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Abstract
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mation and not too high costs of information acquisition an agent’s optimal transfer
should depend mainly on the performance of the other agent.
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1 Introduction

How should incentives be optimally designed for multiple agents both to collect and to share

costly information that is useful to optimize each agent’s performance? If agents are paid

for their own individual performances, this might lead to inefficiently high information rents

and insufficient information sharing. Remunerating agents on the basis of their relative per-

formance would facilitate information acquisition but harm incentives to share information.

Instead, remunerating the agents as a “team” facilitates communication but harms individual

incentives to collect information in the first place.

The object of our study is an explicit manifestation of the general question of whether

rewarding individual performance (piece-meal rates), team performance (joint bonuses and

penalties) or relative performance (tournaments) is the most effective way to incentivize

teams of agents.1 Earlier theoretical papers have studied this question, which is considered

fundamental in personnel economics, within models that did not precisely identify the form

of individual efforts to be remunerated, nor the form of the uncooperative behavior that

makes wage spread undesirable. We explicitly posit that individual effort is placed in costly

information acquisition, and that the uncooperative behavior consists of not sharing the

information collected. Remarkably, this is the real world example provided by Lazear (1989)

to motivate his study of cooperation in teams.2

The model we formulate comprises a principal (she) and two agents (he). The former can

be thought as the headquarter manager and the latter as local division managers. There are

two unobserved local states, drawn from two continuous and correlated distributions. Each

agent takes a decision in his division. The principal’s profit is separable across the agents’

choices, and increasing in how closely each agent’s decision matches his division’s local state.3

1It is an age-old insight that piece-meal payments may be more a potent incentive to foster individual
effort than fixed wages. Seminal work by Lazear and Rosen (1981) identified a role for tournaments to
provide high-powered incentives to workers. But Lazear (1989) later remarked that increasing the wage
spread fosters uncooperative behavior among agents, providing an efficiency argument for the desirability of
equitable wage structures.

2“The term ‘sabotage’ [i.e., uncooperative behavior] is used as shorthand for any (costly) decisions that
one worker takes that adversely affect output of another. For example, erecting barriers so that co-workers
cannot obtain useful information falls under this definition.” Lazear (1989), page 563.

3For tractability each agent’s performance net loss due to the mismatch of his action with his local state
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Prior to making his decision, each agent can obtain a costly private signal about his local

state. The agents can inform each other about their signals using (simultaneous) cheap talk

messages. Then the agents simultaneously choose their decisions. The profit determined by

each agent’s choice is verifiable in a court of law, but the agents’ decisions and the local

states are not.

The principal offers and commits to a linear transfer scheme which is separable in the

performances of both agents: it may remunerate each agent for his own performance and/or

for the other agent’s performance. The contracts can feature a competitive, tournament

element if better performance by the co-worker leads to a worse payoff for the agent, or a

cooperative, team element if better performance by the other agent increases the agent’s

own payoff. The agents are protected by limited liability and negative transfers are ruled

out. We ask, what is the optimal pattern of communication and signal acquisition from the

principal’s perspective and what are the cheapest incentives to achieve it?

It is intuitive that if the signal acquisition cost is sufficiently low, the principal finds

it optimal to incentivize both agents to collect and share information. The corresponding

optimal linear transfers depend on the correlation between the local states: if it is below

a threshold, each agent’s remuneration is only responsive to the agent’s own performance.

Surprisingly, we find that if the state correlation is above the threshold, the optimal linear

transfers remunerate each agent mainly for the performance of the other agent.

To understand this result, suppose momentarily that the local states are perfectly cor-

related, so that each agent’s researched information is equally valuable for both agents’

decisions. Suppose that agent 1 shirks and does not exert effort in collecting information.

In the optimal equilibrium, agent 2 exerts effort researching information, reports this infor-

mation to 1, and expects 1 to do the same. To fulfill this expectation, agent 1 has to put

together something to report to 2. Because it is not based on research, what 1 reports is just

noise. Agent 2 takes 1’s report seriously and uses it to make his decisions, together with his

own costly and valuable research. Agent 2 would make a better decision if he simply ignored

agent 1’s report, and based his decision only on his own research. This is exactly what agent

is measured as a quadratic loss function.
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1 does: He bases his decision on 2’s report only. The shirking agent 1 does more damage

to his peer 2’s performance than to his own: on top of not providing useful information, 1

also biases 2’s decision. As a result, the most potent incentive to prevent an agent i from

shirking information acquisition is making i’s payment sensitive not to his own performance,

but to the performance of his peer j.

This finding holds as long as the states are sufficiently correlated. When they are not,

the value of the non-shirking agent j’s information for the shirking agent i’s decision is too

low, and the bias induced on j’s decision by the noise in agent i’s report is too low, so that

if an agent i shirks information acquisition, he damages his own performance more than the

other agent j’s performance. The most potent incentive to prevent shirking is then making

each agent i’s payment depend on i’s own performance.

The logic behind this characterization is not limited to the case of low information acqui-

sition costs, and it is valid as long as the research cost is not so high that profit maximization

requires the agents to not collect information. The only difference is that, for such inter-

mediate research costs, the profit maximizing contract is such that only one agent collects

and shares information. But again, if the states are sufficiently correlated, this is optimally

achieved by making that agent’s payment depend mainly on the other agent’s performance.

Interestingly, for intermediate research costs and low correlation among states, the op-

timal linear contract is such that both agents collect information without sharing it. The

reason for this counterintuitive result is that, in this parameter range, it is too costly (rela-

tive to the expected profit increase) to motivate an agent i to collect information to improve

his own performance if i already expects valuable information to be reported from the other

agent j. Profits turn out to be maximized by asking agents to research information without

sharing it, in exchange for lower expected payments.

We complete the paper by generalizing our results to consider non-linear contracts. We

show that allowing the transfers to depend on a direct interaction between the losses of both

divisions does not change the optimal contract. Further, we allow for the possibility that

the principal can be biased towards one of the divisions. In this case, if the correlation
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between the local states is not too hight, the principal can prefer an allocation with two

acquired signal but only one sided information where an agent of her least preferred division

communicates his signal to the other agent.

In terms of the empirical/testable implications of our analysis, it should not be surprising

that the incentivation of information acquisition and sharing by multiple agents displays a

feature of joint performance remuneration. As pointed out earlier, information sharing is

possibly the most obvious form of cooperation in teams of agents. And there is empiri-

cal evidence that incentive schemes based in part on joint performance evaluation improve

worker’s productivity and profit relative to fixed wage structures and individual performance

evaluations. As we detail in the literature review, Kruse (1993) document a productivity

increase of about 4.5%-5.5% in companies that adopt profit sharing plans in the forms of cash

transfers. Further, Kandel and Lazear (1992), Che and Yoo (1999) and Alonso, Dessein and

Matouscheck (2008) discuss case studies of major corporations that experienced productivity

increments following the restructuring of managerial incentives to include elements of joint

performance evaluation.

Pushing these lines of reasoning further, this paper provocatively suggests that, in some

cases, optimal incentives may be provided by making an agent’s remuneration depend mainly

on the performance of other agents. We demonstrate this suggestion in a model of infor-

mation acquisition and sharing. When each agent’s information is equally useful for each

agent’s decisions, making an agent responsible for the other agent’s performance is a more

potent incentive to prevent shirking than remunerating the agent for his own performance.

2 Related Literature

Our paper fits into the literature on contract design with multiple agents. A contract can

foster either a competitive or cooperative behavior (or both). The competition element is

usually associated with a tournament-based contract structure. In a seminal contribution,

Lazear and Rosen (1981) show that with risk-neutral agents the tournaments are optimal

and result in the same outcomes as piece rates. Green and Stokey (1983) study risk-averse
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agents and show that tournaments can outperforms piece rates when agents performances

are influenced by a common shock unobservable to the principal. There is no common shock

in the agents’ performances in our model, and there is no role for tournaments in the optimal

contracts.

The cooperation element in contracts is studied in Holmström and Milgrom (1990),

Lazear (1989), Kandel and Lazear (1992), and Itoh (1991), among others. These papers

show in general that with production externalities the principal finds it optimal to reward

agents according to the team output. In those cases, rewards which are only contingent

on individual performances or on relative performances can harm cooperation and so the

principalâĂŹs objectives. Itoh (1993) shows that optimal contracts include team bonuses,

when the agents can monitor each other and stipulate self-enforceable side-contracts, and

Che and Yoo (2001) study the merits of relative versus joint performance evaluation in a

repeated game in which such self-enforcing contracts arise as an equilibrium phenomenon.

By considering a model of information acquisition and sharing in teams of agents, we iden-

tify a precise case in which joint performance evaluations improve workers’ productivity.

Our analysis pushes the argument one step further suggesting that, in some cases, agents’

remunerations should be based mainly on their co-workers’ performances.

Empirical studies find a strong positive relationship between the adoption of profit sharing

schemes and a productivity increase, there is no negative post-adoption trend.4. For instance,

Kruse (1993) presents evidence based on a survey of 500 U.S. companies with publicly traded

stock. He documents a productivity increase of about 4.5%-5.5% in companies that adopt

profit sharing plans in the forms of cash transfers. This effect is more pronounced in smaller

firms, and for larger shares of profit. (The mechanism is not determined: it may be because

of increased monitoring in small teams, but also because of workers’ cooperation.) There are

several case studies that compare the effectiveness of different incentive schemes and show

the value of joint bonuses. For example, Alonso, Dessein and Matouscheck (2008) discuss

the case of the management restructuring of BPX, the oil and gas exploration division of

British Petroleum, in the early ’90s by the then head of BPX (and future CEO of BP) John
4The empirical importance of joint performance evaluation is, e.g., in Ichniowski and Shaw (2003)
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Browne.5

Costly acquisition of endogenous information in organizations in studied in Argenziano,

Severinov and Squintani (2016) and Pei (2015). These papers study a setting with a single

agent who can collect information at a cost and communicate it to the decision maker using

a cheap talk message. The setting with multiple agents and cheap talk communication is

studied in Alonso, Dessein and Matouscheck (2008), Alonso Dessein and Matouscheck (2010)

who assume exogenous information. Angelucci (2016) studies a model with two agents

and endogenous costly information. Different to our setting, in their papers the transfers

are absent and the principal has to rely on different instruments than transfers to achieve

second-best.

3 Model

An organization consists of a headquarter manager and two division managers. For simplicity

we refer to the division managers as agents 1 and 2 (he), and to the headquarter manager

simply as a principal (she). The principal wants each agent i = 1, 2 to take an decision yi ∈

[0, 1] which matches an unobserved local state θi ∈ [0, 1]. We assume that the profit function

π is separable in the agent’s performances and takes the form:6 π = π1(y1, θ1) + π2(y2, θ2),

where πi(yi, θi) = π − `i(yi, θi) with `i(yi, θi) = −(yi − θi)2 for either agent i. Each agent i’s

decision yi gives a higher profit πi(yi, θi) the more precisely it matches the local state θi. The

profit πi consists of π ≥ 1 minus the loss `i(yi, θi) expressed in a simple quadratic form that

is standard in communication games since Crawford and Sobel (1982).

The states θ1, θ2 are correlated: with probability q both states are perfectly correlated
5“Browne decentralized BPX in the early 1990s, creating almost 50 semi-autonomous business units.

Initially, since “business unit leaders were personally accountable for their units’ performance, they focused
primarily on the success of their own businesses rather than on the success of BPX as a whole.” (Hansen
and von Oetinger, 2001) To encourage coordination between the business units, BPX established changed
in the implicit and explicit incentives of business unit leaders to reward and promote them, not just based
on the success of their own division, but also for contributing to the successes of other business units. As a
result, “Lone stars’ those who deliver outstanding business unit performance but engage in little cross-unit
collaboration can survive within BP, but their careers typically plateau.” (Hansen and von Oetinger, 2001).”
Alonso, Dessein and Matouscheck (2008), page 164-165.

6The profit formula is generalized in section 6.

6



and randomly drawn from the uniform distribution U [0, 1]. With probability 1 − q each

state is drawn independently from U [0, 1]. Prior to choosing yi, each agent i can exert a

costly effort c > 0 which enables him to observe a private binary signal about the local state,

si ∈ {0, 1} such that Pr(si = 1) = θi. If an agent exerts no effort he cannot obtain an

informative signal. After the signals are received and before the decisions (y1, y2) are taken

the agents can communicate with each other using cheap talk messages. We assume that

each agent i has an arbitrary large set of messages Mi with a typical element mi ∈Mi.

The principal is not able to observe either agent’s messages or the signal acquisition

decisions, nor to verify in court the agents’ final decisions and the two states of the world.

Contracting is thus based only on the agents’ performances, determined by the losses `1 and

`2, that can be verified in court. At the beginning of the game the principal offers (and

commits to) a contract ti for each agent i = 1, 2. For ease of exposition, we focus on linear

contracts:7

ti(`i, `j) := zi − ai`i − bi`j = zi − ai(yi − θi)2 − bi(yj − θj)2,

where zi ∈ R, ai ∈ R, bi ∈ R, and j = 1, 2, j 6= i denotes the other agent.

As standard in the literature we assume that both agents are protected by limited liability,

and cannot be paid negative transfers: it must be the case that ti(`i, `j) ≥ 0 for all possible

loss realizations `i ∈ [0, 1] and `j ∈ [0, 1]. Normalizing the value of their outside option to

zero, it must also be the case that each agent i is willing to accept the contract ti ex-ante,

i.e., before deciding whether to collect and share signal si and before choosing yi.

Because `i = −(yi− θi)2 is the loss determined by agent i’s imprecise matching of yi with

θi, the contracts ti are piece-wise linear contracts, composed of a fixed wage wi = zi−ai− bi,

a bonus payment ai(1− `i) that depends on agent i’s performance, and a payment bi(1− `j)

based on the other agent j’s performance.8 The contracts ti can also be interpreted as a

mixture of relative performance evaluation and joint performance evaluation based transfers,

by letting ai = (ai − bi)/2 and bi = (ai + bi)/2 and obtaining: ti(`i, `j) = zi − ai(`i − `j) −
7Optimal contracts are considered in section 6
8We will later show that in the optimal linear contracts, it is the case that ai < 1, bi < 1, and that the

limited liability constraint binds, so that ti(`i, `j) = 0 for `i = 1 and `j = 1, and hence zi − ai − bi = 0.
Then, the contracts ti(`i, `j) can be decomposed as ti(`i, `j) = wi + ai(1− `i) + bi(1− `j).
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bi(`i + `j). The parameter ai can be understood as a weighting factor for agent i’s relative

performance and bi as a weighting factor for the team performance: agent i’s payment

ti(`i, `j) is more sensitive to the relative loss (`i − `j) the higher is āi and to the aggregate

loss (`i + `j) the higher is b̄i.

The game proceeds as follows: First, nature (privately) chooses θ1, θ2 and the principal

offers (and commits to) contracts (t1, t2). Second, the agents i = 1, 2 decide whether to collect

signals si. Then they send simultaneous cheap talk messages mi to each other. Finally, each

agent i chooses yi, losses `1 and `2 are publicly observed and the transfers are paid as specified

in the contracts. All elements of the model are common knowledge apart from the private

signals. Given the contracts (t1, t2), multiple equilibria may exist in the agents’ game, for

example there is always an equilibrium in which agents do not communicate with each other.

As customary, we consider the equilibria that are most informative, and it turns out that

these equilibria are also optimal for the principal.

4 Conditional optimal linear transfers

In the first step we fix the profile of decisions over the signal acquisition and communica-

tion which the principal wants to implement and show the corresponding optimal payment

schemes. We begin by considering the case in which the principal wants both agents to collect

information and to communicate it to the other agent. The principal wants to minimize the

expected sum of transfers E[t1(`1, `2) + t2(`2, `1)] subject to the limited liability constraint

and to the constraints that each agent i = 1, 2 chooses decision yi so as to minimize the loss

`i = (yi − θi)2 given her equilibrium information (si,mj), that i collects the costly signal si

and that i truthfully communicates mi = si to the other agent j.

We begin noting that each agent i = 1, 2 is motivated to choose decision yi so as to

minimize the loss `i = (yi − θi)2 with any ai ≥ 0. Because the agent’s utility is independent

of yi and θi, an arbitrary small but positive ai ensures that i chooses yi to minimize `i.9 At
9Instead, the coefficient ai needs to be strictly bounded above zero if agent i’s effort has a direct effect on

the profit πi, instead of just an indirect effect through information acquisition. In order to motivate agent
i to exert such productive effort, the transfer ti(`i, `j) needs to be significantly sensitive to the loss `i. In a
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the decision stage, he matches yi to Ei(θi|si,mj), the posterior expectation of θ given his

signal si and the presumed truthful message mj by agent j.

Proceeding backwards, we consider how to motivate agents to share their information.

The following Lemma formalizes the result that, given that ai ≥ 0 for both i = 1, 2, each

agent i is motivated to truthfully report mi = si by setting bi ≥ 0.

Lemma 1. In the equilibrium with two signals and two-sided truthful communication, agent

i ∈ {1, 2} does not deviate from truthtelling if bi ≥ 0.

The result is intuitive: to incentivize truthful communication by, say, agent 1, the princi-

pal has to make agent 1’s payoff dependent on the performance of agent 2. Because a2 ≥ 0,

agent 2 chooses y2 to match his expectation of θ2 given her signal s2 and the equilibrium

belief that m1 = s1. Since communication is costless and agent 1’s utility is independent of

y2 and θ2, an arbitrary small b1 ensures that an informed agent 1 sends a truthful message

to agent 2.

We consider, next, a deviation of agent 1 at the effort stage. If agent 1 decides to collect

a signal which he, then, truthfully communicates to agent 2, and there is a common belief

that both signals are collected and truthfully communicated, the expected payoff of agent 1

is calculated as follows. We proceed backwards, and determine agent 1’s equilibrium payoff

conditional on his signal s1 = 0, 1:

u1(s1) = z1 − a1
∑
s2=0,1

Pr(s2|s1)E[(y1(s1, s2)− θ1)2|s1, s2]

−b1
∑
s2=0,1

Pr(s2|s1)E[(y2(s1, s2)− θ2)2|s2, s1]− c, (1)

using the fact that agents are truthful in equilibrium, so that m2 = s2 and m1 = s1.

supplementary appendix available upon request, we consider the case in which each agent i needs to pay an
implementation cost c0 > 0 to precisely choose his implemented action yi ∈ [0, 1], and else yi is random draw
from a uniform distribution on [0, 1]. We show that our results generalize in a qualitative sense, as long as
this ‘precise implementation cost’ c0 is not larger than the research cost c.
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Because the optimal decisions are yi(si, sj) = E(θi|si, sj), we can simplify (1) as

u1(s1) = z1 − a1
∑
s2=0,1

Pr(s2|s1)E[(E(θ1|s1, s2)− θ1)2|s1, s2]

−b1
∑
s2=0,1

Pr(s2|s1)E[(E(θ2|s2, s1)− θ2)2|s2, s1]− c.

Because of symmetry across agents, E[(E(θ2|s1, s2)−θ2)2|s1, s2] = E[(E(θ1|s1, s2)−θ1)2|s1, s2]

when s1 = s2. Adding also symmetry across signal realizations, it is also the case that

E[(E(θ2|s2, s1) − θ2)2|s2, s1] = E[(E(θ1|s1, s2) − θ1)2|s1, s2] when s1 6= s2. We then rewrite

(1) as

u1(s1) = z1 − (a1 + b1)
∑
s2=0,1

Pr(s2|s1)E[(E(θ1|s1, s2)− θ1)2|s1, s2].

Suppose that s1 = 1 (the case s1 = 0 is symmetric). As shown in Appendix, the conditional

values and densities are

E(θ1|s1 = 0, s2 = 0) =
1

3 + q
, f(θ1|s1 = 0, s2 = 0) =

6(1− θ1)(1 + q − 2qθ1)

3 + q
,

E(θ1|s1 = 0, s2 = 1) =
1

3− q
, f(θ1|s1 = 0, s2 = 1) =

6(1− θ1)(1 + q − 2qθ1)

3− q
.

Substituting in the expected losses definitions and simplifying, we obtain, for s1 = s2 = 0,

E[(E(θ1|s1, s2)− θ1)2|s1, s2] =

∫ 1

0

(E(θ1|s1, s2)− θ1)2f(θ1|s1, s2)dθ1

=
5 + 2q − q2

10(3 + q)2
.

and for s1 = 0, s2 = 1,

E[(E(θ1|s1, s2)− θ1)2|s1, s2] =
5− 2q − q2

10(3− q)2
.

Substituting the expected losses in (1), together with the conditional posteriors which agent

1 assigns to the signal realizations of agent 2 (shown in the appendix)

Pr(s2 = 1|s1 = 1) =
3 + q

6
, Pr(s2 = 0|s1 = 1) =

3− q
6

,

and simplifying, we obtain:

u1(si) = z1 − (a1 + b1)
3− q2

6(9− q2)
− c. (2)
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Because the signals s1 = 0 and s1 = 1 are equally likely ex-ante, u1(s1 = 0) = u1(s1 = 1)

and this is also the expected equilibrium payoff ui of agent 1 before observing s1 if collecting

his signal.

Now, suppose that agent 1 deviates at the signal acquisition stage and exerts no effort.

He, thus, does not obtain a signal about θ1. In the most informative equilibrium, agent

1 cannot communicate to agent 2 that she did not exert effort.10 Agent 2 believes that

1 collected s1 and hence interprets any possible message realization m1 ∈ M1 as either

meaning that s1 = 0 or that s1 = 1. Like in Argenziano, Severinov and Squintani (2016),

the equilibrium language is fixed by the on-path communication strategy. Assume that after

the deviation at the effort stage agent 1 sends the message m1 = 0 (sending m1 = 1 results

in the same constraint). The corresponding off-path payoff of agent 1 is

uoi = z1 − a1
∑
s2=0,1

1

2
E[(y1(s2)− θ1)2|s2]dθ1 − b1

∑
s2=0,1

1

2

∫ 1

0

E[y2(s2,m1)− θ2)2|s2]dθ2, (3)

using m2 = s2. Agent 1’s optimal decisions is y1(s2) = E(θ1|s2). To calculate the expected

loss

E[(y1(s2)− θ1)2|s2] = E[(E(θ1|s2)− θ1)2|s2],

suppose that s2 = 0: by symmetry across signal realizations, E[(y1(s2)− θ1)2|s2] is the same

for s2 = 0 and s2 = 1. As shown in the appendix, the densities and the expected values of

θ1 depending on the realization of s2 = 0 are

f(θ1|s2 = 0) = 1 + q(1− 2θ1), E(θ1|s2 = 0) =
3− q

6
.

Substituting in the expected loss definition and simplifying, we obtain

E[(y1(s2)− θ1)2|s2] =

∫ 1

0

(E(θ1|s2)− θ1)2f(θ1|s2)dθ1 =
3− q2

36
.

Agent 2’s decision y2(s2,m1) equal E(θ2|s2, s1 = m1) under the mistaken belief that 1 col-

lected signal s1 and truthfully reported m1 = s1. Using again symmetry across signal real-

izations, we assume that s1 = 0 and calculate the expected loss E[(E(θ2|s2,m1) − θ2)2|s2]

associated with agent 2’s decision.
10Later, we discuss other equilibria and their plausibility.
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When m1 = 0 and s2 = 0, because the conditional densities and expected values (shown

in the appendix) are

f(θ2|s2) = 2(1− θ2) and E(θ2|s2,m1) =
1

3 + q
,

the expected loss is:

E[(E(θ2|s2,m1)− θ2)2|s2] =

∫ 1

0

(E(θ2|s2,m1)− θ2)2f(θ2|s2)dθ2

=
3 + 2q + q2

6(3 + q)2
.

When m1 = 0 and s2 = 1, the expected loss is:

E[(E(θ2|s2,m1)− θ2)2|s2] =

∫ 1

0

(
2− q
3− q

− θ2)22θ2dθ2

=
3− 2q + q2

6(3− q)2
.

Plugging the obtained formulas into (3) and simplifying, we obtain

uoi = z1 − a1
3− q2

36
− b1

27 + q4

6(9− q2)2
. (4)

To understand the expected losses notice, first, that agent 1 chooses y1 only based on the

signal of agent 2. Moreover, his conditional posterior distribution of θ1 is only based on the

truthful message m2 = s2. However, as agent 2 mistakenly believes that agent 1 collected s1

and sent a truthful messagem1, the former chooses y2 based on both his own signal s2 and the

message m1 of agent 1. The misled decision y2 determines a larger loss that if agent 2 knew

that agent 1 did not collect s1. Whether agent 1’s shirking at the information acquisition

stage induces a larger expected loss E`1 = 3−q2
36

or E`2 = 27+q4

6(9−q2)2 depends on the correlation

q across the states θ1 and θ2, i.e. on how informative the truthful message m2 = s2 is for

the optimal choice of y1, and on how misleading is the mistaken belief that 1 collected s1

and sent a truthful message m1 = s1 for the choice of y2. There exists a threshold q′ (later

determined precisely) such that 3−q2
36

> 27+q4

6(9−q2)2 if and only if q < q′. That is, for highly

correlated states θ1 and θ2, the largest expected loss determined by agent 1 not collecting

his signal s1 consists in misleading the choice y2 of agent 2, and not in agent 1 choosing y1

with less information.
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The information acquisition incentive constraints are derived by subtracting (3) from (2),

and given the payoff symmetry for both agents, we obtain

Lemma 2. In the equilibrium with two signals and two-sided truthful communication, agent

i ∈ {1, 2} does not deviate from collecting the signal si if

1

36

(3− q2)2

9− q2
a1 + 2

q2

(9− q2)2
b1 ≥ c. (5)

The final constraint to consider is limited liability.11 Because the maximal possible loss

is `i = 1, which occurs when yi = 0 and θi = 1 or vice-versa, limited liability requires only

that zi − ai − bi ≥ 0 for i = 1, 2. Because the earlier considered equilibrium constraints do

not affect zi, it is obvious that zi = ai + bi in the optimal linear contracts ti.

Continuing, we note that restricting attention to symmetric pair of linear contracts t1 = t2

is without loss of generality, because the principal’s cost minimization program is linear.12

Imposing symmetry across agents, we have reduced the principal’s cost-minimization pro-

gram to the following program:

min
a1≥0, b1≥0

E[a1(1− E[(y1 − θ1)2|s1, s2]) + b1(1− E[(y2 − θ2)2|s2, s1])]

= min
a1≥0, b1≥0

(a1 + b1)[1−
3− q2

6(9− q2)
] (6)

subject to the incentive compatibility constraint (5).

Because the objective function is linear in a1 and b1 (with “marginal rate of substitution”

equal to one), and the constraint (5) is also linear in a1 and b1, the solution of program (6)

is generically “bang-bang”: either a1 > 0 and b1 = 0, or a1 = 0 and b1 > 0. Also, this is

determined solely by whether 1
36

(3−q2)2
9−q2 , the coefficient of a1 in the constraint (5), is larger or

smaller than 2 q2

(9−q2)2 , the coefficient of b1.

11We show in the proof of Proposition 1 in appendix that the optimal linear contract characterized by the
equilibrium constraints considered here also satisfy the ex-ante participation constraint.

12Each agent i’s constraints are linear in the maximization arguments ai and bi. Thus, the constraint set
is convex. Hence, suppose that an asymmetric pair of linear contracts t1 6= t2 minimized the sum of expected
transfers to the agents. Because the model is symmetric, the antisymmetric pair of contracts t′1 = t2, t

′
2 = t1

is also optimal. But then, the constraint set being convex, it contains also the symmetric pair of contracts
obtained by averaging these two pairs. As the objective is linear, this symmetric pair contracts is also
optimal.
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We obtain the following

Proposition 1. The optimal linear contracts t1, t2 to make each agent i ∈ {1, 2} collect

information and transmit it to the other agent j in the most informative equilibrium depend

on q and c as follows:13

1. For q < q′ ≈ 0.803 the optimal contract ti features zi = ai = 36 9−q2
(3−q2)2 c and bi = 0, which

leads to the expected principal’s profit

Eπ = 2π − 3− q2

3(9− q2)
− 12

(3− q2)2
(51− 5q2)c.

2. For q > q′ the optimal contract ti features ai = 0 and zi = bi = c(9−q2)2
2q2

, which leads to

the expected principal’s profit

Eπ = 2π − 3− q2

3(9− q2)
− (51− 5q2)

9− q2

6q2
c.

For future reference, we note that the expected profit can be written as:

Eπ22 = 2π − 3− q2

3(9− q2)
− (51− 5q2) min

{
12

(3− q2)2
,
9− q2

6q2

}
c.

As earlier anticipated, we revisit the matter of equilibrium selection in the agents’ game. For

every pair of contracts t1, t2 we have assumed that agents coordinate on the most informative

equilibrium, which is also the one that maximizes the principal’s profit. In the equilibrium we

considered, after an agent i deviated by not collecting his signal si, he cannot communicate

to agent j that he shirked. For the optimal linear contracts t1, t2 with zi = ai > 0 and bi = 0

for i = 1, 2, there also exists an equilibrium in which agent i, as well as revealing agent j the

realization of si, would also be able to communicate to j that he did not collect signal si off

path. But this equilibrium fails to exist for the optimal contracts t1, t2 of Proposition 1 with

ai = 0 and zi = bi > 0 for i = 1, 2. Selecting this equilibrium would imply that zi = ai > 0

and bi = 0 for all q in the optimal contract, hence lowering the principal’s profit for q > q′.

13The precise value of the threshold q′ is:

q′ ≡

√
5− 10(

2

9
√
29

)1/3 + 22/3(9
√
29− 43)1/3.
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The plausibility of the equilibrium selected in Proposition 1 relative to the more demand-

ing equilibrium we just described ultimately depends on the intended application. It may

sound appealing that agent i be capable to “collude” by alerting j that he does not have

information useful for j’s decision yj. However, it is not plausible that i would reveal his

co-worker j that he shirked and did not collect the information he was supposed to. Agent j

does not shirk in equilibrium, and would feel “cheated” by i and retaliate, possibly reporting

to the principal that i shirked. Further, the equilibrium selected in Proposition 1 is collusive

in the sense that it maximizes the agents’ payoffs when the optimal linear contracts ti are

stipulated.

Having determined the optimal linear contracts to make both agents i collect signal si

and share it with the other agent j, we calculate the optimal linear contracts for the other

two cases in which both agents collect information. In the first one, both agents collect

information and only one of them shares with the other agent. In the second case, both

agents collect information and neither of them shares it with the other agent.

The optimal linear contract ti for the agent(s) i who are not intended to share signal

si with j is such that ai > 0 and bi = 0 for all values of c and q. The optimal contract is

piece rate as the principal does not want to make i share his information with j. Again, the

information acquisition constraints leads to a trade-off within the optimal linear contract for

an agent i incentivized to share signal si. For low values q of correlation among the states

θ1 and θ2, optimality requires that ai > 0 and bi = 0. When θ1 and θ2 are highly correlated,

the optimal linear contract is such that ai = 0 and bi > 0.

Proposition 2. The optimal linear contracts t1, t2 to induce both agents i = 1, 2 to collect

information and only one of them, say agent 1, to transmit it to the other agent j is such

that z2 = a2 = 36 9−q2
(q2−3)2 c, b2 = 0, and that z1 = a1 = 36c, b1 = 0 for q <

√
(28
√
3−
√
2267)3

√
3

5
≈

0.958, and a1 = 0, z1 = b1 = (9−q2)2
2q2

c for q >
√

(28
√
3−
√
2267)3

√
3

5
. This yields the principal’s

expected profit:

Eπ21 = 2π − 9− 2q2

9(9− q2)
−min

{
34, (51− 5q2)

(9− q2)
12q2

}
c− 6

51− 5q2

(3− q2)2
c.

Optimal linear contracts t1, t2 to induce both agents i = 1, 2 to collect information and not

15



to transmit it to the other agent j are such that zi = ai = 36c, bi = 0, 14and yield expected

profit:

Eπ20 = 2π − 1

9
− 68c.

The next result shows the optimal linear contracts to induce a single agent i to collect

information, and either then share it with agent j or not. Agent j is not asked to collect

information. The characterization in Proposition 3 mirrors the case for two agents (Propo-

sitions 1 and 2), but the optimal linear for agent j is irresponsive of the performance losses

`i and `j, i.e., with ai = 0 and bj = 0.

Proposition 3. Optimal linear contracts t1, t2 to make one agent, say agent 1, collect

information and transmit it to the other agent 2, and agent 2 to not collect information, are

such that z2 = a2 = b2 = 0, and that z1 = a1 = 36c, b1 = 0 for q <
√

33
67
≈ 0.701 and a1 = 0,

z1 = b1 = 18
q2
c for q >

√
33
67
. They yield the principal’s expected profit:

Eπ11 = 2π − 1

36
(5− q2)−min

{
34,

1

2

q2 + 33

q2

}
c.

Optimal linear contracts t1, t2 to induce only one agents, say agent 1 to collect signal s1, but

not to transmit to agent 2 are such that z1 = a1 = 36c, b1 = 0 and z2 = a2 = b2 = 0. They

yield expected payoff:

Eπ10 = 2π − 5

36
− 34c.

To conclude, it is obvious that the optimal linear contracts t1, t2 in the case that both

agents i = 1, 2 are not supposed to collect information are such that zi = ai = bi = 0. The

only role played by contracts is to ensure that each agent i matches yi with the state θi to the

best of the shared knowledge that θi is uniformly distributed on [0, 1]. Because neither agent

i derives any (dis-)utility from the decision yi and state θi, this objective can be achieved

with any ai ≥ 0 as earlier pointed out. It is easily shown in the appendix that such optimal
14The optimal linear contracts are such that ai = 36c and the parameters zi and bi are undetermined,

under the constraint that ai+ bi = zi. In the interest of simplicity, we henceforth only report linear contracts
with ai = 0 and/or bi = 0, when such contracts are optimal. The idea is that the principal stipulates a
simple contract unless bonuses are useful to provide incentives to the agents.
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linear contracts yield to the principal profit:

Eπ00 = 2π − 1

6
.

5 Optimal linear contracts

For different values of the information acquisition cost c and state correlation q parameters,

the principal’s expected profit may be maximized by different information acquisition and

communication agents’ choices, together with the associated optimal linear transfers. We

begin the analysis by showing that some of the agents’ choices are dominated for all parameter

c and q values. We consider the optimal linear contracts to make only one agent i collect

and share his signal si with the other agent j, and j not collect his signal sj. We show that

these contracts yield a higher profit than the optimal linear contracts that make i collect his

signal si without sharing it with j, and j not collect sj.

Lemma 3. For all cost c and correlation values q, it is the case that Eπ11 ≥ Eπ10, and

the inequality is strict for almost all c and q. The expected profit Eπ11 of the optimal linear

contracts t1, t2 inducing only one agent i to collect si and share it with the other agent j is

larger than Eπ10, the optimal profit obtained when i collects si and does not share it with j.

This result is intuitive. Given that the optimal linear contracts t1, t2 induce only one

agent, say agent 1 to collect his signal s1, there is no reason not to make him also share

s1 with the other agent 2. The only consequence of transmitting s1 to agent 2 is that the

precision of agent 2’s decision y2 improves, and this reduces the loss `2 borne by the principal.

Further, it is very cheap to make agent 1 share s1, as this can be achieved with any b1 ≥ 0.

However, this simple logic does not extend to the optimal contracts that make both

agents collect information. For some c and q, it is not true that the expected profit Eπ22 of

the optimal linear contracts that makes both agents i collect si and share it with the other

agent j is larger than Eπ21, the expected profit of optimally inducing both agents i to collect

si but only one of them to share it, nor that Eπ22 is larger than Eπ20, the expected profit

of optimally making both agents i collect si without sharing it.
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The reason for this result is subtle. Suppose that both agents i = 1, 2 are asked to collect

their signals si by the principal. Consider an agent, say agent 2, and suppose that he expects

to receive signal s1 from agent 1 in equilibrium. Then, the informational benefit of collecting

signal s2 is smaller than when he does not expect to receive s1. As a result, the contractual

transfer needed to make agent 2 collect s2 needs to reward agent 2’s decision precision more

than when 2 does not receive s1 in equilibrium. When the cost of information c is sufficiently

high, it becomes so expensive to simultaneously make agent 1 send s1 to agent 2 and agent

2 collect s2, that the principal is better off not asking agent 1 to share s1 with agent 2.

Of course, this intuition does not apply to the comparison between Eπ11 and Eπ10,

because in this case agent 2 is not asked to collect s2 by the principal. Further, this intuition

does not entirely invalidates the possibility of comparing expected profit in the three cases

in which both agents are asked to collect their signals by the principal. It turns out that for

every information cost value c and every correlation value q, the choice of asking both agents

i to collect si and only one of them to share si with the other agent j is either dominated by

asking both i to collect and also share si, or by asking both i to collect si without sharing it.

Lemma 4. For all cost c and correlation values q, it is either the case that Eπ21 ≤ Eπ22 or

that Eπ21 ≤ Eπ20 or both, and the inequalities are strict for almost all c and q. The expected

profit Eπ21 of the optimal linear contracts t1, t2 inducing both agents i to collect si and only

of them to share it with the other agent j is either smaller than Eπ22, the optimal profit

obtained when both agents i = 1, 2 collect and share si, or smaller than Eπ20, the optimal

profit obtained when both agents i = 1, 2 collect si without sharing it with the other agent j.

The intuition for this result lies in the separability of the principal’s expected profit and

symmetry across players. Given that both agents i are asked to collect their signal si, it is

either the case that it is more advantageous to also ask both to share si so as to improve

j’s decision precision, or that this would increase the reward needed to make j collect sj so

much that it is better not to ask either agent i to share si. But it cannot be the case that it

is optimal to ask one agent to share his signal and the other not to.

The optimal linear contracts inducing the remaining four possible course of actions (both
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agents i = 1, 2 collecting and sharing signals si, both agents i = 1, 2 collecting si without

sharing it, only one agent i collecting and sharing si, and neither agent i = 1, 2 collecting si)

turn out to maximize the principal’s profit in different areas of the parameter space defined

by the information acquisition cost c and state correlation q. The complete characterization

is summarized in the proposition that follows, and depicted in Figure 1, which also identifies

the areas in which the optimal linear contracts t1, t2 reward information acquisition and

transmission by an agent i by making i’s payment depend on the performance of the other

agent j.

Proposition 4. The profit maximizing agents’ actions achieved through the optimal linear
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contracts are as follows.15

1. For research cost c < c22−20(q) and correlation q < q̃ ≈ 0.553, and for q > q̃ and

c < c22−11(q), both agents i = 1, 2 collect signal si and share it with the other agent j.16

2. When q < q̃ and c22−20(q) < q < c20−11(q), both agents i = 1, 2 collect signal si but do not

share it with j.

3. When c22−11(q) < c < c11−00(q), for all q, only one agent i collects signal si and shares it

with j.

4. When c > c11−00(q), for all q, neither agent i collects signal si.

We conclude this section by combining Propositions 1, 3 and 4 to present the main result

of our analysis. We describe the optimal linear contracts t1, t2 that induce agent(s) i to collect

and share information by making i’s payment depend on the other agent j’s performance.

Corollary 1. If the states are sufficiently correlated (q > q′ ≈ 0.803) and signal acquisition

cheap enough (c < c(q)22−11), then ai = 0 and zi = bi > 0 for both i = 1, 2. Each agent

i = 1, 2 is induced to collect signal si and share it with the other agent j with a reward based

on the other agent j’s performance.

For sufficient state correlation (q >
√

33
67
≈ 0.701) and intermediate signal costs (c(q)22−11 <

c < c(q)11−00), only one agent i is induced to collect si and share with j with a reward based

j’s performance. (The other agent receives a flat payment.)

For all other values of q and c, each agent i is induced to collect si (and possibly share si

with j) only with rewards based on agent i’s own performance.
15The threshold functions used in the statement are:

c22−20(q) =

1
9 −

3−q2
3(9−q2)

min
{

12
(3−q2)2 ,

9−q2
6q2

}
(51− 5q2)− 68

, c20−11(q) =
1− q2

2448− 36min
{
34, q

2+33
2q2

}
c22−11(q) =

5−q2
36 −

3−q2
3(9−q2)

min
{

12
(3−q2)2 ,

9−q2
6q2

}
(51− 5q2)−min

{
34, 12

q2+33
q2

} , c11−00(q) = 1 + q2

36min
{
34, 12

q2+33
q2

}
16The precise value of the threshold is: q̃ ≡

√
63
17 −

3

√
54 576
4913 −

1
289

√
9914 048− 484

289 3
√

54 576
4913 −

1
289

√
9914 048
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This section has determined the profit maximizing linear contracts for our baseline model.

We have uncovered an important role for joint performance evaluations. Making one agent’s

remuneration depend on his co-worker’s performance may be a very potent incentive for

information acquisition and sharing in teams of agents. In the extreme case in which each

agent’s information is equally useful for both agents tasks, we have shown that such an

incentive is even more potent than remunerating the agent for his own performance. The

model solved in this section is kept simple with the purpose of presenting our results in

the cleanest manner. The next section explores how our results would generalize when

considering robustness exercises.

6 Robustness exercises

Non-linear contracts. This section shows the robustness of the optimal linear contract

for sufficiently low costs and a simple extension to non-linear contracts. Consider a contract

with an additional interaction term dililj to linear contracts such that a non-linear contract

can be written as ti(`i, `j) = zi − ai`i − bi`j − di`i`j. We focus on sufficiently low costs such

that the principal wants to implement an allocation with complete information acquisition

and sharing. We ask, which profile (ai, bi, di) for i = 1, 2 minimizes principal’s costs to im-

plement the most informative equilibrium? The next proposition shows that the non-linear

contract specified above does not improve upon the optimal linear contract.

Proposition 5. Conditional on sufficiently low costs, the optimal non-linear contract t1, t2

to make each agent i ∈ {1, 2} to collect information and transmit it to the other agent j in

the most informative equilibrium is the same as the optimal linear contract.

To understand this result, we start with the incentives in the non-linear case. The

functional form of the transfers implies immediately that each agent i = 1, 2 optimally

chooses yi = Ei(θi|si,mj) upon receiving a message mj from the other agent. Given the

previously obtained expected payoffs, the following incentive constraint ensures that agent i

21



truthfully reveals his signal to agent j:

zi − (ai + bi)
3− q2

6(9− q2)
− di

( 3− q2

6(9− q2)

)2
≥

zi − ai
3− q2

6(9− q2)
− bi

(3 + q2)(9 + q2)

6(9− q2)2
− di

( 3− q2

6(9− q2)

)((3 + q2)(9 + q2)

6(9− q2)2
)

which results in bi ≥ −d(3−q2)
6(9−q2) . Notice how the additional interaction between the losses of

both agents allows either for (bi > 0, di < 0) or (bi < 0, di > 0). This finding is intuitive as

truthful communication of a signal to another agent only requires a decreasing pay in the

losses of the other division. Since those losses appear twice, the constraint allows for one of

the parameters (bi, di) to be negative as long as it is “compensated" by a sufficiently positive

another parameter.

Next, we study the incentives which ensure costly signal acquisition. Since the equilib-

rium language is fixed, the deviating agent not only conceals the absence of the signal, but

additionally misleads the other agent by communicating either mi = 0 or mi = 1. Since the

problem is symmetric for each message, we focus on mi = 0. Signal acquisition requires

zi − (ai + bi)
3− q2

6(9− q2)
− di

( 3− q2

6(9− q2)

)2
− c ≥

zi − ai
3− q2

36
− bi

27 + q4

6(9− q2)2
− di

(3− q2

36

)( 27 + q4

6(9− q2)2
)
.

which holds for

ai ≥
−432biq

2 + 216c (9− q2)2 − di (3− q2) (q2 + 3)
2

6 (9− q2) (3− q2)2
.

This result coincides with the linear case for di = 0. Choosing di > 0 (di < 0) allows

to decrease (increase) either ai or bi (or both) such that the above constraint still holds.

Finally, notice that the we can express limited liability assuming the following form for the

transfers

ti(`i, `j) = ai(1− `i) + bi(1− `j) + di(1− `i`j) + z′i
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where

z′i =

{
0 (ai, bi, di) ≥ 0

ai1ai<0 + bi1bi<0 + di1di<0 otherwise.

It is easy to check that the above functional form guarantees non-negative transfers for

every combination of (y1, y2, θ1, θ2) where the parameters ai, bi, di can take negative values.

To understand the result in Proposition 5 think, first, of a contract which only depends

on di. Given the constraint at the effort stage, it requires di > 0. Given the limited liability,

the transfer is ti = di(1− `i`j). Since E(1− `i) < E(1− `i`j), the principal pays higher rents

compared to an optimal linear contract. In particular, for q < q′ the linear case conditions

the transfers on the full losses of the agent’s own division whereas a contract which only

depends on di conditions the agent’s pay on the interaction of both losses which is a fraction

of the agent’s own losses. As a result, the combination of limited liability and the costly

incentives to acquire information results in higher losses for the principal. The argument is

similar for q > q′.

The same logic applies for di ≥ 0 and either (ai > 0, bi = 0) or (ai = 0, bi > 0). The

principal does not benefit allowing for di > 0 as this results in higher rents which cannot be

compensated by a corresponding decrease in either ai or bi to satisfy the constraint at the

effort acquisition stage.

Notice that the communication constraint allows for either (bi < 0, di > 0) or (bi > 0, di <

0). However, as shown in the proof, the net change in transfers to make all constraints hold

is strictly positive compared to the optimal linear transfer. Thus, when allowing for the

above non-linear specification, the principal optimally chooses di = 0.

Asymmetric weights on agents. Suppose that the principal’s objective is π = λ1(π1 −

`1) + λ2(π2 − `2) with `i = −(yi − θi)2 for each agent i. The transfer for each agent is the

same as before:

ti(li, l−i) = zi − ai(yi − θi)2 − bi(yi − θi)2, i = 1, 2,
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which means that the conditional optimal transfers remain the same. However, as we show

below, for λ1 6= λ2 an asymmetric contract with two signals and one-sided communication is

optimal even if the costs of information acquisition are very low.

Proposition 6: An allocation in which both agents acquire information and only agent j

informs agent i dominates all other allocations if for λj > λi the following conditions on

(q, c) are satisfied:

1. For q < q′ ≈ 0.803:

c ∈
(
λi

(3− q2)2

18(9− q2)(87− 17q2)
, λj

(3− q2)2

18(9− q2)(87− 17q2)

]
.

2. For q′ < q < q1 ≈ 0.855:

c ∈
(
λi

2q4 (q2 − 3)
2

3 (9− q2) (5q8 − 330q6 + 2484q4 − 7290q2 + 4131)
, λj

(3− q2)2

18(9− q2)(87− 17q2)

]
.

First, notice that, different to the case of an unbiased principal (λ1 = λ2), whenever

the correlation coefficient q is sufficiently low and λj > λi, there is a range of costs where

the principal wants to implement an asymmetric allocation with two signals and one-sided

information. The principal wants both agents to obtain a signal and agent i to communicate

his signal to the principal’s most prefered division j. The larger the weight which the

principal assigns to his favorite division, relative to the other division, the larger the range

of cost which rationalizes the above asymmetric allocation as the most preferred for the

principal. For the intermediate values of correlation, the value of communicating a signal

increases. Thus, the principal only prefers an asymmetric allocation with two signals and i

communicating to j if the gap λj − λi is sufficiently large.
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7 Conclusion

This paper studies a model of an organization where the principal designs transfers to in-

centivize both acquisition and communication of costly information between two agents. We

show that whenever the agent’s local information is sufficiently correlated with the local

information of the other agent and the costs of information acquisition are not too high, the

principal chooses a transfer scheme using a threshold strategy. If the correlation between the

local states is below a threshold, the principal links the agents’ transfers only to the agent’s

own performances. Otherwise she links the agent’s transfer only to the performance of the

other agent. For a low probability of correlation and not too high costs of information acqui-

sition the principal wants to implement an allocation where both agents collect information

but not communicate with each other. For sufficiently high costs of signal acquisition the

principal prefers a single agent to collect and to communicate his signal if the correlation

probability between the states is sufficiently high. Otherwise a message is not informative

enough to justify incentivizing communication and so the principal prefers a no-signal allo-

cation. For sufficiently low costs of information acquisition we showed the robustness of the

results to a non-linear contract.

We studied a tractable beta-binomial model. It would be interesting to look at a more

general information environment and see how it affects the optimal mixture between the

team and the tournament element. Another interesting question which can be addressed

in current framework is, how should a principal design an organization if she is not able to

commit to contracts. In this case she has to rely on further instruments such as delegation

of decision rights or structuring the sequence of communication.
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Appendix

Update about the signals. It is useful to see how the players update their beliefs based
on obtained signals and received messages. Suppose, first, that only agent 1 obtains a signal.
The posterior density of θ1 given s1 is obtained via Bayes rule:

f(θ1|s1) =
f(θ1)f(s1|θ1)∫ 1

0
f(s1|θ1)dθ1

where
f(s1|θ1) = θs1(1− θ1)1−s1 .

Thus, for s1 = 0 the density is f(θ1|s1) = 2(1− θ1) with the expected value E[θ1|s1] = 1
3
and

for s1 = 1 the density is f(θ1|s1) = 2θ1 with the expected value E[θ1|s1] = 2
3
.

Next, suppose that only agent 2 obtains a signal and truthfully communicates it to agent
1. The posterior density of agent 1 is

f(θ1|s2) =
f(θ1)f(s2|θ1)∫ 1

0
f(s2|θ1)dθ1

with
f(s2|θ1) = q θs21 (1− θ1)1−s2︸ ︷︷ ︸

Pr(s2|θ1)|θ1=θ2

+(1− q) (1/2)︸ ︷︷ ︸
Pr(s2|θ1)|θ1 6=θ2

.

The densities and the expected values of θ1 depending on the realization of s2 ∈ {0, 1} are

f(θ1|s2 = 0) = 1 + q(1− 2θ1) with E(θ1|s2 = 0) =
3− q

6
, and

f(θ1|s2 = 1) = 1− q(1− 2θ1) with E(θ1|s2 = 1) =
3 + q

6
.

Naturally, if q = 0 then the posterior f(θ1|s2) is equal to the prior. For q > 0 and s2 = 0

(s2 = 1) the posterior puts a larger mass to the left (right) of 1
2
. As q increases, the expected

value converges to 1
3
(2
3
).

The conditional distributions that agent 1 assigns to the signal realization of agent 2 are

Pr(s2 = 1|s1 = 1) = qPr(s2 = 1|s1 = 1, θ1 = θ2) + (1− q)Pr(s2 = 1|s1 = 1, θ1 6= θ2)

= q
2

3
+ (1− q)1

2
=

3 + q

6
,

Pr(s2 = 0|s1 = 1) = q
1

3
+ (1− q)1

2
=

3− q
6

.

Suppose that both agents collect and truthfully communicate their signals. We consider
θ1, the case for θ2 is symmetric. The density of θ1 after obtaining s1 and receiving m2 = s2

is
f(θ1|s1, s2) =

f(θ1, s1, s2)

f(s1, s2)
=

f(s1, s2|θ1)f(θ1)∫ 1

0
f(s1, s2|θ1)f(θ1)dθ1

.
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To derive f(s1, s2|θ1) notice that the following. First, the ex ante probability of s1+s2 = 0 and
s1+s2 = 1 (it means when s1 = s2) is 1

3
, whereas the ex ante probability of both signals being

different is 1
6
. To see this notice that Pr(l|n = 2) =

∫ 1

0
Pr(l|θ1, n = 2)dθ1 = 1

n+1
and that

conditional on a particular l all sequences of signals which result in the same sum of signals
l are equiprobable. Second, if both states are correlated which happens with probability q,
the probability of l = s1 + s2 is n!

l!(n−l)!θ
l
1(1− θ1)n−l1 . With the converse probability 1− q the

probability of s1 is θs11 (1 − θ1)1−s1 and the realization of s2 is independent of θ1 (and so of
s1) and is equal to 1

2
.

Therefore, for s1 + s2 = l ∈ {0, 2} we have

f(s1, s2|θ1) = q [θl1(1− θ1)2−l1 ]︸ ︷︷ ︸
Pr(s1,s2|(θ1,θ1=θ2))

+(1− q) [θs11 (1− θ1)1−s1 ]
1

2︸ ︷︷ ︸
Pr(s1,s2|(θ1,θ1 6=θ2))

and for s1 + s2 = 1 we have

f(s1, s2|θ1) = q
1

2
[2θ1(1− θ1)]︸ ︷︷ ︸

Pr(s1,s2|(θ1,θ1=θ2))

+(1− q) [θs11 (1− θ1)1−s1 ]
1

2︸ ︷︷ ︸
Pr(s1,s2|(θ1,θ1 6=θ2))

The corresponding densities of the posterior are, for s1 + s2 = l ∈ {0, 2}

f(θ1|s1, s2) =
qθl1(1− θ1)2−l1 + (1− q)θs11 (1− θ1)1−s1 1

2∫ 1

0
qθl1(1− θ1)2−l1 + (1− q)θs11 (1− θ1)1−s1 1

2
dθ1

and

f(θ1|s1, s2) =
q 1
2
2θ1(1− θ1) + (1− q)θs11 (1− θ1)1−s1 1

2∫ 1

0
[q 1

2
2θ1(1− θ1) + (1− q)θs11 (1− θ1)1−s1 1

2
]dθ1

.

The calculations for θ2 are symmetric.
Assume two efforts and truthful communication. The corresponding posteriors, and the

expected values for agent 1 (the analysis for agent 2 is analogous) are:

f(θ1|s1 = s2 = 0) =
q[ 2!

0!(2−0)!θ
0
1(1− θ1)2−0] + (1− q)[ 1!

0!(1−0)!θ
0
1(1− θ1)1−0]12

3+q
12

=
6(1− θ1)(1 + q − 2qθ1)

3 + q
,

with

E(θ1|s1 = s2 = 0) =

∫ 1

0

θ1
6(1− θ1)(1 + q − q2θ1)

3 + q
dθ1 =

1

3 + q
.

Further,

f(θ1|s1 = 0, s2 = 1) =
6(1− θ1)(1− q + q2θ1)

3− q
, with E(θ|s1 = 0, s2 = 1) =

1

3− q
.
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Further,

f(θ1|s1 = 1, s2 = 0) =
6θ1(1 + q − 2qθ1)

3− q
, with E(θ1|s1 = 1, s2 = 0) =

2− q
3− q

.

Then,

f(θ1|s1 = s2 = 1) =
6θ1(1− q + 2qθ1)

3 + q
, with E(θ1|s1 = s2 = 1) =

2 + q

3 + q
.

Proof of Lemma 1: Given the optimal choices (y1, y2) consider the incentives of agent 1 at
the communication stage if he holds a signal s1 = 0. For a common belief that both agents
are truthful (which is correct in equilibrium) agent 2 chooses an decision which matches
his posterior of θ2 given his own private signal s2 and the message from agent 1, m1. The
expected payoff of agent 1 if he reveals his signal truthfully to agent 2 is given by (2),
calculated in section 4 in the analysis that leads to Lemma 2:

u1(s1) = z1 − (a1 + b1)
3− q2

6(9− q2)
.

If agent 1 decides to deviate at the communication stage and to inform agent 2 that his
signal is 1 instead of the true signal s1 = 0 he expects the payoff

uD1 (s1) = z1 − a1
∑
s2=0,1

Pr(s2|s1)E[(y1(s1, s2)− θ1)2|s1, s2]

−b1
∑
s2=0,1

Pr(s2|s1)E[(y2(s2, 1− s1)− θ2)2|s2, s1].

We calculate the expected losses associated with agent 1 deviating from equilibrium and
sending a message m1 = 1−s1 which is mistakenly believed to be truthful by agent 2. When
s2 = 1, using

y2(s2 = 1,m1 = 1) = E(θ2|s2 = 1, s1 = 1) =
2 + q

3 + q

f(θ2|s2 = 1, s2 = 0) =
6θ2(1 + q − 2qθ2)

3− q
,

we obtain:

E[(y2(s2, 1− s1)− θ2)2|s2, s1] =

∫ 1

0

E(θ2|s2 = 1, s1 = 1)f(θ2|s2 = 1, s2 = 0)dθ2

=

∫ 1

0

(
2 + q

3 + q
− θ2)2

6θ2(1 + q − 2qθ2)

3− q
dθ2

=
15 + 9q + 11q2 + q3

10(3− q)(3 + q)2
.
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When s2 = 0, using,

E(θ|s2 = 0, s1 = 1) =
1

3− q
, f(θ2|s2 = s1 = 0) =

6(1− θ2)(1 + q − 2qθ2)

3 + q
,

we obtain:

E[(E(θ2|s2, 1− s1)− θ2)2|s1, s2] =

∫ 1

0

E(θ2|s2 = 0, s1 = 1)f(θ2|s2 = s1 = 0)dθ2

=

∫ 1

0

(
1

3− q
− θ2)2

6(1− θ2)(1 + q − 2qθ2)

3 + q
dθ2

=
15− 9q + 11q2 − q3

10(3− q)2(3 + q)

The expected deviation payoff can be written as

uD1 (s1) = z1 − a1
3− q2

6(9− q2)
− b1[

3− q
6
· 15 + 9q + 11q2 + q3

10(3− q)(3 + q)2
+

3 + q

6
· 15− 9q + 11q2 − q3

10(3− q)2(3 + q)
]

= z1 − a1
3− q2

6(9− q2)
− b1

(9 + q2)(3 + q2)

6(9− q2)2

so that agent 1 does not deviate at the communication stage if

z1 − (a1 + b1)
3− q2

6(9− q2)
≥ z1 − a1

3− q2

6(9− q2)
− b1

(9 + q2)(3 + q2)

6(9− q2)2

which implies

b1
4q2

(9− q2)2
≥ 0

or b1 ≥ 0.
The constraint for agent 1 given s1 = 1, and for agent 2 given either s2 = 0 or s2 = 1

results in the same constraint, by symmetry across signal realizations and across players.
Q.E.D.

Proof of Lemma 2: The information acquisition incentive constraint is satisfied if

z1 − (a1 + b1)
3− q2

6(9− q2)
− c ≥ z1 − a1

(3− q2)
36

− b1
27 + q4

6(9− q2)2
.

Appropriate rearranging yields the constraint (5).
Q.E.D.

Proof of Proposition 1: When 1
36

(3−q2)2
(9−q2) , the coefficient of a1 in the constraint (5), is

strictly larger than 2 q2

(9−q2)2 , the optimal linear contract t1 is such that b1 = 0 and, using the
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binding constraint (5), a1 = 36 9−p2
(3−p2)2 c. The constraint z1 = (a1 + b1) yields z1 = a1. The

expected payoff for the principal is:

π = 2π − 2E[(E(θ|s1, s2)− θ)2]− 2E[t1(`1, `2)] = 2π − 3− p2

3(9− p2)
− 72(9− p2)

(3− p2)2
[1− 3− p2

6(9− p2)
]c

= 2π − 3− p2

3(9− p2)
− (51− 5p2)

12

(3− p2)2
c.

Conversely, when 1
36

(3−q2)2
9−q2 < 2 q2

(9−q2)2 , the optimal linear contract t1 is such that a1 = 0,

b1 = (9−q2)2
2q2

c and z1 = b1. The expected payoff for the principal is:

π = 2π − 2E[(E(θ1|s1, s2)− θ1)2]− 2E[t1(`1, `2)] = 2π − 3− p2

3(9− p2)
− (9− p2)2

p2
[1− 3− p2

6(9− p2)
]c

= 2π − 3− p2

3(9− p2)
− (51− 5p2)

9− p2

6p2
c.

The condition 1
36

(3−q2)2
(9−q2) > 2 q2

(9−q2)2 simplies to q2 < (q′2 ≡ 3
√√

37 584− 172− 20
3
√√

37 584−172
+5

or

q < q′ ≡

√
5− 10(

2

9
√

29
)1/3 + 22/3(9

√
29− 43)1/3.

We conclude by showing that the ex-ante participation constraint

z1 − a1(1− E[(E(θ1|s1, s2)− θ1)2]) + b1(1− E[(E(θ2|s2, s1)− θ2)2])]− c ≥ 0

is satisfied in the optimal contract t1. For b1 = 0, and a1 = 36 9−q2
(3−q2)2 c, the ex-ante partici-

pation constraint is

36(9− q2)
(3− q2)2

c(1− 3− q2

6(9− q2)
)− c = (q2 + 33)

9− q2

(q2 − 3)2
c > 0

For a1 = 0 and b1 = (9−q2)2
2q2

c, this constraint is

(9− q2)2

2q2
c(1− 3− q2

6(9− q2)
)− c =

459− 108q2 + 5q4

12q2
c > 0.

Q.E.D.

Proof of Proposition 2: To determine the optimal linear contracts t1, t2 to induce both
agents i = 1, 2 to collect information and only agent, say 1, to transmit it to the other agent,
first note that, again, each agent i = 1, 2 is motivated to choose decision yi so as to minimize
the loss `i = (yi − θi)2 by setting ai ≥ 0.
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The equilibrium payoff of agent 2 is, using m1 = s1,

z2 − a2E[(y2(s2, s1)− θ2)2]− b2E[(y1(s1)− θ1)2]− c

= z1 − a2
3− q2

6(9− q2)
− b2

1

18
− c.

If agent 2 deviates at the information acquisition stage, her payoff is

z2 − a2E[(y2(s1)− θ2)2]− b2E[(y1(s1)− θ1)2]

= z2 − a2
3− q2

36
− b2

1

18
.

using

E[(y2(s1)− θ2)2] =
∑
s1=0,1

1

2

∫ 1

0

(E[θ2|s1]− θ2)2f(θ2|s1)dθ2

=

∫ 1

0

(E[θ2|s1 = 0]− θ2)2f(θ2|s1 = 0)dθ2 =
3− q2

36
,

because f(θ2|s1 = 0) = 1 + q(1− 2θ2) with E(θ2|s1 = 0) = 3−q
6
.

So, the constraint at the information acquisition stage is:

a2
1

36

(3− q2)2

9− q2
≥ c.

This yields the optimal linear contract z2 = a2 = 36 9−q2
(3−q2)2 c and b2 = 0.

Then, we consider agent 1 to note that she does not deviate from truthtelling if and only
if b1 ≥ 0. Turning to the information acquisition constraint, we note that the equilibrium
payoff of agent 1 is:

z1 − a1E[(y1(s1)− θ1)2]− b1E[(y2(s2,m1)− θ2)2]− c

= z1 − a1
1

18
− b1

3− q2

6(9− q2)
− c,

using the fact that

E[(y1(s1)− θ1)2] =
∑
s1=0,1

1

2

∫ 1

0

(E(θ1|s1)− θ1)2f(θ1|s1)dθ1

=

∫ 1

0

(E(θ1|s1 = 0)− θ1)2f(θ1|s1 = 0)dθ1

=

∫ 1

0

(
1

3
− θ1)22(1− θ1)dθ1 =

1

18
.
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If agent 1 deviates and does not collect information, her payoff is:

z1 − a1E[(y1 − θ1)2]− b1E[E[(y2(s2,m1)− θ2)2|s2]]

= z1 − a1
1

12
− b1

27 + q4

6(9− q2)2
,

using the fact that

E[(y1 − θ1)2] =

∫ 1

0

(E(θ1)− θ1)2f(θ1)dθ1

=

∫ 1

0

(
1

2
− θ1)2dθ1 =

1

12
.

This yields the constraint:

a1
1

36
+ b1

2q2

(9− q2)2
≥ c.

Using the constraints a1 ≥ 0 and b1 ≥ 0 again, the solution is either z1 = a1 = 36c, b1 = 0,

or a1 = 0, z1 = b1 = (9−q2)2
2q2

c.

The principal’s profit is:

Eπ21 = max
a1,b1

{
2π − 1

18
− 3− q2

6(9− q2)
− ai(1−

1

18
)− bi(1−

1

36
(3− q2))− a2(1−

3− q2

6(9− q2)
)c

}
= 2π − 1

18
− 3− q2

6(9− q2)
−min

{
a1(1−

1

18
), b1(1−

3− q2

6(9− q2)
)

}
− 36

9− q2

(q2 − 3)2
(1− 3− q2

6(9− q2)
)c

simplifying and substituting in the two possible optimal values of a1 and b1, we obtain:

Eπ21 = 2π − 9− 2q2

9(9− q2)
−min

{
36(1− 1

18
),

(9− q2)2

2q2
(1− 3− q2

6(9− q2)
)

}
c− 6(51− 5q2)

(3− q2)2
c,

that equals the formula in the statement, after simplification.
Comparing the two arguments in the minimum, we obtain for 36(1 − 1

18
) < (9−q2)2

2q2
(1 −

3−q2
6(9−q2)), or q

2 < 252
5
− 3

5

√
3
√

2267, i.e., q <
√

(28
√
3−
√
2267)3

√
3

5
≈ 0.958, z1 = a1 = 36c and

b1 = 0. For q >
√

(28
√
3−
√
2267)3

√
3

5
, we obtain a1 = 0 and z1 = b1 = (9−q2)2

2q2
c.

We determine the optimal linear contract t1, t2 to induce both agents i = 1, 2 to collect
information and neither of them to share it with the other agent. Again, it is the case
that ai ≥ 0 in the optimal linear contract. Because the agents are not supposed to share
their signals, there is no positivity constraint on bi. The information acquisition constraint
is determined by comparing each agent i’s equilibrium payoff

z1 − a1E[(y1(s1)− θ1)2]− b1E[(y2(s2)− θ2)2]− c = z1 − a1
1

18
− b1

1

18
− c,
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with i’s payoff in case he deviates and does not collect information:

z1 − a1E[(y1 − θ1)2]− b1E[(y2(s2)− θ2)2] = z1 − a1
1

12
− b1

1

18
.

The information acquisition constraint is just ai ≥ 36c, so that the optimal linear contract
is such that ai = 36c. The parameters zi and bi are indetermined, under the constraint that
ai + bi = zi.

The expected profit by the principal is:

Eπ20 = 2π − 1

9
− 2a1(1−

1

18
) = 2π − 1

9
− 2 · 36c(1− 1

18
).

Q.E.D.

Proof of Proposition 3: First, we calculate the optimal linear contracts t1, t2 to induce
agent 1 to collect signal s1 and share with the other agent 2, and agent 2 to not collect
information. The optimal contract of agent 2 is, trivially, t2(`1, `2) = 0 for all `1 and `2 (the
optimal linear contract is such that z2 = a2 = b2 = 0).

The equilibrium payoff of agent 1 is:

z1 − a1E[(y1(s1)− θ1)2]− b1E[(y2(s1)− θ2)2]− c

= z1 − a1
1

18
− b1

3− q2

36
− c

If agent 1 does not collect information, he still sends a messagem1 to agent 2 who mistakenly
believes that m1 = s1. The equilibrium payoff of agent 1 is:

z1 − a1E[(y1 − θ1)2]− b1E[(y2(m1)− θ2)2]

= z1 − a1
1

12
− b1

3 + q2

36
,

using:

E[(y2(m1)− θ2)2] =

∫ 1

0

[(E[θ2|m = 0]− θ2)2]f(θ2)dθ2

=

∫ 1

0

(
3− q

6
− θ2)2dθ2 =

3 + q2

36
.

Here, the incentive compatibility constraint is:

−a1
1

18
− b1

3− q2

36
− c ≥ −a1

1

12
− b1

3 + q2

36

or
a1

1

36
+ b1

1

18
q2 ≥ c.
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So, the optimal linear contract is either a1 = 0, z1 = b1 = 18
q2
c or z1 = a1 = 36c, b1 = 0.

The principal’s profit is:

Eπ11 = max
a1,b1

{
2π − 1

18
− 1

36
(3− q2)− a1(1−

1

18
)− b1(1−

1

36
(3− q2))

}
,

and substituting in the two possible optimal values of a1 and b1, we obtain

Eπ11 = 2π − 1

18
− 1

36
(3− q2)−min

{
36(1− 1

18
),

18

q2
(1− 1

36
(3− q2))

}
c.

Equating 36(1− 1
18

) = 18
q2

(1− 1
36

(3−q2)), we obtain the admissible solution q =
√

33
67
≈ 0.701.

For q >
√

33
67
, it is optimal to set a1 = 0, z1 = b1 = 18

q2
c, whereas for q <

√
33
67

it is optimal
to set z1 = a1 = 36c, b1 = 0.

Second, we calculate the optimal linear contracts t1, t2 to induce agent 1 to collect signal
s1 but not share it with the other agent 2, and agent 2 to not collect information.

The optimal contract of agent 2 is again such that z2 = a2 = b2 = 0.

The equilibrium payoff of agent 1 is:

z1 − a1
1

18
− b1

1

12
− c,

his deviation payoff at the information acquisition stage is:

z1 − a1
1

12
− b1

1

12
,

so that the incentive compatibility constraint is:

a1 ≥ 36c,

and the optimal linear contract is z1 = a1 = 36c and b1 = 0.

The principal’s expected profit is:

Eπ10 = 2π − 1

18
− 1

12
− 36(1− 1

18
)c.

Q.E.D.

The optimal linear contracts t1, t2 in the case that both agents i = 1, 2 are not supposed to
collect information are such that zi = ai = bi = 0. This leads to expected principal’s profit:

Eπ00 = 2π − 2
1

12
.
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Proof of Lemma 3: Subtracting the formulas of Eπ11(q, c) and Eπ10(q, c) and rearranging,
we obtain

Eπ11 − Eπ10 =
5

36
− 1

36
(5− q2) + 34c−min

{
34,

1

2

q2 + 33

q2

}
c,

which is obviously strictly positive.
Q.E.D.

Proof of Lemma 4: We first compare Eπ22(q, c) and Eπ21(q, c) and consider

Eπ22(q, c)− Eπ21(q, c) =
9− 2q2

9(9− q2)
− 3− q2

3(9− q2)
−D22−21(q)c

=
q2

9(9− q2)
−D22−21(q)c ≥ −D22−21(q)c.

where

D22−21(q) = min

{
12

(3− q2)2
,
(9− q2)

6q2

}
(51−5q2)−min

{
34, (51− 5q2)

(9− q2)
12q2

}
−6

51− 5q2

(3− q2)2
.

Calculations omitted for brevity show that D22−21(q) > 0 for 0 ≤ q < q1 ≈ 0.855 and
D22−21(q) < 0 for q1 < q ≤ 1. We obtain that for 0 ≤ q < q1, whether Eπ22(q, c) is larger
or smaller than Eπ21(q, c) depends on whether c is smaller or larger than a strictly positive
threshold c22−21(q) implicitly defined by the equation Eπ22(q, c) = Eπ21(q, c), whereas for
q1 ≤ q ≤ 1 it is the case that Eπ22(q, c) > Eπ21(q, c) for all c.

To complete the proof we show that, for almost all c and 0 ≤ q ≤ q1 it is either the
case that Eπ22(q, c) > Eπ21(q, c) or that Eπ20(q, c) > Eπ21(q, c). We begin by noting that
the functions Eπ22(q, c), Eπ21(q, c) and Eπ20(q, c) are all linear in c, and that Eπ22(q, c) >
Eπ21(q, c) > Eπ20(q, c) for c = 0. As a result, we can proceed by comparing the threshold
functions

c22−21(q) =

1
18
− 3−q2

3(9−q2) + 3−q2
6(9−q2)

min
{

12
(3−q2)2 ,

9−q2
6q2

}
(51− 5q2)−min

{
34, 9−q

2

12q2
(51− 5q2)

}
− 6 51−5q2

(q2−3)2

c21−20(q) =

1
18
− 3−q2

6(9−q2)

min
{

34, 9−q
2

12q2
(51− 5q2)

}
+ 6 51−5q2

(q2−3)2 − 68

implicitly defined by the equations Eπ22(q, c) = Eπ21(q, c) and Eπ21(q, c) = Eπ20(q, c), re-
spectively. In fact, for any (q, c) such that c < c22−21(q), it is the case that Eπ22(q, c) >
Eπ21(q, c), and for any (q, c) such that c > c21−20(q), it is the case that Eπ21(q, c) <

Eπ20(q, c).
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Calculations omitted for brevity show that c22−21(q) ≥ c21−20(q) for all 0 ≤ q ≤ q1. This
completes the proof of the Lemma, because it implies that for almost all c and 0 ≤ q ≤ q1,

it is either the case that Eπ22(q, c) > Eπ21(q, c) or that Eπ20(q, c) > Eπ21(q, c).

Q.E.D.

Proof of Proposition 4: We need compare the profit functions Eπ22(q, c), Eπ20(q, c),
Eπ11(q, c) and Eπ00(q, c). To determine the area in which Eπ22(q, c) is the largest, we note
that all the profit functions are linear in c, and that Eπ22(q, c) > Eπ20(q, c) > Eπ11(q, c) >

Eπ00(q, c) for c = 0 and all q. As a result, we can proceed by comparing the threshold
functions

c22−20(q) =

1
9
− 3−q2

3(9−q2)

min
{

12
(q2−3)2 ,

9−q2
6q2

}
(51− 5q2)− 68

c22−11(q) =

5−q2
36
− 3−q2

3(9−q2)

min
{

12
(3−q2)2 ,

9−q2
6q2

}
(51− 5q2)−min

{
34, 1

2
q2+33
q2

}
c22−00(q) =

1
6
− 3−q2

3(9−q2)

min
{

12
(3−q2)2 ,

9−q2
6q2

}
(51− 5q2)

implicitly defined by the equations Eπ22(q, c) = Eπ20(q, c), Eπ22(q, c) = Eπ11(q, c) and
Eπ22(q, c) = Eπ00(q, c). For any such a threshold function c22−(·)(q), and any value q ∈ [0, 1]

for which c22−(·)(q) is positive, it is the case that Eπ22(q, c) > Eπ(·)(q, c) if and only if c <
c22−(·)(q). Instead, for all q such that c22−(·)(q) < 0, it is the case that Eπ22(q, c) > Eπ(·)(q, c)

for all c.
Calculations omitted for brevity prove that c22−20(q) > 0 if and only if q <

√
252
5
− 3

√
3

5

√
2267 ≈

0.958, and that c22−11(q) > 0 and c22−00(q) > 0 for all q ∈ [0, 1]. Further, comparing
c22−11(q) and c22−00(q), omitted calculations show that c22−11(q) < c22−00(q) for all q ∈
[0, 1], and that c22−20(q) < c22−11(q) if and only if q < q̃ ≈ 0.553 on the relevant range

q ∈ [0,

√
(28
√
3−
√
2267)3

√
3

5
]. The implication is that Eπ22(q, c) > max{Eπ20(q, c), Eπ11(q, c),

Eπ00(q, c)} for every c < c22−20(q) for q < q̃ and for every c < c22−11(q) for q > q̃.

Likewise, to determine the area in which Eπ00(q, c) is larger than Eπ22(q, c), Eπ20(q, c)
and Eπ11(q, c), we note that Eπ00(q, c) > max{Eπ22(q, c), Eπ20(q, c), Eπ11(q, c)} for c → ∞
and all q. As a result, we can proceed by comparing the threshold function c22−00(q) reported
above with the threshold functions

c11−00(q) =
q2 + 1

36 min
{

34, 1
2q2

(q2 + 33)
} and c20−00(q) =

1

1224
,
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implicitly defined by the equations Eπ20(q, c) = Eπ00(q, c) and Eπ11(q, c) = Eπ00(q, c).

Omitted calculations show that, for all q ∈ [0, 1] all the functions c22−20(q), c22−11(q) and
c22−00(q) are strictly positive. Hence, for every q ∈ [0, 1], it is the case that Eπ00(q, c) >
max{Eπ22(q, c), Eπ20(q, c), Eπ11(q, c)} for every c > max{c22−00(q), c20−00(q), c11−00(q)}.
Comparing c22−00(q), c20−00(q) and c11−00(q), omitted calculations show that c11−00(q) >

c22−00(q), and c11−00(q) > c20−00(q) for all q ∈ [0, 1]. The implication is that Eπ00(q, c) >
max{Eπ22(q, c), Eπ20(q, c), Eπ11(q, c)} for every q and c > c11−00(q).

For any q and cost c values that are below c11−00(q) and either above c22−20(q), for q < q̃,

or above c22−11(q), for q > q̃, it is either the case that Eπ20(q, c) or Eπ11(q, c) is the highest
profit function. Because Eπ20(q, c) > Eπ11(q, c) for c = 0 and all q, this is once more
determined by considering a threshold function:

c20−11(q) =
1− q2

2448− 36 min
{

34, q
2+33
2q2

} ,
implicitly defined by the equation Eπ20(q, c) = Eπ11(q, c). Because 2448 − 36 · 34 = 1224,

the threshold function c20−11(q) is strictly positive for all q ∈ [0, 1]. Hence, for all q it is the
case that Eπ20(q, c) > Eπ11(q, c) if and only if c < c20−11(q).

Comparing c20−11(q) with c22−20(q), c22−11(q) and c11−00(q), omitted calculations show
that c20−11(q) = c11−00(q) for q = 0, that c20−11(q) < c11−00(q) for all q > 0, that c20−11(q) >
c22−20(q) for 0 ≤ q < q̃, that c20−11(q) = c22−20(q) = c22−11(q) for q = q̃ and that c20−11(q) <
c22−11(q) for q̃ < q ≤ 1.

This concludes the proof of the Proposition. We have derived the result depicted in
Figure 1: For 0 < q < q̃ and c < c(q)22−20, and for q̃ < q ≤ 1 and q < c(q)20−11,

it is the case that Eπ22(q, c) > max{Eπ20(q, c), Eπ11(q, c), Eπ00(q, c)}. For 0 < q < q̃

and c(q)22−20 < c < c(q)20−11, Eπ20(q, c) > max{Eπ22(q, c), Eπ11(q, c), Eπ00(q,c)}. For
c(q)22−11 < c < c(q)11−00, Eπ11(q, c) > max{Eπ22(q, c), Eπ20(q, c), Eπ00(q, c)}. For c >
c(q)11−00, Eπ00(q, c) > max{Eπ22(q, c), Eπ20(q, c), Eπ11(q, c)}.
Q.E.D.

Proof of Proposition 5: Consider the following optimization problem:

min
(ai,bi,di)∈R3

ti = zi − ai(yi − θi)2 − bi(yj − θj)2 − di(yi − θi)2(yj − θj)2

subject to

c ≤ ai
(3− q2)2

36(9− q2)
+ bi

2q2

(9− q2)2
+ di

(3− q2)(3 + q2)2

216(9− q2)2
,

ti ≥ 0 for every profile (y1, y2, θ1, θ2).
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The above problem lacks the constraint imposed by the incentives to truthfully commu-
nicate an obtained signal. In the following we show that a simultaneous optimization over
(ai, bi, di) in the relaxed problem above does not achieve a better outcome for the principal
compared to the optimal linear case. Then, a more constrained problem would not be able
to achieve a better outcome compared to the optimal linear case either.

Notice that the transfer increases in the RHS of the first constraint. Therefore, we can
assume that the first constraint is satisfied with equality. Limited liability requires a non-
negative transfer for every profile (y1, y2θ1, θ2). This requirement allows us to formulate the
optimization problem in the following form:

min
(ai,bi,di)∈R3

ti = (ai + bi)(1−
3− q2

6(9− q2)

)
+ di

[
1−

( 3− q2

6(9− q2)

)2]
+ z′i

subject to

c = ai
(3− q2)2

36(9− q2)
+ bi

2q2

(9− q2)2
+ di

(3− q2)(3 + q2)2

216(9− q2)2
(7)

z′i =

{
0 (ai, bi, di) ≥ 0

ai1ai<0 + bi1bi<0 + di1di<0 otherwise,

and where we use E[−(yiθi)
2] obtained earlier. Notice how z′i ensures limited liability. If it

were optimal for the principal to choose a negative value for one of the variables (ai, bi, di)

and, for example, (θi = 0, yi = 1) and θj = yi, z′ ensures that the transfer is non-negative.
In the next step we express (7) as

a =
432bq2 − 216c (q2 − 9)

2
+ d (q2 − 3) (q2 + 3)

2

6 (q2 − 9) (q2 − 3)2
. (8)

Using (8) in ti we can rewrite

ti = (ai + bi)
(

1− 3− q2

6(9− q2)

)
+ di

(
1−

( 3− q2

6(9− q2)

)2)
+ z′i =

as

(
bi

72q2

(q2 − 9) (q2 − 3)2
+ bi

)(
1− 3− q2

6(9− q2)

)
+

( 36c (q2 − 9)
2

(9− q2) (q2 − 3)2
+ di

(q2 + 3)
2

6 (3− q2) (9− q2)

)(
1− 3− q2

6(9− q2)

)
+ di

(
1−

( 3− q2

6(9− q2)

)2)
+ z′i.

Since bi 72q2

(q2−9)(q2−3)2 +bi > 0 for q < q′ ≈ 0.8026, restricting to q < q′ implies z′i = 0. Then
the principal solves
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min
bi≥0,di≥0

t1 =
(
bi

72q2

(q2 − 9) (q2 − 3)2
+ bi

)(
1− 3− q2

6(9− q2)

)
+

( 36c (q2 − 9)
2

(9− q2) (q2 − 3)2
+ di

(q2 + 3)
2

6 (3− q2) (9− q2)

)(
1− 3− q2

6(9− q2)

)
+ di

(
1−

( 3− q2

6(9− q2)

)2)
.

It turns out that t1 = 6(51−5q2)c
(3−q2)2 for bi = di = 0, and t1 >

6(51−5q2)c
(3−q2)2 if either bi > 0 or

di > 0 or (bi, di)� 0. Thus, for q < q′ and di ≥ 0 the non-linear transfer cannot outperform
the best linear transfer.

Consider q > q′ while still maintaining di ≥ 0. In this case it is easy to check that the
limited liability requirements results in

z′i = −
(
bi

72q2

(q2 − 9) (q2 − 3)2
+ bi

)
so that the principal solves

min
bi≥0,di≥0

t2 = c
6 (51− 5q2)

(q2 − 3)2
+ bi

(q6 − 15q4 + 135q2 − 81)

6 (3− q2) (9− q2)2
+ di

(51− 5q2) (2q4 − 18q2 + 45)

9 (3− q2) (q2 − 9)2
.

It turns out that for q > q′and di ≥ 0, t2 = 6(51−5q2)c
(3−q2)2 for bi = di = 0, and t2 > 6(51−5q2)c

(3−q2)2

if either bi > 0 or di > 0 or (bi, di)� 0.
Consider, next di < 0 and bi ≥ 0. The restriction q < q′ implies that the limited liability

requires z′i = −
(

(q2+3)
2

6(3−q2)(9−q2) + di

)
such that the principal solves

min
bi≥0,di<0

t3 =
6c (51− 5q2)

(3− q2)2
−di

(q4 + 9)

18 (9− q2)2
+bi

(51− 5q2) (−q6 + 15q4 − 135q2 + 81)

6 (q4 − 12q2 + 27)2
for q < q′.

It turns out that t3 < 6(51−5q2)c
(3−q2)2 . Allowing for q > q′ and di < 0 and bi ≥ 0, limited

liability requires that

z′i = −
( (q2 + 3)

2

6 (3− q2) (9− q2)
+ di

)
−
(
bi

72q2

(q2 − 9) (q2 − 3)2
+ bi

)
.

The principal solves

min
bi≥0,di≥0

t4 =
6c (51− 5q2)

(3− q2)2
+ bi

q6 − 15q4 + 135q2 − 81

6 (3− q2) (q2 − 9)2
− di

(q4 + 9)

18 (9− q2)2
for q > q′.

It turns out that t4 < 6(51−5q2)c
(3−q2)2 .

40



Finally, consider di < 0, bi < 0. For q < q′, and the limited liability constraint, the
relevant transfer is t4 which we have shown to be dominated by the optimal linear contract.
Consider q > q′. In this case, the limited liability results in a transfer t3 which we have
shown is dominated by the optimal linear contract as well.

Finally, notice that due to the symmetry of the problem, if we would have rearranged
(7) for either bi or di, the resulting non-linear transfer would be dominated by the optimal
linear transfer as well. We conclude that a non-linear transfer of the form zi− ai(yi− θi)2−
bi(yj − θj)2 − di(yi − θi)2(yj − θj)2 does not yield a strictly higher payoff for the principal
compared to the optimal linear contract.
Q.E.D.

Proof of Proposition 6: In the first step we show when an allocation with two signals
and one-sided communication dominates the two other allocations with two signals. First,
consider the following expected payoffs:

Eπλ22 = (λ1 + λ2)(π −
3− q2

6(9− q2)
)− (51− 5q2)min{ 12

(3− q2)2
,
9− q2

6q2
}c,

Eπλ21 = π(λ1 + λ2)− λ1
1

18
− λ2

3− q2

6(9− q2)
−min{34, (51− 5q2)

(9− q2)
12q2

}c− 6
51− 5q2

(3− q2)2
c.

Eπλ12 = π(λ1 + λ2)− λ2
1

18
− λ1

3− q2

6(9− q2)
−min{34, (51− 5q2)

(9− q2)
12q2

}c− 6
51− 5q2

(3− q2)2
c.

such that the corresponding differences are:

Eπλ22 − Eπλ21 = λ1

( 1

18
+

3− q2

6(9− q2)

)
−D22−21(q)c,

Eπλ22 − Eπλ12 = λ2

( 1

18
+

3− q2

6(9− q2)

)
−D22−12(q)c.

where

D22−21(q)c = D22−12(q) = (51−5q2)min{ 12

(3− q2)2
,
9− q2

6q2
}−min{34, (51−5q2)

(9− q2)
12q2

}−6
51− 5q2

(3− q2)2
.

As in the baseline model, D22−21(q) < 0 for q > q1 ≈ 0.855 which implies that in this
case Eπλ22 > Eπλ21. For q < q1, D22−21(q) > 0, so it could be that Eπλ22 < Eπλ21. Similar to
the approach in the proof of Lemma 4, define the following cost thresholds:
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cλ22−21(q) =
λ1

(
1
18
− 3−q2

6(9−q2)

)
(51− 5q2)min{ 12

(3−q2)2 ,
9−q2
6q2
} −min{34, (51− 5q2) (9−q

2)
12q2
} − 6 51−5q2

(3−q2)2

cλ22−12(q) =
λ2

(
1
18
− 3−q2

6(9−q2)

)
(51− 5q2)min{ 12

(3−q2)2 ,
9−q2
6q2
} −min{34, (51− 5q2) (9−q

2)
12q2
} − 6 51−5q2

(3−q2)2

cλ21−20(q) =
λ2

(
1
18
− 3−q2

6(9−q2)

)
min{34, (51− 5q2) (9−q

2)
12q2
}+ 6 51−5q2

(3−q2)2 − 68

cλ12−20(q) =
λ1

(
1
18
− 3−q2

6(9−q2)

)
min{34, (51− 5q2) (9−q

2)
12q2
}+ 6 51−5q2

(3−q2)2 − 68

such that Eπλ22 > Eπλ21 for all c < cλ22−21(q) and Eπλ20 > Eπλ21 for all q and c > cλ22−21(q).

Consider the following cases depending on q:

• First, suppose that q ≤ q′ ≈ 0.803 < q1 ≈ 0.855. Thus the relevant thresholds are:

cλ22−21(q) =
λ1

(
1
18
− 3−q2

6(9−q2)

)
(51− 5q2) 12

(3−q2)2 − 34− 6 51−5q2
(3−q2)2

= λ1
(3− q2)2

18(9− q2)(87− 17q2)

cλ22−12(q) =
λ2

(
1
18
− 3−q2

6(9−q2)

)
(51− 5q2) 12

(3−q2)2 − 34− 6 51−5q2
(3−q2)2

= λ2
(3− q2)2

18(9− q2)(87− 17q2)

cλ21−20(q) =
λ2

(
1
18
− 3−q2

6(9−q2)

)
34 + 6 51−5q2

(3−q2)2 − 68
= λ2

(3− q2)2

18(9− q2)(87− 17q2)

cλ12−20(q) =
λ1

(
1
18
− 3−q2

6(9−q2)

)
34 + 6 51−5q2

(3−q2)2 − 68
= λ1

(3− q2)2

18(9− q2)(87− 17q2)
.

To see when an asymmetric allocation can be optimal, consider the case λ1 > λ2 such
that cλ22−21(q) > cλ22−12(q). We have the following cases:

– For c < cλ22−12(q), Eπλ22 > max{Eπλ12, Eπλ21}.
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– If c ∈ (cλ21−20(q), c
λ
12−20(q)], we have Eπλ22 > Eπλ21 and Eπλ20 > Eπλ21 so Eπλ21

cannot be optimal. However, Eπλ12 > Eπλ22 and at the same time Eπλ12 > Eπλ20.

Since the case for λ2 < λ1 is symmetric, we conclude as follows

1. Suppose λ1 > λ2. Then, for c ∈ (cλ21−20(q), c
λ
12−20(q)], Eπλ12 > max{Eπλ20, Eπλ22}}.

2. Suppose λ2 > λ1. Then, for c ∈ (cλ12−20(q), c
λ
21−20(q)], Eπλ21 > max{Eπλ20, Eπλ22}}.

• Second, suppose that q ∈ (q′, q1). Then, the relevant cost thresholds are:

cλ22−21(q) =
λ1

(
1
18
− 3−q2

6(9−q2)

)
(51− 5q2)9−q

2

6q2
− 34− 6 51−5q2

(3−q2)2
=

λ1
2q4 (q2 − 3)

2

3 (9− q2) (5q8 − 330q6 + 2484q4 − 7290q2 + 4131)

cλ22−12(q) =
λ2

(
1
18
− 3−q2

6(9−q2)

)
(51− 5q2)9−q

2

6q2
− 34− 6 51−5q2

(3−q2)2
=

λ2
2q4 (q2 − 3)

2

3 (9− q2) (5q8 − 330q6 + 2484q4 − 7290q2 + 4131)

cλ21−20(q) =
λ2

(
1
18
− 3−q2

6(9−q2)

)
34 + 6 51−5q2

(3−q2)2 − 68
= λ2

(3− q2)2

18(9− q2)(87− 17q2)

cλ12−20(q) =
λ1

(
1
18
− 3−q2

6(9−q2)

)
34 + 6 51−5q2

(3−q2)2 − 68
= λ1

(3− q2)2

18(9− q2)(87− 17q2)
.

Notice that for the relevant range of q:

2q4 (q2 − 3)
2

3 (9− q2) (5q8 − 330q6 + 2484q4 − 7290q2 + 4131)
>

(3− q2)2

18(9− q2)(87− 17q2)
.

and therefore for λ1 > 0, λ2 > 0, cλ22−21(q) > cλ12−20(q) and cλ22−12(q) > cλ21−20(q). To
see, when an asymmetric allocation can be optimal, consider the case λ1 > λ2 and
therefore cλ22−21(q) > cλ22−12(q). We have the following cases:

– For c < cλ22−12(q), Eπλ22 > max{Eπλ12, Eπλ21}.
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– If cλ12−20(q) > cλ22−12(q), then for c ∈ (cλ12−20(q), c
λ
22−21(q)], Eπλ20 > max{Eπλ21, Eπλ12}.

However, for c ∈ [cλ22−12(q), c
λ
12−20(q)), Eπλ21 < Eπλ20 < Eπλ12. Thus, in this region

Eπλ12 > max{Eπλ20, Eπλ22}}.

Since the case for λ2 < λ1 is symmetric, we conclude as follows

1. Suppose λ1 > λ2. Then, for c ∈ [cλ22−12(q), c
λ
12−20(q)), Eπλ12 > max{Eπλ20, Eπλ22}}.

2. Suppose λ2 > λ1. Then, for c ∈ [cλ22−21(q), c
λ
21−20(q)) Eπ

λ
21 > max{Eπλ20, Eπλ22}}.

In the next step we compare an allocation with two signals and one-sided communica-
tion to all other allocation with at most one acquired signal. First, notice that the non–
informative allocation is dominated by an allocation with two acquired and not shared signals
for

−(λ1 + λ2)
1

18
− 68c ≥ −(λ1 + λ2)

1

12
,

which implies c ≤ λ1+λ2
2488

. Further, the non-informative allocation is dominated by an alloca-
tion with one acquired and communicated signal (by agent i) for

−λi
1

18
− λj

3− q2

36
−min{34,

q2 + 33

2q2
}c > −(λi + λj)

1

12
.

Since the LHS of the above inequality increases in q, the inequality is satisfied if the
following is true

−λi
1

18
− 34c > −λi

1

12
, i = 1, 2,

which is true for c ≤ λi
1224

. In the following we assume that the above constraints are true.
In the following we focus on the case of Eπλ21 as the case of Eπλ12 is symmetric and can be
shown in the same way. In the following we show when Eπλ21 is strictly larger than Eπλ11.
The condition is:

Eπλ21 = π(λ1 + λ2)− λ1
1

18
− λ2

3− q2

6(9− q2)
− 34c− 6

51− 5q2

(3− q2)2
c >

Eπλ11 = π(λ1 + λ2)− λ1
1

18
− λ2

3− q2

36
−min{34,

q2 + 33

2q2
}c,

which implies:

λ2

(3− q2

36
− 3− q2

6(9− q2)

)
+ min{34,

q2 + 33

2q2
}c− 34c− 6

51− 5q2

(3− q2)2
c > 0.

We distinguish between two cases:
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• q < q′′ =
√

33
67
≈ 0.701. Then the inequality becomes

λ2

(3− q2

36
− 3− q2

6(9− q2)

)
− 6

51− 5q2

(3− q2)2
c > 0

which implies

c <
λ2(3− q2)4

216(9− q2)(51− 5q2)
.

• Suppose, q ∈ [q′′, q1). Then the inequality becomes

λ2

(3− q2

36
− 3− q2

6(9− q2)

)
+
q2 + 33

2q2
c− 34c− 6

51− 5q2

(3− q2)2
c > 0.

which implies

c ≤ λ2q
2 (3− q2)4

18 (9− q2) (67q6 − 495q4 + 1413q2 − 297)

which is strictly positive for the above range of parameters.

Now, we consolidating the obtained conditions:
Given the discussion at the start, we restrict attention to costs such that c ≤ 3−(λ1+λ2)

1244

and c ≤ 6−(2λ1+3λ2)
1224

.

1. q < q′′ ≈ 0.701 :

It turns out that (3−q2)4
216(9−q2)(51−5q2) >

(3−q2)2
18(9−q2)(87−17q2) for

q <
1√
17

63− 242
3√

6822−17
√
154907

−2 3
√

6822−17
√
154907

≡ q̂ ≈ 0.553

so that for q < q̂ the asymmetric contract leading to Eπλ21 is a global optimum for
c < λ2(3−q2)4

216(9−q2)(51−5q2) . If λ2 > λ1, then Eπλ21 is a global optimum for

c ∈
(
λ1

(3− q2)2

18(9− q2)(87− 17q2)
, λ2

(3− q2)4

18(9− q2)(87− 17q2)

]
.

2. q′′ ≤ q < q′ ≈ 0.803.

It turns out that for the above range of parameters
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q2 (3− q2)4

18 (9− q2) (67q6 − 495q4 + 1413q2 − 297)
>

(3− q2)2

18(9− q2)(87− 17q2)

and so Eπλ21 is a global optimum for

c ∈
(
λ1

(3− q2)2

18(9− q2)(87− 17q2)
, λ2

(3− q2)2

18(9− q2)(87− 17q2)

]
.

3. Finally, q′ < q < q1 ≈ 0.855.

Given the previous point, we conclude that the asymmetric contract yielding Eπλ21 is
a global optimum for

c ∈
(
λ1

2q4 (q2 − 3)
2

3 (9− q2) (5q8 − 330q6 + 2484q4 − 7290q2 + 4131)
, λ2

(3− q2)2

18(9− q2)(87− 17q2)

]
.

Q.E.D.
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Appendix not for publication

Costly decision implementation. Suppose that making the decision yi precise costs effort
c0 > 0 to agent i. If she does not pay c0, the choice yi is a random draw from a uniform
distribution on [0, 1]. Even in the case agent i has no information, precise implementation
is valuable, because the loss Li(yi) =

∫ 1

0
(1
2
− θ)2dθ = 1

12
determined by yi = E[θ] = 1/2 is

smaller than the loss induced by a random yi: L̄i =
∫ 1

0

∫ 1

0
(y − θ)2dθdy = 1

6
.

We first show that, despite the implementation cost c0, the principal assigns contracts
that require both agents to implement yi precisely in equilibrium, for every value q of the
correlation between the states θ1 and θ2 and of the research cost c. Together with the different
courses of decision considered in the paper (both agents collect and share signals, both collect
a signal and one shares it, both collect signals without sharing, one agent collects and shares
a signal and the other does not, only one agent collects a signal and does not share it, and
neither agent collects a signal) in which agents chose decisions precisely, we consider also two
additional possibilities: only one agent collects and does not share a signal and the other
agent makes a random decision, and neither agent collects information with either or both
making imprecise decisions. The other possibilities make no sense. The principal would
never remunerate an agent to collect information to then ask him to act imprecisely, nor she
would remunerate an agent to communicate with the other, to then ask the latter to act
imprecisely.

Let us consider the simplest course of decision: neither agent collects information and
either or both make imprecise decisions. In this case, both agent i’s optimal contract is such
that zi = ai = bi = 0. The optimal contract to induce an agent i to make a precise decision
yi = E[θ], while still not requiring either agent to collect information is such that bi = 0 and
zi = ai = 12c0, because ai is pinned down by the precision obedience constraint:

ai[L̄i − Li(yi)] = ai
1

12
≥ c0,

The principal’s payoff for asking i to be precise is

Eπi = − 1

12
− (1− ai)

1

12
.

Plugging in ai = 12c0, this quantity is shown to be larger than L̄i = 1
6
, the payoff when i

makes a random decision:

− 1

12
− (1− 12c0)

1

12
= −1

6
+ c0 ≥ −

1

6
, for all c0 ≥ 0.

As a result, inducing neither agent to collect information but both to implement yi precisely
yields a higher payoff than letting agents neither collect information, nor implementing yi
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precisely. The same argument shows that the course of decision in which only one agent
collects and does not share a signal and the other agent makes a random decision yields
a lower profit than optimally inducing one agent to collect a signal and not share it, and
the other agent to not collect information, but implement yi precisely to the best of his
knowledge.

In the remainder, we assume that c0 < c: implementation requires less effort than research
and information acquisition.

Let us calculate the optimal linear contract to induce both agents collect and share signals
and to chose decisions precisely. Using the calculations in the paper, agent 1’s equilibrium
payoff is:

u1(si) = z1 − (a1 + b1)
3− q2

6(9− q2)
− c− c0.

His payoff in case she does not choose y1 precisely is:

u1(s1) = z1 − a1
1

6
− b1

3− q2

6(9− q2)
− c,

and his payoff if not collecting s1 is:

uoi = z1 − a1
3− q2

36
− b1

27 + q4

6(9− q2)2
− c0.

Hence, the information acquisition constraint (5) is unchanged, where precise implementation
entails the additional constraint:

a1
1

(9− q2)
≥ c0,

or, a1 ≥ (9− q2)c0.
The minimization of (a1 + b1)[1 − 3−q2

6(9−q2) ] subject to a1 ≥ (9 − q2)c0, b1 ≥ 0 and the
information acquisition constraint () yields the following solution. If q < q′ ≈ 0.803, because
c0 < c, the precise implementation constraint is slack and the solution is z1 = a1 = 36 9−q2

(3−q2)2 c

and b1 = 0, as in the case without costly decision precise implementation. The expected
profit Eπ is also unchanged.

If q > q′, then z1 = a1 + b1, a1 = (9 − q2)c0 and b1 solves the information acquisition
constraint

(9− q2)c0
(3− q2)2

36(9− q2)
+ b1

2q2

(9− q2)2
= c,

so that b1 = (9−q2)2
2q2

(c − (3−q2)2
36

c0). (Recall that without costly precise implementation, the

2



optimal solution is a1 = 0 and z1 = b1 = (9−q2)2
2q2

c.) The expected profit is

Eπ = 2π − 3− q2

3(9− q2)
− 2(a1 + b1)[1−

3− q2

6(9− q2)
]

= 2π − 3− q2

3(9− q2)
− (51− 5q2)[

9− q2

6q2
c+

1

3
(1− (9− q2)(3− q2)2

72q2
)c0],

smaller than in the case without costly precise implementation because 1 + (9−q2)(3−q2)2
72q2

if
and only if q > q′.

Wrapping up the two cases, the expected profit is:

Eπ22 = 2π − 3− q2

3(9− q2)
− (51− 5q2) min

{
12

(3− q2)2
,
9− q2

6q2
c+

1

3
(1− (9− q2)(3− q2)2

72q2
)c0

}
.

Proceeding in the same fashion, the optimal linear contracts t1, t2 to induce both agents
i = 1, 2 to collect information and only one of them, say agent 1, to transmit it to the
other agent j is such that z2 = a2 = 36 9−q2

(q2−3)2 c, b2 = 0, and that z1 = a1 = 36c, b1 = 0

for q <
√

(28
√
3−
√
2267)3

√
3

5
≈ 0.958, like in the case without implementation costs. For q >√

(28
√
3−
√
2267)3

√
3

5
, the implementation constraint binds, so that a1 = 9c0 and the information

acquisition constraint becomes:

9c0
1

36
+ b1

2q2

(9− q2)2
= c,

thus yielding b1 = (9−q2)2
2q2

(c− 1
4
c0) and z1 = a1 + b1. The resulting principal’s payoff is:

Eπ21 = 2π−1

9

9− 2q2

9− q2
−min

{
34c, (51− 5q2)(c

9− q2

12q2
+ (

9

9− q2
− 9− q2

8q2
)
1

6
c0)

}
−6

51− 5q2

(3− q2)2
c.

Likewise, the optimal linear contracts t1, t2 to induce both agents i = 1, 2 to collect infor-
mation and not to transmit it to the other agent j are such that zi = ai = 36c, bi = 0, and
yield expected profit:

Eπ20 = 2π − 1

9
− 68c.

Further, the optimal linear contracts t1, t2 to induce one agent, say agent 1, to collect in-
formation and transmit it to the other agent 2, and agent 2 to not collect information, are
such that z2 = a2 = 9c0, b2 = 0, and that z1 = a1 = 36c, b1 = 0 for q <

√
33
67
≈ 0.701, and

a1 = 9c0, b1 = 18
q2

(c − 1
4
c0), z1 = a1 + b1 for q >

√
33
67
. They yield the principal’s expected

profit:

Eπ11 = 2π − 1

36
(5− q2)−min

{
34c,

1

2

q2 + 33

q2
(
1

4
c0(2q

2 − 1) + c)

}
.
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Optimal linear contracts t1, t2 to induce only one agents, say agent 1 to collect signal s1, but
not to transmit to agent 2 are such that z1 = a1 = 36c, b1 = 0 and z2 = a2 = b2 = 0. They
yield expected payoff:

Eπ10 = 2π − 5

36
− 34c.

The optimal linear contracts t1, t2 in the case that both agents i = 1, 2 are not supposed to
collect information are such that zi = ai = 12c0 and bi = 0. This leads to expected principal’s
profit:

Eπ00 = 2π − 2
1

12
− 2 · 12c0(1−

1

12
)

= 2π − 1

6
− 22c0.

Comparing Eπ11 and Eπ10, it is still the case that Eπ11 > Eπ10 for all c, q, c0 as in the
case without costly implementation. Comparing Eπ22, Eπ21 and Eπ20, we see that both
Eπ20(q, c, c0)− Eπ21(q, c, c0) and Eπ22(q, c, c0)− Eπ21(q, c, c0) increase in c0.

Further, the results about profit maximizing allocation achieved through optimal linear
contracts with c0 = 0 extend qualitatively (in the sense that the thresholds and threshold
functions in the statements below are functions of the implementation cost c0):
1. For correlation values q < q̃(c0) and information acquisition cost values c < c(q)22−20, and
for q > q̃ and c < c(q)22−11, both agents i = 1, 2 collect signal si and share it with the other
agent j.
2. When q < q̃ and c(q)22−20 < q < c(q)20−11, both agents i = 1, 2 collect signal si but do
not share it with j.
3. When c(q)22−11 < c < c(q)11−00, for all q, only one agent i collects signal si and shares it
with j.
4. When c > c(q)11−00, for all q, neither agent i collects signal si.

Most importantly, we obtain generalization of our main result, which determines the
optimal linear contracts `1, `2 that induce agents to collect and share information by making
the payment depend on the precision of the other agent j.

Corollary: The profit maximizing linear contracts t1, t2 are as follows.
1. If the states are sufficiently correlated (q > q′ ≈ 0.803) and signal acquisition cheap
(c < c(q)22−11), then ai = 0 and zi = bi > 0 for both i = 1, 2. Each agent i = 1, 2 is induced
to collect signal si and share it with the other agent j with a reward based on the other
agent j’s performance.
2. For sufficient correlation (q >

√
33
67
≈ 0.701) and intermediate signal costs (c(q)22−11 <

c < c(q)11−00), only one agent i is induced to collect si and share with j with a reward based
j’s performance. (The other agent receives a flat payment.)

4



3. For all other values of q and c, each agent i is induced to collect si and possibly share si
with j only with rewards based on i’s own performance.

The only difference with Corollary 1 in the paper is that the formulas c(q)22−11 and
c(q)11−00 depend on c0, and it is interesting that the thresholds q′ and

√
33
67

do not.

Calculations omitted from the proof of Lemma 4. To show that D22−21(q) > 0 for
0 ≤ q < q1 ≈ 0.855 and D22−21(q) < 0 for q1 < q ≤ 1, we distinguish three cases.

For 0 ≤ q ≤ q′ ≈ 0.803, it is the case that min
{

12
(3−q2)2 ,

9−q2
6q2

}
= 12

(3−q2)2 and

min
{

34, 9−q
2

12q2
(51− 5q2)

}
= 34. As a result, simplifying notation,

D(q) =
12

(3− q2)2
(51− 5q2)− 34− 6

51− 5q2

(3− q2)2
= 2q2

87− 17q2

(q2 − 3)2
> 0.

Because Eπ22(q, c)− Eπ21(q, c) is linear in c and Eπ22(q, c) > Eπ21(q, c) for c = 0, whether
Eπ22(q, c) is larger or smaller than Eπ21(q, c) depends on whether c is smaller or larger than
a threshold c22−21(q) implicitly defined by the equation Eπ22(q, c) = Eπ21(q, c).

For q′ ≤ q ≤
√

(28
√
3−
√
2267)3

√
3

5
≈ 0.958, we have that min

{
12

(3−q2)2 ,
9−q2
6q2

}
= 1

6q2
(9−q2) and

min
{

34, 9−q
2

12q2
(51− 5q2)

}
= 34. As a result,

D(q) =
9− q2

6q2
(51− 5q2)− 34− 6

51− 5q2

(3− q2)2
.

This function is strictly decreasing for q ∈ [0, 1], and crosses zero at q1 ≈ 0.855.

For
√

(28
√
3−
√
2267)3

√
3

5
≤ q ≤ 1, because min

{
12

(3−q2)2 ,
9−q2
6q2

}
= 1

6q2
(9 − q2) and

min
{

34, 9−q
2

12q2
(51− 5q2)

}
= 9−q2

12q2
(51− 5q2), it is the case that

D(q) = f̃(q) =
9− q2

6q2
(51− 5q2)− 9− q2

12q2
(51− 5q2)− 6

51− 5q2

(3− q2)2
.

This function is strictly negative q >
√

(28
√
3−
√
2267)3

√
3

5
, so that Eπ22(q, c) > Eπ21(q, c) for

all c.

To show that c22−21(q) ≥ c21−20(q) for all q ≤ q1, we distinguish two cases.
For 0 ≤ q ≤ q′, because min

{
12

(3−q2)2 ,
9−q2
6q2

}
= 12

(3−q2)2 and min
{

34, 9−q
2

12q2
(51− 5q2)

}
= 34,

the formulas for c(q)22−21 and c(q)21−20 become:

c22−21(q) =

1
18
− 3−q2

3(9−q2) + 3−q2
6(9−q2)

12 51−5q2
(3−q2)2 − 34− 6 51−5q2

(3−q2)2
=

1
18
− 3−q2

6(9−q2)

34 + 6 51−5q2
(q2−3)2 − 68

= c(q)21−20.
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We conclude that c22−21(q) = c21−20(q) for all 0 ≤ q ≤ q′.

Turning to q′ < q ≤ q1, because min
{

12
(3−q2)2 ,

9−q2
6q2

}
= 9−q2

6q2
< 12

(3−q2)2 and

min
{

34, 9−q
2

12q2
(51− 5q2)

}
= 34, the formula of c(q)21−20 is unchanged, and the formula for

c(q)22−21 becomes

c22−21(q) =

1
18
− 3−q2

3(9−q2) + 3−q2
6(9−q2)

9−q2
6q2

(51− 5q2)− 34− 6 51−5q2
(3−q2)2

>

1
18
− 3−q2

3(9−q2) + 3−q2
6(9−q2)

12
(3−q2)2 (51− 5q2)− 34− 6 51−5q2

(3−q2)2
= c(q)21−20.

We obtain that c22−21(q) > c21−20(q) for all q′ < q < q1.

Calculations omitted from the Proof of Proposition 4. We first prove that c22−20(q) >

0 if and only if q <
√

(28
√
3−
√
2267)3

√
3

5
≈ 0.958. Instead, it is the case that c22−11(q) > 0 and

c22−00(q) > 0 for all q ∈ [0, 1].

To show c22−20(q) > 0 if and only if q <
√

(28
√
3−
√
2267)3

√
3

5
, we consider two cases.

For 0 ≤ q < q′ ≈ 0.803, 12
(q2−3)2 <

9−q2
6q2

and so,

c22−20(q) =

1
9
− 3−q2

3(9−q2)
12

(q2−3)2 (51− 5q2)− 68
=

1

18

(q2 − 3)2

(87− 17q2)(9− q2)
> 0,

whereas for q′ < q ≤ 1,

c22−20(q) =

1
9
− 3−q2

3(9−q2)
9−q2
6q2

(51− 5q2)− 68
=

4

3

q4

(9− q2)(459− 504q2 + 5q4)
∝ 1

459− 504q2 + 5q4
> (<)0

if and only if q < (>)

√
(28
√
3−
√
2267)3

√
3

5
on the admissible range q ∈ [0, 1].

To show c22−11(q) > 0 for all q ∈ [0, 1], we consider three cases.
For 0 ≤ q <

√
33
67
≈ 0.701, 34 < 1

2
q2+33
q2

and 12
(q2−3)2 <

9−q2
6q2

and so,

c22−11(q) =

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 34
=

(3− q2)2(9− 2q2 + q4)

72(9− q2)(153 + 72q2 − 17q4)
> 0.

For
√

33
67
< q < q′ ≈ 0.803, 34 > 1

2
q2+33
q2

and 12
(q2−3)2 <

9−q2
6q2

and so,

c22−11(q) =

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 1
2
q2+33
q2

= −
1
18
q2(q2 − 3)2(9− 2q2 + q4)

(297− 1413q2 + 147q4 + q6)(9− q2)

∝ − 1

297− 1413q2 + 147q4 + q6
> 0

if q > q2 ≈ 0.464.
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For q′ < q ≤ 1,

c22−11(q) =

5−q2
36
− 3−q2

3(9−q2)
9−q2
6q2

(51− 5q2)− 1
2
q2+33
q2

=
1

6

q2(9− 2q2 + q4)

(24− 5q2)(15− q2)(9− q2)
> 0

for all q ∈ [0, 1].

We now compare c22−11(q) and c22−00(q), and prove that c22−11(q) < c22−00(q) for all
q ∈ [0, 1], and that c22−20(q) < c22−11(q) if and only if q < q̃ ≈ 0.553 on the relevant range

q ∈ [0,

√
(28
√
3−
√
2267)3

√
3

5
].

To show c22−11(q) < c22−00(q) for all q ∈ [0, 1], we consider three cases.
For 0 ≤ q <

√
33
67
≈ 0.701,

c22−11(q)− c22−00(q) =

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 34
−

1
6
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)

= − 1

18

(3− q2)2q2(129− 10q2 − 3q4)

(9− q2)(51− 5q2)(153 + 72q2 − 17q4)
< 0.

For
√

33
67
< q < q′,

c22−11(q)− c22−00(q) =

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 1
2
q2+33
q2

−
1
6
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)

= −(3− q2)2(891− 2106q2 − 1560q4 + 394q6 − 19q8)

72(9− q2)(51− 5q2)(297− 1413q2 + 147q4 + q6)
< 0,

because 891 − 2106q2 − 1560q4 + 394q6 − 19q8 < 0 for q > q3 ≈ 0.586 and 297 − 1413q2 +

147q4 + q6 < 0 for q > q2 ≈ 0.464.

For q′ < q ≤ 1,

c22−11(q)− c22−00(q) =

5−q2
36
− 3−q2

3(9−q2)
9−q2
6q2

(51− 5q2)− 1
2
q2+33
q2

−
1
6
− 3−q2

3(9−q2)
9−q2
6q2

(51− 5q2)

= −1

6
q2

2349 + 2160q2 − 1200q4 + 136q6 − 5q8

(15− q2)(24− 5q2)(51− 5q2)(9− q2)2
< 0.

To show that c22−20(q) < c22−11(q) if and only if q < q̃ on the relevant range q ∈
[0,

√
(28
√
3−
√
2267)3

√
3

5
], we consider two cases.

For 0 ≤ q <
√

33
67
,

c22−20(q)− c22−11(q) =

1
9
− 3−q2

3(9−q2)
12

(q2−3)2 (51− 5q2)− 68
−

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 34

=
1

72

(615q2 − 189q4 + 17q6 − 171)(3− q2)2

(9− q2)(87− 17q2)(153 + 72q2 − 17q4)
∝ 615q2 − 189q4 + 17q6 − 171 < 0
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if and only if

q < q̃ =

√√√√63

17
− 3

√
54 576

4913
− 1

289

√
9914 048− 484

289 3

√
54 576
4913
− 1

289

√
9914 048

≈ 0.553.

For
√

33
67
< q <

√
(28
√
3−
√
2267)3

√
3

5
≈ 0.958,

c22−20(q)− c22−11(q) =

1
9
− 3−q2

3(9−q2)
12

(q2−3)2 (51− 5q2)− 68
−

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 1
2
q2+33
q2

=
1

18

(3− q2)2(297− 630q2 − 180q4 + 122q6 − 17q8)

(9− q2)(87− 17q2)(297− 1413q2 + 147q4 + q6)

∝ 297− 630q2 − 180q4 + 122q6 − 17q8

297− 1413q2 + 147q4 + q6
> 0

for all q >
√

33
67
, because 297− 630q2 − 180q4 + 122q6 − 17q8 > 0 for all q > q4 ≈ 0.658 and

297− 1413q2 + 147q4 + q6 > 0 for all q > q2.

Comparing c22−00(q), c20−00(q) and c11−00(q), we show that c11−00(q) > c22−00(q), and
c11−00(q) > c20−00(q) for all q ∈ [0, 1] .

To show c11−00(q) > c22−00(q), we distinguish three cases.
For 0 ≤ q <

√
33
67
≈ 0.701,

c11−00(q)− c22−00(q) =
q2 + 1

36 · 34
−

1
6
− q2−3

3q2−27
12

(q2−3)2 (51− 5q2)
=

q2(129− 10q2 − 3q4)

306(9− q2)(51− 5q2)
> 0.

For
√

33
67
< q < q′ ≈ 0.803,

c11−00(q)− c22−00(q) =
q2 + 1

36 1
2q2

(q2 + 33)
−

1
6
− q2−3

3q2−27
12

(q2−3)2 (51− 5q2)

=
1

72

2106q2 + 1560q4 − 394q6 + 19q8 − 891

(q − 3)(q + 3)(q2 + 33)(5q2 − 51)

∝ 2106q2 + 1560q4 − 394q6 + 19q8 − 891 > 0

for q > q3 ≈ 0.586.

For q′ ≈ 0.803 < q ≤ 1,

c11−00(q)− c22−00(q) =
q2 + 1

36 1
2q2

(q2 + 33)
−

1
6
− q2−3

3q2−27
9−q2
6q2

(51− 5q2)

=
1

18
q2
−2160q2 + 1200q4 − 136q6 + 5q8 − 2349

(q2 + 33)(5q2 − 51)(q − 3)2(q + 3)2
> 0.
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To show c11−00(q) > c20−00(q), we distinguish two cases.
For 0 ≤ q <

√
33
67
,

c11−00(q)− c20−00(q) =
q2 + 1

36 · 34
− 1

1224
=

1

1224
q2 > 0.

For 1
67

√
33
√

67 ≈ 0.701 < q ≤ 1,

c11−00(q)− c20−00(q) =
q2 + 1

36 1
2q2

(q2 + 33)
− 1

1224
=

1

1224

67q2 + 68q4 − 33

q2 + 33

∝ −33 + 67q2 + 68q4 > 0

for q >
√

1
34

√
13 465− 67

34
≈ 0.600.

We conclude by comparing c20−11(q) with c22−20(q), c22−11(q) and c11−00(q), and prove
that c20−11(q) = c11−00(q) for q = 0, that c20−11(q) < c11−00(q) for all q > 0, that c20−11(q) >
c22−20(q) for 0 ≤ q < q̃ ≈ 0.553, that c20−11(q) = c22−20(q) = c22−11(q) for q = q̃ and that
c20−11(q) < c22−11(q) for q̃ < q ≤ 1.

First, we note

c20−11(0) =
1

2448− 36 · 34
=

1

1224
= c11−00(q) =

1

36 · 34
,

and that

c20−11(q̃) =
1− q2

2448− 36 · 34
= c22−20(q̃) =

1
9
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 68

= c22−11(q̃) =

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 34

=
1

353 736

484− 782 3

√
− 8

289

√
154 907 + 54 576

4913
+ 289 3

√
− 8

289

√
154 907 + 54 576

4913

2

3

√
− 8

289

√
154 907 + 54 576

4913

≈ 5.67× 10−4.

To show c20−11(q) < c11−00(q) for all q > 0, we distinguish two cases.
For 0 ≤ q <

√
33
67
,

c20−11(q)− c11−00(q) =
1− q2

2448− 36 · 34
− 1 + q2

36 · 34
= − 1

612
q2 < 0.

For
√

33
67
< q ≤ 1,

c20−11(q)− c11−00(q) =
1− q2

2448− 36 q
2+33
2q2

− 1 + q2

361
2
q2+33
q2

= − 1

3942
q2

3597− 6008q2 − 4933q4

(q2 + 33)(11− 45q2)
∝ −3597− 6008q2 − 4933q4

(q2 + 33)(11− 45q2)
< 0
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for q >
√

1
4933

√
26 768 017− 3004

4933
≈ 0.663. (Specifically, 3597 − 6008q2 − 4933q4 > 0, for

q >
√

1
4933

√
26 768 017− 3004

4933
and 11− 45q2 > 0, for q > 1

15

√
5
√

11 ≈ 0.494).

To show c20−11(q) > c22−20(q) for 0 ≤ q < q̃, we note that

c22−20(q)− c20−11(q) =

1
9
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 68
− 1− q2

2448− 36 · 34

=
1

1224

−171 + 615q2 − 189q4 + 17q6

(9− q2)(87− 17q2)
∝ −171 + 615q2 − 189q4 + 17q6 < 0

for q < q̃.

To show c20−11(q) < c22−11(q) for q̃ < q ≤ 1, we distinguish three cases.
For 0 ≤ q <

√
33
67
,

c22−11(q)− c20−11(q) =

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 34
− 1− q2

2448− 36 · 34

=
1

612
q2
−171 + 615q2 − 189q4 + 17q6

(9− q2)(153 + 72q2 − 17q4)
∝ −171 + 615q2 − 189q4 + 17q6 > 0

for q > q̃.

For
√

33
67
< q < q′,

c22−11(q)− c20−11(q) =

5−q2
36
− 3−q2

3(9−q2)
12

(3−q2)2 (51− 5q2)− 1
2
q2+33
q2

− 1− q2

2448− 36 q
2+33
2q2

=
4

27

q4(−297 + 630q2 + 180q4 − 122q6 + 17q8)

(9− q2)(11− 45q2)(297− 1413q2 + 147q4 + q6)

∝ −297 + 630q2 + 180q4 − 122q6 + 17q8

297− 1413q2 + 147q4 + q6
> 0,

for q > q4 ≈ 0.658. (Specifically, 297 − 1413q2 + 147q4 + q6 > 0 for q > q2 ≈ 0.464 and
−297 + 630q2 + 180q4 − 122q6 + 17q8 > 0 for q > q4 ≈ 0.658.)

For q′ < q ≤ 1,

c22−11(q)− c20−11(q) =

5−q2
36
− 3−q2

3(9−q2)
9−q2
6q2

(51− 5q2)− 1
2
q2+33
q2

− 1− q2

2448− 36 q
2+33
2q2

=
1

54

q2(4131− 8334q2 + 2304q4 − 554q6 + 5q8)

(9− q2)(15− q2)(24− 5q2)(11− 45q2)

∝ 4131− 8334q2 + 2304q4 − 554q6 + 5q8

11− 45q2
> 0.

(Specifically, 4131− 8334q2 + 2304q4− 554q6 + 5q8 < 0 for q > q5 ≈ 0.758 and 11− 45q2 < 0

for q > 1
15

√
5
√

11 ≈ 0.494.)

10


	Introduction
	Related Literature
	Model
	Conditional optimal linear transfers
	Optimal linear contracts
	Robustness exercises
	Conclusion

