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Abstract

We study trust building in credence goods markets in a dynamic setting. The market collapses in the one-
shot game due to information asymmetry. In the repeated game, consumers monitor an expert monopolist’s
honesty by rejecting his services. The optimal equilibrium involves under- or over-treatment. The expert’s
profit weakly increases in the discount factor but cannot achieve the first best. The monitoring technology and
equilibrium outcome contrast sharply with their counterparts for experience goods markets. Competition
enhances effi ciency by allowing consumers to use second opinions to monitor expert honesty more cost
effectively, but the effi ciency gain comes at the cost of less honesty.
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1 Introduction

In markets for professional services such as health care, consulting, taxi rides, and various repair services,

buyers often lack expertise to identify the appropriate treatments or solutions for their problems and hence

rely solely on experts for provision of both diagnosis and treatment/solution. Information asymmetry may

prevail even after consumption. For instance, consider that you have a knee injury and your doctor recom-

mends an arthroscopic knee surgery. You can verify whether the pain is relieved after the surgery, but it is

hard to tell whether it could have been solved simply by changing your lifestyle. Goods and services with

these features are termed “credence goods”by Darby and Karni (1973).

Credence-good sellers’expertise in diagnosing buyers’problems makes them “experts”, but also provides

them with opportunities to exploit their consumers. There is a great deal of documented evidence to

demonstrate that expert fraud is very common and costly. CNN reported that Dr. Farid Fata in Michigan

made millions of dollars from prescribing cancer treatment drugs to more than 500 patients who did not

need them.1 Many non-cancer patients received expensive and aggressive treatments but only learned that

they never needed those treatments after Dr. Fata’s arrest in 2013. In a field experiment, Schneider (2012)

found widespread under- and over-treatment in the auto repair market. Blafoutas et al. (2013) and Liu et

al. (2017) find empirical evidence that taxi drivers take nonlocals for unnecessary detours.

When consumers are concerned about expert fraud, trust plays an important role in facilitating trade. It

has been documented that patient compliance rates are nearly three times higher in primary care relationships

characterized by very high levels of trust (See Atreja, et al. (2005) and Piette, et al. (2005)). Similarly,

homeowners and car owners are more likely to follow recommendations made by handymen and mechanics

whom they trust. Even though that trust plays an important role in guiding buyers’decisions when seeking

professional services, the mechanism through which a credence-good seller builds trust in a repeated game

has not been thoroughly studied in the literature and is not well understood.

In this paper, we adopt the notion of trust in the frontier repeated-game literature (see e.g.,Cabral, 2005

for definition of trust and how it differs from reputation). More specifically, in the context of credence-good

1“Patients give horror stories as cancer doctor gets in prison”, CNN, July 11, 2015.

1



markets, consumer trust is defined as consumers’ belief of the expert’s level of honesty in reporting the

nature of their problems. The fact that trust building for credence-good sellers in a dynamic setting has

not received the attention it deserves may be driven by the presumption that trust building mechanism for

credence goods is similar to the well-researched trust building mechanism for experience goods.2 Nevertheless,

we argue that they are quite different. Experience-good buyers can monitor the quality of the good based

on their consumption experiences. However, such monitoring technology is ineffective for credence goods

because consumption and monitoring for honesty go against each other. Once buyers have received the

services and their problems have been fixed, they cannot tell whether they really needed the service, i.e.,

whether the expert was honest.

We ask the following research questions: 1) How does a credence-good seller gain consumer trust in a

repeated-game setting? 2) How do the seller’s concerns for future business shape his conduct? 3) Is the

effi cient outcome attainable when the expert is suffi ciently patient? 4) How does competition influence the

trust building mechanism, market effi ciency, and expert honesty?

In our model, a long-lived expert interacts with a sequence of short-lived consumers, each with a problem

causing either a substantial or a minor loss. We thereafter call the problem serious or minor, respectively.

Consumers do not know the nature of their problems and rely on the expert for diagnosis and treatment.

The expert has one treatment which can fix both types of problem. It is effi cient to use the treatment for

the serious problem but ineffi cient to use it for the minor problem. This assumption allows us to analyze

both over- and under-treatment.

In each period, the expert posts a price for his treatment. A consumer arrives in the market. She

observes the price and decides whether to consult the expert for treatment. After diagnosis, the expert

learns the nature of the consumer’s problem. Then, he either recommends the treatment at the quoted price

or recommends no treatment. If the expert recommends the treatment, the consumer decides whether to

accept it. Once the consumer accepts the treatment, the expert is liable for fixing the consumer’s problem.

At the end of the period, the expert’s price, his recommendation, the consumer’s acceptance decision as

2For an excellent review of the voluminous literature on reputation and trust of experience goods sellers, please
see Bar-Isaac and Tadelis (2008).
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well as her utility from accepting or rejecting the expert’s recommendation become public information. In

other words, the consumer shares her experience with others. This simplifying assumption is adopted for

tractability.3 It will be clear that even with this simplifying assumption, monitoring is still imperfect.

We assume the expected loss caused by the problem is lower than the cost of fixing the serious problem.4

Under this assumption, an extreme “lemon problem”emerges in the static game. The expert cannot gain con-

sumer trust when he has no concerns for future business and the market collapses. This no-trade equilibrium

holds whether the services are credence goods or experience goods because consumers’post-consumption

experiences do not play any role in the one-shot game.5

We characterize the set of perfect public equilibrium payoffs of the repeated game for any discount factor

and focus on the most profitable equilibrium, which is referred to as the optimal equilibrium thereafter. Since

the expert’s recommendation history is publicly observable, players’ strategies can depend on the entire

recommendation history and hence the strategy space is huge. Nevertheless, the expert can implement

the optimal equilibrium using simple stationary strategies. As the discount factor increases, the expert’s

equilibrium profit gradually increases but cannot attain the first best. For any discount factor less than

one, the optimal equilibrium either involves overtreatment for the minor problem or undertreatment for the

serious problem. This stands in sharp contrast with canonical models of experience goods markets wherein

the first best is attained when the discount factor is greater than a threshold.6

When the expert is suffi ciently patient, in the optimal equilibrium he makes honest recommendations

and charges a price high enough to induce consumers to reject the treatment sometimes. Due to the credence

nature of the service, consumers cannot detect expert cheating via consumption. A consumer instead learns

whether the expert has lied through refusing to accept the treatment recommendation and experiencing the

3This assumption can be justified by the increasing popularity of websites like Angie’s list, Yelp, and RateMDs
on which consumers actively post and share reviews on experts’services.

4This assumption is not crucial to our main findings in the repeated-game setting. This issue will be discussed in
Section 6.

5 In our main model, expert service is modeled as a credence good. In Section 3, we formally specify an alternative
model in which the expert service is an experience good. By then, the distinction between credence expert service
and experience expert service will be clear.

6We formally demonstrate this result in a benchmark model of experience services markets in Section 4.1.
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loss from the problem. To give a concrete example, let’s revisit the case of a knee injury. Suppose you do

not take the arthroscopic surgery recommended by your doctor and instead try resting and exercise therapy

at home. If your injury is minor, the pain will be relieved after some time. But if it is a serious tear in

the knee’s meniscus, your pain will get worse and you may experience blockage of motion frequently, which

reveals that the doctor has been honest about your condition.7

If the expert is proved to be honest, he gains the trust from future consumers who continue to accept his

recommendations with a positive probability less than one. Otherwise, the expert loses consumers’trust and

all future business. We refer to this equilibrium as the monitoring-by-rejection equilibrium. The expert wants

to induce some rejection from consumers because honesty can only be monitored by rejection, which helps

the expert gain trust of future consumers and continue to charge a high price. Although consumer rejection

keeps the expert honest, it also results in ineffi cient undertreatment for the serious problem. Nevertheless, the

effi ciency of the equilibrium gradually increases in the discount factor and converges to (but never achieves)

the first best because a smaller and smaller (yet still positive) rejection rate is required to keep the expert

honest when he is more and more patient. It is worth noting that the monitoring-by-rejection equilibrium is

a form of imperfect monitoring because lying is detected with an endogenously determined probability less

than one.

When the expert becomes less patient, it is too costly for him to induce monitoring for honesty because

it requires a high rejection rate of recommended treatment for monitoring-by-rejection to be effective. In

the optimal equilibrium, the expert posts a low price for his treatment and recommends the treatment for

both types of problems. The expert makes a loss from effi ciently treating the serious problem but gains from

ineffi ciently fixing the minor problem. Consumers always accept the expert’s recommendations. We refer to

this equilibrium as the one-price-fix-all equilibrium. This equilibrium is characterized by a low level of trust

because consumers expect the expert to always recommend the treatment and never honestly report the

nature of their problems. Although the expert has an incentive to cherry-pick the minor problem to treat,

7A study by Sihvonen R. et al. (2013) found that for many patients, arthroscopic surgery is no more effective at
relieving symptoms than rest, exercise and over-the-counter pain killers. The study is reported in the Atlantic and
CBS news. See “When Evidence Says No, but Doctors Say Yes,”and “Common arthroscopic knee surgery no better
than “sham”version, researchers say”.
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his refusal to treat the serious problem will trigger the punishment phase in which he loses future business.

Since the expert gives up inducing monitoring for honesty, the minor problem is fixed with probability

one in equilibrium, causing ineffi ciency from overtreatment. Consumers’failure to monitor expert honesty

through consumption stands in sharp contrast with experience goods market in which consumption facilitates

monitoring the quality of the goods.

Our main model shows that concerns for consumers’trust do not warrant effi cient treatment in credence-

goods monopoly market. It is natural to ask how competition affects trust building, market effi ciency and

honesty. We consider an extension of the monopoly model to a competitive market consisting of n experts

with free entry and exit. There exists a symmetric equilibrium in which consumers actively search for honest

recommendations after incurring a search cost and use second opinions to monitor expert honesty. In this

equilibrium, all experts lie with a small probability. Upon the first treatment recommendation, a consumer

randomizes between accepting the recommendation and soliciting a second opinion. When the consumer

samples multiple opinions, she can identify cheating experts through observing conflicting recommendations.

If an expert is caught cheating, he loses all future consumers, exits the market, and is replaced by a new

expert. This competitive equilibrium is sustainable when the discount factor is suffi ciently high and the

search cost is suffi ciently low.

The competitive equilibrium has some interesting features. When search cost is low, competition can

improve market effi ciency through a nonprice channel. The effi ciency gain in our model stems from the more

effi cient monitoring technology for honesty used by consumers in the competitive market. In the monopoly

market, consumers keep the expert honest at the expense of burning the surplus from fixing the serious

problem through rejection. By contrast, in the competitive market, consumers monitor expert honesty by

soliciting second opinions. A skeptical consumer may reject the first treatment recommendation, but she

accepts the second recommendation with probability one. So, the serious problem is repaired with probability

one in equilibrium.

Second, the introduction of competition may induce more dishonest recommendations. Note that the

competitive equilibrium involves small but pervasive cheating among experts, but the monopoly expert makes
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honest recommendations when the discount factor is suffi ciently high. So, the more effi cient monitoring

technology in the competitive market may come at the cost of less honesty. This is because some expert

lying is necessary to induce consumers’search for second opinions in the presence of a search cost. If experts

all make honest recommendations, a consumer will not pay the search cost to sample another opinion given

that she will receive the same recommendation.

Most of the existing literature on credence goods focuses on a one-time transaction between experts and

consumers and studies different mechanisms that discipline expert behavior. Contributions in this regard

include Pitchik and Scotter (1987), Wolinsky (1993), Fong (2005), Liu (2011), Emons (1997, 2001), Alger

and Salanie (2006), Dulleck and Kerschbamer (2009), Fong et al. (2014), Bester and Dahm (2017), Chen

et al. (2017). Dulleck and Kerschbamer (2006) provides a comprehensive review of the early literature in

one-shot games.

Despite the extensive studies of credence goods in one-shot games, the role of trust in a dynamic setting

of credence good has not been as thoroughly investigated. The paper most closely related to ours is Wolinsky

(1993) which investigates experts’reputation concerns in Section 5 as an extension. There are important

differences between his analysis of reputation concerns and ours. First, Wolinsky (1993) rules out supergame

consideration. He considers an overlapping generation model where consumers live two periods and monitor

experts by their own past experiences. We allow a consumer to observe the entire public history and

base her strategy on it. Second, in his analysis of reputation concerns, Wolinsky assumes that consumers

delegate treatment decisions to experts and commit to accepting any bill presented to them. We relax this

assumption and allow consumers to reject a treatment recommendation and use rejection and/or second

opinions as monitoring technologies. Ely and Välimäki (2003) and Frankel and Schwarz (2009) investigate

a long-lived expert’s recommendation strategy when facing a sequence of short-lived consumers. Similar as

Wonlinsky’s (1993) analysis of experts’ reputation concerns, both studies assume that consumers commit

to accepting the chosen expert’s recommendations, so they can only use the expert’s past recommendation

history to monitor honesty.

Taylor (1995) considers a dynamic model with two-sided moral hazard. In Taylor (1995), experts have
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incentives to recommend unnecessary services to a healthy durable good whereas the owner of the good has

incentives to shirk in maintenance efforts. Taylor (1995) shows that short-term contract may give rise to

low maintenance efforts or strategic delay in checkups. When short-term contract is ineffi cient, long-term

contract in the form of actuarially fair insurance may implement the first best. Our paper differs from Taylor

(1995) in several aspects. First, we do not consider consumers’moral hazard problem and focus on experts’

cheating incentives. Second, we analyze expert equilibrium behavior in both monopoly and competitive

markets and highlight how competition affects honesty and effi ciency while Taylor (1995) only considers the

competitive market. Lastly, contrasting Taylor’s (1995) setting where the good is either diseased or healthy,

in our setting, consumers are always diseased and it is effi cient to fix the serious problem but ineffi cient to fix

the minor problem. So, an insurance contract which ensures to fix both types of problem would not result

in the first because because there will be overtreatment for the minor problem.

Pesendorfer and Wolinksy (2003) study experts’incentives to make an unobservable and costly diagnosis

effort for a consumer who searches for correct diagnosis in a competitive market. Experts in their model

have no concerns for future business and they focus on experts’moral hazard in diagnosis, assuming away

the possibility that experts lie about their diagnosis. We study a repeated game and focus on how experts’

concerns for future business affect their incentives to honestly report their diagnosis.

An interesting recent paper by Hafner and Taylor (2017) studies interactions between a long-lived expert

and a sequence of short-lived clients who need advice from the expert to decide how much to invest in their

projects. In the Section of Reputational Contracts, Hafner and Taylor (2017) studies how reputation concern

affects the expert’s incentives to acquire information and provide honest advice to the clients. In their model,

the outcome of a client’s investment is a noisy signal about the quality of the expert’s advice. At the end of

each period, a client submits a positive or a negative referral which becomes public information. Hafner and

Taylor (2017) focuses on the equilibrium that maximize client surplus. Punishment arises on the equilibrium

path when the expert’s advice turns out to be wrong. Ineffi ciency arises in their model because a short-lived

client ignores the externality of her investment decisions on others, which leads her to under invest following

reports of good news and over invest following reports of bad news. We focus on the equilibrium which

maximizes the long-lived expert’s profit and the optimal monopoly equilibrium does not involve punishment
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on the equilibrium path. The ineffi ciency of the monitoring-by-rejection equilibrium occurs because it is

necessary for the expert to induce some rejection from consumers in order to prove his honesty.

There is an emerging body of literature studying the impact of reputation on expert conduct in laboratory

experiments. Dulleck et al. (2011) found that reputation has no significant influence on expert honesty and

Mimra et al. (2016) found that price competition undermines reputation building. In the above experiments,

consumers delegate treatment decisions to their chosen experts and monitor the experts only through their

past recommendations as in Wolinsky (1993), Ely and Välimäki (2003), and Frankel and Schwarz (2009).

Based on a different setting, our findings suggest that consumer rejection and search for second opinions are

important channels for monitoring expert honesty and facilitating trust building. It would be interesting

to test in laboratory our findings that when consumers can choose whether to accept or reject a treatment

recommendation, i) in a monopoly setting, when the expert is more patient, he is more likely to charge a high

price and make honest recommendations, and ii) for high discount factors and low search costs, competition

and consumers’search for second opinions improve market effi ciency at the expense of honesty.

Our paper is broadly related to the literature of reputation building in markets for experience goods

including Klein and Leffl er (1981), Hörner (2002) and Park (2005). For an excellent review of the voluminous

literature on reputation and trust of experience goods sellers, please see Bar-Isaac and Tadelis (2008). In

these papers, consumers learn the value of the goods through consumption. Our paper differs from these

papers in that consumption of the service does not generate any information about sellers’honesty.

To the best of our knowledge, we are the first to analyze the use of rejection of treatment recommendation

and search for second opinions to monitor expert honesty in a repeated-game setting of credence expert ser-

vices. We are also the first to systematically compare monitoring technologies and the equilibrium outcomes

of credence expert services and experience expert services in a dynamic setting. Our analysis reveals that

an expert’s concerns for future business impact the equilibrium outcome differently when the expert service

is a credence good versus an experience good.
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2 Model

Environment and Players A risk neutral, long-lived expert interacts with an infinite sequence of risk

neutral, short-lived consumers. In each period t ∈ {1, 2, ...,∞}, one consumer arrives with a problem which

is either minor or serious. Denote by ls the loss from the serious problem and lm the loss from the minor

problem, with 0 < lm < ls. We refer to ls and lm as substantial and minor losses, respectively. It is common

knowledge that the problem is serious with probability α ∈ (0, 1). The expert can perfectly diagnose the

consumer’s problem at zero cost. There is one treatment available for the expert to fix both types of problems.

It costs the expert c to apply the treatment on the serious problem and c − ε, for some ε > 0, to apply it

on the minor problem.8 We assume lm < c− ε < c < ls, so it is socially effi cient to fix the serious problem

but ineffi cient to fix the minor problem. This assumption allows us to study overtreatment, i.e., provision

of a treatment whose cost outweighs its benefit to consumers, which is well documented in health care, car

repair and legal services markets.

For algebraic simplicity, we assume E(l) ≡ αls + (1− α) lm < c, which implies α < α̂ ≡ c− lm
ls − lm

. Under

this condition, there is no trade in the static game. When this condition is violated, both types of problems

will be fixed at the consumer’s expected loss in the static game. We discuss the case α ≥ α̂ in Section 6.

Following the literature9 , we adopt the assumption the expert is liable for fixing the consumer’s problem

once the consumer has accepted his recommendation.10

Payoffs The expert maximizes his expected discounted sum of profit with discount factor δ ∈ (0, 1).

8 In many real-life situations, the cost of a treatment depends on the complexity of a client’s problem. For example,
a cardiac surgeon spends less time on a by pass surgery when a patient’s problem is mild than when her condition
is serious. Similarly, it requires a tax lawyer less effort to file tax return for a taxpayer with a relatively simple tax
situation.

9Pitchik and Schotter (1987), Wolinsky (1993), Fong (2005) and Liu (2011), Dulleck and Kerschbamber (2006).

10Our results continue to hold qualitatively if we relax the liability assumption. When the expert is not liable
for fixing the consumer’s problem, there is still no trade in the static Nash equilibrium. In the repeated game, if
the expert charges a consumer for treatment which is not provided, the consumer will suffer the loss at the end of
the period. Thus, the expert’s fraudulent behavior will be perfectly revealed to future consumers and trigger the
punishment phase. To support the monitoring-by-rejection or the one-price-fix-all equilibrium, which we define in
Section 4.2, we just need to add incentive constraints to ensure the expert does not take the money and run. These
conditions are satisifed when the discount factor is high enough.

9



The expert’s profit from treating the serious problem at price p is p − c, and that from treating the minor

problem is p− c+ ε. Each consumer maximizes her expected payoff. A consumer’s payoff is u = −li if she

has problem i ∈ {m, s} and the problem is left untreated. The consumer’s payoff is u = −p if the problem

is fixed at price p. Note that under the liability assumption, the consumer receives the same utility once she

accepts the treatment. The consumer’s utility depends on the nature of her problem only when the problem

is left untreated and the loss of it is realized.

Information The consumer does not know the nature of her problem and has to rely solely on the expert

for diagnosis and treatment. The expert learns whether the consumer’s problem is serious or minor after

diagnosis. The cost of treatment incurred by the expert is unobservable to the consumer. At the end of a

period, the prices charged by the expert, his recommendation, the consumer’s acceptance decision as well as

her utility become public information.

Timeline We summarize our model by describing the timeline of events in each period t = 1, 2, ....

Stage 1 The expert posts a price pt for his treatment.

Stage 2 A consumer arrives in the market. Nature draws the loss of her problem according to the prior

distribution of problems.

Stage 3 The consumer observes the price and consults the expert who perfectly diagnoses her problem and

either proposes to fix the problem at the quoted price or refuses to treat the consumer.

Stage 4 If the expert offers to fix the problem, the consumer decides whether or not to accept the offer.

Stage 5 The expert and consumers observe the realization of a public randomization device, denoted by

xt.11

Strategy and Equilibrium Concept Denote by Rt ∈ {pt, ∅} the recommendation made by the expert

in Stage 3, where pt denotes a recommendation of treatment and ∅ denotes refusal to treat the consumer.

11The use of public randomization device is common in the repeated game literature. This allows the expert and
subsequent clients to publicly randomize at the beginning of the next period and hence will convexify the equilibrium
payoff set.
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The expert’s recommendation policy is βit, i = m, s, where βit denotes the probability that the expert

recommends pt for problem i and 1 − βit is the probability that the expert recommends no treatment for

problem i. Denote by at ∈ {0, 1} the consumer’s acceptance decision, where 0 denotes rejection and 1 denotes

acceptance. Let γt ∈ [0, 1] denote the probability that the consumer accepts price pt. Formally, we denote

ht = {pt, Rt, at, ut, xt} as the public events that happen in period t and ht = {hn}t−1n=1 as a public history

path at the beginning of the period, with h1 = ∅. Let Ht = {ht} be the set of public history paths till time

t. A public strategy for the expert is a sequence of functions {Pt, βmt, βst}∞t=1, where Pt : Ht → R+ and

(βmt, βst) : Ht ∪ R+ ∪ {m, s} → [0, 1]
2. The public strategy of the consumer is γt : Ht ∪ pt → [0, 1].

Equilibrium Concept We focus on Perfect Public Equilibria (Henceforth PPE) in which the expert

and consumers use public strategies and the strategies constitute a Nash equilibrium following every public

history. It is without loss of generality to restrict attention to public strategies. In our game the expert has

private information about consumers’problems whereas consumers do not have any private information. In

repeated-game terminology, it is a game with a product monitoring structure. Mailath and Samuelson (2006)

have shown that every sequential equilibrium outcome is a perfect public equilibrium outcome in this case;

so, there is no need to consider private strategies.

3 Static game

We first show that market collapses when the expert has no concerns for future business.

Lemma 1 There is no trade in the static equilibrium.

Given that it is effi cient to fix the serious problem but ineffi cient to fix the minor problem, whenever

trade happens, the serious problem must be repaired with a positive probability. For the expert to be willing

to treat the serious problem, he must charge a price p ≥ c. However, the consumer will reject such a price

because once she accepts the price with a positive probability, the expert will recommend the treatment for

both types of problems. This will yield the consumer a negative expected payoff given E(l) < c ≤ p. The

assumption E(l) < c imposes an upper bound on the likelihood of the serious problem. Under this condition,

an extreme “lemons problem”develops. The expert cannot gain trust from consumers and the market for
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the expert’s services completely shuts down, causing undertreatment of the serious problem.

We close this section by pointing out that the no-trade outcome continues to hold even if the expert’s

service is an experience good. To make this statement precise and also for later reference, we define experience

expert service as follows:

Experience Service by Expert The expert’s service is either of high match value or of low match value

to the consumer. The probability of high match value is α ∈ (0, 1), and the match value is the expert’s private

information prior to the consumer’s consumption of the expert’s service. When no treatment is provided,

both players’ payoffs are zero. When the match value is high, it costs the expert c to serve the consumer

and his service provides a benefit of ls > 0 to the consumer. When the match value is low, the cost to the

expert and benefit to the consumer are respectively c− ε and lm. The consumer learns her match value after

consumption because ls 6= lm.

When the expert provides experience services, the consumer learns the match value of the expert’s service

through her post consumption payoffs. It is easy to see that under the same assumptions on the parameter

values, there is still no trade in equilibrium, because there are no more moves in the game after the consumer

learns her actual problem, so whether the consumer learns her actual problem or not has no bearing on the

players’earlier actions. In fact, the observation that there is no difference between the static equilibrium in

monopoly market for credence goods and that for experience goods holds in general. We show in Section 6

that this statement remains true when α ≥ α̂.

4 Repeated game

In this section, we study how the expert’s conduct is affected by his concerns for future business. Because

the expert is a monopolist who moves first in each period, we restrict attention to the equilibrium which

yields the expert the highest profit. To illustrate how the monitoring technology for credence services differs

from that for experience services and to explore its implication, we first discuss the optimal equilibrium in

experience services markets. The characterization of the optimal equilibrium in credence services markets

follows.
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4.1 Benchmark: experience service markets

We begin with the experience service markets as defined in the previous section and demonstrate that

honesty and effi ciency are jointly achieved when the discount factor is above a threshold. To see this,

consider the following strategies: In each period, the expert posts price ls for the treatment and recommends

the treatment only for the serious problem. Consumers accept the expert’s recommendations as long as he

did not recommend the treatment for the minor problem in the past. The game reverts to the static Nash

equilibrium perpetually, otherwise. Given the expert’s strategy, it is the consumer’s best response to accept

the treatment recommendation with probability one, which yields the expert an average profit of α (ls − c).

Since this is the surplus from the first best, it is the highest attainable profit for the expert.

Now, consider that the expert recommends the treatment for the minor problem. He receives a profit

ls − c+ ε in the current period but will lose all future business because his fraudulent recommendation will

be detected with probability one and hence he will be punished from the next period onward. The no lying

condition requires

δ

1− δα (ls − c)︸ ︷︷ ︸
future loss

≥ ls − c+ ε︸ ︷︷ ︸
current gain

which is satisfied if

δ ≥ δe(α) ≡ ls − c+ ε

ls − c+ ε+ α(ls − c)
. (1)

So, for a given α, the expert can achieve the first best profit by making honest recommendations when the

discount factor is greater than the cutoff δe(α). This is a common property of experience good models with

perfect monitoring, with some difference in details. Here, the current gain from cheating is the one-period

profit from treating the consumer’s minor problem while charging her for the benefit of treating the serious

problem, whereas in a standard experience good setting, the current gain from cheating is the cost saving

from producing the low-quality instead of the high-quality good.

4.2 Optimal equilibrium in credence goods markets

Now, we characterize the optimal equilibrium in markets for credence services. We show that for a given

parameter configuration, the optimal equilibrium is either the so called “monitoring-by-rejection equilibrium”
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or the “one-price-fix-all equilibrium”. We first characterize these two equilibria. Then, we prove that the

expert’s profit in any perfect public equilibrium is bounded above by his profit from one of these two

equilibria. We then characterize the condition under which the monitoring-by-rejection equilibrium is more

profitable than the one-price-fix-all equilibrium.

Monitoring-by-rejection equilibriumWe begin by characterizing the monitoring-by-rejection equilib-

rium in the following proposition. Because the monitoring-by-rejection equilibrium is stationary, we suppress

the subscript t.

Proposition 1 In the monitoring-by-rejection equilibrium, the expert posts p = ls for his treatment; he

recommends the treatment for the serious problem and no treatment for the minor problem, i.e., (βm, βs) =

(0, 1). The consumer accepts the treatment recommendation at p = ls with probability γ∗ = 1−1− δ
δα

ls − c+ ε

ls − c
as long as in the past the expert was not caught i) recommending the treatment for the minor problem, or

ii) refusing to fix the serious problem, or iii) deviating in price. Otherwise, the game perpetually reverts

to the static Nash equilibrium in which there is no trade. The average profit of the monitoring-by-rejection

equilibrium is

πm ≡ α(ls − c)−
1− δ
δ

(ls − c+ ε).

This equilibrium is sustainable for α ∈ (0, α̂) and δ ∈ [δm(α), 1), with δm(α) = δe(α) ≡ ls − c+ ε

ls − c+ ε+ α(ls − c)
.

In the monitoring-by-rejection equilibrium, the expert makes honest recommendations and charges con-

sumers their loss from the serious problem, which are similar to the experience-service seller’s strategy in

the optimal equilibrium. Nevertheless, consumers reject the recommendation with a positive probability,

which results in undertreatment for the serious problem. As the expert becomes more patient, consumer

acceptance rate gradually increases but never reaches full acceptance. As a result, the expert’s profit as well

as market effi ciency gradually increase as the expert becomes more patient but never achieve the first best

levels. This stands in sharp contrast with experience goods markets in which honesty and full effi ciency are

jointly achieved when the seller’s discount factor is above a cutoff value.

To understand this equilibrium, first note that although the expert makes honest recommendations on

the equilibrium path, it is consumers’best response to sometimes reject the treatment offer because the
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treatment price is so high that they are just indifferent between accepting and rejecting the treatment

recommendation.

To support the monitoring-by-rejection equilibrium, we have to consider both on-schedule and off-schedule

deviations by the expert. The expert can make an off-schedule deviation to a price p′ 6= ls. We assume

that consumers believe the expert will recommend the treatment for both types of problems at p′ ∈ [c, ls)

and for the minor problem at p′ ∈ [c− ε, c). Given this off-equilibrium belief, consumers will reject p′ with

probability one, yielding the expert zero profit in the current period. In addition, a price deviation will

trigger the punishment phase from next period onwards. So, there is no profitable price deviation.

The expert can also make an on-schedule deviation by recommending the treatment for the minor problem.

Since consumers accept the treatment with a positive probability, the on-schedule deviation is not always

detected and punished, so the equilibrium involves imperfect public monitoring. Consider that a consumer

has the minor problem. If the expert recommends the treatment, he gains a profit ls − c+ ε in the current

period if his recommendation is accepted. Nevertheless, the expert risks losing all future business if his

recommendation is rejected and he is caught lying. Consumers’acceptance rate γ∗ balances the trade off the

expert is facing and makes him just indifferent between recommending and not recommending the treatment

for the minor problem. Hence, it is the expert’s best response to recommend no treatment for the minor

problem. Specifically, the following no-lying condition holds at γ∗:
Prob of being caught lying︷ ︸︸ ︷

(1− γ∗) × δ

1− δ

profit per period︷ ︸︸ ︷
α(ls − c)γ∗︸ ︷︷ ︸

future loss

= γ∗(ls − c+ ε)︸ ︷︷ ︸
current gain from lying

, (2)

yielding a positive γ∗ = 1 − (1−δ)(ls−c+ε)
δα(ls−c) for δ > δm(α). Because consumers’acceptance rate is less than

one, the serious problem is sometimes left unrepaired, resulting in ineffi ciency from undertreatment.

Consumer acceptance rate γ∗ is less than one but increases in δ and α. So, the effi ciency of the equilibrium

increases when the expert is more patient or the consumer’s problem is more likely to result in a substantial

loss. If the expert cares more about future business, a smaller consumer rejection rate is suffi cient to

deter him from cheating. As the discount factor approaches one, γ∗ converges to (although never reaching)

one and the monitoring-by-rejection equilibrium approaches (although never reaching) full effi ciency. This

suggests that it is less costly for the expert to gain consumer trust when he is more patient. Nevertheless,
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consumers cannot always accept the treatment because full acceptance of the treatment makes it impossible

for consumers to monitor expert honesty. As a result, the expert will always recommend the treatment,

causing the monitoring-by-rejection equilibrium to collapse. The acceptance rate γ∗ also increases in the

likelihood of the serious problem (α). This is because the expert’s equilibrium profit increases in α, so he

bears a larger future loss from lying when α increases and therefore a smaller rejection rate is suffi cient to

keep him honest.

It is worth noting that the minimum discount factor necessary to sustain the monitoring-by-rejection

equilibrium coincides with that required to sustain the honest and effi cient equilibrium in experience services

markets. This is because the minimum discount factor δm(α) is derived when the equilibrium acceptance

rate γ∗ is zero. Canceling out one γ∗ from both sides of the equation (2) and evaluating the simplified

equality at γ∗ = 0, this condition coincides with the no lying condition (1) in experience goods markets

when the equality holds. So, honesty can be achieved in both credence goods and experience goods markets

when δ ≥ δm(α) = δe(α), but the first best is not attainable in the former market.

Fong (2005) studies a one-shot game in which there are two treatments, and it is effi cient to use the

expensive treatment for the serious problem and the inexpensive treatment for the minor problem. In Fong’s

equilibrium, consumers reject the expensive treatment with a positive probability to keep the expert honest.

Although Fong’s equilibrium shares some similar features to the monitoring-by-rejection equilibrium, the

driving forces for Fong’s equilibrium and ours are completely different. Fong considers a short-lived expert,

so honesty is driven by current profit consideration, not concerns for future business. In Fong’s equilibrium,

consumers reject the expensive treatment with a positive probability but accept the inexpensive treatment

with probability one. So, when recommending the expensive treatment for the minor problem, the expert

faces the trade-offbetween a higher profit margin and a lower acceptance rate, which balances offhis cheating

incentives. In contrast, in our setting, because it is ineffi cient to fix the minor problem, the expert cannot

make a positive profit from honestly reporting the minor problem in a static setting and hence will always

misreport the minor problem as the serious problem, causing the market in the one-shot game to collapse.

As a result of the different driving forces for expert honesty, the degree of the expert’s patience plays a
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crucial role in our equilibrium, but it does not affect the equilibrium in Fong as the expert is short-lived.12

The following comparative statics are derived directly from Proposition 1 (proof omitted). These com-

parative statics are useful for comparing the profit of the monitoring-by-rejection equilibrium with that of

the one-price-fix-all equilibrium which will be characterized at the end of this section.

Corollary 1 πm strictly increases in α and δ; the cutoff discount factor δm(α) strictly decreases in α.

The expert’s average profit increases in α and δ because consumers’acceptance rate γ∗ increases in these

parameters. To see δm(α) decreases in α, note that the expert’s equilibrium profit is higher when the problem

is more likely to be serious. So, the expert bears a larger future loss from lying and therefore is willing to

make honest recommendations at a lower discount factor.

One-price-fix-all equilibrium We now turn to the one-price-fix-all equilibrium. In this equilibrium,

the expert charges a consumer the average loss of her problem and always recommends the treatment.

Consumers do not monitor expert honesty. Instead, they expect the expert to always repair their problems

at the quoted price even though it is ineffi cient to repair the minor problem, and the expert’s refusal to treat

a consumer will trigger the punishment phase.

Define α̃ ≡ c− ε− lm
ls − ε− lm

and δo(α) ≡ c− E(l)

(1− α)ε
. We characterize below the one-price-fix-all equilibrium

which is also stationary:

Proposition 2 In the one-price-fix-all equilibrium, the expert posts p = E(l) for the treatment and recom-

mends the treatment irrespective of the consumer’s problem. Consumers accept the expert’s treatment with

probability one as long as he recommended the treatment to all previous consumers. Otherwise, the game

reverts to the static Nash equilibrium perpetually. The average profit of the equilibrium is

πo ≡ α(ls − c)− (1− α)(c− ε− lm).

For α ∈ (α̃, α̂), the one-price-fix-all equilibrium is sustainable if and only if δ ∈ [δo(α), 1); it is not sustainable

for α ∈ (0, α̃].

12To see another difference, we can verify that in our setting consumers’acceptance rate for treatments increases in
ls (i.e., ∂γ∗/∂ls > 0). However, in Fong, the acceptance rate for the minor treatment stays at one when ls increases
but the acceptance rate for the expensive treatment decreases in ls. So the overall acceptance decreases in ls.
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Since lm < E(l) < ls, consumers are overcharged for repairing the minor problem but receive a positive

surplus from fixing the serious problem, which makes it optimal for them to accept the expert’s recom-

mendation with probability one. In this equilibrium, the expert is expected to always repair consumers’

problems, so he does not have any on-schedule deviation. A price deviation or refusal to treat consumers

are off-schedule deviations which are perfectly observed by consumers and will be punished from the next

period onward. So, this equilibrium involves perfect public monitoring.

The condition α̃ < α ensures that the equilibrium price E(l) is greater than the average cost of fixing

the problem so that the expert can earn a positive expected profit. Nevertheless, given the assumption

E(l) < c, the price is too low to cover the expert’s cost of repairing the serious problem. So, the expert

has an incentive to cherry-pick the consumers with the minor problem and refuse to treat those with the

serious problem. When the discount factor is greater than the cutoff δo(α), the expert’s current gain from

dumping a consumer with the serious problem is outweighed by his loss from losing all future business, and

the equilibrium is sustainable.

In the one-price-fix-all equilibrium, consumers always consume the expert’s services on the equilibrium

path, and yet the expert does not honestly report the loss of their problems and the equilibrium involves

ineffi ciency from overtreatment for the minor problem. This draws sharp contrast with experience goods

markets wherein full consumption on the equilibrium path facilitates monitoring for quality and induces

honest recommendations as well as effi cient treatment provision.

Another set of comparative statics useful for comparing the monitoring-by-rejection equilibrium and

one-price-fix-all equilibrium follows (proof omitted):

Corollary 2 πo strictly increases in α and remains constant in δ. When α ∈ (α̃, α̂), the cutoff discount

factor δo(α) strictly decreases in α.

Unlike the monitoring-by-rejection equilibrium, the effi ciency of the one-price-fix-all equilibrium does not

increase in the expert’s discount factor, so πo remains constant in δ. In addition, πo increases in α because

it is effi cient to fix the serious problem but ineffi cient to fix the minor problem. It can be verified that the

derivative ∂δo(α)
∂α = − ls−c

(1−α)2ε < 0. This is because when α is higher, the expert can charge a higher price
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for the treatment, so that he has a smaller gain from dumping costly consumers. In addition, because πo

increases in α, the expert has more future profits to lose from rejecting consumers as α increases. So, it is

easier to sustain the one-price-fix-all equilibrium when the likelihood of the serious problem is higher.

In our game, because the expert’s recommendation history is publicly observable, the expert and con-

sumers can base their strategies on the entire recommendation history or some summary statistics such as

frequency of the treatment recommendation. Nevertheless, the next proposition shows that it is without loss

of generality to focus on the monitoring-by-rejection and the one-price-fix-all equilibria because the expert’s

maximum profit from any PPE is bounded above by the maximum profits from these two equilibria.

Proposition 3 For a given pair of (α,δ), with (α,δ) ∈ (0, α̂) ⊗ (0, 1), the expert’s average profit in any

Perfect Public equilibrium is bounded above by max{πm, πo}.

To prove Proposition 3, we adopt the approach pioneered by Abreu, Pearce and Stacchetti (1990) to

characterize the perfect public equilibrium payoff set for the expert and show that the upper bound of

the payoff set is either πm or πo. There are five possible public outcomes in our game: 0) the expert

recommends no treatment and the consumer suffers a minor loss, 1) the expert recommends no treatment

and the consumer suffers a substantial loss, 2) the expert recommends the treatment, the consumer accepts

the treatment and receives utility −p, 3) the expert recommends the treatment, the consumer rejects it and

suffers a minor loss, and 4) the expert recommends the treatment, the consumer rejects it and suffers a

substantial loss. The set of public outcomes is denoted by Y = {0, 1, 2, 3, 4}.

An action profile σ = (p, βm, βs, γ) determines the probability distribution over the public outcomes

f(y|σ), y ∈ Y . The action profile σ ∈ Σ is enforceable on a payoff set W ⊆ R2 if there exists a mapping ν :

Y →W such that for each player i and σ′i ∈ Σi,

ui(σ, ν) = (1− δ)ui(σ) + δ
∑
y∈Y

ν(y)f(y|σ)

≥ (1− δ)ui(σ′i, σ−i) + δ
∑
y∈Y

ν(y)f(y|σ′i, σ−i).

In other words, player i’s action maximizes his/her payoff given other players’actions and the continuation

payoff ν(y). The payoff set W is self generating if for every element w ∈ W , there exists an action profile
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σ ∈ Σ, enforced by ν on W , such that wi = ui(σ, v). The set of perfect public equilibrium payoff is the

maximum self-generating set. (See Chapters 7 and 8 in Mailath and Samulson 2006).

In our model, consumers are all short lived and therefore their continuation payoffs are zero. Therefore,

we maximize the self-generating set Wi, i being the expert, subject to short-lived consumers’ incentive

constraint

γ = arg max
γ′

γ′ (E(l|βm, βs)− p) ,

and we show that the upper bound of Wi is max{πm, πo}. The proof is relegated to Appendix B.

Proposition 3 is important because it allows us to focus on πm and πo to pin down the optimal equilibrium

for any parameter configurations. Recall Proposition 2 that when α ≤ α̃, the one-price-fix-all equilibrium

is not sustainable for any δ < 1 and hence πm is the highest attainable profit in this parameter range. For

α ∈ (α̃, α̂), both the monitoring-by-rejection and the one-price-fix-all equilibria are sustainable when the

discount factor is suffi ciently high. In the following analysis, we characterize the condition under which the

monitoring-by-rejection equilibrium dominates the one-price-fix-all equilibrium. To begin, we first compare

the minimum discount factors necessary to support each type of equilibrium.

Lemma 2 There exists a unique cutoff likelihood α ∈ (α̃, α̂) (See Figure 1) such that 0 ≤ δm(α) ≤ δo(α) ≤ 1

for α ∈ (α̃, α] and 0 ≤ δo(α) < δm(α) ≤ 1 for α ∈ (α, α̂).

By Corollaries 1 and 2, the cutoff discount factors δm(α) and δo(α) are both decreasing in α and are

illustrated in Figure 1. It is best to understand the comparison by considering the two extreme cases: α =

α̃ and α = α̂. First, consider α = α̃. Proposition 2 shows that the one-price-fix-for-all equilibrium is not

sustainable for all δ < 1 at α̃. By contrast, the monitoring-by-rejection equilibrium is sustainable as long

as δ is suffi ciently close to one, i.e., δ > δm(α̃) ∈ (0, 1). By continuity, δm(α) lies below δo(α) when α is

slightly greater than α̃. As α approaches to α̂, it is easier to support the one-price-fix-for-all equilibrium.

Note that in Figure 1, δo(α̂) = 0. This is because when α = α̂, consumers’average loss E(l) equals the

treatment cost for the serious problem. Hence, it is optimal for the expert to repair the serious problem even

when he has no concerns for future business. By contrast, in order to support the monitoring-by-rejection

equilibrium, the expert’s discount factor must be positive. If the expert has no concerns for future business,
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he would strictly prefer recommending the treatment for the minor problem because he has a positive gain

in the current period from lying.

Both the monitoring-by-rejection and the one-price-fix-all equilibria are sustainable for α ∈ (α̃, α̂) and

δ > max{δo(α), δm(α)} (refer to Figure 1). In this case, the most profitable equilibrium depends on the

comparison between πm and πo. For a fixed α, define δ1(α) ≡ ls−c+ε
ls−c+ε+(1−α)(c−ε−lm) which is solved from

πm = πo. Next, we characterize the expert’s optimal profit for all configurations of (α, δ) with (α,δ) ∈

(0, α̂)⊗ (0, 1).

Proposition 4 There exists a unique cutoff α∗ ∈ (0, α̂) such that

i) ∀ α ∈ (0, α∗], the maximum average profit is πm for δ ∈ [δm(α), 1) and zero, otherwise;

ii) ∀ α ∈ (α∗, α], the maximum average profit is πm for δ ∈ [δm(α), δo(α)] ∪ [δ1(α), 1), πo for δ ∈

(δo(α), δ1(α)) and zero, otherwise;

iii) ∀α ∈ ( α, α̂), the maximum average profit is πo for δ ∈ [δo(α), δ1(α)), πm for δ ∈ [δ1(α), 1) and zero,

otherwise.

Figure 1

We illustrated the maximum attainable average profit in Figure 1. The expert’s maximum attainable
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average profit is πm in the red striped area and is πo in the blue shaded area with squares. It is zero for the

remaining area.

When does the monitoring-by-rejection equilibrium dominate the one-price-fix-all equilibrium? Because

the expert extracts the entire surplus from trade in both equilibria, the monitoring-by-rejection equilib-

rium is more profitable when it is more effi cient than one-price-fix-all equilibrium. While the monitoring-

by-rejection equilibrium involves undertreatment for the serious problem, the one-price-fix-all equilibrium

involves overtreatment for the minor problem. The effi ciency comparison depends on the likelihood of the

serious problem as well as the expert’s discount factor.

When consumers’problems are most likely to be minor (the parameter range α ∈ (0, α∗]), overtreatment

for the minor problem is more costly than undertreatment for the serious problem. Consequently, the

monitoring-by-rejection equilibrium dominates the one-price-fix-all equilibrium both in effi ciency and profit.

Now, consider that the likelihood of the serious problem is relatively high (the parameter range α ∈

(α, α̂)). When δ ≥ δ1(α), πm ≥ πo. This is because as δ converges to one, consumers’ acceptance rate

converges to one in the monitoring-by-rejection equilibrium, and hence the expert’s profit converges to

the first best. By contrast, the minor problem is always ineffi ciently repaired with probability one in the

one-price-fix-all equilibrium, yielding πo dominated by πm. As δ keeps decreasing, a larger rejection rate

is necessary to discipline the expert to make honest recommendations, and the monitoring-by-rejection

equilibrium becomes less effi cient. As a result, when δ falls below δ1(α), the one-price-fix-all equilibrium

dominates the monitoring-by-rejection equilibrium in effi ciency and profit.

Finally, when α is in the intermediate range (α∗, α], something unusual happens. For high δ, the

monitoring-by-rejection equilibrium dominates. As δ falls below δ1(α), the one-price-fix-all equilibrium

dominates the monitoring-by-rejection equilibrium in effi ciency. However, as δ continues to fall below δo(α),

the expert is no longer willing to fix the serious problem at a loss, causing the one-price-fix-all equilibrium to

collapse. By contrast, the monitoring-by-rejection equilibrium is still sustainable, although giving the expert

a lower profit. So the monitoring-by-rejection equilibrium dominates again.

Figure 1 provides some testable implications about the monopoly expert’s conduct and market effi ciency.
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For a given market, stronger expert reputation concerns are positively correlated with honesty, price and

consumers’compliance rate. In addition, markets are more likely to involve overtreatment when consumers’

problem are likely to result in a substantial loss (for example healthcare market) and undertreatment when

their problems are likely to result in a minor loss (for example phone/computer repair services).

We close this section by reiterating the importance of studying credence expert services in a dynamic set-

ting. Although credence goods and experience goods are not distinguishable in a static monopoly setting, the

optimal equilibria in the repeated game are very different across these two markets. In the experience goods

markets, a strong reputation concern can jointly support honest recommendation and effi cient treatment.

Market effi ciency tends to jump and then stays flat after δ rises beyond a certain threshold. By contrast, in

credence goods markets, market effi ciency gradually increases in the expert’s reputation concerns but never

achieves the first best for any δ < 1.

5 Extension: Competitive market

In this section we consider a market with n ≥ 2 experts and investigate how competition affects the mon-

itoring technology for honesty and market effi ciency. In the monopoly expert market, consumers monitor

expert honesty by rejecting treatment recommendation which keeps the expert honest at the expense of

burning some surplus from fixing the serious problem. When there are multiple experts in the marketplace,

consumers can monitor expert honesty by soliciting second opinions and using conflicting recommendations

to identify cheating experts. When an expert recommends the treatment for a consumer with the minor

problem, he risks losing all future business if the consumer solicits a second opinion and the second opinion

recommends no treatment. We explore this idea in this section.

We make minimal modifications to the monopoly model and retain its key elements, with the exception

of adding the following new features. First, consumers pay a small search cost k > 0 per visit except for their

first visit. The assumption of a positive search cost captures the reality that search in expert markets often

involves delay which is costly. No search cost for the first visit is inessential13 for our main results and, as

13Search cost for the first visit is sunk when the consumer decides whether to seek second opinion and when
experts decide their recommendation policies. So it has no impact on these decisions. Nevertheless, a positive search
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pointed out by Stahl (1989), is “commonly assumed in the literature”. This simplifying assumption allows

us to make a fair comparison with the monopoly market which does not involve a cost of entry. Second,

we allow entry and exit to maintain a stable pool of experts in the market in each period. When an expert

exits the market, he is replaced by a new expert. Allowing entry and exit is realistic and makes our model

tractable. Third, following the existing literature (Pesendorfer and Wolinsky (2003), Wolinsky (1993)), we

assume that an expert cannot identify whether a consumer has visited another expert in the past.

Events in period t unfold in the following sequence: Experts first simultaneously post treatment prices

which become public information. A consumer arrives in the market and consults an expert. The expert

learns the consumer’s problem and makes a recommendation. The consumer either follows the expert’s

recommendation or goes on to search for another opinion. At the end of the period, experts’prices, the con-

sumer’s utility and the recommendations made by all the experts she has visited become public information.

If an expert exits the market, he is replaced by a new expert.

Next, we identify a class of equilibria in which consumers actively search for second opinions and use

second opinions to monitor expert honesty for low search costs. We therefore call these equilibria in the

following proposition “search equilibria”.

Proposition 5 When k is suffi ciently low, there exists a continuum of stationary search equilibria indexed

by p. In each period, experts post the same price p ∈ (c, c + k]. They recommend the treatment for the

serious problem with probability one and for the minor problem with probability β∗m(p; k) ∈ (0, 1). A con-

sumer randomly visits an expert when arriving at the marketplace. If recommended the treatment on her

first visit, the consumer accepts it with probability γ∗(p; k, δ, n) ∈ (0, 1) and searches for a second opinion

with the complementary probability. If recommended the treatment again on her second visit, the consumer

accepts the recommendation with probability one. Whenever the consumer is recommended no treatment,

she exits the market. When the consumer receives conflicting recommendations, the expert who recom-

mends the treatment loses all future business and exits the market. This equilibrium is sustainable for

cost for the first visit will reduce the consumer’s maximimum willingness to pay for the first expert’s treatment, so
consumers’participation constraint (4) should be modified. Nevertheless, since the participation constraint is not
binding in equilibrium, the introduction of search cost for the first visit does not change the equilibrium characterized
in Proposition 5.
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δ ≥ δ(p; k, n) ≡ n(p−c+ε)β∗m(p;k)
n(p−c+ε)β∗m(p;k)+α(1−β∗m(p;k))(p−c)

.

To understand a search equilibrium indexed by p, we first analyze a consumer’s incentives to search for

second opinions. When all of the experts lie with positive probabilities, the consumer may receive different

recommendations from different experts and hence has incentives to search for second opinions. If the

consumer accepts the treatment on her first visit, her problem will be fixed and she receives a payoff −p.

Alternatively, the consumer can go on to search for a second opinion. If the second opinion recommends no

treatment, the consumer infers that she must have the minor problem and hence will choose not to repair

it. So, the consumer has a net benefit of p − lm from search when the second opinion contradicts the first

opinion. For the consumer to randomize between accepting treatment and searching for a second opinion, it

requires that the consumer’s expected net benefit from search equals her search cost k, which gives

Pr(∅|p)(p− lm) = k, (3)

where Pr(∅|p) is the probability that the second opinion recommends no treatment conditional on the first

opinion recommending the treatment. When (3) holds, the consumer strictly prefers accepting the second

treatment recommendation to searching for third opinion. This is because the likelihood that the third

opinion recommends no treatment conditional on two treatment recommendations is smaller than Pr(∅|p),

and hence the consumer’s expected net benefit from search is strictly less than the search cost.

For the consumer to be willing to accept the treatment on her first visit, her expected loss must be at

least as high as the price. So, the participation constraint is

p ≤ Pr(ls|p)ls + Pr(lm|p)lm, (4)

where Pr(li|p), i = m, s, is the probability that the consumer’s problem is i conditional on a treatment

recommendation. If the second opinion also recommends the treatment, the consumer updates her belief

of having the serious problem upward and expects a greater loss from the problem. So, the participation

constraint (4) implies that the consumer strictly prefers to accept the treatment on her second visit.

Now, we turn to analyze experts’recommendation strategies. An expert is indifferent between whether
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or not to recommend the treatment to the minor problem when the following condition holds:

future loss︷ ︸︸ ︷
δV (1− Pr(e|lm))︸ ︷︷ ︸

consumers
on their first visits

(1− γ)(1− βm)︸ ︷︷ ︸
the consumer receives an
honest 2nd opinion

=

current gain︷ ︸︸ ︷
(p− c+ ε)[Pr(e|lm) + (1− Pr(e|lm))γ]︸ ︷︷ ︸

prob of acceptance
of the treatment

, (5)

where Pr(e|lm) ≡ βm(1− γ)

1 + βm(1− γ)
is the probability that the consumer is on her second visit conditional on

her problem being minor and V is the expert’s continuation profit when he is active in the market. When an

expert recommends the treatment for the minor problem, the treatment is accepted if the consumer is on her

second visit or if she is on her first visit and chooses to accept the treatment, which happens with probability

γ. The expert’s profit margin from fixing the minor problem is p− c+ ε. So, his expected current gain from

recommending the treatment for the minor problem is on the right-hand side of (5). On the other hand, the

expert risks losing all future business if he is caught lying. This happens when the consumer is on her first

visit and decides to solicit a second opinion, and the second opinion happens to be honest. The expert’s

discounted expected future loss from lying is therefore given by the left-hand side of (5). When (5) holds, it

is the expert’s best response to randomize between recommending and not recommending treatment for the

minor problem.

Finally, we construct consumers’off-equilibrium beliefs to prevent a price deviation. We assume con-

sumers believe that an expert will recommend the treatment to both types of problems if he deviates to

a price p′ > c and will recommend the treatment only to the minor problem for p′ ≤ c. Given this off-

equilibrium belief, a consumer will not be attracted to the deviating expert on her first visit. The expert can

potentially offers a low price to attract consumers who search for second opinions, but p ≤ c+k prevents such

a price deviation. To see this, given the off-equilibrium belief, consumers will visit the deviant for a second

opinion only if c < p′ < p. Since the consumer expects the deviant to always recommend the treatment at

p′, she prefers to seek treatment from the deviant rather than accept the first treatment recommendation if

and only if p′ < p− k. However, since p ≤ c+ k, p′ < c, which contradicts c < p′. So, for p ∈ (c, c+ k], there

does not exist a price deviation which can profitably attract consumers given the constructed off-equilibrium

belief.

For a given price p ∈ (c, c + k], there exists a search equilibrium which satisfies conditions (3), (4) and

26



(5) when k is suffi ciently low and δ ≥ δ(p; k, n). To see that the discount factor must be high enough to

sustain the search equilibrium, suppose δ is zero. Then, the expert does not bear any future loss from

lying. Nevertheless, he has a positive current gain from lying because there is a positive probability that the

consumer is on her second visit and will accept the treatment recommendation with probability one. So, the

expert will lie with probability one when he does not have enough concerns for future business.

Contrary to the conventional wisdom that second opinions improve honesty14 , we find the availability

of second opinions may induce more dishonest recommendations. Recall that the monopoly expert makes

honest recommendations when he is suffi ciently patient or consumers are more likely to suffer a minor

loss from their problems. By contrast, the search equilibrium involves small but pervasive cheating among

experts. This is because some lying is necessary to induce consumers to search. In other words, full honesty

is incompatible with search of second opinions: If experts all make honest recommendations, consumers will

not pay the search cost to sample more opinions, rendering monitoring by second opinions ineffective.

Corollary 3 γ∗(p; k, δ, n) increases in δ and decreases in n; δ(p; k, n) increases in n and converges to 1 as

n converges to infinity.

The corollary says that it is harder to sustain the search equilibrium when there are more experts in each

period. When the number of experts increases, each expert has a smaller market share and is more tempted

to cheat because he has less to lose when caught cheating. This increases the discount factor necessary to

sustain the search equilibrium. As the number of experts goes to infinity, the search equilibria collapse.

The corollary also suggests that consumers will reject the first treatment recommendation and seek second

opinions more frequently when experts are less patient or when there are more experts in the market. The

comparative statics ∂γ∗(p;k,δ,n)
∂δ > 0 is reminiscent of the monitoring-by-rejection equilibrium. The intuition

is also similar. As an expert becomes more patient, a smaller probability that the consumer rejects his

recommendation and solicits an honest second opinion is enough to make the expert just indifferent between

whether or not to recommend the treatment for the minor problem. To see ∂γ∗(p;k,δ,n)
∂n < 0, recall that as

14To give an example, Wolinsky (1995) argued that “the basic force that imitages experts’incentive to misrepresent
minor treatment as major ones is customers’search for multiple opinions.”
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the number of experts increases, each expert has less to lose when caught cheating. In order to make the

expert indifferent between whether or not to cheat, his gain from cheating must be reduced proportionally,

which requires consumers to reject the first treatment recommendation and seek second opinions more often.

In a one-shot game, Wolinsky (1993) and Dulleck and Kerschbamer (2006) identify a class of equilibria in

which experts randomize between whether or not to lie and consumers randomize between whether or not to

seek second opinions. Despite the similar equilibrium behavior in their models and in ours, the driving forces

for the equilibria are completely different, yielding important differences in comparative statics. In Wolinsky

(1993) and Dulleck and Kerschbamer (2006), short-lived experts have two treatments and it is effi cient to

use the expensive treatment for the serious problem and the inexpensive treatment for the minor problem.

When deciding whether to recommend the expensive treatment for the minor problem, an expert trades off a

high profit margin against a low acceptance rate because the expensive treatment is sometimes rejected and

the inexpensive treatment is always accepted. By contrast, in our setting, experts have only one treatment

and it is a dominant strategy for them to recommend the treatment for the minor problem in a static setting.

So, the search equilibrium is not sustainable for short-lived experts. A long-lived expert trades off a current

gain from recommending unnecessary services against a future loss of business. Because an expert’s degree

of patience and the number of experts in each period affect the value of the expert’s future business, they

also affect consumers’equilibrium search frequency γ∗(p; k, δ, n) as in Corollary 3. By contrast, in Wolinsky

(1993) and Dulleck and Kerschbamer (2006), consumers’search frequency is independent of experts’patience

and the number of experts in the market.

Next, we investigate how search equilibria change in the search cost k at the limit. Let p ≡ c+ k denote

the upper bound of the price of a search equilibrium.

Proposition 6 For a given (δ, n), when k → 0, p → c, β∗m(p; k) → 0, γ∗(p; k, δ, n) → 0, δ(p; k, n) →

δc(α, n) ≡ nαε

nαε+ α(1− α)(c− lm)
, and the surplus of the search equilibrium converges to the first best

α(ls − c).

When the search cost is reduced, a consumer’s gain from seeking second opinions must also be reduced

proportionally for the indifference condition (3) to hold. So, when the search cost vanishes, the probability
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that the second opinion contradicts the first opinion must also vanish, which requires the cheating probability

β∗m(p; k) to converge to zero. As the search cost diminishes, the cutoff discount factor δ(p; k, n) is affected

by two opposing forces. On the one hand, an expert’s continuation profit V converges to zero as the price

converges to c, so he has less to lose when caught cheating. This increases δ(p; k, n). On the other hand, the

comparative statics γ∗(p; k, δ, n)→ 0 and β∗m(p; k)→ 0 suggests that cheating will be caught almost surely

because the probability that a consumer will solicit an honest second opinion converges to one. This reduces

δ(p; k, n). In the limit, the minimum discount factor necessary to support the search equilibrium converges

to δc(α, n).

Proposition 6 implies that competition improves effi ciency when the search cost is suffi ciently low. While

the optimal monopoly equilibrium converges to the first best only when δ converges to 1, the search equi-

librium converges to the first best as the search cost converges to zero even when the discount factor is

bounded away by 1. In our model, the effi ciency gain from competition is due to the use of a more effi cient

monitoring technology for honesty. In the monopoly market, the serious problem must be left unrepaired

sometimes for consumers to monitor expert honesty and the unrepaired serious problem can result in a big

loss of effi ciency. By contrast, this ineffi ciency from unrepaired serious problem is avoided in the search

equilibrium. A skeptical consumer searches for second opinions instead of bearing the loss of her problem,

so the serious problem is always repaired.

Our analysis on how search equilibria change in the search cost and the number of experts has important

policy implications. Increase in the number of sellers or reduction in search costs are regarded as means to

promote competition and improve effi ciency in economics doctrine. Our analysis shows that in markets for

expert services, reducing search cost can greatly improve recommendation honesty and treatment effi ciency

whereas increase in the number of experts is less effective and could even impede trade because it is harder

to sustain the search equilibria. Therefore, policies aiming to reduce consumers’ costs of seeking second

opinions, such as mandating insurance plans to cover the cost of second opinions, are likely to improve

welfare.

Finally, there are some interesting differences between the role of competition in credence goods and
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experience goods markets in the dynamic setting. First, in standard models of experience goods, competition

typically impacts sellers’incentive through price effect, whereas in our analysis competition affects honesty

and effi ciency in credence goods markets through providing an alternative monitoring technology for honesty.

In fact, search for second opinions is not considered in standard models of experience goods, but it is the key

to more effi cient monitoring in our analysis. Second, for experience goods, seller’s honesty fully captures the

quality and welfare. By contrast, in credence goods, honesty and effi ciency do not always go hand in hand.

We show that less honesty can be associated with more effi ciency.

Next, we compare the minimum discount factor necessary to support the search equilibrium with that

necessary to support trade in the monopoly market. Recall Lemma 2 and Figure 1, when α < α, the

minimum discount factor necessary to support trade in the monopoly market is δm(α) and it is δo(α) when

α < α < α̂.

Lemma 3 For 0 < α < α, δc(α, n) < δm(α) when n <
(1− α)(c− lm)(ls − c+ ε)

α(ls − c)ε
and for α < α < α̂,

δc(α, n) < δo(α) when n <
(1− α)(c− lm)(c− E(l))

(E(l) + (1− α)ε− c) ε .

Lemma 3 suggests that when search costs are very low and the pool of experts is not too large, trade

may be sustainable in the competitive market but fails to happen in the monopoly market. This suggests

that competitive market is more likely to emerge when experts have low reputation concerns.

6 Discussion

In the main model, we focus on the parameter range E(l) < c which implies α < α̂ ≡ c− lm
ls − lm

. In this

section, we discuss how the results change when E(l) ≥ c, i.e. α ≥ α̂.

Lemma 4 When α ≥ α̂, the static game has a unique subgame perfect Nash equilibrium not involving

weakly dominated strategies. In the equilibrium, the expert posts the price p = E(l) and always recommends

the treatment. Consumers accept the treatment recommendation with probability one.

In the static game, each possible price is followed by a proper subgame. In subgames following p ≥ c, it

is the expert’s weakly dominant strategy to always recommend the treatment. Given that the expert will
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always recommend the treatment, it is the consumer’s best response to accept the recommendation as long

as p ≤ E(l). In subgames following p < c, the consumer will reject the expert’s recommendation for the

same argument outlined for Lemma 1. Hence, Lemma 4 is the unique SPNE not involving weakly dominated

strategies. The static equilibrium involves overtreatment for the minor problem.

Lemmas 1 and 4 suggest that trade collapses in the static game if and only if the likelihood of the minor

problem is suffi ciently high. This is consistent with the equilibrium in the textbook lemon market model,

which shows that market collapses when the proportion of “lemon”is high enough. In our model, the minor

problem is the “lemon”whereas the serious problem is the “peach”.

Next, we argue that the main findings of our analysis continue to hold qualitatively when E(l) ≥ c.

Similar as in Section 3, the static equilibrium in Lemma 4 holds both for credence goods and experience

goods because the consumer’s post consumption experience does not play any role in the one-shot game.

When α ≥ α̂, the static equilibrium resembles the one-price-fix-all equilibrium in Proposition 2. So, the

one-price-fix-all equilibrium holds in the repeated game for any δ ∈ [0, 1). How about the monitoring-by-

rejection equilibrium? It continues to exist when the expert is suffi ciently patient, but the minimum discount

factor required to sustain the equilibrium is higher than the case of α < α̂. This is because the static Nash

equilibrium is more profitable than the static equilibrium under the assumption α < α̂ and therefore the

expert has less to lose when caught cheating, which makes it harder to sustain the equilibrium. Nevertheless,

when δ is suffi ciently close to one, the monitoring-by-rejection equilibrium approaches to the first best.

Finally, for the competitive setting, the search equilibrium continues to exist when δ is suffi ciently high and

k is suffi ciently low because the equilibrium strategy does not depend on the assumption of E(l) < c.

7 Concluding remarks

This paper studies trust building in a dynamic setting of credence professional services. In these markets,

due to their lack of expertise, consumers cannot assess the value of the services provided by experts even after

receiving the services, and hence they cannot monitor expert honesty through their consumption experience.

This stands in sharp contrast with experience goods markets in which consumers learn and monitor the
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quality of experience goods by consumption.

In the monopoly credence-goods market, expert honesty is monitored by consumer rejection of treatment

recommendations. The effi ciency of the optimal equilibrium gradually increases in the expert’s discount

factor but never achieves the first best. The optimal equilibrium either involves undertreatment for the

serious problem or overtreatment for the minor problem. This contrasts sharply with experience goods

markets in which the first best is achieved when the seller’s discount factor is greater than a threshold.

When there is competition, consumers can use second opinions to monitor expert honesty. As the search

cost converges to zero, the competitive equilibrium converges to the first best. Nevertheless, the competitive

equilibrium still involves some ineffi ciency as long as the search cost is positive. Although competition may

improve market effi ciency, it comes at a cost of less honesty when the discount factor is high.

Our study suggests that reputation concerns are less effective in improving effi ciency in credence goods

markets than in experience goods markets. Moreover, in credence goods markets wherein experts do not

have very strong reputation concerns, competition can improve market effi ciency via consumer search for

second opinions when search costs are low. So, reduction of search costs and encouragement of consumers’

solicitation of second opinions should be an integral part of any regulatory policies aiming at enhancing

welfare.

Appendix A

Proof for Lemma 1: We confine the analysis to the case p ≥ c− ε because it is weakly dominated for

the expert to recommend a treatment at p < c− ε. Suppose that trade happens with a positive probability,

then p must be at least c. To see this, if p < c, the expert will recommend the treatment only when the

consumer has the minor problem. Since lm < c − ε ≤ p, the consumer’s best response is to reject p with

probability one. Now, consider c ≤ p. If p is accepted with a positive probability, the expert will recommend

p for the minor problem with probability one. This implies E(l|p) ≤ E(l), where E(l|p) is the consumer’s

expected loss from the problem, conditional on being recommended the treatment p. But then it is the

consumer’s best response to reject p with probability one because E(l|p) ≤ E(l) < c ≤ p. A contradiction.

Q.E.D.
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Proof for Proposition 1: Given the expert’s strategy, a consumer’s expected loss from her problem

is ls upon a treatment recommendation. So, the consumer is indifferent between accepting or rejecting the

treatment offer and therefore it is her best response to accept the treatment offer with probability γ∗.

Given price p = ls, the expert does not have a profitable deviation in his recommendation strategy. The

expert will make a positive profit from recommending the treatment for the serious problem but will make

zero profit if she recommends no treatment to the problem. Hence, the expert does not have an incentive to

refuse to treat the serious problem. Consider that the consumer has the minor problem. The condition (2)

holds at γ∗, which makes the expert just indifferent between whether or not to recommend the treatment.

So, it is the expert’s best response to recommend no treatment for the minor problem. Last, for γ∗ ≥ 0, it

is necessary to have δ ≥ δm.

Finally, the expert does not have a profitable price deviation. A price deviation outside the range [c−ε, ls)

is not profitable because the expert will make a loss from repairing a problem at p′ < c−ε and the consumer

will reject a price p′ > ls irrespective of her belief about her problem. Consumers will reject a price deviation

in the range of [c− ε, ls), given the off-equilibrium belief specified for Proposition 1 in the main text. Hence,

any price deviation leads to zero profit because the expert’s recommendation will be rejected in the current

period and the deviation will trigger the reversion to the punishment path from the next period onward.

Q.E.D.

Proof for Proposition 2: consumers’maximum willingness to pay in a one-price-fix-all equilibrium is

E(l). Hence, it is consumers’best response to accept the expert’s treatment offer with probability one. The

game reverts to the static Nash equilibrium perpetually if the expert refuses to treat a consumer or deviates

to a price different from E(l).

First, consider the expert’s incentives to deviate in the case of the serious problem. The expert’s profit

from fixing the serious problem is

E(l)− c+
δπ

1− δ ,

where π = E(l) − c + (1 − α)ε. The expert receives zero profit if he refuses to fix the consumer’s problem

because all players revert to the static Nash equilibrium from the next period onward. So, the no deviation
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condition requires

E(l)− c+
δπ

1− δ ≥ 0 (6)

δ ≥ δo ≡ c− E(l)

(1− α)ε
.

The cutoff δo is positive given the assumption E(l) < c. It can be verified that δo < 1 if and only if α ≥ α̃.

Now consider the expert’s no deviation incentives when the consumer’s problem is minor:

E(l)− c+ ε+
δπ

1− δ ≥ 0, (7)

where the left hand side of (7) is the expert’s payoff from repairing the minor problem. Condition (6) implies

(7) because it is less costly to repair the minor problem than the serious problem. As a result, the expert

does not have a profitable deviation in his recommendation strategy when δ ≥ δo.

Finally, assume that consumers hold the same off-equilibrium belief following a price deviation as in the

proof for Proposition 1. Given this off-equilibrium belief, a price different from E(l) will be rejected in the

current period and result in zero future profit. Thus, the expert does not have a profitable deviation in price.

Q.E.D.

Proof for Lemma 2: Substitute δm(α) and δo(α) defined in Propositions 1 and 2 and take the difference:

δo(α)− δm(α) =
−α2(ls − lm)(ls − c)− α[(c− ε− lm)ε+ (ls − c)2] + (c− ε− lm)(ls − c+ ε)

(1− α)[ε+ (1 + α)(ls − c)]ε
.

Since the denominator is positive, the sign of δo(α)−δm(α) is determined by the numerator which we denote

by f(α). The derivative of f(α) is

f ′(α) = −2α(ls − lm)(ls − c)− [(c− ε− lm)ε+ (ls − c)2] < 0.

So, f(α) is strictly decreasing in the range of (α̃, α̂).

Next, we show f(α̃) > 0. To see this, note that δo(α̃) = 1 and δm(0) = 1. By Corollary 1, δm(α) is

strictly decreasing in α, and hence δm(α̃) < δo(α̃) = 1.

Now, we evaluate f(α) at α = α̂ ≡ c− lm
ls − lm

and obtain f(α̂) =
−(ls − c)(ls − c+ ε)ε

ls − lm
< 0. Given that

f(α) is continuous and decreasing and that f(α̃) > 0 and f(α̂) < 0, there exists a unique α ∈ (α̃, α̂), such

that δo ≥ δm for α ∈ (α̃, α] and δo < δm for α ∈ (α, α̂). Q.E.D.
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Proof for Proposition 4: The proof is divided into 4 steps. Step 1 defines α∗ and characterizes

properties of α∗ and δ1(α), which will be used for the subsequent steps. Steps 2, 3 and 4 prove cases i), ii)

and iii) in the Proposition, respectively. Figure 1 will facilitate the understanding of the proof.

Step 1. Define α∗ as the value which solves δ1(α) = δo(α). We show that there exists a unique α∗ ∈ (α̃, α).

To begin, we first prove that there exists a unique α∗ ∈ (α̃, α̂). Evaluate δ1(α) and δo(α) at α = α̃ and

α = α̂, respectively. We have

δ1(α̃) =
ls − c+ ε

ls − c+ ε+ (1− α̃)(c− ε− lm)
< 1 = δo(α̃) (8)

δ1(α̂) =
ls − c+ ε

ls − c+ ε+ (1− α̂)(c− ε− lm)
> 0 = δo(α̂). (9)

Note that δ1(α) and δo(α) are continuous in the range of (α̃, α̂) and δ1(α) is strictly increasing while δo(α) is

strictly decreasing (Corollary 2). As a result, conditions (8) and (9) implies that there is a unique α∗ ∈ (α̃, α̂)

such that δ1(α) > δo(α) for α > α∗ and δ1(α) ≤ δo(α) for α ≤ α∗.

Next, we show α∗ < α by contradiction. Suppose α∗ ≥ α. Then, it follows that

δm(α) = δo(α) ≥ δo(α∗) = δ1(α
∗) ≥ δ1(α). (10)

The equalities follows from the definitions of α and α∗, respectively. The first inequality holds because δo(α)

strictly decreases in α and the second inequality holds because δ1(α) strictly increases in α. Furthermore, it

can be verified that δm(α̃) = δ1(α̃). Since δm(α) strictly decreases in α while δ1(α) strictly increases in α,

δm(α) < δ1(α) for all α > α̃, which contradicts (10) given α > α̃.

Step 2. Consider α ∈ (0, α∗]. By Step 1, α∗ < α, so δm(α) < δo(α) for α ∈ (0, α∗]. The one-price-fix-

for-all equilibrium is not sustainable if δm(α) ≤ δ < δo(α) by Proposition 2. So, the monitoring-by-rejection

equilibrium yields the expert the highest profit. Next, consider δo(α) ≤ δ < 1. By Step 1, δ1(α) ≤ δo(α) for

α ≤ α∗. Consequently, πo ≤ πm for δ1(α) ≤ δo(α) ≤ δ by the definition of δ1(α).

Step 3. Consider α ∈ (α∗, α]. By Lemma 2, δm(α) < δo(α) for α < α and therefore the maximum average

profit is πm for δm(α) ≤ δ ≤ δo(α). Now, consider δo(α) < δ. By Step 1, δ1(α) > δo(α) for α ∈ (α∗, α]. It

follows that πm ≤ πo for δo(α) ≤ δ < δ1(α) and πm > πo for δ1(α) ≤ δ < 1.

Step 4. Consider α ∈ (α, α̂]. By Lemma 2, δo(α) < δm(α) for α < α. So, the maximum average profit is

35



πo for δo(α) ≤ δ < δm(α). Both πm and πo can be supported for δm(α) ≤ δ < 1. Since δm(α) < δ1(α) for

α ∈ (α, α̂), by Step 1, πm ≥ πo for δ1(α) ≤ δ < 1 and πm < πo for δm(α) ≤ δ < δ1(α). Q.E.D.

Proof for Proposition 5: Define

β∗m(p; k) ≡ (1− α)(p− lm − k)−
√

(1− α)2(p− lm − k)2 − 4kα(1− α)(p− lm)

2(1− α)(p− lm)
(11)

δ(p; k, n) ≡ n(p− c+ ε)β∗m(p; k)

n(p− c+ ε)β∗m(p; k) + α(1− β∗m(p; k))(p− c) , (12)

γ∗(p; k, n) ≡ 1− n(1− δ)(p− c+ ε)

n(1− δ)(p− c+ ε)(1− β∗m(p; k)) + δα(1− β∗m(p; k))(p− c) . (13)

First, we show that consumers’strategy is a best response given experts’strategies. When a consumer

receives a treatment recommendation on her first visit, the probability that the second opinion recommends

no treatment is Pr(∅|p) =
(1− α)βm(1− βm)

α+ (1− α)βm
. Substitute Pr(∅|p) into the search condition (3), it becomes

(1− α)βm(1− βm)(p− lm)

α+ (1− α)βm
= k. (14)

It can be verified that (14) is satisfied at β∗m(p; k) defined in (11). Note that the item in the square root in

β∗m(p; k) is positive and β∗m(p; k) ∈ (0, 1) when k is suffi ciently low.

Next, consider the consumer’s participation constraint (4). Substitute Pr(ls|p) = α
α+(1−α)βm

and Pr(lm|p) =

(1−α)βm
α+(1−α)βm

into (4), we obtain

p ≤ αls + (1− α)βmlm
α+ (1− α)βm

. (15)

When k converges to 0, β∗m(p; k) converges to 0. So, the right hand side of (15) converges to ls. Since

p ≤ c+ k and c < ls, the participation constraint (15) is satisfied when k is suffi ciently small. We conclude

that given p and β∗m(p; k), it is the consumer’s best response to randomize between accepting the treatment

on her first visit and searching for a second opinion.

Next, we show that it is the consumer’s best response to accept the second treatment recommendation

with probability one. The probability that the third opinion recommends no treatment conditional on the

first two opinions recommending the treatment is denoted by Pr(∅|pp) =
(1− α)(βm)2(1− βm)

α+ (1− α)(βm)2
. Because

Pr(∅|pp) < Pr(∅|p), it follows that Pr(∅|pp)(p−lm) < k and hence the consumer strictly prefers accepting the

second treatment recommendation to searching for the third opinion. Finally, the participation constraint
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(15) is satisfied when the consumer receives the second treatment recommendation. Hence, it is the consumer

’s best response to accept the second treatment recommendation with probability one.

Now, we show that experts’strategies are their best response. We show that experts have no profitable

deviation in their recommendation strategies. When the expert diagnoses that a consumer has the minor

problem, the probability that she is on her second visit is

Pr(e|lm) =
(1− α) 1nβm(1− γ)

(1− α)[ 1n + 1
nβm(1− γ)]

=
βm(1− γ)

1 + βm(1− γ)
. (16)

Denote by Π ≡ α(p − c) + (1 − α)(p − c + ε)(γβm + (1 − γ)(βm)2) the industry profit in a period. The

expected industry profit from treating the serious problem is α(p−c) because the serious problem is repaired

with probability one. The minor problem is fixed with probability γβm + (1 − γ)(βm)2, where γβm is the

probability that the minor problem is fixed on the consumer’s first visit and (1− γ)(βm)2 is the probability

that it is fixed on her second visit. Let V denote the present value of the expert’s profit when he is active

in the market. It follows that

V =
Π

n
+ δ[1− 1

n
(1− α)βm(1− βm)(1− γ)]V . (17)

If the expert is active in a period, he receives 1
n of the industry profit in that period. The expert will lose all

future consumers if he is caught lying in the current period, which occurs with probability 1
n (1− α)βm(1−

βm)(1 − γ). So, the expert will survive to the next period with the complementary probability and his

expected continuation payoff is the second item in (17). Solving (17), we obtain

V =
Π

n− δ[n− (1− α)βm(1− βm)(1− γ)]
=
α(p− c) + (1− α)(p− c+ ε)(γβm + (1− γ)(βm)2)

n− δ[n− (1− α)βm(1− βm)(1− γ)]
.

Substituting V and (16) into (5), it follows that

δ(1− γ)(1− βm)
α(p− c) + (1− α)(p− c+ ε)(γβm + (1− γ)(βm)2)

n− δ[n− (1− α)βm(1− βm)(1− γ)]
(18)

= (p− c+ ε) [βm(1− γ) + γ] .

The condition (18) pins down a unique solution γ = 1 − n(1−δ)(p−c+ε)
n(1−δ)(p−c+ε)(1−βm)+δα(1−βm)(p−c)

. So, given that

all other experts choose the strategy (p, β∗m(p; k)) and that the consumer chooses γ = γ∗(p; k, n), β∗m(p; k)

is the expert’s best response. Note that for γ∗(p; k, n) > 0, it is necessary to have δ > δ(p; k, n). Q.E.D.
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Proof for Proposition 6: Consider the search equilibrium indexed by the price p∗ = c + k. The

corresponding lying probabilities, consumer acceptance rate and the minimum discount factor necessary to

sustain the equilibrium are, respectively,

β∗m(c+ k; k) ≡ (1− α)(c− lm)−
√

(1− α)2(c− lm)2 − 4kα(1− α)(c+ k − lm)

2(1− α)(c+ k − lm)

γ∗(c+ k; k, n) ≡ 1− n(1− δ)(k + ε)

n(1− δ)(k + ε)(1− β∗m(c+ k; k)) + δα(1− β∗m(c+ k; k))k
.

δ(c+ k; k, n) ≡ n(k + ε)β∗m(c+ k; k)

n(k + ε)β∗m(c+ k; k) + α(1− β∗m(c+ k; k))k
.

As k → 0, β∗m(c + k; k) → 0 and γ∗(c + k; k, n) → 0. Since both the numerator and the denominator of

δ(c+ k; k, n) converges to 0 as k → 0, we apply L’Hospital’s Rule

lim
k→0

δ(c+ k; k, n) = lim
k→0

nβ∗m(c+ k; k) + n(k + ε)∂β∗m(c+ k; k)/∂k

nβ∗m(c+ k; k) + n(k + ε)∂β∗m(c+ k; k)/∂k + α(1− β∗m(c+ k; k))− αk∂β∗m(c+ k; k)/∂k
(19)

=
nε lim

k→0
∂β∗m(c+ k; k)/∂k

nε lim
k→0

∂β∗m(c+ k; k)/∂k + α
, (20)

where the first equality follows from L’Hospital’s Rule and the second equality follows from β∗m(c+k; k)→ 0

as k → 0.

Next, we derive lim
k→0

∂β∗m(c+ k; k)/∂k. Let N(k) denote the numerator of β∗m(c+ k; k) and D(k) denote

the denominator of β∗m(c+ k; k). So,

∂β∗m(c+ k; k)/∂k =
N ′(k)D(k)−N(k)D′(k)

(D(k))2
. (21)

The derivatives N ′(k) and D′(k) are

N ′(k) =
2α(1− α)(c+ 2k − lm)√

(1− α)2(c− lm)2 − 4kα(1− α)(c+ k − lm)

D′(k) = 2(1− α).

Substitute N ′(k) and D′(k) into (21) and take the limit,

lim
k→0

∂β∗m(c+ k; k)/∂k = lim
k→0

N ′(k)D(k)−N(k)D′(k)

(D(k))2
=

α

(1− α)(c− lm)
, (22)

which follows because lim
k→0

D(k) = 2(1−α)(c− lm), lim
k→0

D′(k) = 2(1−α), lim
k→0

N(k) = 0, and lim
k→0

N ′(k) = 2α.

Substitute (22) into (20), it follows that lim
k→0

δ(c+ k; k, n) = nαε
nαε+α(1−α)(c−lm) . Q.E.D.
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Proof for Corollary 3: Using (13) in the proof for Proposition 5, we derive the following comparative

statics

∂γ∗(p; k, δ, n)

∂n
= − αδ(1− δ)(1− β∗m(p; k))(p− c)(p− c+ ε)

[n(1− δ)(p− c+ ε)(1− β∗m(p; k)) + δα(1− β∗m(p; k))(p− c)]2
< 0

∂γ∗(p; k, δ, n)

∂δ
=

αn(1− β∗m(p; k))(p− c)(p− c+ ε)

[n(1− δ)(p− c+ ε)(1− β∗m(p; k)) + δα(1− β∗m(p; k))(p− c)]2
> 0.

It can be verified that

∂δ(p; k, n)

∂n
=

αβ∗m(p; k)(1− β∗m(p; k))(p− c)(p− c+ ε)

[n(p− c+ ε)β∗m(p; k) + α(1− β∗m(p; k))(p− c)]2
> 0.

Q.E.D.

Proof for Lemma 3: For α < α̂, δc(α, n) < δm(α) if and only if n <
(1− α)(c− lm)(ls − c+ ε)

α(ls − c)ε
. For

α ∈ (α̃, α̂), δc(α, n) < δo(α) if and only if n <
(1− α)(c− lm)(c− E(l))

(E(l) + (1− α)ε− c) ε which is positive given α > α̃.

Q.E.D.

Appendix B

We use the method proposed by APS (1990) and elaborated in Mailath and Samuleson (2006) to char-

acterize the maximum self-generation set. Since we allow public randomization at the end of each period

of the game, the set of the expert’s payoff in any Perfect Public equilibria is an interval [0, v], where 0 is

the expert’s payoff in the static game and v is the highest possible obtainable profit in a Perfect Public

equilibrium. We characterize the largest self-generating set in the following two lemmas. Lemma 5 considers

the price range p ≥ c and Lemma 6 considers the price range p < c. We first denote the five public outcomes

y ∈ Y ≡ {0, 1, 2, 3, 4} described in the paragraph following Proposition 3 for future use:

y =


0 if R = ∅, l = lm
1 if R = ∅, l = ls
2 if R = p, a = 1
3 if R = p, a = 0, l = lm
4 if R = p, at = 0, l = ls

.

Lemma 5 When p ≥ c, v = πm for δ ≥ δm(α) and v = 0 For δ < δm(α).

Since clients are myopic, we focus on the expert’s value set. Note that when βs ≤ βm, upon a treatment

recommendation at p ≥ c, the client’s expected loss is at most E (l) < c ≤ p. So a short-lived consumer’s best
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response is γ = 0. Let Ω1≡{p, {β|0 ≤ βs ≤ βm ≤ 1}, γ = 0} and Ω2≡{p, {β|0 ≤ βm < βs ≤ 1}, γ ∈ [0, 1]}.

The action profiles involving short-lived clients’best response are thus Ω1 ∪ Ω2. The expert’s continuation

payoff is a mapping v : Y → [0, v]. Let V i, i = 1, 2, denote the set of payoffs decomposed by Ωi on [0, v].

The proof is divided into three steps. Step 1 characterizes V 1. Step 2 characterizes V 2. Step 3 charac-

terizes the maximum self-generating set.

Step 1 Given γ = 0, the expert’s expected payoff is

v = αδ[βsv(4) + (1− βs)v(1)] + (1− α)δ[βmv(3) + (1− βm)v(0)].

Since this strategy profile constitute an equilibrium in the stage game, it is trivially enforceable using a

constant continuation v(4) = v(1) = (3) = v(0) = v̂ ∈ [0, v]. Thus, V 1 = [0, δv], where the upper bound is

achieved by v̂ = v and the lower bound is achieved by v̂ = 0.

Step 2 Given the action profile, the expert’s expected payoff is

v ≡ α {βs [γ [(1− δ)(p− c) + δv(2)] + (1− γ)δv(4)] + (1− βs)δv(1)}+ (23)

(1− α) {βm [γ ((1− δ)(p− c+ ε) + δv(2)) + (1− γ)δv(3)] + (1− βm)δv(0)} .

For the expert’s recommendation strategy to be optimal, it is necessary that

δv(0) ≥ γ [(1− δ)(p− c+ ε) + δv(2)] + (1− γ)δv(3), (24)

and

γ [(1− δ)(p− c) + δv(2)] + (1− γ)δv(4) ≥ δv(1). (25)

Condition (24) ensures that the expert weakly prefers no treatment for the minor problem and condition

(25) says that the expert weakly prefers treatment for the serious problem.

i) We first characterize the upper bound of V 2. Using (24) and (25), it is without loss of generality to

reduce (23) to

v = α {γ [(1− δ)(p− c) + δv(2)] + (1− γ)δv(4)}+ (1− α)δv(0). (26)
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The maximum value of V 2 is achieved by solving:

Max
p,β,γ,v(.)

(26)

Subject to (24), (25),

c ≤ p (27)

0 ≤ βm < βs ≤ 1 (28)

γ =

 1 for p < E(l|β)
[0, 1] p = E(l|β)

0 p > E(l|β)
. (29)

Condition (29) ensures that γ is the client’s best response.

We first show that it is optimal to choose v(1) = v(3) = 0 and v(0) = v(4) = v. The former holds

because (26) does not involve v(1) or v(3) and constraints (24) and (25) are relaxed at v(1) = v(3) = 0.

Next, we show v(0) = v(4) = v. Note that given p ≥ c, after substituting v(1) = 0, constraint (25) is satisfied

for all v(2), v(4) ∈ [0, v] and can be ignored. An increase in v(0) and v(4) weakly relaxes constraint (24) but

increases (26). So, it is optimal to choose v(0) = v(4) = v.

Next, we show Max V 2 = δv

[
1 +

α(1− δ)(ls − c)
δv + (1− δ)(ls − c+ ε)

]
. Substitute v(0) = v(4) = v and v(1) =

v(3) = 0 into (26) as well as (24) and ignore constraint (25), the expert’s expected payoff maximization

problem boils down to

Max
p,γ,β,v(2)

αγ [(1− δ)(p− c) + δ(v(2)− v)] + δv (30)

subject to (27), (28), (29) and

δv ≥ γ [(1− δ)(p− c+ ε) + δv(2)] . (31)

Following (31), v(2) ≤ v

γ
− (1− δ)(p− c+ ε)

δ
. So, v(2) ≤min{ v

γ
− (1− δ)(p− c+ ε)

δ
, v}. Let γ̂ =

δv

δv + (1− δ)(p− c+ ε)
. It can be verified that

min{ v
γ
− (1− δ)(p− c+ ε)

δ
, v} =

 v for γ ≤ γ̂
v

γ
− (1− δ)(p− c+ ε)

δ
for γ > γ̂

. (32)

Next, we show the optimal price is p = E(l|β). Consider p = E(l|β). Since (30) is increasing in γ and

v (2), for γ ≤ γ̂ , (30) is maximized by v (2) = v and γ = γ̂, and is

δv

[
1 +

α(1− δ)(E(l|β)− c)
δv + (1− δ)(E(l|β)− c+ ε)

]
. (33)
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For γ > γ̂, by (32), it is optimal to set v(2) =
v

γ
− (1− δ)(p− c+ ε)

δ
. Substitute v(2) into (30), the expert’s

expected payoff is reduced to

−γ [α(1− δ)ε+ αδv] + δv(1 + α), (34)

which is decreasing in γ. Hence, the maximum value of v is achieved by γ = γ̂, which yields the expert (33).

Next, consider p > E(l|β). The client’s best response is γ = 0 which yields the expert δv <(33).

Lastly, consider p < E(l|β), the client’s best response is γ = 1. By (32), it is optimal to set v(2) =

v − (1− δ)(p− c+ ε)

δ
. Substitute the optimal values of γ and v(2) into (30), the expert’s payoff is δv −

α(1− δ)ε <(33).

Lastly, we show it is optimal to set βm = 0 and βs = 1. Note that (33) is strictly increasing in E(l|β)

which increases in βs and decreases in βm. Thus, it is optimal to have βs = 1 and βm = 0 which yields

E(l|β) = ls. As a result,

Max V 2 = δv

(
1 +

α(1− δ)(ls − c)
δv + (1− δ)(ls − c+ ε)

)
.

ii) We characterize the lower bound of V 2 and show Min V 2 = 0. Consider v(1) = v(2) = v(3) = v(4) = 0,

p > E(l|β) and γ = 0. The expert’s payoff is 0 at these values, constraints (24) and (25) are both satisfied,

and γ = 0 is the client’s best response. In summary, V 2 =

[
0, δv

(
1 +

α(1− δ)(ls − c)
δv + (1− δ)(ls − c+ ε)

)]
.

Step 3 For [0, v] to be a self-generating set, it requires that

[0, v] ⊂ ∪i=1,2V i =

[
0, δv

(
1 +

α(1− δ)(ls − c)
δv + (1− δ)(ls − c+ ε)

)]
.

The upper bound v is solved from

v = δv

(
1 +

α(1− δ)(ls − c)
δv + (1− δ)(ls − c+ ε)

)
⇒

v = πm = α(ls − c)−
1− δ
δ

(ls − c+ ε).

The set [0, πm] is non empty if and only if δ ≥ δm(α). Hence, for p ≥ c, the maximum equilibrium payoff

accrued to the expert is πm for δ ≥ δm(α) and is 0 otherwise. Q.E.D.

Lemma 6 When p ∈ [c− ε, c), v = πo for α ≥ α̃ and δ ≥ δo(α); v = 0, otherwise.
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We divide action profiles into three categories: i) Ω3 ≡ {p, {β|0 < min{βm, βs} ≤ 1}, γ}, ii) Ω4 ≡

{p, {β|0 = βm ≤ βs ≤ 1}, γ} and iii) Ω5 ≡ {p, {β|0 = βs ≤ βm ≤ 1}, γ}. Let V i, i = 3, 4, 5, denote the set

of payoffs decomposed by action profile Ωi on [0, v]. The proof is divided into 4 steps. The first three steps

characterize the sets of payoffs decomposed by action profiles Ωi, i = 3, 4, 5, respectively. Step 4 characterizes

the maximum self-generating set.

Step 1. Consider action profile Ω3. For the expert’s recommendation strategy to be optimal, it is

necessary that

δv(0) ≤ γ [(1− δ)(p− c+ ε) + δv(2)] + (1− γ)δv(3), and (35)

δv(1) ≤ γ [(1− δ)(p− c) + δv(2)] + (1− γ)δv(4). (36)

Constraints (35) and (36) ensure that the expert prefers treatment for both types of problem. Using (35)

and (36), the expert’s expected payoff can be written as

v = α {γ [(1− δ)(p− c) + δv(2)] + (1− γ)δv(4)}

+(1− α) {γ [(1− δ)(p− c+ ε) + δv(2)] + (1− γ)δv(3)} . (37)

i) We characterize max V 3 by solving the following problem:

max
p,β,γ,v(.),

(37)

subject to (35), (36)

p ∈ [c− ε, c) (38)

0 < min{βm, βs} ≤ 1 (39)

γ =

 [0, 1] p = E(l|β)
0 p > E(l|β)
1 p < E(l|β)

(40)

We first show that it is optimal to set v(0) = v(1) = 0 and v(2) = v(3) = v(4) = v. Since v(0) and v(1)

are not in (37) and reducing their values relaxes incentive constraints (35) and (36), it is optimal to choose

43



v(0) = v(1) = 0. Furthermore, because (37) increases in v(2), v(3) and v(4) and the incentive constraints are

relaxed when these values are increased, it is optimal to set v(2) = v(3) = v(4) = v. Substitute the optimal

value of v(.) into (37) and constraints (35) and (36), the expert’s payoffmaximization problem is reduced to

Max
p,β,γ

γ(1− δ) {p− c+ (1− α)ε}+ δv, (41)

Subject to (38), (39), (40), and

0 ≤ γ(1− δ)(p− c+ ε) + δv, (42)

0 ≤ γ(1− δ)(p− c) + δv. (43)

, where (42) follows from (35) and (43) follows from (36).

Next, we show

max V 3 =

 max
{
δv(1− α)ε

(c− E(l))
, δv

}
if v < (1−δ)(c−E(l))

δ

max {(1− δ) {E(l)− c+ (1− α)ε}+ δv, δv} if v ≥ (1−δ)(c−E(l))
δ

. (44)

First note that the solution for the constrained maximization problem requires γ > 0 Suppose γ = 0,

then (41)= δv. But an increase in γ increases (41) without violating the constraints. This constitutes a

contradiction. For γ > 0 to be the consumer’s best response, it is necessary that p ≤ E(l|β). Since (41)

increases in p and constraints (42) and (43) are relaxed when p increases, it is optimal to have p = E(l|β).

Furthermore, constraint (43) implies (42) holds with strict inequality. Thus, βm = 1. Given βm = 1, E(l|β)

increases in βs and reaches the maximum value E(l) at βs = 1. Substitute p = E(l|β = 1) into (43), it

follows that γ ≤ δv

(1− δ)(c− E(l))
. So, γ ≤ γ ≡ min{1, δv

(1− δ)(c− E(l))
}. It can be verified that

γ =


δv

(1− δ)(c− E(l))
if v < (1−δ)(c−E(l))

δ

1 if v ≥ (1−δ)(c−E(l))
δ

. (45)

Because (41) increases in γ, the expert’s payoff is maximized at γ and is
δv(1− α)ε

(c− E(l))
if v < (1−δ)(c−E(l))

δ

(1− δ) {E(l)− c+ (1− α)ε}+ δv if v ≥ (1−δ)(c−E(l))
δ

.

Next, we derive the lower bound of V 3. It can be verified that min V 3 = 0, which is obtained by

v(0) = v(1) = v(2) = v(3) = v(4) = 0, γ = 0 and p > E(l|β). In summary,
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V 3 =


[
0,max

{
δv(1− α)ε

(c− E(l))
, δv

}]
if v < (1−δ)(c−E(l))

δ

[0,max {(1− δ) {E(l)− c+ (1− α)ε}+ δv, δv}] if v ≥ (1−δ)(c−E(l))
δ

. (46)

Step 2 Consider action profile Ω4. Given p < c and βm = 0, the consumer’s best response is γ = 1.

Substitute γ = 1 and βm = 0 into (23), the expert’s payoff is reduced to

α {βs [(1− δ)(p− c) + δv(2)] + (1− βs)δv(1)}+ (1− α)δv(0). (47)

We first show Max V 4 = δv. The maximum value of V 4 is obtained by the following maximization program:

max
v(0),v(2), p, βs, γ

(47) (48)

subject to (38), (40)

0 ≤ βs ≤ 1 (49)

δv(0) ≥ [(1− δ)(p− c+ ε) + δv(2)] , (50)

where (50) ensures βm = 0.

We show it is optimal to have v(0) = v(1) = v. To see this, an increase in v(0) or v(1) weakly relaxes

(50) and strictly increases the expert’s expected payoff, so v(0) = v(1) = v. Constraint (50) implies v(2) ≤

v − (1− δ)(p− c+ ε)

δ
. Since (48) increases in v(2), it is optimal to set v(2) = v − (1− δ)(p− c+ ε)

δ
.

Substitute the optimal values of v(0), v(1), v(2) into (48), the expert’s expected payoff boils down to

v = α {δv − βs(1− δ)ε}+ (1− α)δv.

which is maximized at βs = 0 and hence Max V 4 = δv.

Next, we show min V 4 = 0. The minimum value of V 4 is solved by minimizing (47) subject to (38), (40),

(49) and (50). It can be verified that when βs = 0, v(1) = v(2) = 0, p = c−ε and v(0) =
(1− δ)(p− c+ ε)

δ
=

0, the expert’s payoff is 0. In summary V 4 = [0, δv].

Step 3 Consider action profile Ω5. Given 0 = βs ≤ βm and lm < c− ε ≤ p, the client’s best response is

γ = 0. For the expert’s recommendation strategy to be optimal, it is necessary that

γ [(1− δ)(p− c) + δv(2)] + (1− γ)δv(4) ≤ δv(1). (51)
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Substitute βs = 0, γ = 0 into (23), it is reduced to

αδv(1) + (1− α)δ {βmv(3) + (1− βm)v(0)} . (52)

We choose βm, p and v(.) to maximize (52) subject to βm ∈ [0, 1], (38), (40), and

v(4) ≤ v(1), (53)

where (53) follows from (51) after substituting βs = 0 and γ = 0. It is optimal to set v(1) = v(3) = v(0) = v

which yields max V 5 = δv. It can be verified that min V 5 = 0 which is obtained by v(0) = v(1) = v(2) =

v(3) = v(4) = 0, p > E(l|p) and γ = 0. Hence, V 5 = [0, δv]

Step 4 We characterize the maximum self-generating set. The set [0, v] is self-generating if and only if

[0, v] ⊂ ∪i=3,4,5V i.

Suppose v ≥ (1−δ)(c−E(l))
δ . The union

∪i=3,4,5V i = [0, max{(1− δ)(E(l)− c+ (1− α)ε) + δv, δv}] .

Let α̃ =
c− ε− lm
ls − ε− lm

. Then,

∪i=3,4,5V i =

{
[0, (1− δ)(E(l)− c+ (1− α)ε) + δv] for α > α̃

[0, δv] for α ≤ α̃ .

So, when α > α̃, v is solved from

v = (1− δ) {E(l)− c+ (1− α)ε}+ δv ⇔

v = E(l)− c+ (1− α)ε.

The maximum value is sustainable if and only if

E(l)− c+ (1− α)ε ≥ (1− δ)(c− E(l))

δ

δ ≥ δo(α).

When α ≤ α̃, v is solved from v = δv, and the only solution is v = 0.

Now, consider v <
(1− δ)(c− E(l))

δ
, ∪i=3,4,5V i =

[
0,max

{
δv(1− α)ε

(c− E(l))
, δv

}]
. The solution for the

maximum value is solved from

v = v max
{
δ(1− α)ε

(c− E(l))
, δ

}
. (54)
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When α > α̃ and δ = δo, max
{
δ(1− α)ε

(c− E(l))
, δ

}
= 1 holds, which implies (54) is satisfied for all v. Thus, in

this case, v is bounded above by
(1− δo(α))(c− E(l))

δo(α)
= E(l) − c + (1 − α)ε. When α ≤ α̃ or δ 6= δo(α),

max
{
δ(1− α)ε

(c− E(l))
, δ

}
< 1. The only solution for (54) is v = 0.

So, taking into account of the case v ≥ (1−δ)(c−E(l))
δ and the case v <

(1− δ)(c− E(l))

δ
, we conclude

that v = πo for α > α̃ and δ ≥ δo(α) and 0 otherwise. Q.E.D.
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