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Abstract

This paper studies a common-value first-price auction in which bidders are uncertain

about the number of competitors they have. This uncertainty affects the nature of

the inference from winning (”winner’s curse”). In particular, the expected value con-

ditional on winning is usually not monotone and features a stronger winner’s curse at

intermediate bids. Consequently, bidders have incentives to pool on common bids. At

these pooling bids (”atoms”), payoffs change discontinuously. Due to this discontinuity,

no equilibrium exists unless the expected number of bidders is sufficiently small. To

the ensure the existence for any number of bidders, we extend the auction mechanism

by a compound cheap talk message that enables bidders to indicate their eagerness
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1 Introduction

Bidders in most auctions are uncertain about the number of competitors they have. This is

true not only for many well-known examples such as eBay1, Christie’s2, or the Dutch flower

auctions, but also for many auction-like trading mechanisms such as the call market that

initiates trading at the NYSE.3

We study the effect of this “numbers uncertainty” in a first-price common-value auction.

In common-value auctions, winning enables for inferences about the value of the good. As

a benchmark, consider a setting in which the number of competitors is known and the

bidding strategy is symmetric and strictly increasing in the bidder’s estimate of the value of

the good. Then, the winning bidder knows that all of her competitors have a lower estimate

of the good’s value than herself. This is bad news about the value of the good, which

is known as the “winner’s curse”. The winner’s curse is more severe if there are a large

number of competitors, or if the winning bid is low, thereby implying that the expected

value conditional on winning is increasing with the size of the winning bid.

When bidders are uncertain about the number of competitors they have, winning is also

informative about this number. In particular, winning with a low bid is more likely when

there are fewer competitors, and this reduces the winner’s curse. Therefore, winning with

a low bid is not necessarily bad news about the value of the good, and the expected value

conditional on winning does not need to be monotone. The random number of competitors

adds a second dimension of uncertainty that breaks the affiliation between the winning bid

and the value of the good.

Following Myerson (1998), we model auctions with numbers uncertainty as a standard

common-value first-price auction where the number of bidders is Poisson-distributed. The

Poisson distribution is tractable and also arises endogenously as the result of some entry

process.4 All bidders in the auction compete for a single, indivisible good of common-value.

The value is either high or low, and every bidder receives a conditionally independent signal;

1eBay provides information about the number of bidders who actually placed a bid, but does not disclose

how many prospective bidders follow the object via their watch list etc. In particular, eBay does not disclose

how many bidders are online, waiting to place their bid in the last seconds of the auction (”snipe” - cf. Roth

& Ockenfels (2002)).
2The Wall Street Journal reports that personal attendance in auction rooms is in decline, as

bidders prefer to phone in or place their bids online. Therefore, ”[...] they know even less

about who they’re bidding against, which in some cases can leave them wondering how high they

should go” (https://www.wsj.com/articles/with-absentee-bidding-on-the-rise-auction-rooms-seem-empty-

these-days-1402683887 - cf. Akbarpour & Li (2018)).
3Data from the stock market informs market participants about the stream of (un-)filled buy and sell

orders, but reveals neither the number nor the identity of buyers and sellers in the market. In fact, market

participants often try to hide large transactions by splitting orders into smaller ones or trading in dark pools.
4Among others, compare Välimäki & Murto (2017), and Lauermann et al. (2018). Most of our results

extend to arbitrary distributions, and we discuss the significance of the Poisson assumption in the last

section of the paper.
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high signals indicating a high value. Each bidder simultaneously submits a bid, the highest

bidder wins and pays her bid. Ties are broken at random.

In this setup, we find that the expected value is U-shaped in the first-order statistic of

signals (Lemma 2). When the expected number of bidders is high, this non-monotonicity

implies that no strictly increasing equilibrium exists (Prop. 1). The problem does not arise,

when the expected number of bidders is sufficiently small (Prop. 2). We conclude that if

there is an equilibrium in a large auction, it has to contain pooling bids, that is, atoms in

the bid distribution.

Bidders actually have an incentive to tie on low bids, because it reduces the winner’s

curse. Under a uniform tiebreaking rule, winning the auction with a bid that ties with

positive probability is more likely if there are fewer competitors, which is good news for

the value of the good. However, when the equilibrium bid distribution contains atoms, the

bidder’s utility is not continuous in the bid. This discontinuity implies that no equilibrium

exists when the expected number of bidders is sufficiently large (Prop. 3).

To solve the existence problem and create a useful approximation tool for equilibria on

the grid, we extend the auction mechanism by cheap talk communication, as in Jackson

et al. (2002). In this Communication Extension, bidders report two signals in addition to

their bid, which indicates their eagerness to win. The extension ensures that equilibria exist,

which we characterize in Proposition 5. Thereafter, we consider auctions on the grid and

find that equilibria on a sufficiently fine grid are structurally equivalent to equilibria in the

communication extension (Prop. 6). The characterization of equilibria on the grid is helpful

to understand why the standard continuous auction is not the limit of auctions on the grid.

Then, we investigate the robustness of our results and argue that the findings do not

hinge on the precise assumptions on the distribution of signals, distribution of bidders, or

the auction format.

When the good is of a private rather than common-value and there is numbers uncer-

tainty, McAfee & McMillan (1987) and Harstad et al. (1990) show that the optimal bidding

strategy is a weighted average of what would have been chosen if the number of bidders was

known. Our analysis shows that this is no longer true when bidders have interdependent

valuations for the good. Consequently, a simple extension of the results for auctions with a

known number of bidders to auctions with numbers uncertainty is not possible. We discuss

implications and the related literature in Section 8 of the paper.

In addition to this substantive contribution, our analysis provides a robust example

where equilibrium existence fails in a simple game, but is regained in a mechanism with

cheap talk, following the concept by Jackson et al. (2002).5 Further, we show that this

5Contrary to Jackson et al. (2002), we do not need to make the auctioneer a player of the game, but can

provide a mechanism that guarantees existence.
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mechanism with cheap talk is not only of technical interest but can be used to approximate

equilibria on the sufficiently fine grid. Thus, the Communication Extensions is the “correct”

mechanism to derive equilibrium properties for equilibria on the grid. This is not only true

for common-value auction with numbers uncertainty, but whenever the bidding strategy is

monotone but can contain atoms. Therefore, the Communication Extensions particularly

lends itself to the analysis of other non-affiliated common value auctions.

2 The Model

A single indivisible good is sold in a first-price sealed-bid auction. The good’s value is

either high vh, or low v`, with vh > v` ≥ 0, depending on the unknown state of the world

ω ∈ {h, `}. The world is in state ω = h with probability ρ and in state ω = ` with probability

1 − ρ, where ρ ∈ (0, 1). The number of bidders is a Poisson-distributed random variable

with mean η, such that there are n bidders in the auction with probability P(n) = e−η η
n

n! .

The realization of the variable is unknown to the bidders.

Every bidder receives a signal s from the compact set [s, s̄]. Conditional on the state

of the world, the signals are independent and identically distributed according to the cu-

mulative density functions Fh and F`, respectively. Both distributions have continuous

densities fω, and the likelihood ratio of these densities, fh(s)
f`(s)

, satisfies the (weak) monotone

likelihood ratio property, that is, for all s < s′ it holds that fh(s)
f`(s)

≤ fh(s′)
f`(s′)

. Furthermore,

0 < fh(s)
f`(s)

< fh(s̄)
f`(s̄)

<∞, such that signals do contain information but never reveal the state

of the world perfectly. For convenience, we assume that there is only one unique s∗, such

that fh(s∗)
f`(s∗)

= 1.

Having received their signals, every bidder submits a bid b. We assume that there is

a reserve price at v` and exclude (without loss) bids above vh, such that b ∈ [v`, vh]. The

bidder with the highest bid wins the auction, receives the object, and pays her bid. Ties are

broken uniformly. If there is no bidder, the good is not allocated. Bidders are risk neutral.6

It is useful to mention two special properties of the Poisson distribution (see Myerson

(1998) for a detailed derivation and discussion). First, when participating in the auction,

a bidder does not change her belief regarding the number of other bidders in the auction.

Therefore, her belief about the number of her competitors is again a Poisson distribution

with mean η. This property is analogous to a stationary Poisson process, where an event

does not allow for inferences about the number of other events.7

6We discuss the significance of the assumptions on the distribution of bidders, signals, the reserve price,

and auction format in Section 8. In the appendix, we allow the number of bidders to be state-dependent by

considering a Poisson random variable with state-dependent means ηω .
7In fact, the Poisson distribution is the only distribution with this “environmental equivalence” (Myerson

(1998)).
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Second, the Poisson distribution implies that we have to restrict attention to symmet-

ric equilibria.8 Since the Poisson distribution has an unbounded support, it draws bidders

from a hypothetical infinite urn. Any individual bidder and, thus, any individual bidding

strategy is thereby drawn with zero probability, and no bidder expects to face such an indi-

vidual. One could imagine certain proportions of the bidders in the urn following divergent

strategies, such that those are encountered with positive probability. However, this would

be equivalent to drawing the bidders first and having them mix strategies afterward.

Accordingly, we consider symmetric strategies, which are functions mapping from the

signals into the set of probability distributions over bids9 β : [s, s̄]→ ∆[v`, vh]. Let πω(b;β)

denote the probability to win the auction with a bid b in state ω, given that the other

bidders use strategy β. Using Bayes’ rule, the interim expected utility for a bidder with

signal s choosing bid b is

U(b|s;β) =
ρfh(s)

ρfh(s) + (1− ρ)f`(s)
πh(b;β)(vh−b)+

(1− ρ)f`(s)

ρfh(s) + (1− ρ)f`(s)
π`(b;β)(v`−b). (1)

Strategy β∗ is a best response to a strategy β, if, for almost all s, b ∈ supp β∗(s) implies

that b ∈ arg maxb̂∈[v`,vh] U(b̂|s;β). Two strategies are equivalent, if they correspond to the

same distributional strategy after merging all signals that share the same likelihood ratio
fh
f`

.

Lemma 1 (Monotonicity). Let β be some strategy and β∗ a best response to it. If the

likelihood ratio of signals fh
f`

is strictly increasing, then β∗ is essentially pure and non-

decreasing. If the likelihood ratio is only weakly increasing, then there exists an equivalent

best response β̂∗, which is pure and non-decreasing.

We look for Bayes-Nash equilibria, that is, strategies β∗ which are best-responses to

themselves. Lemma 1 implies that it is without loss to restrict attention to pure and non-

decreasing equilibria.10 Henceforth, we denote pure strategies as functions mapping the

signals into bids – β : [s, s̄]→ [v`, vh] – and only consider non-decreasing ones.

8This necessity fits our aim of analyzing how uncertainty about the number of bidders (as opposed to

identity) affects the equilibrium behavior.
9We consider functions that are measurable and probability distributions which that Borel probability

measures.
10Suppose that β∗ is a symmetric Bayes-Nash equilibrium strategy. Using Lemma 1, there is pure and

non-decreasing best response β̂∗ to β∗, such that β̂∗ is equivalent to β∗ . This means that the implied

distribution of bids is the same under either strategy. Since this is the only manner in which the strategy

enters the bidders’ utilities (1), β̂∗ is a best response to β̂∗ and, hence, an equilibrium as well.
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3 Equilibrium of the Standard Auction

3.1 Non-pooling bids

To analyze the model, we first consider bids that, given a non-decreasing strategy β, never

tie. We derive the winning probabilities and the expected value conditional on winning with

such a bid. Last, we use our findings to analyze equilibria where β is strictly increasing.

Fix some non-decreasing bidding strategy β. A bid b is a non-pooling bid if it is selected

with zero probability by any bidder. Given strategy β, this is the case if b is either not

in the support of β, or when there is only a single signal s, such that β(s) = b. In any

case, a bidder who chooses b wins whenever all of her competitors select bids smaller than

b. Given that β is non-decreasing, this implies that they all received lower signals than

ŝ := sup{s : β(s) ≤ b}. Thus, the bidder wins whenever s(1) ≤ ŝ, where

s(1) := sup{s−i}

is the highest of the opponents’ signals. We employ the convention that sup{∅} = −∞,

which means that s(1) = −∞ < s denotes the situation when there is no competitor. In

state ω, the generalized first-order statistic s(1), therefore, has a cumulative density function

Fωs(1)(s) = e−η(1−Fω(s)) for s ∈ [s, s̄].11 Since bid b wins whenever s(1) ≤ ŝ, bid b wins with

probability πω(b;β) = Fωs(1)(ŝ) = e−η(1−Fω(ŝ)) for ω ∈ {h, `}.

A defining feature of common-value auctions is that winning the auction is informative

about the value of the good. We aim to analyze how different non-pooling bids affect this

inference. Since any non-pooling bid induces some cutoff ŝ, we can work directly with this

cutoff and analyze how the expected value

E[v|s(1) ≤ ŝ] =
ρe−η(1−Fh(ŝ))vh + (1− ρ)e−η(1−F`(ŝ))v`
ρe−η(1−Fh(ŝ)) + (1− ρ)e−η(1−F`(ŝ))

=
ρeη(Fh(ŝ)−F`(ŝ))vh + (1− ρ)v`
ρeη(Fh(ŝ)−F`(ŝ)) + (1− ρ)

(2)

changes in ŝ. If β is strictly increasing (all bids are non-pooling bids) and continuous,

this is the same as considering E[v|win with b;β] for different b ∈ [β(s), β(s̄)].

11Conditional on state ω, any competitor (independently) receives a signal larger than s with probabil-

ity 1 − Fω(s). By the decomposition and environmental equivalence property of the Poisson distribution

(Myerson (1998)), any bidder believes that the number of competitors with signals larger than s is Poisson

distributed with mean η(1 − Fω(s)). The probability that s(1) ≤ s is the probability that there is non

competitor with a signal above s – P(n = 0) = e−η(1−Fω(s)) [η(1−Fω(s)]0

0!
= e−η(1−Fω(s)).
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Lemma 2. The expected value E[v|s(1) ≤ ŝ] is strictly decreasing when ŝ < s∗, has unique

global minimum at ŝ = s∗ and is strictly increasing when ŝ > s∗.

Proof. Note that avh+v`
a+1 > bvh+v`

b+1 if and only if a > b. Thus, E[v|s(1) ≤ ŝ] is strictly increas-

ing if and only if eη(Fh(ŝ)−F`(ŝ)) is strictly increasing. The derivative eη(Fh(ŝ)−F`(ŝ))η[fh(ŝ)−
f`(ŝ)] is positive if and only if fh(ŝ) > f`(ŝ). The monotone likelihood ratio property and

the assumption that fh(s∗) = f`(s
∗) is unique imply that fh(ŝ) < f`(ŝ) for ŝ < s∗, and

fh(ŝ) > f`(ŝ) for ŝ > s∗.

Lemma 2 implies that E[v|s(1) ≤ ŝ] is U-shaped in ŝ with it’s minimum at s∗. The

intuition behind the shape may be explained best with the help of Figure 1, which depicts

E[v|s(1) ≤ ŝ] against ŝ ∈ [s, s̄].

s̄s

v`

vh

s∗

• (ii) •(i)E[v]

Figure 1: The expected value E[v|s(1) ≤ ŝ]

First, consider point (i) on the top right, which marks E[v|s(1) ≤ s̄]. By the way we

defined s(1) it takes values on {−∞} ∪ [s, s̄], such that it is always true that s(1) ≤ s̄,

independent of the state. Hence, the condition does not allow for any inferences about the

value of the good, and the expected value conditional on winning is the unconditional one,

E[v|s(1) ≤ s̄] = E[v]. This reasoning applies for any distribution on the number of bidders; in

particular, it is also true when the number of bidders is fixed and known, as in the standard

Milgrom & Weber (1982) model.

Second, consider point (ii) on the top left, denoting E[v|s(1) ≤ s]. The event that

s(1) = s occurs with zero probability (the signal distribution has no atoms), while there

are no competitors and s(1) = −∞ with positive probability. Consequently, E[v|s(1) ≤ s] =

E[v|s(1) = −∞]. However, the event that there is no competitor does not contain information

about the state, because the distribution of bidders is independent of that state. As a result,

no inference is possible and E[v|s(1) ≤ s] = E[v]. Thus, there is no winner’s curse at the

bottom (ii) or at the top (i).
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In the middle when ŝ ∈ (s, s̄), the winner’s curse comes into play. With positive proba-

bility, there are competitors, all of which received signals below ŝ. This is bad news about

the state of the world because it excludes high signals. Consequently, for ŝ ∈ (s, s̄), the

expected value is smaller than the unconditional one, E[v|s(1) ≤ ŝ] < E[v], with the global

minimum at s∗, where fh(s∗) = f`(s
∗).

Observe, that as η (the expected number of competitors) increases, the winner’s curse

grows more severe on ŝ ∈ (s, s̄). Since the bidder expects to face more competitors, the neg-

ative inference from winning grows in η. For ŝ ∈ (s, s̄), it follows that E[v|s(1) ≤ ŝ]
η→ v`.

12

For points (i) and (ii) the arguments remain unaltered, however, such that E[v|s(1) ≤ s]

converges in η to a t-shape.

While the precise form of E[v|s(1) ≤ ŝ] follows from the Poisson distribution, similar

effects play a role for any distribution of bidders13. When the number of bidders is ran-

dom, the winning bidder simultaneously updates her belief over two random variables: the

number of bidders and their signal realization. Since these two can push the expected value

in opposite directions, her inference will generally not be monotone in ŝ. The numbers un-

certainty breaks the affiliation between the value of the good and the first order statistic of

(other bidders’) signals. Accordingly, bidding a higher, non-tieing bid does not necessarily

increase the expected value conditional on winning, as in Milgrom & Weber (1982), and

equilibrium behavior can substantially diverge from the one in auctions with affiliation.

3.1.1 Strictly increasing equilibria – Non-existence

Proposition 1. Holding all other parameters fixed, for a sufficiently large η, no strictly

increasing equilibrium exists.

To see why this is true, suppose to the contrary that there was a strictly increasing

equilibrium β∗, such that all bids are non-pooling bids. In this case, a bidder with signal s,

following the bidding strategy β∗ and considering both, the inference from winning as well

as her own signal, expects the good to be of value

E[v|win with β∗(s), s;β∗] = E[v|s(1) ≤ s, s]

=
ρfh(s)e−η(1−Fh(s))vh + (1− ρ)f`(s)e

−η(1−F`(s))v`
ρfh(s)e−η(1−Fh(s)) + (1− ρ)f`(s)e−η(1−F`(s))

.

12The monotone likelihood ratio property implies that Fh(s) < F`(s) for all s ∈ (s, s̄). Thus, η(Fh(s) −
F`(s))→ −∞ for all s ∈ (s, s̄) when η →∞. The convergence then follows by equation (2).

13Consider, for example, a truncated Poisson distribution in which n ≥ 2 always. This distribution of the

number of bidders would lead to a similar shape of the expected value for a sufficiently large η. In particular,

the non-monotonicity of the inference does not hinge on the possibility of being alone in the auction.
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The general idea of the proof can be described in the following manner: When η is

large (when there are many competitors), the inference from winning is more relevant for

the expected value than the bidder’s own signal. Consequently, for a η sufficiently large,

E[v|s(1) ≤ s, s] is U-shaped in s. Further, when competition is fierce, equilibrium bids must

be close to the expected value conditional on winning, β∗(s) ≈ E[v|s(1) ≤ s, s] for s ∈ (s, s̄].

However, given that E[v|s(1) ≤ s, s] is U-shaped this would imply that β∗ is U-shaped,

which is a contradiction. The crucial step of the proof is the check that β∗(s) converges to

E[v|s(1) ≤ s, s] sufficiently quick, such that the U-shape can be exploited. Otherwise, the

argument might fail because E[v|s(1) ≤ s, s] converges to v` for all s ∈ (s, s̄).

Consider any three signals s− < s < s+ with s+ < s∗. The necessary condition

U(β∗(s+)|s+;β∗) ≥ U(v`|s+;β∗)14 implies that β∗(s+) ≤ E[v|s(1) ≤ s+, s+], which rear-

ranges to

β∗(s+)− v`
vh − β∗(s+)

≤ ρ

1− ρ
fh(s+)

f`(s+)

e−η(1−Fh(s+))

e−η(1−F`(s+))
. (3)

Further, we show in the appendix that there exists a function A(η) > 1, such that for

any s− < s and η, it must hold that

β∗(s)− v`
vh − β∗(s)

≥ ρ

1− ρ
fh(s−)

f`(s−)

e−η(1−Fh(s))

e−η(1−F`(s))
A(η). (4)

Otherwise, a bidder with signal s− would have a strict incentive to deviate and bid β∗(s)

instead of β∗(s−). As η increases and competition grows more fierce, A(η) decreases. In the

limit when A(η) = 1, inequality (4) rearranges to β∗(s) ≥ E[v|s(1) ≤ s, s−] which implies

that for η large β∗(s) ≈ E[v|s(1) ≤ s, s].
Combining equations (3) and (4) and using that β∗−v`

vh−β∗ is increasing in β∗ yields

ρ

1− ρ
fh(s+)

f`(s+)

e−η(1−Fh(s+))

e−η(1−F`(s+))
≥ β∗(s+)− v`
vh − β∗(s+)

>
β∗(s)− v`
vh − β∗(s)

≥ ρ

1− ρ
fh(s−)

f`(s−)

e−η(1−Fh(s))

e−η(1−F`(s))
A(η)

⇐⇒ fh(s+)

f`(s+)

(fh(s−)

f`(s−)

)−1

>
(e−η(1−Fh(s+))

e−η(1−F`(s+))

)−1 e−η(1−Fh(s))

e−η(1−F`(s))
A(η).

As η increases, A(η) → 1; more importantly, however, the monotone likelihood ratio

property implies that15

(e−η(1−Fh(s+))

e−η(1−F`(s+))

)−1 e−η(1−Fh(s))

e−η(1−F`(s))
= eη([Fh(s+)−Fh(s)]−[F`(s+)−F`(s)]) →∞.

14 Given some strategy β, the utility from bidding b can be rewritten as U(b|s;β) =

P(win with b|s;β)
(
E[v|win with b, s;β]−b

)
. Thus, a bid larger than the expected value results in a negative

utility and is dominated by bidding v`, at which the utility is strictly positive.
15 [Fh(s+)− Fh(s)]− [F`(s+)− F`(s)] =

∫ s+
s fh(z)− f`(z)dz ≤

∫ s+
s f`(z)(

fh(s+)

f`(s+)
− 1)dz < 0.
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The negative inference from s(1) ≤ s+ grows unboundedly stronger than from s(1) ≤ s,

such that for a sufficiently large η it dominates the difference in signals fh(s+)
f`(s+)

(
fh(s−)
f`(s−)

)−1

>

1, thereby implying that E[v|s(1) ≤ s, s] becomes U-shaped. The inequality cannot hold and

β∗ cannot be a strictly increasing equilibrium.

Note the two roles a large η plays in this argument. First, the increased competition

ensures that bids are close to the expected value conditional on winning. Second, it implies

that the inference from winning is more decisive for the winning bidder’s belief than her

own signal, thereby making the expected value conditional on winning non-monotone. Both

effects and, hence, the non-existence are not tied to the Poisson distribution, but are more

general. Whenever the inference is non-monotone in the winning bid16 and competition is

fierce, such that bids have to be close to this expected value, a strictly increasing equilibrium

will not exist. Therefore, Proposition 1 extends to other distributions of the number of

bidders and even has its counterpart for other auction formats.17

To conclude the non-existence argument, we want to provide an example that illustrates

the argument once more and highlights how large “a sufficiently large η” is.

Example 1: Assume that vh = 1, v` = 0, and that both states are equally likely. Let the

signal space be [0, 1] and that the likelihood ratio fh
f`

is constant on [0, 1
2 ]. Therefore, bidders

with signals s ∈ [0, 1
2 ] are essentially equal and, in equilibrium, have to be indifferent over

each other’s bids. We want to find the critical η, such that no strictly increasing equilibrium

exists. To this end, suppose that β∗ is a strictly increasing equilibrium. Then, it follows

from the indifference that

U(β∗(s)|s;β∗) = U(β∗(s)|s;β∗) ∀s ∈ [0,
1

2
],

and by standard arguments β∗(s) = v` = 0. Thus, we can solve for β∗(s) (steps in the

appendix), and take the derivative with respect to s. We find that the slope is positive if

and only if

(fh(s)

f`(s)

)2

> eηF`(s)(1− fh(s)

f`(s)
− e−ηFh(s)).

Now, assume that fh(s) = 3
4 and f`(s) = 5

4 for s ∈ [0, 1
2 ]. Setting s = 1

2 and solving for η

yields a critical value of η ≈ 2.9. For any larger η, a strictly increasing equilibrium does not

exist. The problem in this example is particularity pronounced, since all signals below 1
2

16That is, whenever the order statistics and the value of the good are not affiliated. Consider Atakan &

Ekmekci (2014) and Pesendorfer & Swinkels (2000) for other examples of non-affiliated auctions.
17A second-price auction will, for example, not have a strictly increasing equilibrium, either (compare

footnote 20). Harstad et al. (2008) provide an example for the SPA, where the distribution of bidders is

binary.
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imply the same belief, which means that E[v|s(1) ≤ s, s] is decreasing on [0, 1
2 ] (independent

of η). When the monotone likelihood ratio property holds strictly, the critical η is generally

slightly higher. Nevertheless, the non-existence is more the rule than the exception.

3.1.2 Strictly increasing equilibria – Existence

After considering (not so) large η, we analyze what happens when η is small. For s, ŝ ∈ [s, s̄],

let Fs(1)(s|ŝ) denote the expected cumulative density function of s(1) conditional on observing

ŝ

Fs(1)(s|ŝ) :=
ρfh(ŝ)Fhs(1)(s) + (1− ρ)f`(ŝ)F

`
s(1)

(s)

ρfh(ŝ) + (1− ρ)f`(ŝ)

=
ρfh(ŝ)e−η(1−Fh(s)) + (1− ρ)f`(ŝ)e

−η(1−F`(s))

ρfh(ŝ) + (1− ρ)f`(ŝ)
,

and let fs(1)(s|ŝ) be the associated density.

Proposition 2 (Strictly Increasing Equilibria). The ordinary differential equation

β̂′(s) =
(
E[v|s(1) = s, s]− β̂(s)

) fs(1)(s|s)
Fs(1)(s|s)

with β̂(s) = v` (5)

has a unique solution, β̂.

(i) If β̂ is strictly increasing, then it is a unique equilibrium in the class of strictly in-

creasing equilibria.

(ii) If β̂ is not strictly increasing, no strictly increasing equilibrium exists.

(iii) If

2
( ∂
∂s

fh(s)

f`(s)

) f`(s)
fh(s)

+ ηfh(s)− ηf`(s) > 0 for a.e. s ∈ [s, s̄], (6)

but in any case when η is sufficiently small, a strictly increasing equilibrium exists.

The proof is provided in the appendix.18 When arguing why a strictly increasing equi-

librium does not exist for η sufficiently large, we used two implications of a large η: that

E[v|s(1) ≤ s, s] is non-monotone and that competition is sufficiently fierce. Both effects

reoccur in the conditions sufficient for the existence of a strictly increasing equilibrium (iii).

If η is sufficiently small, such that the expected value conditional on winning is monotone,

the existence problem described above does not arise. Even when bids are close to the

expected value conditional on winning, the bidding function can be strictly increasing. In

fact, we can provide a slightly tighter19 sufficient condition: β̂(s) is strictly increasing if

18Apart from the slightly different definition of s(1), this is the standard ODE in the literature.
19E[v|s(1) ≤ s, s] is strictly increasing in s when

(
∂
∂s

fh(s)
f`(s)

)
f`(s)
fh(s)

+ ηfh(s)− ηf`(s) > 0 ∀s ∈ [s, s̄]

10



E[v|s(1) = s, s] is strictly increasing in s,20 which is the case if and only if condition (6)

holds. Note that fh(s)
f`(s)

is differentiable almost everywhere because it is monotonic.

Even if this first condition fails and E[v|s(1) = s, s] is decreasing over some interval (as

in Example 1), a strictly increasing equilibrium exists for η small. In this situation, we can

utilize the second effect of η – the degree of competition. If η is small, such that competition

is very weak, bids are far away from the expected value conditional on winning. Therefore,

the problem described above does not arise, and a strictly increasing equilibrium always

exists.

While a strictly increasing equilibrium will only exist when η is small, the bidding func-

tion might be partially flat and contain jumps. Next, we take a closer look at these flat

parts to understand why it might be beneficial for bidders with different signals to pool on

the same bid.

3.2 Pooling Bids

In this subsection, we consider bids that are selected by bidders with different signals and

tie with positive probability. We derive the winning probabilities and revisit Example 1

to construct an equilibrium when no strictly increasing equilibrium exists. Thereafter, we

analyze the effects of these pooling bids more formally.

Fix some non-decreasing strategy β, and assume β(s) = bp for some bp and all s from

an interval I, but 6= bp otherwise. We generally refer to these intervals as pools, to bp as a

pooling bid and, without loss, always think about the closure of interval I, which we denote

by [s−, s+]. In the appendix (proof of Lemma 3), we show by simple computation that the

probability to win with bp is

πω(bp;β) =
P(s(1) ∈ [s−, s+] |ω)

E[#s ∈ [s−, s+] |ω]
=
e−η(1−Fω(s+)) − e−η(1−Fω(s−))

η(Fω(s+)− Fω(s−))
. (7)

In the section above, we considered Example 1 and found that no strictly increasing

equilibrium exists for η > 2.9. Now, we want to revisit the example and show that an

equilibrium with a pooling bid can exist when η > 2.9.

Example 1 continued: Extend the densities from Example 1 to

20 For a second-price auction, standard arguments imply that the equilibrium bid in a symmetric and

strictly increasing equilibrium is the expected value conditional on being tied at the top E[v|s(1) = s, s].

Thus, condition (6) is necessary and sufficient for the existence of a strictly increasing equilibrium in a

second-price auction.
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fh(s) =

 3
4 s ∈ [0, 1

2 ]

2s− 1
4 s ∈ ( 1

2 , 1]
f`(s) =

 5
4 s ∈ [0, 1

2 ]

−2s+ 9
4 s ∈ ( 1

2 , 1]

and consider the following strategy: All bidders with signals at or below 0.5 select the

same bid bp = 0.12, while all bidders with a signal above 0.5 follow a strictly increasing

bidding strategy (5) with an initial value bp = 0.12. We show in the appendix that there is

an η∗ ≈ 4.98, such that this constitutes an equilibrium. For intuition, assume that η = η∗,

and consider the relevant incentives:

• At s = 0.5, the expected value E[v|s(1) ≤ 0.5, 0.5] ≈ 0.147 > 0.12, and for s ≥ 0.5 the

sufficient condition (iii) of Proposition 2 holds. Thus, bidders with s ≥ 0.5 do not want to

deviate to v` = 0, and the differential equation (5) with initial value bp is strictly increasing.

• Bidders with signal s = 0.5 are indifferent between selecting bp or marginally overbid-

ding it
lim
ε→0

U(bp + ε|0.5;β) = P(s(1) ≤ 0.5|0.5)
(
E[v|s(1) ≤ 0.5, 0.5]− bp

)
≈ 0.0031,

U(bp|0.5;β) = P(win with bp|0.5; β)
(
E[v|win with bp, 0.5; β]− bp

)
≈ 0.0031.

• Last, for bidders with s = 0 , a deviation to v` = 0 is unprofitable because

U(0|0;β) ≈ 0.0026 < U(bp|0;β) ≈ 0.0031.

The example shows that pooling bids can ensure the existence of an equilibrium when

no strictly increasing equilibrium exists. The central feature that makes this possible is

that the expected value conditional on winning with bp is larger than the expected value

conditional on winning with a bid marginally above bp. Formally, a strategy β can only be

an equilibrium with some bp = β(s) for exactly s ∈ [s−, s+], if

E[v|win with bp;β] > lim
ε→0

E[v|win with bp + ε;β] = E[v|s(1) ≤ s+].

Suppose this was not the case, that is E[v|win with bp, s+;β] ≤ E[v|s(1) ≤ s+, s+].

Then, a deviation to a bid marginally above bp would discretely raise the winning proba-

bility (no random tiebreak) and weakly increase the expected value. Since β(s+) = bp <

E[v|win with bp, s+;β] (cf. footnote 14), such a deviation would always be profitable and β

could be no equilibrium.

To gain intuition with regard to how winning with bp can be a blessing compared to

winning with a marginally larger bid, consider the following reasoning: With positive prob-

ability, multiple bidders tie on the pooling bid bp, such that the winner is decided by the

uniform tiebreaking rule. Consequently, a bidder is more likely to win when there are fewer

competitors who also chose bp, that is when there are fewer other bidders with signals from

[s−, s+]. If those signals are low, such that they are more likely to be realized in the low

12



state of the world, there is more competition in the low state and the bidder wins less often

in the low state than in the high state. This is good news about the value of the good, a

blessing the bidder would lose when marginally overbidding the pooling bid.

For this effect to work, the number of competitors must be random. Otherwise, winning

more often when there are fewer competitors form [s−, s+] implies winning more often when

there are more bidders with signals below s−. This worsens the winner’s curse. When the

number of bidders is Poisson-distributed, then the number of bidders with signals below

s− is independent of the number of bidders with signals from [s−, s+]. Therefore, the

blessing occurs whenever the expected number of bidders with signals from [s−, s+], that is

η[Fω(s+)−Fω(s−)] is larger in the low state than in the high state. We group all remaining

results on pooling bids in the following lemma and discuss them thereafter.

Lemma 3. Assume β is such that there exists an interval I := [s−, s+] and a bid bp, such

that bp = β(s) for all s ∈ I and β(s) < bp < β(s′) for all s < s− < s+ < s′.

Then,

E[v|win with bp;β] ∈
[
E[v|s(1) ≤ s−], E[v|s(1) ≤ s+]

]
. (8)

If β is an equilibrium bidding strategy, then

η[Fh(s+)− Fh(s−)] < η[F`(s+)− F`(s−)],

and, consequently,

E[v|s(1) ≤ s−] > E[v|win with bp;β] > E[v|s(1) ≤ s+]. (9)

The expected value and bounds (8) follows from straight-up computation, which is found

in the appendix. It states that the expected value conditional on winning with bp always

takes a value between the expected value conditional on marginally underbidding or overbid-

ding bp. Combining equation (8) and Figure 1, it follows directly that in equilibrium, it must

hold that E[v|s(1) ≤ s−] > E[v|s(1) ≤ s+]. Otherwise, E[v|s(1) ≤ s+] ≥ E[v|win with bp;β]

and by the reasoning above, bidders would have a strict incentive to marginally overbid bp.

The condition E[v|s(1) ≤ s−] > E[v|s(1) ≤ s+] holds, if and only if21

e−η(1−Fh(s−))

e−η(1−F`(s−))
>
e−η(1−Fh(s+))

e−η(1−F`(s+))

⇔ e−η(Fh(s−)−Fh(s−)) > e−η(F`(s−)−F`(s−))

⇔ η[Fh(s+)− Fh(s−)] < η[F`(s+)− F`(s−)],

which proves the rest of the Lemma. Note that it follows that there can be no pool in

equilibrium where s− ≥ s∗.

21Recall equation (2) and that avh+v`
a+1

> bvh+v`
b+1

if and only if a > b.
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When β is partially flat, the utility is not continuous in the bid. The probability of

winning the auction with a bid just below or above a pooling bid bp is discretely different from

the probability at bp, so is the expected value conditional on winning. Further, equilibria of

the game will, generally, not be unique. The equilibrium bidding strategy does not follow a

unique differential equation but can contain a mixture of strictly increasing and flat parts,

as well as jumps. Last, as equation (9) reveals, the expected value conditional on winning

with a bid just below the pooling bid is discretely larger than winning with the pooling

bids. Thus, there is an open set of bids below bp with a discretely lower winner’s curse

attached to them. As will become evident in the next section, this open set is detrimental

to equilibrium existence when η is sufficiently large.

4 Non-existence

Proposition 3. Holding all other parameters fixed, for a sufficiently large η, no equilibrium

exists.

The formal proof follows as a corollary to Proposition 5. For now, we only want to

provide an intuition for the result.

So far, we already know from Proposition 1 that for a sufficiently large η there is no

strictly increasing equilibrium. A quick review of the proof will reveal that we can conclude

even more. For η sufficiently large, there can never be a (substantial) interval below s∗ where

the bidders follow a strictly increasing bidding strategy. In particular, the equilibrium we

constructed for Example 1 does not exist when η is large, because E[v|s(1) ≤ s] is decreasing

on [ 1
2 ,

5
8 ].

One idea to potentially circumvent this problem is to construct an equilibrium β∗ in

which all signals below s∗ pool on one bid bp, while all higher signals follow a strictly

increasing bidding strategy. This candidate equilibrium is depicted in the left frame of

Figure 2 and we want to eliminate it for large η . The two arrows indicate two possible

deviations, which would have to be unprofitable in equilibrium.

s̄s

v`

vh

•
I

•
II

s∗

bp

s̄s

v`

vh

s∗s+s−

bp

•
II •

I

Figure 2: Candidate equilibria
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As a simplification, we abbreviate the winning probabilities when selecting bp and

marginally overbidding it by

πω := πω(bp;β
∗) =

e−η(1−Fω(s∗)) − e−η

ηFω(s∗)
π+
ω := lim

ε↘0
πω(bp + ε;β∗) = e−η(1−Fω(s∗)).

When a bidder with signal s∗ deviates to a bid marginally above bp (deviation I), she wins

the tiebreak for sure. This deviation is unprofitable if U(bp|s∗;β∗) ≥ limε↘0 U(bp+ε|s∗;β∗),
which can be expressed as (more steps in appendix (D))

bp − v`
vh − bp

≥ ρ

1− ρ
fh(s∗)

f`(s∗)

π+
h − πh
π+
` − π`

. (10)

As η increases, the bidder wins infinitely more often when marginally overbidding the

pooling bid instead of bidding bp, that is,
π+
ω

πω
→ ∞. Consequently, there exists a function

B(η) < 1 with limB(η) = 1, such that
π+
h−πh
π+
` −π`

= B(η)
π+
h

π+
`

, which implies that bp is at least

≈ E[v|s(1) ≤ s∗, s∗] for η large.

To ensure that any signal s does not deviate from β∗(s) to v`, it has to hold that

β∗(s) ≤ E[v|win with β∗(s), s;β∗] (cf. footnote 14). For signal s with β∗(s) = bp this

rearranges to

bp − v`
vh − bp

≤ ρ

1− ρ
fh(s)

f`(s)

πh
π`
. (11)

Inspecting πω and π+
ω , we observe that there exists a function D(η) > 1 with limD(η) =

1, such that πh
π`

=
π+
h

π+
`

F`(s
∗)

Fh(s∗)D(η) – the blessing from winning with bp as opposed to

marginally higher bid is bounded and of the order Fh(s∗)
F`(s∗)

. The problem is that for large η,

this blessing does not suffice to reconcile the two conditions (10) and (11). Either s∗ wants

to marginally outbid bp, or s makes a strict loss. To see this formally, combine inequalities

(10) and (11) and use that fh(s∗)
f`(s∗)

= 1. This yields the following necessary condition

ρ

1− ρ
fh(s)

f`(s)

π+
h

π+
h

F`(s
∗)

Fh(s∗)
D(η) ≥ ρ

1− ρ
π+
h

π+
`

B(η)

⇐⇒ fh(s)

f`(s)

F`(s
∗)

Fh(s∗)
≥ B(η)

D(η)
.

Since we assume that fh(s)
f`(s)

< fh(s̄)
f`(s̄)

, the monotone likelihood ratio property implies that

the expression on the left side is strictly smaller than 1, while that on the right side con-

verges to 1. Thus, either condition (10) or (11) is violated for large η and, as a result, β∗

cannot take the presumed form. The problem is the same if all signals up to s+ > s∗ select

bid bp.
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At this point, we have eliminated the possibilities that β∗ may be strictly increasing over

any (significant) interval below s∗, or is constant below s∗. This implies that if there is an

equilibrium, there has to be an interval [s−, s+], with s− ∈ (s, s∗) and β∗(s) = bp for exactly

s ∈ [s−, s+]. Suppose that this was the case and, as a simplification, assume that s+ ≤ s∗.

This candidate equilibrium is depicted in the right frame of Figure 2. Denote the winning

probabilities for bidding bp and marginally overbidding and underbidding bp by

πω := πω(bp;β
∗) =

e−η(1−Fω(s+)) − e−η(1−Fω(s−))

η(Fω(s+)− Fω(s−))

π−ω := lim
ε↘0

πω(bp − ε;β∗) = e−η(1−Fω(s−)) π+
ω := lim

ε↘0
πω(bp + ε;β∗) = e−η(1−Fω(s+)).

Sine bidding v` dominates any bid that is above the expected value conditional on

winning, the pooling bid bp ≤ E[v|win with bp, s−;β∗] (deviation I; cf. footnote 14), which

rearranges to

bp − v`
vh − bp

≤ ρ

1− ρ
fh(s−)

f`(s−)

πh
π`

=
ρ

1− ρ
fh(s−)

f`(s−)

π+
h

π+
`

F`(s+)− F`(s−)

Fh(s+)− Fh(s−)
B̂(η). (12)

The second equality with B̂(η) ↘ 1 follows in the same manner as B(η) above. Again,

steps are found in appendix (D). In order to ensure that a bidder with signal s ∈ [s, s−)

does not want to deviate from β∗(s) to a bid marginally below bp (deviation II), the pooling

bid bp must not be too low. In the appendix, we use this necessary condition to derive a

function Es(η) < 1, with limEs(η) = 1 and a lower bound on bp

bp − v`
vh − bp

≥ ρ

1− ρ
fh(s)

f`(s)

π−h
π−h

Es(η). (13)

Putting equations (12) and (13) together yield

ρ

1− ρ
fh(s−)

f`(s−)

π+
h

π+
`

F`(s+)− F`(s−)

Fh(s+)− Fh(s−)
B̂(η) ≥ ρ

1− ρ
fh(s)

f`(s)

π−h
π−`

Es(η).

The crucial observation here is that because s+ < s∗, it follows that (c.f. footnote 15)

π+
h

π+
`

(π−h
π−`

)−1

= e−η[(Fh(s+)−Fh(s−))−(F`(s+)−F`(s−))] → 0,

which implies that for η sufficiently large, either equation (12) or (13) is violated.

Walking through the argument once more, since equilibrium bids can at most be the

expected value conditional on winning, E[v|win with bp, s−;β] puts an upper bound on bp

(12). For large η and any s < s−, this upper bound is smaller than the expected value
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conditional on marginally underbidding the pooling bid E[v|s(1) ≤ s−, s] (9). Hence, the

expected profits when selecting a bid marginally below bp are strictly positive. When η is

large, competition by bidders with signals below s− is fierce and a Bertrand competition

emerges. Bidders compete for the highest bid below bp which maximizes their chances to

win the auction but is subject to a strictly smaller winner’s curse than bp. Such a bid does

not exist because the set of bids below bp is open which yields the contradiction.

The arguments presented here are no complete proof, but highlight the effects that

prevent the existence of an equilibrium. First, there can neither be an equilibrium strategy

that is strictly increasing over an interval below s∗, nor one in which all bidders with signals

below s∗ pool. Thus, there has to be a pool that starts strictly to the right of s−, at which

the utility is discontinuous, thereby creasing an openness problem in the bidding space. This

openness is characteristic of the continuous bidding space. When we consider auctions on a

grid, there is a maximal bid below the pooling bid bp, such that the problem does not arise

and an equilibrium exists. Another way to solve the problem is to introduce an extended

auction mechanism, which allows bidders to send a cheap talk message alongside their bid.

5 Communication Extension

To ensure equilibrium existence for any η and develop a tool to analyze auctions on the

sufficiently fine grid, we extend the auction mechanism and allow bidders to send two cheap

talk messages alongside their bid. This mechanism is an implementation of the endogenous

tiebreaking rule by Jackson et al. (2002). We call it the Communication Extension of the

auction and denote it by Γc. In the following account, we will describe the new mechanism

before characterizing the set of equilibria. Last, we use our findings to prove Proposition 3.

In the Communication Extension, every bidder simultaneously selects three actions. To

begin with, she reports a set of number C ⊆ [s, s̄] that partitions the signal space into

(potentially trivial) intervals. Given partition C, two signals s and s′ belong to different

intervals if and only if there is a number c ∈ C, such that s < c ≤ s′. To ensure measurability,

we require bidders to play pure strategies over C, which, as we will see later, is not a binding

constraint. As a second cheap talk message, each bidder reports a signal sc ∈ [s, s̄] which

selects an interval from partition C. Multiple reports sc may be from the same interval,

which creates an equivalence relation over reports: sc ∼ ŝc if @c ∈ C such that sc < c ≤ ŝc.
Last, every bidder selects a bid b ∈ [v`, vh].

Thus, the (symmetric) strategy of a bidder is a function22 σ : [s, s̄]→ P[s, s̄]×∆
(

[s, s̄]×

22We consider functions that are measurable and probability distributions which that Borel probability

measures.
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[v`, vh]
)

, which maps the signals into a partition and distribution over reports and bids.

The auction mechanism selects the winner according to the following rule: First, it checks

whether all bidders reported the same partition C. If not, the good is not allocated. In case

all bidders reported the same partition, the good is allocated to the highest bidder. If there

are multiple highest bidders, the good is allocated randomly among those who reported a

signal from the highest interval of the partition, that is, the highest equivalence class of

signal reports sc. The winner receives the object and pays her bid.

Denoting the probability to win with action (C, sc, b), if all other bidders follow strategy σ

by πcω(C, sc, b;σ), the interim expected utility for a bidder with signal s who selects (C, sc, b)

is

U c(C, sc, b|s;σ) =
ρfh(s)

ρfh(s) + (1− ρ)f`(s)
πch(C, sc, b;σ)(vh − b) (14)

+
(1− ρ)f`(s)

ρfh(s) + (1− ρ)f`(s)
πc`(C, s

c, b;σ)(v` − b).

Given the utility, a strategy σ∗ is a best response to a strategy σ, if, for almost every

s, (C, sc, b) ∈ supp σ∗(s), implies that (C, sc, b) ∈ arg max(P̂ ,ŝc,b̂) U(Ĉ, ŝc, b̂|s;σ). We make

one assumption that restricts the set of best responses (and thereby equilibria) we take into

consideration.

Assumption 1. In any best response σ∗, all signals report the same partition C.

Generally, the two cheap talk messages allow for various forms of coordination that are

not feasible under the rules of a standard first-price auction.23 Since we want to use the

Communication Extension as a tool to approximate equilibria of auctions without cheap talk

on a grid, we eliminate these forms of coordination. Observe that under Assumption 1, our

restriction to strategies in which bidders do not mix over partitions becomes innocuous. In

equilibrium, every bidder plays a best response and, therefore, selects the same partition. A

deviation to another partition cannot be profitable, because it is detected unless the bidder

is alone in the auction and would have won anyhow. If a deviation to another partition is

not profitable, neither is a deviation to any sort of mixture over partitions.

Lemma 4 (Monotonicity in the Communication Extension). Consider a Communication

Extension Γc, any strategy σ, and any best response σ∗ to it. Then, there exists another

best response σ̂∗, which has the following properties:

(i) If (C, sc, b), (C, sc′, b) ∈ supp σ̂∗ and πch(C, sc, b;σ) = πch(C, sc′, b;σ), then sc = sc′;

(ii) It is pure in all three actions;

23Assume, for example, that the signals space is [0, 1] and bids are strictly increasing in the signal, but

signals [0, 1
2

] select C, while signals ( 1
2
, 1] select C′ 6= C. Then, signal 3

4
only wins whenever there is no

bidder with a signal from [0, 1
2

] and no signal above 3
4

. Signal 1
4

only wins when there is no higher signal.

Such an outcome cannot be achieved in a standard first-price auction.
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(iii) Bids are non-decreasing in the signal s;

(iv) For a given bid b, the report sc is non-decreasing in the signal s;

(v) U(σ̂∗(s)|s;σ) = U(σ∗(s)|s;σ) for almost every s;

(vi) πcω(C, sc, b; σ̂∗) = πcω(C, sc, b;σ∗) for all (C, sc, b) ∈ P[s, s̄] × [s, s̄] × [v`, vh] and ω ∈
{h, `}.

Given a partition C and bid b, we can identify every equivalence class of the partition

(see above) by a unique cheap talk signal (i), which simplifies notation. Properties (ii)–(iv)

are analogous to the result in Lemma 1. Bidders with higher signals are more optimistic,

select higher bids/reports, and win more often. If multiple signals induce the same belief,

the actions can be reordered such that they are monotone, but without altering the utilities

(v), or attainable outcomes (vi). We prove the results in the appendix.

Again, we look for Bayes-Nash equilibria, that are, strategies which are best responses

to themselves. By Lemma 4, we can restrict attention to equilibria which fulfill properties

(i) - (iv). Henceforth, we only consider equilibria that are pure and where the bidders with

higher signals win weakly more often. We denote pure strategies that fulfill (i), (iii), and

(iv) by σ : [s, s̄]→ P[s, s̄]× [s, s̄]× [v`, vh].

We can now explicitly state the winning probabilities πcω. To do so, fix some strategy

σ under which all signals report partition C. Let sc(s) and b(s) be functions such that

σ(s) = (C, sc(s), b(s)) for all s. If action (C, sc, b) is selected with zero probability by

another bidder, then it wins whenever s(1) ≤ ŝ with ŝ := sup
(
{s : b(s) < b} ∪ {s : b(s) =

b and sc(s) < sc}
)

. This happens in state ω ∈ {h, `} with probability

πcω(C, sc, b;σ) = e−η(1−Fω(ŝ)).

In case the bidder deviates to some other partition C ′ 6= C, she wins only when she is

alone and, hence, not detected which happens with probability

πcω(C ′, sc, b;σ) = e−η.

If σ(s) = (C, sc, b) for s ∈ [s−, s+], and 6= (C, sc, b) for all other signals, then the action

wins in state ω ∈ {h, `} with probability

πcω(C, sc, b;σ) =
e−η(1−Fω(s+)) − e−η(1−Fω(s−))

η(Fω(s+)− Fω(s−))
.

All three expressions are analogous to the ones in the standard auction and are de-

rived the same manner. Contrary to the standard auction, however, the Communication

Extension always has an equilibrium.
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Proposition 4 (Existence in the Communication Extension). Any Communication Exten-

sion Γc has an equilibrium. The equilibrium is pure and bids b as well as reports sc are

non-decreasing in the signal s.

In the appendix, we construct this equilibrium as the limit of a sequence of equilibria on

an ever finer grid. Even though there are, generally, multiple equilibria, we can characterize

their form up to some ε environment around s and s∗.

Proposition 5 (Form of the Equilibria in the Communication Extension). Fix any ε ∈
(0, s

∗−s
2 ). For η sufficiently large (given ε), any equilibrium σ∗ of the Communication Ex-

tension Γc takes the following form: There are two disjoint, adjacent intervals of signals

I, J such that

(i) [s+ ε, s∗ − ε] ⊂ I ∪ J ;

(ii) σ∗(sI) = (C, scI , b) for all sI ∈ I and σ∗(sJ) = (C, scJ , b) for all sJ ∈ J , with scI < scJ ;

(iii) @(C, sc, b) s.th. πcω(σ∗(sI);σ
∗) < πcω(C, sc, b;σ∗) < πcω(σ∗(sJ);σ∗) for ω ∈ {h, `};

(iv)
∫
I
ηfω(z)dz > 1

ε , and
∫
J
ηfω(z)dz > 1

ε for ω ∈ {h, `};

(v) On s ∈ (s∗ + ε, s̄], the bids are strictly increasing and the report sc is irrelevant.

The proof is provided in the appendix. The following figure summarizes the results:

s̄s

v`

vh

bp

I J s∗

ε

Figure 3: Form of equilibria σ∗ of the Communication Extension

There are two adjacent intervals I and J (purple and green), which span the signals

between s + ε and s∗ − ε (i). Bidders with signals from both intervals select the same bid

bp (ii), but separate by sending two different messages. Thus, signals from I receive the
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good whenever there are no signals from J or above and they win the tiebreak against

other signals from I. Signals from J win when there is no signal above J and they win

the tiebreak against other signals from J . Further, there is no action that wins whenever

there is no signal from J or higher (iii). The intervals I and J can vary in length as η

increases, but the expected number of bidders in both intervals grows without bound (iv).

Above s∗ + ε, bids are strictly increasing and follow the ordinary differential equation from

Proposition 2 with the appropriate initial value (v). Observe that Figure 2 only depicts one

of multiple equilibria. Thus, while interval J is drawn to start to the left of s∗ − ε, this is

not guaranteed. Rather, the proposition states that J does not end to the left of s∗ − ε.
Hence, J may be contained in the ε-environment around s∗. Furthermore, equilibria can

assume different forms within the ε-environment to the right of J , or around s.

To understand why an equilibrium exists in the Communication Extension and why it

has to assume such a form, it is helpful to recall the arguments in Section 4. The reasons

why the bids cannot be strictly increasing over an interval below s∗ and why s and s∗ have

to select different actions remain unchanged. Thus, any equilibrium must be similar to the

second candidate equilibrium. For this, we argued that whenever an interval (J) pools on

some bid bp and η is sufficiently large (competition is fierce), all bidders with lower signals

(I) compete for the highest bid below bp. In the standard auction, no such bid exists, which

results in a contradiction. This problem can be solved with cheap talk. By sending two

different messages, bidders from I and J can differentiate themselves, while leaving no room

for signals in I to marginally deviate (property (iii)). Since signals from I do not want to

mimic or outbid signals from J due to the stronger winner’s curse, there is no profitable

deviation for them.

One immediate implication of Proposition 5 is that there can be no equilibrium in the

standard auction (Proposition 3). All equilibria of the standard auction are also equilibria of

the Communication Extension, where C = ∅, which makes the reports sc irrelevant. Thus,

the equilibria in the auction without cheap talk are a subset of the equilibria in the Commu-

nication Extension. Since Proposition 5 describes every equilibrium of the Communication

Extension and I and J cannot be separated when C = ∅, and the standard auction does

not have an equilibrium.

In the next section, we consider auctions on a grid, where equilibria exist without cheap

talk. We show that these equilibria are approximated by the equilibria of the Communication

Extension. In particular, we show that every equilibrium on the sufficiently fine grid basically

inherits the properties derived in Proposition 5.
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6 Equilibria on a Grid

Definition 1 (Auction on a Grid). Consider a variation of the auction without cheap talk

in which the bids are constrained to a set with k ≥ 2 equidistant bids from [v`, vh], including

v` and vh. Denoting the distance between two bids by ∆ := vh−v`
k−1 , we summarize such an

auction by Γ(k). Accordingly, the auction on the continuous bidding space is Γ(∞).

The assumption of equidistance is for expositional purposes, only. The following results

hold for any discretization, as long as the grid becomes dense on [v`, vh] as k → ∞. Like

finite games with a fixed number of players, Poisson games with finitely many actions always

have an equilibrium. Since the proof of Lemma 1 did not rely on the form of the bidding

space, the result applies to auctions on the grid as well. Therefore, without loss, we can

restrict attention to pure and non-decreasing equilibria.

Lemma 5 (Existence on the Grid). Any auction on the grid Γ(k <∞) has an equilibrium

in pure, non-decreasing strategies.

The proof, an adaptation of Myerson (2000), is provided in the appendix. We now relate

equilibria on an arbitrary fine grid with equilibria in the Communication Extension.

Lemma 6 (Limit Equilibrium). Consider any sequence of auctions on the ever-finer grid

(Γ(k))k∈N and the corresponding sequence of equilibria (β∗k)k∈N. There exists a subsequence

of auctions (Γ(n))n∈N with equilibria (β∗n)n∈N and an equilibrium σ∗ in the Communication

Extension, such that

• β∗n converges pointwise to some non-decreasing β∗

• β∗(s) = b if and only if σ∗(s) = (•, •, b);

• limπω(β∗n(s);βn) = πcω(σ∗(s);σ) for ω ∈ {h, `}

• limU(β∗n(s)|s;β∗n) = U c(σ∗(s)|s;σ∗)

The proof is provided in the appendix. Combining Lemma 6 and Proposition 5, we can

characterize the equilibria on the fine grid.

Proposition 6 (Form of the Equilibria on the Grid). Fix any ε ∈ (0, s
∗−s
2 ). For η suffi-

ciently large (given ε) and ∆ sufficiently small (given ε and η), any equilibrium β∗ of the

discretized auction Γ(k < ∞) takes the following form: There are two disjoint, adjacent

intervals of signals I, J such that:

(i) [s+ ε, s∗ − ε] ⊂ I ∪ J ;

(ii) β∗(sI) = b for all sI ∈ I and β∗(sJ) = b+ ∆ for all sJ ∈ J ;

(iii)
∫
I
ηfω(z)dz > 1

ε , and
∫
J
ηfω(z)dz > 1

ε for ω ∈ {h, `};
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(iv) On s ∈ (s∗ + ε, s̄], the bids tie with probability smaller than 1
ε .

Proposition 6 describes the discrete analog of the equilibria in the Communication Ex-

tension. Again, the result is summarized best in the following figure:

s̄s

v`

vh

s∗

∆{

I J

ε

Figure 4: Form of equilibria on the grid

There are two adjacent intervals I and J (purple and green) and any signal between s+ε

and s∗ − ε is part of one of the two intervals (i). Bidders with signals from interval I pool

on a lower bid bp, while bidders on the interval J select the next bid on the grid bp + ∆ (ii).

The intervals can vary in length as η increases, but the expected number of bidders in both

intervals grows without bound (iii). As the grid becomes finer, the bidding function above

s∗ + ε becomes smooth and strictly increasing (iv).

This characterization highlights why the auction on the continuous bidding space is not

the limit of the auction on an arbitrary fine grid. As ∆ → 0, the difference between the

two pooling bids bp and bp + ∆ vanishes. In the limit, when the discretized space becomes

continuous, I and J can no longer be separated, and the utility changes discontinuously.

Therefore, the limit of the equilibrium strategies is generally no equilibrium of the limit

(i.e continuous) auction24 and existence proofs that rely on this continuity do not work.

While the standard auction cannot represent the limit of equilibria on the grid, by Lemma

6, the Communication Extension can. Equilibria in the Communication Extension inherit

the characteristics of equilibria on the sufficiently fine grid, which is why we can use the

24In particular, in the limit, the bidding strategy becomes the first candidate equilibrium of Section 4 (a

single large pool followed by a strictly increasing interval), which, as we argued, cannot be an equilibrium.
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extension to characterize the equilibria on the sufficiently fine grid.

To prove Proposition 6, fix η sufficiently large, such that Proposition 5 applies for the

ε given. Contrary to Proposition 6, suppose that for every k at least one of the prop-

erties (i)-(iv) is violated. Then, there exists a sequence of equilibria on the ever finer

grid (β∗k)k∈N, along which one of the properties (i)-(iv) never holds. By Lemma 6, there

exists a subsequence of games (Γ(n))n∈N with equilibria (β∗n)n∈N and an equilibrium strat-

egy σ∗ of the Communication Extension, such that limπω(β∗n(s);β∗n) = πcω(σ∗(s);σ∗) and

limU(β∗n(s)|s, β∗n) = U c(σ∗(s)|s∗;σ) for almost every s. Strategy σ∗ has the properties de-

scribed in Proposition 5. Using this result, we show that none of the properties (i)-(iv) of

Proposition 6 are violated for infinitely many n, which is a contradiction.

First, consider property (iv). By Lemma 6, if the bids under σ∗ are strictly increasing

over some interval, so is β∗ = limβ∗n. Since β∗n converges to β∗, for n sufficiently large (∆

sufficiently small), the bids tie with probability smaller than 1
ε on s ∈ (s∗ + ε, s̄].

Next, turn to properties (i)–(iii): We make two preliminary observations.

Claim 1: If s− < s+ pool in Γc i.e. σ∗(s−) = σ∗(s+), then β∗n(s−) = β∗n(s+) for any

n sufficiently large. Fix any such s− < s+ and suppose the claim was not true. Since

β∗n is non-decreasing, this implies that there exists a subsequence of equilibria along which

β∗n(s−) < β∗n(s+). Thus, {s : βn(s) ∈ [βn(s−), βn(s+)]} 6→ ∅ which, in turn, implies that

|πω(β∗n(s+);β∗n)−πω(β∗n(s−);β∗n)| 6→ 0.25 It follows that |πω(β∗n(s+);β∗n)−πω(σ∗(s+);σ∗)|+
|πω(β∗n(s−);β∗n)−πcω(σ(s−);σ)| ≥ |πω(β∗n(s+);β∗n)−πω(β∗n(s−);β∗n)| 6→ 0, which contradicts

that πω(β∗n(s);β∗n) converges to πcω(σ∗(s);σ∗).

Claim 2: If s− < s+ separate in Γc i.e. σ∗(s−) 6= σ∗(s+), then β∗n(s−) < β∗n(s+) for

any n sufficiently large. Fix any such s− < s+ and suppose the claim was not true. Then,

there exists a subsequence of equilibria along which β∗n(s−) = β∗n(s+). Since πω(β∗n(s);β∗n)

converges, this implies that limπω(β∗n(s−);β∗n) = limπω(β∗n(s+);β∗n), which is a contradic-

tion since limπω(β∗n(s);β∗n) = πcω(σ∗(s);σ∗) for all s.

Next, consider I and J as defined in Proposition 6, and choose from the interior any

sI ∈ I◦ and sJ ∈ J◦. Further, define In = {s : β∗n(s) = β∗n(sI)} as well as Jn = {s : β∗n(s) =

β∗n(sJ)}. By Claims 1 and 2, In → I and Jn → J . Thus, property (iii) cannot be violated

for n sufficiently large.

What remains to be shown is that for n sufficiently large β∗n(sI) + ∆ = β∗n(sJ) (ii). In

25If {s : β∗n(s) ∈ (β∗n(s−), β∗n(s+))} 6→ ∅ the implication follows directly. Otherwise, either {s : β∗n(s) =

β∗n(s−)} 6→ ∅, in which case πω(β∗n(s+);β∗n) stays bounded above πω(β∗n(s−);β∗n), because it wins the

random tiebreak on β∗n(s−) with certainty; and/or {s : β∗n(s) = β∗n(s+)} 6→ ∅, in which case πω(β∗n(s−);β∗n)

stays bounded below πω(β∗n(s+);β∗n) because β∗n(s−) only wins when no bid at or above β∗n(s+) is made.
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this case, it follows that for n sufficiently large (s+ ε, s∗− ε) ⊂ In ∪ Jn (i) which completes

the proof of Proposition 5. Suppose to the contrary that there exists a subsequence along

which β∗n(sI) + ∆ < β∗n(sJ). Without loss, let this be the original sequence. Since In → I

and Jn → Jn, it follows that {s : β∗n(sI) < β∗n(s) < β∗n(sJ)} → ∅. Denote ŝ := sup I = inf J .

Then, limπω(β∗n(sI) + ∆;β∗n) = P(s(1) ≤ ŝ|ω) = e−η(1−Fω(ŝ)).26 Because strategy β∗n is an

equilibrium, it follows for all sn ∈ In ∪ Jn that U(β∗n(sn)|sn;β∗n) ≥ U(β∗n(sI) + ∆|sn;β∗n).

Hence, continuity of the utility in sn implies that in the limit

limU(β∗n(s)|ŝ;β∗n) = U c(σ∗(s)|ŝ;σ∗) ≥ limU(β∗n(sI) + ∆|ŝ;β∗n) for s ∈ {sI , sJ},

thereby implying that in the Communication Extension, bidders prefer action σ∗(sI) or

σ∗(sJ) over some hypothetical action that wins whenever s(1) ≤ ŝ. Thus, there could be

an equilibrium with a signal/bid combination that wins whenever s(1) ≤ ŝ, since bidders

would not deviate. However, this is a contradiction to property (iii) of Proposition 5, which

completes the proof.27

The proof of Proposition 6 illustrates how the Communication Extension can be em-

ployed to characterize equilibria on the sufficiently fine grid. In contrast to the standard

auction that cannot handle non-vanishing atoms in the equilibrium bid distribution, it is,

thereby, the “correct” mechanism to analyze auctions on the grid. This is not only true for

the Poisson distribution, or even common-value auctions under numbers uncertainty, but

whenever one establishes that the equilibrium strategy is symmetric and non-decreasing.

Thus, the Communication Extension particularly lends itself to the analysis of other non-

affiliated common-value auctions where, generally, there are atoms in the equilibrium bid

distribution that severely complicate the establishment and characterization of equilibria.

In the next section, we revisit our model assumptions, before discussing the substantive

and technical implications of our results in the final chapter.

7 Robustness

7.1 State-dependent Competition

One natural modification of the model is the introduction of state-dependant participation,

expressed by a state-dependent mean ηω. This extension combines our numbers uncertainty

with the fixed but state dependent participation in Lauermann & Wolinsky (2017). When

26Since Ln → ∅, it follows that ever fewer signals pool on βn(sI) + ∆. In the limit, βn(sI) + ∆ wins when

all present bidders received a signal from I or lower, i.e. whenever s(1) ≤ ŝ.
27The proof follows equivalently if η is state dependent.
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the number of bidders depends on the state, being solicited to the auction is revealing about

the state. Conditional on participation, the bidder updates her belief to

P(ω = h|participation) =
ρηh

ρηh + (1− ρ)η`
.

Knowledge of the number of competitors now has two effects. Apart from determining

the intensity of the winner’s curse, it is also directly informative about the state of the

world. By virtue of the Poisson distribution, we can pin down how these two effects jointly

determine the inference of the winning bidder. The expected value E[v|s(1) ≤ ŝ] is increasing

in ŝ, if and only if ηhfh(ŝ) > η`f`(ŝ).

For the most part, the introduction of state dependent participation leaves our results

unaltered. The reader merely needs to replace fω(s) with ηωfω(s) for ω ∈ {h, `}. In the

appendix, we prove every result for this more general case. Only when ηh
η`

is such that s∗

does not exist, Propositions 3, 5, and 6 are no longer valid. If ηhfh(s)
η`f`(s)

≥ 1, claim (iii) of

Proposition 2 ensures the existence of a strictly increasing bidding strategy; by Lemma 3,

this is the only symmetric equilibrium.28 If, on the other hand, ηhfh(s̄)
η`f`(s̄)

< fh(s)
fh(s) and ηh, η`

are sufficiently large, then there exists an equilibrium in which every bidder selects the same

bid.

7.2 Distribution of the Number of Bidders

Independent of the distribution, uncertainty about the number of competitors breaks the

affiliation between the winning bid and the value of the good. This creates room for the

presence of atoms in the equilibrium bid distribution. While atoms can always be prob-

lematic for equilibrium existence, it is unclear whether existence can fail in a broader class

of distributions other than Poisson. At the very least, the Poisson distribution is not a

“knife-edge”-case, in the sense that we can truncate the distribution to always have at

least n bidders, or marginally change the probabilities of the realizations. Our results stay

valid for any distribution in which there are n bidders with probability P(n) and where∑
n |P(n)− e−η η

n

n! | is sufficiently small.

What extends more easily than the general non-existence is the non-existence of strictly

increasing equilibria. When the expected number of bidders is sufficiently large, the winner’s

curse plays an important role, and bids are close to the expected value conditional on

winning. If the lower end of the support of the bidder distribution is sufficiently small,

then the expected value conditional on winning is non-monotone, such that no strictly

increasing equilibrium exists. In this case, any equilibrium bid distribution has to contain

atoms, thereby making the Communication Extension the correct auction mechanism to

approximate equilibria on the sufficiently fine grid.

28Such an equilibrium arises in Lauermann et al. (2018).
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7.3 Signal Structure

The assumption that s∗ is unique is only for convenience. If there is an interval of signals

along which fh(s) = f`(s), the propositions just become more lengthy. For example, n

Proposition 5 the bids are constant between s+ ε and inf{s : fh(s) = f`(s)}− ε, and strictly

increasing at or above sup{s : fh(s) = f`(s)}+ε. Moreover, unboundedly informative signals

leave our results unaltered, but complicate some proofs.

As a more substantial change, we can allow for finitely many jumps in fh and f`. This

also captures problems with finitely many discrete signals, which can be modeled as intervals

of signals sharing the same likelihood ratio. In case the densities are discontinuous, all results

up to Propositions 3, 5, and 6 still apply. However, the strictly increasing bidding strategy

from Proposition 2 will have kinks and be no longer differentiable at points where the

densities jump. A more profound change is that the discontinuities can solve the existence

problem. The characterization of the equilibria and non-existence relies on the continuity

of the fh
f`

around s∗. To be precise, our results remain valid as long as there exists an open

interval of signals S, such that for all s ∈ S it holds that fh(s)
f`(s)

≤ 1, but fh(s)
f`(s)

F`(s)
Fh(s) <

fh(s)
f`(s)

.

If there is no such interval S and η is sufficiently large, an equilibrium exists which takes

the form depicted in the left frame of Figure 2: all signals below s∗ pool on the same bid

and all higher signals follow a strictly increasing bidding strategy. Note that this is always

true when signals are binary, thereby making this signal structure a special case.29

7.4 Reserve Price

The result of Lemma 1 that any best response can be reordered to be non-decreasing relies

on the fact that b ≥ v`, such that the winning bidder incurs a loss in state ω = `. If, to the

contrary, the reserve price was 0 < v` and participation was state-dependent with ηh << η`

small, then equilibrium strategies can be strictly decreasing. In this case, bidders with high

signals expect less competition and are, therefore, inclined to bid less. The bidder with the

highest signal bids the lowest bid, gambling to be alone in the auction.

However, if η = ηh = η` are sufficiently large the assumption on the reserve price can

be omitted. As η increases, the probability of being alone in the auction vanishes, and by

Bertrand logic all signals above some s+ ε bid something at or above v` and follow a non-

decreasing strategy. Alternatively, one can assume that the good is only allocated when

there are at least two bidders present, which ensures that any equilibrium bid is weakly

larger than v` and leaves our results qualitatively unaltered.

29Välimäki & Murto (2017) make use of this fact.
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7.5 Auction Format

As indicated in footnote 20, whenever η is sufficiently large, there is no strictly increas-

ing equilibrium in the second-price auction, either. By standard arguments, in any such

equilibrium, bidders bid their expected value conditional on being tied at the top β(s) =

E[v|s(1) = s, s], which is increasing if and only if condition (6) holds. Since this condition

is violated for η large, any equilibrium bid distribution necessarily contains atoms, which

are problematic for auctions without cheap talk. In fact, one can check that for η large,

there is no equilibrium in which all signals below s∗ pool, while the others follow a strictly

increasing bidding strategy. Thus, we conjecture that for η sufficiently large, then there is no

non-decreasing equilibrium in the second-price auction either. However, one can construct

an analogous Communication Extension for the second-price auction, which captures the

bidding behavior on the sufficiently fine grid.

8 Discussion

A common rationale for analyzing auctions on the continuous bidding space is to make the

problem easier to solve, while providing a good approximation for equilibria on a sufficiently

fine grid. The non-existence highlights that this is no longer the case when the number of

competitors is unknown and the good is of interdependent value. Contrary to the pure

private value case (c.f. McAfee & McMillan (1987), and Harstad et al. (1990)) a direct

extension of the results and techniques for auctions with a known number of bidders to set-

tings with numbers uncertainty is not possible. In particular, equilibrium bidding strategies

are not just a weighted average of what would have been selected if the number of bidders

was known. Consequently, any combination of signal- and bidder-distribution requires a

separate analysis on whether an equilibrium exists and which form it can assume. Gener-

ally, equilibrium behavior under numbers uncertainty involves pooling at lower bids, which

is very different from the strictly increasing behavior predicted for a fixed numbers of bid-

ders. The pooling behavior not only results in the possibility of non-existent or non-unique

equilibria but has some interesting economic implications.

First, even though the model is purely competitive, bidders with low signals engage in

a cooperative behavior to reduce the winner’s curse. Contrary to a common-value auc-

tion with affiliation, they have an incentive to coordinate on certain bids. Consequently,

equilibria resemble collusive behavior, even though they are the outcome of independent

utility-maximizing behavior of the bidders.

Second, the presence of atoms in the bid distribution implies that the bidding function

cannot be inverted to back out the distribution of signals. When signals are unobservable,

many empirical studies utilize the (presumed) strict monotonicity of the equilibrium strategy

to estimate the bidders’ signals; we show that this can result in a misspecification. In the
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Poisson case, our model predicts that lower bids are more concentrated around β∗(s∗), as

bidders (attempt to) employ pooling strategies. Thus, an inversion of the bidding function

would overestimate the density signals around s∗. As a side note, the pooling behavior of

pessimistic bidders may make small changes in their beliefs undetectable, as multiple signal

distributions can have the same pooling equilibrium.

Last, if signals are observable, the equilibrium distribution of bids may look like the bid-

ders do not (fully) internalize the winner’s curse. Since pooling bids increase the expected

value conditional on winning, bidders are willing to place higher bids compared to the ones

in a strictly increasing equilibrium.

As a technical contribution, we present a very simple and robust model in which the ex-

istence of an equilibrium fails due to an openness problem which arises endogenously. The

problem stems from the two-dimensional uncertainty the bidders face, which breaks the

affiliation between the winning bid and the value of the good. The observation that equi-

librium existence can fail in a non-affiliated setup has been noted before. Among others,

Jackson (2009) provides an example in a setting where the value of the good has a discrete

private and a common-value component.30 In our setup, we can explicitly identify how the

existence fails and why the standard auction is unsuited to approximate equilibria on the

grid when the bid distribution can contain atoms. To solve this problem, we implement the

Communication Extension by Jackson et al. (2002) as a mechanism that extends the auction

by cheap talk. With a simple trick, we can do so without making the auctioneer an implicit

player of the game. We illustrate that this extended mechanism is not only of theoretical

interest but can help to characterize equilibria on the sufficiently fine grid. Thereby, it is

the “correct” mechanism to consider when analyzing auctions in which the equilibrium bid

distribution can contain atoms, in particular, in other non-affiliated auctions.

Our model is not the first to consider a non-affiliated common-value auction. In Lauer-

mann & Wolinsky (2017) and Lauermann & Wolinsky (2018) the number of bidders is

deterministic but state-dependent. When more bidders participate in the low state, this

state dependence implies that the winning bid and value of the good are non-affiliated.

In Lauermann & Wolinsky (2017), the state-dependent participation is the outcome of a

strategic solicitation decision by an informed seller. The authors construct an equilibrium

for binary signals in which bidders with high signals pool. Lauermann & Wolinsky (2018)

also consider exogenously given state-dependence and focus on large auctions. When the

number of bidders is large and exogenous, they show that any equilibrium is either of this

“pooling type” or of a “separating type”, in which the price partially reveals the correct

30In a working paper, Lauermann & Speit (2018) show that the existence problem in Jackson’s setup can

be circumvented by assuming that the private types are continuously distributed.
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state.

Atakan & Ekmekci (2014) analyze a model in which winning bidders have an additional

valuation for correct knowledge of the state. This additional valuation raises the value from

winning with a low, as opposed to an intermediate bid, such that expected value conditional

on winning is non-monotone. The authors construct one equilibrium in which low signals

pool while high signals follow a strictly increasing strategy.

Pesendorfer & Swinkels (2000) consider k-th price multiunit auctions in which the val-

uation has a common and private value component. The authors assume that an atomless

equilibrium bid distribution exists and investigate the efficiency properties of such an auction

when the number of goods and bidders becomes large.

In a setting of pure common values, Harstad et al. (2008) and Atakan & Ekmekci (2016)

consider the effect of numbers uncertainty on information aggregation properties of auc-

tions with many goods and bidders. In Harstad et al. (2008), the distribution of bidders

is exogenously given. The authors find that even if the equilibrium strategy is strictly

increasing (which aids aggregation), information aggregation fails unless the numbers un-

certainty is negligible. In contrast, Atakan & Ekmekci (2016) assume that bidders have a

type-dependent outside option such that the numbers uncertainty arises endogenously and

is correlated with the state. In particular, this includes multiple, competing auctions. They

find that even when there are many goods and bidders, the self-selection by bidders can be

detrimental to information aggregation.

Closest to our paper, Välimäki & Murto (2017) consider a common-value auction where

bidders have to pay a participation cost. If the pool of potential bidders is large, this results

in a Poisson-distributed number of bidders. The authors concentrate on the case where

bidders make their entry decision after observing their signal. Signals in their setup are

binary, which circumvents the existence problem described in this paper (cf. Section 7.3),

and enables the authors to compare revenues across auction formats.

30



Appendix A Overview

The appendix is divided into five parts. After this overview and some general comments

(A) follow the proofs skipped in the body of the text (B), before proving Example (C) and

the results to Section 4 (D). The appendix concludes with the references (E).

Maintained Assumptions We give all proofs for the more general case where

the mean of the Poisson distribution is state dependent ηω. To that end, we redefine

s∗ : ηhfh(s∗)
η`f`(s∗)

= 1 and sometimes have to restate the claims for this more general case.

For convenience, we distinguish between claims that hold everywhere and almost every-

where only when it is central to the argument. Unless specified otherwise, results hold

for almost all s. Apart from the proofs of Lemma 1 and 4 we assume that strategies

are pure, bids b are non-decreasing. Furthermore, in the Communication Extension re-

ports sc are unique in their indifference class of reports and non-decreasing given a fixed bid.

As a reminder for the reader, we restate the most important symbols:

ω ∈ {h, `} states of the world ρ prior probability ω = h

ηω mean of the number of bidders vω value of the good

β standard bidding strategy b ∈ [v`, vh] bid

s ∈ [s, s̄] signals s(1) highest (other) signal

fω signal density Fω signal cdf

C ⊂ [s, s̄] interval partition sc signals report

σ Comm. Extension strategy s∗ s∗ : ηhfh(s∗)
η`f`(s∗)

= 1

Interim Expected Utility (Standard Auction):

U(b|s;β) =
ρηhfh(s)

ρηhfh(s) + (1− ρ)η`f`(s)
πh(b;β)(vh−b)+

(1− ρ)η`f`(s)

ρηhfh(s) + (1− ρ)η`f`(s)
π`(b;β)(v`−b).

Interim Expected Utility (Communication Extension):

U c(C, sc, b|s;σ) =
ρηhfh(s)

ρηhfh(s) + (1− ρ)η`f`(s)
πch(C, sc, b;σ)(vh − b)

+
(1− ρ)η`f`(s)

ρηhfh(s) + (1− ρ)η`f`(s)
πc`(C, s

c, b;σ)(v` − b).

Because many of our results rely on the comparison of expected values, recall that for

any two events φ and φ′ it holds that E[v|φ] > E[v|φ′] if and only if P(φ|h)
P(φ|`) >

P(φ′|h)
P(φ′|`) .
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Appendix B Proofs Skipped

Proof of Lemma 1

Proof. Claim 1: If b′ > b ≥ v` and U(b′|s;β) ≥ U(b|s;β), then U(b′|s′;β) ≥ U(b|s′;β) for

s′ > s. The second inequality is strict if fh(s′)
f`(s′)

> fh(s)
f`(s)

.

Because b′ > b ≥ v` it follows that (v` − b′) < (v` − b) ≤ 0 and since the winning

probability πω is weakly increasing in the bid and never zero (the bidder is alone with

positive probability), πω(b′;β) ≥ πω(b;β) ≥ πω(v`;β) > 0. Together this yields π`(b
′;β)(v`−

b′) < π`(b;β)(v` − b) ≤ 0. Hence, U(b′|s;β) ≥ U(b|s;β) requires that πh(b′;β)(vh − b′) >
πh(b;β)(vh − b). Rearranging U(b′|s;β) ≥ U(b|s;β) yields

ρηhfh(s)

(1− ρ)η`f`(s)
[πh(b′;β)(vh − b′)− πh(b;β)(vh − b)] ≥ π`(b;β)(v` − b)− π`(b′;β)(v` − b′).

If s′ > s is such that fh(s′)
f`(s′)

> fh(s)
f`(s)

, the left side is strictly larger for s′ and thus

U(b′|s′, β) > U(b|s′, β). �

Claim 2: The set of interim beliefs which imply indifference between two bids

L := { fh(s)
f`(s)

: ∃b, b′ with b 6= b′ and U(b|s;β) = U(b′|s;β)} is countable.

By construction, ∀l ∈ L there exist two bids bl− < bl+ such that a bidder s : fh(s)
f`(s)

= l is

indifferent between these two bids, U(bl−|s;β) = U(bl+|s;β). Furthermore, there exists a

ql ∈ Q s.t. bl− < ql < bl+. By Claim 1, bl+ ≤ bl
′

− for all l < l′, which implies that ql < ql
′
.

Because Q is countable, so is L. �

Claim 3: For any strategy, if the likelihood ratio fh
f`

is constant on some interval I, the

bids can be reordered in such a way that they are pure, non-decreasing and the distribution

of bids remains the same.

C.f Pesendorfer & Swinkels (2000) footnote 8. �

Up to the set of beliefs at which bidders are indifferent between multiple bids, the best

response is pure and non-decreasing (Claim 1). There are at most countably many such

beliefs at which bidders are indifferent (Claim 2). Thus, we can consider the countable

set of intervals of signals {I l} which induce a belief at which bidders are indifferent. If an

interval from the set is trivial, i.e. only contains a single signal ŝ, we can, without loss,

assume that ŝ chooses the lowest bid in the support of its distribution over bids, only. This

reassignment does not affect the implied distribution of bids and thereby not the utility

of other bidders. Along the remaining non-trivial intervals I l the likelihood ratio fh
f`

is
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constant. To those intervals, we can sequentially apply Claim 3 obtaining a best response

which is pure and non-decreasing. Furthermore, this reordering leaves the distribution of

bids and thereby outcomes unaltered.

Proof of Lemma 2*

Lemma 2∗. The expected value E[v|s(1) ≤ ŝ] is strictly decreasing when ŝ < s∗, has unique

global minimum at ŝ = s∗ and is strictly increasing when ŝ > s∗.

Proof. Note that avh+v`
a+1 > bvh+v`

b+1 if and only if a > b. Thus, E[v|s(1) ≤ ŝ] is strictly

increasing if and only if e−ηh(1−Fh(ŝ))+η`(1−F`(ŝ)) is strictly increasing. The derivative

e−ηh(1−Fh(ŝ))+η`(1−F`(ŝ))[ηhfh(ŝ)− η`f`(ŝ)] is positive if and only if ηhfh(ŝ) > η`f`(ŝ). The

monotone likelihood ratio property and the assumption that ηhfh(s∗) = η`f`(s
∗) is unique

imply that ηhfh(ŝ) < η`f`(ŝ) for ŝ < s∗, and ηhfh(ŝ) > η`f`(ŝ) for ŝ > s∗. Thus the Lemma

follows.

Proof of Proposition 1*

Proposition 1∗. Fix ηh
η`

= l < f`(s)
fh(s) . Holding all other parameters fixed, for a sufficiently

large ηh, no strictly increasing equilibrium exists.

Proof. Fix ηh
η`

= l < f`(s)
fh(s) and suppose to the contrary that a strictly increasing equilibrium

β∗ exists for ηh arbitrary large. Fix s−, s ∈ [s, s∗) with s− < s and, for ease of notation,

abbreviate the winning probabilities πω := πω(β∗(s);β∗) = e−ηω(1−Fω(s)) as well as π−ω :=

π−ω (β∗(s−);β∗) = e−ηω(1−Fω(s−)). Since β∗ is an equilibrium, for all s ∈ [s, s̄] it has to hold

that

U(β∗(s−)|s−;β∗) ≥ U(β∗(s)|s−;β∗)

⇐⇒
ρηhfh(s−)π−h (vh − β∗(s−)) + (1− ρ)η`f`(s−)π−` (v` − β∗(s−))

ρηhfh(s−) + (1− ρ)η`f`(s−)

≥ ρηhfh(s−)πh(vh − β∗(s)) + (1− ρ)η`f`(s−)π`(v` − β∗(s))
ρηhfh(s−) + (1− ρ)η`f`(s−)

⇒ρηhfh(s−)π−h (vh − v`) ≥ ρηhfh(s−)πh(vh − β∗(s)) + (1− ρ)η`f`(s−)π`(v` − β∗(s)),

where we use in the last step that β(s−) ≥ v`. This equation rearranges to

β∗(s)− v`
vh − β∗(s)

≥ ρ

1− ρ
ηhfh(s−)

η`f`(s−)

πh
π`

(
1−

π−h
πh

vh − v`
vh − β∗(s)

)
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Since
π−h
πh

= e−ηh(Fh(s)−Fh(s−)) → 0 it follows that 1− π−h
πh

vh−v`
vh−β∗(s) → 1 unless β∗(s)→ vh.

If β∗(s) → vh, this implies that β∗(s̄) > β∗(s) → vh. In that case, signal s̄, however,

would have an incentive to deviate to v` because

β∗(s̄) ≤ E[v|win with β∗(s̄), s̄;β∗] = E[v|s(1) ≤ s̄, s̄] = E[v|s̄] < vh,

where the last inequality follows from our assumption that the likelihood ratio of signals

is bounded. This is a contradiction. Hence, it is without loss to restrict attention to the

case where there is a function A(ηh) < 1 with limA(ηh) = 1 such that

β∗(s)− v`
vh − β∗(s)

≥ ρ

1− ρ
ηhfh(s−)

η`f`(s−)

πh
π`
A(ηh). (15)

Next, consider any bidder with signal s+ ∈ (s, s∗). A deviation to v` would be profitable

for s+ unless

E[v|win with β∗(s+), s+;β∗] = E[v|s(1) ≤ s+, s+] ≥ β∗(s+)

⇐⇒ β∗(s+)− v`
vh − β∗(s+)

≤ ρ

1− ρ
ηhfh(s+)

η`f`(s+)

π+
h

π+
`

, (16)

where π+
ω := πω(β∗(s+);β∗) = e−ηω(1−Fω(s+)). Combining equations (15) and (16) and

using that β∗−v`
vh−β∗ is increasing in β∗ gives

ρ

1− ρ
ηhfh(s+)

η`f`(s+)

π+
h

π+
`

≥ ρ

1− ρ
ηhfh(s−)

η`f`(s−)

πh
π`
A(ηh). (17)

The crucial observation now is that
π+
h

π+
`

π`
πh

= eηh[Fh(s+)−Fh(s)]−η`[F`(s+)−F`(s)] → 0, be-

cause

ηh[Fh(s+)− Fh(s)]− η`[F`(s+)− F`(s)] =

∫ s+

s

[1− η`f`(z)

ηhfh(z)
]ηhfh(z)dz

< ηh︸︷︷︸
→∞

∫ s+

s

[1− η`f`(s+)

ηhfh(s+)
]︸ ︷︷ ︸

(1− 1
l

f`(s)

fh(s)
)<0, constant

fh(z)dz → −∞.

Since A(ηh) → 1, and fh(s+)
f`(s+)

f`(s)
fh(s) is bounded, this implies that equation (17) cannot

hold for ηh large. Thus, we have found a contradiction.
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Proof of Proposition 2*

Proposition 2∗. The ordinary differential equation

β̂′(s) =
(
E[v|s(1) = s, s]− β̂(s)

) fs(1)(s|s)
Fs(1)(s|s)

with β̂(s) = v`.

has a unique solution, β̂.

(i) If β̂ is strictly increasing, then it is a unique equilibrium in the class of strictly in-

creasing equilibria.

(ii) If β̂ is not strictly increasing, no strictly increasing equilibrium exists.

(iii) If
2
( ∂
∂s

fh(s)

f`(s)

) f`(s)
fh(s)

+ ηhfh(s)− η`f`(s) > 0 for a.e. s ∈ [s, s̄],

but in any case when η is sufficiently small, a strictly increasing equilibrium exists.

Proof. For s, s′ ∈ [s, s̄], let Fs(1)(s|s′) denote the expected cumulative density function of

s(1) conditional on observing s′, and let fs(1) be the associated density

Fs(1)(s|s
′) :=

ρηhfh(s′)e−ηh(1−Fh(s)) + (1− ρ)η`f`(s
′)e−η`(1−F`(s))

ρηhfh(s′) + (1− ρ)η`f`(s′)
,

fs(1)(s|s
′) :=

ρη2
hfh(s′)fh(s)e−ηh(1−Fh(s)) + (1− ρ)η2

` f`(s
′)f`(s)e

−η`(1−F`(s))

ρηhfh(s′) + (1− ρ)η`f`(s′)
. (18)

Since s(1) = −∞ if the bidder is alone, the cdf of s(1) on [s, s̄] is Fs(1)(s|s′) =∫ s
s
fs(1)(z|s′)dz + Fs(1)(s|s′). Define further v(s, s′) := E[v|s(1) = s, s′] i.e.

v(s, s′) :=
ρη2
hfh(s′)fh(s)e−ηh(1−Fh(s))vh + (1− ρ)η2

` f`(s
′)f`(s)e

−η`(1−F`(s))v`
ρη2
hfh(s′)fh(s)e−ηH(1−Fh(s)) + (1− ρ)η2

` f`(s
′)f`(s)e−η`(1−F`(s))

. (19)

If β is strictly increasing and continuous, πω(b;β) = P(s(1) ≤ β−1(b)|ω;β) for all b in β’s

support. As a result, for all b in the support, the utility (1) can be rewritten as

U(b|s;β) =

∫ β−1(b)=s

s

[
v(z, s)− b

]
fs(1)(z|s)dz +

[
v(−∞, s)− b

]
Fs(1)(s|s). (20)

Claim 1: If β is a strictly increasing equilibrium, then β is differentiable. Furthermore,

it solves the ODE ∂β(s)
∂s =

(
E[v|s(1) = s, s]− β(s)

)
fs(1) (s|s)
Fs(1) (s|s) and β(s) = v`.

Suppose β is a strictly increasing equilibrium (we forgo on the ∗) and, hence, continuous.

If β would jump upwards, any bid just above a jump would be dominated by a bid just
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below the jump, which wins with the same probability but at a lower price. By the same

reason, β(s) = v`.

We take any point s ∈ (s, s̄) and show that β is differentiable at this point. Let (sn)n∈N

be a sequence converging to s from below. Then, the sequence bn := β(sn) converges to

b = β(s) from below, too. Because bn < b is a best response for sn < s, it follows that

U(bn|sn;β) ≥ U(b|sn;β). Using (20), we receive∫ β−1(bn)=sn

s

[
v(z, sn)− bn

]
fs(1)(z|sn)dz +

[
v(−∞, sn)− bn

]
Fs(1)(s|sn)

≥
∫ β−1(b)=s

s

[
v(z, sn)− b

]
fs(1)(z|sn)dz +

[
v(−∞, sn)− b

]
Fs(1)(s|sn),

which can be rearranged to∫ sn

s

[
b− bn

]
fs(1)(z|sn)dz +

[
b− bn

]
Fs(1)(s|sn) ≥

∫ s

sn

[
v(z, sn)− b

]
fs(1)(z|sn)dz.

Dividing by s − sn > 0, as well as Fs(1)(s|sn) =
∫ s
s
fs(1)(z|sn)dz + Fs(1)(s|sn) > 0 and

taking the lim inf yields

lim inf
n→∞

b− bn
s− sn

≥ lim inf
n→∞

1

s− sn

∫ s

sn

[
v(z, sn)− b

] fs(1)(z|sn)

Fs(1)(s|sn)
dz.

By inspection of equations (18) and (19), the continuity of fh and f` ensures that v(z, sn),

fs(1)(z|sn) and thereby Fs(1)(s|sn) are continuous in both arguments and thereby

lim inf
n→∞

b− bn
s− sn

≥ [v(s, s)− b]
fs(1)(s|s)
Fs(1)(s|s)

. (21)

Bid b is a best response for signal s, implying that U(bn|s;β) ≤ U(b|s;β), which rear-

ranges to

∫ β−1(bn)=sn

s

[
v(z, s)− bn

]
fs(1)(z|s)dz +

[
v(−∞, s)− bn

]
Fs(1)(s|s)

≤
∫ β−1(b)=s

s

[
v(z, s)− b

]
fs(1)(z|s)dz +

[
v(−∞, s)− b

]
Fs(1)(s|s).

Repeating the steps as before, but taking the lim sup instead, yields

lim sup
n→∞

b− bn
s− sn

≤ [v(s, s)− b]
fs(1)(s|s)
Fs(1)(s|s)

. (22)

And because lim inf ≤ lim sup, it follows from equations (21) and (22) that

36



lim
n→∞

b− bn
s− sn

= lim
n→∞

β(s)− β(sn)

s− sn
= [v(s, s)− β(s)]

fs(1)(s|s)
Fs(1)(s|s)

.

We can repeat the construction for any sequence of signals and bids which converges

from above instead of below and obtain the same result. Therefore, β is differentiable and

we can write (replacing v)

∂β(s)

∂s
=
(
E[v|s(1) = s, s]− β(s)

) fs(1)(s|s)
Fs(1)(s|s)

, (23)

or, fully spelled out for future reference,

∂β(s)

∂s
=
ρη2hfh(s)2e−ηh(1−Fh(s))(vh − β(s)) + (1− ρ)η2` f`(s)

2e−η`(1−F`(s))(v` − β(s))

ρηhfh(s)e−ηH (1−Fh(s)) + (1− ρ)η`f`(s)e−η`(1−F`(s))
. (24)

�

Claim 2: If β is strictly increasing and solves the ODE ∂β(s)
∂s =

(
E[v|s(1) =

s, s]− β(s)
)
fs(1) (s|s)
Fs(1) (s|s) with initial value β(s) = v`, then β is an equilibrium.

Suppose that β is strictly increasing and solves the ODE. We want to show that

U(β(s)|s;β) ≥ U(β(s′)|s;β) for all s′ ∈ [s, s̄]. This suffices, because β(s) = v` denotes

the lower bound of bids and any bid b > β(s̄) is dominated by bidding β(s̄), which also

always wins but at lower cost. We show that U(β(s)|s;β) ≥ U(β(s′)|s;β) by proving that
∂U(β(s′)|s;β)

∂s′ ≥ 0 for all s′ < s and ∂U(β(s′)|s;β)
∂s′ ≤ 0 for all s′ > s such that U is hump-shaped

with a global maximum for a bidder with signal s at β(s).

Replacing b by β(s′) in the utility function (20) and taking the derivative wrt. s′ yields

(note that β is differentiable by assumption of the Claim)

∂

∂s′
U(β(s′)|s;β) =

(
[v(s′, s)− β(s′)]

fs(1)(s
′|s)

Fs(1)(s
′|s)
− β′(s′)

)
Fs(1)(s

′|s),

which is positive if and only if

[v(s′, s)− β(s′)]
fs(1)(s

′|s)
Fs(1)(s

′|s)
> β′(s′).

Because β solves the ODE β′(s′) = [v(s′, s′) − β(s′)]
fs(1) (s′|s′)
Fs(1) (s′|s′) , this means that

∂
∂s′U(β(s′)|s, β) is positive if and only if

[v(s′, s)− β(s′)]
fs(1)(s

′|s)
Fs(1)(s

′|s)
> [v(s′, s′)− β(s′)]

fs(1)(s
′|s′)

Fs(1)(s
′|s′)

.
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Fully expanded, the left side of the equation becomes (c.f. equation (19))

ρηhfh(s)e−ηh(1−Fh(s′))

ρηhfh(s)e−ηh(1−Fh(s′)) + (1− ρ)η`f`(s)e−η`(1−F`(s
′))
ηhfh(s′)(vh − β(s′))︸ ︷︷ ︸

>0

+
(1− ρ)η`f`(s)e

−η`(1−F`(s′))

ρηhfh(s)e−ηh(1−Fh(s′)) + (1− ρ)η`f`(s)e−η`(1−F`(s
′))
η`f`(s

′)(v` − β(s′))︸ ︷︷ ︸
<0

.

As a result, the expression is nondecreasing in s, and strictly increasing in s if fh(s)
f`(s)

is

increasing. This means that

[v(s′, s)− β(s′)]
fs(1)(s

′|s)
Fs(1)(s

′|s)
> [v(s′, s′)− β(s′)]

fs(1)(s
′|s′)

Fs(1)(s
′|s′)

if and only if fh(s′)
f`(s′)

< fh(s)
f`(s)

. It follows that

• ∂
∂s′U(β(s′)|s, β) > 0 for all s′ < s : fh(s′)

f`(s′)
< fh(s)

f`(s)
,

• ∂
∂s′U(β(s′)|s, β) < 0 for all s′ > s : fh(s′)

f`(s′)
> fh(s)

f`(s)
,

• ∂
∂s′U(β(s′)|s, β) = 0 for all s′ : fh(s′)

f`(s′)
= fh(s)

f`(s)
,

and thus β(s) is a global maximizer for s. �

Claim 3: β is a strictly increasing equilibrium if an only if it is strictly increasing,

solves the ODE ∂β(s)
∂s =

(
E[v|s(1) = s, s]− β(s)

)
fs(1) (s|s)
Fs(1) (s|s) with initial value β(s) = v`. If β

is an equilibrium, it is unique in the class of strictly increasing equilibria. Thus, if β is not

strictly increasing, no strictly increasing equilibrium exists.

Because the signal densities are continuous and the likelihood-ratio fh
f`

, bids, and values

vω are bounded and since Fs(1)(s|s) > 0, the ODE ∂β(s)
∂s = [E[v|s(1) = s, s] − β(s)]

fs(1) (s|s)
Fs(1) (s|s)

is Lipschitz continuous (c.f. (18) and (19)). Thus, by the Picard Lindölf Theorem there

exists a unique solution to the initial value problem β(s) = v`. Combining this with Claim

1 (necessary condition) and 2 (sufficient condition), the result follows. �

Claim 4: If 2
(
∂
∂s

fh(s)
f`(s)

)
f`(s)
fh(s) + ηhfh(s)− η`f`(s) > 0 for almost all s, then β̂ is strictly

increasing.

Since ηhfh(s)
η`f`(s)

> 0, it follows that v(s, s) > v`. In combination with the initial value

β̂(s) = v`, this means that β̂′(s) > 0. Because the densities fh and f` are continuous, so

is β̂ and β̂′. Thus, β̂′ can only be negative if it intersects the 0 from above. If there exists

some ŝ such that β̂′(ŝ) = 0, this means that v(ŝ, ŝ)− β̂(ŝ) = 0 (c.f. (23)). Since β̂′(ŝ) = 0,
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marginally increasing ŝ will not change β̂. Hence, the marginal change of v(ŝ, ŝ) decides

whether β̂′ is just tangent, or intersects the 0 at ŝ. The expected value v(s, s) is increasing at

(almost) every s if and only if fh(s)2e−ηh(1−Fh(s))

f`(s)2e
−η`(1−F`(s))

, is increasing in s (cf. (19)). Differentiating

with respect to s yields

2
( ∂
∂s

fh(s)

f`(s)

)fh(s)

f`(s)

e−η(1−Fh(s))

e−η(1−F`(s))
+
fh(s)2

f`(s)2
e−η(1−Fh(s))e−η(1−F`(s))

(e−η(1−F`(s)))2
(ηhfh(s)− η`f`(s)) > 0

Dividing by e−ηh(1−Fh(s))

e−η`(1−F`(s))
> 0 and fh(s)2

f`(s)2
> 0 yields the result. Note that since fh

f`
is

monotone, it is differentiable almost everywhere. �

Claim 5: For ηh, η` sufficiently small, β̂ is strictly increasing.

First, if ηh, η` → 0 and lim ηh
η`
> f`(s)

fh(s) then, for ηh, η` sufficiently small, ηhfh(s) ≥ η`f`(s)
for all s. Thus, by Claim 4, a strictly increasing equilibrium exists. Next, consider a sequence

of auctions along which ηh, η` → 0 and lim ηh
η`

= l ≤ f`(s)
fh(s) . Then

v(s, s) =
ρη2
hfh(s)2e−ηh(1−Fh(s))vh + (1− ρ)η2

` f`(s)
2e−η`(1−F`(s))v`

ρη2
hfh(s)2e−ηh(1−Fh(s)) + (1− ρ)η2

` f`(s)
2e−η`(1−F`(s))

ηω→0→ ρ l2fh(s)2vh + (1− ρ)f`(s)
2v`

ρ l2fh(s)2 + (1− ρ)f`(s)2
=: φ(s) ≥ φ(s) > v`.

Using that β̂(s) ≥ v` and equation (24), β̂′(s) can be bounded above by ηhfh(s)(vh−v`).
Therefore, β̂(s) =

∫ s
s
β̂′(z)dz + v` < φ(s) for ηh sufficiently small. It follows that for ηh, η`

sufficiently small, β̂′(s) = [v(s, s)−β̂(s)]
fs(1) (s|s)
Fs(1) (s|s) ≥ [φ(s)−β̂(s)]

fs(1) (s|s)
Fs(1) (s|s) > 0 for all s. �

Proof of Lemma 3*

Lemma 3∗. Assume β is such that there exists an interval I := [s−, s+] and a bid bp, such

that bp = β(s) for all s ∈ I and β(s) < bp < β(s′) for all s < s− < s+ < s′. Then bp wins

with probability

πω(bp;β) =
P(s(1) ∈ [s−, s+] |ω)

E[#s ∈ [s−, s+] |ω]
=
e−ηω(1−Fω(s+)) − e−ηω(1−Fω(s−))

ηω(Fω(s+)− Fω(s−))
for ω ∈ {h, `}.

Furthermore,

E[v|win with bp;β] ∈
[
E[v|s(1) ≤ s−], E[v|s(1) ≤ s+]

]
.
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If β is an equilibrium bidding strategy, then

ηh[Fh(s+)− Fh(s−)] < η`[F`(s+)− F`(s−)],

and, as a result,

E[v|s(1) ≤ s−] > E[v|win with bp;β] > E[v|s(1) ≤ s+].

Proof. Claim 1: πω(bp;β) =
P(s(1)∈[s−,s+] |ω)

E[#s∈[s−,s+] |ω] = e−ηω(1−Fω(s+))−e−ηω(1−Fω(s−))

ηω(Fω(s+)−Fω(s−)) for ω ∈ {h, `}.

πω(bp;β) = P(no bid > bp|ω)

∞∑
n=0

1

n+ 1
P(n other bidders bid bp|ω)

= e−ηω(1−Fω(s+))
( ∞∑
n=0

1

n+ 1
e−ηω(Fω(s+)−Fω(s−)) [ηω(Fω(s+)− Fω(s−))]n

n!

)
= e−ηω(1−Fω(s+))

( ∞∑
n=1

e−ηω(Fω(s+)−Fω(s−)) [ηω(Fω(s+)− Fω(s−))]n

n!

) 1

ηω(Fω(s+)− Fω(s−))

= e−ηω(1−Fω(s+))
( ∞∑
n=1

P(n other bidders bid bp|ω)
) 1

ηω(Fω(s+)− Fω(s−))

= e−ηω(1−Fω(s+))
(

1− e−ηω(Fω(s+)−Fω(s−)))
) 1

ηω(Fω(s+)− Fω(s−))

=
e−ηω(1−Fω(s+)) − e−ηω(1−Fω(s−))

ηω(Fω(s+)− Fω(s−))
.

The numerator is P(s(1) ∈ [s−, s+]|ω) and the denominator is the expected number of

signals in [s−, s+] in state ω i.e. E[#s ∈ [s−, s+] |ω]. �

Claim 2: If ηh[Fh(s+) − Fh(s−)] < η`[F`(s+) − F`(s−)], then E[v|s(1) ≤ s] >

E[v|win with bp;β] > E[v|s(1) ≤ s+]. If ηh[Fh(s+) − Fh(s−)] > η`[F`(s+) − F`(s−)], the

inequalities reverse.

Recall that for any two events φ and φ′ it holds that E[v|φ] > E[v|φ′] if and only if P(φ|h)
P(φ|`) >

P(φ′|h)
P(φ′|`) . Therefore, we have to show that when ηh[Fh(s+) − Fh(s−)] < η`[F`(s+) − F`(s−)]

it holds that

e−ηh(1−Fh(s−))

e−η`(1−F`(s−))
>

e−ηh(1−Fh(s+))−e−ηh(1−Fh(s−))

ηh[Fh(s+)−Fh(s−)]

e−η`(1−F`(s+))−e−η`(1−F`(s−))

η`[F`(s+)−F`(s−)]

>
e−ηh(1−Fh(s+))

e−η`(1−F`(s+))
. (25)

Denote xω := ηω[Fω(s+) − Fω(s−)] for ω ∈ {h, `}. Dividing the left inequality of equa-

tions (25) by e−ηh(1−Fh(s−))

e−η`(1−F`(s−)) , it becomes

1 >
exh−1
xh

ex`−1
x`

,
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which holds because ez−1
z is strictly increasing in z. If, on the other hand, the right

inequality of equation (25) is divided by e−ηh(1−Fh(s+))

e−η`(1−F`(s+)) , it becomes

1−exh
xh

1−ex`
x`

> 1,

which is true because 1−ez
z is strictly decreasing in z. �

Claim 3: β can only be an equilibrium bidding strategy if ηh[Fh(s+) − Fh(s−)] <

η`[F`(s+)− F`(s−)].

Suppose to the contrary that β is an equilibrium (we forgo on the ∗), but ηh[Fh(s+) −
Fh(s−)] ≥ η`[F`(s+) − F`(s−)]. Observe that since s∗ : ηhfh(s∗)

η`f`(s∗)
= 1, it follows from the

monotone likelihood ratio property that s+ > s∗. Consider a potential deviation to b + ε

for any bidder s ∈ [s−, s+]. There are two possibilities:

First, bp+ ε can be a pooling bid meaning that there exists an interval of signals [s′−, s
′
+]

such that on exactly this interval β(s) = bp + ε. Notice that s∗ < s+ ≤ s′− which means

that ηh[Fh(s′+)− Fh(s′−)] ≥ η`[F`(s′+)− F`(s′−)], and thus

E[v|win with bp + ε;β]
Claim 2

≥ E[v|s(1) ≤ s′−]
Lemma 2*

≥ E[v|s(1) ≤ s+]
Claim 2

≥ E[v|win with bp;β].

If bp + ε is not played with positive probability, then it wins when the highest other

signal is smaller than some cutoff y ≥ s+, i.e. E[v|win with bp + ε, s;β] = E[v|s(1) ≤ y, s].

This means that

E[v|win with bp + ε;β] = E[v|s(1) ≤ y]
Lemma 2*
≥ E[v|s(1) ≤ s+]

Claim 2
≥ E[v|win with bp;β].

For any s ∈ [s−, s+] this implies that E[v|win with bp+ ε, s;β] ≥ E[v|win with bp, s;β] >

bp.
31 Since a deviation to bp+ ε discretely increases the winning probability by avoiding the

random tiebreak when the second highest bid is bp, is is always profitable for ε sufficiently

small. Thus, β cannot be an equilibrium when ηh[Fh(s+)− Fh(s−)] ≥ η`[F`(s+)− F`(s−)]

which proves Claim 3 and the second assertion of this lemma. Together with Claim 2 the

last assertion follows as well. �

Proof of Lemma 5

Denote the bidding space with n = vh−v`
∆ + 1 equidistant bids by Bn. Existence is shown

by a fixed point argument on the distribution of bids. Since those are Poisson distributed

and thereby fully described by the mean, we look at the compact set of vectors

31A bid above the expected value is strictly dominated by bidding v`
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Λ =
{(

λ(b1|h) ... λ(bn|h) λ(b1|`) ... λ(bn|`)
)

:
∑
b∈Bn

λ(b|ω) = ηω

}
⊂ Rn×2

where λ(b|ω) denotes the expected number of bids b in state ω.

Let F : Λ ⇒ P(Λ) be the correspondence which maps any λ into the set of vectors {λ̃}
that are are induced by a pure and nondecreasing best response β : [s, s̄] → Bn meaning

that λ̃(b|ω) =
∫
β−1(b)

ηωfω(s)ds for all b ∈ Bn, and β(s) = arg maxb U(b|s, λ) for almost all

s. Here, U(b|s, λ) is the interim expected utility from bidding b, given the bidders signal s

and a distribution of (other) bids described by the Poisson parameter λ.

Because Λ is compact, to apply Kakutani’s fixed-point theorem we need to show that

F (λ) is nonempty, convex valued and that F has a closed graph.

F (λ) is non-empty because on the finite set there exists a best response for any signal s.

By Lemma 1 these best responses can be reordered, such that the resulting β is pure and

nondecreasing.

To show that F (λ) is convex valued, consider λ̃ and λ̃′ from its image. We have to

show that ∀α ∈ [0, 1], αλ̃ + (1 − α)λ̃′ = λ̃∗ ∈ F (λ). λ̃ and λ̃′ are induced by two best

responses β̃ and β̃′. Consider a mixed strategy, which follows β̃ with probability α and β̃′

with probability 1 − α. Such a strategy would be optimal for the bidders and result in a

distribution of bids λ̃∗. By Lemma 1 we can find a pure, nondecreasing strategy inducing

the same distribution and utilities. Thus λ̃∗ ∈ F (λ).

What remains to be shown is that F has a closed graph. Take any two sequences

λn → λ and λ̃n → λ̃ where λ̃n ∈ F (λn). We have to show that λ̃ ∈ F (λ). For every λn

there is a nondecreasing best response βn inducing λ̃n. By Helly’s Selection Theorem there

is a point-wise converging subsequence of those βn with a nondecreasing limit β. Obviously,

β induces λ̃. Furthermore, because U(b|s, λn) is continuous in both λn and b, β is a best

response to λ. Thus, F has a closed graph.

Kakutani’s fixed-point theorem guarantees an equilibrium vector λ ∈ Λ and by con-

struction there exists a pure, nondecreasing bidding strategy β which is a best response and

induces this λ. Thus, β is a pure, nondecreasing and symmetric equilibrium.

Proof of Lemma 4

Proof. Claim 1: If (C, sc′, b′) and (C, sc, b) are s.t. πch(C, sc′, b′;σ) > πch(C, sc, b;σ) and

U(C, sc′, b′|s;σ) ≥ U(C, sc, b|s;σ), then U(C, sc′, b′|s′;σ) ≥ U(C, sc, b|s′;σ) for s′ > s. The
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second inequality is strict if and only if fh(s′)
f`(s′)

> fh(s)
f`(s)

.

As a preliminary observation, note that πch(C, sc′, b′;σ) > πch(C, sc, b;σ) implies that

πc`(C, s
c′, b′;σ) > πc`(C, s

c, b;σ) since the winning probabilities are isomorph. Now, from

πch(C, sc′, b′;σ) > πch(C, sc, b;σ), it follows that b′ ≥ b ≥ v` which implies that (v` − b′) ≤
(v` − b) ≤ 0. If b′ = b, then πch(C, sc′, b′;σ)(vh − b′) > πch(C, sc′, b;σ)(vh − b). If

b′ > b, on the other hand, πc`(C, s
c′, b′;σ) > πc`(C, s

c, b;σ) implies that πc`(C, s
c′, b′;σ)(v` −

b′) < πc`(C, s
c, b;σ)(v` − b). Hence, U(C, sc′, b′|s;σ) ≥ U(C, sc, b|s;σ) requires that

πch(C, sc′, b′;σ)(vh − b′) > πch(C, sc′, b;σ)(vh − b).
Rearranging U(C, sc′, b′|s;σ) ≥ U(C, sc, b|s;σ) yields

ρηhfh(s)

(1− ρ)η`f`(s)
[πch(C, sc′, b′;σ)(vh − b′)− πch(C, sc, b;σ)(vh − b)]

≥ πc`(C, sc, b;σ)(v` − b)− πc`(C, sc′, b′;σ)(v` − b′).

Since πch(C, sc′, b′;σ)(vh−b′) > πch(C, sc′, b;σ)(vh−b), if s′ > s is such that fh(s′)
f`(s′)

> fh(s)
f`(s)

,

the left side is strictly larger for s′ and thus U(C, sc′, b′|s′;σ) > U(C, sc, b|s′;σ) �

Claim 2: Take any strategy σ and any best response σ∗ to it. If (C, sc, b) and (C, sc′, b′)

are in the support of σ∗ with πch(C, sc, b;σ) = πch(C, sc′, b′;σ), then b = b′. Furthermore,

there exists another best response σ̂∗ which has the property that

• if (C, sc, b) and (C, sc′, b) are in the support of σ̂∗ and πch(C, sc, b;σ) = πch(C, sc′, b;σ),

then sc′ = sc;

• the winning probabilities and utilities under σ̂∗ are unchanged, i.e. πcω(σ∗(s);σ) =

πcω(σ̂∗(s);σ) as well as U(σ̂∗(s)|s;σ) = U(σ∗(s)|s;σ) for all s and ω ∈ {h, `}.

If (C, sc, b) and (C, sc′, b′) are in the support of σ∗, and πch(C, sc, b;σ) = πch(C, sc′, b′;σ)

(and thereby πc`(C, s
c, b;σ) = πc`(C, s

c′, b′;σ)), then b = b′. Otherwise, the action tuple with

the higher bid would be dominated and could, hence, not be part of of a best response.

If (C, sc, b) and (C, sc′, b′) are in the support of σ∗, and πch(C, sc, b;σ) = πch(C, sc′, b;σ),

but sc′ 6= sc there are two possibilities. Either the report is irrelevant for the winning-

probability (when b is chosen with zero probability), or sc′ ∼ sc i.e. both reports are from

the same equivalence class as defined by C. In both cases we can simply create a new

best response σ̂∗ where every equivalence class hence a unique identifier. Since only the

equivalence classes are relevant for the auction mechanism with Communication Extension

this does not alter the winning probabilities or utilities. �

Claim 3: For any best response σ∗, there exists another pure best response

σ̂∗ : [s, s̄] → P[s, s̄] × [s, s̄] × [v`, vh], s.t. b is nondecreasing in s and given b, sc
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is nondecreasing in s. Furthermore, the implied winning probabilities are equal, i.e.

πcω(C, sc, b;σ∗) = πcω(C, sc, b; σ̂∗) for all (C, sc, b) and ω ∈ {h, `}.

By Claim 2 and rules of the Communication Extension, winning with a higher probability

means choosing a higher bid b and (given a fixed bid) higher report sc.

By Claim 1, bidders with higher signals prefer to win more often. If the likelihood ratio
fh
f`

is strictly increasing, this preference is strict and the Lemma follows directly.

If there are intervals of signals along which fh
f`

is constant, however, it may happen that

a lower signal from the interval wins more often. In that case, we can proceed as in Lemma 1

and reorder the report/bid combinations. Since we just reorder the report/bid pairs among

signals which imply the same belief, this does not change the implied joint distribution of

beliefs and reports/bids, and, as a result, the winning probabilities are unchanged. �

Proof of Proposition 4

Take any sequence of games on an ever finer grid Γ(k))k∈N. By Lemma 5, for any grid size

k, a pure, non-decreasing equilibrium exists. By Lemma 6 there, thus, is an equilibrium of

the Communication Extension. The properties follow by construction.

Lemma 7 (Lower Bound on Equilibrium Bids). Fix some equilibrium strategy σ∗ and some

action (C, sc, b) which wins with probability πcω := πcω(C, sc, b;σ) in state ω ∈ {h, `}. Assume

that ŝ chooses σ∗(ŝ) and wins with probability πc−ω := πcω(σ∗(ŝ);σ∗) < πcω in state ω ∈ {h, `}.
Then

b ≥
ρfh(ŝ)ηh(πch − π

c−
h )vh + (1− ρ)f`(ŝ)η`(π

c
` + ρηhfh(ŝ)

(1−ρ)η`f`(ŝ)η`π
c−
h )v`

ρηhfh(ŝ)(πch − π
c−
h ) + (1− ρ)η`f`(ŝ)(πc` + ρηhfh(ŝ)

(1−ρ)η`f`(ŝ)π
c−
h )

.

The lower bound is decreasing in πc−h .

Proof. In order for ŝ not to deviate from σ∗(ŝ) = (Ĉ, ŝc, b̂) to (C, sc, b) it has to hold that

U c(C, sc, b|ŝ;σ∗) ≤ U c(σ∗(ŝ)|ŝ;σ∗). Notice that

U c(σ∗(ŝ)|ŝ;σ∗) = P(win with σ∗(ŝ)|ŝ;σ∗)(E[v|win with σ∗(ŝ), ŝ;σ∗]− b)

≤ P(win with σ∗(ŝ)|ŝ;σ∗)(E[v|win with σ∗(ŝ), ŝ;σ∗]− v`).
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Thus, a necessary condition for U c(C, sc, b|ŝ;σ∗) ≤ U c(σ(ŝ)|ŝ;σ∗) is that

Uc(C, sc, b|ŝ;σ∗) ≤ P(win with σ∗(ŝ)|ŝ;σ∗)(E[v|win with σ∗(ŝ), ŝ;σ∗]− v`)

ρηhfh(ŝ)πch(vh − b) + (1− ρ)η`f`(ŝ)π
c
`(v` − b)

ρηhfh(ŝ) + (1− ρ)η`f`(ŝ)
≤
ρηhfh(ŝ)πc−h (vh − v`) + (1− ρ)η`f`(ŝ)π

c−
` (v` − v`)

ρηhfh(ŝ) + (1− ρ)η`f`(ŝ)

ρηhfh(ŝ)πch(vh − b) + (1− ρ)η`f`(ŝ)π
c
`(v` − b) ≤ ρηhfh(ŝ)πc−h (vh − v`)

ρηhfh(ŝ)

(1− ρ)η`f`(ŝ)
πch(vh − b) + πc`(v` − b) ≤

ρηhfh(ŝ)

(1− ρ)η`f`(ŝ)
πc−h (vh − v`).

Rearranging yields

b ≥
ρηhfh(ŝ)

(1−ρ)η`f`(ŝ) (πch − π
c−
h )vh + (πc` + ρηhfh(ŝ)

(1−ρ)η`f`(ŝ)π
c−
h )v`

ρηhfh(ŝ)
(1−ρ)η`f`(ŝ)π

c
h + πc`

.

By simple computation

ρηhfh(ŝ)

(1− ρ)η`f`(ŝ)
(πch − πc−h ) + (πc` +

ρηhfh(ŝ)

(1− ρ)η`f`(ŝ)
πc−h ) =

ρηhfh(ŝ)

(1− ρ)η`f`(ŝ)
πch + πc` .

Thus, we can rewrite the denominator and establish the lower bound

b ≥
ρηhfh(ŝ)(πch − π

c−
h )vh + (1− ρ)η`f`(ŝ)(π

c
` + ρηhfh(ŝ)

(1−ρ)η`f`(ŝ)π
c−
h )v`

ρηhfh(ŝ)(πch − π
c−
h ) + (1− ρ)η`f`(ŝ)(πc` + ρηhfh(ŝ)

(1−ρ)η`f`(ŝ)π
c−
h )

.

To establish that the lower bound is decreasing in πc−h , divide the numerator and de-

nominator by (1− ρ)η`f`(ŝ)π
c−
h to receive

b ≥

ρηhfh(ŝ)(πch−π
c−
h )

(1−ρ)η`f`(ŝ)(πc`+
ρfh(ŝ)ηh

(1−ρ)f`(ŝ)η`
πc−h )

vh + v`

ρηhfh(ŝ)(πch−π
c−
h )

(1−ρ)η`f`(ŝ)(πc`+
ρfh(ŝ)ηh

(1−ρ)f`(ŝ)η`
πc−h )

+ 1
.

Since
ρηhfh(ŝ)(πch−π

c−
h )

(1−ρ)η`f`(ŝ)(πc`+
ρfh(ŝ)ηh

(1−ρ)f`(ŝ)η`
πc−h )

is decreasing in πc−h , so is the lower bound.

Proof of Proposition 5*

Proposition 5∗. Assume that ηh
η`

= l ∈ ( f`(s̄)fh(s̄) ,
f`(s)
fh(s) ). Fix any ε ∈ (0, s

∗−s
2 ). For ηh

sufficiently large (given ε), any equilibrium σ∗ of the Communication Extension Γc takes

the following form: There are two disjoint, adjacent intervals of signals I, J such that

(i) [s+ ε, s∗ − ε] ⊂ I ∪ J ;

(ii) σ∗(sI) = (C, scI , b) for all sI ∈ I and σ∗(sJ) = (C, scJ , b) for all sJ ∈ J , with scI < scJ ;
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(iii) @(C, sc, b) s.th. πcω(σ∗(sI);σ
∗) < πcω(C, sc, b;σ∗) < πcω(σ∗(sJ);σ∗) for ω ∈ {h, `};

(iv)
∫
I
ηfω(z)dz > 1

ε , and
∫
J
ηfω(z)dz > 1

ε for ω ∈ {h, `};

(v) On s ∈ (s∗ + ε, s̄], the bids are strictly increasing and the report sc is irrelevant.

Proof. We consider a sequence of auctions with the Communication Extension (Γcn)n∈N,

where
ηnh
ηn`

= l ∈ ( f`(s̄)fh(s̄) ,
f`(s)
fh(s) ) and ηnh , η

n
` →∞. By Proposition 4 there exists an equilibrium

for each n which we call (economizing on the ∗) σn.

Claim 1: For any ε > 0, if n is sufficiently large, on (s∗ + ε, s̄] the bids are strictly

increasing and the report sc is irrelevant.

Suppose to the contrary that this was not true. Then there exits an ε > 0 and a

subsequence of auctions with equilibria (σn)n∈N where there is an interval of signals [sn−, s
n
+]

with sn+ > s∗ + ε which choose the same bid bn. For all s ∈ [sn−, s
n
+], define a function scn(s)

such that σn(s) = (Cn, s
c
n(s), bn).

When there aren’t two distinct signals s, s′ ∈ [sn−, s
n
+] such that scn(s) = scn(s′), then

signal s ∈ [sn−, s
n
+] wins whenever s(1) ≤ s. In Proposition 2, we show that in that case,

bids by signals above s∗ have to follow a strictly increasing differential equation. Otherwise

bidders with low reports would have an incentive to deviate. They could send a higher report,

win more often and have a higher expected value for the good. Thus, this cannot be the

case. By continuity of the arguments, the same is true if there was a (sub) interval of signals

[ŝn−, ŝ
n
+] along which σn is constant (and different otherwise), but ηnω[Fω(ŝn+)−Fω(ŝn−)]→ 0.

Hence, we can restrict attention to intervals [sn−, s
n
+] with σn(s) = (Cn, s

c
n, bn) for all

s ∈ [sn−, s
n
+] and ηnω[Fω(sn+)−Fω(sn−)] 6→ 0. Suppose that sn− > s∗ for all n sufficiently large

and consider a derivation to (Cn, s
c
n, bn+ε). If ε > 0 is sufficiently small, this deviation wins

whenever s(1) ≤ sε with sε ≥ sn+. Because sn− > s∗, it follows that ηnh [Fh(sn+) − Fh(sn−)] >

ηn` [F`(s
n
+) − F`(sn−)] >> 0. Hence, Lemma 3 implies that E[v|win with (Cn, s

c
n, bn);σn] <

E[v|s(1) ≤ sn+] ≤ E[v|s(1) ≤ sε]. Since the deviation also discretely increases the probability

to win, it is profitable for ε sufficiently small. Hence, we found a contradiction.

We conclude that if there is a non-vanishing interval [sn−, s
n
+] along which bn is constant,

then scn is constant as well and sn− < s∗ < s∗ + ε ≤ sn+. Furthermore, we know that all

higher signals follow a strictly increasing bidding strategy. To abbreviate notation, define

the implied winning probabilities from bidding (Cn, s
c
n, bn) and bidding marginally more by

πnω := πcω(Cn, s
c
n, bn;σn) =

e−η
n
ω(1−Fω(sn+)) − e−η

n
ω(1−Fω(sn−))

ηnω(Fω(sn+)− Fω(sn−))
,

π̂nω := lim
ε→0

πcω(Cn, s
c
n, bn + ε;σn) = e−η

n
ω(1−Fω(sn+)).
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To ensure that sn+ does not want to marginally overbid bn, it has to hold that

Uc(Cn, s
c
n, bn|sn+;σn) ≥ lim

ε→0
U(Cn, s

c
n, bn + ε|sn+;σn)

ρηnhfh(sn+)πnh (vh − bn) + (1− ρ)ηn` f`(s
n
+)πn` (v` − bn)

ρηnhfh(sn+) + (1− ρ)ηn` f`(s
n
+)

≥
ρηnhfh(sn+)π̂nh (vh − bn) + (1− ρ)ηn` f`(s

n
+)π̂n` (v` − bn)

ρηnhfh(sn+) + (1− ρ)ηn` f`(s
n
+)

,

which rearranges to

bn ≥
ρηnhfh(sn+)(π̂nh − πnh)vh + (1− ρ)ηn` f`(s

n
+)(π̂n` − πn` )v`

ρηnhfh(sn+)(π̂nh − πnh) + (1− ρ)ηn` f`(s
n
+)(π̂n` − πn` )

.

Observe that

ηnhfh(sn+)(π̂nh − πnh)

ηn` f`(s
n
+)(π̂n` − πn` )

=
ηnhfh(sn+)[e−η

n
h (1−Fh(sn+)) − e

−ηnh (1−Fh(sn+))−e−η
n
h (1−Fh(sn−))

ηnh (Fh(sn+)−Fh(sn−)) ]

ηn` f`(s
n
+)[e−η

n
` (1−F`(sn+)) − e

−ηn
`

(1−F`(s
n
+

))−e−η
n
`

(1−F`(s
n
−))

ηn` (F`(sn+)−F`(sn−)) ]

large n
>

ηnhfh(s∗)

ηn` f`(s
∗)

e−η
n
h (1−Fh(sn+))

e−η
n
` (1−F`(sn+))

=
ηnhfh(s∗)

ηn` f`(s
∗)

π̂nh
π̂n`
,

where we use that because ηnω[Fω(sn+) − Fω(sn−)] → ∞, e
−ηnω(1−Fω(sn+))−e−η

n
ω(1−Fω(sn−))

ηnω(Fω(sn+)−Fω(sn−))

becomes negligible compared to e−η
n
ω(1−Fω(sn+)). Since s∗ < s∗ + ε ≤ sn+ the monotone

likelihood ratio property and the assumption that s∗ :
ηnhfh(s∗)

η`hf`(s
∗)

= 1 is unique establishes

that 1 =
ηnhfh(s∗)
ηn` f`(s

∗) <
ηnhfh(s∗+ε)
ηn` f`(s

∗+ε) ≤
ηnhfh(sn+)

ηn` f`(s
n
+) which yields the strict inequality for n sufficiently

large. It thereby follows that for n sufficiently large bn > E[v|s(1) ≤ sn+, s∗].
No bidder, particularly sn−, will bid more than her expected value conditional on winning,

which is why bn < E[v|win with (Cn, s
c
n, bn), sn−;σn]. The likelihood ratio of winning is

ηnhfh(sn−)πnh
ηn` f`(s

n
−)πn`

=
ηnhfh(sn−) e

−ηnh (1−Fh(sn+))−e−η
n
h (1−Fh(sn−))

ηnh (Fh(sn+)−Fh(sn−))

ηn` f`(s
n
−) e

−ηn
`

(1−F`(s
n
+

))−e−η
n
`

(1−F`(s
n
−))

ηn` (F`(sn+)−F`(sn−))

=
fh(sn−)

f`(sn−)

F`(s
n
+)− F`(sn−)

Fh(sn+)− Fh(sn−)

e−η
n
h (1−Fh(sn+))(1− e−η

n
h (Fh(sn+)−Fh(sn−)))

e−η
n
` (1−F`(sn+))(1− e−ηn` (F`(sn+)−F`(sn−)))

large n
<

ηnhfh(s∗)

ηn` f`(s
∗)

e−η
n
h (1−Fh(sn+))

e−η
n
` (1−F`(sn+))

=
ηnhfh(s∗)

ηn` f`(s
∗)

π̂nh
π̂n`
.

To receive bound, we use that ηnω[Fω(sn+) − Fω(sn−)] → ∞ and thereby

(1 − e−η
n
ω(1−Fω(sn+))) → 1. Furthermore, we employ that by the monotone likelihood

ratio property it holds that 1 =
ηnhfh(s∗)
ηn` f`(s

∗) >
fh(sn−)

f`(sn−)

F`(s
n
+)−F`(sn−)

Fh(sn+)−Fh(sn−) . It follows that for n

sufficiently large, bn < E[v|s(1) ≤ sn+, s
∗], which is a contradiction to the earlier result that

bn > E[v|s(1) ≤ sn+, s∗]. �

Claim 2: Fix any ε ∈ (0, s
∗−s
2 ). For every n sufficiently large, @(C, sc, b) s.t.

πcω(σn(s + ε);σn) < πcω(C, sc, b;σn) < πcω(σn(s∗ − ε);σn) for ω ∈ {h, `}. As a result, all
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bidders with signals from the interval [s+ ε, s∗ − ε] choose the same bid.

Suppose to the contrary, that there exists an ε ∈ (0, s
∗−s
2 ) and a subsequence of equilibria

for which ∃(Cn, scn, bn) s.t. πch(σn(s+ε);σn) < πch(Cn, s
c
n, bn;σn) < πch(σn(s∗−ε);σn). Since

πc` is isomorph to πch the same is true for πc` . We immediately not that Cn has to be the

one chosen by σn (cf Assumption 1). Otherwise, (Cn, s
c
n, bn) would only win when there

is no other bidder in the auction and the resulting winning probability would be below

πch(σn(s+ ε);σn).

Either (Cn, s
c
n, bn) = σn(s) for all s from some non-empty interval [sn−, s

n
+] and (by

construction) sn−, s
n
+ ∈ (s + ε, s∗ − ε), or (Cn, s

c
n, bn) is not in the support of σn. We focus

on the former case and consider a subsequence where sn−, s
n
+ converge. If (Cn, s

c
n, bn) is not

in the support of σn, it wins whenever s(1) ≤ sn for some sn ∈ (s + ε, s∗ − ε). The proof

follows with the appropriate winning probability πcω(Cn, s
c
n, bn;σn) = e−η

n
ω(1−Fω(sn)).

The rest of this proof revolves around bn. In a first step, we derive a lower bound on bn

by utilizing that (Cn, s
c
n, bn) is not chosen by bidders with signals at or below s∗ − ε. In

Step 2 we derive an upper bound on bn by bounding the bid made by s∗ − ε, which will

result in a contradiction.

Step 1: Action (Cn, s
c
n, bn) wins with probability

πcω(C, scn, bn;σn) =
e−η

n
ω(1−Fω(sn+)) − e−η

n
ω(1−Fω(sn−))

ηnω(Fω(sn+)− Fω(sn−))
.

The highest probability with which a bidder with signal s can win is πcω(σn(s+ ε);σn).

This is the case, whenever signals s to s + ε pool on the same bid and same report. The

probability πcω(σn(s + ε);σn) attains the highest value in case all signals up to sn− pool on

the same bid/partition as well, that is if σn(s+ ε) = σn(s) for s < sn−. As a result,

πcω(σn(s);σn) ≤ e−η
n
ω(1−Fω(sn−)) − e−ηω
ηnωFω(sn−)

.

Lemma 7 then gives the most conservative lower bound on the bid bn, which ensures

that s does not want to deviate to (Cn, s
c
n, bn). The lower bound is

bn ≥
ρLnvh + (1− ρ)v`
ρLn + (1− ρ)

,

with

Ln =
ηnhfh(s)( e

−ηnh (1−Fh(sn+))−e−η
n
h (1−Fh(sn−))

ηnh (Fh(sn+)−Fh(sn−)) − e
−ηnh (1−Fh(sn−))−e−η

n
h

ηnhFh(sn−) )

ηn` f`(s)(
e
−ηn
`

(1−F`(s
n
+

))−e−η
n
`

(1−F`(s
n
−))

ηn` (F`(sn+)−F`(sn−)) +
ρηnhfh(s)

(1−ρ)ηn` f`(s)
e
−ηn
h

(1−Fh(sn−))−e−η
n
h

ηnhFh(sn−) )
, (26)
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which we want to investigate.

Since e
−ηnh (1−Fh(sn+))−e−η

n
h (1−Fh(sn−))

ηnh (Fh(sn+)−Fh(sn−)) ≥ e−η
n
h (1−Fh(sn−)) and ηnhFh(sn−) → ∞, for n

large, the numerator of (26) is of order ηnhfh(s) e
−ηnh (1−Fh(sn+))−e−η

n
h (1−Fh(sn−))

ηnh (Fh(sn+)−Fh(sn−)) . Further,

e
−ηn` (1−F`(s

n
+))−e−η

n
` (1−F`(s

n
−))

ηn` (F`(sn+)−F`(sn−)) = e−η
n
` (1−F`(yn)) for some signal yn ∈ [sn−, s

n
+].32 Last, for

large n, e−η
n
h is negligible compared to e−η

n
h (1−Fh(sn−)). Thus we can bound equation (26)

from below. For any λ ∈ (0, 1) and n is sufficiently large

L
n large
>

ηnhfh(s) e
−ηnh (1−Fh(sn+))−e−η

n
h (1−Fh(sn−))

ηnh (Fh(sn+)−Fh(sn−))

ηn` f`(s)(e
−ηn` (1−F`(yn)) + φ e

−ηn
h

(1−Fh(sn−))

ηnhFh(sn−) )
λ,

where φ = l ρfh(s)
(1−ρ)f`(s) is a constant. We now distinguish two cases:

First, consider the case in which −ηnh(1− Fh(sn−)) + ηn` (1− F`(yn))→∞. By Lemma 3

and because sn+ < s∗, it follows that e
−ηnh (1−Fh(sn+))−e−η

n
h (1−Fh(sn−))

ηnh (Fh(sn+)−Fh(sn−)) ≥ e−η
n
h (1−Fh(sn−)). Dividing

the numerator and denominator by e−η
n
h (1−Fh(sn−)) yields the lower bound

L
large n
>

ηnhfh(s)

ηn` f`(s)(e
−ηn` (1−F`(yn))+ηnh (1−Fh(sn−)) + φ 1

ηnhFh(sn−) )
λ→ ηnhfh(s)

φ
ηn` f`(s)

ηnhFh(sn−)

λ→∞.

This implies that for any λ ∈ (0, 1), it holds that bn
large n
> vhλ. Note, however,

that because the signals are bounded and s̄ does not pool for n large (cf. Claim 1)

E[v|win with σn(s̄), s̄;σn] = E[v|s̄] < vh. Since s̄ chooses a higher bid than bn she would

make strict loss, which would be dominated by choosing v` (and some arbitrary report)

and making a weak profit. Thus, we found a contradiction.

If −ηnh(1− Fh(sn−)) + ηn` (1− F`(yn)) 6→ ∞, then (recall that ηnhFh(sn−)→∞)

e−η
n
` (1−F`(yn)) + φ e

−ηnh (1−Fh(sn−))

ηnhFh(sn−)

e−η
n
` (1−F`(yn))

= 1 + φ
e−η

n
h (1−Fh(sn−))+ηn` (1−F`(yn))

ηnhFh(sn−)
→ 1.

Thus, for n large, the denominator of equation (26) is of order e−η
n
` (1−F`(yn)). Reverting

the y-substitution, for n large, equation (26) hence can be bounded below by

32This equivalence follows because e−η
n
` (1−F`(sn−)) ≤ e

−ηn` (1−F`(s
n
+))−e−η

n
` (1−F`(s

n
−))

ηn
`
(F`(s

n
+)−F`(sn−))

≤ e−η
n
` (1−F`(sn+))

and e−η
n
` (1−F`(s)) is monotonically increasing in s.
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L
large n
>

ηnhfh(s) e
−ηnh (1−Fh(sn+))−e−η

n
h (1−Fh(sn−))

ηnh (Fh(sn+)−Fh(sn−))

ηn` f`(s)
e
−ηn
`

(1−F`(s
n
+

))−e−η
n
`

(1−F`(s
n
−))

ηn` (F`(sn+)−F`(sn−))

λ2

≥ ηnhfh(s)e−η
n
h (1−Fh(sn+))

ηn` f`(s)e
−ηn` (1−F`(sn+))

λ2 ≥ ηnhfh(s)e−η
n
h (1−Fh(s∗−ε))

ηn` f`(s)e
−ηn` (1−F`(s∗−ε))

λ2,

where the latter two inequalities follow from sn+ < s∗ and Lemma 3, as well as 2*.

Wrapping up, this means that bn
large n
> E[v|s, s(1) ≤ s∗ − ε, λ2].

Step 2: Since s∗ s.t. ηhfh(s∗) = η`f`(s
∗) is unique, the monotone likelihood ratio

property implies that ηhfh(s)
η`f`(s)

< 1 for all s < s∗ and as a result

− ηnh(1− Fh(s∗ − ε)) + ηnh(1− Fh(s∗)) + ηn` (1− F`(s∗ − ε))− ηn` (1− F`(s∗))

= ηnh(Fh(s∗ − ε)− Fh(s∗))− ηn` (F`(s
∗ − ε)− F`(s∗))

=

∫ s∗

s∗−ε
ηn` f`(s) (1− l fh(s)

f`(s)
)︸ ︷︷ ︸

<0 constant

ds→ −∞.

By continuity of the arguments, the same is true for s∗+ ε′ with ε′ > 0 sufficiently small.

It follows from this that for n sufficiently large,

λ2 η
n
hfh(s)e−η

n
h (1−Fh(s∗−ε))

ηn` f`(s)e
−ηn` (1−F`(s∗−ε))

>
ηnhfh(s∗ + ε′)e−η

n
h (1−Fh(s∗+ε′))

ηn` f`(s
∗ + ε′)e−η

n
` (1−F`(s∗+ε′))

,

which implies that for n large E[v|s, s(1) ≤ s∗ − ε, λ2] > E[v|s(1) ≤ s∗ + ε′, s∗ + ε′].

The probability that s∗ + ε′ ties is zero for n sufficiently large (c.f. Claim 1). Thus,

E[v|win with σn(s∗ + ε′), s∗ + ε′;σn] = E[v|s(1) ≤ s∗ + ε′, s∗ + ε′]. But this is smaller than

E[v|s, s(1) ≤ s∗ − ε, λ2] i.e. the minimum bid for bn and therefore minimum bid in chosen

by s∗ + ε′. Signal s∗ + ε′ would make a loss, which is a contradiction to the equilibrium,

because she could always deviate and bid v`, making positive profits. �

Claim 3: Fix any ε ∈ (0, s
∗−s
2 ). For every n sufficiently large, there are two

disjoint, adjacent intervals In and Jn with [s + ε, s∗ − ε] ⊂ In ∪ Jn. Bidders with

signals sI ∈ In choose σn(sI) = (Cn, s
c,n
I , bn) and bidders with signals sJ ∈ Jn choose

σn(sJ) = (Cn, s
c,n
J , bn) and ∃!cn ∈ Cn s.t. sc,nI < cn < sc,nJ . This means that , @(C, sc, b)

s.t. πcω(σn(sI);σn) < πcω(C, sc, b;σn) < πcω(σn(sJ);σn) for ω ∈ {h, `}. Last, the expected

number of bidders in both intervals is larger than 1
ε .
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Fix any ε > 0 sufficiently small, such that fh(s+ε)
f`(s+ε)

F`(s
∗−ε)

Fh(s∗−ε) <
ηhfh(s∗−ε)
η`f`(s∗−ε) . Notice that

such an ε exists, because fh(s)
f`(s)

F`(s
∗)

Fh(s∗) < 1 = ηhfh(s∗)
η`f`(s∗)

and the expressions are continuous in

its arguments.

For n sufficiently large, we know that all bidders from the interval [s + ε, s∗ − ε] bid

the same bid and but send at most two different reports (Claim 2). We define In as

the interval of signals choosing (Cn, s
c,n
I , bn) = σ(s + ε) and Jn as the largest interval of

signals choosing the same bid bn, but a report from the next interval of the partition Cn

(potentially empty)33. For future reference in this proof, we denote the action chosen by

bidders with signals from Jn by ζn := (Cn, s
c,n
J , bn).

By construction, In and Jn fulfill all the properties stated above except for, potentially,

the last. Thus, we have to show that as n grows large, the expected number of bidders

in both intervals grows without bounds
∫
In
ηnωfω(s)ds,

∫
Jn
ηnωfω(s)ds → ∞ for ω ∈ {h, `}.

Suppose to the contrary that this was not the case.

First, consider interval In with bounds sI,n− and sI,n+ and suppose that sI,n+ − sI,n− → 0. .

By definition of In, if it converges to a length of zero this means that the upper and lower

bound converge to s+ ε. If this is the case, consider the interval (s+ ε
2 , s̄−

ε
2 ). By Claim 2,

@(C, sc, b) s.t. πcω(σn(s+ ε
2 );σn) < πcω(C, sc, b;σn) < πcω(σn(s∗ − ε

2 );σn) for ω ∈ {h, `} and

n sufficiently large. However, if In converges to a length of zero i.e. to the point s+ ε, this

means that for n sufficiently large, πcω(σn(s+ ε
2 );σn) < πcω(σn(s+ε);σn) < πcω(σn(s∗− ε

2 );σn)

for ω ∈ {h, `} – a contradiction. Thus, In cannot converge to a length of zero and the

expected number of bidders in In has to grow without bound.

Next, turn to interval Jn with bounds sJ,n− and sJ,n+ (obviously, sI,n+ = sJ,n− ). Suppose

to the contrary of the claim that ηω(Fω(sJ,n+ ) − Fω(sJ,n+ )) 6→ ∞ for ω ∈ {h, `}. In this

case, sJ,n− , sJ,n+ converge to some common limit sJ 34. Notice that it cannot be that

sJ < s∗− ε. By the way we constructed Jn, if this was the case, then for n sufficiently large,

πcω(σn(s+ ε);σn) < πcω(ζn;σn) < πcω(σn(s∗ − ε);σn) for ω ∈ {h, `}, which is a contradiction

to Claim 2. Since the same is true for any ε′ < ε and sJ < s∗ − ε′, it follows that sJ ≥ s∗.

In the following, we only concentrate on this remaining case.

The idea of the remainder of the proof is the one presented in Section 4 of the paper. If

Jn is arbitrary small and thereby In very long, In is approximately a single large pool and

thereby such an equilibrium cannot exist.

We first show that a bidder with signal s winning with action ζn expects the good to

33Such a report might not exits. However, one can replicate the same winning probability by bidding a

bid marginally above bn, such that we can act as if such a report exists.

34If Jn is empty, set sJ,n− = sJ,n+ = sI,n+ . The proof follows with πJ,nω := πcω(ζn;σn) = e
−ηω(1−Fω(s

I,n
+ ))
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be approximately of value E[v|s(1) ≤ sJ,n− , s] (Step 1). Using this, we exploit the preference

of the bidder with signal sI,n+ over the actions σn(s+ ε) and ζn to derive a lower bound on

bn (Step 2). Then, we use a bidder with signal sI,n− and her expected value conditional on

winning to find an upper bound on bn (Step 3). In Step 4 we show that the lower bound

exceeds the upper bound.

Step 1: First, if ηnω[Fω(sJ,n+ ) − Fω(sJ,n− )] → 0 for ω ∈ {h, `} this implies that (using

l’Hospital)

lim
πJ,nh
πJ,n`

= lim

e
−ηnh (1−Fh(s

J,n
+

))−e−η
n
h (1−Fh(s

J,n
− ))

ηnh (Fh(sJ,n+ )−Fh(sJ,n− ))

e
−ηn
`

(1−F`(s
J,n
+

))−e−η
n
`

(1−F`(s
J,n
− ))

ηn` (F`(s
J,n
+ )−F`(sJ,n− ))

=
e−η

n
h (1−Fh(sJ ))

e−η
n
` (1−F`(sJ ))

.

By Claim 2, the probability that sJ > s∗ ties is zero for n sufficiently which implies

that ηnω[Fω(sJ,n+ ) − Fω(sJ,n− )] → 0 for ω ∈ {h, `}. If, on the other hand, sJ = s∗, but

ηnω[Fω(sJ,n+ ) − Fω(sJ,n− )] 6→ 0 then ηnh [Fh(sJ,n+ ) − Fh(sJ,n− )] − ηn` [F`(s
J,n
+ ) − F`(sJ,n− )] → 0.35

For the likelihood-ratio of winning,
πJ,nh
πJ,n`

:=
πch(ζn;σn)
πc` (ζn;σn) , this means that

πJ,nh
πJ,n`

(e−ηnh (1−Fh(sJ,n− ))

e−η
n
` (1−F`(sJ,n− ))

)−1

=

e
−ηnh (1−Fh(s

J,n
+

))−e−η
n
h (1−Fh(s

J,n
− ))

ηnh (Fh(sJ,n+ )−Fh(sJ,n− ))

e
−ηn
`

(1−F`(s
J,n
+

))−e−η
n
`

(1−F`(s
J,n
− ))

ηn` (F`(s
J,n
+ )−F`(sJ,n− ))

(e−ηnh (1−Fh(sJ,n− ))

e−η
n
` (1−F`(sJ,n− ))

)−1

→ 1.

Summing up, if sJ ≥ s∗

πJ,nh
πJ,n`

(e−ηnh (1−Fh(s
J,n
− ))

e−η
n
`
(1−F`(s

J,n
− ))

)−1

=

e
−ηnh (1−Fh(s

J,n
+

))−e−η
n
h (1−Fh(s

J,n
− ))

ηn
h
(Fh(s

J,n
+ )−Fh(s

J,n
− ))

e
−ηn
`

(1−F`(s
J,n
+

))−e−η
n
`

(1−F`(s
J,n
− ))

ηn
`
(F`(s

J,n
+ )−F`(s

J,n
− ))

(e−ηnh (1−Fh(s
J,n
− ))

e−η
n
`
(1−F`(s

J,n
− ))

)−1

→ 1. (27)

Step 2: Consider a bidder with signal sI,n+ = sJ,n− who is indifferent (if Jn is non-empty)

or prefers (if Jn is empty) σn(s + ε) over ζn. Using this preference, we will find a lower

bound on bn. Define πI,nω := πcω(σn(s+ ε);σn) for ω ∈ {h, `}. Then U(σn(s+ ε)|sI,n+ ;σn) ≥
U(ζn|sI,n+ ;σn) implies that

35Toward the contradiction, we supposed that ηnω(Fω(sJ,n+ ) − Fω(sJ,n− )) 6→ ∞. Thus, ηnh [Fh(sJ,n+ ) −

Fh(sJ,n− )] − ηn` [F`(s
J,n
+ ) − F`(s

J,n
− )] =

∫
[s
J,n
− ,s

J,n
+ ]

ηnhfh(s) − ηn` f`(s)ds ≤
∫
[s
J,n
− ,s

J,n
+ ]

(
ηnhfh(s

J,n
+ )

ηn
`
f`(s

J,n
+ )

−

1)ηn` f`(s)ds = (
ηnhfh(s

J,n
+ )

ηn
`
f`(s

J,n
+ )

− 1)ηn` [F`(s
J,n
+ ) − F`(sJ,n− )] → 0, since

ηnhfh(s
J,n
+ )

ηn
`
f`(s

J,n
+ )

→ ηnhfh(s
J )

ηn
`
f`(s

J )
=

ηnhfh(s
∗)

ηn
`
f`(s
∗) = 1

which bounds the limit from above. The bound from below follows by using
∫
[s
J,n
− ,s

J,n
+ ]

ηnhfh(s)−ηn` f`(s)ds ≥∫
[s
J,n
− ,s

J,n
+ ]

(
ηnhfh(s

J,n
− )

ηn
`
f`(s

J,n
− )

− 1)ηn` f`(s)ds.
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ρηnhfh(sI,n+ )πI,nh (vh − bn) + (1− ρ)ηn` f`(s
I,n
+ )πI,n` (v` − bn)

ρηnhfh(sI,n+ )πI,nh + (1− ρ)ηn` f`(s
I,n
+ )πI,n`

≥
ρηnhfh(sI,n+ )πJ,nh (vh − bn) + (1− ρ)ηn` f`(s

I,n
+ )πJ,n` (v` − bn)

ρηnhfh(sI,n+ )πJ,nh + (1− ρ)ηn` f`(s
I,n
+ )πJ,n`

⇐⇒ bn ≥
ρηnhfh(sI,n+ )(πJ,nh − πI,nh )vh + (1− ρ)ηn` f`(s

I,n
+ )(πJ,n` − πI,n` )v`

ρηnhfh(sI,n+ )(πJ,nh − πI,nh ) + (1− ρ)ηn` f`(s
I,n
+ )(πJ,n` − πI,n` ).

= E[v|ψn, sI,n+ ;σn]

where the likelihood ratio of event ψn is
πJ,nh −π

I,n
h

πJ,n` −π
I,n
`

.

Step 3: Next, we derive an upper bound for bn. No bidder with a signal from In will bid

more than his expected value conditional on winning. For a bidder with signal s + ε ∈ In
this means that bn ≤ E[v|win with σn(s + ε), s + ε;σn]. Inspecting the likelihood-ratio
ρηnhfh(s+ε)πI,nh

(1−ρ)ηn` f`(s+ε)π
I,n
`

, and using that ηnω(Fω(sI,n+ )− Fω(sI,n− ))→∞36 for ω ∈ {h, `} yields

ρηnhfh(s+ ε)πI,nh
(1− ρ)ηn` f`(s+ ε)πI,n`

(ηnhfh(sI,n+ )e−η
n
h (1−Fh(sI,n+ ))

ηn` f`(s
I,n
+ )e−η

n
` (1−F`(sI,n+ ))

)−1

=
ηnhfh(s+ ε) e

−ηnh (1−Fh(s
I,n
+

))−e−η
n
h (1−Fh(s

I,n
− ))

ηnh [Fh(sI,n+ )−Fh(sI,n− )]

ηn` f`(s+ ε) e
−ηn
`

(1−F`(s
I,n
+

))−e−η
n
`

(1−F`(s
I,n
− ))

ηn` [F`(s
I,n
+ )−F`(sI,n− )]

(ηnhfh(sI,n+ )e−η
n
h (1−Fh(sI,n+ ))

ηn` f`(s
I,n
+ )e−η

n
` (1−F`(sI,n+ ))

)−1

=
1− e−ηh(Fh(sI,n+ )−Fh(sI,n− ))

1− e−η`(F`(s
I,n
+ )−F`(sI,n− ))

ηn` [F`(s
I,n
+ )− F`(sI,n− )]

ηnh [Fh(sI,n+ )− Fh(sI,n− )]

fh(s+ ε)f`(s
I,n
+ )

f`(s+ ε)fh(sI,n+ )

→
fh(s+ ε)f`(s

I,n
+ )

f`(s+ ε)fh(sI,n+ )

ηn` [F`(s
I,n
+ )− F`(sI,n− )]

ηnh [Fh(sI,n+ )− Fh(sI,n− )]
.

Since sI,n+ = sJ,n− → sJ ≥ s∗, for n sufficiently large, the monotone likelihood

ratio property implies that
ηn` [F`(s

I,n
+ )−F`(sI,n− )]

ηnh [Fh(sI,n+ )−Fh(sI,n− )]
≤ ηn` F`(s

I,n
− )

ηnhFh(sI,n− )
<

ηn` F`(s
∗−ε)

ηnhFh(s∗−ε) . Further-

more, we did set ε > 0 s.t.
ηnhfh(s+ε)
ηn` f`(s+ε)

ηn` F`(s
∗−ε)

ηnhFh(s∗−ε) <
ηnhfh(s∗−ε)
ηn` f`(s

∗−ε) <
ηnhfh(sI,n+ )

ηn` f`(s
I,n
+ )

such that

fh(s+ε)f`(s
I,n
+ )

f`(s+ε)fh(sI,n+ )

ηn` [F`(s
I,n
+ )−F`(sI,n− )]

ηnh [Fh(sI,n+ )−Fh(sI,n− )]
stays bounded below 1. Hence, there exists a µ < 1 such

that

ρηnhfh(s+ ε)πI,nh
(1− ρ)ηn` f`(s+ ε)πI,n`

large n
<

ηnhfh(sI,n+ )e−η
n
h (1−Fh(sI,n+ ))

ηn` f`(s
I,n
+ )e−η

n
` (1−F`(sI,n+ ))

µ. (28)

36Recall that we ruled out the possibility that the length of Ik converges to zero.
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Thus, we conclude that for n sufficiently large, bn ≥ E[v|χn, sI,n+ ;σn], where the

likelihood ratio of event χn is e
−ηnh (1−Fh(s

I,n
+

))

e
−ηn
`

(1−F`(s
I,n
+

))
µ.

Step 4: We now show that for n sufficiently large, the lower bound from Step 2 is larger

than the upper bound from Step 3 and thus no such bn can exist. For this, it is sufficient to

consider the likelihood ratios of ψn and χn. Suppose to the contrary that ψn < χn for all n:

(πJ,nh − πI,nh
πJ,n` − πI,n`

)
<
e−η

n
h (1−Fh(sI,n+ ))

e−η
n
` (1−F`(sI,n+ ))

µ

πJ,nh − πI,nh
πJ,n` − πI,n`

(πJ,nh
πJ,n`

)−1

︸ ︷︷ ︸
→1 by inspection

<
e−η

n
h (1−Fh(sI,n+ ))

e−η
n
` (1−F`(sI,n+ ))

(πJ,nh
πJ,n`

)−1

︸ ︷︷ ︸
→1 by equation (27)

µ.

However, because µ < 1 this is violated for n sufficiently large. This means that for n

large the lower bound on bn (Step 2) is larger than the upper bound on bn (Step 3). Therefore

bn cannot exist. Since we know that (σn)n∈N is a sequence of equilibria, it, therefore, cannot

be that the expected number of bidders who choose Jn stays bounded and for n sufficiently

large, expected number of bidders in both intervals is larger than 1
ε . �

Proof of Lemma 6

Proof. Given the sequence of games on the ever finer grid (Γ(k))k∈N, let Bk the respective

bidding space. Consider the sequence of respective equilibria (βk)k∈N, and for any k the

implied winning probabilities π̂kω(s) := πω(βk(s);βk) for ω ∈ {h, `}. Furthermore, define

an auxiliary function γk : [v`, vh] → Bk such that γk(b) := sup{b′ ∈ Bk : b′ ≤ b}. Since all

of those functions are nondecreasing, we can find a subsequence on which they converge

to some nondecreasing limit β, γ and π̂ω for ω ∈ {h, `}. Ẇe denote this subsequence by

n. Construct C as a partition of [s, s̄] into (potential trivial) intervals, such that s and

s′ are in the same interval if and only if π̂h(s) = π̂h(s′). Note that because the winning

probabilities are isomorph across states, this implies that π̂`(s) = π̂`(s
′).

We claim that the following is an equilibrium: All bidders report C, reveal their type s

truthfully, sc = s, and bid β(s). We call this strategy σ∗.

We first want to show that, given the rules of the Communication Extension, for any

s and ω ∈ {h, `} it holds that πcω(C, s, β(s)) = π̂ω(s). We will focus on state h, the result

follows for ` because, again, the winning probabilities are isomorph across states. To show
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this, fix any ŝ ∈ [s, s̄] and define the sets Wn := {s : π̂nh(s) < π̂nh(ŝ)}, Tn := {s : π̂nh(s) =

π̂nh(ŝ)} and Ln := {s : π̂nh(s) > π̂nh(ŝ)}. Furthermore, define W := {s : π̂h(s) > π̂h(ŝ)},
and T , L respectively. Because π̂nh is non-decreasing and converges, Wn → W,Tn → T and

Ln → L. We have to show that under the rules of the extended auction mechanism and σ∗,

ŝ loses against signals from L, wins against signals from W and ties with the signals from

T .

Fix any s ∈ L. For n sufficiently large, s ∈ Ln. Further, it follows from π̂nh(ŝ) < π̂nh(s)

that βn(ŝ) < βn(s). This, and the convergence of βn implies that β(ŝ) ≤ β(s). Further, by

definition there exists c ∈ C such that ŝ < c < s. Following the rules of the Communication

Extension, a bidder ŝ choosing σ∗(ŝ) thereby never wins against s ∈ L. Either s chooses a

higher bid, or β(ŝ) = β(s) but s reports a higher interval of the partition. The symmetric

argument can be made for bidders with signals from set W such that signal ŝ following σ∗(ŝ)

always wins against any s ∈W .

Last, fix any s ∈ T . Again, n sufficiently large, s ∈ Tn and π̂nh(s) = π̂nh(ŝ) implies that

βn(s) = βn(ŝ), which means that β(s) = β(ŝ). By the way we defined C, signals ŝ and s

choose the same interval of the partition. By the rules of the Communication Extension,

signal ŝ thereby wins against signals from T if the random tiebreak decides in his / her

favor.

Wrapping up, ŝ choosing σ∗(ŝ) wins whenever there is no signal from L and the tiebreak

among other signals from T decides in his / her favor. The same is true for any finite n

strategy βn(s) and sets Ln and Tn. Since the sets converge, it follows that πcω(C, s, β(ŝ)) =

π̂ω(ŝ) for ω ∈ {h, `} and any ŝ and, thereby,

U(σ∗(s)|s;σ∗) = U(C, s, β(s)|s;σ∗) = lim
n→∞

U(βn(s)|s;βn). (29)

To ensure that σ∗ is an equilibrium, we now check all possible deviations:

0: Reporting C is an equilibrium because a deviating bidder will only receive the good

if the deviation is not detected i.e. when she is alone. She could, however, always achieve

at least the same utility by bidding v` and reporting truthfully. Thus, such a deviation is

(weakly) dominated.

In the following, we, therefore, keep C fixed and consider only deviations with respect to

the bid and signal report. We suppose that signal s deviates from (s, β(s)) to some (s′, b′),

and that the deviation affects the payoff, which implies that we only consider changes in

the signal report when the bid ties with positive probability.

1: If b′ does not tie with positive probability, then the report does not matter and the

resulting winning probability is πcω(C, s′, b′;σ∗) = πcω(C, s, b′;σ∗) for ω ∈ {h, `}. Further-
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more, πcω(C, s′, b′;σ∗) is continuous at b′37. As a result, limπω(γn(b′);βn) = πcω(C, s′, b′;σ∗)

for ω ∈ {h, `}. Because the utility (1) is continuous bids and probabilities and all sequences

converge, U c(C, s′, b′|s;σ∗) = limn→∞ U(γn(b′)|s;βn). But this, and equation (29) imply

that a deviation to b′ cannot be strictly profitable. Otherwise, a deviation to γn(b′) would

have been profitable for n sufficiently large.

2: If b′ ties with positive probability and s′ is such that b′ = β(s′), then signal s mimics

s′. By (29), U c(C, s′, β(s′)|s;σ∗) = limn→∞ U(βn(s′)|s;βn). Hence, such a deviation cannot

be strictly profitable. Otherwise, the bidder s would have had a strict incentive to mimic s′

for n sufficiently large.

3: Last, consider the case in which b′ ties with positive probability (which implies

that b′ 6= v`, vh)38 , but b′ 6= β(s′). By construction, reports and bids are non-decreasing

in the signal. Thus, there are two possibilities: First, if s′ > sup{s : β(s) = b′} then

the deviating player wins the tiebreak for sure, but never when there is a higher bid.

Because probability mass can at most be on countably many bids, and b′ < vh, there

are bids larger, but arbitrary close to b′ which tie with zero probability. Thus, for

every ε > 0, there exists a b′′ ∈ {b ∈ (b′, b′ + ε) : b does not tie given σ∗}, such that

πcω(C, s′, b′′) ∈
(
πcω(C, s′, b′;σ∗), πcω(C, s′, b′;σ∗) + ε

)
for ω ∈ {h, `}. Because b′′ does not

tie, the type report does not matter and by step 1, it cannot be profitable. Because this is

true for any b′′ for any ε > 0, it follows that (b′, s′) cannot be a profitable deviation either.

Second, if s′ < inf{s : β(s) = b′} then deviating player always loses the tiebreak. We can

redo the argument for a b′′ ∈ (b′ − ε, b′).

Thus, no deviation is strictly profitable and σ∗ is an equilibrium.

37The set of bids which tie is the union of points and thereby closed. Thus, the set of those which do

not tie is open. Because there is no positive mass on non-tieing bids, marginally changing the bid in the

open set only marginally changes the set of signals the bidder wins against and, hence, and there exists a

neighborhood where the winning probability is continuous.
38If k is sufficiently large, and b′ is played with positive probability, then b′ can be neither v`, nor vh. If

it was v`, then the winning bidders would not make a loss when the state is low. Since no signal is fully

revealing of the state, she would have an incentive to marginally overbid b′, discretely raising her winning

probability (by circumventing the tiebreak) in exchange for an arbitrary small loss in the low state. Along

the sequence of ever finer grids, such a deviation becomes available for n sufficiently large, and thereby the

limiting equilibrium cannot contain a pool at v`. If b′ was vh, then every bidder choosing b′ would make

a loss. Because no signal is fully revealing of the state, for any signal and given any strategy, the bidder’s

expected value conditional on winning is strictly below vh. Since a bidder is alone i.e. wins with positive

probability, this means that she would make a strict loss. A deviation to v` would therefore be dominant.
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Appendix C Numerical Example

C.1 Non Existence

In a strictly increasing equilibrium, the lowest bid equals the reserve price v` = 0. Otherwise,

s could lower her bid, win in the same situations (when she is alone) but pay less. Since
fh(s)
f`(s)

is constant on s ∈ [0, 1
2 ], the bidders with these signals are essentially equal thus:

U(β(s)|s;β) = U(0|s;β) = U(β(s)|s;β) ∀s ∈ [0,
1

2
]

⇐⇒ ρfh(s)πh(0;β)

ρfh(s) + (1− ρ)f`(s)
=
ρfh(s)πh(β(s);β)(1− β(s)) + (1− ρ)f`(s)π`(β(s);β)(−β(s))

ρfh(s) + (1− ρ)f`(s)
.

Note that fω(s) = fω(s) for all s ∈ [0, 1
2 ], ω ∈ {h, `} and ρ = 1

2 , such that we can rearrange

the argument to

⇐⇒ fh(s)πh(0;β) = fh(s)πh(β(s);β)(1− β(s)) + f`(s)π`(β(s);β)(−β(s))

⇐⇒ β(s) =
fh(s)

f`(s)

πh(β(s);β)− πh(β(0);β)

π`(β(s);β) + fh(s)
f`(s)

πh(β(s);β)

=
fh(s)

f`(s)

e−η(1−Fh(s)) − e−η

e−η(1−F`(s)) + fh(s)
f`(s)

e−η(1−Fh(s))

=
fh(s)

f`(s)

1− e−ηFh(s)

eη(F`(s)−Fh(s)) + fh(s)
f`(s)

.

To check if β is indeed strictly increasing, take the derivative with respect to s. The

slope β′ ≥ 0 if

0 ≤ fh(s)

f`(s)

ηfh(s)e−ηFh(s)(eη(F`(s)−Fh(s)) + fh(s)
f`(s)

)− η(f`(s)− fh(s))eη(F`(s)−Fh(s))(1− e−ηFh(s))

(eη(F`(s)−Fh(s)) + fh(s)
f`(s)

)2

⇐⇒ 0 ≤ fh(s)e−ηFh(s)(eη(F`(s)−Fh(s)) +
fh(s)

f`(s)
)− (f`(s)− fh(s))eη(F`(s)−Fh(s))(1− e−ηFh(s))

⇐⇒ 0 ≤ fh(s)e−ηFh(s) fh(s)

f`(s)
− f`(s)eη(F`(s)−Fh(s))(1− e−ηFh(s)) + fh(s)eη(F`(s)−Fh(s))

⇐⇒ 0 ≤ fh(s)
fh(s)

f`(s)
− f`(s)eηF`(s)(1− e−ηFh(s)) + fh(s)eηF`(s)

which rearranges to

(fh(s)

f`(s)

)2

≥ eηF`(s)(1− fh(s)

f`(s)
− e−ηFh(s)).

Plugging in the values at s = 1
2 gives 9

25 ≥ e
η 5

8 (1− 3
5 − e

−η 3
8 ) which has a unique critical

value at η ≈ 2.9.
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C.2 Existence With a Pool

Suppose that β(s) = bp = 0.12 for all s ∈ [0, 1
2 ] and strictly increasing otherwise. We want

to show that there is an η ∈ [4.9, 5] where this is an equilibrium.

First, we check that lims→0.5 E[v|win with β(s); s] = E[v|s(1) ≤ 1
2 ,

1
2 ] > bp.

E[v|s(1) ≤
1

2
,

1

2
] =

fh( 1
2 )e−η[1− 3

8 ]

fh( 1
2 )e−η[1− 3

8 ] + f`(
1
2 )e−η[1− 5

8 ]
=

1

1 + 5
3e
η 2

8

η≤5

≥ 1

1 + 5
3e

10
8

= 0.146687 > 0.12 = bp.

Next, we verify that condition (iii) of Proposition 2 is satisfied for all s ∈ [ 1
2 ,

5
8 ]

2
( ∂
∂s

fh(s)

f`(s)

) f`(s)
fh(s)

+ ηfh(s)− ηf`(s) =
2

( 9
8 − s)(s−

1
8 )

+ η(4s− 10

4
)

≥ 8− η

2
.

where we used that the first fraction has a local minimum at s = 5
8 and the second term

is minimized at s = 1
2 . Obviously the expression is positive for η ≤ 5. We conclude that

β(s) with β( 1
2 ) = bp is strictly increasing if η ∈ [4.9, 5].

A bidder with signals s ∈ [0, 1
2 ] prefers to bid bp and pool with other bidders with signals

from [0, 1
2 ] over deviating to 0 if U(0|s;β) ≥ U(bp|s;β):

U(0|s;β) =
ρfh(s)πh(0;β)

ρfh(s) + (1− ρ)f`(s)
=

3 πh(0;β)

8
=

3

8
e−η

4.9≤η≤5
∈ [0.0025, 0.0028],

U(bp|s;β) =
ρfh(s)πh(bp;β)(1− bp) + (1− ρ)f`(s)π`(bp;β)(−bp)

ρfh(s) + (1− ρ)f`(s)

=
3πh(bp;β)(1− bp) + 5π`(bp;β)(−bp)

8

=
(e−η[1− 3

8 ] − e−η)(1− bp) + (e−η[1− 5
8 ] − e−η)(−bp)

8η

η≤5,bp=0.12

≥ 0.0030.

Last, we have to check that a bidder with s = 1
2 is indifferent between pooling on bp

bidding bp + ε for ε arbitrary small (which wins whenever s(1) ≤ 1
2 ). Denote the respective

winning probabilities by:

πph := πh(bp;β) =
e−η[1− 3

8 ] − e−η

η 3
8

πp` := π`(bp;β) =
e−η[1− 5

8 ] − e−η

η 5
8

πh := lim
ε↘0

πh(bp + ε;β) = e−η[1− 3
8 ] π` := lim

ε↘0
π`(bp + ε;β) = e−η[1− 5

8 ].
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The bidder with signal 1
2 is indifferent between the pooling bid and bidding marginally

more if

U(bp|
1

2
; β) = lim

ε↘0
U(bp + ε|1

2
;β)

⇐⇒
3
4π

p
h(1− bp) + 5

4π
p
` (0− bp)

3
4 + 5

4

=
3
4πh(1− bp) + 5

4π`(0− bp)
3
4 + 5

4

⇐⇒ b =
3
4 (πh − πph)

3
4 (πh − πph) + 5

4 (π` − πp` )

=
3(eη

3
8 − eη

3
8−1
η 3

8

)

3(eη
3
8 − eη

3
8−1
η 3

8

) + 5(eη
5
8 − eη

5
8−1
η 5

8

)
.

Setting bp = 0.12 and solving for η gives η ≈ 4.98225. By the observations above, none

of the other bidders wants to deviate at this η, either.

Appendix D Derivations for section 4

D.1 Candidate Equilibrium 1:

Suppose to the contrary that β∗ is an equilibrium and that β∗(s) = bp for exactly s ∈ [s, s∗].

To abbreviate notation, denote winning probability and the probability to win with a bid

marginally above bp by:

πω := πω(bp;β
∗) =

e−ηω(1−Fω(s∗)) − e−ηω
ηωFω(s∗)

π+
ω := lim

ε↘0
πω(bp + ε;β∗) = e−ηω(1−Fω(s∗)).

Signal s∗ does not want to deviate to a bid marginally above bp if

U(bp|s∗;β∗) ≥ lim
ε↘0

U(bp + ε|s∗;β∗)

⇐⇒ ρηhfh(s∗)πh(vh − bp) + (1− ρ)η`f`(s
∗)π`(v` − bp)

ρηhfh(s∗) + (1− ρ)η`f`(s∗)

≥
ρηhfh(s∗)π+

h (vh − bp) + (1− ρ)η`f`(s
∗)π+

` (v` − bp)
ρηhfh(s∗) + (1− ρ)η`f`(s∗)

⇐⇒ (bp − v`)(1− ρ)η`f`(s
∗)(π+

` − π`) ≥ (vh − bp)ρηhfh(s∗)(π+
h − πh)

⇐⇒ bp − v`
vh − bp

≥ ρ

1− ρ
ηhfh(s∗)

η`f`(s∗)

π+
h − πh
π+
` − π`

. (30)

Furthermore, we can approximate
π+
h−πh
π+
` −π`

by

π+
h − πh
π+
` − π`

(π+
h

π+
`

)−1(π+
h

π+
`

)
=

1− 1−e−ηhFh(s∗)

ηhFh(s∗)

1− 1−e−η`F`(s∗)
η`F`(s∗)

(π+
h

π+
`

)
= B(ηω)

π+
h

π+
`

. (31)
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where B(ηω) =
1− 1−e−ηhFh(s∗)

ηhFh(s∗)

1− 1−e−η`F`(s
∗)

η`F`(s
∗)

→ 1, as ηh, η` →∞.

Next, individual rationality of signal s requires that

E[v|win with bp, s;β] =
ρηhfh(s)πhvh + (1− ρ)η`f`(s)v`
ρηhfh(s)πh + (1− ρ)η`f`(s)

≥ bp

⇐⇒ bp − v`
vh − bp

≤ ρ

1− ρ
ηhfh(s)

η`f`(s)

πh
π`
. (32)

Inspecting πh
π`

and
π+
h

π+
`

we note that

πh
π`

=
πh
π`

(π+
h

π+
`

)−1π+
h

π+
`

=
1− e−ηhFh(s∗)

1− e−η`F`(s∗)
η`F`(s

∗)

ηhFh(s∗)

π+
h

π+
`

=
π+
h

π+
`

D(ηω)
η`F`(s

∗)

ηhFh(s∗)
(33)

where D(ηω) = 1−e−ηhFh(s∗)

1−e−η`F`(s∗) → 1 as ηh, η` →∞.

Combining equations (30) - (33) we receive that

ρ

1− ρ
ηhfh(s∗)

η`f`(s∗)

π+
h − πh
π+
` − π`

≤ ρ

1− ρ
ηhfh(s)

η`f`(s)

πh
π`
⇐⇒ fh(s)

f`(s)

F`(s
∗)

Fh(s∗)
≥ B(ηω)

D(ηω)
.

The MLRP implies that fh(s)
f`(s)

< F`(s
∗)

Fh(s∗) which means that the left side is strictly smaller

than 1. The right side, on the other hand, converges to 1, such that the condition cannot

hold for ηh, η` sufficiently large.

D.2 Candidate Equilibrium 2:

Fix the ratio ηh
η`

= l < f`(s)
fh(s) . Suppose to the contrary that β∗ is an equilibrium in which

β∗(s) = bp for exactly s ∈ [s−, s+] and where s− ∈ (s, s∗). Assume further that s+ ≤ s∗.

To simplify the following expressions, denote the winning probabilities for bidding bp and

marginally overbidding bp and underbidding bp by

πω := πω(bp;β
∗) =

e−ηω(1−Fω(s+)) − e−ηω(1−Fω(s−))

ηω(Fω(s+)− Fω(s−))

π−ω := lim
ε↘0

πω(bp − ε;β∗) = e−ηω(1−Fω(s−)) π+
ω := lim

ε↘0
πω(bp + ε;β∗) = e−ηω(1−Fω(s+)).

Individual rationality requires that

E[v|win with bp, s−;β∗] =
ρηhfh(s−)πhvh + (1− ρ)η`f`(s−)π`v`
ρηhfh(s−)πh + (1− ρ)η`f`(s−)π`

≥ bp

⇐⇒ bp − v`
vh − bp

≤ ρ

1− ρ
ηhfh(s−)

η`f`(s−)

πh
π`

=
ρ

1− ρ
ηhfh(s−)

η`f`(s−)

π+
h

π+
`

η`(F`(s+)− F`(s−))

ηh(Fh(s+)− Fh(s−))
B̂(ηω) (34)
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where we, similar to B in the section before define B̂ as

B̂(ηω) =
1− e−ηh(Fh(s+)−Fh(s−))

1− e−η`(F`(s+)−F`(s−))
→ 1

when ηh, η` →∞.

Fix any s < s− now. To make sure that s does not want to deviate from β∗(s) to a bid

marginally below bp, Lemma 7 provides a lower bound for bp which is

bp ≥
ρfh(s)ηh(π−h − πh(β∗(s);β∗))vh + (1− ρ)f`(s)η`(π

−
` + ρηhfh(s)

(1−ρ)η`f`(s)η`πh(β∗(s);β∗))v`

ρηhfh(s)(π−h − πh(β∗(s);β∗)) + (1− ρ)η`f`(s)(π
−
` + ρηhfh(s)

(1−ρ)η`f`(s)πh(β∗(s);β∗))

⇐⇒ bp − v`
vh − bp

≥ ρ

1− ρ
ηhfh(s)

η`f`(s)

π−h − πh(β∗(s);β∗)

π−` + ρηhfh(s)
(1−ρ)η`f`(s)πh(β∗(s);β∗)

. (35)

There are two possibilities now. Either β∗(s) is a pooling bid or not. In both cases,

we can find a y ∈ (s, s−) such that πh(β∗(s);β∗) = e−ηh(1−Fh(y)). One can check that

e−ηh(1−Fh(y)) ≤ e−ηh(1−Fh(s−))−e−ηh(1−Fh(s))

ηh(Fh(s−)−Fh(s)) such that πh(β∗(s);β∗)

e−ηh(1−Fh(s−)) → 0.

There are two possibilities. Either e−ηh(1−Fh(y))+η`(1−F`(s−)) → 0 (always if ηh = η`), or

not.

•If not, i.e. if e−ηh(1−Fh(y))+η`(1−F`(s−)) → φ > 0, then

π−h − πh(β∗(s);β∗)

π−` + ρηhfh(s)
(1−ρ)η`f`(s)πh(β∗(s);β∗)

=

π−h
e−ηh(1−Fh(y)) − 1

eηh(1−Fh(y))−η`(1−F`(s−)) + ρηhfh(s)
(1−ρ)η`f`(s)

→ ∞
1
φ + l ρfh(s)

(1−ρ)f`(s)

,

which means that bn → vh. Given the form of the equilibrium, signal s̄ always wins the

auction, which means her expected value E[v|β∗(s̄), s̄; β∗] = E[v|s̄]. Because the signals are

bounded, this is bounded away from vh. Since β∗(s̄) > bp signal s̄ would make strict loss,

which is a contradiction, because she could always deviate to v`. Thus, we can ignore the

case in which e−ηh(1−Fh(y))+η`(1−F`(s−)) → φ > 0.

•If not, i.e. if e−ηh(1−Fh(y))+η`(1−F`(s−)) → 0, we observe that

π−h − πh(β∗(s);β∗)

π−` + ρηhfh(s)
(1−ρ)η`f`(s)

πh(β∗(s);β∗)
=

π−h − πh(β∗(s);β∗)

π−` + ρηhfh(s)
(1−ρ)η`f`(s)

πh(β∗(s);β∗)

(π−h
π−`

)−1 π−h
π−`

=
1− e−ηh(Fh(s−)−Fh(y))

1 + ρηhfh(s)
(1−ρ)η`f`(s)

e−ηh(1−Fh(y))+η`(1−F`(s−))

π−h
π−`

= Es(ηω)
π−h
π−`

,

such that we found a function Es(ηω) < 1 with

Es(ηω) =
1− e−ηh(Fh(s−)−Fh(y))

1 + ρηhfh(s)
(1−ρ)η`f`(s)e

−ηh(1−Fh(y))+η`(1−F`(s−))
→ 1.
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Hence, we can rewrite equation (35) as

bp − v`
vh − bp

≥ ρ

1− ρ
ηhfh(s)

η`f`(s)
Es(ηω)

π−h
π−`

.

Combining this with equation (34) yields

ρ

1− ρ
ηhfh(s−)

η`f`(s−)

π+
h

π+
`

η`(F`(s+)− F`(s−))

ηh(Fh(s+)− Fh(s−))
B̂(ηω) ≥ ρ

1− ρ
ηhfh(s)

η`f`(s)
Es(ηω)

π−h
π−`

⇐⇒ fh(s−)

f`(s−)

f`(s)

fh(s)

F`(s+)− F`(s−)

Fh(s+)− Fh(s−)
≥ Es(ηω)

B̂(ηω)

π−h
π−`

( π+
h

π+
`

)−1

.

The left side is bounded, the first fraction of the right side converges to 1. The second

π−h
π−`

( π+
h

π+
`

)−1

= eη`(F`(s+)−F`(s−))−(ηh(Fh(s+)−Fh(s−)) →∞,

because

η`[F`(s+)− F`(s−)]− ηh[Fh(s+)− Fh(s−)] =

∫ s+

s−

[1− ηhfh(z)

η`f`(z)
]η`f`(z)dz

> η`︸︷︷︸
→∞

∫ s+

s−

[1− ηhfh(s+)

η`f`(s+)
]︸ ︷︷ ︸

(1−l fh(s+)

f`(s+)
)>0, constant

f`(z)dz →∞.

Hence, equations (34) and (35) cannot hold simultaneously for ηh, η` large and we found

a contradiction.
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