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Abstract

We study matching problems with transferable utility in the presence of ad-
verse selection, and define a notion of stability, i.e., immunity to individual and
pairwise deviations, as the consistency of publicly observable matching outcomes
and uninformed agents’ beliefs over informed agents’ private types. The definition
incorporates both “off-stability beliefs” conditional on the blocking of any deviating
pairs, and “stable beliefs” in the absence of all such deviations. We define a notion
of Bayesian efficiency of matching outcomes relative to endogenous stable beliefs,
and investigate robust efficiency properties that stable beliefs and stable matchings
must jointly satisfy. The idea of stable belief is extended to define the concept of
the core, a refinement that differs from the notion of stability only if deviations by
larger coalitions exist when no pairwise deviation is possible.

1 Introduction

This paper studies two-sided matching markets with transferable utilities, where agents on
one side of the market are privately informed of their payoff-relevant attributes (types),
and defines a solution concept of pairwise stability for such environments. A central
component of our notion of stability is the consistency between uninformed agents’ beliefs
over informed agents’ unobservable types and the matching of observable attributes. We
call uninformed agents’ beliefs under which observable matchings are individually rational
and immune to pairwise blocking stable beliefs.
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A theory of stability for two-sided markets with asymmetric information is required for
at least two reasons. First, while the solution concept of stability proposed by Gale and
Shapley (1962) and Shapley and Shubik (1971) has been successful in analyzing matching
problems with complete information, only limited progress has been made on asymmetric
information, which is widely recognized as a realistic feature in many two-sided matching
markets. Examples include labor markets where firms are not fully informed of workers’
abilities, insurance markets where the insured are privately informed of their risks, and
marriage markets where the matching qualities of couples are unknown.1

Second, although the ideas of asymmetric information and adverse selection (screen-
ing and signaling in particular) have revolutionized economics for the past several decades
and continue to be central in current theoretical and empirical research, the main analyt-
ical frameworks for two-sided markets with adverse selection have been competitive and
non-cooperative game-theoretic ones, which are developed on the premise of unilateral
deviation and optimization while holding the choices of all other agents fixed. In two-
sided markets with pairwise relationships of agents, pairwise optimization and blocking
that simultaneously involve two agents from opposite sides of the market are no less plau-
sible than unilateral deviations. This natural consideration calls for a coalitional solution
concept such as pairwise stability. In addition, the predictions of cooperative theory are
based on assumptions on the primitive payoff structures, whereas modeling coalitional
behaviors using non-cooperative game-theoretic models requires a full specification of
every detail of their strategic or extensive forms, and their predictions are sensitive to
the configuration of actions available to each player, orders of moves, protocols of price
negotiation, rules of coalition formation, etc.

In the complete-information framework of Shapley and Shubik (1971) and Crawford
and Knoer (1981), two agents from opposite sides of the market block a matching if they
are not matched together but can strictly improve their respective payoffs by pairing up
at a transfer; however, in a stable matching, no such blocking opportunity exists.2 If
we want to extend the notions of blocking and stability to a problem with asymmetric
information, the following conceptual issue must be explained and resolved first. An
uninformed player is uncertain about his ex post payoff from pairing up with an informed
party who has payoff-relevant private information. As a Bayesian player, the uninformed
party will assign a probabilistic belief to the informed party’s private types. What should
this belief be? First of all, this belief is an “off-stability belief” because no pairwise

1Since the seminal analysis of Becker (1973), a large literature has been developed to study various
aspects of marriage and household problems using matching models with transfers. See Chiappori (2017)
for the state of knowledge on both the theoretical and empirical fronts.

2It bears emphasis that the theory of stability abstracts away details such as how two players come
together and how the transfer is negotiated (otherwise, ad hoc assumptions on extensive forms would
have to be imposed). We shall follow this practice in this paper.
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blocking opportunity exists in a stable matching. What then is the on-path, “stable
belief” for a stable matching? An informed player’s incentive of joining (and hence
benefiting from) a blocking pair reveals its payoff-relevant information, and likewise the
lack of such a blocking pair also reveals information. There are many blocking pairs to
consider. Stability means that all of these pairwise deviations have been exhausted, and
no further pairwise blocking opportunity exists, and hence on-path stable beliefs reflect
the kind of information that is revealed by the non-existence of any further possible
blocking opportunity. Therefore, in a stable matching, beliefs should be endogenously
defined, as is the matching itself. In addition, off-stability beliefs should not be arbitrary;
stable beliefs and off-stability beliefs must be simultaneously determined for all possible
configurations of the off-stability blocking of a candidate matching.

In contrast to the normative design approach, our approach is to define a solution
concept directly for matching games of asymmetric information. More specifically, we
look for a belief and a matching outcome such that no unilateral and pairwise deviations
from the matching can occur given the belief, and define stability—immunity to individual
and pairwise blocking—as the consistency requirement for stable beliefs and matchings.3

Our first requirement is that a stable belief be such that each uninformed player finds the
matching individually rational in the expected utility sense with respect to this belief and
assigns positive probability only to those types with which each informed player finds the
matching individually rational. An off-stability belief of an uninformed player when an
off-stability blocking opportunity arises is updated from the stable belief conditional on
the event that the informed player benefits from the blocking. Our second requirement
is that a stable belief be correct in the sense that either it excludes any types for any
informed player with which the player has incentives to join some blocking pair, or its
updated off-stability belief induces the uninformed players to turn down any blocking
opportunity.

Defining stable beliefs over unobservable types consistently with stable matchings
of observable attributes in a simple manner is the main conceptual contribution of the
present paper. We define Bayesian efficiency as a criterion for a matching function that
maximizes the total expected social surplus with respect to the supporting stable belief.
We give conditions on matching values under which any stable matching must be Bayesian
efficient, and these conditions include familiar models of adverse selection as special cases.
The robust efficiency result is an implication of the consistency of stable beliefs and
matchings; it does not involve the selection of beliefs or matchings.4

3In other words, we define a solution concept, but do not study mechanisms to implement the solution
concept. This approach is consistent with that of various solution concepts in economics, such as the
core, Bayesian Nash equilibrium, and so on.

4We call this a robust result for two reasons. First, it holds for all stable matchings of a given
matching game. Second, it does not rely on assumptions on non-cooperative game forms.
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The theoretical framework is simple and flexible for applied research, including em-
pirical research. The distributions of unobservable types we economists can recover from
matching data correspond to the uninformed players’ stable beliefs over these unobserv-
able types, as the outside analysts observe no more than the uninformed players in the
matching problem. For instance, models of two-sided markets with transfers have found
important applications in family economics and labor economics; see the two books de-
voted to this topic, Browning, Chiappori, and Weiss (2014) and Chiappori (2017). It is
worthwhile to emphasize that existing empirical analysis of matching markets assumes
a framework of complete information—although researchers may not observe all char-
acteristics of the market, the players are always assumed to have complete information
about the problem. If the matching data describe a stable market (as structural microe-
conomics usually assumes), then Shapley–Shubik complete-information stability theory
provides conditions for economists to uncover the empirical distribution of unobservable
types; see, e.g., Chiappori and Salanié (2016) for a survey of the econometrics of marriage
models with transfers. Nevertheless, the effects of adverse selection have been left entirely
unexamined because of the lack of theory. In our theory with asymmetric information,
uninformed players have to fulfill the role of researchers to uncover the distribution of
unobservable types, and the consistency of observable matching outcomes and stable be-
liefs over latent variables, together with possible exogenous restrictions that we discuss
later in the paper, brings structures and disciplines to data.

The rest of the paper is organized as follows. Section 2 discusses related literature.
Although the idea of stable belief distinguishes the present paper from other work, coali-
tional concepts with asymmetric information have been proposed in several branches of
literature for various environments; we put this section upfront to explain our theoretical
motivations and to clarify our conceptual contributions. Section 3 demonstrates the role
of stable beliefs using two examples. Sections 4 and 5 contain the definitions of stable be-
lief and stable matching. Section 6 defines the notion of Bayesian efficiency with respect
to stable beliefs and presents robust efficiency properties of stable matchings. Bayesian
efficiency is a natural subject of investigation as it concerns both matching outcomes and
beliefs. Section 7 discusses several directions for future research, extends the framework
to a richer environment with private beliefs and introduces a strict refinement of stability,
the core, which is defined as immunity to deviations by arbitrary coalitions.

2 Related Literature

The restrictiveness of complete information in matching problems is widely recognized.
Roth (1989) and Chakraborty, Citanna, and Ostrovsky (2010) are among the first to study
matching problems with incomplete information. They look at static or multiple-stage

4



direct-revelation games of matching with non-transferable utilities.5 The direct revelation
mechanism excludes the crucial feature of stable belief that we emphasize in this paper.
We define a solution concept for matching games, without imposing any mechanisms.6

Recognizing the importance of inferences from the non-existence of blocking, Liu, Mailath,
Postlewaite, and Samuelson (2014) take a belief-free approach to circumvent the issue of
beliefs. The idea is to iteratively eliminate matching outcomes that are not immune
to blocking for any possible belief over outcomes that survive prior eliminations (just as
deletion of never-best responses in the definition of rationalizability). The theory critically
hinges on the assumption that each uninformed agent knows perfectly his partner’s type
and hence his ex post payoff in the candidate matching. The elimination process cannot
start if the uninformed agent instead has a slight uncertainty that does not restrict the
support of his partner’s private types.7 By contrast, beliefs in a stable matching are the
subject of investigation in the present paper, which does not impose the assumption that
the uninformed agent knows perfectly the type of his match. As a result, the notion of
stability in the present paper is neither a refinement nor a generalization of that of Liu
et al. (2014), but much simpler.8

Prior to the work on matching, there was a large and deep literature on the core in
incomplete information environments. In his pathbreaking paper, Wilson (1978) defines
“coarse core” and “fine core,” which differ in how deviating agents aggregate their private
information. The literature after Wilson (1978) focuses on incentive compatibility of
information aggregation, either by taking a mechanism design approach to blocking or by
incorporating non-cooperative elements into the otherwise cooperative framework; see,
e.g., Serrano and Vohra (2007) and Myerson (2007), among many others. Forges and
Serrano (2013) survey unresolved questions as well as the state of the art in cooperative

5Chakraborty, Citanna, and Ostrovsky (2015) extend their early analysis to study group stability in
many-to-one matching environments.

6The following analog in non-cooperative games of incomplete information may make the comparison
clearer. One approach is to define a Bayesian Nash equilibrium for the incomplete information game.
An alternative approach is to study incentive-compatible mechanisms and the implementability of Nash
equilibria for the profiles of reported types.

7The difficulty is for the uninformed agent to compare his payoff from a candidate matching to that
from a deviation. The belief-free approach essentially requires that the agent compare the worst-case
payoff from the deviation with the best-case payoff in the candidate matching. If the uninformed player
is “almost sure” about his partner’s type in a candidate matching, but cannot rule out any other type,
then the best-case payoff in the matching is higher than the worst-case payoff from the deviation, and
hence it is not possible to remove anything. That is why the theory of Liu et al. (2014) obtains its
prediction power from the assumption that each uninformed player knows perfectly the types of his own
match.

8Even if a firm observes its own worker’s type, the solution concept defined in the present paper is
different (See Section 7.1). This difference is analogous to that between equilibrium and rationalizability
in non-cooperative games, where the former solution concept assumes correct and common beliefs.
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games of incomplete information.
Dutta and Vohra (2005) develop a notion of “credible core” in a direct revelation

mechanism: the information that a deviating coalition should condition on is precisely
the information that makes the deviation profitable; thus, in contrast to Wilson (1978),
information aggregation of a deviating coalition is endogenously determined. The notion
of credible belief updating was proposed by Grossman and Perry (1986) in their refinement
of the sequential equilibrium of Kreps and Wilson (1982): the off-path belief is updated
conditional on the set of types that would benefit from the deviation.9 The basic idea
appears in Rothschild and Stiglitz (1976) and Wilson (1977) when they consider off-
equilibrium beliefs over types that are attracted by an off-equilibrium contract. We use
the same idea to derive off-stability beliefs from stable beliefs in this paper. But our
paper differs in crucial aspects from Dutta and Vohra (2005). In their model, agents
do not learn from the absence of blocking and hence the notion of endogenous stable
belief does not appear. Moreover, in line with the literature on the core with asymmetric
information, they assumed that allocations are not observable; in our framework, players
observe and make inference from matching outcomes, and the consistency of observables
and beliefs over unobservables is key in defining stability.

Several aforementioned papers on stability and the core take a mechanism design
approach, which has the advantage of abstracting away many details of the extensive
forms; however, the approach is still restrictive for the purpose of defining stability. It
is a widely accepted view that coalitional solution concepts capture properties of steady
states or equilibria of reasonable dynamic game processes corresponding to the under-
lying coalition formation problem in the frictionless limit.10,11 In traditional mechanism
design models, the mechanism designer is assumed to have full commitment power, which
excludes decentralized matching processes since these are better modeled by limited com-
mitment. For matching problems in particular, the direct revelation game excludes the

9Kahn and Mookherjee (1995) adopted this belief refinement in their analysis of coalitional-proof
Nash equilibrium, and Bloch and Dutta (2009) adopted it in the definition of coalitional-proof correlated
equilibrium.

10For example, in the case of complete information, Perry and Reny (1994) show that the core can be
implemented by stationary equilibria in a continuous-time coalition formation game; Gul (1989) shows
that the Shapley value captures stationary equilibrium outcomes in a dynamic game of pairwise meeting
and bargaining. Both papers choose extensive-form games by closely following the essential features
captured by cooperative solution concepts. It is also well known that non-cooperative outcomes are
highly sensitive to the game form. Asymmetric information adds another layer of complication: belief
updating is extremely sensitive to the choice of extensive forms. Therefore, it is crucial that we do not
make strong ad hoc restrictions on stable beliefs.

11A solution concept capturing some steady state of a dynamic process is not unique to cooperative
solution concepts. Indeed, it is advocated as a justification of Nash equilibrium, the fundamental non-
cooperative solution concept.
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possibility of making inferences from observable matching outcomes and neglects the fea-
ture that exhausting all coalitional deviation possibilities, belief becomes an endogenous
object consistent with observable outcomes (instead, static revelation games simply as-
sume that there is no belief updating on path, and it is the off-path blocking that refines
the set of allocations). The goal of this paper is to define precisely a descriptive solution
concept as the consistency of the unobservable type distributions (stable beliefs) and the
observable outcomes (matchings and transfers).

Another approach to coalitional deviations with incomplete information studies effi-
ciency in collective decision problems. Holmström and Myerson (1983) consider efficiency
in a direct incentive-compatible mechanism and the durability of allocation rules relative
to a static voting game. Crawford (1985) discussed the role of imposing exogenous re-
strictions on game rules in collective decision problems. By contrast, we want to avoid
mixing non-cooperative elements (direct mechanisms with full commitments or exogenous
game forms) with a cooperative framework. The advantage of a cooperative framework
of pairwise stability is precisely that it makes predictions based on the payoff structures
alone, without making specific assumptions about the rules of the game. We do not use
their notion of efficiency and durability. We propose and study the notion of Bayesian
efficiency of matching outcomes relative to endogenous stable beliefs that support stable
matching outcomes, without any need for prior beliefs, which are largely irrelevant in our
framework.

Since we study stable beliefs in a class of coalitional games, it is worthwhile to com-
pare them with equilibrium beliefs in non-cooperative incomplete-information games.
Defining equilibrium beliefs in a consistent manner was the major conceptual task in the
classic solution concepts of sequential equilibrium (Kreps and Wilson 1982) and perfect
Bayesian equilibrium (Fudenberg and Tirole 1991). Because a game tree specifies every
detail about how events during the game unfold, equilibrium beliefs that are consistent
with equilibrium strategies (or outcomes) can be derived from priors using Bayes’ rule. A
purely cooperative approach to stable matching has the advantage of avoiding specifying
non-cooperative game forms of decentralized matching processes (it is an overwhelming
task to consider all game forms, and ruling out a subset of games requires ad hoc justifi-
cations), but the advantage comes with a cost: it is unclear how to derive posteriors from
prior beliefs without a fixed game tree. Our strategy is not to specify the prior beliefs.
We work with consistency between stable matching outcomes and stable beliefs, without
making a priori restrictions on stable beliefs: stability imposes endogenous restrictions on
stable beliefs and we derive robust properties from stability. In other words, our approach
is prior-free, but not belief-free. We do make the implicit assumption that the underlying
matching processes have common priors and observable actions, and hence that stable
beliefs are shared by uninformed players; Section 7.1 extends the framework to private
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stable beliefs that are consistent with a common prior.

3 Examples

3.1 Stability and Inefficiency

There are two firms with commonly known types: firm 1 is denoted as f1 and firm 2 is
denoted as f2. There is one worker who privately knows his own type w ∈ {w1, w

′
1}. The

two firms assign equal probability to the two types (for now, let us assume that the belief
is given). The worker can match with at most one firm. An unmatched player’s payoff
is normalized to 0. The matrix of matching values of the worker and the firms is given
below:

f1 f2

w1 0, 6 2,−3
w′1 4,−5 1, 7

For instance, the (w1, f1) entry (0, 6) means that the worker of type w1 obtains a value
of 0 by matching with the firm 1, and the firm obtains a value of 6 in this match. We
consider a situation in which ex post matching values are not verifiable or contractible
(the same assumption as in adverse selection models); otherwise asymmetric information
would not play any role.

First observe that in this example ex post efficiency (i.e., matches that maximize the
sum of players’ realized payoffs) requires that the worker of type w1 match with firm
1 and the worker of type w′1 match with firm 2. This is the only matching that has a
non-negative realized sum of payoffs for a matched pair. Not surprisingly, it is the stable
outcome prescribed by Liu et al. (2014), where it is assumed that a firm observes its
worker’s private type in a match. However, one would not expect the ex post efficient
matching outcome to prevail in a situation where firms’ uncertainty regarding the worker’s
private type is unresolved. The question then is what to expect if firms share a belief
that the worker’s type is w1 or w′1 with equal probability.

Consider the following match, which is denoted by µ: regardless of his type, the worker
is matched with firm 1 and receives a salary of 0; firm 2 stays unmatched. According to
the matrix above, the worker of type w1 receives a payoff of 0, and the worker of type
w′1 receives a payoff of 4. Firm 1’s expected payoff is 0.5× 6 + 0.5× (−5) = 0.5. Players’
expected payoffs are summarized as follows:

µ w1 w′1 f1 f2

expected payoffs 0 4 0.5 0

Let us argue that this match is “stable” under the given belief; i.e., it is immune to
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individual or pairwise deviations. Individual rationality is clear. Let us check whether
firm 2 can lure the worker away from firm 1 and make a profit.

The type w1 worker wants to switch to firm 2 because his matching value will be
increased by 2; but the type w′1 worker’s matching value will be reduced by 3. Therefore
whenever w′1 finds firm 2’s offer attractive, w1 finds the same offer strictly more attractive;
i.e., there is no way firm 2 can attract w′1 alone. Thus firm 2’s offer either attracts w1

alone, or gets both w1 and w′1. Nevertheless, firm 2’s matching value with type w1 is −3,
so firm 2 does not want to get type w1 alone. Therefore, in order for firm 2 to lure the
worker away from firm 1, it must get both types w′1 and w1, and the salary offer must be
at least 3 to compensate for the type w′1 worker’s loss in matching value. But firm 2’s
expected matching value from getting both w1 and w′1 is only 0.5× (−3) + 0.5× 7 = 2.
Therefore firm 2 will not offer a salary of 3 to attract the worker, and hence the firm
prefers to stay unmatched.

In the argument above, the on-path stable belief is that the worker is either w1 or
w′1 with equal probability; upon an off-path deviation in which firm 2’s offer makes both
worker types strictly better off, the firm’s off-stability belief about the worker’s type is
that w1 and w′1 appear with equal probabilities—a Bayesian updating from the stable
belief conditional on the set {w1, w

′
1}. This updating rule is natural for this example, and

is easily extended to general matching problems.
We have just argued that it is stable for firm 1 to hire the worker at a salary offer of

0 and for firm 2 to stay unmatched. We now argue that the following match, denoted
by µ, is also stable: firm 2 hires the worker with a salary offer of 0; firm 1 is unmatched.
According to the matrix of matching values above, players’ expected payoffs from the
match are as follows:

µ w1 w′1 f1 f2

expected payoffs 2 1 0 2

Let us see why µ is stable. In this match, if the worker were to switch to firm 1, the
matching value for w′1 would be increased by 3 but the matching value for w1 would be
reduced by 2. Therefore, firm 1 cannot lure the type w1 worker away from firm 2 without
attracting type w′1 as well. Firm 1 does not want to attract type w′1 alone, because firm 1’s
payoff from a (w′1, f1) match is −5. For firm 1 to attract both types, the salary offer must
be at least 2 to compensate for the type w1 worker’s loss in matching value. However,
firm 1’s expected matching value from hiring the worker is 0.5 × 6 + 0.5 × (−5) = 0.5.
Therefore, firm 1 is not willing to pay a salary of 2 to attract the worker. Firm 1 prefers
to stay unmatched. Therefore, µ is indeed stable.

In summary, the example has two different stable matchings under the same belief.
Both firms will benefit from hiring the single worker: firm 1 derives an expected matching

9



value of 0.5 and firm 2 derives an expected matching value of 2; but once the worker is
assigned to one firm, he cannot be lured away by the other firm. In hindsight, the logic
behind the counterintuitive result is clear: it is due to a match-specific adverse selection:
players’ matching preferences are not aligned with each other, although there is nothing
non-generic about the matrix of matching values.

The purpose of this simple three-player example is to demonstrate the intuition of
stability and updating of off-stability beliefs. It is also worthwhile to connect the ob-
servation with complete-information matching. Shapley and Shubik (1971) show that a
stable matching under complete information is ex post efficient; i.e., it maximizes the to-
tal surplus. It follows immediately that all stable matchings of a given two-sided market
under complete information lead to the same total surplus, and that for generic match-
ing values, the stable matching function is unique.12 The example demonstrates that
none of these conclusions is true under asymmetric information, even though firms have
symmetric beliefs.

3.2 Consistency Restrictions of Stable Beliefs

The previous example shows that a given belief can be consistent with a stable matching.
The following three-player example shows that not all beliefs can be consistent with
stable matchings. Consequently, stability imposes joint consistency restrictions on beliefs
and matchings. In other words, stable beliefs must be an endogenous component of the
definition of stability.

There is one worker whose type is drawn from {w1, w
′
1} according to a prior belief

that assigns probability q ∈ (0, 1) to w1 and 1− q to w′1. There are two firms: f1 and f2.
The matrix of matching values is given below:

f1 f2

w1 −1, 2 −3, 5
w′1 0, 2 −4, 5

We claim that it is impossible for the matching outcome (w′1, f2), i.e., the worker of
type w′1 matching with firm 2, to ever appear with positive probability in any stable
matching. To prove this claim, note that the salary that the worker of type w′1 received
from firm 2 cannot exceed 5, and hence the worker’s payoff is at most 1 from this match.
But the type w′1 worker could propose to pair up with the unmatched firm 1 and ask for a
salary of p = 1.5, which would give him a payoff of 1.5 > 1. Firm 1 would happily accept
the proposal, knowing that it would make a positive profit regardless of the worker’s type.
Therefore, the match (w′1, f2) cannot ever appear in a stable matching.

12Generically the unmatched players are the same across all stable matchings, which is a version of
the Rural Hospital Theorem (Roth 1986) for matching games with transferable utilities.
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Similarly, it is impossible for the matching outcome (w1, f1) to happen with positive
probability in any stable matching. If (w1, f1) indeed appears in a stable matching, then
the worker’s payoff cannot exceed 1—because firm 1 will offer a salary of at most 2. The
type w1 worker could propose to pair up with the unmatched firm 2 for a salary of p = 4.5,
which would give him a payoff of 1.5 > 1. Firm 2 would accept the worker’s proposal,
knowing that it would make a positive profit regardless of the worker’s types.

Thus we conclude that only the matching outcome (w1, f2) or (w′1, f1) can possibly
appear in any stable matching. But then there is a full separation of worker types in these
two outcomes, irrespective of the distribution from which the worker’s type is drawn—
the consistent belief must be such that it assigns probability 1 to w1 when the worker is
matched with firm 2, and that it assigns probability 1 to w′1 when the worker is matched
with firm 1. Thus stability forces the stable belief to be fully separating, and consequently
the resulting matching is stable and efficient as if there were complete information.

Together, our two examples make clear that a priori restrictions on stable beliefs are
problematic. Stability imposes endogenous restrictions on beliefs. The uniqueness of the
stable belief in the second example is an implication of the specification of the matching
values, which are the primitives assumed in the model. For general problems, it is pos-
sible that multiple beliefs and matchings are consistent. A common approach to dealing
with equilibrium multiplicity in non-cooperative game theory is refinement. There are
other reasons for multiplicity that cannot be easily refined away—the cooperative frame-
work of stability is free of restrictive non-cooperative game forms. Instead of working
with refinement, we choose an approach of showing robust properties of stability despite
potential multiplicity.

4 The Model

The model is based on the matching games studied by Crawford and Knoer (1981).
Let I be a set of n workers, and J be a set of m firms. Let Wi be a finite set of
types for worker i. Worker i’s type wi ∈ Wi is his private information. Denote by
w = (w1, ..., wn) ∈ W = ×ni=1Wi a profile of private types for the n workers. Firm j’s
type is commonly known which is summarized by j. Similarly, each worker i can also
have publicly observable, payoff-relevant attributes which are summarized by i.

Let aij (wi) ∈ R and bij (wi) ∈ R be the matching values worker i (with type wi) and
firm j receive, respectively, when firm j hires worker i.13 To ease notation, for a profile
of workers’ types w = (wi, w−i) ∈ W , we write aij (w) := aij (wi) and bij (w) := bij (wi).

13This formulation is general. For instance, it captures the case of aij (wi) = ui (wi, ti, fj) , where ti
is worker i’s observable characteristic and fi is firm j’s observable type, and there is no restriction on
the dimensionality of (wi, ti, fj) .
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We normalize the matching values of unmatched players to 0 and, with a slight abuse of
notation, we write them as aii (w) = bjj (w) = 0. With this notation, a matching game is
fully summarized by the matching value function (a, b) : I × J ×W → R2.

A matching is a one-to-one function µ : I ∪ J → I ∪ J such that the following holds
for each i ∈ I and j ∈ J : (i) µ (i) ∈ J ∪ {i}, (ii) µ (j) ∈ I ∪ {j}, and (iii) µ (i) = j if
and only if µ (j) = i. Here µ (i) = i means that worker i ∈ I is unmatched; likewise for
µ (j) = j ∈ J .

Let pij ∈ R be the transfer that worker i receives from firm j. A transfer scheme p
associated with a matching function µ is a vector that specifies a transfer piµ(i) ∈ R for
each i ∈ I and pµ(j)j ∈ R for each j ∈ J, where pii = pjj = 0. If worker i and firm j are
matched together with a transfer pij when the profile of workers’ types is w, worker i’s
and firm j’s ex post payoffs are aij (w) + pij and bij (w)− pij, respectively.

A firm’s belief over the profiles of workers’ types is a probability measure β ∈ ∆ (W ).
Denote by βi the marginal probability measure of β over worker i’s types. If β (w) =
×ni=1βi (wi) for all w = (w1, ..., wn) ∈ W , we say that the belief β is independent over
individual workers’ types.

Definition 1 A matching with asymmetric information is a triple (µ,p, β) that consists
of a matching function µ, a transfer scheme p associated with µ, and a belief β.

Given a matching (µ,p, β), we ask whether any individual, or firm-worker pair, has
incentives to deviate, in other words, whether the matching is stable. Before proceeding
to the formal definition, we shall clarify several components of the environment.

Observables. Players’ identities i ∈ I and j ∈ J summarize all of their publicly
observable attributes. We assume that p and µ are publicly observable.14 In fact, as
shall become clear later on, because only uninformed firms need to make inferences from
observables, technically speaking, it suffices to assume that they are public to firms,
whereas workers observe only matches and prices in their own matches. The matching
function µ : I ∪ J → I ∪ J, a function from observables to observables, specifies a set
of distinct matched pairs of players. The workers’ private types w = (w1, ..., wn) are
not made public in a match, and firms form a belief β about w. Hence, β and µ induce
a (random) assignment of workers’ types to firms, (i, wi) 7→ j, and a firm’s inference
on workers’ private types wi from the matching of i and j is the key component in the
definition of stability. For this reason, defining a matching as an assignment of workers’
types to firms, (i, wi) 7→ j, makes no difference than µ.

Common beliefs. All firms share the same beliefs β about the workers’ types,
because all firms observe exactly the same information: the set of matched pairs, the

14See Salanié (2015) for a discussion of the role of observable transfers and matchings from an empirical
perspective.
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transfer within each pair, and the firms’ own publicly observable types. Implicitly, we
assume that there is a common prior in the background (it is shared by the players but
need not be observed by the analyst). Section 7.1 extends the notion of matching and
stability to the environment where uninformed players observe private signals and have
private beliefs.

We refrain from discussing the common prior assumption or the existence of a “prior
stage” of a game. Interested readers may refer to Aumann (1998) and Gul (1998). The
requirement of common stable belief in this case is no different from that of standard
equilibrium concepts for non-cooperative games where uninformed players observe iden-
tical information and hence have common equilibrium beliefs. Consequently, β should
not exclude the true states. Note also that beliefs on w can be correlated with observable
characteristics summarized by (i, j). Since these characteristics are observed by all firms,
the dependence of β on them should not be confused with the commonality of β.

Matching payoffs. In a matching (µ,p, β), firm j ∈ J is assigned a worker µ (j), but
the firm does not observe w = (w1, ..., wn). Therefore, from firm j’s perspective, aiµ(i) (·)
and bµ(j)j (·) are random variables defined on the state space W. Firm j’s expected payoff
from the matching is Eβ

[
bµ(j)j

]
− pµ(j)j. Worker i knows his own type wi and hence he

knows his ex post payoff aiµ(i) (·) + piµ(i), although he is uncertain about other workers’
payoffs.

Correlated beliefs. There is no reason to assume that the workers’ types in a stable
matching are i.i.d. Indeed, the example in Section 3.2 shows that such a restriction is not
only unfounded but also problematic. As we shall see in Proposition 2, for the assignment
games studied by Shapley and Shubik (1971), an important class of matching games,
beliefs over individual workers in a stable matching are generally not identical. However,
if the workers’ private types are drawn independently from some prior distribution, then
it would make sense to assume that the stable belief β ∈ ∆ (W ) is a product probability
measure, i.e., β (w) = ×ni=1βi (wi) for all w ∈ W. More generally, correlated beliefs add
an interesting twist to the definition of stability. Suppose that a firm j, whose assigned
partner is µ (j) from the matching (µ,p, β), contemplates a deviation with firm i 6= µ (j).
The firm needs to compare its payoffs from matching with i and with µ (j). The presence
of belief correlation means that if the firm makes any inference on worker i’s type (from
i’s willingness to deviate), it will revise its belief about its assigned worker µ (j) as well.

5 Stability

Stability defines the consistency between matching outcomes (µ,p) and belief β. The first
consistency requirement is that the belief β be such that each uninformed player finds
the matching (µ,p) individually rational in the expected utility sense with respect to this
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belief and assigns positive probability only to those types with which the informed player
finds the matching individually rational.

Definition 2 A matching (µ,p, β) is individually rational if aiµ(i) (w) + piµ(i) ≥ 0 for all
i ∈ I and all w in the support of β, and Eβ

[
bµ(j)j

]
− pµ(j)j ≥ 0 for all j ∈ I.

The second consistency requirement is that the belief β is correct in the sense that
either it excludes any types of any informed player with which the player has incentives
to join a blocking pair, or its updated off-stability belief induces the uninformed player to
turn down any blocking opportunity. The key is to define the notion of pairwise blocking.

If worker i and firm j 6= µ (i) were to form a coalition with a transfer p to block
the candidate matching—we denote this coalitional deviation by (i, j, p)—it must be that
both players expect to be better off. Worker i knows his own type, so for him to join the
deviation (i, j, p), we must have aij (w) + p > aiµ(i) (w) + piµ(i) where the true type profile
is w = (w1, ..., wn). Let Dijp be the set of w’s with which worker i finds the deviation
(i, j, p) profitable, i.e.,

Dijp =
{
w ∈ W : aij (w) + p > aiµ(i) (w) + piµ(i)

}
.

Here Dijp takes the form of Di ×W−i for some Di ⊂ Wi.
Knowing that worker i is willing to join the deviation (i, j, p), firm j updates its belief

from β (·) to β (·|Dijp) using Bayes’ rule.15,16 Therefore, firm j’s expected payoff from the
deviation (i, j, p) is

Eβ [bij|Dijp]− p. (1)

Firm j will compare this payoff with its payoff from matching with µ (j) at pµ(j)j in
the given matching. Again, worker i’s willingness to join the deviation (i, j, p) is the new
information that leads firm j to reassess the matching payoff with µ (j) using the updated
belief β (·|Dijp), because the types of worker i and µ (j) could be correlated under β. The
firm’s expected payoff from its original matching, under the new information, is

Eβ
[
bµ(j)j|Dijp

]
− pµ(j)j. (2)

15Our introduction of the blocking pair may seem to suggest a game form in which the worker first
proposes to the firm, and then the firm updates its belief and responds. This is just one way to interpret
the formation of a blocking pair. Indeed, in deciding whether to join a coalition, a player must condition
on the event that a coalition is formed (and hence beneficial to the other player). This is similar to the
winner’s curse logic in auctions with interdependent values: a player computes his bid conditional on the
information revealed by the event that he is a winner.

16As explained in the Introduction, this conditional belief is an “off-stability belief” when β is a “stable
belief.” The updating does not discriminate types in Dijp; this is similar to the idea of credible belief
updating proposed by Grossman and Perry (1986) in signaling games and the idea of off-equilibrium
beliefs used by Rothschild and Stiglitz (1976) and Wilson (1977) in competitive insurance applications.
Further refinement or coarsening of beliefs can be considered, but the issue is beyond the scope of the
present paper.
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It is likely that the expected payoff computed with the updated belief in (2) is negative,
in which case, firm j would no longer find it individually rational to matching with worker
µ (j) . Therefore, (1) being strictly larger than (2) does not ensure that firm j will join
the deviation (i, j, p). The deviation (i, j, p) is feasible only if

Eβ [bij|Dijp]− p > max
{

0,Eβ
[
bµ(j)j|Dijp

]
− pµ(j)j

}
. (3)

It is tempting to argue that the matching (µ,p, β) is invalidated as long as (2) is
negative because firm j will reject the assigned worker µ (j), and, therefore, that the
“max” operator in (3) is unnecessary for the notion of blocking of a matching. This
argument is flawed. There are two cases under which (3) is violated. The first case
is when (2) is larger than (1) . This is the obvious case where (i, j, p) does not form
a blocking coalition. The second case is when (2) < (1) ≤ 0. In this case, worker
i’s incentive to work with firm j reveals to firm j that it should fire its worker µ (j).
However, worker i understands that he will not be hired by firm j even after the firm
fires its worker (because worker i knows the stable belief β and can replicate firm j’s
calculation). Therefore, worker i has no incentive to join the blocking in the first place.
One might be tempted to argue that firm j can still pay worker i for the purpose of
deducing information from him even though the worker will not be hired. But then all
types of worker i would want to obtain the payment without matching with firm j, and
hence no information would be revealed.

Definition 3 A matching (µ,p, β) is blocked by (i, j, p) ∈ I × J × R if β (Dijp) > 0 and

Eβ [bij|Dijp]− p > max
{

0,Eβ
[
bµ(j)j|Dijp

]
− pµ(j)j

}
,

where
Dijp =

{
w ∈ W : aij (w) + p > aiµ(i) (w) + piµ(i)

}
.

An observation is that the blocking by the coalition (i, j, p) may reveal information
about worker i′ 6= i, when β is not independent, and hence could trigger a further devi-
ation by (i′, j′, p′). This is indeed a possibility, but further blocking would not make a
difference for our purpose, because the matching would already be invalidated as long as
there is one blocking possibility.17 We now summarize the definition of stability.

Definition 4 A matching (µ,p, β) is stable if it is individually rational and is not blocked
by any (i, j, p) ∈ I × J × R. If (µ,p, β) is a stable matching, we say that β is a stable
belief that supports the observable matching outcome (µ,p).

17This should not be confused with the notion of farsightedness; see, e.g., Dutta and Vohra (2017). In
addition, deviations simultaneously involving multiple workers and firms can be relevant, when opportu-
nities for pairwise blocking do not exist and opportunities for blocking by larger coalitions do, regardless
of whether β is independent or not. We shall define this core concept in Section 7.2.
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If (µ,p, β) is stable, and β assigns probability 1 to some type profile w, then by
individual rationality (Definition 2), aiµ(i) (w) + piµ(i) ≥ 0 and bµ(j)j (w) − pµ(j)j ≥ 0 for
all i ∈ I and j ∈ J. In addition, there is no (i, j, p) such that

aij (w) + p > aiµ(i) (w) + piµ(i) and bij (w)− p ≤ bµ(j)j (w)− pµ(j)j.

This says that (µ,p) is stable when there is complete information about worker type
profiles w as defined by Crawford and Knoer (1981). Thus, Definition 4 generalizes the
standard notion without asymmetric information. The existence of a stable matching is
immediate: let β assign probability 1 to any type profile w, and let (µ,p) be the complete-
information stable matching under w; then (µ,p, β) satisfies Definition 4. However, it
is not true that any β ∈ ∆ (W ) can be a stable belief that supports some (µ,p), as
demonstrated in Section 3.2; otherwise, the notion of stability would be powerless.

Our goal however is not about existence. Instead, we would like to find robust prop-
erties of all stable matchings of a matching problem. To put it differently, we want to
uncover the restrictions stability imposes on the relationship between the observables
(µ,p) and the distribution of unobservables given by the stable belief β. Although µ is
a function from observables to observables, which alone does not impose a useful restric-
tion, µ together with β determines the matching of types. To go beyond the inequalities
that define stability, we need to look deeper into the payoff structures of the game.

A matching game is fully summarized by its matching value function (a, b) : I × J ×
W → R2. The following result summarizes the general properties of stable matching and
stable beliefs. All omitted proofs are in Appendix.

Proposition 1 A stable matching exists for each matching game (a, b) , and the corre-
spondence from (a, b) to the set of stable matchings is upper hemicontinuous.18 Further-
more, consider any vector of non-negative real numbers (λ1, ..., λK) such that∑K

k=1 λ
k = 1.

The following convexity properties hold:
(i) If (µ,pk, β) is stable for k = 1, ..., K, and β is independent, then (µ,∑K

k=1 λ
kpk, β)

is stable.
(ii) If (µ,p, βk) is stable and βk is independent for k = 1, ..., K, then (µ,p,∑K

k=1 λ
kβk)

is stable.
(iii) If (µ,p) is a complete-information stable matching when the profile of workers’

types is known to be wk for each k = 1, ..., K, then (µ,p, β) is a stable matching for any
belief β with support {w1, ..., wK}.

18A sequence of matchings (µ,pk, βk) converges to (µ,p, β) if pk → p in the Euclidean metric and
βk → β if βk (w) → β (w) for all w ∈ W. It is without loss of generality to ignore the convergence
of matching functions µk → µ in the discrete topology since the set of players is finite. A sequence
of matching games (ak, bk) converges to (a, b) if (ak

ij (w) , bk
ij (w)) → (aij (w) , bij (w)) in the Euclidean

metric for all w ∈W, i ∈ I, and j ∈ J.
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In the definition of blocking pairs, we work with conditional beliefs of the form
β (·|Dijp), where Dijp, the set of worker types that find (i, j, p) profitable, varies as p
or β changes. This feature introduces non-convexity into the problem. Therefore, the
convexity result above is different from that of complete information, and we need to as-
sume independence of β to obtain the result here. In addition, the conditional probability
measures of ∑K

k=1 λ
kβk are in general not in the convex hull of the conditional probability

measures of βk’s. Although for a fixed subset of type profiles D ⊂ W, (∑K
k=1 λ

kβk) (·|D)
is a convex combination of {βk (·|D)}, the convex combination weights vary with D and
in general (∑K

k=1 λ
kβk) (·|D) 6= ∑K

k=1 λ
kβk (·|D), as explained in the proof of Proposition

1. For this reason, it is problematic to consider (µ,∑K
k=1 λ

kpk,∑K
k=1 λ

kβk). Indeed, it
does not follow from the stability of (µ,pk, βk) that (µ,∑K

k=1 λ
kpk,∑K

k=1 λ
kβk) is stable;

it is easy to see that the latter may not even be individually rational.

6 Joint Restrictions on Beliefs and Matchings

6.1 Notions of Efficiency

Definition 5 A matching (µ,p, β) is full-information efficient if µ maximizes∑n

i=1

(
aiµ(i) (w) + biµ(i) (w)

)
over all matchings µ : I ∪ J → I ∪ J for any w in the support of β.

Full-information efficiency maximizes total surpluses, and players are given the same
weights in the calculation of social welfare. When there is complete information, Shapley
and Shubik (1971) show that a stable matching maximizes the sum of individual players’
surpluses. In the presence of asymmetric information, the criterion of full-information
efficiency is very stringent as it requires that a single matching µ maximize the sum of
individual surpluses for every realization of private types in the support of β.

It should be noted that although full-information efficiency is a strong property, sat-
isfying it is not sufficient to render asymmetric information futile. For instance, it is not
the case that whenever (µ,p, β) is full-information efficient and stable, (µ,p) is complete-
information stable for any w in the support of β. Suppose that a firm is matched, say at
a price of 0, with a worker whose type is w1 or w′1 with equal probability; the matching
values for the two types of the worker are identically 2, and the firm’s matching values
with the two types are 2 and −1, respectively. This one-firm one-worker matching is
stable, but when w′1 is known, the matching at a price of 0 is not individually rational
and hence not complete-information stable.

The following notion of efficiency is weaker than the notion of full-information effi-
ciency.

17



Definition 6 A matching (µ,p, β) is Bayesian efficient if µ maximizes

Eβ
[∑n

i=1

(
aiµ(i) + biµ(i)

)]
over all matchings µ : I ∪ J → I ∪ J.

The notion of Bayesian efficiency again requires that a matching maximize the sum
of individual surpluses. The welfare weights for different types of the same worker are
given by belief β. In a stable matching, the stable belief β is not the prior belief and
each worker knows his realized type; hence Eβ

[
aiµ(i)

]
should not be interpreted as the

(ex ante) expected payoff of worker i. But from the perspective of a planner or an analyst
(who observe the same information as the firms in our model), the stable belief is the
probability with which workers’ types appear in a stable matching, not in an arbitrary
matching. This criterion of Bayesian efficiency is thus appealing and useful in evaluating
the matching outcome that has reached a stable situation. However, as it is possible
that the same matching outcome is stable under multiple beliefs, a conceptual problem
arises as to which belief we should use to assess the efficiency of the matching. We avoid
this problem by find conditions on the payoff of matching games under which all stable
matchings are Bayesian efficiency with respect to all of their corresponding stable beliefs.
We do sometimes make the assumption that β being independent.

By definition, if (µ,p, β) is full-information efficient, then it is Bayesian efficient, but
not the other way around. Section 3.1 provides an example in which stability satisfies
neither efficiency criterion. Section 3.2 offers an example in which stability implies full-
information efficiency and hence Bayesian efficiency. In the following example, there are
multiple stable matchings, and only one of them is Bayesian efficient.

Example 1 Consider two workers and two firms. Suppose that β = β1 × β2, where
β1 (w1) = β1 (w′1) = β2 (w2) = β2 (w′2) = 1

2 . The value matrix is as follows:

f1 f2

w1 0, 0 0, 0
w′1 −2, 5 −2, 0
w2 −3, 0 −3, 4
w′2 −4, 9 −4, 4

The first stable matching is as follows: firm 1 is matched with worker 1 at a price of
2, and firm 2 is matched with worker 2 at a price of 4. The second stable matching is
as follows: firm 1 is matched with worker 2 at a price of 4, and worker 1 and firm 2
are unmatched. But the two outcomes differ in total surpluses. Only the second one is
Bayesian efficient.
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6.2 Stability and Efficiency

We now turn to economic assumptions on the matching values (a, b). Our payoff as-
sumptions bring the model closer to the incomplete-information version of Shapley and
Shubik (1971), but our model, which includes both multiple-object auctions and adverse
selection problems as special cases, is more general.

An example of Shapley and Shubik (1971) is assigning houses with existing owners to
new buyers. The owners each have a reservation value that depends only on the quality
of their houses, not on the buyers’ characteristics, whereas the buyers do care about the
matching of houses and their own attributes. With asymmetric information, it matters
which side of the market possesses private information. Our model with workers and
firms is rich enough: we can interpret the problem as either allocating job positions to
workers, i.e., firms are job (house) owners in the language of Shapley and Shubik (1971),
or allocating workers to firms, i.e., workers are labor (house) owners. That is, the workers
in our model can be interpreted as either “house owners” or “house buyers.” Therefore,
it is without loss of generality to consider the case where it is always the workers’ side
that has private information, as in our main model.

6.2.1 Benchmark: Full-Information Efficiency

Assumption 1 bij (w) = bij (w′) for any w,w′ ∈ W, i ∈ I and j ∈ J.

Assumption 1 says that the uninformed player j’s matching value bij is independent
of the informed player i’s private types, although it can vary with their observable types
that are summarized by i and j. A special case is bij (·) ≡ 0, where the uninformed
players care only about the transfers, and a privately informed player values the types
of both players in a match (aij (·) + p). One application of this setting is multiple-object
auctions in which privately informed bidders (workers) acquire heterogeneous objects
(jobs). We do not make any restrictions on aij, although in auction applications, the
bidder’s valuation aij (w) is usually positive. Under Assumption 1, bij can vary with j,
which can be interpreted as the object owners’ heterogeneous reservation values.

We show in the following result that full-information efficiency is obtained under
Assumption 1. This result is easy to understand. We know from the auction literature
that under this assumption a Vickrey–Clarke–Groves mechanism implements ex post
efficient allocations. Our stability notion conforms to this classic result.

Proposition 2 Suppose that Assumption 1 holds. Then a matching (µ,p, β) is stable
if and only if (µ,p) is a stable matching for any w in the support of β. Hence a stable
matching (µ,p, β) is full-information efficient.
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6.2.2 Bayesian Efficiency

Assumption 2 aij (w) = aij (w′) for any w,w′ ∈ W, i ∈ I, and j ∈ J.

Assumption 2 says that aij (w) = h (i, j) for some function h. There is no restriction
on bij (·). That is, the privately informed players do not directly care about their own
types, which are payoff-relevant for the uninformed players (the informed parties care
about their types indirectly because they affect the matching outcomes).

A special case of Assumption 2 that is of applied interest is that aij (·) ≡ 0. This
case captures a labor market in which workers care only about the salaries they receive
(aij (·) + p = p), while firms value the workers’ private types (bij (·)− p).

A different assumption is that all public and private attributes are directly payoff-
relevant for the informed players, but aij (w) is separable in w and j:

Assumption 3 aij (w) = g (i, w) + h (i, j) for some functions g and h.

A special case of Assumption 3 is the following familiar assumption adopted in many
classic adverse-selection models such as signaling and screening.

Assumption 4 aij (w) = aij′ (w) for any w ∈ W, i ∈ I, and j, j′ ∈ J.

This is to say, a worker does not value which firm he works for, but his own types
may affect his reservation utilities or costs of effort, etc. This assumption allows aij (w)
to vary with the worker’s private type w and the worker’s identity i, which summarize
all of his observable attributes, but the value is not allowed to vary with the firm’s type,
which is summarized in j.

The following result shows that Bayesian efficiency of stable matchings obtains under
Assumptions 2 or 3.

Proposition 3 A stable matching (µ,p, β) is Bayesian efficient if one of the following
properties is satisfied:

(i) Assumption 2 holds.
(ii) Assumption 3 holds and workers are fully matched: µ (i) 6= i for all i ∈ I.
(iii) Assumption 3 holds, aij (·) and bij (·) are co-monotonic19 in wi for all i ∈ I and

j ∈ J, and β is independent.

Under condition (i), all stable matchings of a given game must be Bayesian efficient
with respect to their respective stable beliefs. Bayesian efficiency under condition (ii)

19We say that aij (·) and bij (·) are co-monotonic in wi if there exists a linear order on Wi such that
both aij (·) and bij (·) are non-decreasing in wi. This linear order naturally extends to W . It is allowed
that one of these two functions is strictly increasing and the other is constant over a subset of Wi. Since
the linear order is arbitrary, it does not matter whether we require the two functions to be non-decreasing
or non-increasing.
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above can be restated as follows: if Assumption 3 holds, then constrained Bayesian
efficiency obtains for all stable matchings if the welfare comparison is restricted only to
matched agents. It is easy to come up with assumptions to ensure that the short side
of the market is fully matched. The co-monotonicity in condition (iii) is an appealing
property. In the special case where wi is a real variable that measures the worker’s ability
with the natural order of “greater than or equal to,” aij (w) can be interpreted as worker
i’s disutility from work and bij (w) as the worker’s output at the firm. The monotonicity
of aij and bij says that the worker’s disutility is decreasing in his ability and his output
is increasing in his ability. Note that the co-monotonicity condition in condition (iii) is
more general than this simple interpretation: the orders over W with respect to which
aij and bij are monotonic can vary with i and j.

The proof utilizes a duality characterization of Bayesian efficiency. The subtlety arises
because surplus maximization (as well as its dual minimization problem) involves uncon-
ditional expected payoffs Eβ [aij] and Eβ [bij], whereas stability must involve deviations of
individual types w in the support of β as well as conditional expected payoffs conditional
an arbitrary deviation. The three conditions are used to overcome this discrepancy.

The following two examples show, respectively, that the full-match restriction in con-
dition (ii) and the independent belief assumption in condition (iii) are tight.

Example 2 There are two workers and one firm. Worker 1’s types are w1 and w′1.Worker
2’s type is w2. Suppose that the matching values before transfers are made are as follows:

w1 w′1 w2

−1, 5 1,−2 0, 1

Here (−1, 5) means that by matching with the firm, worker 1 of type w1 obtains a payoff
of −1, and the firm obtains a payoff of 5. Suppose the firm assigns equal probabilities
to w1 and w′1. This belief β supports a stable matching in which the firm hires worker 2
at a price of 0 and the total surplus is 1. This matching is stable because any deviation
acceptable to the firm must involve worker 1 of type w1, and the price must be at least 1
which attracts both types of worker 1. So the firm’s expected payoff would be bounded
above by 0.5, lower than what it gets in the matching with worker 2.

This stable matching is not Bayesian efficient. Bayesian efficiency requires that the
firm be matched with worker 1, and that the weighted total surpluses be 1.5. But this
efficient matching is not stable with belief β for any transfers. To see this, note that the
firm must pay at least 1 to worker 1 and its expected payoff is at most 0.5. But the firm
can switch to the unmatched worker 2 to obtain a larger payoff.

In this example, the firm needs to pay a high price to recruit worker 1 of type w1

(which is more productive for the firm), but transfers between players are not counted
toward the social surplus. Thus the example illustrates the conflict of incentives and
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Bayesian efficiency. Note also that the matching values are co-monotonic in the worker’s
types.

Example 3 Consider a market with two workers and one firm. The matching values of
each worker and the firm are co-monotonic, and are as follows:

w1 w1 w2 w2

(0.5, 5) (1, 6) (−2, 4) (−1.9, 12)

Suppose the firm’s belief is such that β (w1, w2) = β (w1, w2) = 1
2 . This belief is not

independent. Bayesian efficiency requires that the firm be matched with worker 1, with
an expected total surplus of 6.25. However, this belief supports the following inefficient
stable matching: the firm hires worker 2 at a price of 2. In this stable matching, the firm’s
expected payoff is 6 and the total surplus is 6.05. To see that this matching is stable,
notice that if the firm joins a deviating coalition with both types of worker 1, or with
only type w1, its expected payoff is strictly lower than 6. If the firm deviates with type
w1, the most it can get is 7, but when worker 1 is type w1, worker 2 must be type w2,

from which the firm gets a much larger payoff.

7 Discussion and Extension

The main purpose of this paper is to provide a definition of stability in two-sided markets
with asymmetric information. Specifically, we point out that stable beliefs must be a
component of this definition. There are several ways in which future work can build on
this model.

First of all, refinements of off-stability beliefs are natural research questions. It should
be emphasized that, without a more structured model, it is unclear whether a further re-
finement of off-stability beliefs will make blocking easier or not. For instance, the worker
type that has the strongest incentive to deviate might be the firm’s least preferred type.
Second, the assumption of perfectly transferable utility is important for our result of
efficiency; it will be interesting to consider imperfectly transferable utilities or costly sig-
naling that must entail some inefficiency. Third, if we consider a model with a continuum
of agents with no aggregate uncertainty, stable beliefs must be further restricted, and
some strong implications of stability could be obtained. In what follows, we shall offer
two other extensions which we regard as important.

7.1 Private Beliefs

In our model, firms share a common belief in a matching, which is reasonable because
all firms are assumed to observe the same thing. A natural question is to model private
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observations of the uninformed players and their private beliefs. The approach introduced
in this paper can be extended to this richer environment.

7.1.1 Modeling Private Beliefs with Private Signals

Let Sj be the finite set of signals of firm j ∈ J. We denote by s = (s1, ..., sm) the
profile of signals of the m firms, and write S = ×j∈JSj. Firm j observes its own signal
sj ∈ Sj, but is uncertain about workers’ types w = (w1, ..., wn) and other firms’ signals
s−j = (s1, ..., sj−1, sj+1, ..., sm). The firm’s private belief, as a function of sj, should be an
endogenous object defined in stability, just as the stable belief studied in previous sections.
Let us write this belief as σ (·|sj). With the usual abuse of notation, we treat σ (·|sj) as
a probability measure in ∆ (W × S), with the understanding that it is degenerate on Sj.

We assume that all firms’ beliefs are consistent in the following sense: the types of the
n workers and the signals of the m firms, (w, s), follow a common probability measure
σ ∈ ∆ (W × S), and hence firm j’s private belief over the type profiles of all workers
and the signal profiles of all firms should be updated from σ. That is, after observing
sj, firm j’s private belief σ (·|sj) ∈ ∆ (W × S) is the conditional probability measure
σ (·|W × {sj} × S−j).

To ease notation, we write σ (w) as σ ({w} × S), write σ (sj) as σ (W × {sj} × S−j),
write σ (w|sj) as σ ({w} × S|sj), and write σ (wi|sj) as σ ({wi} ×W−i × S|sj).

Definition 7 A matching with private signals is a triple (µ,p, σ), where µ : I∪J → I∪J
is a matching, p is a price scheme associated with µ, and each firm j ∈ J has a private
belief σ (·|sj) ∈ ∆ (W × S) when its private signal is sj ∈ Sj. We say that a belief σ is
independent if σ (w|sj) = ×i∈Iσ (wi|sj) for all w ∈ W , sj ∈ Sj, and j ∈ J.

7.1.2 Stability with Private Beliefs

We shall define the stability of (µ,p, σ) as the consistency between the matching outcome
(µ,p) and the system of beliefs (σ (·|sj))sj∈Sj ,j∈J . We write as

Eσ [bij|sj] =
∑
w∈W

bij (w)σ (w|sj)

firm j’s expected matching value when matched with worker i conditional on observing
a private signal sj.

Definition 8 A matching with private signals (µ,p, σ) is individually rational if aij (w)+
piµ(i) ≥ 0 for any w such that σ (w) > 0 and Eσ [bij|sj] − pµ(j)j ≥ 0 for all sj such that
σ (sj) > 0.
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Let Dijp =
{
w : aij (w) + p > aiµ(i) (w) + piµ(i)

}
be a set of types such that worker i

prefers to deviate to firm j at a price p rather than stay in the candidate matching with
µ (i). Observing this event Dijp, firm j with a private belief σ (·|sj) will update its belief
to σ (·|sj, Dijp) by Bayes’ rule. We denote by Eσ [bij|sj, Dijp] the expectation of bij (·)
with respect to belief σ (·|sj, Dijp).

Definition 9 A matching with private signals (µ,p, σ) is blocked by (i, j, p) ∈ I × J ×R
if σ (Dijp) > 0 and

Eσ [bij (w) |sj, Dijp]− p > max
{

0,Eσ
[
bµ(j)j (w) |sj, Dijp

]
− pµ(j)j

}
for some sj such that σ (sj) > 0, where

Dijp =
{
w : aij (w) + p > aiµ(i) (w) + piµ(i)

}
.

Since workers have no uncertainty about payoff-relevant parameters, their incentives
to deviate are formulated the same way as in the case of no private signals. A firm’s
incentive is slightly more complicated. The definition above requires that firm j want to
deviate for some sj in the support of σ, but not for all sj. This is a reasonable requirement.
As long as the firm wants to deviate for some realization of its private signals not ruled
out by the belief σ, the matching should be considered blocked. If a matching is not
blocked by (i, j, p), then it must be that either σ (Dijp) = 0 or

Eσ [bij|sj, Dijp]− p ≤ max
{

0,Eσ
[
bµ(j)j|sj, Dijp

]
− pµ(j)j

}
for all sj such that σ (sj) > 0.

Definition 10 A matching with private signals (µ,p, σ) is stable if it is individually
rational and is not blocked by any (i, j, p) ∈ I × J × R. If (µ,p, σ) is stable, we say that
σ ∈ (W × S) is a stable belief that supports the observable matching outcome (µ,p).

7.1.3 Exogenous Restrictions on Stable Beliefs

The definition of stable beliefs in Definition 10 is general and flexible; depending on
applications, context-specific restrictions can be imposed on stable beliefs in addition
to consistency. We present two examples to illustrate this point. In some applications,
firms observe some attributes of their own workers after a match is formed. To model
this partial observability, let Wi = W 1

i ×W 2
i , where the set W 1

i denotes the attributes
observable to worker i’s employer, and W 2

i denotes the unobservables. For each j ∈ J,
write as

Sj =

 W 1
µ(j) if µ (j) 6= j

{∅} otherwise
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the set of private signals observed by firm j. Firms’ partial observation of their own
workers require that the support of σ be{

(w, s) ∈ W × S : w1
µ(j) = sj for each j 6= µ (j)

}
.

In this example, the signal space depends on the observable matching function µ.
In some other applications, every firm in a cohort knows the types of workers in a

cohort. To model the cohorts of players, we define partitions J = ∪Kk=1Jk and I = ∪Kk=1Ik;
to model the feature that each cohort Jk observes the types of cohort Ik, we let Sj =
×i∈Ik

Wi for each j ∈ Jk and require that the support of σ be{
(w, s) ∈ W × S : (wi)i∈Ik

= sj for each j ∈ Jk and k = 1, ..., K
}
.

7.1.4 Efficiency

We now turn to the notion of efficiency, which imposes joint restrictions on µ and σ.

Full-information efficiency is defined exactly as in Definition 5. Proposition 2 still holds
because under Assumption 1 private signals provide no payoff-relevant information.

With the understanding that Eσ [aij] = ∑
s∈S

∑
w∈W aij (w)σ (w, s) and Eσ [bij] =∑

s∈S
∑
w∈W bij (w)σ (w, s), the expected total surplus with respect to belief σ from a

matching (µ,p, σ) can again be written as

Eσ
[∑n

i=1

(
aiµ(i) + biµ(i)

)]
.

Hence the notion of Bayesian efficiency in Definition 6 immediately carries over here.

Definition 11 A matching with private signals (µ,p, σ) is Bayesian efficient if µ maxi-
mizes

Eσ
[∑n

i=1

(
aiµ(i) + biµ(i)

)]
over all matchings µ : I ∪ J → I ∪ J.

It should be noted that Assumptions 2 and 3 in Proposition 3 are about aij (w), and
hence Proposition 3 continues to hold. Nevertheless, the exposition of the proof needs to
be adjusted because a blocking condition is defined for each sj.

7.2 Core: Beyond Pairwise Deviations

In our notion of stability, a deviation involves at most two agents, one from each side
of the market. Pairwise deviations are natural in two-sided markets. Conceptually, it is
interesting to consider deviations by a coalition of multiple firms and multiple workers.
This leads us to consider the concept of the core. In complete information matching
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games, the core and stability coincide, as established by Shapley and Shubik (1971).
However, the two concepts differ under asymmetric information.

As before, beliefs should still be a component of the definition of the core. Given a
matching (µ,p, β), individual rationality with respect to belief β is defined in Definition
2. Consider the following deviation. A subset of workers Ī ⊂ I and a subset of firms J̄ ⊂
J walk away from the given matching and rematch among themselves with a matching
function µ̄ : Ī ∪ J̄ → Ī ∪ J̄ and a transfer scheme p̄ =

(
p̄iµ̄(i)

)
i∈Ī

.20 They block the
matching if each of them is strictly better off from this rematching, conditional on the
information revealed by their agreement to participate in the deviation; again, there is
no timing issue as to when the information is revealed, because each player, in evaluating
his expected payoff from joining the coalition, must condition on the (anticipated) event
that the coalition will be formed, i.e., everyone’s agreeing to join the coalition.

Definition 12 A matching (µ,p, β) is blocked by a coalition
(
Ī , J̄ , µ̄, p̄

)
if β (D) > 0

and
Eβ
[
bµ̄(j)j|D

]
− p̄µ̄(j)j > max

{
0,Eβ

[
bµ(j)j|D

]
− pµ(j)j

}
(4)

for all j ∈ J̄ , where

D =
{
w ∈ W : aiµ̄(i) (w) + p̄iµ̄(i) > aiµ(i) (w) + piµ(i) for all i ∈ Ī

}
.

In this definition, D is the set of workers’ types (w1, ..., wn) with which all workers in
Ī find the rematch profitable. The “max” operator in the definition of a firm’s blocking
needs a remark. The definition excludes the possibility of µ̄ (j) = j for some j ∈ J̄

because otherwise the left-hand side of (4) becomes Eβ
[
bµ̄(j)j|D

]
− p̄µ̄(j)j = 0. But this

exclusion is without loss of generality because an unmatched firm j does not contribute
any information or value to the blocking by other players.

We summarize the definition of the core below.

Definition 13 A matching (µ,p, β) is in the core if it is individually rational and is not
blocked by any coalition

(
Ī , J̄ , µ̄, p̄

)
, where Ī ⊂ I, J̄ ⊂ J , µ̄ : Ī∪ J̄ → Ī∪ J̄ is a matching,

and p̄ =
(
p̄iµ̄(i)

)
i∈Ī

is a transfer scheme. If (µ,p, β) is in the core, we say that β is a core
belief that supports the observable matching outcome (µ,p).

If (µ,p, β) is in the core, then it is not blocked by any coalition including a pairwise
deviation (i, j, p) ∈ I × J × R; therefore, it is stable. It is immediate that the core is a
refinement of the concept of stability, and hence our previous results on efficiency still
hold for the new solution concept.

20We can further generalize the notion so that a player receives payment from someone outside of his
own match.
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Proposition 4 If (µ,p, β) is in the core, then it is stable.

The reverse of Proposition 4 is not true. A stable matching is not necessarily in the
core. The following example demonstrates the subtle reason for the core being a strict
refinement of stability even when β is independent: a blocking by a larger coalition can
be found when a pairwise blocking does not exist. The example has a pair of a firm and
a worker who are matched together in the given matching, but both deviate to rematch
with other players. It is precisely its own worker’s incentive to join a deviating coalition
that reveals to the firm that its payoff from the putative matching is actually lower than
it has thought, which incentivizes the firm to rematch with the other worker; meanwhile,
the deviation of the firm’s own worker is made possible precisely for the same reason: the
other firm accepts him because the other worker’s deviation reveals information. This
coalitional deviation must simultaneously involve two pairs of workers and firms.

Example 4 Consider two workers and two firms. Suppose that β = β1 × β2, where
β1 (w1) = β1 (w′1) = β2 (w2) = β2 (w′2) = 1

2 . The matrix of matching values is as follows:

f1 f2

w1 0,−1 1, 1
w′1 0, 7 −2, 0
w2 1, 1 0,−1
w′2 −2, 0 0, 7

The following matching is stable under belief β: worker i is assigned to firm j = i, and
the salaries of both workers are 0. In this matching, the expected payoffs for both firms
are 3. To see this is stable, note that for each i = 1, 2, worker i of type wi has an incentive
to deviate to firm 3− i. But firm 3− i has no incentive to accept this worker: its payoff
from hiring the worker is at most 2.

This stable matching is not in the core. The deviation involves a rematching of both
workers when their types are wi with a transfer of 0. Given that worker i = 1, 2 finds it
profitable by switching to firm j = 3−i, both firms infer that worker i has type wi instead
of w′i. With this information, firm j = i knows that its payoff in the original matching is
actually −1. For this reason, firm i is willing to accept worker 3− i.

Appendix

A Proof of Proposition 1

A.1 Upper Hemicontinuity

Suppose that (µ,pk, βk) is a stable matching for the matching game (ak, bk), with (µ,pk, βk)→
(µ,p, β) and (ak, bk) → (a, b) as k → ∞. By the definition of stability, (µ,pk, βk) is in-
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dividually rational, i.e.,

akiµ(i) (w) + pkiµ(i) ≥ 0 if βk (w) > 0

and ∑
w∈W

βk (w) bkµ(j)j (w)− pkµ(j)j ≥ 0.

Taking the limit k →∞, it follows immediately that

aiµ(i) (w) + piµ(i) ≥ 0 if β (w) > 0

and ∑
w∈W β (w) bµ(j)j (w)− pµ(j)j ≥ 0.

That is, (µ,p, β) is individually rational for the matching game (a, b).
We would like to show that (µ,p, β) is not blocked by any (i, j, p) ∈ I × J × R. Let

Dijp =
{
w ∈ W : aij (w) + p > aiµ(i) (w) + piµ(i)

}
. (5)

Since W is finite, there exists ε > 0 such that

Dijp =
{
w ∈ W : aij (w) + p− 2ε > aiµ(i) (w) + piµ(i)

}
. (6)

Define
Dk
ij(p−ε) :=

{
w ∈ W : akij (w) + p− ε > akiµ(i) (w) + pkiµ(i)

}
.

Since (ak, bk)→ (a, b) and pk → p, it follows that there existsK1 > 0 such that if k > K1,

then ∣∣∣(akij (w)− akiµ(i) (w)− pkiµ(i))−
(
aij (w)− aiµ(i) (w)− piµ(i)

)∣∣∣ < ε (7)

for any w ∈ W. It follows that if w ∈ Dk
ij(p−ε) and k > K1, then

aij (w) + p > aiµ(i) (w) + piµ(i).

It then follows from (5) that Dk
ij(p−ε) ⊂ Dijp for k > K1. Moreover, by (6) and (7) , if

w ∈ Dijp then w ∈ Dk
ij(p−ε) for k > K1.We conclude that for any k > K1, Dijp = Dk

ij(p−ε).

Consider k > K1. Since the matching (µ,pk, βk) is stable for the matching game
(ak, bk), it is not blocked by (i, j, p− ε) ∈ I × J × R, i.e., if βk(Dk

ij(p−ε)) > 0 then∑
w∈W

βk(w|Dk
ij(p−ε))bkij(w)− (p− ε) ≤ max

{
0,
∑

w∈W
βk(w|Dk

ij(p−ε))bkµ(j)j(w)− pkµ(j)j

}
.

(8)
Note that Dijp = Dk

ij(p−ε). Since β
k → β by assumption, there exists K2 > K1 such that

β (Dijp) > 0 implies that βk (Dijp) > 0 for any k > K2.

The above condition implies that∑
w∈W

βk(w|Dijp)bkij(w)− (p− ε) ≤ max
{

0,
∑

w∈W
βk(w|Dk

ijp)bkµ(j)j(w)− pkµ(j)j

}
.
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Taking k →∞,
∑

w∈W
β(w|Dijp)bij(w)− (p− ε) ≤ max

{
0,
∑

w∈W
β(w|Dijp)bµ(j)j(w)− pµ(j)j

}
.

Hence
∑

w∈W
β(w|Dijp)bij(w)− p ≤ max

{
0,
∑

w∈W
β(w|Dijp)bµ(j)j(w)− pµ(j)j

}
.

The proof is completed.

A.2 Convexity

Since in general ∑K
k=1 λ

kβk (·|D) 6=
(∑K

k=1 λ
kβk

)
(·|D), where D ⊂ W, we first prove the

following property.

Lemma 1 Let D ⊂ W such that βk (D) > 0 for k = 1, ..., K. Let β = ∑K
k=1 λ

kβk,

where λk ≥ 0, k = 1, ..., K, and ∑K
k=1 λ

k = 1. Then there exist non-negative real numbers
α1, ..., αK with ∑K

k=1 α
k = 1 such that

Eβ [f (w) |D] =
∑K

k=1 α
kEβk [f (w) |D]

for any function f : W → R.

Proof. By definition,

Eβ [f (w) |D] =
∑

w∈D
β (w|D) f (w)

=
∑

w∈D

∑K
k=1 λ

kβk (w)∑K
k=1 λ

kβk (D)
f (w)

=
∑

w∈D

∑K

k=1
λkβk (D) βk (w|D)∑K

k=1 λ
kβk (D)

f (w) .

Define
αk = λkβk (D)∑K

k=1 λ
kβk (D)

.

By definition, αk ≥ 0 and ∑K
k=1 α

k = 1. Therefore,

Eβ [f (w) |Dijp] =
∑

w∈D

∑K

k=1 α
kβk (w|Dijp) f (w)

=
∑K

k=1 α
kEβk [f (w) |Dijp] .

This establishes the lemma.
The following lemma concerns independent stable beliefs.
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Lemma 2 Suppose that a matching (µ,p, β) is individually rational and β is indepen-
dent. Then the matching is not blocked by (i, j, p) ∈ I × J × R if β (Dijp) > 0 implies
that

Eβ [bij|Dijp]− p ≤ Eβ
[
bµ(j)j

]
− pµ(j)j,

where
Dijp =

{
w ∈ W : aij (w) + p > aiµ(i) (w) + piµ(i)

}
.

Proof. The matching is not blocked by (i, j, p) if

Eβ [bij|Dijp]− p ≤ max
{

0,Eβ
[
bµ(j)j|Dijp

]
− pµ(j)j

}
.

Since Dijp = Di × W−i for some Di ⊂ Wi, and β is independent, Eβ
[
bµ(j)j|Dijp

]
=

Eβ
[
bµ(j)j

]
. Moreover, individual rationality implies that Eβ

[
bµ(j)j

]
− pµ(j)j ≥ 0. The

conclusion follows immediately.
We proceed to prove the three desired convexity properties.
Proof of Property (i). It suffices to show that the stability of (µ,p1, β) and (µ,p2, β)

implies the stability of (µ, λp1 + (1− λ) p2, β) for each λ ∈ (0, 1) , and the conclusion fol-
lows from induction. The individual rationality of (µ, λp1 + (1− λ) p2, β) is immediate.

Define

Dijp (λ) =
{
w ∈ W : aij (w) + p > aiµ(i) (w) + λp1

iµ(i) + (1− λ) p2
iµ(i)

}
.

Then

Dijp (λ) =
{
w ∈ W : aij (w) + p−

(
λp1

iµ(i) + (1− λ) p2
iµ(i)

)
+ p1

iµ(i) > aiµ(i) (w) + p1
iµ(i)

}
=

{
w ∈ W : aij (w) + p−

(
λp1

iµ(i) + (1− λ) p2
iµ(i)

)
+ p2

iµ(i) > aiµ(i) (w) + p2
iµ(i)

}
.

By the stability of (µ,p1, β) and (µ,p2, β), we have

Eβ [bij|Dijp (λ)]−
[
p−

(
λp1

iµ(i) + (1− λ) p2
iµ(i)

)
+ p1

iµ(i)

]
≤ max

{
0,Eβ

[
bµ(j)j|Dijp (λ)

]
− p1

µ(j)j

}
;

Eβ [bij|Dijp (λ)]−
[
p−

(
λp1

iµ(i) + (1− λ) p2
iµ(i)

)
+ p2

iµ(i)

]
≤ max

{
0,Eβ

[
bµ(j)j|Dijp (λ)

]
− p2

µ(j)j

}
.

Multiplying the first inequality by λ and the second inequality by 1 − λ, and then
adding them up, we obtain

Eβ [bij|Dijp (λ)]− p ≤
λmax

{
0,Eβ

[
bµ(j)j|Dijp (λ)

]
− p1

µ(j)j

}
+ (1− λ) max

{
0,Eβ

[
bµ(j)j|Dijp (λ)

]
− p2

µ(j)j

}
= Eβ

[
bµ(j)j|Dijp (λ)

]
−
(
λp1

µ(j)j + (1− λ) p2
µ(j)j

)
,

where the last equality follows from the independence of β and the individual rationality
of stable matching. Thus (µ, λp1 + (1− λ) p2, β) is not blocked by (i, j, p).
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Proof of Property (ii). Since λβ1 + (1− λ) β2 is not necessarily independent even
though β1 and β2 are independent beliefs, we cannot proceed by induction as in the
previous proof. Let β = ∑K

k=1 λ
kβk. The individual rationality of (µ,p, β) is immediate.

We only need to show that (µ,p, β) is not blocked by any (i, j, p) ∈ I × J ×R. Consider

Dijp =
{
w ∈ W : aij (w) + p > aiµ(i) (w) + piµ(i)

}
.

Suppose that β (Dijp) > 0. We need to show that

Eβ [bij|Dijp]− p ≤ max
{

0,Eβ
[
bµ(j)j|Dijp

]
− pµ(j)j

}
. (9)

To prove the claim, it is without loss of generality to assume that βk (Dijp) > 0 for each
k = 1, ..., K. By Lemma 2, the stability of

(
µ,p, βk

)
implies that

Eβk [bij|Dijp]− p ≤ Eβk

[
bµ(j)j|Dijp

]
− pµ(j)j.

Let (α1, ..., αK) be the weights obtained in Lemma 1 by setting D = Dijp. Multiplying
the previous inequality by αk and then summing over k, we obtain∑K

k=1 α
kEβk [bij|Dijp]− p ≤

∑K

k=1 α
kEβk

[
bµ(j)j|Dijp

]
− pµ(j)j.

By Lemma 1, the above inequality is equivalent to

Eβ [bij|Dijp]− p ≤ Eβ
[
bµ(j)j|Dijp

]
− pµ(j)j.

It follows immediately that inequality (9) holds.
Proof of Property (iii). Notice that δwk , the probability measure that assigns proba-

bility 1 to wk, is independent: δwk (w) = δwk
1

(w1)×· · ·×δwk
n

(wn) for all w = (w1, ..., wn) ∈
W. The claim then immediately follows from (i).

B Proof of Proposition 2

The “if” part follows from Part (iii) of Proposition 1. To prove the “only if” part, consider
a stable matching (µ,p, β) and fix a type profile w in the support of β.

By the individual rationality of (µ,p, β) , we have

aiµ(i) (w) + piµ(i) ≥ 0 for all i ∈ I (10)

and Eβ
[
bµ(j)j

]
− pµ(j)j ≥ 0 for any j ∈ J. By Assumption 1, bµ(j)j (w) is independent of

w, and hence Eβ
[
bµ(j)j

]
= bµ(j)j (w). Thus,

bµ(j)j (w)− pµ(j)j ≥ 0 for all j ∈ J. (11)

Hence, (10) and (11) imply that (µ,p) is individually rational when there is complete
information about w.
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Consider any (i, j, p) ∈ I × J × R such that aij (w) + p > aiµ(i) (w) + piµ(i). Then
Dijp 6= ∅ and β (Dijp) > 0. Since (µ,p, β) is not blocked by (i, j, p) , we have

Eβ [bij|Dijp]− p ≤ max
{

0,Eβ
[
bµ(j)j|Dijp

]
− pµ(j)j

}
. (12)

By Assumption 1, Eβ [bij|Dijp] = bij (w) and Eβ
[
bµ(j)j|Dijp

]
= bµ(j)j (w) for any w in the

support of β. Inequality (12) can be rewritten as

bij (w)− p ≤ max
{

0, bµ(j)j (w)− pµ(j)j
}

= bµ(j)j (w)− pµ(j)j,

where the last equality follows from (11) . Therefore, (i, j, p) does not block (µ,p) when
there is complete information about w. We have thus proved that (µ,p) is complete-
information stable for any w in the support of β.

It is well-known that a stable matching under complete information maximizes the
sum of surpluses. Hence the stable matching (µ,p, β) is full-information efficient.

C Proof of Proposition 3

C.1 Duality of Bayesian Efficiency

Primal. We introduce a vector of non-negative real variables x = (xij)i∈I,j∈J . Consider
a problem that maximizes the objective

V (x) :=
∑

i∈I

∑
j∈J

xij
(∑

w∈W
β (w) aij (w) +

∑
w∈W

β (w) bij (w)
)

subject to ∑
j∈J xij ≤ 1;∑
i∈I xij ≤ 1;

xij ≥ 0, i ∈ I, j ∈ J .

It is well known that this linear programming problem has an optimal solution x∗

with all x∗ij = 0 or 1. Such (x∗ij) can be equivalently written as a matching function µ:
µ (i) = j if and only if x∗ij = 1, and the objective function of the linear program can be
viewed as the sum of surpluses weighted by a probability β ∈ ∆ (W ). Therefore, Bayesian
efficiency of a stable matching is ensured if the corresponding matching function is an
optimal solution to the linear programming problem.

Dual. The dual of this linear programming problem is to choose real variables u =
(ui)i∈I and v = (vj)j∈J to minimize the objective

U (u, v) :=
∑

i∈I
ui +

∑
j∈J

vj
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subject to

ui + vj ≥
∑

w∈W
β (w) aij (w) +

∑
w∈W

β (w) bij (w) , i ∈ I, j ∈ J ; (13)
ui ≥ 0, i ∈ I;
vj ≥ 0, j ∈ J .

Denote the optimal value of the dual by Umin and the optimal value of the primal by
Vmax. By the strong duality theorem, Vmax = Umin.

If there is complete information, the duality analysis is well known: the dual problem
links the stable matching, and the strong duality theorem says that a stable matching
is (full-information) efficient. With asymmetric information, the linkage of the dual to
stable matching is not immediate because conditional probability measures β (·|·) are used
to define stability whereas the unconditional probability β appears in the dual problem
(that is, a firm needs to update its beliefs before joining a blocking coalition).

C.2 Proof of the Proposition

Consider a stable matching (µ,p, β). Define u∗ = (u∗1, ..., u∗n), v∗ = (v∗1, ..., v∗m), and
x∗ = (x∗ij)i∈I,j∈J as follows:

u∗i =
∑

w∈W
β (w) aiµ(i) (w) + piµ(i);

v∗j =
∑

w∈W
β (w) bµ(j)j (w)− pµ(j)j;

x∗ij =

 1 if µ (i) = j

0 otherwise
.

By definition, x∗ is feasible for the primal problem; we need to show that x∗ is the optimal
solution to the primal problem under various conditions. We proceed in two steps.

Step 1. We shall establish the following claim: If (u∗, v∗) is a feasible solution to the
dual problem, then x∗ is an optimal solution to the primal problem, and the matching
(µ,p, β) is Bayesian efficient.

To prove this claim, note that

U (u∗, v∗) ≥ Umin = Vmax ≥ V (x∗) ,

where the first relation follows from the assumption that (u∗, v∗) is a feasible solution for
the dual problem, the second relation follows from the strong duality theorem, and the
third relation follows because x∗ is feasible for the primal problem.

Note also that V (x∗) = U (u∗, v∗) because each of them is the total expected payoff
from (µ,p, β). Therefore,

U (u∗, v∗) = Umin = Vmax = V (x∗) .
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This proves that x∗ is an optimal solution to the primal problem. It follows immediately
from the definition of the primal problem and the definition of x∗ that (µ,p, β) is Bayesian
efficient.

Step 2. We shall show that (u∗, v∗) is a feasible solution to the dual problem, if one
of the three conditions is satisfied.

By definition, (u∗, v∗) is non-negative. It remains to show that (u∗, v∗) satisfies the
constraint (13) in the dual problem.

We claim that for any w in the support of β, and any i ∈ I and j ∈ J,

aiµ(i) (w) + piµ(i) +
∑

w∈W
β (w) bµ(j)j (w)− pµ(j)j (14)

≥ aij (w) +
∑

w∈W
β (w) bij (w) .

The claim is trivially true if µ (i) = j. To prove this claim, suppose by way of contradiction
that (14) does not hold for some w in the support of β and some pair (i, j) ∈ I × J,

µ (i) 6= j. Then, there exists p ∈ R such that

aiµ(i) (w) + piµ(i) < aij (w) + p (15)

and ∑
w∈W

β (w) bµ(j)j (w)− pµ(j)j <
∑

w∈W
β (w) bij (w)− p. (16)

Inequality (15) captures worker i’s incentive to form a blocking coalition with firm j.

Consider the set

Dijp =
{
w ∈ W : aiµ(i) (w) + piµ(i) < aij (w) + p

}
.

By assumption, Dijp is a non-empty set that contains w.
Under condition (i)—Assumption 2, aiµ(i) (w) and aij (w) are independent of w. There-

fore, Dijp =
{
w ∈ W : piµ(i) < p

}
if µ (i) ∈ J, and Dijp =

{
w ∈ W : piµ(i) < h (i, j) + p

}
if

µ (i) = i, where h (i, j) = aij (w) and aii (w) = 0. In either case, since w ∈ Dijp, Dijp = W.

Under condition (ii), µ (i) 6= i, and by Assumption 3, aiµ(i) (w) = aij (w) = g (i, w) +
h (i, j). Hence,

Dijp =
{
w ∈ W : h (i, µ (i)) + piµ(i) < h (i, j) + p

}
.

Again, since w ∈ Dijp, Dijp = W.

Under both conditions (i) and (ii), β (Dijp) = 1. If we replace β (w) by β (w|Dijp) in
(16) , the inequality is unchanged. Therefore, (16) implies that firm j is willing to deviate
with worker i. That is, (i, j, p) blocks (µ,p, β), a contradiction.

Suppose that condition (iii) holds, and µ (i) = i (the case of µ (i) 6= i is covered by
the proof under condition (ii) already). Then

Dijp =
{
w ∈ W : piµ(i) < aij (w) + p

}
.
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Since aij (·) and bij (·) are co-monotonic, there exists some linear order on Wi that is
specific to the pair (i, j) , such that both aij (wi) and bij (wi) is non-decreasing in wi (note
that since aij and bij depends only on wi, the linear order naturally extends to an order
on W ). Therefore, Dijp contains all w’s such that wi is larger than a cutoff according to
the linear order. It follows from the monotonicity of bij (w) in wi that∑

w∈W
β (w) bij (w)− p ≤

∑
w∈W

β (w|Dijp) bij (w)− p.

Since µ (i) 6= j, it follows from the independence of β that∑
w∈W

β (w) bµ(j)j (w)− pµ(j)j =
∑

w∈W
β (w|Dijp) bµ(j)j (w)− pµ(j)j.

The above two inequalities together with (16) imply that∑
w∈W

β (w|Dijp) bµ(j)j (w)− pµ(j)j <
∑

w∈W
β (w|Dijp) bij (w)− p.

That is, firm j is willing to deviate with worker i. Thus, (i, j, p) blocks (µ,p, β) , a
contradiction. This establishes the claim that (14) holds.

Multiplying both sides of (14) by β (w) and summing it up over w, we obtain

u∗i + v∗j ≥
∑

w∈W
β (w) aij (w) +

∑
w∈W

β (w) bij (w) .

That is, (u∗, v∗) satisfies (13). Therefore, (u∗, v∗) is feasible for the dual problem.
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