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Abstract

This paper studies monotonic equilibria in a multi-sender version of Craw-

ford and Sobel’s (1982) cheap talk model, i.e. pure-strategy equilibria where

senders’strategies are weakly monotonic in the state and where the receiver’s

strategy is strictly monotonic in the senders’messages. Monotonic equilibria

have interval form, are bounded away from full revelation, and are straight-

forward to compute. When senders can be ranked according to bias: (i) in

monotonic equilibria, senders most biased toward larger actions are informa-

tive when the receiver’s desired action is smallest, and vice versa; and (ii)

monotonic equilibria can be made collusion-proof by appropriately placing

the receiver’s off-path actions. If assumed alone, weak monotonicity of sender

strategies generally has only a weak implication for the realized state-to-action

function in a pure-strategy equilibrium. Strict monotonicity of the receiver’s

strategy is motivated by the possibility of misunderstanding.
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1 Introduction

Consider a sender-receiver model à la Crawford and Sobel (1982), but with multiple

senders instead of one: senders observe a state θ ∈ [0, 1] that is unknown to the

receiver and simultaneously each send a message to the receiver, who then chooses

an action a ∈ [0, 1]. Senders are biased relative to the receiver in the sense that,

conditional on θ, their preferred action differs from the receiver’s. For example, a

government may consult relatively hawkish and/or dovish experts about foreign pol-

icy, or a manager may solicit information from workers with different career concerns.

Agents are unable to alter others’incentives (e.g. through monetary transfers), the

receiver is unable to commit to a choice rule, and as θ increases, every agent desires

a higher a.

It is well-known that, in such a model, there is typically a severe multiplicity of

pure-strategy equilibria, which can range from full revelation to babbling (Krishna

and Morgan (2001)). This paper proposes a monotonicity criterion that delivers a

tractable set among pure-strategy equilibria. The requirement imposed on senders’

strategies is that each equilibrium message is sent on a connected set of states:

either a single point or a non-trivial interval. Therefore, for each sender, equilibrium

messages can be ranked in a linear order ≥i. The receiver’s strategy is then required
to be strictly monotonic with respect to these linear orders. That is, for any message

vectors m 6= m′ such that mi ≥i m′i for all i, the receiver takes a strictly greater
action after m than after m′.1

Section 3 shows that monotonic equilibria generalize one-sender equilibria in the

following sense: each equilibrium message vector is sent on a non-trivial interval

(except possibly at the endpoints of the state space), and for any pair of adjacent in-

tervals, only one sender changes their message at the boundary θ, so that this sender

must be indifferent at θ between the actions induced in the two intervals. As a result,

if the differences between a sender’s ideal action and the receiver’s are bounded away

from zero (as is assumed in this paper), the number of intervals is finite. Because

1This paper’s main result can be obtained even if this condition is imposed only when at least
one of m and m′ occurs on path.
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of the indifference condition between any two adjacent cells, every monotonic equi-

librium corresponds to a version of Crawford and Sobel’s (1982) forward solution

extended to multiple senders, and can therefore be easily computed.

Not every equilibrium satisfying the above properties is monotonic. When senders

can be ranked according to their biases, such as in the popular "uniform-quadratic"

specification, an additional property of monotonic equilibria is that the boundaries

where any single sender’s message changes must be consecutive. That is, each sender

is informative in an interval (possibly empty, if the sender babbles) of the state space,

and these intervals are disjoint. Furthermore, if sender i’s informative range is to the

left of sender j’s, then i must be more biased toward the right (or less toward the left)

than j. This corresponds to the intuition that unexpected advice (e.g. when a right-

wing expert advocates a left-wing policy) is often the most informative. However, it

is noteworthy that this phenomenon occurs in equilibrium and is implied simply by

monotonicity; it does not come from, for example, an expectation that right-biased

experts would "lie" by reporting a higher state, so that it is surprising when they

report a low state. Such an equilibrium has a simple interpretation: its on-path

state-to-action function is the same as in a monotonic equilibrium where each sender

reports a number from a set of consecutive integers, and the receiver’s action, both

on and offpath, depends only on the sum of the reported integers. Thus, the receiver

acts as though she were adding up the senders’messages. As shown in Section 4, in

this case, the equilibrium is collusion-proof.

Monotonic equilibria yield sensible welfare properties, explored in Section 4: the

receiver typically prefers senders with opposing and small biases. In fact, in the

"uniform-quadratic" case, if the receiver could choose from a pool of senders, she

would only need the sender with the smallest left-bias and the one with the smallest

right-bias to achieve her best ex ante expected payoff in a monotonic equilibrium.

The assumption that sender strategies are monotonic can be motivated by senders

using a language where words are ordered. It is relatively weak if made alone: Section

5 shows that it usually yields the same predictions for the on-path state-to-action

function as assuming directly that this function is weakly increasing, and therefore

does not rule out full revelation or many convoluted equilibria such as those con-
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structed in Ambrus and Lu (2014) and Rubanov (2015). An alternative justification

for the monotonicity of sender strategies is as follows. Consider an equilibrium where

senders are “sincere”in that, at every state, each sender i prefers the action induced

at that state to any other action induced by an on-path message vector where i’s

message is different.2 Then there exists an equilibrium where sincerity still holds and

where sender strategies are monotonic.

Therefore, the crucial part of the monotonicity assumption is the positive re-

sponsiveness of the receiver’s action in response to a deviation by a sender. This

responsiveness can be justified by the possibility of misunderstanding: when the re-

ceiver observes an out-of-equilibrium message vector, she is unsure whether she is

misinterpreting higher messages as lower ones (in which case the state is high) or

vice versa, and therefore picks an action somewhere between the optimal actions

corresponding to these cases.

Several other papers have examined restrictions on equilibrium in one-dimensional

multi-sender cheap talk, mainly in the context of robustness to noise in the senders’

observation of the state. Battaglini (2002) argues that fully revealing equilibria

are not robust to such noise. Ambrus and Lu (2014) and Rubanov (2015) show,

however, that equilibria arbitrarily close to fully revealing are robust to the type

of noise considered by Battaglini (2002) as the state space becomes large or as the

number of senders grows. Lu (2017) shows that requiring robustness to a broader

class of noise generically leads to the generalization of one-sender equilibria described

in the third paragraph, which it calls “coordination-free equilibria.”This paper thus

uses a completely different (and simpler) approach to obtain a subset of the set of

coordination-free equilibria. Monotonicity restrictions have been used in one-sender

communication games by Kartik (2009) and Chen (2011), where payoffs were directly

dependent on messages —i.e. these papers did not feature pure cheap talk models.

2Perhaps, in prior play, each sender observed only the state, their own message (not other
senders’) and the receiver’s action, and is optimistic about what might happen after a deviation.
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2 Model

A state θ ∈ Θ = [0, 1] is drawn according to F (.), a cumulative distribution function

with full support and a continuous prior density f(.) such that f(θ) ∈ [d,D] for all

θ, for some d > 0 and finite D. n senders 1, ..., n ∈ N observe θ and simultaneously

each send a message to the receiver R, who takes an action a ∈ A after receiving the
messages. In order to simplify the statement of assumptions about preferences below,

assume A = Θ. Formally, sender i’s pure strategies are functionsmi : Θ→Mi, where

Mi, the set of messages available to i, has the same (or a greater) cardinality as Θ;

the latter ensures that full revelation is possible. The receiver’s pure strategies are

functions a : ×ni=1Mi → Θ.

– The following is taken directly from Lu (2017), and will be rewritten later. –

All players’utilities depend on the state θ and the action a ∈ Θ taken by the

receiver, but not (directly) on the message vector m ∈ ×ni=1Mi. Let ui(a, θ) denote

player i’s utility when the action is a and state is θ, for i = 1, ..., n, R. The following

standard assumptions are maintained throughout the paper:

1. all utility functions are Lipschitz continuous;

2. given θ, uR(., θ) is smooth strictly concave with a maximum at a = θ;

3. given θ, ui(., θ) is single-peaked, i.e. is strictly increasing to the left, and strictly

decreasing to the right of its unique maximum, denoted θ + bi(θ);

4. ∃η > 0 such that, for all i ∈ N and θ ∈ Θ, either |bi(θ)| > η or θ+bi(θ) ∈ {0, 1};
and

5. for all i ∈ N , if a < a′, θ < θ′ and ui(a′, θ) ≥ ui(a, θ), then ui(a′, θ
′) > ui(a, θ

′).

Assumption 2 implies that the receiver’s best response is always unique. Assump-

tion 4 and continuity imply that each i is either right-biased (for each θ, bi(θ) > η or

θ + bi(θ) = 1) or left-biased (for each θ, bi(θ) < −η or θ + bi(θ) = 0). Assumption 5

is the commonly encountered single-crossing condition.
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Let aΓ(m) denote the receiver’s action given m in strategy profile Γ. Messages mi

and m′i are said to be equivalent in strategy profile Γ if aΓ(mi,m−i) = aΓ(m′i,m−i)

whenever the vector m−i is composed of messages that are each sent with positive

probability at some θ in Γ.3 Throughout this paper, when a given strategy profile

Γ is discussed, mi = (6=)m′i means that mi and m′i are (not) equivalent in Γ, and

m = (6=)m′ means that each (some) component of m is (not) equivalent in Γ to the

corresponding component of m′. That is, equivalent messages are treated as if they

were the same message. As is standard for simultaneous multi-sender cheap talk in

a continuous type space, this paper focuses on pure-strategy equilibria.4

The equilibrium concept is weak perfect Bayesian equilibrium (henceforth equilib-

rium). Pure strategy profile Γ = (m1, ...,mn, a) and belief rule µ form an equilibrium

if:

• for all i ∈ N and all θ ∈ Θ, mi(θ) ∈ arg maxm′i∈Mi
ui(a(m′i,m−i(θ)), θ),

• for all m ∈ ×ni=1Mi, a(m) ∈ arg maxa′∈Θ

∫
θ∈Θ

uR(a′, θ)dµ(m), and

• µ(m) is obtained from f(.),m1(.), ...,mn(.) through Bayes’rule whenever m =

mΓ(θ) for some θ ∈ Θ.5

It will sometimes be convenient to abuse notation by using Γ to denote the equi-

librium containing strategy profile Γ.

– End of content copied from Lu (2017) –

3This condition must hold even ifm−i itself is never sent in Γ. For example, suppose aΓ(1, 1, 1) =
aΓ(1, 1, 2) = aΓ(1, 2, 1) = aΓ(2, 1, 1) = a, while aΓ(2, 2, 2) = aΓ(2, 2, 1) = aΓ(2, 1, 2) = aΓ(1, 2, 2) =
a′ 6= a. Also assume that of these eight message vectors, only (1, 1, 1) and (2, 2, 2) are sent in
equilibrium. Then even though, on path, no sender’s message affects the action, 1 and 2 are not
equivalent for any sender: for example, if sender 1 sends 1 and sender 2 sends 2, then the actions
induced by sender 3 through sending 1 and sending 2 are not the same.

4Here, this is in the sense that if a sender mixes between mi and m′i, then mi and m′i must be
equivalent. In the one-sender case, this is without loss of generality (except at the points where the
sender’s message changes) because any two messages leading to the same action are equivalent.

5Senders’strategies and µ must be such that the receiver’s expected utility is well-defined. In
particular, senders’strategies must be measurable, which implies that θΓ(m) is also measurable,
for all m.
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The following notation and terminology refer to a given pure-strategy profile Γ:

• mΓ
i (θ) is sender i’s message at θ, and mΓ(θ) = (mΓ

1 (θ),mΓ
2 (θ), ...,mΓ

n(θ));

• MΓ
i = {mi : mΓ

i (θ) = mi for some θ ∈ Θ};

• θΓ(m) = {θ : mΓ(θ) = m} is the set of states where m is sent;

• MΓ ={m : θΓ(m) 6= ∅} is the set of message vectors sent on path; and

• as in Lu (2017), a cell in Γ is a maximal interval of states throughout which

mΓ remains constant.6 A proper cell is a cell with positive measure.

For any equilibrium Γ, there exists an equilibrium Γ′ where play is the same as

in Γ on path, and where the receiver’s strategy is such that every out-of-equilibrium

message mi ∈ Mi\MΓ
i is equivalent to a message in M

Γ
i . This paper assumes the

latter for simplicity.

When two pure strategy profiles differ in the messages used by senders, they may

still yield the same state-to-action function.

Definition: Strategy profiles Γ and Γ′ are outcome-equivalent if aΓ(mΓ(θ)) =

aΓ′(mΓ′(θ)) for all θ.

The following definitions relate to monotonicity.

Definition: Senders are bias-ranked if they are ordered 1, 2, . . . , n such that for

any i, j ∈ {1, . . . , n} and a, a′, θ ∈ Θ where i < j and a′ > a:

i) if ui(a, θ) = ui(a
′, θ), then uj(a, θ) < uj(a

′, θ),

ii) if uj(a, θ) = uj(a
′, θ), then ui(a, θ) > ui(a

′, θ).

If senders are bias-ranked, then whenever a sender i is indifferent between two

actions a < a′, any sender j > i prefers a′, and any sender j < i prefers a. In

particular, this implies that at all states θ, senders’ideal points θ+ bi(θ) are weakly

6That is, mΓ does not remain constant in any connected strict superset of a cell. Cells can be
degenerate intervals (i.e. they can consist of a single state).
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increasing in i.7 For example, if for every θ, ui(a, θ) = u(|a − (θ + bi)|) where bi
is strictly increasing in i and u is single-peaked and has a maximum at 0, then the

senders are biased-ranked - this includes the popular quadratic loss specification as

long as no two senders have identical bias.

Definition: A sender strategy mi(.) is monotonic if, whenever mi(θ) = mi(θ
′)

for θ < θ′, mi(θ
′′) = mi(θ) for all θ

′′ ∈ [θ, θ′].

If a sender i uses a monotonic strategy, then the messages used by i can be

unambiguously ranked from small to large. That is, when mΓ
i (.) is monotonic, there

exists a linear order ≥i,Γ onMΓ
i such that m

Γ
i (θ) ≤i,Γ mΓ

i (θ′) whenever θ < θ′. When

every sender’s strategy is monotonic, for message vectors m and m′, let m ≤Γ m′

denote mi ≤i,Γ m′i for all i and m 6= m′, and let m 5Γ m
′ denote that mi ≤i,Γ m′i for

all i.

Definition: Given sender strategiesmΓ, a receiver strategy a(.) ismΓ-monotonic

if for any m ∈ MΓ and any m′ ∈ ×ni=1M
Γ
i , a(m) < a(m′) whenever m ≤Γ m′ and

a(m) > a(m′) whenever m ≥Γ m
′.

Definition: Given sender strategies mΓ, a receiver strategy a(.) is strongly mΓ-

monotonic if for any m,m′ ∈ ×ni=1M
Γ
i , a(m) < a(m′) whenever m ≤Γ m

′.

A receiver plays a (strongly) mΓ-monotonic strategy if her action is strictly in-

creasing in the senders’messages according to the linear order derived from mΓ; the

basic definition considers only comparisons where at least one of the two message

vectors appears on path in Γ, while the stronger definition considers comparisons

between any two message vectors. Strictness is crucial for this paper’s results: if it

were left out, then the receiver could be unresponsive to unilateral deviations, which,

when n ≥ 3, are identifiable in strategy profiles where all senders reveal θ and in

many others.

Definition: A strategy profile Γ is sender-monotonic if every sender’s strategy

is monotonic, and (strongly) monotonic if, additionally, the receiver’s strategy is

(strongly) mΓ-monotonic.
7There is one exception to this: if every sender’s ideal point is either 0 for all θ or 1 for all θ,

then the above definition is vacuous because no sender is ever indifferent between two actions.
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3 Basic Structure of Monotonic Equilibria

This section characterizes monotonic equilibria. First, it is shown that monotonic

equilibria are a subset of the "coordination-free" equilibria identified by Lu (2017)

through requiring robustness to noise in the senders’observation of θ.

Definition8: An equilibrium Γ is coordination-free if:

1. there are finitely many cells in Γ, and every cell (other than, if present, {0} or
{1}) is proper; and

2. the message vectors sent in any two adjacent cells in Γ differ in exactly one

component.

As explained in Lu (2017), the on-path play of every coordination-free equilibrium

correspond to a version of Crawford and Sobel’s (1982) forward solution generalized

to multiple senders: given the leftmost induced action, the receiver’s optimality

condition determines the right endpoint θ of the leftmost cell. Then, the indifference

condition at θ of the sender whose message changes between the leftmost cell and

the next cell determines the next induced action, and so on. A generalized forward

solution is obtained when a cell endpoint is exactly 1. Like in the one-sender case,

the number of solutions is finite, and the number of cells in each solution is also

finite (though unlike in the one-sender case, not every generalized forward solution

is part of an equilibrium). Therefore, coordination-free equilibria are tractable and

bounded away from full revelation. Proposition 1 shows that monotonic equilibria

are coordination-free.

Proposition 1. If an equilibrium Γ is monotonic, then it is coordination-free.

All omitted proofs are provided in the Appendix.

8By Proposition 1 of Lu (2017), this definition is equivalent to the definition in Lu (2017).
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The key intuition for Proposition 1 is as follows. Consider two cells C and C ′

with supC = inf C ′ = θb, and denote the corresponding message vectors m and

m′ respectively. Suppose m1 6= m′1, so that if m and m′ differ in two or more

components, we would have m−1 6= m′−1. It must be that, in C, sender 1 prefers

aΓ(m) to aΓ(m′1,m−1). By monotonicity, aΓ(m) < aΓ(m′1,m−1) < aΓ(m′), so single-

peakedness implies that sender 1 strictly prefers aΓ(m) to aΓ(m′) in C. A symmetric

argument shows that sender 1 must strictly prefer aΓ(m′) to aΓ(m) in C ′. The tension

between these conclusions leads to a contradiction.

On the other hand, not every coordination-free equilibrium is monotonic. When

senders are bias-ranked, it is especially easy to characterize the subset of coordination-

free equilibria that are monotonic.

Proposition 2. Suppose senders are bias-ranked. Then:
a) if an equilibrium is monotonic (and therefore coordination-free), the index of

the indifferent sender at cell boundaries weakly decreases from left to right; and

b) every generalized forward solution where the index of the indifferent sender at

cell boundaries weakly decreases from left to right corresponds to a strongly monotonic

equilibrium.

Proposition 2a implies that, if the senders can be ranked according to their bi-

ases, then in any monotonic equilibrium, the sender(s) most biased toward the right

among informative senders is/are informative when θ is small, and vice versa. Such a

phenomenon would be expected in settings where senders bias their message toward

their desired action, perhaps because they believe that the receiver might be naïve

or because they derive satisfaction from sending such messages. However, here, this

result is obtained an implication of equilibrium and monotonicity in a pure cheap

talk environment.

To see why this is the case, suppose n = 2, and that in an equilibrium Γ, at a

cell boundary θ, sender 1’s message changes from m1 to m′1, while at the next cell

boundary θ′ > θ, sender 2’s message changesfrom m2 to m′2. Thus, from left to right,
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the message vector corresponding to the three cells at hand are (m1,m2), (m′1,m2)

and (m′1,m
′
2). If the receiver’s strategy is monotonic, we must have aΓ(m1,m2) <

aΓ(m1,m
′
2) < aΓ(m′1,m

′
2). At θ, sender 1 is indifferent between aΓ(m1,m2) and

aΓ(m′1,m2) > aΓ(m1,m2), so that sender 2, who is more right-biased, strictly prefers

aΓ(m′1,m2) (and thus anything between aΓ(m1,m2) and aΓ(m′1,m2)) to aΓ(m1,m2).

Thus, to avoid creating a profitable deviation for sender 2 in the leftmost cell, we

must have aΓ(m1,m
′
2) > aΓ(m′1,m2). But a symmetric argument for sender 1 in the

rightmost cell yields the opposite conclusion. Therefore, Γ cannot be monotonic.

Moreover, Proposition 2 greatly simplifies finding all state-to-action functions

that are possible in monotonic equilibria. Proposition 2a restricts the set of lists of

indifferent senders that need to be tried to lists with weakly decreasing index. Propo-

sition 2b shows that whenever such a list yields a generalized forward solution, it is

possible to implement the corresponding play in a strongly monotonic equilibrium

by suitably choosing the receiver’s off-path actions. The construction in the proof

of Proposition 2b is simple: assign consecutive integers to each sender’s messages,

from left to right, so that the sum of these numbers increases by 1 at every cell. For

any out-of-equilibrium message vector, calculate the sum and place the correspond-

ing action at the action following the on-path vector with the same sum. A sender

i would then want to deviate to, say, a higher message only in regions where the

influential sender is less right-biased. However, given the decreasing index, sender i

must already be sending her highest message at those states. The receiver’s strategy

in this construction is particularly simple: simply add up all the senders’messages

(treating a given sender’s equivalent messages as equal), whether the message vector

is expected on the path of play or not.

4 Properties of Monotonic Equilibria

4.1 Collusion-Proofness

This section shows that, when senders are bias-ranked, monotonic equilibria survive

attempts by senders to collude.
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Definition: An equilibrium Γ is collusion-proof if, for any S ∈ 2N\{∅} and
any θ ∈ Θ, there exists no mS ∈ ×i∈SMΓ

i such that ui(aΓ(mS,m
Γ
−S(θ)), θ) >

ui(a
Γ(mΓ(θ)), θ) for all i ∈ S. (That is, for any θ, in the complete-information

simultaneous-move game induced by θ and aΓ, senders must play a strong Nash

equilibrium.)

An equilibrium fails to have this property if a group of senders can change their

messages so that each of them is better off, provided that the receiver’s strategy

remains the same. For example, the receiver may simply be unaware that senders

are able to collude.

In general, monotonicity is neither necessary (e.g. coordination-free equilibrium

where every message vector is on path) nor suffi cient (e.g. simple 3-cell example

where bias-rankedness fails) for collusion-proofness. [EXAMPLE TO BE ADDED]

However, when senders are bias-ranked, suffi ciency holds in the following sense.

Proposition 3. If senders are bias-ranked, then for every monotonic equilibrium,
there is an outcome-equivalent monotonic equilibrium that is collusion-proof.

Proof. Construct an outcome-equivalent monotonic equilibrium by placing actions

following out-of-equilibrium message vectors in the same way as in proof of Propo-

sition 2b. Then, any sender that can gain from inducing a higher (lower) action

is already sending her highest (lowest) message. Therefore, it is impossible for any

group of such senders, even with a joint deviation, to induce a higher (lower) action.

4.2 Welfare

Because monotonic equilibria are a strict subset of coordination-free equilibria, the

receiver’s maximum equilibrium welfare will often be lower than in Lu (2017). How-

ever, it remains generally true that, for example, given a right-biased sender, ad-

ditional senders with bigger biases to the right are of limited help to the receiver:
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going from left to right, these additional senders would usually cause a more rapid

increase in cell sizes.

In the "uniform-quadratic" benchmark case with θ ∼ U [0, 1], quadratic loss func-

tions and state-independent biases, some sharp results can be derived.

Proposition 4. If all biases have the same sign, the best equilibrium for the receiver
is simply the one-sender equilibrium with the least biased sender that has the most

cells.

Proposition 4 is the same result as in Lu (2017), whose proof applies here because

the optimal coordination-free equilibrium is monotonic.

Proposition 5. If there are senders biased in both directions, only the least biased
sender in each direction is informative in the best equilibrium for the receiver.

By Proposition 2a, we know that in equilibrium in the uniform-quadratic case, cell

sizes first grow (when the influential sender(s) is/are right-biased) and then shrink

from left to right. The intuition for this result is that if the influential sender at a cell

boundary is replaced by a less biased one, cell sizes become more evenly distributed.

For example, if the senders are right-biased, cells to the left of that boundary, which

are smaller on average, become bigger at the expense of cells to the right of that

boundary. This helps the receiver given her concave loss function.9

Another observation is that, fixing biases and taking the size of Θ to infinity, the

receiver’s best expected utility in a monotonic equilibrium goes to −∞. This result
is the same as in Crawford and Sobel (1982), and different from Lu (2017). The

reason is that, going from left to right, once the size of cells has decreased, it cannot

increase again in a monotonic equilibrium, unlike in coordination-free equilibria in

9By contrast, in Lu (2017), this result is only asymptotically true in the sense that, fixing biases
and taking the size of Θ to infinity, the limit of the receiver’s best equilibrium payoff depends
only on the smallest bias in each direction. This is because, when all coordination-free equilibria
are considered, going from left to right, cell sizes can go through multiple cycles of growing and
shrinking. This paper’s result is therefore stronger.
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general. As a result, in monotonic equilibria, only cells near the ends of Θ can be

small, and the middle cells must grow without bound as Θ grows without bound.

5 Discussion of Monotonicity

This section first discusses the monotonicity of sender strategies. It shows that, alone,

this assumption does not produce strong results - which implies that its power comes

when coupled with the assumption that the receiver’s strategy is also monotonic - and

proposes one way to rationalize sender-monotonicity as well as weak monotonicity of

the receiver’s strategy. A justification for the monotonicity of the receiver’s strategy

is then provided.

5.1 Sender-Monotonicity

Consider the following definition.

Definition: A strategy profile Γ is action-monotonic if aΓ(mΓ(θ)) is weakly

increasing in θ.

It is straightforward to see that sender-monotonicity implies action-monotonicity.

Proposition 6 shows that the converse is true in terms of outcome predictions when

there are three or more senders, or when any action is induced by at most one

on-path message vector. That is, except in some special cases, the state-to-action

function of any action-monotonic equilibrium can be obtained in a sender-monotonic

equilibrium. This result applies to any pure-strategy fully revealing equilibrium as

well as the classes of equilibria proposed by Ambrus and Lu (2014) and Rubanov

(2015).

Proposition 6. If an equilibrium Γ is action-monotonic, then there exists an outcome-

equivalent sender-monotonic equilibrium except when n = 2 and multiple on-path

message vectors induce the same action in Γ.
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When n ≥ 3, a simple construction Γ′ yields the state-to-action function of any

action-monotonic equilibrium Γ: have each sender report the action that would be

induced in Γ, and ignore any unilateral deviation, which is always detectable when

n ≥ 3. Γ′ is sender-monotonic due to the action-monotonicity of Γ. When n = 2, the

placement of out-of-equilibrium actions in Γ′ is more delicate; this can be done by

finding a corresponding message vector in Γ when no two on-path message vectors

induce the same action in Γ.

The remainder of this subsection proposes a condition that leads to action-

monotonicity and sender-monotonicity.

Definition: A strategy profile Γ is sincere if, for every i ∈ N and θ ∈ Θ,

ui(a
Γ(mΓ(θ)), θ) ≥ ui(a

Γ(mΓ(θ′)), θ) for all θ′ such that mΓ
i (θ′) 6= mΓ

i (θ).

That is, in a sincere strategy profile Γ, each sender always weakly prefers the

action that results from playing according to Γ to any on-path action that might

result from sending a different message. To see why sincerity is an interesting prop-

erty, consider a situation where play has long occurred according to Γ, with a sender

observing each time the receiver’s action a, but not the other senders’messages.

This sender eventually observes the set of on-path actions, and knows that each of

them is inducible by some message vector. If Γ is not sincere, then there exists a

state θ where the sender knows for sure that deviating would be profitable for some

combination of other senders’messages. If, on the other hand, Γ is sincere, then

no such state exists: a deviation can be profitable only if it results in an off-path

message vector and the receiver happens to respond with an action that the sender

prefers.

Definition: Given sender strategies mΓ, a receiver strategy a(.) is weakly mΓ-

monotonic if for any m ∈MΓ and any m′ ∈ ×ni=1M
Γ
i , a(m) ≤ a(m′) whenever m ≤Γ

m′ and a(m) ≥ a(m′) whenever m ≥Γ m
′. A strategy profile Γ is weakly monotonic

if every sender’s strategy is monotonic and the receiver’s strategy is weakly mΓ-

monotonic.
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Proposition 7. a) If a strategy profile Γ is sincere and aΓ is a best response to mΓ on

path, then it is outcome-equivalent to a sincere weakly monotonic coordination-free

equilibrium.

b) If an equilibrium Γ is monotonic, then it is sincere.

5.2 Receiver-Monotonicity

This subsection takes as given that senders’strategies mΓ are monotonic, and pro-

vides one explanation why the receiver’s strategy would be mΓ-monotonic. Assume

that n = 2, and that senders play monotonic strategies mΓ
i . Denote sender i’s mes-

sages as mk
i , where m

k
i <i,Γ m

k′
i if and only if k < k′. Suppose the receiver observes

off-path message vector (m1
1,m

2
2), while (m1

1,m
1
2) and (m2

1,m
2
2) can occur on path.

The receiver may believe that she has misunderstood one of the senders’messages.

Thus, if (m1
1,m

1
2) and (m2

1,m
2
2) are the only message vectors from which a single

change yields (m1
1,m

2
2), then the receiver would believe that the state is much more

likely to lie in θΓ(m1
1,m

1
2) or θΓ(m2

1,m
2
2) than, say, θΓ(m3

1,m
3
2). In that case, her best

response aΓ(m1
1,m

2
2) should be within [aΓ(m1

1,m
1
2), aΓ(m2

1,m
2
2)]. Furthermore, unless

the receiver is sure that she misunderstood one of the senders’messages and not the

other’s, we should have aΓ(m1
1,m

2
2) ∈ (aΓ(m1

1,m
1
2), aΓ(m2

1,m
2
2)).

What if there is another message vector, say (m1
1,m

0
2), that also differs from

(m1
1,m

2
2) in only one component? In this case, if the receiver believes that she is much

more likely to confuse similar messages such as m1
2 and m

2
2 than more distant mes-

sages such asm0
2 andm

2
2, then we should still have a

Γ(m1
1,m

2
2) ∈ (aΓ(m1

1,m
1
2), aΓ(m2

1,m
2
2)).

(If not, then we could have aΓ(m1
1,m

2
2) < aΓ(m1

1,m
1
2).) The definitions below and

Proposition 8 formalize this intuition.

Let Π be the set of ordered set partitions of N , and for any π ∈ Π and function

h, let limπ h(σ1, . . . , σn) denote

lim
σi→∞,∀i∈π(kπ)

[
lim

σi→∞,∀i∈π(kπ−1)

[
. . .

[
lim

σi→∞,∀i∈π(1)
h(σ1, . . . , σn)

]
. . .

]]
, (1)

where kπ is the number of elements of π and π(k) is the kth element of π.
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Definition: An equilibrium Γ is consistent with the possibility of misunderstand-

ing if, for some {επ,m}π∈Π,m∈×ni=1M
Γ
i
and {gi(.|.)}ni=1,

aΓ(m) ∈ arg max
∑
π∈Π

[
επ,m lim

π

∫
Θ
uR(aΓ(m), θ)f(θ)

∏n
i=1 gi(mi|mΓ

i (θ))σidθ∫
Θ
f(θ)

∏n
i=1 gi(mi|mΓ

i (θ))σidθ

]
for all m ∈ ×ni=1M

Γ
i ,

(2)

where:

i) επ,m > 0 for all π ∈ Π and m ∈ ×ni=1M
Γ
i ;

ii) for all i ∈ N and mi,m
′
i,m

′′
i ∈ MΓ

i , gi(mi|mi) = 1, gi(mi|m′i)∈ (0, 1) if mi 6=
m′i, and gi(mi|m′i) > gi(mi|m′′i ) whenever m′′i <i,Γ m

′
i <i,Γ mi or mi <i,Γ m

′
i <i,Γ m

′′
i .

The features of this definition are as follows.

1. It focuses on the limit in which the likelihood of misunderstanding vanishes

(gi(mi|mΓ
i (θ))σi → 0 whenever mi 6= mΓ

i (θ) since gi(mi|m′i)∈ (0, 1) if mi 6= m′i, and

σi →∞).
2. Misunderstanding is more likely between closer messages than farther messages

(gi(mi|m′i) > gi(mi|m′′i ) whenever m′′i <i,Γ m
′
i <i,Γ mi or mi <i,Γ m

′
i <i,Γ m

′′
i ).

3. In the limit, some senders may be much more reliable than others (correspond-

ing to different π; messages from senders in π(1) are much more reliable than those

in π(2), etc.).

4. Which senders are more reliable is uncertain and may depend onm (επ,m > 0).

Proposition 8. a) If an equilibrium is sender-monotonic and consistent with the

possibility of misunderstanding, then it is monotonic.

b) If an equilibrium is monotonic and no cell is {0} or {1}, then it is consistent
with the possibility of misunderstanding.

6 Conclusion

This paper shows that requiring monotonicity in sender strategies and strict monotonic-

ity in the receiver strategy in a multi-sender cheap talk game with simultaneous mes-
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sages yields a subset of coordination-free equilibria. The class of coordination-free

equilibria is finite and relatively straightforward to compute. In the monotonic equi-

libria selected here, when the senders are bias-ranked, the most right-biased senders

are informative (if anywhere) in states to the left of states where the most left-biased

senders are informative (if any); these equilibria are robust to various forms of collu-

sion. Welfare properties are intuitive (e.g. the receiver generally prefers senders with

small and opposite biases) and, with the uniform-quadratic specification, sharp (e.g.

given the choice between many senders, the receiver can achieve her best monotonic

equilibrium payoff with just two: the senders with the smallest positive and the

smallest negative biases).

Requiring sender-monotonicity is in most cases essentially equivalent, in equi-

librium, to requiring that the receiver’s action be (weakly) monotonic in the state.

Many non-coordination-free equilibria are consistent with this assumption. The re-

ceiver’s action being strictly monotonic in the senders’messages, which is key to

restricting the set of equilibria, can be motivated by a possibility of misinterpreting

a message as a different one that grows as the two messages get close.
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7 Appendix: Proofs

Proof of Proposition 1. Since Γ is sender-monotonic, θΓ(m) is convex. Thus, for any

m,m′ ∈MΓ, aΓ(m) 6= aΓ(m′).

The following shows that MΓ must be finite. Suppose not. Then ∃m,m′ ∈ MΓ

such that |aΓ(m) − aΓ(m′)| < η. Let i be a sender such that mi 6= m′i, and assume

without loss of generality that i is right-biased and that aΓ(m) < aΓ(m′). Then

there exists θ ∈ θΓ(m) such that ui(aΓ(m′), θ) > ui(a
Γ(m), θ). By monotonicity,

aΓ(m) < aΓ(m′i,m−i) < aΓ(m′), which implies ui(aΓ(m′i,m−i), θ) > ui(a
Γ(m), θ).

This is a contradiction since i has a profitable deviation at θ.

Since θΓ(m) is convex, there is one cell in Γ for each m ∈ MΓ. Therefore, the

number of cells in Γ is also finite.

Next, it is shown that if Γ is monotonic, then for any two cells C and C ′ in Γ

with supC = inf C ′ = θb, the corresponding message vectors m and m′ differ in only

one component. Suppose not, so that m and m′ differ in two or more components.

By monotonicity, m ≤Γ m
′ and aΓ(m) < aΓ(m′). Assume without loss of generality

that m1 6= m′1, and note that m−1 6= m′−1.

Consider the location of aΓ(m′1,m−1). By monotonicity, we must have aΓ(m) <

aΓ(m′1,m−1) < aΓ(m′), and to avoid a profitable deviation by sender 1, we need

u1(aΓ(m), θ) ≥ u1(aΓ(m′1,m−1), θ) for all θ ∈ C. This is possible only if u1(aΓ(m), θ) >

u1(aΓ(m′), θ) for all θ ∈ C.
Similarly, we must have aΓ(m) < aΓ(m1,m

′
−1) < aΓ(m′) and u1(aΓ(m′), θ) ≥

u1(aΓ(m1,m
′
−1), θ) for all θ ∈ C ′, which is possible only if u1(aΓ(m′), θ) > u1(aΓ(m), θ)

for all θ ∈ C ′.
It follows that neitherC orC ′ contains θb, and that u1(aΓ(m), θb) = u1(aΓ(m′), θb).

But by the continuity of u1, for any ε > 0, if aΓ(m′1,m−1) = aΓ(m′) − ε, then

there exists a nontrivial interval immediately to the left of θb where sender 1 prefers

aΓ(m′1,m−1) to aΓ(m). This implies a profitable deviation, and contradicts that Γ is

an equilibrium.

Finally, it remains to be verified that every cell (other than, if present, {0} or {1})
is proper. If, instead, {θb} were its own cell, then by the finiteness of the number of
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cells, there would be two cells C and C ′ with supC = inf C ′ = θb and corresponding

message vectorsm andm′, respectively, such thatm,m′ andmΓ(θb) differ pairwise in

only one component. It follows that these three vectors differ in only one component,

say i. But this implies ui(aΓ(m), θb) = ui(θb, θb) = ui(a
Γ(m′), θb), which is not

possible by single-peakedness since, by monotonicity, aΓ(m) < θb < aΓ(m′).

Proof of Proposition 2. a) Suppose not, and let Γ be a monotonic equilibrium. Then

there are two boundaries θ < θ′ separating adjacent cells with message vectors

m,m′,m′′ from left to right such that ui(aΓ(m), θ) = ui(a
Γ(m′), θ), uj(aΓ(m′), θ′) =

uj(a
Γ(m′′), θ′), and i < j. By Proposition 1, m and m′ differ only in component i,

and m′ and m′′ differ only in component j. Now consider message vector m∗, which

is equal to m except that component j is replaced by m′′j . By monotonicity, m
∗ does

not occur on the equilibrium path, and aΓ(m) < aΓ(m∗) < aΓ(m′′).

Since i < j, uj(aΓ(m), θ) < uj(a
Γ(m′), θ). Therefore, if aΓ(m) < aΓ(m∗) ≤

aΓ(m′), then by single-peakness, uj(aΓ(m), θ) < uj(a
Γ(m∗), θ). By continuity, imme-

diately to the left of θ, sender j has a profitable deviation from mj to m′j. Therefore,

we must have aΓ(m′) < aΓ(m∗) < aΓ(m′′).

Since i < j, ui(aΓ(m′), θ′) > ui(a
Γ(m′′), θ′). Therefore, since aΓ(m′) < aΓ(m∗) <

aΓ(m′′), then by single-peakness, ui(aΓ(m′′), θ′) < ui(a
Γ(m∗), θ′). By continuity,

immediately to the right of θ, sender i has a profitable deviation from m′′i to mi.

This yields the desired contradiction.

b) LetmΓ
i (0) = 0 for all i, and letmΓ

i (θ) be equal to the number of cell boundaries

between 0 and θ where sender i’s message changes. aΓ(m) is given by the generalized

forward solution for on-path m; for off-path m, let aΓ(m) = aΓ(m′) where m′ occurs

on path and
∑n

i=1 mi =
∑n

i=1m
′
i (by construction, m

′ exists and is unique). Thus, in

this construction, the set of the receiver’s off-path actions is a subset of her on-path

actions.

By construction, for any off-path m, at most two senders have a unilateral devia-

tion that leads to m: at most one by deviating to a higher message, and at most one

by deviating to a lower message. (For example, if i and j can both do the former,

then (m′i,mj,m−ij) and (mi,m
′
j,m−ij) both occur on path, which is not possible in
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this construction since m′i < mi and mj > m′j.) Suppose that i can do the former,

and let Θ0 be the union of cells such that i’s message changes at the right endpoint.

In Θ0, sender i is influential on path, and has no desire to deviate and induce a

higher action. To the left of Θ0, the influential senders are more right-biased than i,

so once again i does not want to induce a higher action. Finally, to the right of Θ0,

sender i is already sending her highest message, so she is unable to induce a higher

action. Therefore, sender i never has an incentive induce m when she is able to do

so; a symmetric argument rules out deviations to a lower message.

Proof of Proposition 5. TO BE COMPLETED as sketched in the main text

Proof of Proposition 6. Since Γ is action-monotonic, every on-path action is induced

in an (possibly trivial) interval. Let IΓ
a be the interval of states where action a is

induced, and let AΓ be the set of a induced on path in Γ. The construction of a

sender-monotonic equilibrium Γ′ that is outcome-equivalent to Γ is given below for

three different cases:

- n ≥ 3: Choose messages {ma
i }a∈AΓ such that ma

i 6= ma′
i whenever a 6= a′, and let

mΓ′
i (θ) = ma

i for θ ∈ IΓ
a . These sender strategies are monotonic since each message is

sent on an interval. Optimality for the receiver in Γ implies that aΓ′(ma
1, ...,m

a
n) = a

is optimal when responding to mΓ′ , so that Γ′ is outcome-equivalent to Γ. Finally,

to avoid profitable deviations by senders, it suffi ces that any unilateral deviation -

always detectable since n ≥ 3 - does not change the receiver’s action in Γ′.

- n = 2 and neither sender babbles: Let the senders’strategies in Γ′ be as in

the n ≥ 3 case, so that the receiver’s optimality still implies outcome-equivalence.

By assumption, there is a single message vector inducing each a ∈ AΓ; denote it

by mΓ,a. For each pair a 6= a′, let aΓ′(ma
1,m

a′
2 ) = aΓ(mΓ,a

1 ,mΓ,a′

2 ). In Γ′, the action

aΓ′(ma
1,m

a′
2 ) can result from a deviation by sender 1 when θ ∈ IΓ

a′ or by sender 2

when θ ∈ IΓ
a . No such deviation can be profitable: otherwise, there would also be a

profitable deviation in Γ either by sender 1 when θ ∈ IΓ
a′ or by sender 2 when θ ∈ IΓ

a .

- n = 1, or n = 2 and at least one of the senders babbles: By Crawford and Sobel

(1982) and because any equivalent messages are treated as equal in this paper, Γ is
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itself sender-monotonic.

Proof of Proposition 7. a) Γ being sincere implies that if mΓ
i (θ) 6= mΓ

i (θ′), we must

have ui(aΓ(mΓ(θ)), θ) ≥ ui(a
Γ(mΓ(θ′)), θ) and ui(aΓ(mΓ(θ′)), θ′) ≥ ui(a

Γ(mΓ(θ)), θ′).

Thus, either aΓ(mΓ(θ)) = aΓ(mΓ(θ′)), or sender i must experience a preference re-

versal from aΓ(mΓ(θ)) to aΓ(mΓ(θ′)) as the state shifts from θ to θ′. It follows from

single-crossing that Γ is action-monotonic.

Furthermore, if aΓ(mΓ(θ)) > aΓ(mΓ(θ′)), we must have aΓ(mΓ(θ))−aΓ(mΓ(θ′)) >

η: otherwise, consider i such that mΓ
i (θ) 6= mΓ

i (θ′), and assume without loss of

generality that bi(.) > 0 and θ > θ′. Then sender i would prefer aΓ(mΓ(θ)) to

aΓ(mΓ(θ′)) at all states equal to or above aΓ(mΓ(θ′)), which implies by sincerity that

mΓ(θ′) can be sent only at states below aΓ(mΓ(θ′)). This contradicts aΓ(mΓ(θ′))

corresponding to the receiver’s optimum. As a result, only a finite number of actions

are inducible on the path of Γ.

Now consider two consecutive inducible actions a > a′, and let θ be the state at

which the induced action switches from a′ to a. By sincerity, every sender whose

message changes at θ must be indifferent at θ between a and a′.

Given the above conclusions, we build an outcome-monotonic strategy profile Γ′

as follows:

- Call the inducible actions, from left to right, a1, ..., aK , and call the cells where

these actions are induced I1, ..., IK , respectively. Γ′ will feature a single on-path

message vector, denoted mk, for each cell Ik.

- Fix m1
i = 1 for all i.

- For k = 2, ..., K, let ik be a sender whose message in Γ changes between Ik−1

and Ik at the boundary. (Note that ik is thus indifferent between ak−1 and ak.) Fix

mk
ik

= mk−1
ik

+ 1 and mk
j = mk−1

j for all j 6= ik.

- For k = 1, ..., K, let aΓ′(mk) = ak.

By construction, Γ′ is monotonic, aΓ′ is a best response to the senders’strategies,

and Γ′ is outcome-equivalent to Γ. It remains to be shown that: (i) Γ′ is coordination-

free; (ii) Γ′ is sincere; (iii) aΓ′(m) for off-pathm can be defined such that aΓ′ is weakly

mΓ′-monotonic and no profitable sender deviation is induced.
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(i) This is almost true by definition: we need only show that no cell (other than

possibly I1 and/or IK) is a singleton. Suppose instead that Ik = {θk}, and let S
be the set of senders indifferent between ak−1 and ak at θk (thus S includes at least

ik). By sincerity, in Γ, no sender outside of S sends different messages in the vectors

inducing ak−1 and ak, so at least one sender inside S must do so. This sender (say,

without loss of generality, ik) must, by single-peakedness, strictly prefer both ak−1

and ak to ak+1. The same must therefore hold slightly to the right of θk, i.e. within

Ik+1. But this means that Γ could not be sincere: ik strictly prefers ak−1 to ak+1 at

some states in Ik+1, and ik’s messages in vectors inducing ak−1 and ak+1 differ.

(ii) Suppose Γ′ is not sincere despite Γ being sincere. Then there exists i, k, l

such that ui(ak, θ) < ui(al, θ) for some θ ∈ Ik, with mΓ
i (θ) = mΓ

i (θ′) for all θ′ ∈ Il
and mk

i 6= ml
i. By construction, since m

k
i 6= ml

i, i’s message in Γ must also change

between θ and Il (since mΓ
i (θ) = mΓ

i (θ′) for all θ′ ∈ Il, it changes at least twice).

Thus, for some θ′′ ∈ (θ, inf(Il)], we have mΓ
i (θ′′) 6= mΓ

i (θ). If θ′′ ∈ Ik, then Γ is not

sincere since, by single crossing, ui(ak, θ
′′) < ui(al, θ

′′). If instead θ′′ /∈ Ik, then by
single-peakedness, ui(ak, θ) < ui(a

Γ(mΓ(θ′′)), θ), so once again Γ is not sincere.

(iii) The only relevant message vectors are those that differ from some on-path

message vectors in only one component (others cannot result from an unilateral

deviation, and hence the action they induce can be placed anywhere, as long as

monotonicity is satisfied). Due to sender-monotonicity, any such off-path m can

result from a unilateral deviation by at most two different senders (only one can

deviate to a higher message, and one to a lower message). Therefore, we distinguish

two cases:

- Only one sender can induce m via unilateral deviation: In this case, setting

aΓ′(m) = aΓ′(m∗), where m∗ is the same as m, except that the message of the

deviating sender is replaced by the closest message such that m∗ is on-path, satisfies

weak monotonicity and does not induce any profitable deviation.

- Sender i can induce m by deviating to a higher message, while sender j can

induce m by deviating to a lower message: Let Ik be the rightmost interval from

which i can do so, and Ik′ be the leftmost interval from which j can do so. By

construction, k < k′. Suppose aΓ′(m) = ak. Clearly, this does not induce any
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profitable deviation by i. Moreover, since Γ′ is sincere, this also does not induce a

profitable deviation by j.

b) Suppose Γ is not sincere. Then for some i, θ and θ′, we have ui(aΓ(mΓ(θ)), θ) <

ui(a
Γ(mΓ(θ′)), θ), with mΓ

i (θ′) 6= mΓ
i (θ). Assume without loss of generality that

mΓ
i (θ′) > mΓ

i (θ). By monotonicity, aΓ(mΓ(θ)) < aΓ((mΓ
i (θ′),mΓ

−i(θ))) ≤ aΓ(mΓ(θ′)).

Thus, by single-peakedness, ui(aΓ((mΓ
i (θ′),mΓ

−i(θ))), θ) > ui(a
Γ(mΓ(θ)), θ). This im-

plies that i has a profitable deviation at θ, which contradicts Γ being an equilibrium.

Proof of Proposition 8. a) Let E = {θ : θΓ(m) is the singleton {θ} for somem ∈MΓ,

and θ is the endpoint of a cell C with positive measure}. This proof proceeds in four
steps:

Step 1: For all m ∈ ×ni=1M
Γ
i and m′ ∈ MΓ such that θΓ(m′) * E, aΓ(m) >

aΓ(m′) [ aΓ(m) < aΓ(m′)] if m ≥Γ m′ [m ≤Γ m′] and for some j ∈ N such that

mj 6= m′j, there exist θ
′ < θ1 < θ2 < θ [ θ′ > θ1 > θ2 > θ] such that m′j = mΓ

j (θ′) 6=
mΓ
j (θ1) 6= mΓ

j (θ2) 6= mΓ
j (θ) = mj.

Fix m ∈ ×ni=1M
Γ
i , and suppose m

′ ≤Γ m, where m′ ∈ MΓ and θΓ(m′) * E.

Observe that for any m′′ ∈MΓ such that m′′ ≤Γ m
′, limπ

∏n
i=1 gi(mi|m′′i )σi∏n
i=1 gi(mi|m′i)σi

→ 0 for any

π ∈ Π.

First, we show that arg maxa limπ

∫
Θ uR(a,θ)f(θ)

∏n
i=1 gi(mi|mΓ

i (θ))σidθ∫
Θ f(θ)

∏n
i=1 gi(mi|mΓ

i (θ))σidθ
≡ aΓ

π(m) ≥ aΓ(m′)

for any π ∈ Π. By sender monotonicity, there are two cases to consider: θΓ(m′) is a

proper interval, and θΓ(m′) ≡ {θ′} is a singleton. In the former case, the observation
from the previous paragraph directly implies the result. In the latter case, the result

follows if ∃m′′ ∈ MΓ such that m′ ≤Γ m′′ 5Γ m and θΓ(m′′) is a proper interval.

Otherwise, since θ′ /∈ E, θ′ is in the interior of an interval I of fully revealed states.
Then, for any ε > 0 such that θ′ − ε ∈ I, limπ

∏n
i=1 gi(mi|mΓ

i (θ′′))σi∏n
i=1 gi(mi|mΓ

i (θ))σi
→ 0 whenever

θ′′ < θ′ − ε < θ ≤ θ′. Therefore, the result holds by the boundedness of f . This

implies that aΓ
π(m) ≥ aΓ(m′).

To see why aΓ(m) > aΓ(m′), let j be as in the statement of the step, and consider

π such that π(1) = {j}. It is shown below that aΓ
π(m) > aΓ(m′). There are three
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cases to consider:

i) If mj is sent on a proper interval I, then an argument analogous to the above

implies that aΓ
π(m) ≥ inf{aΓ(m′′) : m′′ ∈ MΓ and m′′j = mj}. It follows that

aΓ
π(m) ≥ θ2 > aΓ(m′).

ii) If mj is sent at a single state θ that is not the right endpoint of a proper

interval throughout which j sends the same message, then an argument analogous

to the above implies that aΓ
π(m) ≥ θ > aΓ(m′).

iii) If mj is sent at a single state θ that is the right endpoint of a proper interval

throughout which j sends m∗j , then an argument analogous to the above implies that

aΓ
π(m) ≥ inf{aΓ(m′′) : m′′ ∈ MΓ and m′′j = m∗j}. It follows that aΓ

π(m) ≥ θ1 >

aΓ(m′).

By the smoothness of uR with respect to aΓ(m), it follows that since aΓ
π(m) ≥

aΓ(m′) for all π and aΓ
π(m) > aΓ(m′) for some π, we must have aΓ(m) > aΓ(m′).

A symmetric argument shows the bracketed part of the result.

Observation 1: Note that the argument for case i) from Step 1 also shows that

aΓ(m) > aΓ(m′) whenever θΓ(m) and θΓ(m′) are both proper cells, and m ≥Γ m
′.

Step 2: If θΓ(m′) is a singleton {θ′}, then θ′ is both the right endpoint of a cell

with positive measure (unless θ′ = 0) and the left endpoint of a cell with positive

measure (unless θ′ = 1).

Suppose instead θ′ 6= 0 is not the right endpoint of a cell with positive measure.

By sender monotonicity, θΓ(m) is connected, and thus aΓ(m) ∈ θΓ(m) for all m. It

follows that there exists an infinite sequencem1,m2, ... such that aΓ(mk) < aΓ(mk+1)

for all k, and limk→∞ a
Γ(mk) = θ′. Furthermore, we may pick such a sequence with

the property that θΓ(mk) * E for all k (take the original sequence, replace any

m such that θΓ(m) ⊆ E with the m of an adjacent cell, and remove duplicates).

Finally, there must exist a subsequence mj,1,mj,2, ... such that mj,k
j 6= mj,k+1

j for all

k, for some j ∈ N (otherwise, all players’messages change a finite number of times

in the original sequence, which contradicts the fact that it is infinite).

Take k suffi ciently large such that aΓ(mj,k+3)− aΓ(mj,k) < η. By Step 1,

aΓ(mj,k+3
j ,mk

−j), a
Γ(mj,k

j ,m
j,k+3
−j ) ∈ (aΓ(mj,k), aΓ(mj,k+3)).
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Therefore, sender j has a profitable deviation either from mj,k
j to mj,k+3

j at θ =

aΓ(mj,k) if right-biased, or from mj,k+3
j to mj,k

j at θ = aΓ(mj,k+3) if left-biased.

A symmetric argument shows that θ′ 6= 1 is the left endpoint of a cell with positive

measure.

Step 3: Every cell in Γ (except possibly for {0} or {1}) is proper.
By sender monotonicity, to show that a cell in Γ has positive measure, it is

suffi cient to show that it is not a singleton. By Step 2, if cell {θ} is a singleton
(and not {0} or {1}), then it is the right endpoint of some cell θΓ(m) with positive

measure and the left endpoint of some cell θΓ(m′) with positive measure.

At least two senders’messages must differ inm andm′: if only sender i’s message

differs, then by sender monotonicity, all other senders must send the same message

in {θ} as in θΓ(m), which implies that at θ, sender i must be indifferent between

aΓ(m), θ and aΓ(m′). This is not possible by single-peakedness.

Observation 1 implies that, since both m and m′ correspond to proper cells,

any message vector m′′ such that m′′i ∈ {mi,m
′
i} for all i must have aΓ(m′′) ∈

(aΓ(m), aΓ(m′)) if m′′ 6= m,m′. But then the argument in the proof of Proposition 1

applies and yields a contradiction.

Step 4: aΓ is mΓ-monotonic.

By Step 3, Observation 1 applies whenever θΓ(m′) /∈ {{0}, {1}}.
For the case θΓ(m′) = {0}, first note that by Step 3, Observation 1, and the

argument for finite MΓ in the proof of Proposition 1, the number of cells is finite.

Therefore, there exists a leftmost proper cell where the induced action, denoted aL,

satisfies aL > 0. It follows that aΓ
π(m) ≥ aL for all π and all m ≥Γ m

′: ex ante, the

state is from a proper cell with probability 1. Thus aΓ(m) ≥ aL > 0 for all m ≥Γ m
′.

A symmetric argument takes care of the case θΓ(m′) = {1}.
b) TO BE COMPLETED. Sketch: For any out-of-eq vector m, let m− be the

highest on-path vector with m− ≤Γ m, and let m+ be the lowest on-path vector

with m+ ≥Γ m. Show that there exist π− and π+ such that aΓ
π−(m) = aΓ(m−) and

aΓ
π+(m) = aΓ(m+). Then the appropriate weights επ,m can be chosen to yield aΓ(m).
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