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Abstract

We consider a contractual relationship between an uninformed principal and
an informed agent. The agent observes a multi-dimensional piece of private in-
formation which affects the mapping from actions to both players’ payoffs.
Conditional on the information, the two parties’ preferences are not perfectly
aligned. The agent sends a message to the principal, who then chooses multi-
ple actions. We ask what outcomes the principal can achieve if she has limited
commitment. In particular, we allow precisely one dimension in which the prin-
cipal is able to commit to an action as a function of the agent’s message. In all
other dimensions, the principal must take an action that is optimal given what
she has learned. We show that there is always a mechanism that induces full
revelation of the information about the non-commitment actions. Furthermore,
as the principal and the agent’s preferences become more and more divergent in
the dimension of commitment, the principal’s payoff approaches that in which
she has full information pertaining to all the dimensions in which she lacks
commitment power. Our results imply that incompleteness of contracts may
be irrelevant for payoffs and information revelation as long as there is some
contractable outcome in which there is large conflict.
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1 Introduction

Oftentimes in contractual relationships, multiple decisions must be made which rely
on information held by different parties. In this paper we focus on the case in which
an agent has private information that is relevant to each decision, but has preferences
that are misaligned with what his principal would prefer. For instance, a manager
and worker must decide on the worker’s time allocation and decisions on multiple
tasks, but the worker has certain tasks that he enjoys. A medical doctor, employed
by an HMO, has to choose tests and procedures for multiple patients, but is inclined
to order more procedures than the HMO would prefer.

One would expect that contracting on a bundle of decisions based on all recom-
mendations would be desirable to elicit the most information. Nonetheless, most
contracts are written on a small subset of the payoff-relevant features of the inter-
action. For example, labor contracts generally specify salary or wages but not the
precise assignments the workers will receive. In many settings contracting on some
decisions is infeasible. The HMO cannot condition the treatment a doctor prescribes
to a patient on the treatment prescribed to another patient. A judge must take
the most fair-minded action given the information that has been brought forward
by the prosecutor in each case. Pay or work assignments, however, can generally be
contracted upon as a function of this kind of recommendations.

Formally, we consider a contractual relationship between an agent an a principal
who lacks commitment power. The agent knows n pieces of information each of
which is informative about one action. The principal does not know the information
that the agent holds. Conditional on the information the agent and the principal’s
preferences are misaligned. The agent sends a message to the principal who then
chooses the n actions.

The principal’s commitment power is limited. There is only one aspect of the
complex decision to which the principal is able to commit as a function of what she
learns. In all other dimensions of the decision, the non-commitment dimensions, the
principal takes the action that is best given her information.

Our main result is that as long as the principal’s preference is monotone in the
agent’s and separable across dimensions,1 there is an allocation in which the agent

1We assume that the utility is a quadratic, additively separable in each dimension. Additionally,
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reveals all information relevant to the dimensions of non-commitment and, hence,
the principal attains the first best on those dimensions. As the divergence between
the agent and the principal increases in the dimension of commitment, under this
allocation the payoff of the principal converges to what she would obtain if she could
observe the information in those dimensions. In the optimal allocation the princi-
pal trades off implementing her preferred action in the dimension of commitment
and eliciting information in the other dimensions. Our result implies that as the
divergence in preferences grows large, this trade off comes at a negligible cost.

The principal is better off if she can increase her commitment power. Thus, our
results are also applicable to problems of full commitment (delegation) or partial
commitment on any (non-empty) subset of actions.

To gain intuition for our result, notice that the principal sets the action in the
dimension of commitment close to her preference. When the action chosen by the
principal is far from the action that is preferred by the agent, small movements in
the commitment action can generate large gains and losses to the agent. Think, for
example, in the case in which there are only two dimensions of actions and infor-
mation. In the limit, as the preferences in the dimension of commitment diverge,
the indifference curves of the agent are flat in the dimension of non commitment.
The agent, then, only cares about the action in the dimension of commitment and is
willing to disclose her information on every other aspect of the decision in a exchange
for small concessions in that dimension.

Our results are in contrast with the common finding in the literature of cheap talk
and delegation that the principal or the receiver is better off communicating with a
player whose preferences are closer to hers.2 In a multidimensional environment in
which a principal is able to contract in at least one action, our results show that
greater disagreement has a flip side. It confers leverage to the principal and allows
her to induce disclosure of other payoff relevant states.

We prove our result in two steps. We first show that many constraints are re-
dundant. It is sufficient, for instance, for an allocation to satisfy all the adjacent

we assume that the agent’s preferred action in each dimension only affects the principal’s preferred
action in that dimension.

2See for example Holmström (1977, 1984), Crawford and Sobel (1982), Levy and Razin (2007),
Alonso and Matouschek (2008), Koessler and Martimort (2012).

3



constraints to obtain general incentive compatibility.
In the second step, we construct an allocation that satisfies incentive compatibil-

ity in the simpler case in which the principal and the agent have the same preferences
in the dimensions of non-commitment. We construct this allocation by solving for a
subset of incentive compatibility constraints in which there are no "cycles".3 As the
preferences in the dimension of commitment diverge, the principal and the agent’s
preferences become closer in the dimensions of non-commitment in relative terms.
They become close enough that, by an Implicit Function Theorem, solving the prob-
lem at the agent’s preferences implies it has a solution at the principal’s preferences.
Here is where the no “cycles” condition comes to play. It is crucial to guarantee that
the Jacobian of the problem is non-singular.

The organization of the paper is as follows. Section 2 introduces the model.
Section 3 presents our main results and provides the proof of the main theorem.
Section 4 applies our results to a manager-employee relationship and the regulation
of a multi-product monopolist.

Related literature. Our model is inspired by the seminal cheap-talk environ-
ment in Crawford and Sobel (1982). We extend their work by assuming there are at
least two dimensions of information and actions and the receiver is able to commit
to one action as a function of the message. To obtain our result we assume that the
bliss points of the principal are monotone in the agent’s bliss points as in Crawford
and Sobel (1982).

Our paper is related to multi-dimensional cheap-talk models. Levy and Razin
(2007) find bounds on the amount of communication in such settings. They show
that for large divergence in preferences equilibria feature finitely many actions in
equilibrium with large probability. Chakraborty and Harbaugh (2010) show that in
a cheap talk model in which the expert has state independent preferences there are
cheap talk equilibria in which the agent influences the decision of the principal. Under
some assumptions they show that there can be full revelation in the “dimensions
of agreement”. In contrast, we assume that both expert and receiver have state
dependent preferences but the principal has some limited commitment power. Carroll

3Consider the undirected graph in which the nodes are types (states known by the agent) and
the edges are the incentive constraints that are set to equality. A cycle is a sequence of incentive
constraints that form a cycle in this graph.
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and Egorov (2017) study a multi-dimensional communication model in which the
principal can verify one dimension of the agent’s private information and identify
conditions under which perfect revelation of information is possible. In contrast, we
do not assume an ability to verify, but show that commitment on one dimension is
sufficient to ensure truthful revelation.

Our paper is also related to the literature on delegation, which originated from
Holmström (1977, 1984), and includes works by Melumad and Shibano (1991), Alonso
and Matouschek (2008), Kováč and Mylovanov (2009), Martimort and Semenov
(2006), and Goltsman et al. (2009) in the case of unidimensional delegation, and
Koessler and Martimort (2012) and Frankel (2015) in the case of multidimensional
delegation. Under delegation the principal has full commitment in all dimensions.
Since the principal is always better when she is able to commit on more aspects of
the decision, our results imply that as the discordance in one dimensions grows large
the principal can attain the first best in all other dimensions.

Koessler and Martimort (2012) study multi-dimensional delegation where the
agent has the same bias in each direction. In their model, the principal is better
off when contracting with an agent with smaller bias. Frankel (2015) studies optimal
multiple delegation when the principal faces an uncertain prior about the agent’s
preferences. He generalizes the “cap" formulation of the optimal delegation set in
the unidimensional setting to a multidimensional one. Antić and Iaryczower (2016)
analyze a delegation game where the principal not only chooses the set of actions,
but also the scale at which each action can be implemented. They show that the
principal may want to limit the scale of implementation for an agent biased towards
too high an action but provide too much scale for an agent biased towards too low
an action, which creates inefficiency.

In unidimensional setups, Ottaviani (2000) and Krishna and Morgan (2008) allow
the principal to make monetary transfers to the agent, conditional on the messages
sent by the agent. We do not allow for monetary transfers. Ambrus and Egorov
(2017) allow for money burning, defined as contractual terms costly to the agent,
but not beneficial to the principal. They find that money burning may be used by
the principal when there is limited liability on monetary transfers. The intuition for
the value of money burning is related to our intuition for why large disagreement
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can be beneficial to our principal. The chief difference, is that in our setting there
is uncertainty in the dimension of disagreement and the principal does care about
actions in the dimension of commitment. When her preferences differ from that of
the agent she can achieve outcomes close to the first best in the dimension of non-
commitment.

Bester and Strausz (2001) study the general problem of mechanism design under
imperfect commitment and show that a version of the revelation principle holds.
Bester and Strausz (2007) characterize the optimal mechanism and show that it
often involves stochastic communication devices.

In the context of strategic information transmission, stronger incentive for infor-
mation acquisition has often been identified as the reason why a principal may prefer
a biased agent–Dewatripont and Tirole (1999) and Che and Kartik (2009) provide
two such examples.

2 Model

An agent is informed about the realization of a state θ = (θ1, θ2, . . . , θn) ∈ Θ where
Θ = ×ni=1Θi ⊆ Rn is a finite set.

The agent of type θ ∈ Θ sends message m(θ), an element of message space M ,
to the principal and the principal chooses an allocation x = (x1, x2 . . . , xn). The
principal has the ability to commit to the action in dimension 1, x1(m), as a function
of the message m but cannot commit on the choice of actions x2, . . . , xn. This means
that , x2, . . . , xn must be optimal given any information the principal may learn from
the message m.

The principal’s utility from action x = (xi)ni=1 ∈ Rn if the type of the agent is θ
is given by

V (x, θ) =
n∑
i=1
−αi

(
yPi (θ)− xi(m)

)2

where αi > 0 and yPi (θ) ∈ R. yPi (θ) is the bliss point of the principal when the state
is θ.

The principal has a prior p(θ) on each state θ.
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The utility of the agent of type θ from action x = (xi)ni=1 ∈ Rn is given by4

U(x, θ) =
n∑
i=1
−(θi − xi)2 ≡ −d(x, θ)2.

Therefore, whenever yPi (θ) 6= θi the principal and the agent’s preferences are
misaligned in dimension i in state θ.

The timing of the game is as follows. First the principal commits to a function x1 :
M → R. Then the agent learns his type and sends a message to the principal. After
hearing the message the principal chooses the non-committal actions (x2, . . . , xn).
An agent’s strategy is a function σA : Θ→ ∆M . A principal’s strategy is a function
σP : M → Rn−1 that delivers for each message m ∈ M a vector (x2, . . . , xn) of non-
committal actions.5 For a fixed contract, principal and agent play a Perfect Bayesian
Equilibrium of this game.

2.1 The principal’s problem

Bester and Strausz (2001) show that a version of the revelation principle holds in
settings of partial commitment, such as ours. They show it is without loss to assume
thatM = Θ and to assume that the agent declares his type with positive probability.
This probability may be less than one, in which case the agent lies about his type
with positive probability so as to garble his information.

Using this revelation principle we assume that the agent declares a type θ ∈ Θ (not
necessarily truthfully) and the principal chooses an allocation x(θ) = (x1(θ), . . . , xn(θ)).

For a given agent strategy σA of the agent, define SσA(θ) = {θ′ ∈ Θ|σA(θ)(θ′) > 0}
and let pθ|θ

′

σA be the probability of state θ, induced by the strategy σA, when the agent
4The function d is the distance between vectors. For y, x ∈ Rn the distance between x and y is

given by,

d(x, y) =
(

n∑
i=1

(yi − xi)2

)1/2

.

5Due to the strict concavity of her preferences, the principal has a unique best response. Thus,
it is without loss to assume that the principal uses only pure strategies.
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sends message θ′. By Bayes’ rule,

p
θ|θ′
σA = p(θ)σA(θ)(θ′)∑

θ̃∈Θ p(θ̃)σA(θ̃)(θ′)
.

The principal’s problem is to find a contract x1(θ), and strategies σA and σP =
(x2(θ), . . . , xn(θ)) so as to maximize

−
∑

θ∈Θ,θ′∈S
σA

(θ)
p(θ)σA(θ)(θ′)

[
n∑
i=1

αi
(
yPi (θ)− xi(θ′)

)2
]

subject to the IC constraints of the agent

−d
(
yA(θ), x(θ′)

)
≥ −d

(
yA(θ), x(θ̃)

)
, (k,j)

for each θ, θ̃ ∈ Θ and θ′ ∈ SσA(θ), and the equilibrium condition for the principal

(xi(θ))ni=2 ∈ argmax(x̂i(θ))ni=2
−
∑
θ∈Θ

p
θ|θ′
σA

n∑
i=2

αi
(
yPi (θ)− x̂i(θ′)

)2
,

for each θ′ ∈ Θ.

3 Main Results

Definition 1. We say that the agent and the principal’s preferences are weakly aligned
if for every θ, θ′ ∈ Θ and i ∈ {1, . . . , n}

θi > θ′i if and only if yPi (θ) > yPi (θ′).

We say that an allocation x = {x(θ)}θ∈Θ is weakly aligned with the agent’s preferences
in dimension i if

θi > θ′i if and only if xi(θ) > xi(θ′).

Weak alignment of preferences implies that the preferences are separable across
dimensions. In fact, as θi = θ′i if and only if yPi (θ) = yPi (θ′), we can write yPi (θ) =
yPi (θi). That is, yPi (θ) only depends on θi and the bliss points of the agent and the
principal live on a grid.
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Definition 2. We define the bias in dimension 1, b1(Θ) = minθ∈Θ |yP1 (θ)− θ1|.

The bias measures the minimum distance between the principal and the agent’s
preferences in the commitment dimension. When b1 grows we say that their prefer-
ences become more divergent in dimension 1.

Assumption 1. Preferences are weakly aligned and θ1 = θ̄1 for every θ ∈ Θ.

We are now ready to state our main result.

Theorem 1. Fix Θi and yPi for i ∈ {2, . . . , n}. If assumption 1 holds then there is
b > 0 such that for every Θ with b1(Θ) > b, there is an allocation x = (x(θ))θ∈Θ that
satisfies the IC constraints, and such that xi(θ) = yPi (θ) for i ∈ {2, . . . , n}. Moreover,
as b1 →∞, maxθ∈Θ

∣∣∣yP1 (θ)− x1(θ)
∣∣∣→ 0.

Theorem 1 says that for large enough divergence between the principal and the
agent’s preferences there is an allocation that satisfies IC, such that the principal
receives her preferred actions in the dimensions with no commitment, and such the
allocation in the dimension of commitment approaches the principal’s preferred action
in that dimension. The principal trades off implementing her preferred action in
dimension 1, the one in which she can commit, with inducing information disclosure in
all the other dimensions. Theorem 1 says that she can do this at nearly no cost as the
divergence between preferences grows large. In the limit her payoff approaches what
she would obtain if she knew all the information in the dimensions of no commitment.

To gain intuition for our main result consider Figure 1 below. In the picture, there
is no uncertainty in the dimension of commitment. The green lines depict indifference
curves of agent type (θ1, θ

1
2), the red lines the curves of type (θ1, θ

2
2) and the blue lines

the indifference curves of type (θ1, θ
3
2). The red dots represent allocations for the

different types. Because the principal does not have commitment power in dimension
2, when she learns the dimension 2 type is θi2, the allocation that is implemented
must be on the horizontal line that passes through yP2 (θi2). When the principal’s
preference in the dimension of commitment is yP1 (θ1), i.e when it is closest to the
agent’s preference, there is no allocation that satisfies |yP1 (θ)−x1(θ)| ≤ ε/2 for every
θ ∈ Θ in which the agent reveals his type in every state. In fact, if x2(θ1, θ

2
2) = y2(θ2

2)
in any allocation in which

∣∣∣yP1 (θ2
1)− x1 (θ1, θ

2
1)
∣∣∣ ≤ ε/2, where ε is the length of the
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Figure 1: Incentive compatible allocations for various preference divergences.

orange intervals at
(
yP1 (θ1), yP2 (·)

)
, the agent of type (θ1, θ

1
2) has an incentive to

deviate. In the figure, this observation follows from the fact that the green indifference
curve does not intersect the allocations within the orange interval at

(
yP1 (θ1), yP2 (θ1

2)
)
.

Note that the red point on the orange interval at
(
yP1 (θ1), yP2 (θ2

2)
)
is the worst possible

allocation within the bounds that can be awarded to type (θ1, θ
2
2).

When the principal’s preference in dimension 1 is given by y′1
P (θ1), the agent’s

indifference curves are flatter at the allocations that are close to y′1
P (θ1). The princi-

pal, thus, needs to forgo less dimension-1 utility to separate two dimension-2 types.
The figure shows that there is an allocation that is incentive compatible and satisfies
|y′1

P (θ) − x1(θ)| ≤ ε/2 for every θ. At the preference that is the furthest, y′′1
P (θ1),

the principal can implement an allocation satisfying
∣∣∣y′′1P (θ)− x1(θ)

∣∣∣ ≤ ε/4.
In the example illustrated in Figure 1, due to the dimensionality of the problem, we

could find an incentive compatible allocation by finding allocations that satisfied the
adjacent (or local) incentive constraints.6 In more dimensions (3 or more) finding an
incentive compatible allocation is more involved as many more incentive constraints

6See for example Carroll (2012).
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must be satisfied for every additional dimension that is added into the problem.
To prove our result we first show that many constraints are redundant. It is

sufficient, for instance, for an allocation that is aligned with the agent’s preferences
in dimensions 2 through n to satisfy all the adjacent constraints to obtain general
incentive compatibility. Due to the weak alignment of the agent and the principal’s
preferences this is true for any allocation in which the principal receives her preferred
allocation in these dimensions.7

In the second step, we construct an allocation that satisfies incentive compatibil-
ity in the simpler case in which the principal and the agent have the same preferences
in the dimensions of non-commitment. We construct this allocation by solving for a
subset of incentive compatibility constraints in which there are no “cycles”.8 As the
preferences in the dimension of commitment diverge, the principal and the agent’s
preferences become closer in the dimensions of non-commitment, in relative terms.
They become close enough that, by an Implicit Function Theorem, if the the problem
has a solution when the principal and the agent’s preferences coincide in the dimen-
sions of non-commitment then it has a solution at the principal’s original preferences.
The size of the vicinity in which a solution can be found by the IFT provides an up-
per bound on the distance between x1(θ) and the principal’s preferred action. This
vicinity shrinks as divergence in dimension 1 increases implying that x1(θ) converges
to the principal’s preferred action. The no "cycles" condition allows us to show that
the Jacobian of the problem is non-singular.

7If and allocation x(θ) is aligned with the agent’s preferences in dimensions 2 through n then
xn

2 (θ) = (x2(θ), . . . , xn(θ)) satisfies the sum of cycles condition in Rochet (1987) and condition a) in
Theorem 3.1 in Jehiel and Moldovanu (2001). Thus, if the agent had quasi-linear preferences (i.e.
the action in dimension 1 is a transfer) there is a transfer function that implements xn

2 (θ). It is not
surprising, then, that xn

2 (θ) can be implemented via choices in dimension 1 when Θ1 consists of one
point. Our approach allows us to show that it can be implemented when Θ1 is not a singleton and
that the principal’s payoff is close of what she obtains when she knows all information in dimensions
2 through n when b1(Θ) is large.

8Consider the undirected graph in which the nodes are types (states known by the agent) and
the edges are the incentive constraints that are set to equality. A cycle is a sequence of incentive
constraints that form a cycle in this graph.
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3.1 Proof of Theorem 1

We first introduce some notation. It is useful to denote the states in the support by
an index that represents where they “stand” relative to the other states. Suppose the
set Θi has ni elements, then we can write it as Θi = {θji }nij=1 with θji ≥ θli whenever
j ≥ l. I ≡ ×ni=1{1, . . . ni} is a set of indices. For k = (k1, . . . ,kn) ∈ I let θk denote
type (θk1

1 , . . . , θkn
n ). Thus, we can write Θ =

{
θk
}

k∈I
. To simplify notation we also

write yP,ki for yPi (θk) and xk for x(θk).
The set of incentives constraints is given by C = {(k, j)|k, j ∈ I}. We define the

slack of constraint (k, j) under an allocation x as

Sk,j(x) = d
(
θk, xj

)2
− d

(
θk, xk

)2
.

Clearly, the IC constraints are satisfied if and only if Sk,j(x) ≥ 0 for every k and j.
Because there is no variation in dimension 1 we can normalize θ1 = 0
In what follows we assume that z is an allocation that is aligned with the agent’s

preference across dimensions 2 through n. Note that an allocation such that zi = θi

or zi = yPi (θi) for every θ ∈ Θ and i ∈ {2, . . . , n} satisfies these conditions.

Definition 3. We say that two index points j,k ∈ I are adjacent if k 6= j and∑
i∈{2,...,n} |ji − ki| = 1 . If k and j are adjacent we call (j,k) and (k, j) adjacent

constraints.

That is, two index points are adjacent if they only differ in one of the dimensions
from 2 through n and their types are adjacent in the dimension in which they differ.

The set of adjacent constraints is denoted Cad.

Lemma 1. Let (k, j) ∈ Cad. If Sk,j(z) = η for η ∈
(
0, 2

(
θk
i − θ

j
i

) (
zk
i − z

j
i

))
then

Sj,k(z) ≥ 0.

Proof of Lemma 1. Let m be the dimension in which ki 6= ji, where i ∈ {2, . . . , n}.
Note that

∂
[
d
((
yA−i, yi

)
, zk

)2
− d

((
yA−i, yi

)
, zj
)2
]

∂yi
= 2

(
zj
i − zk

i

)
(1)
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and that

Sj,k(z) = d
(
θj, zk

)2
− d

(
θj, zj

)2

= −Sk,j(z) +
∫ θj

i

θk
i

2
(
zj
i − zk

i

)
dyi.

Because z is aligned with the agent’s preferences in dimension i

(
θk
i − θ

j
i

) (
zk
i − z

j
i

)
> 0. (2)

Therefore, we conclude

Sj,k(z) ≥ 0.

The set of constraints between types that differ in only one dimension i ∈ {2, . . . , n}
is defined as,

Cad+ = {(k, j)|∃r ∈ {2, . . . , n},kr 6= jr,ks = js for s ∈ {1, . . . , n}\{r}} .

Lemma 2. If all constraints in Cad then all constraints in Cad+ hold.

Proof of Lemma 2. We show the following claim which establishes the desired result:
For fixed r ∈ {2, . . . , n}, if k, j,m ∈ I are such that kr > jr > mr and ks = js = ms

for s ∈ {2, . . . n}/{r}, then, the constraints (k,m) and (m,k) are satisfied if the
constraints (k, j), (j,m), (m, j), and (j,k) are satisfied.

We show the claim for (k,m) (the argument for (m,k) is similar). Note that

d(θk, zm)2 − d(θk, zk)2 = d(θk, zm)2 − d(θk, zj)2 + d(θk, zj)2 − d(θk, zk)2. (3)

In addition,

d(θk, zj)2 − d(θk, zk)2 ≥ 0,

d(θj, zm)2 − d(θj, zj)2 ≥ 0
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due to the IC constraints. Observe that

d(θk, zm)2 − d(θk, zj)2

= d(θj, zm)2 − d(θj, zj)2 +
∫ θk

r

θj
r

2
(
zj
r − zm

r

)
dyr

≥ d(θj, zm)2 − d(θj, zj)2.

Combining (1), (2), the assumption that θk
r > θj

r > θm
r , and (3), we conclude that

the IC constraint (k,m) is satisfied.

Thus, Lemma 2 implies that if z is weakly aligned with the agent’s preferences
in dimensions 2 through n and all the adjacent constraints hold then any constraint
(k, j) in which k and j differ in only one dimension also holds.

Definition 4. We say that a constraint (k, j) is diagonal if (k, j) ∈ C\Cad+.

Lemma 3. Suppose all adjacent constraints hold in allocation z, then all diagonal
constraints hold as well.

Proof. Let (k,m) be a diagonal constraint with k1 = m1. For i ∈ {1, . . . , n} define
jis for s ∈ {1, . . . , n} as jis = ks for s ∈ {i + 1, . . . , n} and jis = mi

s for s ∈ {1, . . . , i}.
Thus, j1 = k, jn = m. Also, (ji, ji+1) ∈ Cad+ since indices ji and ji+1 differ at most
in dimension i+ 1 . By hypothesis,

0 ≤ Sji,ji+1(z) = d
(
θji , zji+1)2

− d
(
θji , zji

)2

= d
(
θk, zji+1)2

− d
(
θk, zji

)2
+

i∑
r=2

∫ θjr
r

θjr−1
r

∂

[
d
(
(yr, θjr−1

−r ), zji+1
)2
− d

(
(yr, θjr−1

−r ), zji
)2]

∂yr
dyr,

= d
(
θk, zji+1)2

− d
(
θk, zji

)2
+

i∑
r=2

2
(
θjr
r − θjr−1

r

) (
zji
r − zji+1

r

)
= d

(
θk, zji+1)2

− d
(
θk, zji

)2
,

where the last inequality follows from jij = ji+1
j for j ≤ i and z weakly aligned with

the agent’s preferences.9

9To understand the first equality note that for any differentiable function f : Rn → R
f(x1, . . . , xn) = f(x0

1, . . . , x
0
n) +

∑n
i=1
∫ xi

xi0
fxi(x0

1, . . . , x
0
i−1, x̃i, xi+1, . . . , xn) dx̃i
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Now,

Sk,m(z) = d
(
θk, zjn

)2
− d

(
θk, zj1)2

=
n−1∑
i=1

(
d
(
θk, zji+1)2

− d
(
θk, zji

)2
)

(4)

=
n−1∑
i=1

Sji,ji+1(z) ≥ 0.

This las inequality shows that constraint (k,m) is satisfied.

Proof.

Define Cad
+1 = {(k, j) ∈ Cad|j2 = k2 + 1} and Cad

=1 = {(k, j) ∈ Cad|j2 = k2 = 1}.

Lemma 4. Suppose the following conditions hold for z

1. Sk,j(z) = η for (k, j) ∈ Cad
+1 for η ∈

(
0, 2 min(k,j)∈Cad

+

(
θk
i − θ

j
i

) (
zk
i − z

j
i

))
;

2. Sk,j(z) ≥ 0 for (k, j) ∈ Cad
=1.

then z is incentive compatible.

Proof. We will show inductively that all the adjacent constraints hold, which, by
lemmas 2 and 3, implies that the allocation is incentive compatible.

Define Cad
=m = {(k, j) ∈ Cad|j2 = k2 = m}. We need to show that Cad

=m holds for
every m ∈ {2, . . . , n2}.

Let (k, j) ∈ Cad. Note that the assumptions imply that (k, j) holds if k2 = 1.
Suppose Sk,j(z) ≥ 0 for (k, j) ∈ Cad

=m̃ for m̃ ≤ m. We will show that Sk,j(z) ≥ 0 for
(k, j) ∈ Cad

=m+1.
Let (k, j) ∈ Cad be such that k2 = m+ 1. If j2 = m, then (k, j) holds by Lemma

1 as Sj,k(z) = η. If j2 6= m, as (k, j) is an adjacent constraint, then we must have
k2 = j2 = m + 1. Let k̄, j̄ ∈ I be such that k̄2 = j̄2 = m and k̄s = ks, j̄s = js for
s ∈ {3, . . . , n}. Then by equation (4) in the proof of Lemma 3 we have Sk̄,j(z) =
Sk̄,̄j(z) + Sj̄,j(z) = Sk̄,k(z) + Sk,j(z). We Since (̄j, j) ∈ Cad

+1 and Sk̄,̄j(z) ≥ 0 (by
the induction hypothesis) we obtain Sk̄,j(z) ≥ η. Therefore, Sk̄,k(z) = η implies
Sk,j(z) ≥ 0.

15



Proof of Theorem 1.
By dividing by ȳP1 = E

(
yP,k1

)
, the IC constraints can be written as

−d
(
ỹA,ki , zkσ

)
≥ −d

(
ỹA,ki , zj

)
(k, j)

for each k, j∈ I and kσ ∈ IσA(k) and ỹi,ki = yi,ki
ȳP1

for i ∈ {P,A} for a normalized
allocation z.

Lemma 5. For every ν > 0 there is b̄ > 0 such that for every b1 ≥ b̄ there is
an incentive compatible allocation z =

(
zk
i

)
i∈{2,...,n},k∈I such that zk

i = ỹA,ki for i ∈
{2, . . . , n} and k ∈ I, Sk,j(z) = 0 for (k, j) ∈ Cad

+1 and Sk,j(z) ≥ 0 for (k, j) ∈ Cad
=1,

and
∣∣∣zk

1 − 1
∣∣∣ < ν for k ∈ I.

Proof of Lemma 5.
First, let zk

i = ỹA,ki ,for i ∈ {2, . . . , n} and set zk
1 = 1 for k with k2 = 1.

Let (k, j) ∈ Cad
+1 with k2 = 1. We define zj

1 so that (k, j) binds, that is zj
1 satisfies

the following equation,

−1 = −
(
zk

1

)2
≥ −

(
zj

1

)2
−

n∑
i=2

(
ỹA,ki − zj

i

)2
= −

(
zj

1

)2
−
(
ỹA,k2 − ỹA,j2

)2

Inductively, for (k, j) ∈ Cad
+1 with j2 = m we can write

(
zj

1

)2
=
(
zk

1

)2
−
(
ỹA,k2 − ỹA,j2

)2
,

which yields for every k ∈ I,

(
zk

1

)2
= 1−

m∑
j=1

(
ỹ
A,(j,k−2)
2 − ỹA,(j+1,k−2)

2

)2
,

where (j,k−2) denotes the index in which the second coordinate is j and all other
coordinates are that of index k.

By construction Sk,j(z) = 0 for (k, j) ∈ Cad
+1 . Let (k, j) ∈ Cad

=1 then k2 = j2 = 1
while zk

−1 = ỹA,k−1 and zj
−1 = ỹA,j−1 , therefore, Sk,j(z) ≥ 0.

Note that ỹA,k2 is fixed for each k ∈ I. For ν > 0 (but ν < 1), there exists b̄, such
that for all b1 > b̄,
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m∑
j=1

(
ỹ
A,(j,k−2)
2 − ỹA,(j+1,k−2)

2

)2
< 1− (1− ν)2.

We conclude that the desired result follows.

Let ỹIi for I ∈ {A,P} denote the vector (ỹi,ki )k∈I and define zA,Pi (t) = ỹAi (1− t) +
ỹPi t. z

A,P
i (t) is a vector over the set of types I. Clearly zA,Pi (0) = ỹAi and zA,Pi (1) = ỹPi

for i ∈ {2, . . . , n}. Note that an allocation z such that zi = zi(t) for i ∈ {2, . . . , n}
is aligned with the agent’s preferences and separable across dimensions 2 through n.
Let b1 be large enough that minj∈I |ỹA,l

1 − 1| > 1/3.
We now provide a recursive argument that shows that the desired allocation exists

for large enough b1. For induction step k ∈ N, k ≤ |Cad
=1|, assume that we have

constructed sets Ck
slack,Ck

eq ⊆ Cad and Ikfix ⊆ I such that |I| = |Ikfix|+ |Ck
eq|. Assume

also, that we have found zk ∈ Z and tk ∈ (0, 1) such that

1. maxj∈I

∣∣∣zk,j1 − 1
∣∣∣ < k

3|Cad
=1|

,

2. zk,ji = zA,P,ji (tk), for j ∈ I, zA,P,ji (tk) is the j’th element of zA,Pi (t), and

3. Sk,j(zk) ≥ 0 if (k, j) ∈ Ck
slack, Sk,j(zk) = 0 if (k, j) ∈ Ck

eq and z
k,j
1 = 1 if j ∈ Ikfix.

For k = 1, we set C1
slack = Cad

=1, C1
eq = Cad

+1 I1
fix = {r ∈ I|r2 = 1} and t1 = 0.10 From

Lemma 5 there is z1 that satisfies conditions 1 through 3.
Let a =

((
zk

1

)
k∈I,k2={1,...,n2}, (εk,j)(k,j)∈Ck

slack

)
∈ R|I|+|Ck

slack|. We define the func-
tion

gk : [tk, 1]× R|I|+|Ck
slack| → R|(C

ad
slack∪Cad

eq )|+|Ikfix|,

where gk =
((
gkr
)

r∈Ik
fix

, (gkk,j)(k,j)∈Ck
eq ,k2={1,...,n2−1}, (gkk,j)(k,j)∈Ck

slack

)
, as

gkr = zr
1 − 1 for r ∈Ikfix,

10To see that |I| + |C1
slack| = |I1

fix| + |C1
eq| + |C1

slack| note that there is one element in Cad
+1 for

each k ∈ I ∩ (I1
fix)c.
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and

gkk,j(t, a) =


Sk,j

((
zr

1,
(
zA,P,ri (t)

)
i∈{2,...,n}

)
r∈I

)
− εk,j for (k, j) ∈ Ck

slack

Sk,j

((
zr

1,
(
zA,P,ri (t)

)
i∈{2,...,n}

)
r∈I

)
for (k, j) ∈ Ck

eq

.

Since |I|+ |Ck
slack| = |Ikfix|+ |Ck

eq|+ |Ck
slack| ≡ Nk for fixed t, gk(t, ·) is a function

from RNk to RNk .
Let εkk,j = Sk,j

(
zk,r1 ,

(
zA,P,ri (tk)

)
i∈{2,...,n}

)
for (k, j) ∈ C1

slack and let ak =((
zk,k1

)
k∈I,k2={1,...,n2}

,
(
εkk,j

)
(k,j)∈Ck

slack

)
. By assumption, we have gk(tk, ak) = 0.

Define V k
0 = {(t, a) ∈ [tk, 1]× R|I|+|Ck

slack| : |a− ak| < 1/3}.
Let

(
Dag

k
)
p,q

denote the element of Dag
k that corresponds to p ∈ (Ck

eq∪Ck
slack)∪

Ikfix and q ∈ I ∪Ck
slack.

(
Dag

k
)
p,q

=



2(ỹA,k
1 − zk

1 ) if p = (k, j) ∈ (Ck
eq ∪Ck

slack), and q = k,

−2(ỹA,l
1 − zk

1 ) if p = (j,k) ∈ (Ck
eq ∪Ck

slack), and q = k,

−1 if p = (k, j) ∈ Ck
slack, and q = (k, j),

1 if p = r ∈ Ikfix, and q = r,

0 otherwise.

Dag
k is non-singular if (ỹA,k

1 − zk
1 ), (ỹA,l

1 − zk
1 ) 6= 0 for every k, j ∈ I (which holds

for every a ∈ V k
0 if ν < 1/3 and minj∈I |ỹA,l

1 − 1| < 1/3). In fact, in such case, the
rows in Dag

k are linearly independent. To see this, note that the rows corresponding
to p ∈ Ikfix form an identity sub-matrix so they are trivially linearly independent.
The rows corresponding to p ∈ Ck

slack are also linearly independent because the
derivatives with respect to the εk,j also form an identity sub-matrix. Finally, the
rows corresponding p ∈ Ck

eq are linearly independent because the sets of constraint
do not have cycles.11

We now find a bound on
∥∥∥∥(Dag

k
)−1

∥∥∥∥
∞
in V k

0 . By a known result, we can write(
Dag

k
)−1

= 1
det(Dagk)adj(Dag

k) where (adj(A))i,j = (−1)i+j detA−ji and A−ji the

11A cycle would be a chain (k,k1), (k1,k2), . . . , (kj ,k) ∈ Ck
eq. Only if there is such a cycle can

a weighted sum of rows in the sub-matrix
(
Dag

k
)

p∈Ck
eq,· be zero.
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matrix obtained from deleting row j and column i from matrix A. Dag
k is a lower

triangular matrix with

det
(
Dag

k
)

=
∣∣∣Π(k,j)∈Ck

eq
2(ỹA,k1 − zj

1)
∣∣∣ ≥ (2 min

(k,j)∈Ck
eq

|ỹA,k1 − zj
1|
)|Ckeq |

≡ m̂1.

Since minj∈I |ỹA,l
1 −1| > 1/3 and maxj∈I

∣∣∣zk,j1 − 1
∣∣∣ < k

3|Cad
=1|

< 1/3, the min in the right
hand side is well defined and there is b̄ > 0 such that m̂1 is bounded away from zero
for every b1 ≥ b̄. For each row j and column i,

(
Dag

k
)
−ij

is a lower triangular matrix
and, by an analogous computation,

(
Dag

k
)
−ij
≤
(

2 max
(k,j)∈Ck

eq∪Ck
slack

max{|ỹA,k1 − zj
1|, |ỹ

A,k
1 − zk

1 |}|
)|Ck

eq |+|Ckslack|

≡ m̂2

Since
∣∣∣zk

0,1 − 1
∣∣∣ < ν, the previous calculations imply that there is M̂ = m̂2/m̂1 such

that
max

(t,a)∈V k0

∥∥∥∥(Dag
k(t, a)

)−1
∥∥∥∥
∞
≤ M̂.

Now, for (k, j) ∈ (Ck
eq ∪Ck

slack),

∣∣∣Dtg
k
k,j

∣∣∣ =
∣∣∣∣∣−2

n∑
i=2

(
ỹA,ki − zk

i (t)
) (
ỹP,ki − ỹA,ki

)
+ 2

n∑
i=2

(
ỹA,ki − zj

i(t)
) (
ỹP,ji − ỹ

A,j
i

)∣∣∣∣∣
=
∣∣∣∣∣−2

n∑
i=2

t
(
ỹA,ki − ỹP,ki

) (
ỹP,ki − ỹA,ki

)
+ 2

n∑
i=2

(
ỹA,ki − ỹA,ji + t

(
ỹA,ji − ỹ

P,j
i

)) (
ỹP,ji − ỹ

A,j
i

)∣∣∣∣∣
≤ max

i∈{2,...,n},k,j∈I

(
4|ỹP,ki − ỹA,ki |2 +

∣∣∣ỹP,ki − ỹA,ki

∣∣∣ ∣∣∣ỹA,ki − ỹA,ji

∣∣∣) ,
and Dtg

k
r = 0 for r ∈ Ikfix.

We obtain∣∣∣∣(Dag
k(t, a)

)−1
Dtg

k

∣∣∣∣ ≤ √Nk·M̂ · max
i∈{2,...,n},k,j∈I

(
4|ỹP,ki − ỹA,ki |

2 +
∣∣∣ỹP,ki − ỹA,ki

∣∣∣ ∣∣∣ỹA,ki − ỹA,ji

∣∣∣) ≡ R(ỹP,k−1 , ỹ
A,k
−1 ).

Take b1 large enough that R(ỹP,k−1 , ỹ
A,k
−1 ) ≤ 1

3|Cad
=1|

.
By Theorem 4.2.1 in Krantz and Parks (2012) there is āk(t) =
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((
z̄k,k1 (t)

)
k∈I,

(
ε̄kk,j(t)

)
(k,j)∈C1

slack

)
with

|āk(t)− ak| ≤ R(ỹP,k−1 , ỹ
A,k
−1 ) (5)

such that
g(1, āk(1)) = 0.

If ε̄kk,j(1) ≥ 0 for (k, j) ∈ Ck
slack then

(
z̄k,k1 (1)

)
k∈I is incentive compatible and the

allocations in dimensions 2 through n coincide with the principal’s bliss points. If
not, for each (k, j) ∈ Ck

slack define

t̄(k, j) = min
{
t ∈ [tk, 1]|Sk,j

((
z̄k,r1 (t),

(
zA,P,ri (t)

)n
i=2

)
r∈I
)

= 0
}

and set tk+1 = min{t̄(r, s)|(r, s) ∈ Ck
slack}.

Let Ck
add =

{
(k, j) ∈ Ck

slack|tk+1 = min{t̄(r, s)|(r, s) ∈ Ck
slack}

}
and define

Ck+1
slack = Ck

slack\{(k, j)|(k, j) ∈ Ck
add or (j,k) ∈ Ck

add}, Ck+1
eq = Ck

eq ∪Ck
add and Ik+1

fix =
Ikfix\{k|(k, j) ∈ Ck

add}. Clearly |I| = |Ik+1
fix | + |Ck+1

eq |, also Nk+1 = |I| + |Ck+1
eq | ≤ Nk.

Let zk+1 =
(
z̄k,r1 (tk),

(
zA,P,ri (tk)

)
i∈{2,...,n}

)
r∈I

. By construction conditions 2 and 3
hold for zk+1. Condition 1 holds as

max
j∈I

∣∣∣zk+1,j
1 − 1

∣∣∣ < max
j∈I

∣∣∣zk+1,j
1 − zk,j1

∣∣∣+ max
j∈I

∣∣∣zk,j1 − 1
∣∣∣ < 1

3|Cad
=1|

+ k

3|Cad
=1|

= k + 1
3|Cad

=1|
.

Since Ck
slack = ∅ for k ≥ |Cad

=1| the iterative argument ends in at most |Cad
=1| steps

and delivers an allocation z̄ that satisfies the requirements of the Theorem. Finally,
equation (5) implies

|yP1 − z̄1 · ȳP1 | = |z̄1 − 1| · ȳP1 ≤ M̄ max
i∈{2,...,n},k∈I

|ỹP,ki − ỹA,ki |

for a constant M̄ > 0 that does not depend on b1.
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4 Examples

4.1 Red Tape

Consider the contractual relationship between a doctor (she) that is employed by an
HMO. For illustration, assume that the doctor sees two patients and spends time
t doing tedious paperwork. Each patient can have two possible diagnosis. Only
the doctor observes their diagnosis. Let Θ2 = {b2, 1 + b2} and Θ3 = {b3, 1 + b3} be
the treatments, in terms of expenditure to the HMO, that the doctor would ideally
prescribe to the patients as a function of their diagnosis. The HMO would like to
implement Y2 = {0, 1} and Y3 = {0, 1} instead. Note that in one dimensional cheap
talk there is no communication when bi > 1/2.

Now, under Lemma 4, we set one particular set of constraints to be binding,
ensuring that all the incentive compatibility conditions are satisfied. In particular,
we make (0, 0)→ (0, 1), (0, 0)→ (1, 0), and (1, 0)→ (1, 1) binding.

− (t00 + b1)2 − (−b2)2 − (−b3)2 = − (t01 + b1)2 − (−b2)2 − (1− b3)2 ,

− (t00 + b1)2 − (−b2)2 − (−b3)2 = − (t10 + b1)2 − (1− b2)2 − (−b3)2 ,

− (t10 + b1)2 − (−b2)2 − (−b3)2 = − (t11 + b1)2 − (−b2)2 − (1− b3)2 .

We set t01 to 0, divide every variable by b1, and rearrange terms, and obtain

(t̃00)2 + 2t̃00 − 1/ (b1)2 + 2b̃3/b1 = 0,

(t̃10)2 + 2t̃10 − 2b̃2/b1 + 2b̃3/b1 = 0,

(t̃11)2 + 2t̃11 + 1/ (b1)2 − 2b̃2/b1 = 0,

where t̃ij = tij/b1 and b̃k = bk/b1 (k = 2, 3). If b1 is sufficiently large such that it
satisfies

b1
2 > 2b3 − 1,

b1
2 > 2 (b3 − b2) ,
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we obtain the following solutions:

t̃00 = −1 +
√
b1

2 + 1− 2b3/b1,

t̃01 = 0,

t̃10 = −1 +
√
b1

2 + 2b2 − 2b3/b1,

t̃11 = −1 +
√
b1

2 − 1 + 2b3/b1.

Note that they all converge to 0 as b1 approaches infinity.
To simplify our demonstration, consider the special case b2 = b3 = b. Substituting

the solutions into the objective function, the organization head’s objective function
becomes

−b1

(
−b1 + 1

2

√
b1

2 + (1− 2b) + 1
2

√
b1

2 − (1− 2b)
)
.

It can be shown that as b1 becomes larger, the above payoff becomes larger, and it
converges to the maximum value, 0, as b1 goes to infinity.

4.2 Regulation of a multi-product monopolist

Consider the example below from Baron and Myerson (1982), as described in by
Alonso and Matouschek (2008). Consider a monopolist, who is active in one big
market and several small markets, which are distinct from one another. In market i,
the monopolist faces an inverse demand curve yi = Ai −Bqi, where Ai > 2. To keep
consistency with Alonso and Matouschek (2008)’s and our own notation, we use y to
represent price, as it is the action to be chosen by the monopolist. The monopolist
holds private information about his constant marginal cost in each market i, θi, which
can be either 0 or 1. Note that the monopolist’s profits in market i, as a function of
price, can be written

Πi(y) = y
(
Ai − y
B

)
− θi

Ai − y
B

,

= − 1
B

(y − Ai + θi
2

)2

−
(
Ai − θi

2

)2
 .
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On the other hand, the regulator’s objective function in market i is the social surplus

Si(y) = 1
2 (Ai + y)

(
Ai − y
B

)
− θi

Ai − y
B

,

= − 1
2B

[
(y − θi)2 − (Ai − θi)2

]
.

Thus, the monopolist maximizes

Π(y) = − 1
B

n∑
i=1

(yi − Ai + θi
2

)2

−
(
Ai − θi

2

)2
 ,

while the regulator maximizes

S(y) = − 1
2B

n∑
i=1

[
(yi − θi)2 − (Ai − θi)2

]
.

Note that both objective functions can be made simpler by removing the factor 1/B
and the terms that do not involve y, as those are constants that are irrelevant to
incentives.

Let us consider a special case of three markets. There is no uncertainty about
the monopolist’s cost in the first market. Assume in addition that A2 = A3 = A.
Without loss of generality, θ1 = 0. Let y01 be the decision taken by the principal in
market 1 when the monopolist claims that his marginal cost is 0 in market 2 and 1
in market 3. The incentive constraints of the monopolist can be written

−
(
yab −

A1

2

)2
− (a− a+ A

2 )2 − (b− b+ A

2 )2 ≥ −
(
yãb̃ −

A1

2

)2
− (ã− a+ A

2 )2 − (b̃− b+ A

2 )2,

for a, b, ã, b̃ ∈ {0, 1}. Under Lemma 4, and given our particular payoff functions,
we set one particular set of constraints to be binding (namely, the upward adjacent
constraints), ensuring that all the incentive compatibility conditions are satisfied.
That is, we make (0, 0)→ (0, 1), (0, 0)→ (1, 0), and (1, 0)→ (1, 1) binding. Setting
y1,1 = 0 and solving these equations, as long as A1 is large enough, we may obtain
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valid solutions:

y01 = y10 = A1

2 −
√
A1

2

4 +
(

1− A

2

)2
−
(
A

2

)2
,

y00 = A1

2 −

√√√√A1
2

4 + 2
[(

1− A

2

)2
−
(
A

2

)2]
.

Note that as A1 → +∞, yab → 0 for all a, b ∈ {0, 1}, which means that the allocation
approaches the regulator’s first best outcome.

In a large enough market, A1, the regulator is not be able to induce disclosure
of the firm’s private information about the price, due to the divergence of the ideal
points. However, by committing to setting the prices in the large market as a function
of the prices set on other markets, the regulator can bring the price in these latter
markets to the marginal cost in every eventuality.
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