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Abstract

This paper presents a case in conflict management where a neutral, benevolent

mediator should propose a biased peaceful split between two potential adversaries

despite that the two are stochastically identical and that the mediator puts equal weight

on their welfare. A biased proposal, when rejected, induces asymmetric posterior beliefs

conducive to mitigating the detriment of the conflict, modeled as an all-pay auction.

This positive effect of induced asymmetry, however, may be offset by the negative

effect on the probability of peace settlements, as the paper notes two classes of biased

proposals inferior to the unbiased one. We provide an explicit biased proposal that

outperforms the unbiased one. This better alternative is so lopsided that the favored

player always accepts it, while only the weak type of the opponent may accept it.
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1 Introduction

Would a neutral, benevolent mediator play favor between two potentially conflicting par-

ties? If the two parties are symmetric—their types independently drawn from the same

distribution—from the mediator’s perspective, the answer would be No in the traditional,

static framework of mechanism design, where the mediator is assumed to have full control on

the probability distribution of the final outcome. There, a mechanism designer’s favoritism

arises only when the players, the potentially conflicting parties here, are asymmetric ex ante

(c.f. Myerson and Satterthwaite [6, Section 5]). In handling potential conflicts, whereas, a

mediator does not have full control of the final outcome lottery. She proposes merely a peace

settlement between the two parties, and if it is not mutually accepted by both then the two

fight their battle out beyond her control. In such dynamic situations, only indirectly can the

mediator influence the outcome: the potential contenders’ responses to her proposal affect

their posterior beliefs about each other, and these posteriors affect how the two will play in

the event of conflict. As conflicts often resemble an all-pay auction, where each side, win or

lose, has to bear its own cost of the fight, the two parties may reduce their efforts to hurt

each other if the posteriors are asymmetric between them, one believed to be strong with

some higher probability than the other, so that the stochastically weak side is intimidated,

and the other side complacent. Thus there is a positive effect, from the neutral mediator’s

perspective, to somehow induce an asymmetric posterior belief system, and to induce such

asymmetry through a biased proposal that favors one against the other despite that the two

parties are stochastically identical from her standpoint. However, not all biased proposals

can induce socially desirable asymmetric posteriors, as the biased proposals may reduce the

chance for a peace settlement that preempts the conflict. Is there a biased proposal whose

positive effect of posterior asymmetry outweighs the negative effect? If yes, what is it? What

are the biased proposals, where the relation between the two effects is reversed, which the

mediator should not choose over the unbiased proposal?

To address these questions in a tractable model, this paper considers a two-stage in-

teraction between two players, whose types are each independently drawn from the same

binary distribution. The mediator, uninformed of their types, proposes a peaceful split of

a prize between the two players. The two players, each privately informed of its own type,

simultaneously announce whether to accept or reject the proposal. If it is accepted by both,
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they split the prize as proposed thereby ending the game; otherwise they play an all-pay

auction game to determine who gets the prize. The primitives of the model are so chosen

that it is impossible for the mediator to fully preempt conflict: there does not exist any

peace proposal that admits a perfect Bayesian equilibrium (PBE) in which conflict occurs

with zero probability. The objective for the mediator is to maximize the social surplus, or

the sum of the two players’ expected payoffs before realization of types, that incorporates

both peace settlement and conflict as possible events on path.

Given that the two players are ex ante identical stochastically and that the mediator

puts equal weight to both players, the unbiased proposal is the equal split of the prize. To

answer the questions posed earlier, we examine the set of all proposal-equilibrium pairs,

each consisting of a peace proposal and a PBE of the continuation game given the proposal.

Among those that outperform laissez faire, the situation where the mediator, as if absent,

makes a proposal that results in conflict for sure, there are only four classes of proposal-

equilibrium pairs (Section 3): the lopsided, the hybrid, the mutually totally mixed (MTM)

and the mutually partially mixed (MPM). We find that the unbiased proposal is the social-

surplus maximum within the last class, MPM (Theorem 1), and generates larger social

surplus than any member of the MTMs (Theorem 2). Thus the positive effect of posterior

asymmetry induced by biased proposals need not dominate its negative effects. However,

when the ex ante probability to be the weak type belongs to an intermediate range, the

unbiased proposal is outperformed by a lopsided proposal, so lopsided that the favored player

always accepts it, while the opponent rejects it when his type is strong, and mixes between

acceptance and rejection when his type is weak (Theorem 4). Furthermore, this better,

though biased, proposal is the social-surplus maximum among all lopsided ones, explicitly

characterized by Theorem 3. Going through such trouble to find a better alternative than

the unbiased proposal is necessary, because we also find that, when the aforementioned ex

ante probability of the weak type is sufficiently high, even this optimal lopsided proposal is

outperformed by the unbiased one (Theorem 5).

Thus this paper provides an affirmative answer, which might sound morally repugnant,

to the question posed at the beginning. Even between ex ante identical potential contestants,

a neutral, benevolent mediator sometimes should offer a biased proposal in order to maximize

social surplus. Our answer, however, is not unequivocal, as our results imply that the

unbiased proposal, even when it is suboptimal, is not that bad. Furthermore, our results tell
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the mediator which among biased proposals to choose over the unbiased one, and which to

not choose.

A mediator’s design of peace proposals before a potential conflict between two players

has been considered in the static, traditional mechanism design framework by Bester and

Wärneryd [2], Compte and Jehiel [3], Fey and Ramsay [4], Hörner, Morelli and Squintani [5]

and Spier [7], who assume that in the event of conflict the outcome is determined by an

exogenous lottery contingent on the potential contestants’ types. Recently, two working

papers, Balzer and Schneider [1] and Zheng [8], have extended the frontier to dynamic

situations where the outcome in the event of conflict is determined by an all-pay auction game

between the two conflicting players. Balzer and Schneider consider the mediator’s problem

whose objective is to minimize the probability of conflict. Zheng identifies a necessary and

sufficient condition, in terms of the primitives, under which the mediator can completely

preempt conflict. A question not yet considered in this literature is What the mediator in

this dynamic framework should do in order to maximize the social surplus, incorporating

both possibilities of peace settlement and conflict. This question is particularly relevant to

cases where it is impossible to completely preempt conflict, which are the cases handled

in this paper. In such cases, minimizing the probability of conflict need not maximize the

social welfare, as it matters how much resource each party will spend in the continuation

equilibrium conditional on conflict.

In the following, Section 2 defines the model and presents a preliminary result. Section 3

classifies all the possible proposal-equilibrium pairs. Section 4 shows that two of such classes

are outperformed by the unbiased proposal. Section 5 presents the main results on the

suboptimality of the unbiased proposal and the better, biased alternative. Proofs are in the

appendix, in the order of appearance of the claims.

2 Preliminaries

Two players, named 1 and 2, compete for a prize. Each player’s type is independently drawn

from the same binary distribution, whose realization is either a, with probability θ, or z with

probability 1− θ, such that z > a > 0 and

(1− a/z) θ > 1/2. (1)
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First, for each i ∈ {1, 2}, player i’s type is drawn and privately known to i himself. Second,

a neutral mediator proposes to the two players a peaceful split (s1, s2) ∈ [0, 1]2 of the prize,

with s1+s2 = 1; Third, each player independently and publicly announces whether to accept

or reject the split. If both accept the split then the game ends with player i getting a payoff

equal to si. If at least one of them rejects the split, then the game enters its fourth stage,

the conflict , where each player i, after observing the rejection-acceptance actions of both,

submits a sealed bid bi ∈ R+. The player who submits the higher bid wins the prize, with

ties broken randomly with equal probabilities. With 1i denoting the indicator function of

the event that player i wins the prize, i’s payoff is equal to 1i − bi/ti.
An equilibrium given a peaceful split (s1, s2) means a perfect Bayesian equilibrium

(PBE) of the continuation game given that (s1, s2) has been proposed. Ineq. (1) means that

the primitives modeled above violate the condition for existence of peace-ensuring mech-

anisms (Zheng [8]). Thus, no matter what peaceful split the mediator proposes, conflict

occurs with strictly positive probability at any equilibrium. Nevertheless, the mediator’s

proposal determines which equilibrium gets to be played. In particular, the continuation

play during conflict depends on the posterior beliefs that is derived through Bayes’s rule

from the players’ mutually best responses to the mediator’s proposal. We shall assess the

mediator’s proposal according to the social surplus, i.e., the sum of the two players’ expected

payoff before realization of types, generated by the equilibrium given the proposal.

For the rest of the paper, we use the notations

r := 1/(1− a/z), xi := rsi. (2)

Thus, Ineq. (1) is equivalent to

θ > r/2, (3)

and the definition “(s1, s2) ∈ [0, 1]2 and s1 + s2 = 1” for any peaceful split becomes

(x1, x2) ∈ [0, r]2, x1 + x2 = r. (4)

We call such (x1, x2) peace proposal . We also use the standard notation y+ := max{y, 0}.

Lemma 1 For each i ∈ {1, 2}, if πi is equal to the posterior probability of “i’s type is equal

to a” conditional on the start of the conflict stage, then the expected payoff for each player i

(i ∈ {1, 2}) conditional on the start of the conflict stage is equal to max{π1, π2}/r if i’s type

is z, and equal to (π−i − πi)+ /r if i’s type is a.
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From Lemma 1 we can see the positive effect of inducing asymmetry between the

posteriors. Say π1 ≥ π2. When we further enlarge π1, the expected payoff for the low type

of player 1 remains zero in the conflict, while that for the low type of player 2, and those

for the high type of both players, get larger. Thus, conditional on the occurrence of conflict,

the more disparate are the posteriors the larger is the social surplus. The total effect of such

induced asymmetry is of course more complicated, as inducing such asymmetry alters the

equilibrium probability with which conflict does not occur.

Consider, as a benchmark, laissez faire, where the posteriors are the same as the prior,

as if the mediator were absent or made a proposal rejected for sure: π1 = π2 = θ. Then

Lemma 1 implies that each player’s expected payoff is equal to θ/r if his type is high (= z),

and equal to zero if his type is low (= a), so the social surplus is equal to

SLF := 2θ(1− θ)/r. (5)

3 All Possible Cases of an Equilibrium

Given any peace proposal (x1, x2), for each player i, let σi(ti) denote the equilibrium proba-

bility with which i with type ti rejects (x1, x2). Further denote qAi for his ex ante probability

of accepting it, and qRi for that of rejecting it. Hence

qAi = θ (1− σi(a)) + (1− θ) (1− σi(z)) , (6)

qRi = θσi(a) + (1− θ)σi(z). (7)

Let πAi be the posterior probability with which ti = a conditional on i’s accepting the

proposal, and πRi the posterior probability with which ti = a conditional on i’s rejecting it.

Thus, if qAi > 0 then

πAi = θ (1− σi(a)) /qAi =
θ

θ + (1− θ)(1− σi(z))/(1− σi(a))
, (8)

with the second equality true if σi(a) < 1; likewise, if qRi > 0 then

πRi = θσi(a)/qRi =
θ

θ + (1− θ)σi(z)/σi(a)
, (9)

with the second equality true if σi(a) > 0. Let

∆i :=

 ∆i(z)

∆i(a)

 := qA−i

 max
{
πRi , π

A
−i
}
− xi(

πA−i − πRi
)+ − xi

+qR−i

 max
{
πRi , π

R
−i
}
−max

{
πAi , π

R
−i
}(

πR−i − πRi
)+ − (πR−i − πAi )+

 .
(10)
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Note from Eqs. (8) and (9) that, for any i ∈ {1, 2}, if 0 < σi(a) < 1 then

πRi < (resp. ≤) πAi ⇐⇒ σi(z) > (resp. ≥) σi(a)⇐⇒ πRi < (resp. ≤) θ < (resp. ≤) πAi . (11)

Lemma 2 For any proposal-equilibrium pair (xi, σi)
2
i=1, with the corresponding

(
qAi , q

R
i , π

A
i , π

R
i

)2
i=1

defined by Eqs. (6)–(9), for any i ∈ {1, 2} and any ti ∈ {a, z}, Reject is a best response for

player i of type ti if and only if ∆i(ti) ≥ 0, Accept a best response for i of type ti if and only

if ∆i(ti) ≤ 0, and

∆i(z)−∆i(a) = πRi − qR−iπAi . (12)

Lemma 3 For any proposal-equilibrium pair (xi, σi)
2
i=1, and any i ∈ {1, 2}, if player i’s

strategy σi is specified by a row and column in the following table, then the equilibrium has

the property in the corresponding cell provided that the cell contains a property.

σi(z) = 0 0 < σi(z) < 1 σi(z) = 1

σi(a) = 0 σ−i(a) = σ−i(z) = 0 σ−i(a) = σ−i(z) = 0

0 < σi(a) < 1 impossible

σi(a) = 1 impossible impossible laissez faire

By Lemma 3, if (x1, x2;σ1, σ2) constitutes a proposal-equilibrium pair , with (x1, x2) a

peace proposal and (σ1, σ2) constituting an equilibrium given (x1, x2), and if the pair yields

larger social surplus than laissez faire, then for any i ∈ {1, 2}, exactly one of the following

alternatives is true:

i. (pure) σi(a) = σi(z) = 0;

ii. (totally mixed) 0 < σi(a) < 1 and 0 < σi(z) < 1;

iii. (mixed by a) 0 < σi(a) < 1 and σi(z) = 1;

iv. (mixed by z) σi(a) = 0 and 0 < σi(z) ≤ 1.

That renders up to sixteen possible combinations between σ1 and σ2. The next lemma

reduces the number to nine.

Lemma 4 For any proposal-equilibrium pair (xi, σi)
2
i=1 that yields larger social surplus than

laissez faire, for any i ∈ {1, 2}, it is impossible to have σi(a) = σi(z) = 0 = σ−i(a).
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Corollary 1 For any proposal-equilibrium pair (xi, σi)
2
i=1 that yields larger social surplus

than laissez faire, if σi(a) = σi(z) = 0, then σ−i(z) = 1 and 0 < σ−i(a) < 1.

As listed previously, there are at most four alternatives for a player i’s strategy in any

proposal-equilibrium pair better than laissez faire. Among them, alternative (iv) is ruled

out by Corollary 1, because the alternative means σi(a) = 0 and 0 < σi(z) ≤ 1, which

implies, by the table in Lemma 3, that σ−i(a) = σ−i(z) = 0, which combined with σi(a) = 0

is impossible by the corollary applied to player −i. Thus, all the possible cases for any

equilibrium that generates larger surplus than laissez faire are listed in the following table.

Hence we can restrict attention to only four kinds of proposal-equilibrium pairs:

lopsided: for some i ∈ {1, 2}, σi(a) = σi(z) = 0, σ−i(z) = 1 and 0 < σ−i(a) < 1;

mutually totally mixed (MTM): for any i ∈ {1, 2}, 0 < σi(a) < 1 and 0 < σi(z) < 1;

mutually partially mixed (MPM): for any i ∈ {1, 2}, 0 < σi(a) < 1 and σi(z) = 1;

hybrid: for some i ∈ {1, 2}, 0 < σi(a) < 1, 0 < σi(z) < 1, 0 < σ−i(a) < 1 and σ−i(z) = 1.

σ−i(a) = σ−i(z) = 0 σ−i is totally mixed σ−i is mixed by a

σi(a) = σi(z) = 0 impossible impossible lopsided, σ−i(z) = 1

σi is totally mixed impossible mutually totally mixed hybrid

σi is mixed by a lopsided, σi(z) = 1 hybrid mutually partially mixed

4 Proposals Inferior to the Unbiased One

The unbiased proposal is to split the prize equally between the players, i.e., to have x1 =

x2 = r/2. This section shows that the unbiased proposal, together with an equilibrium it

admits, generates larger social surplus than two classes of peace proposals: those that admit

MPM equilibriums, and those that admit MTM ones.

4.1 Mutually Partially Mixed (MPM) Proposal-Equilibrium Pairs

Consider any MPM proposal-equilibrium pair (xi, σi)
2
i=1. As characterized in Section 3,

for any i ∈ {1, 2}, 0 < σi(a) < 1 and σi(z) = 1. Thus, the expected probabilities of
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Accept/Reject and the posterior beliefs are

qAi = θ(1− σi(a)), qRi = θσi(a) + (1− θ),
πAi = θ(1−σi(a))

qAi
= 1, πRi = θσi(a)

θσi(a)+(1−θ) .
(13)

Note that, for any i ∈ {1, 2},

0 < πRi < θ, (14)

σi(a) ≥ σ−i(a) ⇐⇒ πRi ≥ πR−i ⇐⇒ qA1 ≤ qA2 . (15)

Thus, without loss of generality, let

σ1(a) ≥ σ2(a), πR1 ≥ πR2 . (16)

Hence Eq. (10) becomes

∆1 = qA2

 1− x1
1− πR1 − x1

+ qR2

 πR1 − 1

0

 ,
∆2 = qA1

 1− x2
1− πR2 − x2

+ qR1

 πR1 − 1

πR1 − πR2

 .
By Lemam 2, the necessary and sufficient condition for each σi to best reply to σ−i is:

∆i(a) = 0 and ∆i(z) ≥ 0. The condition ∆i(a) = 0 for each i is equivalent to

πR1 = 1− x1, (17)

πR2 =
θ(x1 − x2) + x2(1− x1)

x1
. (18)

The above equations pin down all MPM proposal-equilibrium pairs:

Lemma 5 (i) An MPM proposal-equilibrium pair exists if and only if

θ ≥ 3

4
+

(r − 1)2

4
. (19)

(ii) A peace proposal (x1, x2) admits an MPM equilibrium if and only if

r + 1− 2θ +
√
r2 − 2r + 4θ2 − 8θ + 5

2
≤ x1 ≤

r

2
. (20)

From this lemma we obtain the social-surplus maximum among all MPM proposal-

equilibrium pairs, which is exactly the one corresponding to the unbiased proposal.
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Theorem 1 If Ineq. (19) holds, then the unbiased proposal admits an MPM equilibrium,

and the pair generates a social surplus that is equal to θ and is larger than any other MPM

proposal-equilibrium pair.

This theorem also implies that the unbiased proposal also outperforms laissez faire (c.f. Eq. (5)),

due to Ineqs. (3) and the fact r > 1 by Eq. (2).

4.2 Mutually Totally Mixed (MTM) Proposal-Equilibrium Pairs

Given any peace proposal (x1, x2), denote (σ1, σ2) for an MTM equilibrium it admits. As

characterized in Section 3, for any i ∈ {1, 2},

0 < σi(a) < 1, 0 < σi(z) < 1. (21)

This implies the expected probabilities of Accept/Reject and the posterior beliefs:

qAi = θ(1− σi(a)) + (1− θ)(1− σi(z)), qRi = θσi(a) + (1− θ)σi(z),

πAi = θ(1− σi(a))/qAi , πRi = θσi(a)/qRi .
(22)

By (21), the necessary and sufficient condition for each σi to best rely σ−i is ∆i(a) = ∆i(z) =

0 (Lemma 2), which, by the identity ∆i(z) − ∆i(a) = πRi − qR−iπAi (Eq. (12)), is equivalent

to the condition that “∆i(a) = 0 or ∆i(z) = 0” and

πRi = qR−iπ
A
i (23)

for each i ∈ {1, 2}. Since 0 < qRi < 1 due to (21), Eq. (23) implies πRi < πAi , which means

πRi < θ < πAi (24)

for each i according to (11), Thus, by Eq. (10), the necessary and sufficient condition for (21)

to constitute PBE is simultaneous satisfaction of Eq. (23) and 0

0

 = qA−i

 πA−i − xi
πA−i − πRi − xi

+ qR−i

 max
{
πRi , π

R
−i
}
− πAi(

πR−i − πRi
)+

 . (25)

Relabeling the players if necessary, let

πR1 ≥ πR2 . (26)
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Then Eq. (25) is equivalent to

x1 = πA2 − πR1 , (27)

qA1 π
A
1 + qR1 π

R
1 = qA1 x2 + qR1 π

A
2 . (28)

Thus—

Lemma 6 (i) For any (θ, r) with θ > r/2, there exists a peace proposal (x1, x2) that admits

an MTM equilibrium: pick any i ∈ {1, 2} and let

r + 2θ − 1−
√

(r − 1)2 + 4(θ − 1)2

2
< xi < θ.

(ii) The unbiased proposal admits an MTM equilibrium if and only if

θ <
3

4
+

(r − 1)2

4
. (29)

Based on this lemma, we calculate the social surplus generated by any MTM proposal-

equilibrium pair, thereby obtaining:

Theorem 2 If
(
2− r +

√
r2 − r + 1

)
/3 ≤ θ, then any MTM proposal-equilibrium pair gen-

erates less social surplus than the unbiased proposal coupled with its MPM equilibrium.

5 Suboptimality of the Unbiased Proposal

Now that the unbiased proposal outperforms the two classes proposals characterized in the

previous section, the only possible alternatives that may outperform the unbiased proposal

are either the lopsided or the hybrid proposal-equilibrium pairs. Since a peace proposal may

admit multiple equilibriums, to fully assess the performance of the unbiased proposal we

need to consider all equilibriums that it admits. Such labor is saved by the next lemma.

Lemma 7 The unbiased proposal does not admit any hybrid equilibrium.

Thus, to prove suboptimality of the unbiased proposal, it suffices to prove that the

best among lopsided proposal-equilibrium pairs produces larger social surplus than the un-

biased proposal when it is coupled with an MPM equilibrium. To that end, we start by

characterizing all lopsided equilibriums.
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Given any peace proposal (x1, x2), let (σ1, σ2) denote a lopsided equilibrium. Thus, by

Corollary 1, for some i ∈ {1, 2}, σi(a) = σi(z) = 0, σ−i(z) = 1 and 0 < σ−i(a) < 1. By

Eqs. (6)–(9),

qAi = 1, qRi = 0, πAi = θ;

qA−i = θ(1− σ−i(a)), qR−i = θσ−i(a) + 1− θ;

πA−i = 1, πR−i = θ/(θ + (1− θ)/σ−i(a)) < θ;

where the off-path posterior πRi is undetermined. By Lemma 2, (σ1, σ2) constitutes an

equilibrium if and only if ∆i 5 [0, 0], ∆−i(z) ≥ 0 and ∆−i(a) = 0. By Eq. (12),

∆i = qA−i

 1− xi
1− πRi − xi

+ qR−i

 max
{
πRi , π

R
−i
}
− θ(

πR−i − πRi
)+

 ,
∆−i =

 max
{
πR−iπ

A
i

}
− x−i(

πAi − πR−i
)+ − x−i

 =

 θ − x−i
θ − πR−i − x−i

 .
Thus, the condition “∆−i(z) ≥ 0 and ∆−i(a) = 0” is equivalent to ∆−i(a) = 0, i.e.,

πR−i = θ − x−i. (30)

Eq. (30) determines the equilibrium uniquely modulo the off-path posterior πRi :

σ−i(a) =
1− x−i/θ

1 + x−i/(1− θ)
,

qA−i =
x−i

1− θ + x−i
,

qR−i =
1− θ

1− θ + x−i
.

Thus, given any peace proposal (x1, x2), (σ1, σ2) constitutes a lopsided equilibrium if and

only if ∆i 5 [0, 0], i.e., the following inequalities are satisfied:

qA−i (1− xi) + qR−i
(
max

{
πRi , π

R
−i
}
− θ
)
≤ 0,

qA−i
(
1− πRi − xi

)
+ qR−i

(
πR−i − πRi

)+ ≤ 0,

where πR−i, σ−i(a), qA−i and qR−i take the values determined by Eq. (30). With these values

plugged in and the fact that 1− θ + x−i > 0, the above inequalities are equivalent to

x−i (1− xi) + (1− θ)
(
max

{
πRi , θ − x−i

}
− θ
)
≤ 0, (31)

x−i
(
1− πRi − xi

)
+ (1− θ)

(
θ − x−i − πRi

)+ ≤ 0. (32)

Then we obtain—
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Lemma 8 A peace proposal (x1, x2) admits a lopsided equilibrium if and only if, for some

i ∈ {1, 2},
0 < x−i < θ (33)

and at least one of the following conditions holds:

xi ≥ max {θ, (r + 1− θ) /2} , (34)

(1− xi) (1− θ + r − xi) ≤ θ(1− θ) and xi ≥ θ. (35)

While the constraint (33) is a pair of strict inequalities, they are satisfied by the social-

surplus maximum subject to the other constraint listed in the lemma. Thus, we characterize

the optimum among lopsided proposal-equilibrium pairs:

Theorem 3 There exists a social-surplus maximum among all lopsided proposal-equilibrium

pairs, and the peace proposal (x1, x2) of this maximum, is defined by

x−i =

 1
2

(
r + θ − 2 +

√
r2 − 2rθ + 4θ − 3θ2

)
if r ≥ 3θ − 1

r − θ if r ≤ 3θ − 1,
(36)

where −i can be either 1 or 2.

Theorem 4 If Ineq. (19) and θ ≤ (r + 1)/3 are true, then the social-surplus maximum

among lopsided mechanism-equilibrium pairs generates larger social surplus than the unbiased

proposal does for any equilibrium that the latter admits.

We need to go through the trouble of beating the unbiased proposal with the social

surplus maximum among lopsided proposal-equilibrium pairs because even such maximum

can be inferior to the unbiased proposal given some parameter values:

Theorem 5 If θ > 2(1+r)/5, then the unbiased proposal, coupled with its MPM equilibrium,

generates larger social surplus than any lopsided proposal-equilibrium pair.

6 Conclusion

The notion of “honest broker,” in the news and in common sense, is usually identified with a

neutral mediator proposing an unbiased deal to the conflicting parties. The results presented
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above shatters this notion. Theorem 4 points out a case where a neutral, benevolent medi-

ator should propose a biased deal to two potential contestants in order to maximize their

total surplus, despite the fact that the two are ex ante identical. In addition, our results

go beyond this punchline. Theorem 3 provides an explicit lopsided proposal that outper-

forms the unbiased one. Theorem 5 furthermore cautions that such lopsided proposals are

outperformed by the unbiased one when the ex ante probability of being the weak type is

sufficiently high. These results motivate broader investigations. What is the exact condition

under which a neutral mediator should exercise favoritism? What are other situations that

also see an honest broker’s biased deal? These are interesting questions for further research.

A Proofs

A.1 Proof of Lemma 1

For each i ∈ {1, 2}, let Hi denote the c.d.f. of contestant i’s bid at the Bayesian Nash

equilibrium (BNE) of the contest game. By the characterization in Zheng [8],

H ′i(b) =

 1/z if H−i(b) > π−i

1/a if H−i(b) < π−i.

Without loss of generality, let π1 ≤ π2. Since the zero bid cannot be an atom for both players

at equilibrium, H1(0) = 0 ≤ H2(0), and

H1(b) =

 b/a if H2(b) ≤ π2

H−12 (π2)/a+
(
b−H−12 (π2)

)
/z if H2(b) ≥ π2

H2(b) =

 H2(0) + b/a if H1(b) ≤ π1

H2(0) +H−11 (π1)/a+
(
b−H−11 (π1)

)
/z if H1(b) ≥ π1

Inspecting the graphs of H1 and H2, we have H1(b) = b/a when H1(b) = π1; hence

H−11 (π1) = aπ1.

The same inspection also gives the fact that, when H2(b) = π2,

H2(b) = H2(0) +H−11 (π1)/a+
(
b−H−11 (π1)

)
/z

= H2(0) + (1− a/z)π1 + b/z,
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with the second equality due to H−11 (π1) = aπ1. Thus,

H−12 (π2) = (π2 − (1− a/z)π1 −H2(0)) z.

To find out H2(0), let b̄ be the supremum of the common support of H1 and H2. Since

1 = H2(b̄) = H2(0) +H−11 (π1)/a+
(
b̄−H−11 (π1)

)
/z = H2(0) + b̄/z + (1− a/z)π1,

we have b̄/z = 1−H2(0)− (1− a/z)π1. Plugging this into the fact 1 = H1(b̄), we have

1 = H1(b̄) = H−12 (π2)/a+
(
b̄−H−12 (π2)

)
/z

= b̄/z + (z/a− 1) (π2 − (1− a/z)π1 −H2(0))

= 1−H2(0)− (1− a/z)π1 + (z/a− 1) (π2 − (1− a/z)π1 −H2(0)) .

Thus,

H2(0) = (1− a/z) (π2 − π1) ,

b̄/z = 1− (1− a/z)π2.

Thus, the expected payoffs Ui(ti) at this equilibrium are, for each i ∈ {1, 2},

Ui(z) = 1− b̄/z = (1− a/z)π2,

U1(a) = H2(0) = (1− a/z) (π2 − π1) ,

U2(a) = 0.

One readily generalizes the above to the conclusion of the lemma.

A.2 Lemmas 2, 3 and 4 and Corollary 1

Proof of Lemma 2 By Lemma 1, the expected payoff for player i of type z to play Reject

is equal to

qA−i(1− a/z) max
{
πRi , π

A
−i
}

+ qR−i(1− a/z) max
{
πRi , π

R
−i
}
,

and that for it to play Accept is equal to

qA−ixi + qR−i(1− a/z) max
{
πAi , π

R
−i
}
.

The difference between these two displayed expressions is equal to ∆i(z)(1 − a/z) by the

notation xi defined in (2). Analogously, the payoff difference between Reject and Accept for
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player i of type a is equal to ∆i(a)(1 − a/z). To prove Eq. (12), use Eq. (10) and the fact

max{x, y} − (y − x)+ = x (for any x, y ∈ R) to obtain

∆i(z)−∆i(a) = qA−i

(
max

{
πRi , π

A
−i
}
−
(
πA−i − πRi

)+)
+qR−i

(
max

{
πRi , π

R
−i
}
−
(
πR−i − πRi

)+ −max
{
πAi , π

R
−i
}

+
(
πR−i − πAi

)+)
= qA−iπ

R
i + qR−i

(
πRi − πAi

)
,

which equals πRi − qR−iπAi since qA−i + qR−i = 1. �

Lemma 3 First, suppose that σi(a) = 0 and 0 < σi(z) ≤ 1, the case corresponding to the

first row and the second and third columns in the table. Then ∆i(a) ≤ 0 and ∆i(z) ≥ 0 by

Lemma 2, and πRi = 0 and πAi > θ by Eqs. (8) and (9). Thus,

0 ≤ ∆i(z)−∆i(a)
(12)
= πRi − qR−iπAi = −qR−iπAi .

Hence 0 ≥ qR−iπ
A
i . This, with πAi > θ > 0, implies qR−i = 0, i.e., σ−i(z) = σ−i(a) = 0, as

asserted in the cells.

Second, suppose 0 < σi(a) < 1 and σi(z) = 0. Then ∆i(a) = 0 and ∆i(z) ≤ 0 by

Lemma 2, πRi = 1 by definition, and πAi = θ/((θ+ (1 + θ)/(1−σi(a))) < θ by Eq. (8). Thus,

0 ≥ ∆i(z)−∆i(a)
(12)
= πRi − qR−iπAi = 1− qR−iπAi > 0,

with the last inequality due to πAi < θ < 1. The contradiction displayed above implies this

case impossible, as asserted in the cell.

Third, suppose σi(a) = 1 and 0 ≤ σi(z) < 1, which corresponds to the cells of the third

row and the first and second columns. Then ∆i(a) ≥ 0 and ∆i(z) ≤ 0 by Lemma 2, πAi = 0

by definition, and πRi = θ/(θ + (1− θ)σi(z)) > θ by Eq. (9). Thus,

0 ≥ ∆i(z)−∆i(a)
(12)
= πRi − qR−iπAi = πRi > θ > 0,

contradiction. Hence this case is impossible, as asserted in the cells.

Finally, consider the case σi(a) = σi(z) = 1, the cell of Row Three and Column Three.

Then qAi = 0, qRi = 1 and πRi = θ by definition. Apply Eq. (10) to the opponent −i to obtain ∆−i(z)

∆−i(a)

 =

 max
{
πR−i, θ

}
−max

{
πA−i, θ

}(
θ − πR−i

)+ − (θ − πA−i)+
 . (37)

We claim that the posterior probability π−i with which player −i’s type equals a is the same

as the prior: π−i = θ. Suppose otherwise. We derive a contradiction for all possibilities:
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1. σ−i(a) = 0. Then σ−i(z) > 0, otherwise the claim π−i = θ is true. Thus, πA−i > θ

by Eq. (8) applied to −i, and ∆−i(z) ≥ 0 by Lemma 2. Then Eq. (37) implies πR−i ≥
πA−i > θ. But since σ−i(a) = 0 and σ−i(z) > 0, πR−i = 0 by Bayes’s rule: contradiction.

2. σ−i(a) = 1. Then σ−i(z) < 1, otherwise the claim π−i = θ is true. Thus, πR−i > θ by

Eq. (9) applied to −i, and ∆−i(a) ≥ 0 by Lemma 2. Then Eq. (37) implies πA−i ≥ θ.

But since σ−i(a) = 1 and σ−i(z) < 1, πA−i = 0 by Bayes’s rule: contradiction.

3. 0 < σ−i(a) < 1. Then Eq. (11) is applicable to player −i. Thus, either πR−i < θ < πA−i

or πR−i > θ > πA−i. Suppose πR−i < θ < πA−i. Then Eq. (37) implies ∆−i(z) < 0 and

∆−i(a) > 0; hence σ−i(a) = 1 and σ−i(z) = 0 (Lemma 2). But that is impossible

according to the proved assertion in the cell of Row 3 and Column 1, with −i playing

the role of i in the table. Thus consider the only possibility, πR−i > θ > πA−i. Then

Eq. (37) implies ∆−i(z) > 0 and ∆−i(a) < 0; hence σ−i(a) = 0 and σ−i(z) = 1

(Lemma 2). But that implies, according to the proved assertion in the cell of Row 1

and Column 3, that σi(a) = σi(z) = 0, contradicting the condition 0 < σ−i(a) assumed

throughout this subcase.

All possible cases considered, we have derived a contradiction. Thus, the claim π−i = θ is

true. It follows that, in the conflict stage, which occurs of sure because σi(a) = σi(z) = 1,

the posteriors are πi = π−i = θ. Then Lemma 1 implies that each player’s expected payoff is

equal to θ/r if his type is high, and equal to zero if his type is low, hence the social surplus

is equal to the laissez faire level SLF in Eq. (5), as asserted in the last cell of the table. �

Proof of Lemma 4 Since σi(a) = σi(z) = 0 = σ−i(a), we have σ−i(z) > 0 because conflict

occurs with strictly positive probability due to Ineq. (1). Thus qR−i > 0 and qA−i > 0, and by

Bayes’s rule, πR−i = 0 and πA−i > θ. With σi(a) = σi(z) = 0, we have qRi = 0, qAi = 1 and,

by Bayes’s rule, πAi = θ. By Lemma 2, for this (σ1, σ2) to constitute an equilibrium, the

necessary and sufficient condition is that ∆i(z) ≤ 0, ∆i(a) ≤ 0 and ∆−i(z) ≥ 0 ≥ ∆−i(a).

By Eq. (10) applied to player −i, ∆−i(z)

∆−i(a)

 =

 max
{
πR−i, π

A
i

}
− x−i(

πAi − πR−i
)+ − x−i

 =

 max {0, θ} − x−i
(θ − 0)+ − x−i

 =

 θ − x−i
θ − x−i

 .
Thus, ∆−i(z) ≥ 0 ≥ ∆−i(a) implies θ − x−i = 0, which, by Eq. (4), implies

xi = r − θ. (38)
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By Eq. (10) applied to player i,

∆i = qA−i

 max
{
πRi , π

A
−i
}
− xi(

πA−i − πRi
)+ − xi

+ qR−i

 max
{
πRi , 0

}
−max {θ, 0}(

0− πRi
)+ − (0− θ)+


= qA−i

 max
{
πRi , π

A
−i
}
− xi(

πA−i − πRi
)+ − xi

+ qR−i

 πRi − θ
0

 .
Thus, the equilibrium conditions ∆i(z) ≤ 0 and ∆i(a) ≤ 0 are equivalent to, respectively,

xi ≥ max
{
πRi , π

A
−i
}

+
qR−i
qA−i

(
πRi − θ

)
, (39)

xi ≥
(
πA−i − πRi

)+
. (40)

Eq. (38) coupled with Ineq. (1) implies xi < θ; on the other hand, the right-hand side of (39)

is greater than θ +
qR−i
qA−i

(
πRi − θ

)
, as πA−i > θ. Thus, Ineq. (39) implies πRi < θ. Hence

Ineqs. (39) and (40) become

xi ≥ πA−i +
qR−i
qA−i

(
πRi − θ

)
,

xi ≥ πA−i − πRi .

Together the two inequalities imply that

πA−i − xi ≤ πRi ≤ θ −
qA−i
qR−i

(
πA−i − xi

)
,

which in turn implies πA−i − xi ≤ θ − qA−i
qR−i

(
πA−i − xi

)
, i.e.,

(
1 +

qA−i
qR−i

)(
πA−i − xi

)
≤ θ,

i.e., 1
qR−i

(
πA−i − xi

)
≤ θ. This, combined with the fact xi < θ, implies 1

qR−i

(
πA−i − θ

)
< θ, i.e.,

1

(1− θ)σ−i(z)

(
θ

θ + (1− θ)(1− σ−i(z))
− θ
)
< θ,

i.e.,
1

θ + (1− θ)(1− σ−i(z))
< 1,

which is impossible because the denominator on the left-hand side is less than one. �
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Proof of Corollary 1 Since σi(a) = σi(z) = 0, qRi = 0, and Lemma 4 implies σ−i(a) > 0.

Hence πR−i > 0 by Bayes’s rule, and ∆−i(a) ≥ 0 by Lemma 2. Thus, Eq. (12) coupled with

qRi = 0 implies

∆−i(z) ≥ ∆−i(z)−∆−i(a) = πR−i − qRi πA−i = πR−i > 0.

Then Lemma 2 implies σ−i(z) = 1. This in turn implies σ−i(a) < 1, as the equilibrium is by

hypothesis better than laissez faire. Thus, σ−i(z) = 1 and 0 < σ−i(a) < 1, as asserted. �

A.3 Lemma 5 and Theorem 1

Proof of Lemma 5 Combining Eqs. (13), (17) and (18), we have

σ1(a) =
1− θ
θ

1− x1
x1

, (41)

σ2(a) =
1− θ
θ

θ(x1 − x2) + x2(1− x1)
x1 − θ(x1 − x2)− x2(1− x1)

, (42)

which are equivalently to

qA1 =
x1 + θ − 1

x1
, (43)

qA2 =
x2(θ + x1 − 1)

x1 − (θ(x1 − x2) + x2(1− x1))
, (44)

and qRi = 1− qAi for each i. Thus, given peace proposal (x1, x2), (σ1, σ2) with σ1(a) ≥ σ2(a)

constitutes an MPM equilibrium if and only if ∆i(z) ≥ 0 for each i ∈ {1, 2}, with the values

of πRi , qAi and qRi satisfying (14), (17), (18), (43) and (44). Combined with Eq. (17), the

conditions ∆1(z) ≥ 0 and ∆2(z) ≥ 0 are equivalent to, respectively,

qA2 ≥ x1, (45)

qA1 (1− x2) ≥ (1− qA1 )x1. (46)

By Eqs. (17) and (18), the condition (14) is equivalent to

0 < 1− x1 < θ, (47)

0 < θ(x1−x2)+x2(1−x1)
x1

< θ. (48)
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By Eqs. (15), (17) and (18),

σ1(a) ≥ σ2(a) ⇐⇒ πR1 ≥ πR2

⇐⇒ 1− x1 ≥
θ(x1 − x2) + x2(1− x1)

x1
⇐⇒ (x1 − x2)(1− θ − x1) ≥ 0

⇐⇒ x1 ≤ x2,

with the last line due to 1− θ−x1 = πR1 − θ < 0 by (47). Thus, Ineq. (16), which we assume

without loss of generality, is equivalent to

x1 ≤ x2. (49)

We have thus proved that, given any peace proposal (xi)
2
i=1, there is at most one MPM

equilibrium, and such an equilibrium exists if and only if, with the players labeled so that

σ1(a) ≥ σ2(a), the following conditions are simultaneously satisfied: (43), (44), (45), (46),

(47), (48) and (49). Among them, (45) is redundant because it is implied by (46) and (49):

qA1 (1− x1)
(49)

≥ qA1 (1− x2)
(46)

≥
(
1− qA1

)
x1 =⇒ qA1 ≥ x1

(15)
=⇒ qA2 ≥ qA1 ≥ x1.

Consequently, Eq. (44), called upon only by (45), is also redundant. Among the remaining

conditions, (48) is redundant because it is implied by (47) and (49): By (47) and (49),

x2 ≥ x1 > 1− θ > 0 and 1− x1 > 0, hence θ(x1 − x2) + x2(1− x1) > 0; and

θ(x1 − x2) + x2(1− x1)
x1

< θ ⇐⇒ x2(1− θ)− x1x2 < 0,

which is true by (47) and x2 > 0. By the identity x2 = r − x1, (49) is equivalent to

x1 ≤
r

2
. (50)

Furthermore, the part “0 < 1 − x1” in (47) is also redundant, as it is implied by (50) and

the fact r < 2 (by definition of r). Thus, the necessary and sufficient condition for existence

of an MPM equilibrium becomes simultaneous satisfaction of (43), (46), (50) and

1− x1 < θ. (51)

Combined with the identity x2 = r − x1 and Eq. (43), Ineq. (46) is equivalent to

(θ + x1 − 1)(1− r + x1) ≥ x1(1− θ),
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which is equivalent to

(x1)
2 + x1(2θ − r − 1) + (θ − 1)(1− r) ≥ 0,

i.e., either

x1 ≥
r + 1− 2θ +

√
r2 − 2r + 4θ2 − 8θ + 5

2
(52)

or

x1 ≤
r + 1− 2θ −

√
r2 − 2r + 4θ2 − 8θ + 5

2
. (53)

We claim that Ineq. (53) is impossible. To prove the claim, note from (46) and (51) that

qA1 (1− x2) > 0 =⇒ 1− x2 > 0 =⇒ 1− r + x1 > 0 =⇒ x1 > r − 1.

Thus, Ineq. (53), if true, would imply

r − 1 <
r + 1− 2θ −

√
r2 − 2r + 4θ2 − 8θ + 5

2
,

i.e.,

−
√
r2 − 2r + 4θ2 − 8θ + 5 ≥ r + 2θ − 3,

which is impossible: if r + 2θ − 3 > 0, the contradiction is obvious; if r + 2θ − 3 ≤ 0, then

−
√
r2 − 2r + 4θ2 − 8θ + 5 ≥ r + 2θ − 3

⇐⇒
√
r2 − 2r + 4θ2 − 8θ + 5 ≤ |r + 2θ − 3|

⇐⇒ (1− θ)(r − 1) ≤ 0,

which is false because r − 1 > 0 by definition of r. Thus, only (52) is the equivalence

of Ineq. (46). Therefore, the necessary and sufficient condition for existence of an MPM

equilibrium becomes simultaneous satisfaction of (50), (51) and (52). Among them, (51) is

redundant because it is implied by (52):

x1 + θ
(52)
>

r + 1− 2θ

2
+ θ =

r + 1

2
> 1,

with the last inequality due to the fact r > 1 from the definition of r. Thus, we have

reduced the necessary and sufficient condition to simultaneous satisfaction of (50) and (52),

i.e., Ineq. (20), as asserted by Part (ii) of the lemma. Obviously an x1 that satisfies (20)

exists if and only if
r + 1− 2θ +

√
r2 − 2r + 4θ2 − 8θ + 5

2
≤ r

2
,

i.e., Ineq. (19), as asserted by Part (i) of the lemma. �
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Proof of Theorem 1 Denote Spart(x1) for the social surplus generated by the MPM

equilibrium given peace proposal (x1, x2) such that, with players relabeled if necessary, x1 ≤
x2. At this equilibrium, Reject is a best response for each type of each player, hence each

player’s surplus is equal to his expected payoff from Reject. Thus, by Lemma 1,

rSpart(x1) = θqA2 (1− πR1 ) + (1− θ)
(
qA2 + qR2 π

R
1

)
+θ
(
qA1 (1− πR2 ) + qR1 (πR1 − πR2 )

)
+ (1− θ)

(
qA1 + qR1 π

R
1

)
= qA2 (1− θπR1 ) + qA1 (1− θπR2 ) + qR2 (1− θ)πR1 + qR1 (πR1 − θπR2 )

= qA2 − θπR1 + qA1 − θπR2 + qR2 π
R
1 + qR1 π

R
1

= θ(1− σ2(a))− θ(1− x1) + θ(1− σ1(a))− θπR2 + qR2 (1− x1) + θσ1(a)

= θ + θ(1− σ2(a))− θ(1− x1)− θπR2 + qR2 (1− x1), (54)

with the second last line due to Eqs. (13) and (17). By Lemma 5, the maximum of the range

of x1 for such equilibriums is equal to r/2, corresponding to the unbiased proposal, which

by the same lemma admits a unique equilibrium, also MPM. Thus, it suffices to show that

rSpart(r/2) = rθ and d
dx1

(rSpart(x1)) > 0. To that end, we calculate:

d

dx1
(rSpart(x1)) = −θ d

dx1
πR2 + θ − θ d

dx1
σ2(a)− qR2 + (1− x1)θ d

dx1
σ2(a)

= −x1θ d
dx1
σ2(a) + θ − θ d

dx1

(
θσ2(a)

qR2

)
− qR2

= θ − qR2 − θ
[
θ
dσ2(a)
dx1

qR2 −θ2σ2(a)
dσ2(a)
dx1

(qR2 )2

]
− x1θ dσ2(a)dx1

= θ − qR2 − θ2
dσ2(a)
dx1

[
1−πR2
qR2

]
− x1θ dσ2(a)dx1

= θ − qR2 −
[
θx1 + θ2

1−πR2
qR2

]
dσ2(a)
dx1

, (55)

where, by Eq. (42) and the identity x2 = r − x1,

dσ2(a)

dx1
=

(x1)
2 + r(θ − 1)

(x1 − [ θ(x1 − x2) + x2(1− x1)] )2
1− θ
θ

. (56)

Denote

M := x1 − [ θ(x1 − x2) + x2(1− x1)].

Note that

M = r(θ + x1 − 1) + 2x1(1− θ)− (x1)
2.

By the restriction θ > r
2
≥ x1 (due to Ineqs. (3) and (20)), it is straightforward to show

2(x1)
2 ≤ r(θ + x1 − 1) + 2x1(1− θ) ≤ rx1

22



and hence

(x1)
2 ≤M ≤ x1(r − x1). (57)

By Eq. (44),

qR2 = 1− qA2 =
x1(1− θ)

M
.

Plug this equation and Eq. (56) into Eq. (55) to obtain

d

dx1
(rSpart(x1)) = θ − x1(1− θ)

M
−
[
x1(1− θ)
M2

((x1)
2 + r(θ − 1)) +

θ

(x1)2
((x1)

2 + r(θ − 1))

]
=
rθ(1− θ)

(x1)2
− x1(1− θ)

M

[
1 +

(x1)
2 + r(θ − 1)

M

]
=
rθ(1− θ)

(x1)2
− x1(1− θ)

M2
[x1(2− 2θ + r) + 2r(θ − 1)] .

Thus, d
dx1

(rSpart(x1)) > 0 is equivalent to

rθM2 > (x1)
3(x1(2− 2θ + r) + 2r(θ − 1)).

Since

x1(2− 2θ + r) + 2r(θ − 1) = r(θ + x1 − 1) + 2x1(1− θ)− r(1− θ),

the inequality displayed above is equivalent to

rθM2 > (x1)
3 [r(θ + x1 − 1) + 2x1(1− θ)− r(1− θ)] . (58)

By r ≥ 2x1 and M ≥ (x1)
2 (Ineq. (57)), the left-hand side of (58) is greater than or equal to

rθ(x1)
4, and the right-hand side less than or equal to (x1)

3r(θ+ x1 − 1). Thus, (58) holds if

rθ(x1)
4 > (x1)

3r(θ + x1 − 1),

i.e., θx1 > θ + x1 − 1, which is true because θx1 − (θ + x1 − 1) = (1 − θ)(1 − x1) > 0 by

Ineq. (47). Thus, we have proved d
dx1

(rSpart(x1)) > 0.

Finally, given the unbiased proposal, x1 = x2 = r/2; by Eqs. (13), (18) and (41).

σ2(a) =
1− θ
θ

2− r
r

,

πR2 = 1− r/2,

qR2 =
1− θ
r/2

.

Plug them into Eq. (54) to obtain

rSpart(r/2) = θ + θ

(
1− 1− θ

θ

2− r
r

)
− θ(1− r/2)− θ(1− r/2) +

1− θ
r/2

(1− r/2) = rθ,

as asserted. �
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A.4 Lemma 6 and Theorem 2

Proof of Lemma 6 By Eqs. (22) and (23), Eq. (28) is equivalent to θ(1−σ1(a))+θσ1(a) =

qA1 x2 + πR2 , i.e., θ = qA1 x2 + πR2 . Furthermore,

θ = qA1 x2 + πR2 ⇐⇒ θ =
πA2 − πR2
πA2

x2 + πR2

⇐⇒ (θ − πR2 )πA2 = (πA2 − πR2 )x2

⇐⇒ (θ − πR2 )
πR2 θ(1− σ2(a))

πR2 − θσ2(a)
=

πR2 (θ − πR2 )

πR2 − θσ2(a)
x2

⇐⇒ θ(1− σ2(a)) = x2,

where the first line is due to qA1 = 1− qR1 = 1− πR2 /πA2 by Eq. (23), the third line due to

πA2 =
θ(1− σ2(a))

1− qR2
=
πR2 θ(1− σ2(a))

πR2 − πR2 qR2
(22)
=

πR2 θ(1− σ2(a))

πR2 − θσ2(a)
,

and the fourth line due to Ineqs. (21) and (24). Thus, Eq. (28) is equivalent to

σ2(a) = 1− x2
θ
. (59)

Consequently, since σ2(a) < 1,

θ > x2. (60)

Plug Eq. (27) into Eq. (28) to obtain qA1 π
A
1 + qR1 π

R
1 = qA1 x2 + qR1 x1 + qR1 π

R
1 , i.e.,

qA1 π
A
1 = qA1 x2 + qR1 x1,

which by Eq. (22) is equivalent to

θ(1− σ1(a)) = x2 − qR1 (x2 − x1) . (61)

In the meantime,

x1 = πA2 − πR1 ⇐⇒ x1 =
x2
qA2
− πR1

⇐⇒ x1 =
x2

1− πR1 /πA1
− πR1 ⇐⇒ πA1 x2 =

(
πA1 − πR1

) (
πR1 + x1

)
,

with the first line due to

qA2 π
A
2 = θ(1− σ2(a))

(59)
= x2,

and the second due to qA2 = 1− qR2 = 1−πR1 /πA1 by Eq. (23). Thus, Eq. (27) is equivalent to

πA1 x2 =
(
πA1 − πR1

) (
πR1 + x1

)
. (62)
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Plug the fact that πR1 = θσ1(a)/qR1 and

πA1 − πR1 =
θ(1− σ1(a))

1− qR1
− θσ1(a)

qR1
=
θ(qR1 − σ1(a))

qA1 q
R
1

into the right-hand side of Eq. (62) to note that Eq. (62) is equivalent to

qA1 π
A
1 x2 =

θ(qR1 − σ1(a))

qR1
· θσ1(a) + qR1 x1

qR1
.

The left-hand side of this equation is equal to

θ(1− σ1(a))x2 = x2(x2 − qR1 (x2 − x1))

by Eq. (61), and the right-hand side equal to

θqR1 − θ + x2 − qR1 (x2 − x1)
qR1

· θ − x2 + qR1 (x2 − x1) + qR1 x1
qR1

again by Eq. (61). Thus, Eqs. (61) and (62) together are equivalent to

x2(x2 − qR1 (x2 − x1)) =
x2 − θ − qR1 (x2 − x1 − θ)

qR1
· θ − x2 + qR1 x2

qR1
,

which is equivalent to(
qR1
)2
x2
(
qR1 x1 + (1− qR1 )x2

)
=
(
qR1 x1 − (1− qR1 )(θ − x2

) (
qR1 x2 + θ − x2

)
. (63)

In sum, (21) constitutes a PBE if and only if Eq. (63) admits a solution for qR1 ∈ (0, 1). If

qR2 = 0, the left-hand side of (63) is equal to zero while the right-hand side of (63) equal to

−(θ − x2), which is negative by Ineq. (60). If qR2 = 1, the left-hand side of (63) is equal to

x2x1 while the right-hand side equal to θx1, which is bigger than the left-hand side due to

Ineq. (60). Thus, Eq. (63) admits a solution for qR1 ∈ (0, 1), hence (21) constitutes a PBE if

and only if the values of (σ1, σ2) determined by the solution for qR1 satisfies (21). Moreover,

it can be shown that this

By Eq. (61) and qR1 = θσ1(a) + (1− θ)σ1(z), we have

σ1(a) =
θ + x1 − r + qR1 (r − 2x1)

θ
,

σ1(z) =
qR1 − θσ1(a)

1− θ
.

To characterize the restriction of (21) on σ1, observe that

0 < σ1(a) =
θ + x1 − r + qR1 (r − 2x1)

θ
< 1 ⇐⇒ 0 < x2 + qR1 (x1 − x2) < θ;
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and

0 < σ1(z) =
qR1 − θσ1(a)

1− θ
< 1 ⇐⇒ θ < qR1 + x2 + qR1 (x1 − x2) < 1

⇐⇒ θ < x2 + qR1 (1 + r − 2x2) < 1

⇐⇒ θ − x2
1 + r − 2x2

< qR1 <
1− x2

1 + r − 2x2
,

with the last line due to the fact

1 + r − 2x2 = 1 + x1 − x2 > θ − x2 + x1
(60)
> 0.

By qR1 = πR2 /π
A
2 and Eq. (59), we pin down σ2(z):

qR1 =
θσ2(a)

θ(1− σ2(a))
· θ(1− σ2(a) + (1− θ)(1− σ2(z))

θσ2(a) + (1− θ)σ2(z)
=
θ − x2
x2

· x2 + (1− θ)(1− σ2(z))

θ − x2 + (1− θ)σ2(z)

and hence

σ2(z) =
θ − x2
1− θ

· 1− θ + x2(1− qR1 )

θ + x2(qR1 − 1)
.

To characterize the restriction of (21) on σ2(z), note that

σ2(z) > 0 ⇐⇒ θ + x2(q
R
1 − 1) > 0,

where the second inequality is true due to Ineq. (60); also note that

σ2(z) < 1 ⇐⇒ θ − x2
1− θ

· 1− θ + x2(1− qR1 )

θ + x2(qR1 − 1)
< 1

⇐⇒ 1− θ + x2(1− qR1 )

θ − x2(1− qR1 )
<

1− θ
θ − x2

⇐⇒ 1

θ − x2(1− qR1 )
<

1− x2
θ − x2

⇐⇒ qR1 >
θ − x2
1− x2

,

where the second, third and fourth lines each use Ineq. (60). To characterize the restriction

of (21) on σ2(a), note from Eq. (59) that

0 < σ2(a) < 1 ⇐⇒ θ > x2 > 0.

Therefore, the necessary and sufficient condition for qR1 to constitute an MTM equilibrium

is simultaneous satisfaction of

0 < x2 + qR1 (x1 − x2) < θ, (64)

θ−x2
1+r−2x2 < qR1 < 1−x2

1+r−2x2 , (65)

qR1 > θ−x2
1−x2 , (66)

0 < x2 < θ. (67)
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By 1 + r − 2x2 = 1 + x1 − x2 > 1− x2 due to (67),

θ − x2
1− x2

>
θ − x2

1 + r − 2x2
.

Thus, the necessary and sufficient condition is equivalent to simultaneous satisfaction of (64),

(67) and
θ − x2
1− x2

< qR1 <
1− x2

1 + r − 2x2
. (68)

Ineq. (68) admits a solution for qR1 if and only if θ−x2
1−x2 <

1−x2
1+r−2x2 , i.e.,

(x2)
2 + (1− r − 2θ)x2 + (1 + r)θ − 1 < 0,

i.e.,

r + 2θ − 1−
√

(r − 1)2 + 4(θ − 1)2

2︸ ︷︷ ︸
=:X

< x2 <
r + 2θ − 1 +

√
(r − 1)2 + 4(θ − 1)2

2︸ ︷︷ ︸
=:Y

.

Clearly, X < θ < Y . Thus, (68) coupled with (67) is equivalent to

r + 2θ − 1−
√

(r − 1)2 + 4(θ − 1)2

2
< x2 < θ. (69)

Hence an MTM equilibrium exists if and only if (64) and (69) are both satisfied. To charac-

terize (64), consider the only two possible cases:

i. x1 < x2, i.e., x2 > r/2. Then (64) is satisfied due to θ > x2 > 0, implied by (69). Since

r/2 < θ, an MTM equilibrium exists in this case if and only if

max{r/2, X} < x2 < θ.

ii. x1 ≥ x2, i.e., x2 ≤ r/2. Then (64) is equivalent to

qR1 <
θ − x2
x1 − x2

.

This inequality is implied by the second inequality in (68), because

θ − x2
x1 − x2

>
1− x2

1 + r − 2x2
⇐⇒ θ − r(1− θ) + x2(1− 2θ) > 0,

where the second inequality follows from the fact that x2 ≤ r/2, 1 − 2θ < 0 and

r/2 < θ. Since (68) has been incorporated into (69), (64) is again redundant, and an

MTM equilibrium exists in this case if and only if

X < x2 ≤ r/2.
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Thus, for any configuration of the parameters (θ, r) there exists a peace proposal (x1, x2)

that admits an MTM equilibrium: pick any i ∈ {1, 2}; let X < xi < θ.

Consequently, the unbiased proposal (xi = r/2) admits an MTM equilibrium if and

only if X < r/2, i.e.,

r + 2θ − 1−
√

(r − 1)2 + 4(θ − 1)2

2
<
r

2
,

i.e.,

θ <
3

4
+

(r − 1)2

4
,

as asserted. �

Proof of Theorem 2 Consider any MTM proposal-equilibrium pair. Denote Stotal for the

social surplus it generates. Then

rStotal = qA2 π
A
2 − θπR1 + qR2 π

R
1 + qA1 π

A
1 + qR1 π

R
1 − θπR2 (70)

= θ + qA2 π
A
2 +

(
qR2 − θ

)
πR1 − θπR2 . (71)

By Eq. (59),

qR2 = θσ2(a) + (1− θ)σ2(z) = θ − x2 + (1− θ)σ2(z).

Hence

qR2 ≥ θ ⇐⇒ θ − x2 + (1− θ)σ2(z) ≥ θ ⇐⇒ σ2(z) ≥ x2
1− θ

Since σ2(z) < 1 requires that x2 < 1− θ, if we have x2 ≥ 1− θ then qR2 ≥ θ will violate the

equilibrium condition that σ2(z) < 1. In other words, x2 ≥ 1− θ implies qR2 < θ.

Relabeling the two players if necessary, let πR1 ≥ πR2 . It is clear that whenever qR2 < θ

then by Eq. (71) the upper bound for the social surplus is when πR1 takes it minimal value,

which is πR1 = πR2 :

rStotal = θ + qA2 π
A
2 +

(
qR2 − θ

)
πR1 − θπR2 < 2θ(1− πR2 ).

For the rest of the proof, we shall show: First, πR1 = πR2 is only admitted by the

unbiased proposal. Thus, whenever qR2 < θ the optimal split is the unbiased one which

achieves the upper bound of social-surplus. Second, characterize the primitive condition

based on Lemma 6 such that it also satisfy the condition x2 ≥ 1− θ.
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First, we show that πR1 = πR2 implies πA1 = πA2 . To that end we use the necessary and

sufficient conditions (25) coupled with πR1 = πR2 = πR to obtain

θ = qA2 x1 + πR

πA2 − πR = x2

θ = qA1 x2 + πR

πA1 − πR = x2.

These set of four equations imply

qA2
qA1

=
x2
x1

πA2 − πR

πA1 − πR
=
x2
x1
.

By Eq. (23) we know that for any i ∈ {1, 2} πR = qRi π
A
−i ⇐⇒ qAi =

πA−i−πR−i
πA−i

. Hence,

qA2
qA1

=
x2
x1
⇐⇒

πA1
(
πA2 − πR

)
πA2 (πA1 − πR)

=
x2
x1

⇐⇒
πA1
(
πA2 − πR

)
πA2 (πA1 − πR)

=
πA2 − πR

πA1 − πR
⇐⇒ πA2 = πA1 = πA.

Thus, if πR1 = πR2 = πR then πA1 = πA2 = πA. This case corresponds to the symmetric

mutually mixed PBE which we know is admitted by the unbiased split.

Thus, if x2 ≥ 1− θ then qR2 < θ; by Eq. (71), the upper bound for the social surplus is

when πR1 takes it minimal value which is πR1 = πR2 . We have shown that this posterior beliefs

is associated with the MTM equilibrium that is admitted by the unbiased split.

Second, we characterize the primitive condition corresponding to x2 ≥ 1 − θ. By

Eq. (69), one of the necessary and sufficient conditions for this class of equilibrium is.

r + 2θ − 1−
√

(r − 1)2 + 4(θ − 1)2

2
< x2 < θ. (72)

Note that

r + 2θ − 1−
√

(r − 1)2 + 4(θ − 1)2

2
< 1− θ ⇐⇒ r + 4θ − 3 <

√
(r − 1)2 + 4(θ − 1)2.

By 1 < r < 2 and r
2
< θ we can verify that r + 4θ − 3 = r − 1 + 4(θ − 2) > 0. Hence

r + 4θ − 3 <
√

(r − 1)2 + 4(θ − 1)2 ⇐⇒ (r + 4θ − 3)2 < (r − 1)2 + 4(θ − 1)2

⇐⇒ 4(3θ2 + (2r − 8)θ + 1− r) < 0.
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Which is equivalent to

2− r −
√
r2 − r + 1

3
< θ <

2− r +
√
r2 − r + 1

3

It is straightforward to note that the lower bound is not binding in the presence of r
2
< θ.

Thus, if r
2
< θ < 2−r+

√
r2−r+1
3

there exists a split that satisfies the necessary and

sufficient condition

r + 2θ − 1−
√

(r − 1)2 + 4(θ − 1)2

2
< x2 < 1− θ < r/2 < θ.

If 2−r+
√
r2−r+1
3

≤ θ < 1 then there exists a split that satisfies the necessary and sufficient

condition

1− θ ≤
r + 2θ − 1−

√
(r − 1)2 + 4(θ − 1)2

2
< x2 < θ.

In sum, for any 1 < r < 2 and 2−r+
√
r2−r+1
3

≤ θ < 1 there exist x2 that satisfies both of the

necessary and sufficient condition for existence of totally mutually mixed equilibriums, i.e,

(64) and (69) and the sufficient condition 1− θ ≤ x2. Moreover, for this primitive condition

the unbiased split maximize social-surplus among all MTM proposal-equilibrium pairs. �

A.5 Lemma 7

Given any peace proposal (x1, x2), denote (σ1, σ2) for a hybrid equilibrium it admits. As

characterized in Section 3, for some i ∈ {1, 2},

0 < σi(a) < 1, 0 < σi(z) < 1, 0 < σ−i(a) < 1, 0 < σ−i(z) = 1. (73)

Without loss of generality let i = 1. This implies the expected probabilities of Accept/Reject

and the posterior beliefs:

qA1 = θ(1− σ1(a)) + (1− θ)(1− σ1(z)), qR1 = θσ1(a) + (1− θ)σ1(z),

πA1 = θ(1− σ1(a))/qA1 , πR1 = θσ1(a)/qR1 ,

qA2 = θ(1− σ2(a)), qR2 = θσ2(a) + (1− θ),
πA2 = 1, πR2 = θσ2(a)/qR2 .

(74)

By (73), the necessary and sufficient condition for each σ1 to best rely σ2 is ∆1(a) = ∆1(z) =

0 (Lemma 2), which, by the identity ∆1(z) − ∆1(a) = πR1 − qR2 πA1 (Eq. (12)), is equivalent

to the condition that “∆1(a) = 0 or ∆1(z) = 0” and

πR1 = qR2 π
A
1 (75)
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By (73), the necessary and sufficient condition for each σ2 to best rely σ1 is ∆2(a) = 0 and

∆2(z) ≥ 0 (Lemma 2), which, by the identity ∆1(z) − ∆1(a) = πR1 − qR2 π
A
1 (Eq. (12)), is

equivalent to the condition “∆2(a) = 0 or ∆2(z) ≥ 0” and

πR2 ≥ qR1 π
A
2 = qR1 . (76)

Since 0 < qRi < 1 due to (73), Eq. (75) and Ineq. (76) implies πRi < πAi , which means

πRi < θ < πAi (77)

for each i according to (11). Hence Eq. (10) becomes

∆1 = qA2

 πA2 − x1
πA2 − πR1 − x1

+ qR2

 max{πR1 , πR2 } − πA1(
πR2 − πR1

)+
 , (78)

∆2 = qA1

 πA1 − x2
πA1 − πR2 − x2

+ qR1

 max{πR1 , πR2 } − πA2(
πR1 − πR2

)+
 . (79)

The necessary and sufficient condition for each σ1 to best rely σ2 is ∆1(a) = ∆1(z) = 0. Also,

the necessary and sufficient condition for each σ2 to best rely σ1 is ∆2(a) = 0 and ∆2(z) ≥ 0.

There are only two possible cases: (i) πA2 > πA1 > πR2 ≥ πR1 or (ii) πA2 > πA1 > πR1 > πR2 . By

the definition of posterior probabilities, it is easy to show:

i. πA2 > πA1 > πR2 ≥ πR1 ⇐⇒ σ1(z) > σ1(a) and σ2(a) ≥ σ1(a)
σ1(z)

;

ii. πA2 > πA1 > πR1 > πR2 ⇐⇒ σ1(z) > σ1(a) and σ2(a) < σ1(a)
σ1(z)

.

Case (i): πA2 > πA1 > πR2 ≥ πR1 . By Eq. (75) and Ineq. (76), ∆1(a) = ∆1(z) = 0, ∆2(a) = 0,

and ∆2(z) ≥ 0 , given any peace proposal (x1, x2), the necessary and sufficient condition for

(73) to constitute PBE is simultaneous satisfaction of

θ = qA2 x1 + qR2 π
A
1 (80)

qR2 =
πR1
πA1

(81)

πR2 ≥ qR1 (82)

πA1 − πR2 = x2. (83)

Lemma 9 At any hybrid proposal-equilibrium pair (x1, x2;σ1, σ2) such that σ2(a) ≥ σ1(a)
σ1(z)

,

r − θ < x2 <
r

2
. (84)
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Proof By Eqs. (80), (83), and qA2 = θ(1− σ2(a)),

θ = qA2 x1 + qR2 π
A
1 ⇐⇒ θ = qA2 x1 + qR2 (πR2 + x2)

⇐⇒ qA2 =
x2

1 + x2 − x1

⇐⇒ σ2(a) =
θ(1− r + 2x2)− x2
θ(1− r + 2x2)

. (85)

Hence,

πR2 =
θσ2(a)

qR2
=
θ(1− r + 2x2)− x2

1− r + x2
. (86)

Moreover, using Eq. (83)

πA1 = πR2 + x2 =
θ(1− r + 2x2)− (r − x2)x2

1− r + x2
. (87)

Next, plugging qR2 = 1− qA2 and πA1 in Eq. (81) yields

πR1 = qR2 π
A
1 =

θ(1− r + 2x2)− x2(r − x2)
1− r + 2x2

. (88)

Hence, using the definition of πR1 via Eq. (74) we have

σ1(a) =
(1− θ)
θ

[θ(1− r + 2x2)− (r − x2)x2]
[(1− θ)(1− r + 2x2) + x2(r − x2)]

σ1(z)

Using this relationship between σ1(a) and σ1(z) along with equation (81):

πR1
πA1

= qR2 ⇐⇒ σ1(a)

1− σ1(a)

1− qR1
qR1

=
1− r + x2
1− r + 2x2

⇐⇒ σ1(z) =
(θ + x2 − r) [(1− θ)(1− r + 2x2) + x2(r − x2)]

(1− θ) [−x2(r − x2) + θ(1− r + 2x2)]
(89)

⇐⇒ σ1(a) =
θ + x2 − r

θ
. (90)

By the fact (i) displayed above, πR2 ≥ πR1 ⇐⇒ σ2(a) ≥ σ1(a)
σ1(z)

, which also implies that

σ2(a) > σ1(a). Hence using Eqs. (85) and (90),

σ2(a) > σ1(a) ⇐⇒ θ(1− x1 + x2)− x2
θ(1− x1 + x2)

>
θ − x1
θ

⇐⇒ x2 < x1 ⇐⇒ x2 <
r

2
< x1.

Moreover, characterizing the restriction of (73) on σ1(a),

0 < σ1(a) < 1 ⇐⇒ 0 <
θ − x1
θ

< 1 ⇐⇒ 0 < x1 < θ.

Thus, we obtain (84).
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Case (ii): πA2 > πA1 > πR1 > πR2 Using Eq. (75), Ineq. (76), ∆1(a) = ∆1(z) = 0, ∆2(a) = 0,

and ∆2(z) ≥ 0 , given any peace proposal (x1, x2), the necessary and sufficient condition for

(73) to constitute PBE is simultaneous satisfaction of

qR2 =
πR1
πA1

(91)

1− πR1 = x1 (92)

θ = qA1 x2 + πR2 (93)

πR2 ≥ qR1 (94)

Lemma 10 At any hybrid proposal-equilibrium pair (x1, x2;σ1, σ2) such that σ2(a) < σ1(a)
σ1(z)

,

Ineq. (84) is satisfied.

Proof By Eq. (92):

πR1 = 1− x1 ⇐⇒
θσ1(a)

θσ1(a) + (1− θ)σ1(z)
= 1− x1

⇐⇒ σ1(a) =
(1− θ)(1− x1)

θx1
σ1(z) (95)

Note that,

σ1(a) < σ1(z) ⇐⇒ θ + x1 − 1 > 0 (96)

σ1(a) > 0 ⇐⇒ θ < 1 and x1 < 1. (97)

Using equation (95),

qA1 = θ(1− σ1(a)) + (1− θ)(1− σ1(z)) =
1− x1 − θσ1(a)

1− x1
. (98)

Note that,

0 < qA1 < 1 ⇐⇒ 0 < σ1(a) <
1− x1
θ

. (99)

Plugging Eqs. (92) and (98) in Eq. (91),

qR2 =
1− x1
πA1

=
1− x1

θ(1− σ1(a))
qA1 ⇐⇒ θσ2(a) + 1− θ =

1− x1 − θσ1(a)

θ(1− σ1(a))

⇐⇒ σ2(a) =
1− x1 − θ + θ2(1− σ1(a))

θ2(1− σ1(a))
. (100)
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By equation (93) and plugging in for qA1 and σ2(a) by equations (98) and (100)

θ = qA1 x2 + πR2 ⇐⇒ θ =
1− x1 − θσ1(a)

1− x1
x2 +

1− x1 + θ2(1− σ1(a))− θ
1− x1 − θσ1(a)

.

Using the properties of Ineqs. (99) and (97), and multiplying the both side of the latter

equation by (1− x1 − θσ1(a)) (1− x1) will yield to the following quadratic equation:

x2θ
2σ2

1(a)− 2x2(1− x1)θσ1(a) + (1− x1) ((1− θ)(1− x1 − θ) + x2(1− x1)) = 0,

which is equivalent to:

σ1(a) =
(1− x1)(r − x1)±

√
(1− θ)(1− x1)(θ + x1 − 1)(r − x1)
θ(r − x1)

.

Moreover, using equation (99) the acceptable root is,

σ1(a) =
(1− x1)(r − x1)−

√
(1− θ)(1− x1)(θ + x1 − 1)(r − x1)
θ(r − x1)

. (101)

Denote Z :=
√

(1− θ)(1− x1)(θ + x1 − 1)(r − x1). Note that Ineqs. (96) and (97) imply

that Z > 0. By Eq. (95),

σ1(z) =
x1(1− x1)(r − x1)− x1Z
(r − x1)(1− θ)(1− x1)

. (102)

By Eq. (100),

σ2(a) =
θZ − (1− θ)(θ + x1 − 1)(r − x1)
θ (Z + (θ + x1 − 1)(r − x1))

. (103)

By Eqs. (74), (101) and (102), player 1’s ex-ante probability of Reject and associated poste-

rior beliefs can be summarized as

qR1 =
(1− x1)(r − x1)− Z

(r − x1)(1− x1)
, (104)

πR1 = 1− x1, (105)

πA1 =
(θ + x1 − 1)(r − x1)(1− x1) + (1− x1)Z

Z
., (106)

and likewise for player 2:

qR2 =
Z

Z + (θ + x1 − 1)(r − x1)
, (107)

πR2 =
θZ − (1− θ)(θ + x1 − 1)(r − x1)

Z
, (108)

πA2 = 1. (109)
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Next we will use Eqs. (104) and (108) and impose equilibrium condition (94), i.e.,

qR1 ≤ πR2 to get

qR1 ≤ πR2 ⇐⇒ (1− θ)(1− x1)(r − x1) ≤ (1− x2)Z. (110)

Moreover, by Eqs. (105) and (108)

πR1 > πR2 ⇐⇒ Z < (1− θ)(r − x1). (111)

Eq. (110) coupled with Eq. (111) implies that:

(1− θ)(1− x1)(r − x1) ≤ (1− x2)Z < (1− θ)(r − x1)(1− x2)⇒ x2 <
r

2
< x1. (112)

Furthermore, using equations (106), (108), and the restriction πA1 > πR2 leads to the following

necessary condition:

πA1 > πR2 ⇐⇒ (r − x1)(θ − x1) > Z > 0⇒ x1 < θ (113)

Thus, given (x1, x2) the necessary condition for (σ1, σ2) to constitutes hybrid PBEs is r−θ <
x2 <

r
2
< x1 < θ, as asserted.

A.6 Lemma 8

Proof of Lemma 8 Note that Eq. (30) and Ineqs. (31) and (32) constitute the necessary

and sufficient condition for a lopsided equilibrium. By the definition of lopsided equilibri-

ums and Bayes’s rule, 0 < πR−i < θ at any lopsided equilibrium. Thus, existence of a πR−i

that satisfies Eq. (30) is equivalent to 0 < θ − x−i < θ, which by Eq. (2) is equivalent

to Ineq. (33). Therefore, the necessary and sufficient condition for a lopsided equilibrium

becomes: Ineq. (33) holds and there exists a (off-path posterior) πRi ∈ [0, 1] that satisfies

both (31) and (32). For such πRi , there are only two possible cases:

Case (i): πRi ≤ θ − x−i. In this case, Ineqs. (31) and (32) are equivalent to

x−i (1− xi)− (1− θ)x−i ≤ 0,

x−i
(
1− πRi − xi

)
+ (1− θ)

(
θ − x−i − πRi

)
≤ 0.

These inequalities, by Ineq. (33), are equivalent to

θ − xi ≤ 0,

x−i (θ − xi) + θ(1− θ) ≤ πRi (1 + x−i − θ) .
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The second inequality displayed above is equivalent to

πRi ≥
x−i (θ − xi) + θ(1− θ)

1 + x−i − θ
.

This, coupled with the defining condition πRi ≤ θ− x−i for this case, means that Ineqs. (31)

and (32) in this case are equivalent to

x−i (θ − xi) + θ(1− θ)
1 + x−i − θ

≤ πRi ≤ θ − x−i. (114)

That is, a desired πRi in this case exists if and only if θ − xi ≤ 0 and

x−i (θ − xi) + θ(1− θ)
1 + x−i − θ

≤ θ − x−i.

i.e.,

x−i (θ − xi) + θ(1− θ) ≤ (1 + x−i − θ) (θ − x−i) ,

which is reduced to

xi − x−i ≥ 1− θ.

Thus, the necessary and sufficient condition in this case becomes xi ≥ θ and xi−x−i ≥ 1−θ.
By Eq. (2) and x1 + x2 = r, the condition is equivalent to xi ≥ θ and xi − (r − x1) ≥ 1− θ.
The two inequalities together become Ineq. (34).

Case (ii): πRi ≥ θ − x−i. In this case, Ineqs. (31) and (32) are equivalent to

x−i (1− xi) + (1− θ)
(
πRi − θ

)
≤ 0,

x−i
(
1− πRi − xi

)
≤ 0.

Since x−i > 0 due to neq. (33), the second inequality displayed above is equivalent to

1− πRi − xi ≤ 0.

Thus, Ineqs. (31) and (32) are equivalent to

1− xi ≤ πRi ≤ θ − x−i(1− xi)
1− θ

.

This, coupled with the defining condition πRi ≥ θ−x−i for this case, means that a desired πRi

exists in this case if and only if

max {θ − x−i, 1− xi} ≤ θ − x−i(1− xi)
1− θ

,

which is equivalent to θ ≤ xi and 1 − xi ≤ θ − x−i(1−xi)
1−θ . Combined with Eq. (2) and

x1 + x2 = r, these two inequalities together become (35).
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A.7 Theorem 3

Lemma 11 A social-surplus maximum among lopsided proposal-equilibrium pairs is the one

with maximum x2 among those (x1, x2) that, with i = 1 and −i = 2, satisfy Ineq. (33) and

at least one of Conditions (34) and (35).

Proof Denote Slop for the social surplus rendered by (x1, x2) coupled with its lopsided

equilibrium (σ1, σ2). Since σi(a) = σi(z) = 0, σ−i(z) = 1 and 0 < σ−i(a) < 1 at this

equilibrium, the surplus for player i is equal to his expected payoff from Accept, and that

for player −i equal to her expected payoff from Reject. Thus, by Lemma 1,

rSlop = θqA−ixi + (1− θ)
(
qA−ixi + qR−iθ

)︸ ︷︷ ︸
player i

+ θ
(
θ − πR−i

)
+ (1− θ)θ︸ ︷︷ ︸

player −i

= qA−ixi + θ(1− θ)qR−i + θ
(
1− πR−i

)
(30)
=

x−i
1− θ + x−i

xi + θ(1− θ) 1− θ
1− θ + x−i

+ θ (1− θ + x−i)

=
x−i

1− θ + x−i
(r − x−i) + θ(1− θ) 1− θ

1− θ + x−i
+ θ (1− θ + x−i) .

Denote

y := 1− θ + x−i,

so x−i = y − 1 + θ. Then

rSlop =
y − 1 + θ

y
(r − y + 1− θ) +

θ(1− θ)2

y
+ θy

=
1

y

(
−y2 + (r + 2(1− θ)) y − (1− θ)

(
r + (1− θ)2

))
+ θy

= −(1− θ)y − (1− θ) (r + (1− θ)2)
y

+ r + 2(1− θ)

= −(1− θ)
(
y +

r + (1− θ)2

y

)
+ r + 2(1− θ). (115)

We claim that rSlop is strictly increasing in y, because

− 1

1− θ
d

dy
(rSlop) = 1− r + (1− θ)2

y2
= 1− 1/(1− a/z) + (1− θ)2

(1− (θ − x−i))2
,

which is negative because Ineq. (33) implies

(1− (θ − x−i))2 < 1 < 1/(1− a/z) + (1− θ)2.

Thus, rSlop is strictly increasing in y, i.e., the social surplus is strictly increasing in x−i, and

hence strictly increasing in x−i.
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Proof of Theorem 3 By Lemma 8, the necessary and sufficient condition for a lopsided

equilibrium is equivalent to simultaneous satisfaction of the following conditions:

x−i > 0,

xi ≥ θ,

πRi ≤ θ − x−i =⇒ xi ≥ 1
2
(r + 1− θ),

πRi ≥ θ − x−i =⇒ (1− xi)(1− θ + r − xi) ≤ θ(1− θ).

The above is the same as the condition obtained by the proof of Lemma 8 except that the

condition x−i < θ in the lemma is removed here. The condition is removed without loss of

generality because it is implied by the other condition xi ≥ θ here:

x−i = r − xi ≤ r − θ < θ,

with the last strict inequality due to Ineq. (3).

Second, dissect the class of lopsided equilibriums into two cases according to the off-

path posterior πRi : (i) πRi ≤ θ − x−i; (ii) πRi ≥ θ − x−i. For each subset we find the

social-surplus maximum:

Case (i): πRi ≤ θ − x−i. Then the necessary and sufficient condition becomes x−i > 0

and xi ≥ max{θ, (r + 1 − θ)/2}. With x−i = r − xi, the latter inequality is equivalent to

x−i ≤ min{r − θ, (r + θ − 1)/2}. Thus, Lemma 11 implies that the optimal split within

Case (i) is x−i = min{r − θ, (r + θ − 1)/2}. Note that the condition x−i > 0 is satisfied

because r > 1 > θ and r + θ > 1.

Case (ii): πRi ≥ θ− x−i. Then the necessary and sufficient condition becomes x−i > 0,

xi ≥ θ and (1 − xi)(1 − θ + x−i) ≤ θ(1 − θ). The second and third inequalities, in terms

of x−i, are equivalent to x−i ≤ r − θ and (1 − r + x−i)(1 − θ + x−i) ≤ θ(1 − θ). The last

inequality is equivalent to

(x−i)
2 + (2− r − θ)x−i + (θ − 1)(r − 1) ≤ θ(1− θ),

i.e.,

r + θ − 2−
√
r2 − 2rθ + 4θ − 3θ2

2
≤ x−i ≤

r + θ − 2 +
√
r2 − 2rθ + 4θ − 3θ2

2
,

where the square root is real because r2 − 2rθ + 4θ − 3θ2 = (r − θ)2 + 4θ(1 − θ) > 0.

Thus, by Lemma 11, the optimal split within Case (ii) is that x−i is equal to either r− θ or
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(
r + θ − 2 +

√
r2 − 2rθ + 4θ − 3θ2

)
/2, whichever is smaller. Note that the condition x−i > 0

is satisfied: r − θ > 0 as in Case (i); and

r + θ − 2 +
√
r2 − 2rθ + 4θ − 3θ2 > r + θ − 2 +

√
(r − θ)2 > 2(r − 1) > 0.

Third, it follows from the second step, as well as Lemma 11, that the social-surplus max-

imum among lopsided proposal-equilibrium pairs exists and is either the maximum within

Case (i) or that within Case (ii), whichever has a larger x−i. Note

(r + θ − 1)/2 ≤ r − θ ⇐⇒ r ≥ 3θ − 1,

and

r + θ − 2 +
√
r2 − 2rθ + 4θ − 3θ2

2
≤ r − θ

⇐⇒
√
r2 − 2rθ + 4θ − 3θ2 ≤ 2 + r − 3θ

⇐⇒ 4(θ − 1)(r + 1− 3θ) ≤ 0

⇐⇒ r ≥ 3θ − 1.

Thus, when r ≥ 3θ − 1, the optimal split within Case (i) is x−i = (r + θ − 1)/2, and that

within Case (ii) is x−i = r+θ−2+
√
r2−2rθ+4θ−3θ2

2
. Furthermore note that r+θ−2+

√
r2−2rθ+4θ−3θ2

2
≥

(r + θ − 1)/2. This is true because:

r + θ − 2 +
√
r2 − 2rθ + 4θ − 3θ2

2
≥ r + θ − 1

2
⇐⇒

√
r2 − 2rθ + 4θ − 3θ2 ≥ 1

⇐⇒ r2 − 2rθ + 4θ − 3θ2 − 1 ≥ 0 ⇐⇒ (r + θ − 1)(r − 3θ + 1) ≥ 0.

Where the last inequality is satisfied by assumption that r ≥ 3θ−1. Thus, when r ≥ 3θ−1,

the optimum among the entire lopsided equilibriums is that x−i is equal to the maximum

between Case (i)’s optimal split, i.e. x−i = (r + θ − 1)/2, and Case (ii)’s optimal split, i.e.

x−i = r+θ−2+
√
r2−2rθ+4θ−3θ2

2
, which is the upper branch of Eq. (36) asserted by the theorem.

When r ≤ 3θ− 1, the optimal split within either case is that x−i = r− θ, which is the

lower branch of Eq. (36). �

A.8 Theorems 4 and 5

Proof of Theorem 4 By Ineq. (19), Theorem 1 implies that the social surplus generated

by the unbiased proposal, coupled with its MPM equilibrium, is equal to θ. This, combined
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with Theorem 2 and Lemma 7, implies that it suffices to prove that the maximum social

surplus S∗lop among lopsided proposal-equilibrium pairs is greater than θ.

By Theorem 3 and the hypothesis θ ≤ (r + 1)/3, S∗lop is equal to the social surplus

induced by a peace proposal (x∗1, x
∗
2) such that, for some −i ∈ {1, 2},

x∗−i =
1

2

(
r + θ − 2 +

√
r2 − 2rθ + 4θ − 3θ2

)
,

which generates the social surplus S∗lop such that

rS∗lop =: S̃lop(x∗−i) =
x∗−i(r − x∗−i)
1− θ + x∗−i

+
θ(1− θ)2

1− θ + x∗−i
+ θ

(
1− θ + x∗−i

)
.

Note from the above equations that

∂

∂r
S̃lop(x∗−i) =

x∗−i
1− θ + x∗−i

> 0,

d

dr
x∗−i =

1

2
+

r − θ
2
√
r2 − 2rθ + 4θ − 3θ2

> 0,

with the second inequality due to the fact r > 1 > θ. Recall from the proof of Lemma 11 that

S̃lop(x−i) is strictly increasing in x−i. Thus, by the chain rule, one can show that S̃lop(x∗−i)

is strictly increasing in r:

d

dr

(
rS∗lop

)
=

d

dr
S̃lop(x∗−i) =

∂

∂r
S̃lop(x∗−i) +

∂

∂x∗−i
S̃lop(x∗−i)

d

dr
x∗−i > 0.

Thus, for any parameter value configuration (r, θ) that satisfy the hypothesis θ ≤ (r+ 1)/3,

S̃lop(x∗−i) is larger than

S̃lop(x∗−i)
∣∣∣
r=3θ−1

= S̃lop(2θ − 1)

=
(2θ − 1)(3θ − 1− (2θ − 1)

1− θ + 2θ − 1
+

(θ(1− θ)2

1− θ + 2θ − 1
+ θ(1− θ + 2θ − 1)

= 2θ2.

Thus, if θ ≤ (r + 1)/3 then S̃lop(x∗−i) implies

S∗lop ≥
1

r
S̃lop(x∗−i)

∣∣∣
r=3θ−1

=
2θ2

r
, (116)

which by Ineq. (3) is greater than θ, as desired. �
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Proof of Theorem 5 When θ > 2(1 + r)/5, θ > (1 + r)/3, thus Theorem 3 implies that

S∗lop is equal to the social surplus induced by an unequal split such that, for some −i ∈ {1, 2},

x−i = r − θ

Thus, by Eq. (115),

rS∗lop = −(1− θ)
(
x+

r + (1− θ)2

x

)
+ r + 2(1− θ),

where

x = 1− θ + x−i = 1− θ + +r − θ = 1 + r − 2θ.

Thus,

rS∗lop = −(1− θ)
(
r + 1− 2θ +

r + (1− θ)2

r + 1− 2θ

)
+ r + 2(1− θ)

= −(1− θ)
(
r + 1− 2θ +

r + 1− 2θ + θ2

r + 1− 2θ

)
+ r + 2(1− θ)

= −(1− θ)
(
r + 2(1− θ) +

θ2

r + 1− 2θ

)
+ r + 2(1− θ)

= θ(r + 2(1− θ))− (1− θ)
(

θ2

r + 1− 2θ

)
.

The asserted conclusion, S∗lop < θ, follows from the following chain of equivalent statements:

θ (r + 2(1− θ))− (1− θ)
(

θ2

r + 1− 2θ

)
< rθ

⇐⇒ (1− θ)
(

2θ − θ2

r + 1− 2θ

)
< 0

⇐⇒ (1− θ)
(

2θr + 2θ − 4θ2 − θ2

r + 1− 2θ

)
< 0

⇐⇒ θ(1− θ)
(

2 + 2r − 5θ

r + 1− 2θ

)
< 0,

with the last “⇐⇒ ” due to the fact that r > θ and the hypothesis θ ≤ 2+2r
5

. �
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