ C who send a zero application, and

some reference agents in C send about agent f for all f ∈ D\A is strictly

greater than dk + b for some k ∈ C who sends a zero application.

First, every f ∈ F\D is saying the truth as shown before. Second every

f ∈ D\A is saying the truth because r̄f (mf ,m−f ) > mink∈B1(m) r̄k(mf ,m−f )

for any mf . Third, we consider agents in A. Suppose |A| > 1 and a sub-

set L ⊆ A with |L| > 1 is lying which means that all l ∈ L must be in

B3(m). Thus mll = 0 and r̄l(m) = mink∈B1(m) r̄k(m) for all l ∈ L. Then

however f1(L) can deviate to a message m′f1 such that r̄l(m
′
f1
,m−f1) >

mink∈B1(m′f1
,m−f1

) r̄k(m
′
f1
,m−f1) for all l ∈ L\f1 and then πf1(m

′
f1
,m−f1) >

πf1(m) and m̂ is not an equilibrium. Next consider |L| = 1 with L = {l}. If

dk > b for all k /∈ Ni and thus all k /∈ Ni and all f ∈ F\l say the truth, then

agent l chooses a lie ml, e.g. mll = 0 and mlj = min {dj + b, 1} for all j 6= l,

such that B3(m) = {l}. Then however the global minimum agent i ∈ C

can deviate to a message m′i such that m′ii = 0 and m′ij = min {dj + b, 1}
for all j ∈ Ni and B3(m′i,m−i) = {i}. In any other case where i ∈ B3(m),

as well B3(m′i,m−i) = {i} because i surely conflicts with f ∈ F who sends

mff ∈ {0, df} for all f ∈ F . Then Π(m′i, m̂−i|θi) > Π(m̂i(θi), m̂−i|θi) and
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m̂ is not an equilibrium. Suppose |A| = 1. If dk > b for all k /∈ Ni and

thus all k /∈ Ni and all f ∈ F\A say the truth, then agent f ∈ A chooses

lie mf , e.g. mff = 0 and mfj = min {dj + b, 1} for all j 6= f , such that

B3(m) = {f}. Then however the global minimum agent i ∈ C can devi-

ate to a message m′i such that m′ii = 0 and m′ij = min {dj + b, 1} for all

j ∈ Ni and B3(m′i,m−i) = {i}. In any other case where i ∈ B3(m), as

well B3(m′i,m−i) = {i} because i surely conflicts with f ∈ F who sends

mff ∈ {0, df} for all f ∈ F . Then Π(m′i, m̂−i|θi) > Π(m̂i(θi), m̂−i|θi) and

m̂ is not an equilibrium. Hence, every equilibrium must be such that with

probability 1, |A| = 0, meaning that maxl∈Cmlf > dk + b for all f ∈ D and

some k ∈ C who sends mkk = 0, and hence all agents f ∈ F say the truth.

Next, we show that every equilibrium m̂ is such that with probability

1 every neighbor j ∈ Nl\F with dj ≤ b of a local minimum l with partial

information says the truth. The reason is that every equilibrium m̂ is such

that if a local minimum l with partial information has a neighbor j ∈ Nl\F
with dj ≤ b, then l sends ml with mll = 0 and mlj > dl + b for all j ∈ Nl\F
with dj ≤ b with probability 1.

Any local minimum l who has dl ≤ b and partial information, and all

her neighbors j ∈ Nl\F expect with positive probability that l is g and that

dk > b for all k /∈ Nl. Keep in mind for the proof that all f ∈ F and every

non-minimal agent k with dk > b say the truth.

Let Dl = {j|j ∈ {l, Nl\F} , dj ≤ b}. Only if |Dl| > 1, agent l has a

neighbor j ∈ Dl\l who has dj ≤ b. Hence, assume |Dl| > 1.

Suppose there is an equilibrium m̂ such that mink∈Dl\jmkk > 0 for some

j ∈ Dl\l. Thus j chooses mj with mjj < mink∈Dl\jmkk to maximize her

expected probability of being selected. Then, however, l can deviate to m′ll =

0 and m′lj = min {dj + b, 1} for all j ∈ Nl. If l is g and all k /∈ Nl have

dk > b, then B3(m′l,m−l) = {l}. In any other case where l ∈ B3(m), as well

B3(m′l,m−l) = {l}. Then Π(m′l, m̂−l|θl) > Π(m̂l(θl), m̂−l|θl) and m̂ is not an

equilibrium.

Suppose there is an equilibrium m̂ in which there is j ∈ Dl\l such that

mink∈Dl\jmkk = 0 and maxh∈Dl\jmhj ≤ dk + b for all k ∈ Dl\j who send
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mkk = 0. Thus j chooses some lie with mjj = 0 and mjk ≥ maxh∈Dl\jmhj

for all k ∈ Dl\j who send mkk = 0. Then, however, l can deviate to m′ll = 0

and m′lj = min {dj + b, 1} for all j ∈ Nl. If l is g and all k /∈ Nl have

dk > b, then B3(m′l,m−l) = {l}. In any other case where l ∈ B3(m), as well

B3(m′l,m−l) = {l}. Then Π(m′l, m̂−l|θl) > Π(m̂l(θl), m̂−l|θl) and m̂ is not an

equilibrium.

Thus every equilibrium m̂ is such that for all j ∈ Dl\l, mink∈DC\jmkk = 0

and maxh∈Dl\jmhj > dk + b for some k ∈ Dl\j who sends mkk = 0. Then,

however, Π(mj, m̂−j|θj) = 0 for all mj and all j ∈ Dl\l. Thus all j ∈ Dl\l
say the truth. Hence, if agent l has a neighbor j ∈ Nl\F with dl ≤ b, then

l sends ml with mll = 0 and mlj > dl + b for all j ∈ Nl\F with dj ≤ b with

probability 1.

Next, we show that every equilibrium m̂ is such that with probability

1 every local minimum l who has dl ≤ b and partial information but no

neighbor j ∈ Nl\F with dj ≤ b sends ml with mll = 0.

Suppose m̂ is an equilibrium such that with positive probability a local

minimum l who has dl ≤ b and partial information but no neighbor j ∈ Nl\F
with dj ≤ b sends ml with mll > 0. Then there is a positive probability

that some k /∈ Nl is a local minimum with dk ≤ b and every j /∈ Nl with

j 6= k has dj > b. Thus in order to maximize her expected probability

of being selected mk must be such that mkk < mll. Then however, l can

deviate to m′l with m′ll = 0 and mlj = {dj + b, 1} for all j ∈ Nl such that

Π(m′l, m̂−l|θl) > Π(m̂l(θl), m̂−l|θl) and m̂ is not an equilibrium.

Thus, every equilibrium is such that every local minimum l with partial

information and dl ≤ b sends mll = 0 and receives only truthful references

from her neighbors. As the global minimum is local minimum with partial

information and dg ≤ b, mgg = 0 and r̄g = dg.

Next, we show every equilibrium m̂ is such that every non-minimal agent

k /∈ F with dk ≤ b who is not linked to a local minimum with partial

information says the truth. Observe that agent j with dj = minh∈Nk
dh is in

F . Thus agent k expects with probability 1 that either f ∈ F is g or that

a local minimum l with dl ≤ b and partial information is g. If f is g, then

πk(mk,m−k) = 0 for all mk in every equilibrium. If local minimum l with
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dl ≤ b and partial information is g, then πk(mk,m−k) = 0 for all mk in every

equilibrium as well because mgg = 0 and r̄g(mk,m−k) < r̄k(mk,m−k). Thus

Π(mk, m̂−k|θk) = 0 for all mk in every equilibrium and k says the truth.

Thus, every equilibrium is such that if a local minimum l /∈ F with dl ≤ b

is g, then mkk = 0 if and only if k is a local minimum l /∈ F with dl ≤ b.

Every neighbor of local minimum l /∈ F with dl ≤ b says the truth. Thus

the local minimum l /∈ F with dl ≤ b who is g sends mll = mink∈N mkk and

receives r̄l < r̄k for all k 6= l in B1(m). Then B2(m) = {g}. Since B3(m) 6= ∅
and B3(m) ⊂ B2(m), B3(m) = {g} in every equilibrium with probability

1.

Proof of Proposition 5.8.

Let m̂l = m̂. We show for all i and all θi that given m̂−i, m̂i is such that

Π(m̂i(θi), m̂−i|θi) ≥ Π(mi, m̂−i|θi) for allmi ∈Mi(θi) and Π(m̂i(θi), m̂−i|θi) >
Π(θi, m̂−i|θi) if m̂i(θi) 6= θi.

Let m̂(θ) = m.

First consider i = 5. Consider any θ5 such that 5 is g, thus a local

minimum with full information. Then π5(m) = 1. Agent 5 only does not say

the truth if dj−d5 ≤ 2b for some j ∈ N5. Suppose all neighbors say the truth.

If 5 deviates to the truth m′5, then B3(m′5,m−5) = ∅ and B2(m′5,m−5) = {g}.
Suppose some neighbor j does not say the truth because dj ≤ b and d5 > 0.

If 5 deviates to the truth, then mjj = 0 < m′55 = d5. Thus 5 /∈ B3(m′5,m−5)

but B3(m′5,m−5) 6= ∅. In both cases, π5(m′5,m−5) < 1.

Consider any θ5 such that 5 is not g. Then π5(m) = 0 and g ∈ B3(m).

Agent g sends mgg = max {0, dg − b}. If mgg > 0, then d5 − b > mgg. If

mgg = 0 and d5 ≤ b, then mg5 = d5 + b > dg + b. Thus, 5 /∈ B2(m′5,m−5)

for any m′5 ∈ M5(θ5). Moreover, if B2(m′5,m−5) = {j} with j 6= 5 and

B3(m′5,m−5) = ∅, then πg(m
′
5,m−5) = 0 because k /∈ Nj gets the prize.

Hence, π5(m′5,m−5) = 0 for every m′5 ∈M5(θ).

Consider second i 6= 5.

Consider any θ such that i is a local minimum with partial information.
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Observe that no neighbor j ∈ Ni is in B2(m) because either mii < mjj, or

mii = mjj = 0 but mij = dj + b > di + b.

Suppose i is g.

If dj > b for j /∈ Ni, then B3(m) = {i} because mii = mink∈N mkk,

ri(m) = mink∈B1(m) rk(m) and i conflicts with neighbor j ∈ Ni if mij−mii ≤
2b. Thus πi(m) = 1.

If dj ≤ b for j /∈ Ni and j says the truth, then B3(m) = {i} and hence

πi(m) = 1.

If dj ≤ b for j /∈ Ni and j does not say the truth, then mii = mjj = 0 for

j /∈ Ni. If all j ∈ Ni send truthful references, then B3(m) = {i} and hence

πi(m) = 1. If some j ∈ Ni sends references equal to b about i and j /∈ Ni,

then B3(m) = {i, j} for j /∈ Ni and πi(m) = 1
2
. In the latter case, there does

not exist m′i 6= mi such that j /∈ B3(m′i,m−i) for j /∈ Ni because i can neither

influence the application of j /∈ Ni nor the references she and j /∈ Ni receive.

Thus there is no m′i 6= mi such that πi(m
′
i,m−i) > πi(m).

Suppose i is not g. This means j /∈ Ni is g because the neighbors of i are

non-minimal.

If di > b, or if di ≤ b and all j ∈ Ni send mji = di and mjg = dg, then

B3(m) = {g} and πi(m) = 0 and there does not exist m′i 6= mi such that

B3(m′i,m−i) 6= {g}. If di ≤ b and some j ∈ Ni sends mji = mjg = b, then

B3(m) = {g, i} and πi(m) = 1
2

and there does not exist m′i 6= mi such that

g /∈ B3(m′i,m−i). Hence, in each case, there exists no m′i 6= mi such that

πi(m
′
i,m−i) > πi(m).

Thus, Π(mi, m̂−i|θi) ≥ Π(m′i, m̂−i|θi) for all m′i ∈Mi(θi).

Next, we show that if mi 6= θi, then Π(mi, m̂−i|θi) > Π(θi, m̂−i|θi).
Agent i with di > 0 expects with strictly positive probability that i is

g and j /∈ Ni a local minimum with dj ∈ (di,min {di + b, 1}). In this case,

mii = max {0, di − b} and i ∈ B3(m) and πi(m) > 0. If i deviates to the

truth with m′ii = di, then i /∈ B1(m′i,m−i) and B3(m′i,m−i) = {j} with

j /∈ Ni and thus πi(m
′
i,m−i) = 0.

Agent i with di = 0 only does not say the truth if dj − di ≤ 2b for

some j ∈ Ni. As di = 0, all j ∈ Ni say the truth, and hence B3(m) = {i}
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and πi(m) = 1. If i deviates to the truth, then B2(m′i,m−i) = {i} and

B3(m′i,m−i) = ∅ and thus πi(m
′
i,m−i) = 0.

Consider any θ such that i is non-minimal and has di > b or dj = 0 for

some j ∈ Ni or dj > b for all j ∈ Ni\5. Then mi = θi, i /∈ B3(m) 6= ∅ and

thus πi(m) = 0.

There is no m′i 6= mi such that i ∈ B2(m′i,m−i). If di > b, then mgg <

di − b ≤ m′ii for any m′i. If dj = 0 for j ∈ Ni, then j is g and mgg = 0 and

mgi > dg + b ≥ m′ig for any m′i. If di ≤ b and dj > b for all j ∈ Ni\5, then

either 5 or j /∈ Ni is g and B2(m′i,m−i) = {g} for any m′i 6= mi.

There is no m′i 6= mi such that B3(m′i,m−i) = ∅ and B2(m′i,m−i) = {j}
for j /∈ Ni. If j /∈ Ni is g, then B3(m′i,m−i) = {j} for all m′i 6= mi. If j /∈ Ni

is not g, then j /∈ B2(m′i,m−i) for any m′i 6= mi.

There is no m′i 6= mi such that B3(m′i,m−i) = ∅ and B2(m′i,m−i) = {5}.
If 5 is g, then B3(m′i,m−i) = {5} for all m′i 6= mi. If 5 is not g, then

5 /∈ B1(m′i,m−i) for any m′i 6= mi.

Thus, Π(θi, m̂−i|θi) ≥ Π(m′i, m̂−i|θi) for all m′i ∈Mi(θi).

Consider any θ such that i is non-minimal and has di ≤ b and dj > 0 for

all j ∈ Ni and dj ≤ b for some j ∈ Ni\5.

Suppose g /∈ Ni. If dg > 0, then some j ∈ Ni\5 sends mji = mjg = b

because dg < dj ≤ b such that B3(m) = {g, i} and πi(m) = 1
2
. For any

m′i 6= mi, g ∈ B3(m′i,m−i) and thus πi(m) ≥ πi(m
′
i,m−i). If dg = 0, then

B3(m) = {g} and πi(m) = 0. For any m′i 6= mi, B3(m′i,m−i) = {g} because

mgg = 0 and all j ∈ Ni say the truth.

Suppose g ∈ Ni and hence dg > 0. Then i /∈ B3(m) 6= ∅ and πi(m) = 0.

There is no m′i 6= mi such that i ∈ B2(m′i,m−i) because mgg = 0 and

mgi = di + b. There is no m′i 6= mi such that j ∈ B2(m′i,m−i) for j /∈ Ni

because mgg = 0 and mgj > dg + b. Finally, there is no m′i 6= mi such that

B2(m′i,m−i) = {5} and B3(m′i,m−i) = ∅ because either 5 is g and conflicts

with j ∈ N5\i or 5 is not g and mgg = 0 and mg5 > d5 + b.

Thus, Π(mi, m̂−i|θi) ≥ Π(m′i, m̂−i|θi) for all m′i ∈Mi(θi).
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Next, we show that Π(mi, m̂−i|θi) > Π(θi, m̂−i|θi). Agent i assigns strictly

positive probability to g /∈ Ni and dg > 0. If g /∈ Ni and dg > 0, then

B3(m) = {g, i} and πi(m) = 1
2
. Deviating to the true message results into

B3(m′i,m−i) = {g} and πi(m
′
i,m−i) = 0 because m′ii > mgg.
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