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Abstract

I investigate the decision problem of a player in a game of incomplete information
who faces uncertainty about the other players’ strategies. I propose a new decision
criterion which works in two steps. First, I assume common knowledge of rationality
and eliminate all strategies which are not rationalizable. Second, I apply the maximin
expected utility criterion. Using this decision criterion, one can derive predictions
about outcomes and recommendations for players facing strategic uncertainty. A
bidder following this decision criterion in a first-price auction expects all other bidders
to bid their highest rationalizable bid given their valuation. As a consequence, the
bidder never expects to win against an equal or higher type and resorts to win
against lower types with certainty.

JEL classification: C72, D81, D82, D83
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1 Introduction

1.1 Motivation

I investigate the decision problem of a player in a game of incomplete information who

faces strategic uncertainty. Formally, a player faces strategic uncertainty if the smallest

set of strategies such that the player knows that the other players’ true strategy is an

element of this set, is not a singleton. I propose a new decision criterion which works

in two steps: First, I assume common knowledge of rationality and eliminate all actions

which are not best replies. That is, the set of possible strategies is restricted to the set

of rationalizable strategies. Afterwards, I apply the maximin expected utility criterion.

Using this decision criterion, I can derive recommendations for a player facing strategic

uncertainty. Furthermore, I analyze outcomes under the assumption that every player in

the game uses this concept. Throughout the paper I consider a game with incomplete

information under strategic uncertainty with common knowledge of type distributions.

In an extension in section 5 I discuss how the proposed decision criterion can be applied

under the presence of both, distributional and strategic uncertainty.

Before I explain the decision criterion in more detail, I argue why strategic uncertainty

can occur in games (of complete or incomplete information). Consider a game and a player

who has to decide about her action. There may exist strategy profiles which formally

fulfill the conditions of a (Bayes-) Nash equilibrium. However, a player may be uncertain

whether her opponents employ such strategies, and consequently face strategic uncertainty.

As stated by Pearce (1984), “some Nash equilibria are intuitively unreasonable and not

all reasonable strategy profiles are Nash equilibria”. He argues that if players cannot

communicate, then a player will best reply to Nash equilibrium strategies only if she is

able to deduce these equilibrium strategies. However, a player may consider more than one

strategy of the other players’ as possible. For example, this can occur under the existence

of multiple Nash equilibria without one being focal or salient (Bernheim (1984)). Thus, a

Nash equilibrium may not be a suitable decision criterion if a player does not observe or

does not deduce a unique conjecture about the other players’ strategies. Similarly, Renou

and Schlag (2010) argue that “common knowledge of conjectures, mutual knowledge of

rationality and payoffs, and existence of a common prior” are required in order to justify

Nash equilibria as a decision criterion.

So far, I argued that a player may not know which strategies are played by the other

players. But a player may not consider all strategies of the other players as possible. The

fact that rational players interact strategically given some commonly known rules of a

game (e.g. the rules of a first-price auction), already contains information about the set
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of possible strategies. Therefore, in the first step of the decision criterion I propose to

consider strategies which a player can deduce only from common knowledge of rationality.

Under strategic uncertainty a player is rational if her action is a best reply given her type

and a conjecture about the other players’ strategies. A strategy which a player assumes to

be played by another rational player has to be rational as well, i.e. the action prescribed

by a strategy for a given type has to be a best reply given the type and a conjecture

about the other players’ strategies. This reasoning continues ad infinitum. Pearce (1984)

and Bernheim (1984) (and Battigalli and Siniscalchi (2003b) for games of incomplete

information) show that common knowledge of rationality is equivalent to bidders playing

rationalizable strategies 1. These are strategies which survive the iterated elimination of

actions which are not best replies to some strategy which consists of actions which have

not been eliminated in previous elimination rounds.

In the second step I apply the maximin expected utility criterion due to Gilboa and

Schmeidler (1989). A player applying this criterion chooses the action which maximizes

her minimum expected utility given her type. The application of the maximin expected

utility criterion can be modeled as a simultaneous zero-sum game against an adverse

nature whose action space consists of the other players’ rationalizable strategies. Given

the strategy of the adverse nature, the player applying the maximin criterion chooses the

action which maximizes her expected utility. The adverse nature’s utility is the player’s

expected utility multiplied by -1.

In other words, under the proposed decision criterion a player facing strategic uncertainty

forms a subjective belief about the other players’ strategies and acts optimally given this

subjective belief. The first step of the decision criterion determines the set from which a

player chooses her subjective belief. The second step determines how the subjective belief

is chosen. The subjective belief is given by the adverse nature’s equilibrium strategy, in

the following called subjective maximin belief. In order to distinguish the Nash equilibrium

in the simultaneous game between a player and the adverse nature and the Bayes-Nash

equilibrium which may exist in a given game of incomplete information, I will refer to the

Nash equilibrium in the former case as a maximin equilibrium.

By assuming common knowledge of rationality and applying the maximin expected

utility criterion, I am able to derive recommendations for players facing distributional and

1For games of incomplete information where also the type distribution is not known, i.e. only the
type spaces and action spaces are common knowledge, Battigalli and Siniscalchi (2003b) use the term
belief-free rationalizable strategies. If additional information about possible strategies or distributions is
common knowledge, i.e. more than the type spaces and the action spaces is common knowledge, they use
the term ∆-rationalizable strategies. If the type distribution is common knowledge but nothing besides
the actions spaces is known about strategies, they use the term rationalizable strategies. I will use the
term rationalizable strategies throughout the paper.
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strategic uncertainty. Moreover, I characterize outcomes under the assumption that every

player follows the proposed decision criterion.

The following two examples illustrate two different reasons for why strategic uncertainty

can occur and how the proposed decision criterion applies under strategic uncertainty.

In the first example there exist multiple Nash equilibria without one being salient. In

the second example a salient Nash equilibrium exists but is not the unique rationalizable

action. In particular, the salient Nash equilibrium is not compatible with maximin utility

or minimax regret actions. Afterwards, I will summarize the results for first-price auctions

under strategic uncertainty and provide the results for the extension of the decision

criterion to both, distributional and strategic uncertainty.

For the first example consider a sender who has to deposit a package either in places

A, B or C. A receiver has to decide to which places she sends one or two drivers in order

to pick up the package. If the package is picked up, sender and receiver earn each a payoff

of P and zero otherwise. In addition, the receiver faces a cost of c if a driver travels to

place A or B and a cost of c̃ if a driver travels to place C. The game is summarized in the

following payoff table:

A B C AB AC

A P ;P − c 0;−c 0;−c̃ P ;P − 2c P ;P − c− c̃

B 0;−c −c̃ P ;P − c 0;−c̃−c̃+ α P ;P − 2c 0;−c− c̃

C 0;−c 0;−c−c̃ P ;P − c̃ 0;−2c 0;P − c− c̃

Assume it is common knowledge that it holds P − c̃ < −c and P − 2c > −c. The

Nash equilibria in this game are (A;A), (B;B) and both players mixing between A and

B with probability 1
2
. Although Nash equilibria exist, the players may be uncertain

about each other’s strategy since there does not exist a particularly salient one. The

application of the maximin criterion (as well es the maximin expected utility criterion)

leaves both players indifferent between actions A and B. The maximin criterion does not

yield to action AB for the receiver since by choosing AB she would face the risk that

the sender deposits the package in C, leaving the receiver with the costs of two drivers

−2c. However, the result of the maximin criterion changes after restricting the strategy

space to rationalizable strategies. Excluding actions which are not best replies leads to the

elimination of strategies C and AC of the receiver, leading to the elimination of action C

for the sender:
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A B AB

A P ;P − c 0;−c P ;P − 2c

B 0;−c −c̃ P ;P − c −c̃ P ;P − 2c

Now the maximin criterion leads to action AB for the receiver. In other words, if the

receiver anticipates that the sender anticipates that she will never send a driver to C, the

application of the maximin criterion leads to action AB. In this case, the receiver earns a

payoff of P − 2c with certainty. If she would follow a Nash equilibrium strategy or apply

the maximin criterion directly, she would face the risk of getting a payoff of −c.
As a second example consider the following payoff table. It illustrates the decision

problem of a player who is uncertain about which of the possible rationalizable actions

her opponent will choose:

X Y Z

A 10;10 0;9 0,0

B 15;1 5;9 0,0

C 14;1 4; 9 4;0

D 11;10 6;9 0;0

The unique Nash equilibrium in pure strategies, (A,X), is focal in the sense that it is

the social optimum and leads to the highest possible payoff for both players. However, a

rational column player can also choose Y instead of X. Action Y is rationalizable and

moreover, the application of the maximin or the minimax regret criterion would lead to

action Y for the column player. In other words, the column player may prefer to get a

payoff of 9 with certainty instead of aiming for the payoff of 10 and risking to get a payoff

of 1. Given this uncertainty about the column player’s strategy, the row player may resort

to the application of the maximin criterion. This leads to action C which ensures a payoff

of 4 for the row player. However, the row player can anticipate that action Z is strictly

dominated for the column player. After the elimination of this action, C becomes strictly

dominated for the row player. The iterated elimination of actions which are not best

replies, i.e. the elimination of actions Z and C, leads to the following payoff table:
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X Y

A 10;10 0;9

B 15;1 5;9

D 11;10 6;9

Now the application of the maximin criterion leads to action B for the row player.

That is, after anticipating that the column player will never play Z, the row player can

ensure a payoff of 5 instead a payoff of 4.

These examples show how the proposed decision criterion provides recommendations

under strategic uncertainty. Moreover, they show why players may not expect their

opponents to play Nash equilibria and why the application of the maximin utility criterion

alone may cause forgone profits. After discussing the two examples, I provide an intuition

and a summary of the results for first-price auctions where bidders’ valuations are identically

and independently distributed according to a commonly known distribution function.

Consider the simple example of a first-price auction with two bidders who can have either a

valuation of zero with probability p or a valuation of 1 with probability 1−p. For simplicity,

assume an efficient tie-breaking rule. We have to compute the highest rationalizable bids

of each type. The highest belief-free rationalizable bid of a bidder with valuation zero

is zero. If a bidder with valuation 1 bids zero, she gets an expected utility of p. Hence,

bidding too close to the own valuation (or even above) cannot be rational for a 1-type.

b1 = 1− p 10

The highest rationalizable bid of a bidder with valuation 1 makes her indifferent

between winning against the 0-type by bidding zero and winning with probability one.

That is, it is obtained by the equation2

1− b1 = p ⇔ b1 = 1− p.

A bidder with valuation 1 who applies the proposed decision criterion has the subjective

maximin belief that the other bidder with valuation 1 bids b1. Therefore, her best reply is

to win against the 0-type of the other bidder with certainty by bidding zero.

For the general case with an arbitrary number of bidders and valuations, for every type

2For the case with two possible valuations the highest rationalizable bid of a bidder with the higher
valuation coincides with the highest bid played in the unique Bayes-Nash equilibrium. With more than
two valuations the highest rationalizable bid of a type is strictly higher than the highest bid played in the
unique Bayes-Nash equilibrium.
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there exists a unique highest rationalizable bid. A bidder applying the proposed decision

criterion assumes that every other bidder places the highest rationalizable bid given her

type. As a consequence, the bidder never expects to win against a bidder with an equal or

higher type and therefore bids the highest rationalizable bid of a lower type in order to

win against the lower type with certainty. If every bidder applies this decision criterion,

then every bidder has the same beliefs about distributions and strategies. Every bidder

calculates which highest rationalizable bid of a lower type maximizes her expected utility.

It turns out that due to the symmetry of beliefs about value distributions and strategies,

the higher the type of the bidder, the higher is the type whose highest rationalizable bid

maximizes her expected utility. Therefore, the outcome is efficient.

In an extension I analyze both, distributional and strategic uncertainty. In this case

the strategy space of the adverse nature consists of all rationalizable strategies and all

possible value distributions. For a restriction of the set of possible distributions I assume

common knowledge of an exogenously given mean µ of bidders’ valuations.3 Although in

reality bidders go at great lengths in order to learn about their competitors’ values, such

learning has its limits and bidders may be able to learn only the support and the mean of

the value distribution.

Under strategic uncertainty with common knowledge of rationality and distributional

uncertainty with common knowledge of an exogenously given mean, as before, for every

type there exists a unique highest rationalizable bid. A bidder applying the proposed

decision criterion assumes that every other bidder places the highest rationalizable bid

given her type. Let θµ be the lowest valuation which is higher than the mean. The highest

rationalizable bid of a bidder with a valuation lower than θµ is her valuation. The subjective

maximin belief of such a bidder about the other bidders’ value distributions is that the

probability weight is distributed between her own valuation and θµ. As a consequence, a

bidder with a valuation lower than θµ expects a utility of zero and is indifferent between

any bid between zero and her valuation. Every bidder with a valuation θ such that θ ≥ θµ

never expects to win against a bidder with the same valuation. Hence, the maximin belief

of such a bidder about the other bidders’ value distribution maximizes the probability

weight on θ and makes the bidder indifferent between any highest rationalizable bid of

lower types. As a consequence, the bidder mixes among all highest rationalizable bids of

lower types. Therefore, the outcome is not efficient.

The remainder of the paper is organized as follows. I conclude the introduction with

an overview over the related literature. The second section contains the formal description

of the proposed decision criterion. In the third section I collect sufficient conditions for

3The assumption of common knowledge of an exogenously given mean under distributional uncertainty
has been used before. See for example Montiero (2009).
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actions to be belief-free rationalizable which will be useful for the derivation of maximin

beliefs and outcomes under maximin strategies. Moreover, I provide sufficient conditions

for the existence of such outcomes. In the fourth section I apply the decision criterion

to first-price auctions under strategic uncertainty. The fifth section contains the formal

description of the decision criterion under distributional and strategic uncertainty and

its application to first-price auctions. The appendix contains the proofs not provided in

previous sections.

1.2 Related Literature

This paper relates to two strands of literature - the literature on decision criteria under

uncertainty and robustness and the literature on rationalizability. Two widely used

decision criteria under uncertainty are the maximin utility and the minimax regret criterion.

The axiomatization of the maximin expected utility criterion is provided in Gilboa and

Schmeidler (1989), the axiomatization of the minimax regret criterion is provided in Stoye

(2011). In Bergemann and Schlag (2008) both criteria are applied to a monopoly pricing

problem where a seller faces uncertainty about the buyer’s value distribution. Since the

seller knows that the buyer will obtain the good if the price is equal or lower than her

valuation, the seller does not face strategic uncertainty.

The maximin expected utility criterion has been applied to first-price auctions under

distributional uncertainty. Lo (1998) derives Bayes-Nash equilibrium bidding strategies

in a first-price auction under the maximin expected utility criterion where it is common

knowledge that the true value distribution is an element of a given set of distributions. Salo

and Weber (1995) assume that only the set of possible of values is common knowledge and

that ambiguity averse bidders use a convex transformation of the uniform distribution as

a prior. They find, that the more ambiguity averse a bidder is, the higher is the bid. Chen

et al. (2007) analyze first- and second-price auctions where bidders face one of two possible

distributions which can be ordered with respect to first-order stochastic dominance. Thus,

an ambiguity-averse bidder would assume the stochastically dominating distribution. In

their experimental findings they reject the hypothesis that bidders are ambiguity-averse.

These three papers use Bayes-Nash equilibria as a solution concept, that is, the issue of

strategic uncertainty is not addressed.

Bose et al. (2006) derive the optimal auction in a setting where seller and bidders

may face different degrees of ambiguity, that is, they may face different sets of possible

value distributions. Carrasco et al. (2017) consider a seller facing a single buyer. The set

of distributions the seller considers to be possible is determined by a given support and

mean. In these two papers strategic uncertainty is not an issue since the seller chooses an
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incentive compatible mechanism.

Renou and Schlag (2010) analyze strategic uncertainty using the minimax regret

criterion. Besides Kasberger and Schlag (2017), I am the only one addressing distributional

and strategic uncertainty. They use the minimax regret criterion and allow for the

possibility that a bidder can impose bounds on the other bidders’ bids or value distributions.

For example, they consider the case where a bidder can impose a lower bound on the

highest bid.

In their literature on robust mechanism design Dirk Bergemann and Stephen Morris

consider the problem of a social planner facing uncertainty about the players’ actions.

In Bergemann and Morris (2005) a social planner can circumvent uncertainty about the

players’ strategies by choosing ex-post implementable mechanisms. Bergemann and Morris

(2013) provide predictions in games independent of the specification of the information

structure. In order to do so, they characterize the set of set of Bayes correlated equilibria.

An application of this concept to first-price auctions is carried out in Bergemann et al.

(2015). In Carroll (2016) two agents accept or reject a proposed deal where the value for

each agent depends on an unknown state. The main result provides an upper bound of

welfare loss among all information structures.

The concept of rationalizable strategies has been first introduced by Bernheim (1984)

and Pearce (1984) for games with complete information. Battigalli and Siniscalchi (2003b)

extend rationalizability to games of incomplete information. An application to first-price

auctions has been carried out by Dekel and Wolinsky (2001). They apply rationalizable

strategies to a first-price auction with discrete private values and discrete bids. They

present a condition on the distribution of types under which the only rationalizable action

is to bid the highest bid below valuation. Battigalli and Siniscalchi (2003a) assume that

value distributions in a first-price auction are common knowledge but not the strategies of

the bidders. They characterize the set of rationalizable actions under the assumption of

strategic sophistication, which implies common knowledge of rationality and of the fact

that bidders with positive bids win with positive probability.4 They find that for a bidder

with a given valuation θ all bids in an interval (0, bmax (θ)) are rationalizable where bmax (θ)

is higher than the Bayes-Nash equilibrium bid. Using this result, one can immediately

tell that under common knowledge of rationality a bidder applying the maximin expected

utility criterion has the subjective maximin belief that every other bidder with valuation θ

bids bmax (θ). I replicate this result in section 4 for first-price auctions with discrete values.

To the best of my knowledge I am the first one applying the maximin expected utility

criterion to strategic uncertainty and the first one combining rationalizable strategies with

4The assumption that it is common knowledge that bidders with positive bids win with positive
probability, excludes all weakly dominated bids, including bidding above valuation.
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a decision criterion under uncertainty.

2 Model

Underlying game of incomplete information The starting point of the model is a

game of incomplete information which is denoted by
(
{1, . . . , I},Θ, A, {ui}i∈{1,...,I}

)
where

{1, . . . , I} is the set of players and for every i ∈ {1, . . . , I}, Ai ⊆ R is the set of possible

actions and Θi ⊆ R is the set of possible privately known types of player i. A and Θ are

defined by A = A1 × . . . × AI and Θ = Θ1 × . . . × ΘI . A pure strategy of player i is a

mapping

βi : Θi → Ai

θi 7→ ai.

The set Si is the set of all pure strategies of player i. A strategy of player i is a mapping

βi : Θi → ∆Ai

θi 7→ ai

where ∆Ai is the set of probability distributions on Ai. In the following gβiθi will denote

the density of the bid distribution βi (θi) and supp (βi (θi)) its support.5 Let

ui : A×Θi → R

(a1, . . . , aI , θi) 7→ ui (a1, . . . , aI , θi)

denote the utility function for player i. That is, I consider a setting with private values.

For a given profile of strategies (β1, . . . , βn) and a given type distribution

F : Θ→ [0, 1]

5I abuse notation since in the case of a pure strategy, βi (θi) denotes an element in Ai while in the
case of a (mixed) strategy βi (θi) denotes an element in ∆Ai. However, in the following it will be clear
whether βi is a pure or a mixed strategy.

10



the expected utility of a player i is given by

Ui (θi, βi (θi) ,β−i,F−i)

=

∫
θ−i

∫
a−i

ui (a1, . . . , ai, . . . , aI , θi)
I−1∏
j=1

g
βj
θj

(aj) dθ−jdF−i (θ−i) dθ−i (1)

where the function ui stems from the underlying game of incomplete information and

where F−i is a function

F−i : Θ−i → [0, 1]

defined by

F−i (θ−i) = F (θ−i, θi) .

Action space of adverse nature In order to formalize the maximin expected utility

criterion, a new player, denoted by n, is introduced, representing the adverse nature

a player i applying the maximin expected utility criterion faces. Players i and n play

a simultaneous zero-sum game where utilities are induced by the underlying game of

incomplete information. The first step of a formal description of this game is the definition

of the adverse nature’s action space. It accounts for the residual uncertainty of player i.

In sections 2-4 I study only strategic uncertainty and assume common knowledge of a type

distribution given by

F : Θ→ [0, 1].

That is, the adverse nature’s action space is the set of all other players’ strategies

which player i considers to be possible which is the set of rationalizable strategies.

Rationalizable strategies As argued in the introduction, in many economic settings

players may face uncertainty about the other players’ strategies. Even if a (Bayes-) Nash

equilibrium exists, a player may consider also other strategies of her opponents to be

possible. For example, multiple Nash equilibria can exist or the Nash equilibrium strategies

are not aligned with preferences the other players may have, e.g. maximin or minimax

regret preferences. In order to determine the set of strategies a player can expect from

rational opponents, I assume common knowledge of rationality. That is, it is common

knowledge that every player i maximizes her expected utility given her type, the commonly

known type distribution F and a conjecture about the other players’ strategies.

The assumption of common knowledge of rationality leads to the following reasoning.

Every player i maximizes her expected utility given her type, the type distribution F and
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a conjecture about the other players’ strategies. The strategy which player i assumes

is played by some player j 6= i has also to be compatible with common knowledge of

rationality. Therefore, for every possible type of player j, the action prescribed by the

strategy assumed by player i maximizes j’s expected utility given her type, the type

distribution F and a conjecture about the other players’ strategies. Again, player j’s

conjecture has to be compatible with common knowledge of rationality. This reasoning

continues ad infinitum. 6

Given the type of a player, an action which is compatible with common knowledge of

rationality is called rationalizable. Battigalli and Siniscalchi (2003b) have shown that it is

equivalent to define a rationalizable action as follows.

Definition 1. ggggg

(i) Let i ∈ {1, . . . , I} be a player and θi ∈ Θi be a type of player i. The set of

rationalizable actions for player i is defined as follows. Set RS1
i (θi) := Ai. Assume

that for k ∈ N the set RSki (θi) is already defined. Then the set RSk+1
i (θi) is defined

as the set of all elements ai in Ai for which there exists a strategy profile of the other

players such that it holds

(i) aj ∈ supp (βj (θj)) for θj ∈ Θj ⇒ aj ∈ RSkj (θj) for all j 6= i

(ii) ai ∈ argmax
a′i∈Ai

Ui (θi, a
′
i,β−i,F−i)

and RSi (θi) is given by

RSi (θi) =
⋂
k≥1

RSki (θi) .

(ii) A strategy βi of a player i is rationalizable if for every θi ∈ Θi every action ai with

βi (θi) (ai) > 0 is rationalizable, i.e. an element of RSi (θi).

(iii) For a player i let RS−i be the set of rationalizable strategies of the other I − 1

players.

The intuition behind this definition is that an action for a player which is consistent

with common knowledge of rationality, i.e. a rationalizable action, is an action which

survives the iterated elimination of actions which are not best replies. An action is a best

reply if it maximizes the player’s expected utility given her type, the commonly known

6As stated above, under strategic uncertainty a rational player acts optimally given a conjecture
about the other players’ strategies (and a conjecture about the other players’ type distributions if also
distributional uncertainty is present). Instead of “conjecture” other terms have been used in economics
literature, e.g. belief, subjective prior, assumption, assessment ect. I use the term conjecture as proposed
in Bernheim (1984).
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type distribution F and a conjecture about the other players’ strategies which prescribe

actions that have not been eliminated yet.

The definition of rationalizable strategies allows for a formal definition of the adverse

nature’s action space and therefore for a formal definition of the simultaneous game against

the adverse nature.

Simultaneous game against adverse nature The following definition summarizes

all components describing a game under strategic uncertainty.

Definition 2. A game under strategic uncertainty consists of an underlying game

of incomplete information, denoted by ({1, . . . , I},Θ, A, {ui}i ∈ {1, . . . , I}), a subset of

players {i1, . . . ik} ⊆ {1, . . . , I} applying the maximin expected utility criterion, and a

player n. For every i ∈ {i1, . . . , ik} player i chooses a strategy

βi : Θi → ∆Ai.

A strategy of n is a mapping which for every player i ∈ {i1, . . . ik} and for every possible

type of player i assigns a strategy of the other players:

βn = (βni1 , . . . , βnik ) : Θi1 × . . .×Θik → RS−i1 × · · · ×RS−ik .

(θi1 , . . . , θik)→
(
β
ni1

,θi1
−i1 , . . . ,β

nik
,θik

−ik

)
.

Here the superscript nij , θij for j ∈ {1, . . . , k} indicates that the other players’ strategies

β
nij ,θij
−ij are chosen by the adverse nature faced by player ij and depend on the player’s type

θij . The utility of a player i ∈ {i1, . . . , ik} is given by

Ui

(
θi, βi (θi) ,β

ni,θi
−i ,F−i

)
which is defined as in (1) and depends on the utility function of player i in the underlying

game of incomplete information, denoted by ui:

ui : A×Θi → R.

(a1, . . . , aI , θi) 7→ ui (a1, . . . , aI , θi) .

The utility of player nature is given by

−
k∑
j=1

Ui

(
θi, βi (θi) , β

ni,θi
−i , F−i

)
.
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Throughout the remainder of the paper it will be assumed that a game under strategic

uncertainty is given without explicitly stating all its ingredients.

Since the other players’ strategies the adverse nature chooses for a player i ∈ {i1, . . . , ik},
are not observed by a player j 6= i, j ∈ {i1, . . . , ik}, the adverse nature faces an independent

minimization problem for every player applying the expected maximin utility criterion.7

Note that after specifying the subset of players who apply the maximin expected utility

criterion, a given game of incomplete information uniquely defines a game under strategic

uncertainty.

Now it is possible to define a maximin strategy in a game under strategic uncertainty

which can be seen as a recommendation for a player facing strategic uncertainty.

Definition 3. In a game under strategic uncertainty for a player i a strategy

βi : Θi → ∆Ai

is a maximin strategy if there exists a Nash equilibrium in the simultaneous game between

nature and player i such that βi is player i’s equilibrium strategy.

The Nash equilibrium in the simultaneous game between nature and player i is called

maximin equilibrium.

As described above, such a maximin strategy has two properties. First, if a player

would not choose an action according to a maximin strategy, then there would exist a a

strategy of the other players under which the player’s expected utility is lower than under

the action prescribed by a maximin strategy. Second, the strategy chosen by nature can

be interpreted as the player’s subjective belief about the state of the world against which

she maximizes her expected utility given her type. The second property is formalized in

the following definition.

Definition 4. In a game under strategic uncertainty let βni be the adverse nature’s

maximin equilibrium strategy projected on the i′th component. A subjective maximin belief

of player i with valuation θi is defined as

βni (θi) = βni,θi
−i ,

that is, the adverse nature’s maximin equilibrium strategy evaluated at θi.

Note that the subjective maximin belief of player is not necessarily unique. However,

every best reply of a player i to any subjective maximin belief induces the same expected

7Equivalently, one could introduce an additional adverse nature for every player applying the minimax
expected utility criterion.
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utility for player i.

3 Outcomes under strategic uncertainty

So far, I have characterized the set of strategies of a player which are obtained if this

particular player applies the maximin expected utility criterion. In addition to the

derivation of maximin strategies for particular players, one can analyze what happens if

all players adopt maximin strategies. Since under strategic uncertainty players do not

observe each other’s strategies, I do not use the term equilibrium, but the term outcome.

Definition 5. In a game under strategic uncertainty an outcome under maximin strategies

is a strategy profile (β1, . . . , βI , βn) such that for every i ∈ {1, . . . , I} it holds that player

i’s strategy is a maximin strategy.

In other words, for every player i ∈ {1, . . . , I} it holds that (β1, . . . , βI , βn) constitutes

a maximin equilibrium in the simultaneous game between all players and the adverse

nature. The following Proposition follows directly from the definition of rationalizable

strategies and of an outcome under maximin strategies.

Proposition 1. In a game under strategic uncertainty let (β1, . . . , βI , βn) be an outcome

under maximin strategies. Then for every i ∈ {1, . . . , I} it holds that βi is a rationalizable

strategy for player i.

One can prove this Proposition by showing per induction that for every k ∈ N and for

every θi ∈ Θi it holds that βi (θi) is an element in RSki (θi). The formal proof is relegated

to Appendix A.

The following conclusions can be derived from this proposition. First, this proposition

shows that the maximin expected utility criterion is consistent with common knowledge

of rationality. That is, every action resulting from the application of the maximin utility

criterion is rationalizable. Second, it provides a sufficient condition for a strategy to

be rationalizable which will be useful in subsequent proofs. Third, same proof as for

Proposition 1 can be used in order to show that an action which is a best reply to a

rationalizable strategy is again rationalizable. The last statement is formalized in the

following corollary.

Corollary 1. In a game under strategic uncertainty let i ∈ {1, . . . , I} be a player with

valuation θi and for j ∈ {1, . . . , I}\{i} let βj be a rationalizable strategy for player j. Let

ai ∈ Ai be a best reply to β−i, i.e. it holds that

ai ∈ argmax
a′i∈Ai

Ui (θi, a
′
i,β−i,F−i) ,
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then ai ∈ RSi (θi), that is, ai is a rationalizable action for player i with valuation θi.

Another sufficient condition for an action to be rationalizable is that it is played in a

Bayes-Nash equilibrium. It follows from Corollary 1 that a best reply to strategies played

in a Bayes-Nash equilibrium is rationalizable. This constitutes another sufficient condition

for an action to be rationalizable. These two conditions are formalized in the following

definition and proposition.

Definition 6. In a game of incomplete information a strategy profile (β1, . . . βI) together

with a profile of type distributions
(
F̂1, . . . , F̂I

)
is a Bayes-Nash equilibrium with a common

prior if for every i ∈ {1, . . . , I}, every θi ∈ Θi and every ai ∈ Ai such that ai ∈ supp (βi (θi))

it holds that

ai ∈ argmax
a′i∈Ai

Ui

(
θi, a

′
i, β−i, F̂−i

)
.

That is, every player maximizes her expected utility given the other players’ strategies and

the other players’ commonly known type distributions.

Proposition 2. Let (β1, . . . , βI) together with the common prior
(
F̂1, . . . , F̂I

)
constitute

a Bayes-Nash equilibrium of a game of incomplete information. Then the following holds

true:

(i) For every i ∈ {1, . . . , I} the strategy βi is rationalizable.

(ii) Let i ∈ {1, . . . I} be a player with valuation θi and let ai ∈ Ai be a best reply to β−i

and some distribution of the other players’ types F−i
′ ∈ ∆Θ−i

, i.e. it holds that

ai ∈ argmax
a′i∈Ai

Ui
(
θi, a

′
i,β−i,F

′
−i
)
,

then ai ∈ RSi (θi), that is, ai is a rationalizable action for player i with valuation θi.

The formal proof is relegated to the Appendix B.

Besides sufficient conditions for an action to be rationalizable, it is useful to derive

sufficient conditions for the existence of outcomes. As mentioned above, for every player

applying the maximin expected utility criterion, the adverse nature faces an independent

optimization problem. Thus, if {i1, . . . , lk} is the set of players applying the maximin

expected utility criterion, then the game against an adverse nature can be seen as k

independent two-player games. As a consequence, the Nash-theorem applies and the

following proposition holds.

Proposition 3. If fore every i ∈ {i1, . . . , ik} it holds that Θi and Ai are finite, then in

every game under strategic uncertainty there exists an outcome under maximin strategies.

16



4 First-Price Auctions under Strategic uncertainty

In this section I apply the proposed decision criterion to first-price auctions. The first

subsection specifies the model for first-price auctions. The second subsection gives a rather

informal preview of the results. The third subsection provides a list of the necessary

notation and definitions. The fourth and fifth subsection contain a detailed description and

derivation of the results for first price auctions under strategic uncertainty with common

knowledge of valuations and common knowledge of the value distribution, respectively.

4.1 Model

Underlying game of incomplete information As in the general model, the model

description starts with the specification of the underlying game of incomplete information.

There are I risk-neutral bidders competing in a first-price sealed-bid auction for one

indivisible good. Before the auction starts, every bidder i ∈ {1, ..., I} privately observes

her valuation (type) θi ∈ Θ = {0 = θ1, θ2, . . . , θm−1, 1 = θm}. A pure strategy of bidder i

is a mapping

βi : Θ→ B

θi 7→ βi(θi)

where B is a finite (arbitrarily fine) grid of bids on an interval [0, B] with Θ ⊆ B.8 A

strategy of a bidder i is a mapping

βi : Θ→ ∆B

θi 7→ βi (θi)

where ∆B is the set of bid distributions on B. For every b ∈ B with b > 0 there exists a

predecessor in B denoted by

b− = max
b′∈B

b′ < b

and for every b ∈ B with b < B there exists a successor in B denoted by

b+ = min
b′∈B

b′ > b.

8A finite grid is used for the set of all possible bids instead of the interval [0, B] because of the following
reason. Consider two bidders 1 and 2 with the same valuation θ. If bidder 1 bids some amount b < θ, one
has to identify the smallest bid which is strictly higher than b since this would be the unique best reply of
bidder 2. This allows a more formal analysis than using expressions like ”bidding an arbitrarily small
amount more than b”. The grid is assumed to be finite in order to ensure that any subset of the bid grid
is compact. Since the grid can be arbitrarily fine, I assume for simplicity that Θ ⊆ B.
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In a first-price auction the bidders submit bids, the bidder with the highest bid wins

the object and pays her bid. In addition, it holds an efficient tie-breaking rule.9 Thus, the

utility of bidder i with valuation θi and bid bi given that the other bids are b−i is denoted

by

ui (θi, bi, b−i) =



θi − bi if bi > max
j 6=i

bj

θi − bi if bi = max
j 6=i

bj and θi > max
j 6=i
{θj | bj = bi}

1
k

(θi − bi) if bi = max
j 6=i

bj and θi = max
j 6=i
{θj | bj = bi}

0 if bi < max
j 6=i

bj

where θj denotes the valuation of bidder j with bid bj for j ∈ {1, ..., n} and k =

#{max{θj|bj = bi}}.
The bidders’ valuations are identically and independently distributed according to a

distribution function

F : Θ→ [0, 1].

It is assumed that all components of the underlying game of incomplete information as

well as rationality are common knowledge among all bidders.

As mentioned above, the above defined game of incomplete information uniquely defines

a game under strategic uncertainty (after specifying the player applying the maximin

expected utility criterion). In the following I will call this game first-price auction under

strategic uncertainty. Moreover, I also consider the case where the valuations of the bidders

are common knowledge. In this case I use the term first-price auction under strategic

uncertainty and common knowledge of valuations.

4.2 Preview of results

Common knowledge of valuations If in a first-price auction under strategic uncertainty

and common knowledge of valuations there exists a unique bidder with the highest valuation,

this bidder bids the second-highest valuation and every other bidder is indifferent between

any bid between zero and her valuation. If at least two bidders have the highest valuation,

then every bidder is indifferent between zero and her valuation.

9The core statements in the results do not depend on the choice of the tie-breaking rule, i.e. under a
random tie-breaking rule for every bidder and every valuation the bid prescribed by the maximin strategy
would change by at most one step on the bid grid.
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Common knowledge of value distribution In a first-price auction under strategic

uncertainty an outcome under maximin strategies always exists. The bidders’ strategies

are equal in every outcome and every outcome is efficient.

For every type there exists a unique highest rationalizable bid. For every bidder and

every type the adverse nature chooses as the strategy of the other bidders that every bidder

places the highest rationalizable bid given her type. As a consequence, a bidder never

expects to win against a bidder with an equal or higher type. Every bidder calculates

which highest rationalizable bid of a lower type maximizes her expected utility. It turns

out that due to the symmetry of beliefs about distributions strategies, the higher the

type of the bidder, the higher is the type whose highest rationalizable bid maximizes her

expected utility. Therefore, the outcome is efficient.

4.3 Notation and definitions

For the formal analysis it is useful to have an overview over the notation and definitions

which will be used in the remainder of this paper.

• For θk ∈ Θ let b
θk

be the highest rationalizable bid of a bidder with valuation θk.

• For θk, θl ∈ Θ f i,θ
k

j,θl
denotes the probability with which type θl of bidder j occurs in

the subjective maximin belief of a bidder i with valuation θk.

• If f i,θ
k

j,θl
does not depend on the identities of bidder i and j, I use the notation f θ

k

θl
.

Definition 7. An auction mechanism is a double (x, p) of an allocation function x and a

payment function p. The allocation function

x : (B)I → [0, 1]I

x : (b1, . . . , bI)→ (x1, . . . , xI) with xi ∈ [0, 1],
∑

xi ≤ 1

determines for each participant the probability of receiving the item and the payment

function

p : (B)I →
(
R+
)I

p : (b1, . . . , bI)→ (p1, . . . , pI) with pi ∈ R+

determines each participant’s payment.

Definition 8. A bidder i with valuation θi overbids a bidder j with valuation θj if for

every b, b′ such that b ∈ supp (βi(θi)) and b′ ∈ supp(βj (θj)) it holds that b ≥ b′ if θi > θj

and b > b′ if θi ≤ θj.
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Note that due to the efficient tie-breaking rule, a bidder who overbids every other

bidder wins with probability 1 in any auction mechanism where the highest bid wins.

In order to evaluate outcomes in terms of social surplus and revenue, I introduce the

following definitions.

Definition 9. Let (β1, . . . , βI , βn) be an outcome under maximin strategies of an auction

mechanism. The outcome (β1, . . . , βI , βn) is efficient if for all bid vectors (b1, . . . , bI), such

that for every i ∈ {1, . . . I} there exists a valuation θi with bi ∈ supp(βi(θi)), it holds that

xi (b1, . . . , bI) > 0 ⇒ θi = max
j 6=i

θj.

That is, the good is allocated with probability one to a group of bidders who have the highest

valuation.

4.4 Common knowledge of valuations

Proposition 4. Consider a first-price auction under strategic uncertainty and common

knowledge of valuations. Then the following holds true for an outcome under maximin

strategies:

(i) If θk > max
j 6=i

θj, i.e. there exists a unique bidder k with the highest valuation, then

bidder k bids θk′ = max
θj∈Θ\{θk}

θj, i.e. the bidder with the highest valuation bids the

second-highest valuation and every bidder i 6= k is indifferent between any bid between

zero and her valuation.

(ii) If it holds that θk = θl = max
j∈{1,...,I}

θj, i.e. there exist at least two bidders k and l with

the highest valuation, then every bidder is indifferent between any bid between zero

and her valuation.

The formal proof is relegated to the appendix.

The intuition behind part (i) is that one can show that the second-highest valuation θk′

is the highest rationalizable bid of bidder k with the highest valuation θk. If the adverse

nature chooses for all other bidders the subjective maximin belief that bidder k bids θk′ ,

this induces a utility of zero for any other bidder. Hence, any strategy of the adverse

nature has to induce an expected utility of at most zero for all bidders besides k. That

is, the subjective maximin belief of a bidder i 6= k with valuation θi is that at least one

bidder bids an amount which is equal or greater than θi. As a consequence, all bidders are
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indifferent between zero and their valuation. The adverse nature chooses the subjective

maximin belief for bidder k such that the bidder with the second-highest valuation bids

her valuation θk′ . Hence, it is a best reply for bidder k to bid θk′ . Similar arguments apply

to part (ii).

Note that while the unique Nash equilibrium in this setting is rationalizable, there are

much more rationalizable actions than played in the Nash equilibrium. In particular, in

the case of two bidders who have the same valuation v all actions in the interval [0, v] are

rationalizable. This leaves room for more outcomes than the unique Nash-equilibrium

which is weakly dominated.

4.5 Common knowledge of value distribution

Now I consider the case where not the bidders’ valuations but the distribution of the

valuations is common knowledge. In this case for every type there exists a unique highest

rationalizable bid. For every bidder and every type the adverse nature chooses as the

strategy of the other bidders that every other bidder will bid the highest rationalizable bid

given her type. As a consequence, it is never a best reply for a bidder to overbid bidders

with the same type. Hence, every bidder overbids only lower types and it depends on the

commonly known value distribution which types are overbid. Since the strategy chosen by

the adverse nature is the same for every bidder and every type, this results in an efficient

outcome. This is illustrated by the following example.

Example 1. Consider a first-price auction under strategic uncertainty with two bidders

1 and 2 and three possible valuations 0, θ and 1 which are identically and independently

distributed according to a commonly known distribution function F ∈ ∆{0, θ, 1}. For every

type θk ∈ {0, θ, 1} there exists a highest rationalizable bid b
θk

. For every bidder and every

type the adverse nature chooses a strategy of the other bidder such that every other bidder

bids the highest rationalizable bid. That is, every bidder with every type has the subjective

belief that the 0-type bids zero, the θ-type bids b
θ

and the 1-type bids b
1
.

b
θ θ0 b

1 1

Hence, bidder 1 with type θ never expects to win against bidder 2 with type θ and

therefore bids 0. Bidder 1 with type 1 never expects to win against bidder 2 with type 1

and has to decide between bidding 0 and bidding b
θ
. Since the same reasoning holds for

bidder 2, in any case the outcome is efficient.
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The insights from this example are formalized in the following proposition.

Proposition 5. In a first-price auction under strategic uncertainty there exists an outcome

under maximin strategies. Every outcome is efficient.

The formal proof is relegated to Appendix D.

I will show the existence of an efficient outcome under maximin strategies by construction

for which I proceed in the steps listed below.10 Then I will show that every strategy of

the adverse nature in an outcome under maximin strategies induces the same bidding

strategies as in the constructed outcome and therefore every outcome has to be efficient.

(I) Show that for every type θk ∈ Θ there exists a unique highest rationalizable bid b
θk

.

(II) Show that for every type zero is a rationalizable bid.

(III) Show that for every type θk ∈ Θ every bid in the interval [0, b
θk

] is rationalizable.

(IV) Calculate for every type θk ∈ Θ the highest rationalizable bid b
θk

.

The first step follows from the fact that B is compact and well-ordered with respect

to ≤. For a proof sketch of step (II) consider a proof by induction with respect to the

valuations in Θ. Assume it has been shown that for every bidder with valuation θj such

that j < k+ 1 bidding zero is a rationalizable action. Assume that a bidder with valuation

θk+1 conjectures that all lower types bid zero. Due to step (I), for every type there exists a

highest rationalizable bid. Assume further, that the bidder with valuation θk+1 conjectures

that all higher types bid their highest rationalizable bid, then it is a best reply of this

bidder to bid zero. As stated in Corollary 1, a best reply to a rationalizable strategy profile

is rationalizable and therefore zero is a rationalizable action for a bidder with valuation

θk+1.

For an intuition of step (III) consider the bid 0+. Since bidding zero is a rationalizable

action for every bidder and every type, it is straight-forward that for a sufficiently fine

bid grid bidding 0+ is a rationalizable action for every bidder and every type besides zero.

Because if a bidder conjectures that all bidders bid zero, than she could win the auction

with probability 1 by bidding 0+. The same holds for (0+)
+

and so on. This process

reaches some bid b such that for type θ2 it is more profitable to bid zero and win against

the zero-type than to bid b+ even if all other bidders with a type higher than zero bid

b. Then b is the highest rationalizable bid for type θ2 and all bids in the interval [0, b]

are rationalizable for a bidder with valuation θ2. The analogue reasoning applies to every

10Since Θ B are finite, the existence also follows from Proposition 3.
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higher type. Since the bids in B are well-ordered with respect to ≤, one can show the

result by double induction with respect to the types and the bids.

Given step (III), one can calculate the highest rationalizable bid for every type. The

highest rationalizable bid b
θk

for a bidder i with valuation θk is induced by the belief about

the other bidders’ strategies such that

(i) All bidders with a lower type bid their highest rationalizable bid.

(ii) All bidders with an equal or higher type bid
(
b
θk
)−

.

That is, b
θk

is a best reply to the belief which maximizes the expected utility of bidding

b
θk

. The strategies in (i) are rationalizable by definition and it follows from step (III) that

the strategies specified in (ii) are rationalizable. Hence, the highest rationalizable bid b
θk

of type θk makes this type indifferent between winning with probability 1 by bidding b
θk

and the most profitable overbidding of a lower type given that all lower types bid their

highest rationalizable bid. The following example continues with Example 1 and illustrates

the steps above.

Example 2. Consider again the case with two bidders 1 and 2 and three possible valuations

0,θ and 1 which are identically and independently distributed according to a commonly

known distribution function F ∈ ∆{0, θ, 1}.

b
θ θ0 b

1 1

The highest rationalizable bid for type zero is zero. The highest rationalizable bid for type

θ is given by the bid b
θ

which makes her indifferent between winning with probability 1 by

bidding b
θ

and just overbidding type zero:

θ − bθ = F (0) (θ − 0)

⇔ b
θ

= θ (1− F (0)) + F (0) .

The highest rationalizable bid for type 1 is given by the bid b
1

which makes her indifferent

between winning with probability 1 by bidding b
1

and the most profitable overbidding of

a lower type. That is, type 1 has to be indifferent between bidding b
1

and the maximum

utility of bidding either 0 = b
0

or b
θ
:

1− b1
= max

{
F (0) (1− 0) , F (θ)

(
1− bθ

)}
.

23



For a numerical example consider the parameters θ = 1
2
, F (0) = 1

3
, F (θ) = 2

3
and

F (1) = 1. Then it holds that

b
θ

=
1

2

(
1− 1

3

)
=

1

3

and

max
{
F (0) , F (θ)

(
1− bθ

)}
= max

{
1

3
,
2

3

(
1− 1

3

)}
=

4

9
= F (θ)

(
1− bθ

)
from which follows that

b
1

= 1− 4

9
=

5

9

which is illustrated below:

b
θ

= 1
3

θ0 b
1

= 5
9

1

After computing the highest rationalizable bids, one can compute bidding strategies in an

outcome under maximin strategies. Type zero bid zero. Since type θ of bidder 1 believes

that type θ of bidder 2 bids b
θ
, type θ of bidder 1 bids 0 (and analogously for type θ of

bidder 2). Type 1 of bidder 1 does not expect to win against type 1 of bidder 2 and therefore

has to decide whether to overbid type 0 or type θ of bidder 2. In any case the outcome is

efficient.11 Bidding zero gives an expected utility of

F (0) =
1

3

and bidding b
θ

= 1
3

gives an expected utility of

F (θ)
(

1− bθ
)

=
2

3

(
1− 1

3

)
=

4

9
.

Hence, type 1 of bidder 1 will bid b
θ

(and analogously for type θ of bidder 2).

Applying the same procedure, one can compute the highest rationalizable bids for every

number of types and every choice of parameters and then compute the bids under maximin

strategies. The following two graphs show the highest rationalizable bids for m equidistant

types with a uniform distribution for m = 10 and m = 20.

11Due to the efficient tie-breaking rule the outcome is efficient even if different types submit equal bids.
However, efficiency does not depend on thy choice of the tie-breaking rule. Under a random tie-breaking

rule type 1 would just decide between the bids 0+ and
(
b
θ
)+

.
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Figure 1: Highest rationalizable bids for m = 10

Figure 2: Highest rationalizable bids for m = 20

The following two graphs show the bids in an outcome under maximin strategies for m

equidistant types with a uniform distribution for m = 10 and m = 20.

Figure 3: Bids in an outcome under maximin strategies for m = 10
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Figure 4: Bids in an outcome under maximin strategies for m = 20

Figures 3 and 4 show that the outcome under maximin strategies is efficient since

the bidder with the highest valuation wins the auction with probability 1. However, it

is possible that different types submit equal bids. Whenever a bidder is not indifferent

between two bids, her bidding strategy is unique which is the case in figures 3 and 4.

The strategy of the adverse nature is not necessarily unique. Assume that it is a best

reply of a bidder i with valuation θk ∈ Θ to bid b
θl

for l < k. Then it is possible that

the adverse nature decreases the bid of some bidder j 6= i with type θl
′

for l 6= l′ without

changing the best reply of bidder i and hence without changing her expected utility.

Since all possible strategies of the adverse nature induce the same bidding strategies, the

non-uniqueness of the adverse nature’s strategy does not affect efficiency.

The recursive computation of highest rationalizable bids for all types as described in

step (IV) and the example, is formalized in the following proposition.

Proposition 6. In a first-price auction under strategic uncertainty the highest rationalizable

bids can be defined by the following recursion. The highest rationalizable bid of a bidder with

valuation zero is zero. Assume that for every type θj with j < k the highest rationalizable

bid b
θj

has been already defined. Then the highest rationalizable bid of a bidder with

valuation θk is determined by the equality

θk − bθ
k

= max
θj<θk

F I−1
(
θj
) (
θk − bθ

j)
. (2)

The formal proof is relegated to Appendix D.12

Proposition 6 states that the highest rationalizable bid of a bidder with valuation θk

makes this bidder indifferent between winning the auction with probability 1 by bidding

12For a simpler notation I assume that the highest rationalizable bids b
θj

for 1 ≤ j ≤ m lie on the bid
grid. Otherwise, the highest belief-free rationalizable bid of a bidder with valuation θk would be defined

by max{b ∈ B | b < bθ
k} where the bid bθ

k

is defined by b
θk

= θk − bθk = max
θj<θk

F I−1
(
θj
)(

θk − bθ
j
)

.

26



b
θk

and the most profitable overbidding of some lower type given that all lower types bid

their highest rationalizable bid.

The following proposition provides the strategies of the adverse nature and the bidders.

Proposition 7. In a first-price auction under strategic uncertainty for every bidder i and

every valuation θk it holds for every maximin strategy that

b ∈ supp
(
βi(θ

k)
)
⇒ b ∈ argmax

b
θj

{
F I−1

(
θj
) (
θk − bθ

j) ∣∣ θj < θk
}
.

This proposition states that every bidder chooses the most profitable overbidding of a

lower type. The intuition for this result is as follows. I show in the proof of Proposition

5 that there exists an outcome under maximin strategies such that for every bidder the

adverse nature chooses as the other bidders’ strategy that every bidder places the highest

rationalizable bid given her type. The strategy specified in Proposition 7 is a best reply

to this strategy of the adverse nature. Moreover, I show in the proof of Proposition 5

that in every outcome under maximin strategies of a first-price auction under strategic

uncertainty the bidders’ strategies are equal. Therefore, in every outcome the bidders’

strategies are as specified in Proposition 7. The formal proof is relegated to Appendix D.

Proposition 7 shows that a bidder with a given type does not need to know higher

types but only lower types. This stems from the fact that a bidder with a given type does

not expect to win against bidders with the same or a higher type. This Proposition also

provides an intuition for the fact that every outcome is efficient. The higher the valuation

of a bidder, the higher is the type such that the highest rationalizable bid of this type

maximizes the bidder’s expected utility.

Similarly as in the case where bidders’ valuations are known, there are more rationalizable

actions than actions played in the Bayes-Nash equilibrium as formalized in the following

Proposition.

Proposition 8. Consider a first-price auction under strategic uncertainty. Let b
θk

∗ =

max supp
(
β∗
(
θk
))

in the unique Bayes-Nash equilibrium β∗.13 If m ≥ 3, it holds for all

k 6= 1 that b
θk

∗ < b
θk

.

Proof. The formal proof is relegated to Appendix E.

Proposition 6 provides the explanation for this result. Since the Bayes-Nash equilibrium

is efficient, the highest bid in the Bayes-Nash equilibrium is induced if a bidder overbids all

bidders with an equal or lower type. In contrast, the highest rationalizable bid is induced

if a bidder overbids all other bidders.
13It follows from Montiero (2009) that a unique Bayes-Nash equilibrium exists.
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5 Distributional and strategic uncertainty

In this section the formal model and the application to first-price auctions allow for

distributional uncertainty. The first subsection contains the formal model, the second

subsection collects all results for the general model. The third subsection specifies the

formal model for first-price auctions and the fourth subsection provides the results.

5.1 Model

This subsection provides the formal model for a game under both, distributional and

strategic uncertainty. The underlying game of incomplete information is the same as in

section 2. As before, a player applying the maximin expected utility criterion plays a

simultaneous game against an adverse nature.

Action space of adverse nature Under distributional uncertainty the adverse nature’s

action space does not only consist of rationalizable strategies but also of the set of

distributions which the player considers to be possible. I allow for the possibility that a

player does not know the exact type distribution but has more knowledge than just the

other players’ type spaces. This is formalized in the following definition.

Definition 10. Let ∆Θ−i be the set of all probability distributions on Θ−i. The set ∆Θ−i

is the smallest subset of ∆Θ−i such that player i knows that the true type distribution is

an element in ∆Θ−i
.

Analogously as for strategic uncertainty, it holds that distributional uncertainty is

present if the set ∆Θ−i
is not a singleton. Note that the assumption that a player knows

that the true type distribution (or the true strategy) is an element of some set is w.l.o.g.

since it covers any possible knowledge structure. For example, if a bidder i knows only the

type spaces of the other bidders but nothing else about the type distribution, then ∆Θ−i

is equal to ∆Θ−i, the set of all type distributions on Θ−i. In contrast, if a bidder i faces

no distributional uncertainty and knows that the distribution of the other bidders’ types

is given by a function F−i, then the set ∆Θ−i
is equal to {F−i}.

Although in many real-world first-price auctions the knowledge of the other bidders’

value distribution is very valuable and bidders go at great lengths in order to learn about

their competitors’ willingness to pay, such learning has its limits and bidders may be able

to learn only the support and the mean of the value distribution.14

14For example, Carrasco et al. (2017) consider a seller who does not know the buyers’ value distributions
but knows their mean.
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Throughout the paper I use the axiomatization of the knowledge operator where the

statement that a player knows something implies that it is true. Therefore, for every player

i it holds that the true type distribution of the other player is indeed an element in ∆Θ−i .

As in section 2, the strategies which a player considers to be possible are the set of

rationalizable strategies.

Rationalizable strategies As before, I assume common knowledge of rationality which

implies that the adverse nature has to choose from the set of rationalizable strategies.

If distributional and strategic uncertainty are present, the definition of a rationalizable

action changes. Under distributional and strategic uncertainty a player is rational if her

action is a best reply given her type, a conjecture about the other players’ strategies and

a conjecture about the other players’ type distributions which is an element in ∆Θ−i .

Definition 11. ggggg

(i) Let i ∈ {1, . . . , I} be a player and θi ∈ Θi be a type of player i. The set of

rationalizable actions for player i is defined as follows. Set RS1
i (θi) := Ai. Assume

that for k ∈ N the set RSki (θi) is already defined. Then the set RSk+1
i (θi) is defined as

the set of all elements ai in Ai for which there exists a type distribution F−i ∈ ∆Θ−i

and a strategy profile of the other players β−i such that it holds

(i) aj ∈ supp (βj (θj)) for θj ∈ Θ⇒ aj ∈ RSkj (θj) for all j 6= i

(ii) ai ∈ argmax
a′i∈Ai

Ui (θi, a
′
i,β−i,F−i)

and RSi (θi) is given by

RSi (θi) =
⋂
k≥1

RSki (θi) .

(ii) A strategy βi of a player i is rationalizable if for every θi ∈ Θi every action ai with

ai ∈ supp (βi (θi)) > 0 is rationalizable, i.e. an element of RSi (θi).

(iii) For a player i let RS−i be the set of rationalizable strategies of the other I − 1

players.

The definition of the possible distributions and strategies and of rationalizable strategies

allows for a formal definition of the adverse nature’s action space and therefore for a formal

definition of the simultaneous game against an adverse nature.
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Simultaneous game against adverse nature The following definition summarizes

all components describing a game under distributional and strategic uncertainty.

Definition 12. A game under distributional and strategic uncertainty consists of game

of incomplete information, denoted by ({1, . . . , I},Θ, A, {ui}i ∈ {1, . . . , I}), a subset of

players {i1, . . . ik} ⊆ {1, . . . , I} applying the maximin expected utility criterion, and a

player n. For every i ∈ {i1, . . . , ik} player i chooses a strategy

βi : Θi → ∆Ai.

A strategy of n is a mapping which for every player i ∈ {i1, . . . ik} and for every possible

type of player i assigns a distribution of the other players’ values in ∆Θ−i and a strategy

of the other players in RS−i:

(βni1 , . . . , βnik ) : Θi1 × . . .×Θik →
(
RS−i1 ×∆Θ−i1

)
× · · · ×

(
RS−ik ×∆Θ−ik

)
.

(θi1 , . . . , θik)→
((
β
ni1

,θi1
−i1 ,F

ni1
,θi1

−i1

)
, . . . ,

(
β
nik

,θik
−ik ,F

nik
,θik

ik

))
.

The utility of a player i ∈ {i1, . . . , ik} is given by

Ui

(
θi, βi (θi) ,β

ni,θi
−i ,F ni,θi

−i

)
which is defined as in (1) and depends on the utility function of player i in the underlying

game of incomplete information, denoted by ui:

ui : A×Θi → R.

(a1, . . . , aI , θi) 7→ ui (a1, . . . , aI , θi)

The utility of player nature is given by

−
k∑
j=1

Ui

(
θi, βi (θi) ,β

ni,θi
−i ,F ni,θi

−i

)
.

The term uncertainty can include distributional uncertainty or strategic uncertainty or

both. If only one type of uncertainty is present, I will refer to this case as pure distributional

or pure distributional uncertainty. For instance, a game under pure strategic uncertainty

as defined in section 2, is a special case of a game under distributional and strategic

uncertainty. If the type distribution F is common knowledge as defined in section 2, then

it holds for all players i that ∆Θ−i
= {F−i}.
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Now it is possible to define a maximin strategy in a game under distributional and

strategic uncertainty.

Definition 13. In a game under distributional and strategic uncertainty for a player i a

strategy

βi : Θi → ∆Ai

is a maximin strategy if there exists a maximin equilibrium in the simultaneous game

between nature and player i such that βi is player i’s equilibrium strategy.

The Nash equilibrium in the simultaneous game between nature and player i is called

maximin equilibrium.

Analogously to section 2, one can define the subjective maximin belief of a bidder.

Definition 14. In a game under uncertainty let βni be the adverse nature’s maximin

equilibrium strategy projected on the i′th component. A subjective maximin belief of player

i with valuation θi is defined as

βni (θi) =
(
βni,θi
−i ,F ni,θi

−i

)
,

that is, the adverse nature’s maximin equilibrium strategy evaluated at θi.

5.2 Outcomes under distributional and strategic uncertainty

The definition of an outcome in a game under distributional and strategic uncertainty is

analogue to the definition in a game under distributional and strategic uncertainty.

Definition 15. In a game under distributional and strategic uncertainty an outcome under

maximin strategies is a strategy profile (β1, . . . , βI , βn) such that for every i ∈ {1, . . . , I}
it holds that player i’s strategy is a maximin strategy.

Analogously to Proposition 1 and Corollary 1 the following Proposition and Corollary

hold true which state that a strategy played in an outcome under maximin strategies is

rationalizable and that every action which is a best reply to a profile of rationalizable

strategies is also rationalizable.

Proposition 9. In a game under distributional and strategic uncertainty let (β1, . . . , βI , βn)

be an outcome under maximin strategies. Then for every i ∈ {1, . . . , I, βn} it holds that βi

is a rationalizable strategy for player i.

The proof is relegated to Appendix A.
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Corollary 2. In a game under distributional and strategic uncertainty let i ∈ {1, . . . , I}
be a player with valuation θi and for j ∈ {1, . . . , I}\{i} let βj be a rationalizable strategy

for player j. Let ai ∈ Ai be a best reply to β−i, i.e. it holds that

ai ∈ argmax
a′i∈Ai

Ui (θi, a
′
i,β−i,F−i) ,

then ai ∈ RSi (θi), that is, ai is a rationalizable action for player i with valuation θi.

I will now provide another simple condition which is sufficient for an action to be

rationalizable and therefore facilitates the derivation of maximin strategies. In order to do

so, the following definition is needed.

Definition 16. For a game under distributional and strategic uncertainty a profile of

strategies (β1, . . . , βI) ∈ ∆A1 × · · · ×∆AI together with a profile of subjective beliefs

about the other players’ type distributions
(
F 1
−1, . . . ,F

I
−I
)
∈ ∆Θ−1

× · · · ×∆Θ−I
is called

subjective-belief equilibrium with given strategies if every player acts optimally given her

belief and the other players’ strategies, i.e. for every i ∈ {1, . . . , I}, every θi ∈ Θi and

every ai ∈ supp (βi(θi)) it holds that

ai ∈ argmax
a′i∈Ai

Ui
(
θi, a

′
i,β−i,F

i
−i
)
.

That is, in a subjective-belief equilibrium best reply to each other’s strategies but do

not know each other’s type distributions. Every player forms a subjective belief about

the other players’ type distributions and acts optimally given this subjective belief and

the other players’ strategies which are observable. An example for a subjective-belief

equilibrium is a Bayes-Nash equilibrium with a common prior.

Example 3. Let the strategy profile (β1, . . . βI) together with the profile of beliefs(
F̂−1, . . . , F̂−I

)
be a Bayes-Nash equilibrium with a common prior. Then (β1, . . . βI)

together with
(
F̂−1, . . . , F̂−I

)
constitutes a subjective-belief equilibrium.

The following proposition states that a strategy which is played in a subjective-belief

equilibrium is rationalizable.

Proposition 10. In a game under distributional and strategic uncertainty an action

ai ∈ Ai is rationalizable for a player i with valuation θi if there exists a subjective-belief

equilibrium with strategies (β1, . . . , βI) such that ai ∈ supp (βi (θi)).

Proof. Let (β1, . . . , βI) together with
(
F 1
−1, . . . ,F

I
−I
)

be a subjective-belief equilibrium.

Let i be a player with valuation θi and ai be an action such that ai ∈ supp (βi (θi)). It

32



is to show that ai ∈ RSi(θi). I show by induction that for every j ∈ {1, . . . , I}, for every

k ≥ 1 and for all θj ∈ Θj it holds that

aj ∈ supp (βj (θj))⇒ aj ∈ RSkj (θj) .

Then it follows that aj ∈ RSj (θj) and one can conclude that ai ∈ RSi (θi) because

ai ∈ supp (βi (θi)). It holds for all j ∈ {1, . . . , I} that

aj ∈ supp (βj (θj))⇒ aj ∈ RS1
j (θj) for all θj ∈ Θj

since RS1
j (θj) = Aj by definition. Assume it is already shown for k ∈ N that for all

j ∈ {1, . . . , I} it holds that

ai ∈ supp (βj (θj))⇒ aj ∈ RSkθj for all θj ∈ Θj.

Let j be some player with type θj and subjective belief F j−j =
(
F j

1 , . . . , F
j
j−1, F

j
j+1, . . . , F

j
I

)
.

Then F j
−j and β−j fulfill the properties

(i) aI ∈ supp (βl (θl))⇒ al ∈ RSlk (θl) for all l 6= j

(ii) aj ∈ supp (βj (θj))⇒ aj ∈ argmax
a′j∈Aj

Uj

(
θj, a

′
j,β−j ,F

j
−j

)
.

The first property follows from the induction hypothesis and the second property follows

from the definition of a subjective-belief equilibrium with given strategies. By definition

of a rationalizable action, it follows that βj (θj) ∈ RSk+1
j . Hence, it is shown that

aj ∈ supp (βj (θj))⇒ aj ∈ RSj (θj).

The analogue result as in Proposition 2 holds also for games under distributional

and strategic uncertainty. That is, every strategy played in a Bayes-Nash equilibrium

is rationalizable and every action which is a best reply to a Bayes-Nash equilibrium is

rationalizable.

Proposition 11. Let (β1, . . . , βI) together with the common prior (F1, . . . , FI) constitute

a Bayes-Nash equilibrium of a game of incomplete information. Then the following holds

true:

(i) For every i ∈ {1, . . . , I} the strategy βi is rationalizable.

(ii) Let i ∈ {1, . . . I} be a player with valuation θi and let ai ∈ Ai be a best reply to β−i

and some distribution of the other players’ types F ′−i ∈ ∆Θ−i
, i.e. it holds that

ai ∈ argmax
a′i∈Ai

Ui
(
θi, a

′
i,β−i,F

′
−i
)
,
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then ai ∈ RSi (θi), that is, ai is a rationalizable action for player i with valuation θi.

It can be proved as a direct result of Proposition 10.

Proof. As stated in Example 3, every Bayes-Nash equilibrium is a subjective-belief

equilibrium. Due to Proposition 10, every strategy played in a subjective-belief equilibrium

is rationalizable. Hence, every strategy played in a Bayes-Nash equilibrium is rationalizable

which proves the first part. Corollary 2 states that best replies to rationalizable strategies

are rationalizable. Therefore, a best reply to a strategy which is played in a Bayes-Nash

equilibrium is rationalizable which shows the second part.

We can again use the Nash-theorem in order to derive sufficient conditions for the

existence of an outcome in a game of distributional and strategic uncertainty.

Proposition 12. Assume that fore every i ∈ {i1, . . . , ik} it holds that Θi and Ai are finite

and there exists a finite subset of ∆Θ−i
such that every element in ∆Θ−i

can be written

as a convex combination of elements in the finite subset. Then in every game under

distributional and strategic uncertainty there exists an outcome under maximin strategies.

After presenting the formal model, I turn to the application to first-price auctions

under distributional and strategic uncertainty.

5.3 First-price auctions under distributional and strategic uncertainty:

Model

The underlying game of incomplete information is the same as for first-price auctions under

strategic uncertainty in subsection 4.1. What differs is the set of distributions a bidder

applying the maximin expected utility criterion considers to be possible. Before, the value

distribution was common knowledge. Now I assume that the set of possible valuations, i.e.

the support of the valua distribution, and the mean of the value distribution is common

knowledge.

Possible distributions It is common knowledge that every bidder’s value is drawn from

the set Θ = {0 = θ1, θ2, . . . , θm−1, 1 = θm} according to a distribution with an exogenously

given mean µ. Formally, let

F I−1
µ =

{
F1 × · · · × FI−1 ∈ ∆I−1 (Θ)

∣∣∣∣ m∑
i=1

θiPr
(
θi
)

= µ

}
,
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the set of all distributions of independently drawn values for I − 1 bidders with mean µ.

Then it holds for every i ∈ {1, . . . , I} that

∆Θ−i = F I−1
µ .

As argued before, the above defined game of incomplete information uniquely defines

a game under distributional strategic uncertainty (after specifying the player applying

the maximin expected utility criterion). In the following I will call this game first-price

auction under distributional and strategic uncertainty.

5.4 First-price auctions under distributional and strategic uncertainty:

Results

Preview or results In a first-price auction under distributional and strategic uncertainty

an outcome under maximin strategies always exists. If there exists types θk, θk
′
, θk

′′ ∈ Θ

such that 0 < θk ≤ µ < θk
′
< θk

′′
, then every outcome is inefficient.

For every type there exists a unique highest rationalizable bid. For every bidder and

every type the adverse nature chooses as the strategy of the other bidders that every

bidder places the highest rationalizable bid given her type.

Let θµ be the lowest valuation which is higher than the mean. The highest rationalizable

bid of a bidder with a valuation lower than θµ is her valuation. The subjective maximin

belief of a bidder with valuation lower than θµ about the other bidders’ value distributions

is that the probability weight is distributed between her own valuation and θµ. As a

consequence a bidder with a valuation lower than µ expects a utility of zero and is

indifferent between any bid between zero and her valuation.

Every bidder with a valuation θk such that θk ≥ θµ never expects to win against a

bidder with the same valuation. Hence, the subjective maximin belief of a bidder about

the other bidders’ value distribution maximizes the probability weight on θk and makes the

bidder indifferent between any highest rationalizable bid of lower types. As a consequence,

the bidder mixes among all highest rationalizable bids of lower types. Therefore, if types

θk, θk
′
, θk

′′ ∈ Θ such that 0 < θk ≤ µ < θk
′
< θk

′′
exist, then with positive probability

type θk
′′

bids zero and type θk
′

bids the highest rationalizable bid of type θk which is θk.

Conclusively, the outcome is not efficient.

Example 4. Consider a first-price auction under distributional and strategic uncertainty

with two bidders 1 and 2 and three possible valuations 0, θ and 1 which are identically and

independently distributed with a commonly known mean µ. Assume that it holds θ < µ.

The first step is to calculate the highest rationalizable bid for every valuation.
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The highest rationalizable bid of a bidder with valuation zero is zero. Assume that

bidder 1 and bidder 2 have the subjective belief that the other bidder’s value distribution

distributes the probability weight between types θ and 1, i.e. there is zero probability weight

on type 0. Given that bidder 1 and bidder 2 have this subjective belief, the following

strategies constitute a Bayes-Nash equilibrium:

(i) Type θ of bidder 1 and bidder 2 bids θ

(ii) Type 1 of bidder 1 and bidder 2 plays a mixed strategy on the interval [θ, b1] for

θ < b1 < 1.

Thus, it is part of a subjective-belief equilibrium that a bidder with valuation θ bids θ. It

follows from Proposition 10 that bidding θ is a rationalizable action for a bidder with

valuation θ. Since bidding above valuation cannot be rationalizable, the highest rationalizable

action of a bidder with valuation θ is to bid θ.

b
θ

= θ
µ0 b

1 1

Let b
1

denote the highest rationalizable bid of a bidder with valuation 1. In order to

compute b
1
, consider the conjecture of bidder with valuation 1 that the strategy of the other

bidder is such that

(iii) Type zero bids zero,

(iv) Type θ bids θ,

(vi) Type 1 bids
(
b

1
)−

.

It has been already shown that (iv) is rationalizable and similarly as in the case of pure

strategic uncertainty, one can show that (vi) is rationalizable. It follows from Corollary

2 that a best reply to the strategy described in (iii)− (vi) is rationalizable. Thus, this is

the rationalizable strategy which maximizes the expected utility of bidding b
1

and therefore

induces the highest rationalizable bid of a bidder with valuation 1, i.e. bidding b
1

is a best

reply to this strategy.

A rationalizable bid is a best reply to a strategy of the other bidders and to a distribution

of their valuations. Hence, in a addition to the strategy inducing b
1
, one has to derive the

value distribution inducing b
1
. Let (f 1

0 , f
1
θ , f

1
1 ) denote the corresponding probability mass

function. It must hold that

1− b1 ≥ f 1
0
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1− b1 ≥
(
f 1

0 + f 1
θ

)
(1− θ)

which is equivalent to

1− b1 ≥ max
{
f 1

0 ,
(
f 1

0 + f 1
θ

)
(1− θ)

}
.

Since b
1

is the highest bid for which this condition is fulfilled, it holds that

b
1

= 1−min max
{
f 1

0 ,
(
f 1

0 + f 1
θ

)
(1− θ)

}
which is equivalent to

b
1

= 1− f 1
0 = 1−

(
f 1

0 + f 1
θ

)
(1− θ) . (3)

Since probabilities have to add up to zero and the mean has to be preserved, the vector

(f 1
0 , f

1
θ , f

1
1 ) is the unique solution to the following system of linear equations

f 1
0 + f 1

θ + f 1
1 = 1

f 1
0 0 + f 1

θ θ + f 1
1 1 = µ

f 0
1 =

(
f 0

1 + f θ1
)

(1− θ) .

After obtaining the solution

f 1
0 =

1− µ
1 + θ

, f 1
θ =

θ (1− µ)

1− θ2
, f 1

1 =
µ− θ2

1− θ2
,

one can compute b
1

using equation (3), i.e. it holds

b
1

= 1− f 0
1 = 1−

(
f 0

1 + f θ1
)

(1− θ) =
µ

1 + θ
.

After deriving the highest rationalizable bids for every type, the second step is to derive

the adverse nature’s strategy. In the setting of strategic and distributional uncertainty the

adverse nature’s strategy determines for every bidder and every type a strategy and a value

distribution of the other bidder. As in the case of pure strategic uncertainty, for every

bidder and every type the adverse nature chooses as the strategy of the other bidder to

place the highest rationalizable bid given her valuation.15

15As in the case of pure strategic uncertainty, the strategy of the adverse nature is not necessarily
unique in a maximin equilibrium but in every equilibrium the strategies of the bidders coincide with the
best reply to the strategy of the adverse nature as described.
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The value distribution for a bidder with valuation zero is irrelevant since such a bidder

always earns a utility of zero. For a bidder with valuation θ the adverse nature chooses a

distribution of the other bidder’s values which puts zero probability weight on type zero.

Since type θ bids θ, this induces an expected utility of zero for a bidder with valuation θ. A

bidder with valuation 1 never expects to win against a bidder with valuation 1. Therefore,

a bidder with valuation 1 has to decide between bidding zero and bidding θ. Hence, the

adverse nature has to choose a value distribution
(
f̃ 0

1 , f̃
θ
1 , f̃

1
1

)
such that it holds

min max
{
f̃ 0

1 ,
(
f̃ 0

1 + f̃ θ1

)
(1− θ)

}
.

Since probabilities have to add up to one and the mean has to be preserved, the vector(
f̃ 0

1 , f̃
θ
1 , f̃

1
1

)
is the unique solution of the same system of linear equations as the vector(

f 0
1 , f

θ
1 , f

1
1

)
. Therefore, it holds that(

f̃ 0
1 , f̃

θ
1 , f̃

1
1

)
=
(
x0

1, x
θ
1, x

1
1

)
.

In the final step, for every bidder and every type one has to find the set of best replies

to the adverse nature’s strategy. Moreover, one has to identify the best replies such that

the adverse nature does not have an incentive to deviate from her strategy derived in the

second step. Since the expected utility of a bidder does not decrease if one of the other

bidders places a lower bid, the adverse nature does not have an incentive to deviate from

the strategy where for every bidder and every type she prescribes the highest rationalizable

bid.16 Hence, it is sufficient to check whether the adverse nature has an incentive to deviate

from the chosen distributions.

A bidder with valuation zero bids zero. A bidder with valuation θ expects a utility of

zero and is indifferent between any bid in the interval [0, θ]. Hence, the adverse nature does

not have an incentive to deviate. A bidder with valuation 1 is indifferent between bidding

0 and θ. In a maximin equilibrium in the game against the adverse nature, a bidder with

valuation 1 mixes between 0 and θ in a way such that the adverse nature is indifferent

among any value distribution which fulfills the constraints that probabilities add up to one

and the mean µ is preserved. Therefore, the adverse nature does not have an incentive to

deviate.

Note that the distribution of the other bidder’s values which the adverse nature chooses

16An exception is that if one bidder bids above her valuation, it would be a best reply of the adverse
nature to choose as the strategy of the other bidders that every other bidder bids zero. This would induce
a strictly negative utility for the bidder bidding above her valuation. However, one can exclude this
exception in a maximin equilibrium.
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for a type is the same distribution which induces the highest rationalizable bid for this

type. That is, a bidder i with a given type assumes that her opponent j has the same

assumption about i’s value distributions as i’s assumption about j’s value distributions.

But bidder i assumes that j has a different belief about i’s strategy than i’s belief about

j’s strategy.

The insights from the example about bidders’ strategies are generalized in the following

Proposition.

Proposition 13. Consider a first-price auction under distributional and strategic uncertainty.

There exists an outcome under maximin strategies. If there exist types θk, θk
′
, θk

′′ ∈ Θ such

that 0 < θk ≤ µ < θk
′
< θk

′′
, then there does not exist an efficient outcome.

The proof is relegated to Appendix F.

The inefficiency stems from the fact that every type above µ mixes between all highest

rationalizable bids of all lower types. With positive probability type θk
′′

bids zero and type

θk
′

bids the highest rationalizable bid of type θk which is θk. Conclusively, the outcome is

not efficient.

Similarly as under pure strategic uncertainty, I will show the existence of an outcome

under maximin strategies by construction for which I proceed in the following steps:17

(I) Show that for every type θk ∈ Θ there exists a unique highest rationalizable bid b
θk

.

(II) Show that for every type zero is a rationalizable bid.

(III) Show that for every type θk ∈ Θ every bid in the interval [0, b
θk

] is rationalizable.

(IV) Calculate for every type θk ∈ Θ the other bidders’ value distribution which induces

the highest rationalizable bid.

The explanation for steps (I)-(III) works analogously as for steps (I)-(III) in the case of

pure strategic uncertainty. For the calculation of the highest rationalizable bids, first,

consider valuations equal or below µ. Analogously as in the example, on can show that the

highest rationalizable bid of a bidder with valuation θk such that θk ≤ µ is θk. This bid is

induced by the subjective belief equilibrium where the probability weight is distributed

between types θk and θµ and all bidders with valuation θk bid θk, where θµ is the smallest

valuation strictly higher than µ.

17As in the case of pure strategic uncertainty, the existence of an outcome follows from Proposition 12
since Θ and B are finite and there exists a finite subset of F I−1

µ such that every element in F I−1
µ can be

written as a convex combination of elements in the finite subset.
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The calculation of the highest rationalizable bids for higher types works by recursion.

Assume that for a bidder i with valuation θk ≥ θµ and that for all j < k the highest

rationalizable bids has been already computed. The highest rationalizable bid b
θk

of a

bidder with valuation θk is a best reply to a conjecture about the other bidders’ strategies

and distributions.

The strategies which induce b
θk

are given by

(i) Every bidder with valuation θj such that θj < θk bids her highest rationalizable bid.

(ii) Every bidder with valuation θk bids
(
b
θk
)−

.

The value distribution of the other bidders which induce b
θk

has to minimize the

incentive to bid another bid. In addition, probabilities have to add up to zero and the

mean µ has to be preserved. Let
(
f θ

k

θ1 , . . . , f
θk

θm

)
be a vector of probabilities such that

according to the value distribution inducing b
θk

, type θl of some bidder j 6= i occurs with

probability f θ
k

θl
.

Hence, the vector
(
f θ

k

θ1 , . . . , f
θk

θm

)
is the solution to the following minimization problem

min max

{(
f θ

k

θ1

)I−1

θk,
(
f θ

k

θ1 + f θ
k

θ2

)I−1 (
θk − bθ

2)
, ...,

(
f θ

k

θ1 + · · ·+ f θ
k

θk−1

)I−1 (
θk − bθ

k−1)}

s.t. f θ
k

θ1 + · · ·+ f θ
k

θm = 1

f θ
k

θ1 θ
1 + · · ·+ f θ

k

θmθ
m = µ.

As proved in the Appendix, in the solution of this minimization problem all terms of

the form (
j∑
i=1

f θ
k

θi

)I−1 (
θk − bθ

j)
for 1 < j < k

have to be equal.

The recursive calculation of the highest rationalizable bids and the distributions

inducing them, is formalized in the following Proposition.

Proposition 14. Consider a first-price auction under distributional and strategic uncertainty.

Let θµ = min{θk ∈ Θ | θk > µ}. For θk < θµ the vector of probability weights denoted by

f θ
k

=
(
f θ

k

θ1 , . . . , f
θk

θm

)
, is defined by

f θ
k

θk =
θµ − µ
θµ − θk

, f θ
k

θµ =
µ− θk

θµ − θk
and f θ

k

θj = 0 for θj 6= θk, θµ,
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i.e. the probability weight is distributed between types θk and θµ such that the mean µ is

preserved. For θk ≤ θµ the highest rationalizable bid b
θ

is equal to θk.

Assume that for all j < k, the highest rationalizable bid b
θj

has been already defined

and it holds k > z. Then for the vector f θ
k

=
(
f θ

k

θ1 , . . . , f
θk

θm

)
it holds that f θ

k

θj = 0 for

j > k and the vector
(
f θ

k

θ1 , . . . , f
θk

θk

)
is the unique solution of the following system of k

linear equations given by
k∑
i=1

f θ
k

θi = 1

k∑
i=1

f θ
k

θi θ
i = µ

(
f θ

k

θ1

)I−1

θk =

(
j∑
i=1

f θ
k

θi

)I−1 (
θk − bθ

j)
for 1 < j < k.

The highest rationalizable bid b
θk

is obtained by the equation

b
θk

= θk −
(
f θ

k

θ1

)I−1

θk.

The proof is relegated to Appendix F.

Proposition 15. In a first-price auction under distributional and strategic uncertainty

for every bidder i and every valuation θk it holds for every maximin strategy that

(i) Every bidder with valuation θk such that θk ≤ µ is indifferent between any bid in the

interval [0, θk].

(ii) Every bidder with valuation θk such that θk > µ mixes among the bids {bθ
j

| j < k},
that is, among the set of all highest rationalizable bids of lower types.

The proof is relegated to Appendix F.

6 Discussion

Choice of decision criterion

The decision criterion under uncertainty used in this paper is the maximin expected utility

criterion. The analogous analysis could be conducted with other criteria such as the

minimax expected regret criterion.
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Possible distributions and strategies

In this paper I restricted the set of possible strategies by assuming common knowledge of

rationality and the set of possible distributions by assuming common knowledge of a mean.

This restriction is crucial for the application of the maximin expected utility criterion.

Otherwise there would exist a distribution or strategy inducing an expected utility of zero

for a player independent of her action.

For example, Bergemann and Schlag (2008) apply the maximin expected utility criterion

to a monopoly pricing problem where a seller faces uncertainty about the buyer’s value

distribution. Without a restriction of the set of possible distributions the adverse nature

would choose a distribution which puts the whole probability weight on valuation zero.

Thus, they assume that the seller knows that the buyer’s true value distribution is in

the neighborhood of a model distribution. Other papers applying the maximin expected

utility criterion to distributional uncertainty also assume an exogenously given restriction

of the set of possible distributions.

Due to a similar reasoning, a restriction of the set of possible strategies is required if

the maximin expected utility criterion is applied to strategic uncertainty. For example, if

one would apply the maximin expected utility criterion to a first-price auction where a

bidder faces uncertainty about the other bidders’ strategies, then without a restriction

of the set of possible strategies the adverse nature would choose a strategy of the other

bidders such that all bidders place arbitrarily high bids. First, such strategies do not

seem plausible. Second, the maximin expected utility criterion does not provide a useful

recommendation. In order to solve these issues, one could also exogenously restrict the

set of possible strategies. For example, Kasberger and Schlag (2017) apply the minimax

regret criterion to first-price auctions and assume common knowledge of an exogenously

given restriction of the players’ bidding strategies, for instance, in form of a lower bound

of the highest bid.

However, the fact that rational agents interact strategically in a given economic setting

already contains information about the possible strategies. Thus, it is possible to use

an endogenous restriction of the set of possible strategies - which is given by the set of

rationalizable strategies, in order to apply the maximin expected utility criterion.

Under distributional uncertainty an exogenously given restriction of the set of possible

distributions is still necessary. Besides fixing the mean, there exist other possibilities to

restrict the set of possible distributions and strategies. For instance, one could investigate

outcomes under distributional uncertainty under the assumption that further moment

conditions of the type distribution are common knowledge.
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Cognitive complexity

Formally, the derivation of the set of rationalizable actions for an agent with a given type

requires an infinite intersection of sets. However, the proofs use a finite number of recursion

steps. In the model under strategic uncertainty and in the model under distributional

uncertainty the bid a bidder with type θk is obtained after at most k recursion steps.

One could argue that a sufficiently rational player can conduct the necessary calculations.

But one could also argue that for some players these calculations may be too difficult.

Therefore, similarly as in level-k models, one could define the concept of k-rationalizability.

That is, a player i could know that her opponent can compute the set RSkj for all players

j and for k ∈ N, but cannot compute the sets RSk
′
j for k′ > k (see Bernheim (1984)).

Depending on the parameters, this knowledge can influence player i’s maximin strategy.

Robustness

In addition to the maximin expected utility criterion, one could introduce an additional

robustness criterion in the following sense: Does the maximin strategy of an agent change if

the adverse nature deviates from her strategy to another strategy in an ε-neighborhood? If

there is a change, does the strategy and the resulting expected utility change continuously?

As an example, consider a first-price auction under pure strategic uncertainty with

a commonly known distribution function, two bidders and three valuations 0, θ and 1.

Bidder 1 with valuation 1 has the subjective maximin belief that bidder 2 with valuation

1 bids b
1
. Hence, bidder 1 with valuation 1 bids either θ or zero. However, all bids in the

interval [0, b
1
] are rationalizable for a bidder with valuation 1. Hence, (if the bid grid is

sufficiently small) an ε-neighborhood of b
1

and its intersection with the set of rationalizable

actions contains bids lower than b
1
. If bidder 1 with valuation 1 has the subjective belief

that bidder 2 with valuation 1 bids lower than b
1
, e.g.

(
b

1
)−

, then b
1

becomes a best reply

for bidder 1 with valuation 1. This constitutes a discontinuity in her best reply.

As a second example, consider a first-price auction under pure strategic uncertainty

with two bidders and a commonly known common value v. To bid v is the highest

rationalizable action for both bidders. Therefore, bidder 1 has the subjective maximin

belief that bidder 2 bids v. As a consequence, bidder 1 is indifferent between any bid

in [0, v]. Assume that bidder 1 chooses the action v (or v−). As any other bid, this

leads to a utility of zero given the subjective maximin belief that bidder 2 bids v. An

ε-neighborhood of v and its intersection with the set of rationalizable actions contains only

bids below v, e.g. it contains the bids v,v− and (v−)
−

. The best replies to these bids are

in an ε-neighborhood of v (or v−) and the induced utilities are in an ε-neighborhood of

zero. Hence, bidding v (or v−) fulfills the robustness property that an ε-deviation of the
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subjective maximin belief induces an ε-deviation of the best replies and expected utility.

Appendices

A Proof of Proposition 1 and 9

Proof. Proposition 1 is a special case of Proposition 9 such that for every player i it

holds that ∆Θ−i = F−i where F is the commonly known value distribution as assumed in

Proposition 1. Therefore, it is sufficient to prove Proposition 9. Every player maximizes

her expected utility given a distribution of the other players’ types and a rationalizable

strategy of the other players chosen by nature. Let (β1, . . . , βI , βn) be an outcome under

maximin strategies. It is to show that for every player i and for every type θi an action ai

which is in the support of βi (θi) is an element in RSki (θi) for every k ≥ 1. The proof works

by induction. It is true that for every i ∈ {1, . . . , I} every action ai ∈ Ai is an element

in RS1
i (θi) since it holds by definition that RS1

i (θi) = Ai. Assume it is already shown

for every i ∈ {1, . . . , I} and every θi ∈ Θi that every action ai with ai ∈ supp (βi (θi)) is

an element in RSki (θi). Let i bid a bidder with valuation θi. Since n can choose only

among rationalizable strategies, it holds for every j 6= i that βni,θij is a rationalizable

strategy. By definition, this implies that for every θj ∈ Θj and every action aj with

aj ∈ supp
(
βni,θij (θj)

)
it holds that aj ∈

⋂
k≥1RS

k
j (θj). It follows that

(i) aj ∈ supp
(
βni,θij (θj)

)
for θj ∈ Θj ⇒ aj ∈ RSjk (θj) for all j 6= i.

By definition of an outcome under maximin strategies, it holds for every action ai with

ai ∈ supp (βi (θi)) that ai is best reply given the adverse nature’s strategy, i.e. a best

reply to the other bidders’ value distribution and strategies chosen by the adverse nature.

Therefore, it holds that

(ii) ai ∈ supp (βi (θi))⇒ ai ∈ argmax
a′i∈Ai

Ui

(
θi, a

′
i,β

ni,θi
−i ,F ni,θi

−i

)
.

By definition of the set RSk+1
i (θi), it follows from (i) and (ii) that for every ai with

ai ∈ supp (βi (θi)) is an element in RSk+1
i (θi) and it follows by induction that ai is an

element in RSki (θi) for every k ≥ 1.

B Proof of Proposition 2

Since Proposition 2 is a special case of Proposition 11 such that for every player i it

holds that ∆Θ−i = F−i, where F is the commonly known value distribution as assumed in
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Proposition 2, the proof follows from the proof of Proposition 11.

C Proof of Proposition 4

Proof. (i) At first, I consider the case where there exists a unique bidder k who has

the highest valuation and show that her highest rationalizable bid is the second-highest

valuation, denoted by θ′k. In order to do so, I will show by induction that for every bidder

i 6= k the bids in the interval (θk′ , 1] are not rationalizable. Let i be an arbitrary bidder

which is not bidder k. Hence, bidder i’s valuation is strictly lower than 1. The induction

steps are descending and start with 1. Since 1 is the highest possible bid, bidder i wins

with strictly positive probability if she bids 1 which cannot be rationalizable since she

would earn a negative utility with positive probability. For the induction step assume that

it has been shown that all bids equal or higher than b with b ∈ (θk′ , 1] are not rationalizable

for all bidders i 6= k. It is to show that for an arbitrary bidder i 6= k the bid b− is not

rationalizable if b− > θk′ . Since all bids strictly higher than b− are not rationalizable for all

bidders i 6= k, it is never a best reply for bidder k to bid strictly higher than b−. Therefore,

bidder i wins with strictly positive probability if she bids b−. Since b− is strictly higher

than her valuation, this cannot be optimal. This completes the induction step from which

follows that for all bidders i 6= k the bids in the interval (θk′ , 1] are not rationalizable. It

follows that for bidder k all bids in the interval (θk′ , 1] are not rationalizable. In every

Nash equilibrium the highest bidder bids the second-highest valuation θk′ . Since according

to part (i) of Corollary 2 a strategy played in a Bayes-Nash equilibrium is rationalizable,

the bid θk′ is rationalizable of bidder k. It follows that θk′ is the highest rationalizable bid

of bidder k.

If the adverse nature chooses for all bidders i 6= k as the action of bidder k to bid

θ′k , i.e. βni,θik (θk) = θk′ , every bidder i 6= k with valuation θi expects a utility of zero

independent of her action. Therefore, any other strategy of the adverse nature which

is played in a maximin equilibrium, has to induce an expected utility of zero for every

bidder i 6= k independent of bidder i’s action. As a result, every bidder i 6= k is indifferent

between all bids in the interval [0, θi]. It is left to show that a bidder i 6= k does not bid

above her valuation. Assume there exists a bidder i with valuation θi who bids b > θi.

Since for all bidders j 6= k bidding zero is rationalizable, it is rationalizable of bidder k

to bid zero. Given that bidder i bids b, the adverse nature chooses as the strategy of the

other bidders to bid zero, i.e. for every j 6= i it holds that βni,θij (θj) = 0. As a result,

bidder i wins with probability 1 and expects a negative utility which cannot be part of

a maximin equilibrium. Hence, none of the bidders places bids strictly higher than her
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valuation in a maximin equilibrium.

In order to minimize the expected utility of bidder k, the adverse nature chooses as

the strategy of the second-highest bidder, i.e. bidder k′ with valuation θk′ , to bid her

valuation i.e. βnk,θkk′ (θk′) = θk′ . This is the highest rationalizable bid which can be placed

by a bidder who is not bidder k. As a consequence, bidder k bids θk′ .

(ii) Finally, I consider the case where at least two bidders have the highest valuation

θk. Analogously as before, one can show by induction that for every bidder the bids in the

interval (θk, 1] are not rationalizable. In every Nash equilibrium every highest bidder bids

her valuation θk. Therefore, it holds due to Corollary 2 that the bid θk is rationalizable

for every highest bidder. It follows that θk is the highest rationalizable bid and therefore

is the action which the adverse nature chooses as the action of a highest bidder k for a

bidder i 6= k, i.e. βni,θik (θk) = θk. This implies that every bidder does not expect to earn a

positive utility and therefore is indifferent between any bid between zero and her valuation.

Bids strictly higher than the own valuation can be excluded analogously as above.

D Proof of Propositions 5,6 and 7

In order to prove Propositions 5 and 6, I will show the following lemmas which formalize

steps (I) -(III).

Lemma 1. For every bidder i and every valuation θk ∈ Θ there exists a unique highest

rationalizable bid b
θk

. This bid does not depend on the identity of bidder i.

Proof. For every bidder i and every valuation θi the set of rationalizable actions RSi (θi)

is a finite set in a metric space and therefore compact. Since every compact set contains

its supremum, there exists a maximum element of the set RSi (θi). Since this is a subset

of B and by definition, B is well-ordered with respect to the relation ≤, the maximum

element of RSi (θi) has to be unique. Due to the symmetry of the bidders, the highest

rationalizable bid does not depend on the identity of the bidder.

Lemma 2. For every type θk ∈ Θ zero is a rationalizable bid.

Proof. The proof works by induction with respect to the types in Θ. The induction starts

with θ1 = 0. Montiero (2009) shows that with a given commonly known distribution there

exists a Bayes-Nash equilibrium in the first-price auction with discrete values where type

zero bids zero. It follows from part (i) of Corollary 2 that zero is a rationalizable action

for type zero.

For the induction step assume that it has been already shown for all types θj with

j ≤ k that zero is a rationalizable action for type θj. Consider a bidder i with valuation
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θk+1 who conjectures that all other bidders with type θj such that j ≤ k bid zero which is

rationalizable by assumption. According to Lemma 1, for every bidder and every type

there exists a highest rationalizable bid. Let the conjecture of bidder i with valuation θk+1

be such that every other bidder with type θj such that j > k bids her highest rationalizable

bid. Since all types with valuation θj such that j > k bid at least the highest rationalizable

bid of type θk+1 and all other types bid zero, it is a best reply of bidder i with valuation

θk+1 to bid zero. As stated in Corollary 1, a best reply to a rationalizable strategy profile

is rationalizable and therefore zero is a rationalizable action for bidder i with type θk+1.

This completes the induction step and hence one can conclude that for every bidder and

every type zero is a rationalizable action.

Lemma 3. For every type θk ∈ Θ every bid in [0, b
θk

] is rationalizable.

Proof. The proof works by showing a slightly stronger statement by induction with respect

to the types in Θ. The statement is that for every type θk ∈ Θ it holds that every bid in

the interval [0, b
θk

] is rationalizable for every type θj such that j ≥ k.

The induction starts with k = 1, i.e. with θ1 = 0. The highest rationalizable bid for

type θ1 is zero and it follows from Lemma 2 that zero is a rationalizable bid for every type

θj ≥ θ1.

For the induction step assume that it has been already shown that for all l ≤ k it holds

that every bid in the interval [0, b
θl

] is rationalizable for every type θj such that j ≥ l. By

using induction with respect to the bids, I will show that the same statement holds for

type θk+1. The induction starts with the bid zero. It follows from Lemma 2 that zero

is rationalizable for every type. For the induction step assume that it has been already

shown that every bid in the interval [0, b] with b < b
θk+1

is rationalizable for every type θj

with j ≥ k + 1. In order to show that b+ is rationalizable for every type θj with j ≥ k + 1,

consider a bidder i with valuation θj with j ≥ k + 1 and strategies of the other bidders

such that for every other bidder it holds that

(i) Every type θh with h < j bids her highest rationalizable bid

(ii) Every type θh with h ≥ j bids b.

The strategies in (i) are rationalizable by definition and the strategies in (ii) are rationalizable

by the assumption in the induction step (in the second induction with respect to the bids

in the interval [0, b
θk

]). Given this conjecture about the other bidders’ strategies it is

optimal for bidder i with valuation θj to bid b+. Any change in part (i) would imply that

there exists a bidder with valuation θl such that l < k + 1 who bids some bid bθ
l
< b

θl

instead of b
θl

which does not increase the expected utility of bidding b+. Any deviation

47



from (ii) implies that there exists at least one bidder and a valuation θh with h ≥ j such

that this bidder places either a lower or a higher bid than b. If the bid is lower, then the

same reasoning as above applies. If a bidder with valuation θh deviates to a higher bid,

then by bidding b+ bidder i with valuation θj does not overbid type θl of the deviating

bidder anymore which decreases bidder i’s winning probability.

Conclusively, any conjecture deviating from the strategies in (i) and (ii) does not

increase the expected utility of bidding b+. Therefore, if bidding b+ is not a best reply to

the beliefs in (i) and (ii), then b is the highest rationalizable bid for type θj which is a

contradiction to the assumption b < b
θk

. This shows that any bid in the interval [0, b
θk+1

]

is rationalizable for type θj. This completes the induction step of the first induction.

Therefore, it has been shown that for every type θk ∈ Θ it holds that every bid in the

interval [0, b
θk

] is rationalizable for every type θj such that j ≥ k.

After proving Lemmas 1-3, I continue with the proof of Proposition 6.

Proof of Proposition 6

Proof. Consider a bidder with valuation θk. As shown in the proof of Lemma 3, for every

type the conjecture given by

(i) Every type θl with l < k + 1 bids her highest rationalizable bid

(ii) Every type θj with j ≥ k + 1 bids b

induces the highest rationalizable bid of a bidder with valuation θk , that is, the highest

rationalizable bid b
θk

of a bidder with valuation θk is a best reply to the conjecture that

all other bidders employ this strategy. Given this conjecture, the expected utility of a

bidder with type θk ∈ Θ who bids b
θk

is given by

θk − bθ
k

.

This utility has to be higher than the utility induced by any other bid. A bid can be

a best reply for a bidder if she just overbids some other bidder. Formally, a bid b can

be best reply for a bidder with valuation θk only if there exists a bidder j 6= i and a

valuation θl < θk such that bidder j with valuation θl bids b (or there exists a bidder j

with valuation θl ≥ θk such that bidder j with valuation θl bids b− or b). Hence, the only

potential candidates for best replies besides b
θk

are bids b
θj

with j < k. Thus, equation

(2) ensures that bidding b
θk

induces at least the same expected utility than any other bid

which can be a best reply.
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Proof of Proposition 5

Proof. I show the existence of an outcome under maximin strategies by construction which

works as follows. According to Lemma 1 for every type there exist a unique highest

rationalizable bid. For every type and every player the adverse nature chooses the other

bidders’ strategies such that every bidder places her highest rationalizable bid, i.e. for pair

of bidders i, j and for every pair of valuation θi, θj it holds that

βni,θij (θj) = b
θj
. (4)

Let βn denote this adverse nature’s strategy. Independent of the bidders’ strategies there

does not exist another strategy of the adverse nature which induces a lower expected

utility for any of the bidders.18 Thus, the adverse nature does not have an incentive to

deviate from this strategy. Every bidder plays a best reply given her type and the adverse

nature’s strategy. Due to the compactness of B, such a best reply always exists. I will

show that the outcome defined by these best replies is efficient.

For a bidder with valuation θk the best reply is given by the most profitable overbidding

of a lower type, that is, by

argmax

b
θj<θk

F
(
θj
) (
θk − bθ

j)
.

Let b
θl

be a best reply of a bidder with valuation θk. Then it holds for all j ∈
{1, . . . , k − 1} that

F
(
θl
) (
θk − bθ

l)
≥ F

(
θj
) (
θk − bθ

j)
(5)

⇔ θk
(
F
(
θl
)
− F

(
θj
))
− F

(
θl
)
b
θl

+ F
(
θj
)
b
θj ≥ 0. (6)

Since F
(
θl
)
− F (θj) ≥ 0, it follows from (6) that for all θk

′
such that θk

′
> θk and for

all j ∈ {1, . . . k − 1} it holds that

θk
′ (
F
(
θl
)
− F

(
θj
))
− F

(
θl
)
b
θl

+ F
(
θj
)
b
θj ≥ 0

⇔ F
(
θl
) (
θk
′ − bθ

l)
≥ F

(
θj
) (
θk
′ − bθ

j)
. (7)

First, consider the case where for every j ∈ {1, . . . , k − 1} the inequality in (5) is strict.

18An exception is that if one bidder bids above her valuation, it would be a best reply of the adverse
nature to choose as the strategy of the other bidders that every other bidder bids zero. This would induce
a strictly negative utility for the bidder bidding above her valuation. However, one can exclude this
exception in a maximin equilibrium.
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Then for a bidder with valuation θk there exists a unique best reply, denoted by b
θl

. Hence,

in order to show efficiency, it is sufficient to show that every best reply of a bidder with

valuation θk
′

with θk
′
> θk is equal or greater than b

θl

.

It holds for every j ∈ {1, . . . , k − 1} that the inequality in (7) is strict. It follows that

none of the bids b
θj

for j ∈ {1, . . . , k − 1} can be a best reply for a bidder with valuation

θk
′
. Thus, a best reply of a bidder with valuation θk

′
with θk

′
> θk is equal or greater than

b
θl

.

Second, consider the case where for at least one j ∈ {1, . . . , k − 1} the expression in

(5) holds with equality. Let j1, . . . jh be all indices for which it holds that the expression

in (5) holds with equality. Then for all j ∈ {j1, . . . , jh} it must hold that F
(
θl
)
> F (θj).

Thus, for all j ∈ {j1, . . . , jh} expression in (7) holds with strict inequality. For all

j ∈ {1, . . . , I}\{j1, . . . , jh} the expression in (5) holds with strict inequality and therefore

also the expression in (7). Therefore, it holds for all j ∈ {1, . . . , k − 1} that the inequality

in (7) is strict. Analogously to the first case, this implies that the best reply of a bidder

with valuation θk
′

with θk
′
> θk is equal or higher than the highest best reply, i.e. the

highest rationalizable bid, of a bidder with valuation θk. Therefore, the outcome is efficient.

So far, I have shown by construction that an outcome under maximin strategies exists

and that this outcome is efficient. More precisely, I have shown that any combination of

best replies to the adverse nature’s strategy βn as defined in (4) is efficient. Formally, let

Bθj be the set of best replies for a bidder with valuation θj given the adverse nature’s

strategy βn, i.e. Bθj is defined by

Bθj = argmax
b′∈B

U
(
θj, b′, βn, F

)
.

Let (b1, . . . , bm) be a vector of bids such that bj ∈ Bθj for all j ∈ {1, . . . ,m}. Then it

holds that bm ≥ max
j∈{1,...,m}

bj.

It remains to show that every outcome is efficient. In order to show that every outcome

is efficient, I will show the stronger statement that in every outcome for every bidder and

every valuation the set of best replies is equal. That is, if
(
β̂1, . . . β̂I , β̂n

)
is an outcome

under maximin strategies, then it holds for every bidder j and every valuation θj that

Bθj = B̂θj

where B̂θj is defined by

B̂θj = argmax
b′∈B

U
(
θj, b′, β̂n, F

)
.

Assume there exists an outcome under maximin strategies, denoted by
(
β̂1, . . . β̂I , β̂n

)
,
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such that there exists a bidder i with valuation θi and a bid b such that b ∈ supp
(
β̂i (θi)

)
and b /∈ Bθi . This implies that there exists a bidder j 6= i and a valuation θl such that

β̂ni,θij (θl) 6= βni,θi(θl) and

b ∈ supp
(
βni,θij

(
θl
))

or b− ∈ supp
(
βni,θij

(
θl
))

(depending on whether θi > θl or θi ≤ θl). In other words, since the outcome is not efficient,

there exists a bidder i who bids differently than in the efficient outcome by bidding b. This

in turn implies that there exists another bidder j such that in the subjective maximin

belief of bidder i with valuation θi bidder j’s strategy differs from the strategy prescribed

by βn in a way which makes the bid b a best reply for bidder i.

Since β̂ni,θij (θl) 6= βni,θi(θl), it holds that b < b
θl

. Therefore, the adverse nature could

strictly decrease the winning probability of bidder i with valuation θi by deviating to the

strategy which prescribes to bid bθl for bidder j with valuation θl. Thus,
(
β̂1, . . . β̂I , β̂n

)
cannot constitute an outcome under maximin strategies. Conclusively, every outcome

under maximin strategies has to be efficient.

Proof of Proposition 7

Proof. As shown in the proof of Proposition 5, for every outcome
(
β̂1, . . . β̂I , β̂n

)
under

maximin strategies it holds for every bidder i and every valuation θi that

B̂θi = Bθi

where B̂θi and Bθi are defined by

Bθj = argmax
b′∈B

U
(
θj, b′, βn, F

)
, B̂θj = argmax

b′∈B
U
(
θj, b′, β̂n, F

)
and βn is defined as in (4). This is the strategy of the adverse nature which chooses

as the subjective maximin belief for every bidder and every valuation that every other

bidder places the highest rationalizable bid given her valuation. That is, in every outcome

under maximin strategies, bidders play best replies to the adverse nature’s strategy βn.

Therefore, in every outcome the bidders’ strategies are as specified in Proposition 7.
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E Proof of Proposition 8

Proof. The proof works by induction with respect to the type. Since b
θ1

= b
θ1

∗ , the

induction starts with θ2. The highest rationalizable bid for type θ2 is obtained by the

equation

θ2 − bθ
2

= F I−1 (0) θ2

⇔ b
θ2

= θ2
(
1− F I−1 (0)

)
.

The highest bid which is played with positive probability by a bidder with valuation θ2 in

a Bayes-Nash equilibrium is obtained by the equation

F I−1
(
θ2
) (
θ2 − bθ

2

∗

)
= F I−1 (0) θ2

⇔ b
θ2

∗ =
θ2
(
F I−1 (θ2)− F I−1 (0)

)
F I−1 (θ2)

.

Since m ≥ 3, it holds that F I−1 (θ2) < 1 from which follows that

F I−1
(
θ2
)
F I−1 (0) < F I−1 (0)

⇔ F I−1
(
θ2
)
− F I−1

(
θ2
)
F I−1 (0) > F I−1

(
θ2
)
− F I−1 (0)

⇔ 1− F I−1 (0) >
F I−1 (θ2)− F I−1 (0)

F I−1 (θ2)

⇔ b
θ2

> b
θ2

∗ .

For the induction step assume that it has been already shown that b
θj

> b
θj

∗ for all j ≤ k.

It has to be shown that

b
θk+1

> b
θk+1

∗ .

As stated in Proposition 6, it holds that

θk+1 − bθ
k+1

= max
θj<θk+1

F I−1
(
θj
) (
θk+1 − bθ

j)
.

Let

F I−1
(
θl
) (
θk+1 − bθ

l)
= max

θj<θk+1
F I−1

(
θj
) (
θk+1 − bθ

j)
.

Since b
θk+1

∗ is a best reply, it must induce an expected utility which is greater or equal

than the expected utility induced by any other bid, given that every other bidder plays
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equilibrium strategies. Hence, it holds that

F I−1
(
θk+1

) (
θk+1 − bθ

k+1

∗

)
≥ F I−1

(
θl
) (
θk+1 − bθ

l

∗

)
.

Due to the induction assumption, it holds that b
θl

∗ < b
θl

from which follows that

θk+1−bθ
k+1

= F I−1
(
θl
) (
θk+1 − bθ

l)
< F I−1

(
θl
) (
θk+1 − bθ

l

∗

)
≤ F I−1

(
θk+1

) (
θk+1 − bθ

k+1

∗

)
and therefore it holds that

θk+1 − bθ
k+1

< F I−1
(
θk+1

) (
θk+1 − bθ

k+1

∗

)
.

⇔ b
θk+1

∗ <
b
θk+1

− θk+1
(
1− F I−1

(
θk+1

))
F I−1 (θk+1)

. (8)

It holds that

θk+1 − bθ
k+1

≥ 0

⇔ θk+1
(
1− F I−1

(
θk+1

))
− bθ

k+1 (
1− F I−1

(
θk+1

))
≥ 0

⇔ b
θk+1

− θk+1
(
1− F I−1

(
θk+1

))
≤ F I−1

(
θk+1

)
b
θk+1

⇔
b
θk+1

− θk+1
(
1− F I−1

(
θk+1

))
F I−1 (θk+1)

≤ b
θk+1

.

Due to equation (8), it follows that

b
θk+1

> b
θk+1

∗ .

This completes the induction step and the proof.

F Proof of Propositions 13, 14 and 15

First, I prove Proposition 14 which formalizes the recursive calculation of the highest

rationalizable bids for every type. This calculation is crucial for the proofs of Propositions

13 and 15. In order to prove Proposition 14, I state the following three lemmas which

formalize steps (I)-(III) in section 5. The proofs work analogously as for Lemmas 1, 2 and

3 in section 4 and are therefore omitted.

Lemma 4. For every bidder i and every valuation θk ∈ Θ there exists a unique highest
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rationalizable bid b
θi
i .

Lemma 5. For every type zero is a rationalizable bid.

Lemma 6. For every type θk ∈ Θ it holds that every bid in [0, b
θk

] is rationalizable.

Proof of Proposition 14

Proof. First, I examine the highest rationalizable bids of a bidder with valuation θk such

that θk is lower or equal than µ. Consider a subjective belief equilibrium where every

bidder has the subjective belief that the other bidders’ value distribution distributes the

probability weight between types θk and θµ. Formally, the distribution of the other bidders’

valuation is defined by the vector f θ
k

=
(
f θ

k

θ1 , . . . , f
θk

θm

)
where for all j ∈ {1, . . . ,m} it

holds that f θ
k

θj denotes the probability with which type θj occurs. This vector is defined by

f θ
k

θθk
=

θµ − µ
θµ − θk

, f θ
k

θµ =
µ− θk

θµ − θk
and f θ

k

θj = 0 for θj 6= θk, θµ.

Given this subjective belief, in every subjective-belief equilibrium every bidder with

valuation θk bids θk. It follows from Proposition 10 that bidding θk is a rationalizable

action for a bidder with valuation θk. Since it is not rationalizable to bid above valuation,

θk is the highest rationalizable bid of a bidder with valuation θk.

Now I examine the highest rationalizable bids of a bidder with valuation θk such

that θk is strictly greater than µ. Analogously as in the proof Proposition 6, the highest

rationalizable bid of a bidder with valuation θk is induced by the strategy of the other

bidders’ such that

(i) All bidders with a lower type bid their highest rationalizable bid.

(ii) All bidders with an equal or higher type bid
(
b
θk
)−

.

The strategies in (i) are rationalizable by definition and the strategies in (ii) are rationalizable

due to Lemma 6. It follows from Corollary 2 that a best reply to these strategies is

rationalizable. The highest rationalizable bid of a bidder with valuation θk is a best reply

to the strategies in (i) and (ii) and to a distribution of the other bidders’ values. Let the

vector f θ
k

=
(
f θ

k

θ1 , . . . , f
θk

θm

)
be defined by fθj = 0 for j > k and let

(
f θ

k

θ1 , . . . , f
θk

θk

)
be the

unique solution of the system of k linear equations given by

k∑
i=1

f θ
k

θi = 1
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k∑
i=1

f θ
k

θi θ
i = µ

(
f θ

k

θ1

)I−1

θk =

(
j∑
i=1

f θ
k

θi

)I−1 (
θk − bθ

j)
for 1 < j < k.

It is to show that this is the unique of minimization problem

min max
l<k


(

l∑
i=1

fθi

)I−1 (
θk − bθ

l)
s.t. fθ1 + · · ·+ fθm = 1

fθ1θ
1 + · · ·+ fθmθ

m = µ.

Assume, this is not true. Then let f̃ θ
k

=
(
f̃ θ

k

θ1 , . . . , f̃
θk

θm

)
denote the solution vector of this

minimization problem, which I will denote by M θk . Let (δθ1 , . . . , δθm) be numbers such

that (
f̃ θ

k

θ1 , . . . , f̃
θk

θm

)
=
(
f θ

k

θ1 + δθ1 , . . . , f
θk

θm + δθm
)
.

Since f̃ θ
k 6= f θ

k
, it holds that at least one δθj for 1 ≤ j ≤ m is unequal to zero. Therefore, as

in Gretschko & Mass (2018), one can decompose the vector (δθ1 , . . . , δθm) into δ-sequences

and if there does not exist a 1 ≤ t ≤ m with
∑t

j=1 δθj > 0, the process of decomposing

into δ-sequences end with a δ-sequence of length 2, i.e. with some vector
(
δfinal1 , δfinal2

)
with δfinal1 < 0 and δfinal2 > 0.

Assume there exists a 1 ≤ t ≤ m with
∑t

j=1 δθj > 0. Since a bidder with valuation θk

never expects to win against an equal type and the mean µ has to be preserved, it is not

optimal for the adverse nature to put positive probability weight on types above θk. If

there would be positive probability weight on types above θk, one could shift probability

weight from types above θk and types below θk to type θk in a way which preserves the

mean. Since this reduces the winning probability of a bidder with valuation θk, it cannot

be optimal for the adverse nature to put positive probability weight on types above θk.

Therefore, it holds that δθj > 0 for j > k. Since it must hold that
∑m

j=1 δθj = 0, it holds

that t < k. Let

h ∈ argmax
l<k


(

l∑
j=1

f̃θj

)I−1 (
θk − bθ

l) .
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This implies that (
h∑
j=1

f̃θj

)I−1 (
θk − bθ

h)
is the minimum value of the objective function of minimization problem M θk . Since f θ

k
is

an element of the feasible set of minimization problem M θk , the vector f θ
k

cannot induce

a lower value of the objective function than f̃ θ
k
. Therefore, it holds that(

h∑
j=1

f̃θj

)I−1 (
θk − bθ

h)
≤

(
h∑
j=1

fθj

)I−1 (
θk − bθ

h)

⇔

(
h∑
j=1

fθj + δi

)
I−1

√(
θk − bθ

h
)
≤

(
h∑
j=1

fθj

)
I−1

√(
θk − bθ

h
)

h∑
j=1

δθj ≤ 0. (9)

By definition of the vector f θ
k
, it holds that(

h∑
j=1

fθj

)I−1 (
θk − bθ

h)
=

(
t∑

j=1

fθj

)I−1 (
θk − bθ

t)
.

By definition of h, it holds that(
h∑
j=1

f̃θi

)I−1 (
θk − bθ

h)
≥

(
t∑

j=1

f̃θi

)I−1 (
θk − bθ

t)
from which follows that(

h∑
j=1

δθj

)
I−1

√
θk − bθ

h

≥

(
t∑

j=1

δθj

)
I−1

√
θk − bθ

t

.

Since
∑t

j=1 δθj > 0, it follows that
∑h

j=1 δθj > 0 which is a contradiction to (9). Therefore,

the process of decomposing into δ-sequences ends with some vector
(
δfinal1 , δfinal2

)
with

δfinal1 < 0 and δfinal2 > 0 and there exists a θfinal such that

m∑
j=1

δθjθ
J >

m∑
j=1

δθjθ
final = 0.
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Since this is a contradiction to the fact that the vector f̃ θ
k

fulfills the constraint

m∑
j=1

f̃ θ
k

j θ
j = µ,

one can conclude that the assumption that the solution of minimization problem M θk does

not coincide with the unique solution of the system of k linear equations as specified in

Proposition 13, leads to a contradiction. Therefore, the solution of this system of linear

equations is the unique distribution inducing the highest rationalizable bid of a bidder

with valuation θk.

Proof of Proposition 13

Proof. One has to check whether Given the distribution of the other bidders’ values, the

adverse nature chooses for a bidder with valuation θk ≤ µ, the bidder expects the lowest

possible utility of zero. Thus, the adverse nature does not have an incentive to deviate

from this strategy. In order to choose for a bidder with valuation θk > µ a distribution of

the other bidders’ valuations, the adverse nature has to solve the following minimization

problem:

min max
l<k


(

l∑
i=1

f θ
k

θi

)I−1 (
θk − bθ

l)
s.t. f θ

k

θ1 + · · ·+ f θ
k

θm = 1

f θ
k

θ1 θ
1 + · · ·+ f θ

k

θmθ
m = µ.

Since this minimization coincides with the minimization problem in the proof of Proposition

14 and the minimization problem has a unique solution, the distribution of the other

bidders’ values chosen by the adverse nature for a bidder with valuation θk > µ coincides

with the vector
(
f θ

k

θ1 , . . . , f
θk

θm

)
as specified in Proposition 14. A bidder with valuation

θk best replies to the adverse nature’s strategy. If θk ≤ µ, the bidder expects a utility

of zero and is indifferent between any bid between zero and her valuation. If θk > µ,

the bidder is indifferent between any highest rationalizable bid of a lower type. Thus,

mixing among all highest rationalizable bids of lower types is a best reply to the adverse

nature’s strategy. Given this strategy, the adverse nature does not have an incentive to

choose another distribution of the other bidders’ valuations. Thus, the strategies proposed

in Propositions 13 and 15 indeed constitute a maximin equilibrium in the game with I

players and an adverse nature.
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