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Abstract I propose a cheap-talk model in which the sender can use

private messages and only cares about persuading a subset of her au-

dience. For example, a candidate only needs to persuade a majority of

the electorate in order to win an election. I find that senders can gain

credibility by speaking truthfully to some receivers while lying to oth-

ers. The model always admits information transmission in equilibrium

for some prior beliefs, and the sender can approximate her preferred

outcome when the fraction of the audience she needs to persuade is

sufficiently small. I characterize the sender-optimal equilibrium and

the value of not having to persuade your whole audience in separable

environments. I also extend the model to allow for full-commitment

as in Kamenica and Gentzkow (2011).
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A politician running for office only needs half plus one of the votes. A seller

with a capacity constraint only needs to persuade a certain number of consumers

to purchase her product. A person looking for a job may apply to many positions,

but she only has to convince a single firm to extend an offer. This paper studies

the problem of an informed sender who can engage in private conversation with

many homogeneous receivers and cares about the behavior of some but not all

of them. My main finding is that having to persuade only part of an audience

significantly facilitates information transmission and increases persuasion power.

Let us examine the first example in more detail. Suppose a politician (the

sender, she) is running for office. All voters (the receivers, he) share the same

preferences. The unknown state of the world equals either 0 or 1. Each voter will

vote for the politician if his expectation about the state of the world is greater

than 1/2. The voters share a common prior expectation in the interval (1/3, 1/2).

Suppose that the politician learns the true state of the world, and can engage in

private cheap talk with each voter. I claim that, if there are sufficiently many

voters, then there exists an equilibrium in which she wins the election for sure

regardless of the state.

This is possible because the politician only needs to persuade half plus one

of the electorate in order to win the election. She can attain this goal by using

the following strategy. If the state is indeed 1, then she will let every single voter

know this fact. If the state is 0, then she will randomly choose half plus one of

the voters and tell them that the state is 1, despite the fact that it is not.

A voter that receives a message saying that the state equals 1 knows that this

could be a lie. However, he also knows that he would be more likely to receive

this message if it was actually true. Hence, the message conveys some information.

When the population is large enough, it conveys sufficient information to overturn

prior beliefs arbitrarily close to 1/3. In that case, every voter who receives this

message prefers to vote for the politician.

I study a general cheap talk model with many homogeneous receivers and both

public and private communication. I depart from the literature by assuming that

there are n receivers, but the sender only cares about the highest n0 < n actions

taken. In such cases, the utility of the sender can be completely determined

by strict subsets of the receivers. Thus, she only needs to persuade part of her

audience in order to maximize her utility. I call the gap between n and n0 an

excess audience.

I find that the sender can influence the behavior of receivers in equilibrium in a
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very wide class of environments as long as there is an excess audience (Proposition

4). In some applications, effective information transmission is only possible if there

is an excess audience (examples 1 and 2). When the fraction of the audience that

the sender cares about is small enough, she can achieve her preferred outcome in

equilibrium (Proposition 3).

I characterize the sender’s benefit from having an excess audience under a

separability assumption (Theorem 5). Lipnowski and Ravid (2018), characterize

the sender’s maximum equilibrium payoff when the sender cares about her entire

audience in terms of her value function. The value function is the highest payoff

the sender can obtain when all the receivers behave optimally given their poste-

rior beliefs. Under Lipnowski and Ravids’ assumptions, the sender’s maximum

equilibrium payoff equals the quasiconcave envelope of her value function. This

envelope is obtained by “flooding the valleys” of the value function. I find that

an additional step is needed in the presence of an excess audience.

This step involves a generalization from the politician’s communication strat-

egy described above. The sender starts by randomly and privately splitting her

audience into a target audience that she wants to persuade, and the rest of the

receivers. Receivers in the target audience always receive whichever message in-

duces the behavior most favorable to the sender. The communication strategy

for the rest of the receivers is chosen to maximize the credibility of the message

sent to the target group. This message conveys information because individual

receivers are not told whether they were assigned to the target audience.

This kind of strategy allows the sender to implant a fixed posterior belief in

a fixed proportion of the audience regardless of the state. I say that such beliefs

are attainable. The set of attainable beliefs admits a simple and computationally

tractable characterization (Lemmas 1 and 2). When the sender wishes to persuade

her entire audience, the only attainable belief is the prior. However, the set of

attainable beliefs is strictly increasing in the size of the excess audience. The

missing step to characterize the sender’s maximum equilibrium payoff is to replace

the original value with the maximum value over the set of attainable beliefs. This

transformation can be thought of as “widening the hills”.

The “wider hills” correspond to the benefit of having an excess audience. It is

always non-negative, it is strictly positive for some prior beliefs, and it is monotone

in the fraction of the audience that the sender wishes to persuade (Proposition 6).

As the fraction of the audience that the sender cares about converges to zero, the

set of attainable beliefs totally covers the interior of the simplex. Consequently,
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the maximum equilibrium payoff approaches the best feasible payoff for the sender.

Section 5 considers two extensions of the model. First, I analyze a model

with full commitment as in Kamenica and Gentzkow (2011) and the information

design literature (Bergemann and Morris, 2016, Taneva, 2019). I find a partial

characterization of the maximum sender equilibrium payoff in the full-commitment

game. The characterization is similar to the one I found for the cheap talk game.

The only difference is that it uses the concave envelope of the value, instead of the

quasiconcave envelope. It is a partial characterization at the moment, because

I have only shown it to be a lower bound. Whether it is also an upper bound

remains work in progress.

I also analyze an example with the classic quadratic loss functions from Craw-

ford and Sobel (1982). This example does not satisfy the assumption that the

sender’s preferences are common knowledge. However, it is still possible to use

strategies with a random target audience in order to transmit information. When

the fraction of the audience that the sender cares about is small, the sender can

approximate her preferred outcome and transmit large amounts of information to

most of her audience in equilibrium. Unlike the case without an excess audience,

information transmission is possible for any level of bias.

Since the seminal work of Crawford and Sobel, different authors have found

different mechanisms that can give credibility to an expert. Information transmis-

sion is possible via cheap talk when incentives are not too misaligned, or there

are multiple senders (Battaglini, 2002), or multiple dimensions of information

(Chakraborty and Harbaugh, 2010), or strategic complementarities (Levy and

Razin, 2004, Baliga and Sjöström, 2012), or the sender has transparent motives

(Lipnowski and Ravid, 2018), among other reasons. An excess audience is a novel

mechanism which allows for information transmission in some settings in which

none of the aforementioned mechanisms operate.

Some authors have studied cheap talk communication with multiple audiences.

However, this literature has focused on situations when the sender cares about the

actions of all receivers, either directly or indirectly. Farrell and Gibbons (1989)

showed that senders with multiple audiences sometimes prefer public communica-

tion and sometimes private communication. Goltsman and Pavlov (2011) show

that the sender might be strictly better off by combining both types of messages.

Hence, I allow the sender to use both private and public messages.

Basu et al. (2018) study the problem of an informed sender who wants to use

cheap talk to prevent an ethnic conflict. Their model has a large audience, and
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the sender is allowed to use private messages. However, they restrict attention

to strategies that are anonymous conditional on observed heterogeneity. This

restriction precludes the strategies with random target audiences that I analyze.

Instead, they exploit preference complementarities in order to find an equilibrium

with effective information transmission.

There is a large body of literature using cheap talk to study information trans-

mission between politicians and electorates, dating at least as far back as Harring-

ton (1992). Some recent work in this area includes Schnakenberg (2015), Panova

(2017), Jeong (2019), and Kartik and Van Weelden (2017). Other recent papers

analyze the problem from the information design perspective, including Alonso

and Câmara (2016), and Chan et al. (2019). Within this literature, the papers

that assume talk is cheap focus on public messages. My contributions highlight

the importance of private anonymous communication (e.g., through social media).

1. Model

There is one sender s, and a set of receivers r ∈ R = {1, . . . , n}. The true

state θ0 is drawn form a finite set Θ ⊆ R with at least two distinct elements. Let

∆◦(Θ) be the set of beliefs with full support. The sender and receivers share a

common prior p0 ∈ ∆◦(Θ).

The sender learns the state, and then she chooses a public message m0 ∈ M ,

and a private message mp
r ∈ M for each receiver r. M is finite but rich enough as to

not restrict the set of equilibrium outcomes.1 Each receiver observes the compound

message mr = (m0, mp
r), but observes neither the state nor other receivers’ private

messages. Then, all receiver observe a public sunspot ω0 ∼ unif[0, 1]. Finally, each

receiver r chooses an action ar from a finite set A ⊆ R. Action profiles are denoted

by a = (a1, . . . , an) ∈ An, and message profiles by m = (m0, mp
1, . . . , mp

n) ∈ Mn+1.

All receivers have identical preferences. The utility of r depends only on his

own action and the state, and is given by uR(ar, θ). The sender’s utility uS(a)

does not depend on the state, and satisfies uS(a) = uS(a′) whenever a and a
′

have the same empirical distribution.

1A sufficient condition is ‖M‖ ≥ ‖A‖2(‖Θ‖ + 1).
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1.1. Pivotal fraction of the audience

Define the pivotal number of receivers to be the smallest number n0 such

that the sender’s utility only depends on the the highest n0 actions taken by the

receivers. Let a(r) denote the r-th order statistic of a. The pivotal number of

receivers is given by

n0 := min
{

n′
∣

∣

∣ uS(a) = uS(ã) whenever a(r) = ã(r) for all r ≥ n0 + 1 − n′
}

. (1)

The pivotal fraction of the audience is γ0 = n0/n. If n0 < n, the number of people

sender can talk to is strictly greater than the number of people she wishes to

persuade. In that case, I say that there is an excess audience.

Example 1 [Election] The sender is a candidate in an election. Each receiver r will

either vote for the sender (ar = 1), or against her (ar = 0). The state is either

0 or 1. And voters share a common prior with π0 := p0(1) ∈ (0, 1). The sender

wins the election if and only if she obtains a super-majority of at least γ ∈ (0, 1)

of the votes. All receivers share the same preferences. Receiver r prefers ar = 1

if and only if his posterior beliefs pr satisfy π := pr(1) ≥ η0, where η0 ∈ (0, 1) is

a fixed parameter. The sender gets a utility of 1 if she wins the election, and 0

otherwise. The pivotal number of receivers is n0 = min{n′ | n′ ≥ nγ}.

Example 2 [Concert] The sender is a musician performing at a venue with max-

imum capacity of n0 < n. The (common) value that each receiver would get

from attending the performance is θ0 ∈ {1, 2, 3}. Prior beliefs are given by

p0 = (1/2, 1/3, 1/6). Receivers are risk neutral and each receiver r demands

at most one ticket. His choice consists of either buying or nor buying a ticket as

a function of the price. This individual demand can be summarized by the maxi-

mum price (in whole dollars) ar that would induce him to buy. In equilibrium we

must have ar = E [ θ0|mr ].

The venue manager anticipates the total demand and set a revenue maximiz-

ing price taking into account the capacity constraint. The sender’s profits are

proportional to the revenue. Because of the capacity constraint, uS only depends

on the n0 receivers with highest individual demands.
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1.2. Strategies, updating, and equilibrium

Communication strategies map states into distributions x(θ) over message

profiles. Receiver strategies are measurable maps from messages and sunspot

realizations into actions yr(m, ω). Updating rules map compound messages m

into posterior beliefs qr(m) over the state. With slight abuse of notation, let

x(m|θ) := [x(θ)](m) and qr(θ|m) := [qr(m)](θ). Also, let xr( · |θ) denote the

marginal distribution over mr induced by x(θ). BR(p) denotes the receivers’ best

response correspondence. Profiles of receiver strategies and updating rules are

denoted by y = (y1, . . . , yn) and q = (q1, . . . , qn).

Definition 1 A (cheap-talk) equilibrium is a tuple (x, y, q) such that

(i) For every receiver r, qr is consistent with Bayes’ rule given x.

(ii) For every receiver r, message m, and sunspot realization ω, yr(m, ω) maxi-

mizes
∑

θ∈Θ uR(a, θ)qr(θ|m).

(iii) For every message profile m, if there exists a state θ such that x(m|θ) > 0,

then m maximizes
∫ 1

0 uS(y1(m1, ω), . . . , yn(mn, ω)) dω.

2. Attainable posteriors

This section discusses two technical lemmas that drive the rest of the results.

Readers interested in the main results can skip to Section 3. A key step in my

analysis is to determine the maximum influence that the sender can exert over

the beliefs of part of her audience. If the sender wants to guarantee that there

are always n0 receivers having certain posterior beliefs, what values can these

posteriors take?

Definition 2 For γ ∈ [0, 1], a belief p′ ∈ ∆(Θ) is γ-attained by a communication

strategy x and a profile of updating rules q if

(i) For every receiver r, qr is consistent with Bayes’ rule given x.

(ii) For every state θ and every message profile m in the support of x(θ), there

exists a set T ⊆ R such that ‖T‖ ≥ nγ and qr(mr) = p′ for all r ∈ T .
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Say that p′ is γ-attainable of there exist x and q that γ-attain it. Let P̂ be the

set of γ0-attainable beliefs. Denote likelihood ratios by Λ(θ, θ′; p) = p(θ)/p(θ′).

The following lemma asserts that a posterior belief is γ-attainable if and only if

the prior likelihood ratios are not too distorted.

Lemma 1 A belief p′ ∈ ∆(Θ) is γ-attainable if and only if for all states θ and θ′

Λ(θ, θ′; p′) ≥ γΛ(θ, θ′; p0). (2)

It follows that P̂ is a nonempty closed and convex polytope. Note that every

posterior is 0-attainable, and only p0 is 1-attainable. For γ > 0, only posteriors

with full support are γ-attainable. All the proofs are in the appendix. The

following example illustrates how to reach the bounds in (2).

Example 1 [Election continued] Suppose the politician uses the following communi-

cation strategy. She first chooses a target audience T ⊂ R consisting of exactly n0

receivers. Each receiver r only observes one of two possible messages mr = H or

mr = L. The sender always sends message H to all the receivers in T . Receivers

not in T receive message H if and only if θ0 = 1. This strategy results in the

conditional probabilities xr(H|1) = 1 and xr(H|0) = γ0. Therefore, the posterior

belief about θ0 = 1 after observing H is

πH =
π0

π0 + (1 − π0)γ
. (3)

It is easy to verify that this posterior satisfies the condition from Lemma 1 with

equality. Moreover, at least n0 receive message H . Hence, πH is γ0-attained.

Lemma 2 asserts that each vertex of P̂ corresponds to a partition of states

into two blocks. States in one of these blocks have increased likelihoods relative

to the prior, and states in the other block have decreased likelihoods. This char-

acterization makes P̂ computationally tractable. It is particularly advantageous

in monotone environments when the sender would always want to increase the

receivers’ beliefs about the state.

Lemma 2 A belief p′ ∈ ∆(Θ) is a vertex of P̂ , if and only if there exists a partition
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Figure 1 – γ0-attainable set for concert example with γ0 = 1/2.

{Θ+, Θ−} of Θ such that for every two stater θ′ and θ′′

Λ(θ′, θ′′; p′) =
γ0 + (1 − γ0)1(θ′ ∈ Θ+)

γ0 + (1 − γ0)1(θ′′ ∈ Θ+)
· Λ(θ′, θ′′; p0). (4)

Example 2 [Concert continued] Suppose that the venue capacity equals n0 = n/2,

so that γ0 = 1/2. The prior likelihood ratios are Λ(1, 2; p0) = 3/2, Λ(1, 3; p0) = 3,

and Λ(2, 3; p0) = 2. Hence, it follows from (2) that a posterior p is γ0-attainable if

and only if Λ(1, 2; p) ∈ [3/4, 3], Λ(1, 3; p) ∈ [3/2, 6], and Λ(2, 3; p) ∈ [1, 4]. These

conditions correspond to the cones spanning from each vertex of the simplex in

Figure 1. P̂ is the shaded irregular hexagon surrounding p0. The vertex p′ =

(1/3, 4/9, 2/9 is corresponds to the partition of Θ into Θ+ = {θ3, θ2} and Θ− =

{θ1}. This vertex maximizes Ep [ θ0 ] subject to p ∈ P̂ .
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3. Information transmission and persuasion

3.1. Persuading a small part of an audience

It is possible to excerpt great influence over very small fractions of an audience.

Suppose that the sender’s utility can be maximized by a constant action profile,

and this action profile is a best response a belief with full support. Lemma 1

implies that this belief is γ-attainable for sufficiently low values of γ. Hence,

when the sender only cares about small fractions of her audience, she can reach

her preferred outcome in equilibrium. Formally,

Assumption 1 There exists a∗ ∈ A and p∗ ∈ ∆◦(Θ) such that a∗ ∈ BR(p∗) and

uS(a∗, . . . , a∗) ≥ uS(a) for every a ∈ An.

Proposition 3 For any Θ, A, uR, uS, and p0, there exists a threshold γ̄ ∈ (0, 1)

such that if γ0 ≤ γ̄ and Assumption 1 holds, then the game admits an equilibrium

in which the sender obtains her preferred outcome.

Example 1 [Election continued] When is victory attainable for the politician? She

wins the election when the posterior beliefs of at least γ0 of the electorate satisfy

πr ≥ η0. From lemma 1, any such belief can be γ0-attained if and only if

η0

1 − η0
≤ 1

γ0

π0

1 − π0
. (5)

This condition is satisfied whenever π0 is high enough, η0 is small enough, or γ0 is

small enough. For the case γ0 = 1/2 with η0 = 1/2, (5) reduces to the condition

π0 ≥ 1/3 from the introduction.

3.2. Effective information transmission

Cheap-talk models often allow for some information transmission in equilib-

rium. See, for instance, Proposition 1 in Lipnowski and Ravid (2018). The ques-

tion I address is whether the sender can transmit sufficient information as to influ-

ence the behavior of receivers. Say that an equilibrium (x, y, q) exhibits effective

information transmission if at least one receiver plays an action a 6∈ BR(p0) with
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positive probability. Effective information transmission is possible for some prior

beliefs under a mild sensitivity assumption that rules out trivial cases. Namely,

the receivers’ preferred actions should actually depend on the state. For the re-

mainder of this section, fix all the features of the environment except for p0.

Assumption 2 BR(θ) ∩ BR(θ′) = ∅ for some θ, θ′ ∈ Θ

Proposition 4 Under assumptions 1 and 2, if there is an excess audience, then

there exists an open set of priors P ′ ⊆ ∆(Θ) such that, if p0 ∈ P ′, then the game

has an equilibrium with effective information transmission.

In order to gain some intuition about this result, suppose that a∗ 6∈ BR(p0).

If p0 was “similar enough” to p∗ so that the condition from Lemma 1 is satisfied,

then there would exist an equilibrium in which the sender persuades n0 receivers

to take action a∗. The set of prior distributions that are “similar enough” to p∗

has a non-empty interior.

Proposition 4 guarantees that the sender can influence the behavior of the

receivers in equilibrium for some prior beliefs, but not necessarily for all. For

example, in the election example, effective information transmission is only pos-

sible in equilibrium when victory is attainable, i.e., when condition (5) holds. If

the prior probability of θ0 = 1 is too low, then no receivers will ever vote for the

sender in any equilibrium.

4. Sender-optimal equilibrium under separability

4.1. Geometric characterization

The sender’s value function v0(p) specifies the maximum utility that the sender

could obtain if all receivers shared a posterior p and acted optimally,

v0(p) = max
{

uS(a)
∣

∣

∣ ar ∈ BR(p) for all receivers r
}

. (6)

The sender’s maximum equilibrium payoff v∗ is the maximum utility that the

sender can obtain in any equilibrium. This section characterizes v∗ under the
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following separability assumption.

Assumption 3 There exist a strictly increasing function ũS : A → R such that

us(a) =
1

n0

n0
∑

i=1

ũS

(

a(n+1−i)
)

. (7)

I use two operators on the set of upper-semicontinuous functions from beliefs

into sender payoffs. First, envq(v) is the quasiconcave envelope of v. That is,

envq v is the pointwise-minimum, quasiconcave function that majorizes v. Second,

attγ0 v gives the maximum of v arising from γ0-attainable beliefs. Formally,

attγ0 v(p) = max
{

v(p′)
∣

∣

∣ p′ ∈ P̂ (p)
}

, (8)

where P̂ (p) is the set of beliefs that would be γ0-attainable if p0 = p. Intuitively,

envq v operates by “flooding the valleys” while attγ0 v is obtained by “widening

the hills.” See the left and center panels of Figure 2 for an example.

Using γ0-attainable beliefs allows me to establish v∗ ≥ attγ0 v0(p0). The results

from Lipnowski and Ravid (2018) imply that v∗ ≥ envq v0(p0). Combining both

ideas yields the following theorem.

Theorem 5 Under assumption 3, v∗ = attγ0 envq v0(p0).

Lemma 1 implies that att1 v0 = v0. Hence, Theorem 5 reduces to Theorem

2 in Lipnowski and Ravid (2018) when γ0 = 1. However, in view of Proposition

4, the two results differ whenever there is an excess audience and Assumption

1 holds. The difference between the results corresponds to the value of excess

audience defined in the following subsection.

4.2. The value of excess audience and private communication

What happens to the value of the sender when she has to persuade a larger or

smaller fraction of her audience? The maximum sender equilibrium can depend on

the size of her audience and the number of people she wishes to persuade. However,

Assumption 3 guarantees that it is always measured in the same units. Define

the value of excess audience to be the difference between v∗ and the maximum

equilibrium payoff to the sender in an alternative environment with n = n0. By
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Figure 2 – Value functions for the bookie example with w = 0.5, η2 = 2, b1 = 1/2,
and b0 = 1/5. Left panel: envq v0. Center panel: att1/3 v0 (red) and
att1/10 v0 (blue). Right panel: v∗ with γ0 = 1/3.

Theorem 5 and Lemma 1, the value of excess audience is given by the difference

v∗ − envq v0(p0).

Proposition 6 Under assumptions 1–3, there exist a function γ̄(p) > 0 and an

open set P ′ ⊆ ∆◦(Θ) such that the value of excess audience is

(i) non-negative and non-increasing in γ0 for every p0 ∈ ∆◦(Θ),

(ii) strictly positive whenever p0 ∈ P ′ and γ0 < 1,

(iii) and equal to ũS(a∗) − v0(p0) whenever γ0 ≤ γ̄(p).

Consider an alternative model in which the sender can use only public messages.

She still cares only about the actions of part of her audience, but she has to

persuade all of the receivers. The value of private communication is the gap

between v∗ and the maximum sender equilibrium value in this alternative model.

Without private messages, the only γ0-attainable belief is the prior. Hence, the

value of private communication coincides with the value of excess audience.

Example 3 [Bookie] The state θ0 ∈ {0, 1} indicates the winner of a rigged boxing

match. The sender is a bookie who knows the state, and would like to persuade

the receivers to place large bets. Each sender places a bet ar ∈ [−w, w], where a

positive number denotes a bet on θ0 = 1 and a negative number denotes a bet on

θ0 = 0. Bets on different states have different exogenous returns b0, b1 > 0 with

b0b1 < 1. Receivers have logarithmic Bernoulli utility functions, and initial wealth

w. For example, a receiver that places a bet on θ0 = 1 maximizes the expectation
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π log(w + arb1) + (1 − π) log(w − ar) subject to ar ∈ [0, w], where π = p(1). The

bookie can accept at most n0 ≤ n bets, and his total utility equals V0 + η0V1,

where Vθ is the total volume of bets on θ, and η0 > 1 is a fixed parameter.

This example deviates slightly from our environment because A is an interval

and the sender cares about the tail of the distribution of the absolute value of the

actions, but Theorem 5 still applies. Best responses are given by

BR(π) =



































w

b1
[(1 + b1)π − 1] if π ≥ 1

1 + b1

−w

b2
[(1 + b2)(1 − π) − 1] if π ≤ b2

1 + b2

0 otherwise

. (9)

Just as in the election example, the set of γ0-attainable posteriors corresponds to

the interval

[

π0

π0 + (1 − π0)/γ0
,

π0

π0 + (1 − π0)γ0

]

. (10)

The γ0-attainable value is obtained by substituting these bounds into uS(BR(p)).

Figure 2 illustrates envq v0 (left), attγ0 v0 for γ0 ∈ {1/3, 1/10} (middle), and v∗

for γ0 = 1/3 (right). The gap between the envelopes in the left and right panels

corresponds to both the value of private communication, and the value of having

more receivers than capacity to take bets.

5. Extensions

5.1. Information design

Suppose now that the sender chooses and commits to a communication strategy

before learning the state of nature. This timing corresponds to the the information

design paradigm used by Kamenica and Gentzkow (2011). See also Bergemann

and Morris (2016). Define a commitment protocol to be a tuple (x, y, q) satisfying

conditions (i) and (ii) in Definition 1. The sender’s maximum commitment value

v∗∗(p) is the maximum utility that the sender can obtain in any commitment
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Figure 3 – Commitment value for election example with γ0 = η0 = 1/2.

protocol.

Since every equilibrium is a commitment protocol, Propositions 3 and 4 con-

tinue to hold in the game with commitment. Also, it is possible to obtain a

geometric characterzation of v∗∗ Let, env v0 denote the concave envelope of v0,

that is, the pointwise-minimum, concave function that majorizes v0.

Theorem 7 Under assumption 3, v∗∗ ≥ attγ0 env v0(p0).

Figure 3 illustrates this result for the election example with γ0 = η0 = 1/2.

The well known figure on the left panel shows env v0. This would be the maximum

commitment value for the sender if she was restricted to use public messages.

The middle panel shows v∗ = attγ0 v0. The right panel shows v∗∗. The value of

commitment is thus given by the gap between the right and the middle panel.

The value of excess audience under commitment is given by the gap between the

right and the left panel.

5.2. Lack of transparent motives

Assuming that the sender does not care about the state simplifies the analysis

and plays a crucial role in Theorem 5. However, an excess audience can play an

important role even when the sender’s motives are not transparent. Consider the

classic quadratic-loss game from Crawford and Sobel (1982), with the twist that

the sender faces excess audience.

The state is distributed θ0 ∼ unif[0, 1]. The receivers take actions in A = [0, 1],
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and their utility is uR(ar, θ0) = −(θ0 − ar)
2. The sender’s utility is given by

uS(a, θ0) = − 1

n0

n0
∑

i=1

(

θ0 + b − a(n+1−i)
)2

, (11)

where b > 1/4 is a fixed parameter measuring the bias of the sender relative to

the receivers. Suppose that the sender is only allowed to use private messages.

When n0 is equal to the total number of receivers, this is a particular instance

of the environment studied by Goltsman and Pavlov (2011). Since all the receivers

are biased in the same direction, there are only babbling equilibira. In contrast,

when n is much larger than n0, there can be effective information transmission.

Proposition 8 For all ǫ > 0, there exists n < ∞ such that whenever n ≥ n the

maximum sender equilibrium value in the quadratic-loss game is greater than −ǫ

if θ0 + b ≤ 1, and greater than −b2 − ǫ otherwise.

The proof is constructive. The sender can create a finite partition of [0, 1].

She randomly splits the receivers into two groups of sizes n−n0 and n0. She then

reveals truthfully which block of the partition contains θ0 to the members of the

first group. She misleads the members of the second group so that they choose

her preferred action. When n is very large, it is possible to construct incentive

compatible equilibria of this sort with very fine partitions.

6. Closing remarks

When talk is cheap, information transmission requires the sender to be indif-

ferent between all messages he uses. I found a novel mechanism that can create

indifference. When the sender only cares about persuading a strict subset of her

audience, she is indifferent between the messages she sends to the rest of the

receivers. It is possible for her to gain credibility by being truthful with some

receivers while lying to others. This mechanism can greatly facilitate information

transmission and increase the sender’s power to persuade.

The present work provides a full characterization of the sender-optimal equilib-

rium assuming that the receivers do not care about each other actions, the sender
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has transparent motives, and that her preferences are monotone and satisfy a

separability condition. These restrictions greatly simplify the analysis. They

make it possible to characterize the set of equilibria combining γ0-attainability

with the techniques from Lipnowski and Ravid (2018). However, they appear to

be inessential for many of the results. The value of having a large audience in

general settings is left as an open problem.
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A. Proofs

A.1. Attainable posteriors

Proof of Lemma 1. (⇒) Suppose that p′ is γ-attained by some x and q, and fix

any two states θ′ and θ′′. Let Mr be the set of compound messages m such that

qr(m) = p′, let χr be the indicator that mr ∈ Mr, and let n′ =
∑

r∈R χr be the

number of receivers whose posterior equals p′. The prior beliefs p0, communication
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strategy x and updating rule q induce a joint probability measure over θ0, χr and

n′. Note that

E

[

n′|θ0 = θ′
]

=
∑

r∈R

E [ χr|θ′ ] =
∑

r∈R

Pr(mr ∈ Mr|θ′). (12)

where I am using short notation for the conditioning event θ0 = θ′. Since p′ is

γ0-attainable, it follows that

Pr(n′ ≥ n0|θ′) = 1 ⇒ E [ n′|θ′ ] ≥ n0. (13)

Combining (12) and (13) it follows that

1

n

∑

r∈R

Pr(mr ∈ Mr|θ′) ≥ γ0. (14)

Therefore there exists at least one receiver r′ such that Pr(mr′ ∈ Mr′ |θ′) ≥ γ0.

It follows from Bayes’ rule that

p′(θ) =
p0(θ) Pr(mr′ ∈ Mr′ |θ)

Pr(mr′ ∈ Mr′)
, and p′(θ′) =

p0(θ′) Pr(mr′ ∈ Mr′|θ′)

Pr(mr′ ∈ Mr′)
. (15)

Taking the ratio of these equations yields:

Λ(θ, θ′; p′) =
Pr(mr′ ∈ Mr′ |θ)

Pr(mr′ ∈ Mr′ |θ′)
· Λ(θ, θ′; p0) ≥ γ0Λ(θ, θ′; p0). (16)

(⇐) Suppose p′ satisfies (2), and fix an arbitrary state θ∗. For each θ, let ρ(θ)

denote the ratio of likelihood ratios:

ρ(θ) :=
Λ(θ, θ∗; p′)

Λ(θ, θ∗; p0)
=

p0(θ∗)p′(θ)

p0(θ)p′(θ∗)
. (17)

Consider the following communication strategy. A target set T ⊆ R consisting

of exactly n0 receivers is chosen uniformly from {R′ ⊆ R|‖R′‖ = n0}. All receivers

in T receive the (compound) message m′ = (m∅, m1) with probability 1. Receivers

r not in T receive message m′ with conditional probability

xr(m
′|θ) = φ(θ) :=

1

1 − γ

(

Λ(θ)
∑

θ′∈Θ Λ(θ′)
− γ

)

, (18)

and with the remaining probability they receive a different fixed compound mes-
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sage m′′ = (m∅, m2).2 Since p′ satisfies (2), it follows that ρ(θ) ∈ [γ, 1/γ] and,

consequently, φ(θ) ∈ [0, 1] for every state θ.

A receiver r who receives message m′ does not know whether he belongs to T

or not. Hence, Bayes’ rule dictates that

qr(θ|m′) =
p0(θ)

[

(1 − γ)φ(θ) + γ
]

Pr(mr = m′)
=

p0(θ)ρ(θ)

Pr(mr = m′)
∑

θ′∈Θ ρ(θ′)
, (19)

where the second inequality follows from substituting with (18). Therefore, for

every pair of states θ and θ′ we have that

qr(θ|m′)

qr(θ′|m′)
=

p0(θ)ρ(θ)

p0(θ′)ρ(θ′)
. (20)

Substituting with (17) yields

Λ
(

θ, θ′; qr( · |m′)
)

=

p0(θ)
p0(θ∗)p′(θ)

p0(θ)p′(θ∗)

p0(θ′)
p0(θ∗)p′(θ′)

p0(θ′)p′(θ∗)

= Λ(θ, θ′; p′) (21)

Since θ and θ′ were arbitrary, it follows that qr( · |m′) = p′ for every receiver r.

This implies that p′ is γ0-attained by x and q, because there are always at least

n0 receivers with mr = m′. �

Proof or Lemma 2. (⇒) Let pv be a vertex of P̂ . If γ0 = 1, then we must have

pv = p0 and we can set Θ+ = Θ. For the remainder of the proof, suppose that

γ0 < 1. In this case, P̂ ⊆ ∆◦(Θ).

Let g : ∆◦(Θ) × ∆(Θ) → R be given by

g(p, p′) := min
θ,θ′∈Θ

Λ(θ, θ′; p)

Λ(θ, θ′; p′)
. (22)

Note that full-support beliefs p are γ0-attainable if and only if g(p, p0) ≥ γ0.

Berge’s theorem implies that g is continuous on its first argument. Hence, every

interior belief p with g(p, p0) > γ0 is in the interior of P̂ . Since pv is in the

boundary of P̂ , we must have g(pv, p0) = γ0. Therefore, there exist states θ− and

2Note that the sender only uses two private messages, and that public messages are not
informative. These facts play no role in this proof, but they are used in the proof of other
propositions which rely on on this communication strategy.
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θ+ such that

Λ(θ−, θ+; pv) = γ0Λ(θ−, θ+; p0). (23)

Define the sets Θ− and Θ+ by

Θ− =
{

θ ∈ Θ
∣

∣

∣ Λ(θ, θ+; pv) = γ0Λ(θ, θ+; p0).
}

, (24)

and

Θ+ =
{

θ ∈ Θ
∣

∣

∣ Λ(θ−, θ; pv) = γ0Λ(θ−, θ; p0).
}

. (25)

These sets are nonempty because θ− ∈ Θ− and θ+ ∈ Θ+. I will show that they

conform a partition of Θ.

For any state θ ∈ Θ+,

p0(θ)

pv(θ)
= γ0 p0(θ−)

pv(θ−)
=

p0(θ+)

pv(θ+)
6= γ0 p0(θ+)

pv(θ+)
, (26)

where the first equality follows from (25), the second one from (25), and the

inequality from γ0 < 1. Rearranging terms, equation (26) implies that θ 6∈ Θ−.

Hence, Θ+ ∩ Θ− = ∅.

It remains to show that Θ+ ∪ Θ− = Θ. Let κ be the number given by

κ =
‖Θ‖ − ‖Θ+ ∪ Θ−‖

p∗(Θ+ ∪ Θ−)
. (27)

Since p∗ has full support and 0 < ‖Θ+ ∪ Θ−‖ ≤ ‖Θ‖, we know that κ ∈ (0, ∞).

For ǫ > 0, construct p+
ǫ and p−

ǫ as follows.

p+
ǫ (θ) =







(1 + κǫ)pv(θ) if θ ∈ Θ+ ∪ Θ−

pv(θ) − ǫ if θ 6∈ Θ+ ∪ Θ−
, (28)

and

p−
ǫ (θ) =







(1 − κǫ)pv(θ) if θ ∈ Θ+ ∪ Θ−

pv(θ) + ǫ if θ 6∈ Θ+ ∪ Θ−
. (29)

We can express pv as the convex combination 0.5p−
ǫ + 0.5p+

ǫ . I will show that

there exists some ǭ > 0 such that p−
ǫ , p+

ǫ ∈ P̂ f or all ǫ ∈ (0, ǭ). Since pv is
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an extreme point of P̂ , this implies that pv = p−
ǫ and p∗ = p+

ǫ . And therefore

Θ+ ∪ Θ− = Θ.

Note that,

∑

θ∈Θ

p+
ǫ (θ) = −(‖Θ‖ − ‖Θ+ ∪ Θ−‖)ǫ + κ

∑

θ∈Θ+∪Θ−

ǫp∗(θ)

= ǫ
[

−(‖Θ‖ − ‖Θ+ ∪ Θ−‖) + κp∗(Θ+ ∪ Θ−)
]

= 0. (30)

Moreover, let ǭ1 be the number

ǭ1 = min
θ∈Θ

min

{

pv(θ) ,
1 − pv(θ)

κpv(θ)

}

. (31)

From (28), it is easy to show that if ǫ < ǭ1, then p+
ǫ (θ) ∈ (0, 1) for every state θ

and, consequently, p+
ǫ ∈ ∆◦(Ω). Similarly, there exists some ǭ2 such that if ǫ < ǭ2,

then p−
ǫ ∈ ∆◦(Ω).

It remains to establish γ0-attainability. If Θ+ ∪ Θ− = Θ, then p+
ǫ = p−

ǫ = pv

and we are done. Otherwise, there would exist some θ ∈ Θ+ ∪ Θ−. Since pv

satisfies (2) and θ 6∈ Θ−,

Λ(θ, θ+, pv) > γ0Λ(θ, θ+, p0) ⇒ pv(θ)

p0(θ)
> γ0 pv(θ+)

p0(θ+)
=

pv(θ−)

p0(θ−)
, (32)

where the last equality follows from (23). By a similar argument, since θ 6∈ Θ+, it

would follow that

pv(θ−)

p0(θ−)
<

pv(θ)

p0(θ)
<

pv(θ+)

p0(θ+)
. (33)

For ǫ sufficiently small these inequalities continue to hold when we replace pv

with p+
ǫ . Reversing the previous steps, it follows that Λ(θ, θ+, p+

ǫ ) > γ0 and

Λ(θ−, θ, p+
ǫ ) > γ0, which in turn implies that p+

ǫ ∈ ∆(γ0, p0). An analogous

argument implies that for ǫ sufficiently small we also have that p−
ǫ ∈ ∆(γ0, p0),

thus completing this direction of the proof.

(⇒) Now take any two-block partition {Θ−, Θ+} of Θ. Let pv be given by

pv(θ) =



























p0(θ)

p0(Θ+) + γ0p0(Θ−)
if θ ∈ Θ+

γ0p0(θ)

p0(Θ+) + γ0p0(Θ−)
if θ ∈ Θ−

. (34)
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It is straightforward to verify that pv(θ) ∈ (0, 1) for every state θ and that pv

satisfies (4) for every pair of states. Also, note that

∑

θ∈Θ

pv(θ) =
∑

θ∈Θ+

p0(θ)

p0(Θ+) + γ0p0(Θ−)
+

∑

θ∈Θ−

γ0p0(θ)

p0(Θ+) + γ0p0(Θ−)
(35)

=
1

p0(Θ+) + γ0p0(Θ−)





∑

θ∈Θ+

p0(θ) + γ0
∑

θ∈Θ−

p0(θ)



 = 1. (36)

Therefore, pv ∈ ∆◦(Θ). Since all likelihood ratios have been scaled by a factor

of γ0, 1/γ0, or remained constant, condition (2) holds. Hence, Lemma 1 implies

that pv is γ0-achievable.

It remains to show that pv is an extreme point of P̂ . Since, ∆Θ has finite

dimension, the Krein-Milman theorem implies that there exist a finite set P =

{p1, . . . , pk} consisting of extreme points of P̂ and a vector µ ∈ ∆k such that

pv =
∑k

i=i µipi. Without loss of generality suppose that µi > 0 for all i = 1, . . . , k.

I will show that pi = pv for all i = 1, . . . , k.

For that purpose, I will use the only-if part of Lemma 2. For every i = 1, . . . , k,

there exists a partition {Θ−
i , Θ+

i } such that pi satisfies (4) .

Fix any two states θ+ ∈ Θ+ and θ− ∈ Θ− and let H be the hyperplane

H =
{

p ∈ ∆(Θ) | p(θ−) − λ0Λ(θ−, θ+; p0)p(θ+) = 0
}

. (37)

Since Λ(θ−, θ+; pv) = λ0Λ(θ−, θ+; p0), it follows that pv ∈ H . Also, note that

Λ(θ−, θ+; pv) =

∑k
i=1 µipi(θ

−)
∑k

i=1 µipi(θ+)
=

∑k
i=1 µipi(θ

+)Λ(θ−, θ+; pi)
∑k

i=1 µipi(θ+)

≥
∑k

i=1 µipi(θ
+)

∑k
i=1 µipi(θ+)

· min
i=1,...,k

Λ(θ−, θ+; pi) = min
i=1,...,k

Λ(θ−, θ+; pi). (38)

Since all the pis are γ0-attainable, Lemma 1 implies that

λ0Λ(θ−, θ+; p0) = Λ(θ−, θ+; pv) ≥ min
i=1,...,k

Λ(θ−, θ+; pi) ≥ λ0Λ(θ−, θ+; p0), (39)

and thus Λ(θ−, θ+; pv) = mini=1,...,k Λ(θ−, θ+; pi). Hence, for all i = 1, . . . , k we

have Λ(θ−, θ+; pv) ≤ Λ(θ−, θ+; pi) and, consequently,

Λ(θ−, θ+; pi) ≥ λ0Λ(θ−, θ+; p0) ⇒ pi(θ
−) − λ0Λ(θ−, θ+; p0)pi(θ

+) ≥ 0. (40)
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That is, all the pss lie on the same side of H . Since pv ∈ H is their convex

combination, all of them must lie exactly on H . This implies that θ− ∈ Θ−
i and

θ+ ∈ Θ+
i for all i = 1, . . . , k. Since θ− and θ+ were arbitrary, this implies that

Θ−
i = Θ− and Θ+

i = Θ+ for all i = 1, . . . , k, thus completing the proof. �

A.2. Effective communication and persuasion

Proof of Proposition 3. The threshold is given by γ̄ = g(p∗, p0), where g is the

function defined in (22). This threshold is well defined and strictly positive be-

cause Θ is finite and p0 and p∗ have full support. If γ0 < γ̄, then

Λ(θ, θ′; p∗)

Λ(θ, θ′; p0)
≥ g(p∗, p0) > γ0 ⇒ Λ(θ, θ′; p∗) > γ0Λ(θ, θ′; p0), (41)

for every pair of states θ and θ. From Lemma 1, it follows that p∗ is γ0-attainable

by some x and q. Consider any strategy profile y such that all receivers choose

best responses and, in particular, yr(mr, ω) = a∗ whenever qr( · |mr) = p∗. The

tupple (x, q, y) constitutes an equilibrium.

Let a be any action profile that results with positive probability in this equi-

librium. By construction, at least γ0 of the receivers satisfy ar = a∗. Hence, it

maximizes the sender’s utility. �

Proof of Proposition 4. Let P ∗ be the set of beliefs in ∆(Θ) for which a∗ is a

best response. This set is closed because expected utility is linear in probabilities

and best responses are defined by weak inequalities. Since BR(θ) ∩ BR(θ′) = ∅
for some θ, θ′ ∈ Θ, there exists some θ ∈ Θ such that a∗ 6∈ BR(θ). Therefore,

∆◦(Θ) \ P ∗ is open and nonempty.

Since both P ∗ ∩ ∆◦(Ω) and ∆◦(Θ) \ P ∗ are nonempty, there exists some full-

support belief p1 ∈ ∆◦(Ω) in the boundary of P ∗. Lemma 1 thus implies that

there exists some p2 ∈ ∆◦(Θ) \ P ∗ that would be γ0-achievable if p0 = p1. Fix any

closed set P̄ ⊆ ∆◦(Θ) containing both p1 and an open neighborhood of p2. Define

the function d : P̄ → R by

d(p) = max
{

g(p, p∗∗)
∣

∣

∣ p∗∗ ∈ P ∗ ∩ P̄
}

, (42)

where g is the function defined in (22). Since g is continuous on P̄ × P̄ ⊆ ∆◦(Θ)×
∆◦(Θ), and P ∗ ∩ P̄ is compact, it follows that d is well defined and continuous.
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Moreover, for all p ∈ P̄ we have d(p) = 1 if p ∈ P ∗, and d(p) < 1 if p ∈ P ′. Let

P ′ be the set of full-support beliefs p′ ∈ P̄ \ P ∗ such that d(p′) ∈ (γ0, 1). Since

p2 ∈ P ′ and d is continuous, P ′ it is a nonempty open set.

For every p′ ∈ P ′, d(p′) > γ0 and thus there exists some p∗∗ ∈ P ∗ such that

Λ(θ, θ′; p′)

Λ(θ, θ′; p∗∗)
> γ0 ⇒ Λ(θ′, θ; p∗∗) > γ0Λ(θ′, θ; p′) (43)

for every pair of states θ, θ′ ∈ Θ. Lemma 1 thus implies that, if p0 = p′, then

p∗∗ would be γ0-attainable. Hence, we can employ the equilibrium constructed in

the proof of Proposition 3. In this equilibrium, message m′ is sent with positive

probability, and yr(m
′, ω) = a∗ 6∈ BR(p′) for every sunspot realization ω. �

A.3. Sender-optimal equilibrium

Lemma 9 Every equilibrium value can be attained by a symmetric equilibrium

(x, y, q) with in that xr = xr′, yr = yr′ and qr = qr′ for all receivers r and r′.

Proof. Suppose that an equilibrium value u∗
S is generated by some equilibrium

(x, y, q). Consider the alternative strategies x̃ and ỹ obtained by shuffling iden-

tities as follows. First, the sender draws messages from the original distribution.

Then, she shuffles the identity of the receivers uniformly. She tells each receiver

which function y : [0, 1] → A they would have used in the original equilibrium

with their swapped identity and message.

Note that y : [0, 1] → A would also be a best response had r been told the

shuffling and the message. The sure thing principle then implies that it is also

a best response when this information is garbled. This strategy profile is thus

also an equilibrium that generates u∗
S. But every receiver has the same marginal

distribution of messages and uses the same strategy and update rule. Hence, we

can assume without loss of generality that (x, y, q) is symmetric. �

Lemma 10 (Lipnowski and Ravid (2018)) Under assumption 3, v∗(p) ≥ envq v0.

Proof. Let u∗
S = envq v0(p0). Consider the alternative environment with ñ = 1 and

ũS(a) = us(a, . . . , a), and Θ, A, p0, and uR unchanged. Assumption 3 implies that

the ex-ante value of the alternative environment coincides with the ex-ante value

of the original environment. Since there is only one receiver, and the sender’s
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utility does not depend on the state, this alternative environment satisfies the

assumptions in Lipnowski and Ravid (2018). Hence by their Theorem 2, there

exists an equilibrium (x̃, ỹ1, q̃1) which achieves u∗
S.

Consider the replica of this equilibrium given by qr = q̃1, yr(m0, mp
r, ω) =

ỹ1(m0, ω), and x(m, mφ, . . . , mφ|θ) = x̃(m|θ), where mφ is a fixed non-informative

message. Note that this replica uses correlated strategies which guarantee that

all agents receive the same message and take the same action with probability

1. It is straightforward to verify that (x, y, q) is an equilibrium of the original

environment and achieves u∗
S. �

Proof of Theorem 5. (Step 1 — attγ0 envq v0 is well defined) Since the environ-

ment is finite, envq v0 is well defined and upper-semicontinuous. From secition

A.4.1 in Lipnowski and Ravid (2018), envq v0 is also well defined and upper-

semicontinuous. From Lemma 1, P̂ (p) is compact. Hence attγ0 envq v0 is well

defined by Weierstrass’ Extreme-Value Theorem, and upper-semicontinuous by

the generalization Berge’s Theorem in Ausubel and Deneckere (1993).

(Step 2 — v∗ ≥ attγ0 envq v0(p0)) Let u∗
S = attγ0 envq v0(p0). There exists

some p̂ ∈ P̂ such that u∗
S = envq v0(p̂). Consider the alternative environment with

ñ = 1, ũS(a) = us(a, . . . , a), p̃0 = p̂, and Θ, A, and uR unchanged. Assumption

3 implies that the value function of the alternative environment coincides with

v0. Since there is only one receiver, and the sender’s utility does not depend on

the state, this alternative environment satisfies the assumptions in Lipnowski and

Ravid (2018). Hence by their Theorem 2, there exists an equilibrium (x̃, ỹ1, q̃1)

which achieves envq v0(p̂) = u∗
S. Moreover, we must have

∫ 1

0
uS (ỹ1(m)) dω = u∗

S, (44)

for every message m such that x̃(m) > 0.

Consider the replica (x̂, ŷ, q̂) of this equilibrium given by ŷr(m0, mp
r , ω) =

ỹ1(m0, ω), x̂(m, mφ, . . . , mφ|θ) = x̃(m|θ), and q̂r(m, mφ) = q̃1(m), where mφ is a

fixed non-informative private message. It is straightforward to verify that (x̂, ŷ, q̂)

is an equilibrium of the original environment. Let x̄ and q̄ be the communication

strategy and updating rule that γ0-attain p̂ from the proof of Lemma 1.

Consider the tuple (x, y, q) described as follows. The sender first draws (but

does not deliver) profiles of messages m̂ using x̂, and m̄ ∈ {m′, m′′}n using x̄.

If m̄r = m′, then r receives the private message mp
r = (m′, m̂0). Otherwise,

he receives the private message mp
r = (m′′). q is derived from x using Bayes
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rule. Actions are given by yr((m
′, m̂0), ω) = ỹ1(m̂0, ω), and yr(m

′′, ω) = a′′ with

a′′ = min BR(qr(m
′′)).

By construction, we have q(m′, m̂0) = q̃1(m̂0), which implies that yr(m
′, m̂0, ω)

is a best response. Since (x̂, ŷ, q̂) is an equilibrium, the sender cannot benefit

from manipulating m̂0. Hence, if u∗
S ≥ ũS(a′′), then (x, y, q) is an equilibrium.

Since there are always n0 players who receive message m′ and their actions lead

to u∗
S (because of (44), this would imply v∗ ≥ attγ0 envq v0(p0).

Suppose instead that u∗
S < ũS(a′′). For this case, note that q0 is a con-

vex combination of p̂ and qr(m
′′). And, in turn p̂ is a convex combination of

{q(m′, m̂0)|x̃(m̂0) > 0}. Note that v0(qr(m
′′)) ≥ ũS(a′′) > u∗

S, and v0(q(m′, m̂0))u∗
S

(because of (44). Hence, envq v0(p0) ≥ u∗
S From Lemma 10.it follows that v∗ ≥

attγ0 envq v0(p0).

(Step 3 — v∗ ≤ attγ0 envq v0(p0)) From Lemma 9, there exists a symmetric

equilibrium (x, y, q) that generates v∗(p). Let m be a message profile such that

x(m) > 0. Under assumption 3, there must exist a set R(m) with ‖R(m)‖ ≥ n0

and such that max{yr(mr, ω) : | ω ∈ [0, 1]} ≥ v∗ for every r ∈ R(m). Let P ∗ be

the set corresponding set of posterior beliefs,

P ∗ = sup
{

qr(mr)
∣

∣

∣ x(m) > 0 and r ∈ R(m)
}

. (45)

It follows that

v∗ ≤ min
p∈P ∗

v(p). (46)

Consider the alternative communication strategy x′ with only two messages

m′ and m′′ described as follows. The sender first chooses a profile m according to

x (but does not deliver it). Receiver r receives message m′ if and only if r ∈ R(m).

Since it is a symmetric equilibrium, p̄ := qr(m
′) does not depend on r

Bayes rule implies that p̄ ∈ co(P ∗).3 Since there are always at least n0 receivers

in R(m), it follows that p̄ is γ0-attainable. Therefore

v∗ ≤ min
p∈P ∗

v(p) ≤ min
p∈P ∗

envq v(p) ≤ min
p∈co(P ∗)

envq v(p)

3 Let (Ω, 2Ω, Pr) be a finite probability space, and let {A1, . . . , Ak} be disjoint non-null events.
For any event B

Pr
(

B| ∪k

i=1 Ai

)

=
Pr(B)

∑k

i=1
Pr(Ai|B)

∑k

i=1
Pr(Ai)

=
k
∑

i=1

(

Pr(Ai)
∑k

i=1
Pr(Ai)

)

Pr(B|Ai)
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≤ envq v(p̄) ≤ attγ0 envq v(p0). (47)

The first inequality is just (46). The second inequality follows because envq v

majorizes v. The third one because envq v is quasiconcave. The fourth one from

the definition of minimum. The last one from the fact that p̄ is γ0-attainable. �

Proof of Proposition 6. Since P̂ is ⊆-decreasing in γ0, attγ0 envq v0 is weakly de-

creasing. Hence (i) follows from Theorem 5. (iii) is a corollary of Proposition 3,

and (ii) is a corollary of Proposition 4 and Assumption 3. �

A.4. Extensions

Proof of Theorem 7. Let u∗
S = attγ0 env v0(p0). There exists some p̂ ∈ P̂ such

that u∗
S = env v0(p̂). By Caratheodory’s theorem there exist beliefs p1, . . . , pK

and weights µ ∈ ∆K with K ≤ nΘ + 1 such that p̂ =
∑K

k=1 µkpk, and u∗
S =

∑K
k=1 µkv0(pk). Under Assumption 3, there exist actions a1, . . . , aK such that

v0(pk) = ũS(ak) and ak ∈ BR(pk). The result then follows from Proposition 1 in

Kamenica and Gentzkow (2011). �

Proof of Proposition 8. Let IK be the partition of [0, 1) into K intervals of the

form Θk = [(k − 1)/K, k/K), k = 1, . . . , K. Let θ̄k = (2k − 1)/2K be the

midpoint of the kth interval. Let k(θ) denote the block of IK containing θ. Let

k∗(θ) = arg mink{(θ + b − θ̄k)2}.

Consider the tuple (x, y, q) described as follows. The audience is randomly

divided into a target set T ⊆ R consisting of exactly n0 receivers, and R \ T .

When the state is θ, receivers r 6∈ T receive message k(θ), while receivers r ∈ T

receive message k∗(θ). The update rule q is derived using Bayes’ rule. Receivers

choose yr(mr) = E [ θ0|mr ].

Fix K. Since n0 is also fixed, there exists n̄ such that whenever n ≥ n̄

E [ θ0|k ] ∈ Θk, and k∗(θ) = arg mink{(θ + b − E [ θ0|k ])2}. For such values of

n, the proposed tuple is an equilibrium and it yields the sender’s payoff

u∗
S = −

(

θ0 + b − E

[

θ0|k∗(θ0)
])2

. (48)

If θ0+b ≤ 1, then θ0+b ∈ Θk∗(θ) and therefore u∗
S ≥ −1/K. If not, then k∗(θ) = K

and u∗
S ≥ −(b + 1/K)2. �

q̈ Ü///
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