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Abstract

The most critical issue in evaluating policies and projects that a↵ect generations

of individuals is the choice of social discount rate. This paper shows that there exist

social discount rates such that the planner can simultaneously be (i) an exponential

discounting expected utility maximizer; (ii) intergenerationally Pareto—i.e., if all indi-

viduals from all generations prefer one policy/project to another, the planner agrees;

and (iii) strongly non-dictatorial—i.e., no individual from any generation is ignored.

Moreover, to satisfy (i)–(iii), if the time horizon is long enough, it is generically suf-

ficient and necessary for social discounting to be more patient than the most patient

individual’s long-run discounting, independent of the social risk attitude.
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1 Introduction

Many economic decisions are inherently dynamic and a↵ect multiple generations, such as

corporate and household long-term investment decisions, intertemporal taxation, durable

public good provision, environmental policies, etc. These decisions crucially depend on one

parameter, the social discount rate, which encapsulates the trade-o↵ between current benefit

and future benefit from the society’s point of view. Unfortunately, there is no consensus

on which social discount rate should be used. This disagreement has sparked debate, for

example, about the cost-benefit analysis of environmental projects that a↵ect many, if not

all, future generations. Moreover, the evaluation of those projects is sensitive to the choice

of social discount rate. The famous Stern review uses a near-zero social discount rate (pure

rate of time preference), and suggests that we should take strong and immediate action on

climate change (see Stern (2007)).1 Nordhaus (2007) argues that Stern’s conclusion does not

hold if a market rate is used instead. Many economists, however, believe that using a high

discount rate (such as the market rate) is ethically indefensible.

In the social discounting literature, some economists have argued that social discount-

ing should be more patient than individual discounting (for example, see Caplin and Leahy

(2004) and Farhi and Werning (2007)). The idea is that if social discounting takes into

account how future generations will feel about their consumption, then because future gen-

erations will value future consumption relatively more than the current generation values

future consumption, social discounting will also value future consumption more than the cur-

rent generation does.2 However, these studies usually assume that only one (representative)

individual is in the society. How their insight carries over to a society with heterogeneous

individuals—and which individual’s discounting social discounting should be more patient

than—remains unanswered.

Let us explain what will go wrong with heterogeneous individuals. Note that what is

1The consumption discount rate derived from the Ramsey formula used in the Stern review depends on
the pure rate of time preference, the elasticity of the marginal utility of consumption, and the growth rate
of per-capita consumption.

2Some economists have also argued that individuals’ altruistic discounting for future generations should
be excluded from the planner’s aggregation. See Hammond (1987), Mirrlees (2007), and Boadway (2012).
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common among these dynamic economic decisions is that there is a benevolent planner

who needs to make choices for generations of individuals, and, as in environmental projects

and many other examples, payo↵ uncertainty is usually involved. In such a setting, first,

economists often assume that the planner’s objective is an exponential discounting expected

utility function. This assumption is widely used and normatively appealing, because it is

equivalent to assuming that the planner’s preference is time-consistent, time-invariant, and

stationary.3 Second, it is often assumed that a benevolent planner respects individuals’ pref-

erences. In other words, some notion of the Pareto property should hold: If “all” individuals

agree that one project is better than another, the planner should agree that the former is

better.

Despite the fact that these two assumptions are fundamental to economics, economists

have established that they cannot be satisfied simultaneously (see Gollier and Zeckhauser

(2005), Zuber (2011), and Jackson and Yariv (2015)). Even if every individual has an

exponential discounting utility function, a planner must be dictatorial to ensure that her

exponential discounting utility function satisfies some Pareto property. The negative result

also raises a challenge to the conclusion that social discounting should be more patient

than individual discounting. In light of the negative result, with heterogeneous individuals,

perhaps we can only conclude that the planner is more patient than the only individual

(dictator) she cares about.

This paper addresses these issues using a classic approach. We introduce a new Pareto

property, and characterize the range of (pure-time-preference) social discount rates that are

compatible with the new Pareto property. In models that generate the negative result,

there is often only one generation of individuals. The Pareto property they use, which we

call current-generation Pareto, is the key to the negative result. Current-generation Pareto

requires that whenever a consumption sequence p is preferred to another sequence q by

every current-generation individual, then the planner prefers p to q. In many problems that

3A version of the definition of time consistency, time invariance, and stationarity can be found in Halevy
(2015). Under the assumption that the utility function is a time-additively separable expected utility func-
tion, Halevy’s version of the three properties is equivalent to assuming an exponential discounting expected
utility function.
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we consider, especially the environmental projects, multiple generations of individuals are

involved. To determine the social discount rate, it seems natural that the planner should

not only respect how the current generation discounts the future, but also care about the

actual well-being of future generations—that is, how future generations will feel about their

consumption and how they will discount the future. The Pareto property we introduce,

intergenerational Pareto, captures this. It requires that whenever a consumption sequence

p is preferred to q by every individual from every generation, then the planner prefers p to

q.

Specifically, each generation-t individual i lives for one period, and has an arbitrary

discount function �i(⌧ � t) to discount the ⌧ th period consumption.4 The planner is inter-

generationally Pareto and has an exponential discounting utility function. To contrast with

the negative result, we require that the planner be strongly non-dictatorial in the sense that

she never ignores the preference of any individual from any generation. Under these as-

sumptions, we show how the range of social discount rates depends on (a) individual relative

discounting, average discounting, and long-run discounting, and (b) the linear dependency

of individual instantaneous utility functions.

We first examine a benchmark case in which the time horizon is finite and individu-

als share the same instantaneous utility function. This allows us to focus on aggregat-

ing discount functions. We show that there exist two cuto↵s for the social discount fac-

tor.5 One is the lowest (across individuals) maximal (across time) relative discount factor,

mini max⌧
�i(⌧+1)
�i(⌧)

, and the other is the lowest (across individuals) asymptotic average dis-

count factor, mini lim⌧!1
⌧
p
�i(⌧). If the social discount factor is above the first cuto↵,

we show that the planner must be intergenerationally Pareto and strongly non-dictatorial.

Thus, we can avoid the negative result even when individuals have arbitrary discount func-

tions. Moreover, checking whether a planner’s utility function is compatible with the Pareto

property is generally di�cult, but this result provides an easy way to do it. Conversely, if

4Each individual altruistically cares about future generations’ consumption, as is the case when we think
about environmental projects. Also note that the individual discount functions in Zuber (2011) and Jackson
and Yariv (2014, 2015) are exponential. We do not make this assumption.

5The discount rate is equal to one minus the discount factor.
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the social discount factor is below the second cuto↵, we show that the planner must violate

intergenerational Pareto as long as the time horizon is long enough; that is, there exist two

consumption sequences such that every individual from every generation thinks that one is

better than the other, but the planner disagrees. We provide examples to show that these

two cuto↵s are tight.

The two cuto↵s merge into one cuto↵ when individuals exhibit present bias. The unique

cuto↵ is equal to the least patient individual’s long-run discount factor, in which each indi-

vidual i’s long-run discount factor is defined as the asymptotic relative discount factor and

the asymptotic average discount factor.

Since the least patient individual’s long-run discount factor could be quite low, the bench-

mark case does not say much about which social discount factor is reasonable. Our main

result (Theorem 2) shows that if we do not assume that individuals have identical instan-

taneous utility functions, the result will be rather di↵erent. Generically, individual instan-

taneous utility functions are linearly independent in the functional space. We show that if

individual instantaneous utility functions are linearly independent, the cuto↵ for the social

discount factor jumps to the most patient individual’s long-run discount factor, independent

of the planner’s choice of instantaneous utility function. This result thus supports the use

of a near-zero social discount rate.

We show how the cuto↵ for the social discount factor changes gradually from the least

patient individual’s long-run discount factor to the most patient, as the number of types of

individual instantaneous utility functions increases. If there is only one type, we are in the

benchmark case. As the number of types increases, the cuto↵ moves to the most patient

individual’s long-run discount factor.

Lastly, we show that our main result continues to hold if the time horizon is infinite.

1.1 Related Literature

This paper is not the first to aggregate the preferences of multiple generations of individuals.

Indeed, there is a long-running debate on whether future generations should be aggregated.
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For example, among others, Ramsey (1928), Pigou (1920), Sen (1961), Feldstein (1964),

Solow (1974), Arrow (1999), Caplin and Leahy (2004), and Farhi and Werning (2007) are

in favor. On the other hand, among others, Eckstein (1957), Bain (1960), and Marglin

(1963) believe that the government’s or the policy maker’s decision should only reflect the

preferences of present individuals. Our approach is closer to Caplin and Leahy and Farhi and

Werning, both of whom show that assuming there is only one individual in each generation,

social discounting should be more patient than the sole individual’s discounting. Our results

show that having multiple heterogeneous individuals in each generation makes an important

di↵erence.

Many papers have analyzed aggregation of one generation of heterogeneous individuals.

Weitzman (2001) conducts a survey on economists’ discount rates to motivate a gamma dis-

counting model. Gollier and Zeckhauser (2005) study a dynamic e�cient allocation problem

with heterogeneous individuals and show that even when individuals have constant discount

rates, the representative agent has a decreasing discount rate. Zuber (2011) establishes that a

planner cannot have an exponential discounting utility function and be (current-generation)

Pareto when individuals have private consumption. Jackson and Yariv (2015) present a sim-

ilar negative result in which consumption is public. Millner and Heal (2017) show that the

negative result goes away if we only require that the planner’s objective be time-consistent.

A key di↵erence between these papers and ours is that they aggregate only one generation

of individuals, whereas we aggregate multiple generations. This distinction is important in

economic decisions that have long-term impact, such as environmental policies.

Most of the studies discussed above assume that individuals have exponential discounting

functions. It is well known that individuals are often time-inconsistent (see Strotz (1955),

Laibson (1997), and Frederick et al. (2002), among others). Hence, it is important to under-

stand whether the results continue to hold when we allow individuals to have more general

discount functions.

There are other approaches to the study of social discounting. Our paper emphasizes

the relation between social discounting and individual discounting implied by the intergen-
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erational Pareto property. Chambers and Echenique (2017) study three models on discount

rates. In the first, they characterize when a sequence of utility is always preferred to an-

other sequence, for any discount rate between zero and one. The second model is similar

to Weitzman (2001), Zuber (2011), and Jackson and Yariv (2014, 2015): The aggregate

discount function is a weighted average of a set of exponential discount functions. In the

last model, in order to discount a sequence of utility, the aggregate preference selects the

most pessimistic from a set of discount rates. Millner (2016) shows that if heterogeneous

individuals are not fully paternalistic, they will agree on parameters for the long-run social

discount rate. Zuber and Asheim (2012), Asheim and Zuber (2014), Fleurbaey and Zuber

(2015), and Piacquadio (2017) study models in which social discounting is due to intergen-

erational inequality aversion. Jonsson and Voorneveld (2017) study a welfare criterion for

multiple generations. Each generation has one individual, and in the limit of the criterion,

di↵erent generations are treated equally. In the first part of Drugeon and Wigniolle (2017),

they characterize what exponential discounting utility functions can be written as weighted

sums of the current self’s and future selves’ quasi-hyperbolic discounting utility functions;

this is similar to a special case of our Theorem 4 or Proposition 4 and to a related result in

Galperti and Strulovici (2017).

Our paper is also related to Mongin (1998), who establishes that under a standard form of

the Pareto property, as long as individuals’ subjective probabilities are linearly independent

or their instantaneous utility functions are a�nely independent, the planner must be dicta-

torial. Similar results can be found in Mongin (1995) and Chambers and Hayashi (2006).

In our model, if we view each period as a state and discount factors as subjective probabili-

ties, Mongin’s result seems to apply. However, our planner is not dictatorial. The technical

reason why our Theorem 1 can bypass Mongin’s negative result is the assumption that all

individuals share the same instantaneous utility function. As for Theorem 2, we first aggre-

gate individual utility functions with identical instantaneous utility functions into a utility

function whose discount factor is equal to the social discount factor. Then, we aggregate

utility functions with identical discount factors (subjective probabilities). Both steps bypass
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Mongin’s negative result.

Lastly, related to the preference aggregation literature, our Lemma 2 extends Harsanyi’s

(1955) theorem and Zhou (1997) to the case with countably infinitely many individuals. Zhou

shows that Pareto and utilitarianism are equivalent when the set of individuals is compact.

The paper proceeds as follows. In Sections 2 and 3, we describe individuals’ and the plan-

ner’s preferences. We then introduce a variant of the negative result and intergenerational

Pareto. Section 4 studies the benchmark case, in which we characterize the range of social

discount factors that are compatible with intergenerational Pareto. Our main results in Sec-

tion 5 show how individual instantaneous utility functions interact with social discounting.

Section 6 studies the infinite-horizon case, and Section 7 concludes.

2 Preferences

There are 2 < T  +1 generations/periods. In each generation, N < +1 individuals live

for one period. With an abuse of notation, we use N := {1, . . . , N} and T := {1, . . . , T}

to denote the set of individuals and the set of time periods, respectively. The generation-t

individual i is the parent of the generation-(t + 1) individual i. In each period, there is a

public risky consumption good.6 The set of consumption goods is �(X), in which �(X) is

the set of probability measures on a compact set X ⇢ Rm. A typical consumption sequence

is denoted by p = (p1, . . . , pT ) 2 �(X)T .7

Each generation-t individual i has a preference%i,t over the consumption sequences (t 2 T

and i 2 N). As is the case when we think about environmental policies, each individual

altruistically cares about future generations’ consumption. We assume throughout the paper

6All results we derive apply to the case in which each individual has his own consumption. We only need
to view public consumption as an N -tuple of individual consumption, and let each individual care only about
his own component.

7We discuss what may change if we allow uncertainty to resolve over time in Section S1 in the Supplemental
Material.
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that the generation-t individual i has the following discounting utility function:

Ui,t(p) =
TX

⌧=t

�i(⌧ � t)ui(p⌧ ), (1)

in which �i : {0, . . . , T � 1} ! R++ with �i(0) = 1 is called the discount function, and

the instantaneous utility function ui : �(X) ! R is a continuous expected utility function.

When T = +1, we require (�i(⌧))1⌧=0 to be an absolutely summable sequence (in `1). The

well-known exponential, hyperbolic, and quasi-hyperbolic discounting utility functions are

special cases of (1).

It is common to assume that Ui,t(p) does not depend on past consumption. When a

generation-t individual comes into existence, the past is sunk; that is, comparing p and q

from his point of view is the same as comparing (pt, . . . , pT ) and (qt, . . . , qT ). This also means

that there is no revealed-preference foundation for utility over past consumption.8

We have also assumed that the generation-(t + 1) individual i inherits the generation-t

individual i’s discount function and instantaneous utility function. This assumption does not

imply that a parent and his o↵spring have the same preference, because the generation-(t+1)

individuals’ discount functions are shifted one period forward. This assumption simplifies

our analysis and can be relaxed (see Section S4.1 in the Supplemental Material).

In each period t 2 T , the planner has a preference %t over the consumption sequences. As

in most dynamic models, we assume that the planner’s objective is an exponential discounting

expected utility function; that is, in each period t, the planner has a utility function of the

following form:

Ut(p) =
TX

⌧=t

�⌧�tu(p⌧ ), (2)

in which � > 0 is the social discount factor, and u, a continuous expected utility function on

�(X), is the planner’s instantaneous utility function. When T = +1, we require � < 1.

It is well known that if the planner’s objective is a discounting utility function Ut(p) =

8However, see Caplin and Leahy (2004) and Ray et al. (2017) for models that allow for backward dis-
counting for past consumption. In the Supplemental Material, we show that our results continue to hold
when individuals have exponential forward and backward discounting.
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PT
⌧=t �(⌧�t)u(p⌧ ), the planner is time-consistent if and only if the planner’s discount function

is exponential.9 More generally, (2) holds if and only if the planner’s preference is time-

consistent, time-invariant, and stationary (see footnote 3). Note that the above equation

holds for every t 2 T ; that is, the social discount factor and the planner’s instantaneous

utility function never change.

Lastly, to rule out uninteresting cases and simplify the statement of our results, we

assume that there are some fixed consequences x⇤, x⇤ 2 X such that ui(x⇤) = u(x⇤) = 0

and ui(x⇤) = u(x⇤) = 1 for any i 2 N throughout the paper. A similar assumption, called

the minimum agreement condition, also appears in De Meyer and Mongin (1995). Our main

findings do not rely on this assumption, and we provide a more detailed discussion following

Lemma 1.10 More generally, for any continuous expected utility function v defined on �(X),

we say that it is normalized if v(x⇤) = 1 and v(x⇤) = 0. One may think of x⇤ as the best

consumption good and x⇤ as the worst, or x⇤ as one dollar and x⇤ as zero dollars.

3 Intergenerational Pareto

We want to assume that the planner’s preference (%t)t2T satisfies some Pareto property. In

a dynamic setting, however, there are multiple ways to define the Pareto property. Di↵erent

notions of Pareto lead to di↵erent results. For example, Zuber (2011) and Jackson and Yariv

(2015) show that if a planner has an exponential discounting utility function and follows their

Pareto property, the planner must be dictatorial. To motivate our new Pareto property, it is

useful to first understand the negative result. Below, we introduce a version of the negative

result.
9Since individuals only live for one period, time consistency may have a nonstandard interpretation for

them. In contrast, the planner is a long-lived entity who tries to stick to an objective function that exhibits
nice properties. The interpretation of time consistency for the planner is similar to the standard one.

10In Section S4.1 in the Supplemental Material, when we allow the instantaneous utility function to depend
on time, the normalization assumption will play a more important role. In that case, because expected utility
functions are unique up to positive a�ne transformations, we cannot pin down the discount function without
some type of normalization assumption.
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3.1 A Variant of the Negative Result

Below is a variant of the Pareto property used by Zuber (2011) and Jackson and Yariv (2015)

that fits into our setting.

Definition 1 The planner’s preference (%t)t2T is current-generation Pareto if for any con-

sumption sequences p,q 2 �(X)T , in each period t 2 T , p %i,t q for all i 2 N implies

p %t q, and p �i,t q for all i 2 N implies p �t q.

This notion of the Pareto property says that in any period t, if all current-generation

individuals agree that a consumption sequence p is preferred to another sequence q, then

the planner should agree that p %tq. The same applies when the preferences are all strict.

Consider a simple situation in which every generation-t individual i has an exponential

discounting utility function. The generation-t individual i has an exponential discounting

utility (EDU) function if �i(⌧) = �⌧i for some discount factor �i > 0; that is,

Ui,t(p) =
TX

⌧=t

�⌧�t
i ui(p⌧ ).

When T = +1, we require �i < 1. Let us present below a variant of the negative result.

Proposition 1 Suppose each generation-t individual i has an EDU function with discount

factor �i and instantaneous utility function ui. For a generic N-tuple of discount factors

(�i)i2N , the planner is current-generation Pareto if and only if for each t 2 T , there exists a

unique i 2 N such that Ut = Ui,t.

The result says that if we require that the planner be current-generation Pareto and

have an exponential discounting expected utility function, the planner’s preference must be

identical to exactly one individual’s preference. Since the consumption is public, our setting

is closer to Jackson and Yariv (2015). However, Jackson and Yariv’s result is still di↵erent

from the above proposition; they require instantaneous utility functions to be defined on

a one-dimensional space and be twice continuously di↵erentiable. We only require that

individual discount factors be generic.
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The intuition is as follows. First, the planner is current-generation Pareto if and only if

her discounting utility function is equal to a weighted sum of the individuals’ EDU functions;

this is an implication of Harsanyi (1955). Next, for simplicity, suppose there are only two

individuals with identical instantaneous utility functions u1 = u2. The planner attaches a

weight ! to the first individual and 1� ! to the second individual. Now, for the planner to

not be dictatorial, there must be some ! 2 (0, 1) and � > 0 such that

!�1 + (1� !)�2 = �,

and

!�21 + (1� !)�22 = �2.

However, one cannot find such a �, unless ! = 0 or 1.

3.2 Intergenerational Pareto

The key feature of environmental projects and many other economic policies is that the

decisions a↵ect multiple generations. Current-generation Pareto only takes into account

the preferences of the current generation. The current generation does altruistically care

about future consumption, and there are reasons why we want the planner to respect how

individuals discount the future. However, how the current generation thinks about the

future may well di↵er from how future generations will think. Since future generations will

be a↵ected by the planner’s decision, the planner should take into account their actual well-

being, including how they will discount their own future. The following Pareto property

captures these ideas.

Definition 2 The planner’s preference (%t)t2T is intergenerationally Pareto if for any con-

sumption sequences p,q 2 �(X)T , in each period t 2 T , p %i,s q for all i 2 N and all s � t

implies p %t q, and p �i,s q for all i 2 N and all s � t implies p �t q.

Intergenerational Pareto says that in any period t, if all current- and future-generation

12



individuals agree that a consumption sequence p is preferred to another sequence q, then the

planner should agree that p %tq. For example, suppose all current-generation individuals

are extremely selfish: They are willing to sacrifice the environment in order to increase their

own consumption. If the planner is current-generation Pareto, the planner must agree with

them, and let them destroy the environment. However, if the planner is intergenerationally

Pareto, the planner is allowed to disagree with them, because what they prefer hurts future

generations.

If the planner is current-generation Pareto, she is also intergenerationally Pareto. There-

fore, intergenerational Pareto is weaker than current-generation Pareto. The following lemma

characterizes the consequence of intergenerational Pareto. The lemma covers a more general

case than necessary for our main results. The more general case emphasizes that the follow-

ing observation has nothing to do with our assumptions that the planner’s discount function

is exponential, that instantaneous utility functions do not change over time, etc. The more

general case will also be useful in Section S4 in the Supplemental Material.

Lemma 1 (Harsanyi (1955)) Suppose T < +1, and each generation-t individual i’s utility

function takes the following form:

Ui,t(p) =
TX

⌧=t

�i,t(⌧ � t)ui(p⌧ , ⌧),

and the planner’s utility function in period t takes the following form:

Ut(p) =
TX

⌧=t

�t(⌧ � t)ut(p⌧ , ⌧),

in which �i,t(·) and �t(·) are discount functions, and ui(·, ⌧) and ut(·, ⌧) are (normalized) in-

stantaneous utility functions. The planner’s preference (%t)t2T is intergenerationally Pareto

if and only if in each period t 2 T , there exists a finite sequence of nonnegative numbers

(!t(i, s))i2N,s�t such that

Ut =
NX

i=1

TX

s=t

!t(i, s)Ui,s.
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The lemma essentially follows from Harsanyi (1955) and Fishburn (1984), and shows that

intergenerational Pareto is equivalent to (intergenerational) utilitarianism in our setting;

that is, the planner is intergenerationally Pareto if and only if in each period, her utility

function is equal to a weighted sum of all the current- and future-generation individuals’

utility functions. We omit the proof.

This lemma depends on the assumption that Ui,t’s and Ut’s are expected utility functions.

When T = +1, a countably infinite version of Harsanyi’s theorem is required, which, to the

best of our knowledge, has not been established in the literature.11 We present this result in

Section 6.

In the lemma, the instantaneous utility functions ui(·, ⌧) and ut(·, ⌧) are normalized. The

normalization assumption has two implications. First, without the normalization assump-

tion, it is possible that there do not exist two consumption sequences such that all individuals

strictly prefer one to the other. In that case, if the planner is indi↵erent to all consumption

sequences, the planner will be intergenerational Pareto trivially. When the planner is always

indi↵erent, she has a constant instantaneous utility function and her discount function can

be arbitrary. The normalization assumption rules out this uninteresting case. Second, in this

lemma, since instantaneous utility functions can depend on ⌧ , without normalizing them in

some way, the discount functions will be undetermined. This will become useful in Section

S4 in the Supplemental Material.

4 Social Discounting and Individual Long-Run Discount-

ing: The Benchmark Case

We address two aspects of social discounting. First, can we bypass the negative result? If

so, which social discount factors are reasonable? In particular, which social discount factors,

under our assumptions, are compatible with intergenerational Pareto? Second, recall that

11Zhou (1997) has shown how the equivalence between Pareto and utilitarianism can be generalized to the
case in which N is compact but not necessarily finite.
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in the social discounting literature, economists have argued that the social discount factor

should be higher (more patient) than the individual discount factor. Accordingly, with

heterogeneous individuals, which individual’s discount factor should the social discount factor

be higher than?

To contrast with the negative results, we introduce a strong notion of the non-dictatorial

property.

Definition 3 We say that the planner is strongly non-dictatorial if for each t 2 T ,

Ut(p) = ft (U1,t(p), . . . , U1,T (p), U2,t(p), . . . , U2,T (p), . . . , UN,T (p))

for some strictly increasing function ft.

We not only want to ensure that the planner is not dictatorial, but also that every

individual from every generation has a say. In light of Lemma 1, under intergenerational

Pareto, this means that the planner’s utility function can be written as a weighted sum of

individual utility functions with strictly positive weights.

Intergenerational Pareto is weaker than current-generation Pareto. However, when com-

bined with the strongly non-dictatorial property, the planner has more strictly positive

weights to assign, and hence a more complicated task to accomplish. An analogy of this

is the following: In Proposition 1, if we increase the number of individuals N , the planner

has more weights to assign. However, this does not make it easier for the planner to have an

exponential discounting expected utility function. If the planner is required to give strictly

positive weights to the newly added individuals, this entails adding their discount factors,

which renders the aggregation problem more di�cult. The easiest way for the planner to

have an exponential discounting expected utility function is to have only one individual and

one strictly positive weight to be assigned.

Another obvious assumption that complicates our problem is that in our model, individ-

uals have general discount functions. Under this assumption, it is not even clear what the
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individual discount factors are; our results show how the social discount factor depends on

general individual discount functions.

4.1 The Benchmark Case

We first examine the simplest case to illustrate how social discounting is related to individual

discounting. To focus on discounting, we assume that all individual instantaneous utility

functions are identical; that is, there is some continuous expected utility function u : �(X) !

R such that each generation-t individual i’s utility function is

Ui,t(p) =
TX

⌧=t

�i(⌧ � t)u(p⌧ ). (3)

Our main result studies the case without this assumption in Section 5. An alternative inter-

pretation of this assumption is that the planner only wants to aggregate individual discount

functions. Therefore, it is without loss of generality to replace the (possibly heterogeneous)

individual instantaneous utility functions with the planner’s instantaneous utility function

u.12 When individuals share the same instantaneous utility function, it is straightforward

to verify that the planner must also use the same instantaneous utility function in order to

satisfy Pareto properties.

The benchmark case also assumes that T is finite. Although T is finite, we may vary

T in part of the results below. Therefore, we assume that individual discount functions

are well defined for any natural number; that is, we start with a set of individual discount

functions �i’s defined over natural numbers N, and whenever we choose a finite T , we restrict

the domain of �i’s to T . For instance, suppose individuals have quasi-hyperbolic discounting

functions. We first define �i(⌧) = �i�
⌧�1
i for any ⌧ � 0. Then, we choose T and focus on

�i(0), . . . , �i(T � 1).

For each individual discount function �i(⌧), we call ⌧
p
�i(⌧) his average discount function,

12In this interpretation, however, each individual i’s preference in the definition of Pareto properties must
be replaced with another preference induced by a discounting utility function with a discount function �i
and an instantaneous utility function u chosen by the planner.
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and �i(⌧+1)
�i(⌧)

his relative discount function.13 The average discount function measures the

equivalent exponential discount factor for ⌧ -period-ahead consumption. The relative discount

function captures the additional instantaneous discounting for consumption that is ⌧ + 1

periods ahead relative to consumption that is ⌧ periods ahead.

We make two weak assumptions on the individual discount functions. The first assump-

tion says that the average discount function has a limit; that is,

lim
⌧!1

⌧
p
�i(⌧) exists. (4)

This assumption is weaker than assuming that the relative discount function has a limit.

The second assumption says that the relative discount function is bounded; that is,

there is some ↵ > 0 such that
�i(⌧ + 1)

�i(⌧)
< ↵ for all ⌧ � 0. (5)

The following theorem characterizes the set of social discount factors that are compatible

with intergenerational Pareto under these assumptions.

Theorem 1 Suppose T < +1, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function u and a discount function �i such that (4) and (5)

hold. Then,

1. for each � > min
i

max
⌧2{0,...,T�1}

�i(⌧+1)
�i(⌧)

, the planner is intergenerationally Pareto and strongly

non-dictatorial;

2. for each � < mini lim⌧!1
⌧
p
�i(⌧), there exists some T ⇤ > 0 such that if T � T ⇤, the

planner is not intergenerationally Pareto.

The theorem shows how social discounting depends on individual discounting when there

are multiple individuals with general discount functions. We can find two cuto↵s for the social

discount factor. If it is above the least patient individual’s maximal relative discount factor,

13When ⌧ = 0, we set the average discount function’s value to be 1.
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the planner’s preference must be intergenerationally Pareto and strongly non-dictatorial. If

the social discount factor is below the least patient individual’s asymptotic average discount

factor, the planner’s preference must have violated the intergenerationally Pareto property

as long as T is large enough. The planner has a utility function in each period t, and the

cuto↵s apply in all periods.

In general, when we choose a social discount factor, it is not obvious whether the planner

is Pareto. The first part of the theorem allows us to check whether a social discount factor is

consistent with the intergenerationally Pareto property. Moreover, it shows that even if we

allow individuals to have arbitrary discount functions, and require the planner to have an

exponential discounting utility function, the planner can still be intergenerationally Pareto

without being dictatorial. In fact, the planner can even be strongly non-dictatorial.

Conversely, the second part of the theorem says that if the social discount factor is

too low, then there must be two consumption sequences such that all individuals from all

generations prefer one over the other, but the planner disagrees. We do not want to use a

social discount factor that allows this to happen.

Note that for any fixed T , max
⌧2{1,...,T}

�i(⌧)
�i(⌧�1) �

T
p
�i(T ), because

T
p
�i(T ) =

T

s
�i(T )

�i(T � 1)
· · · · · �i(1)

�i(0)
;

that is, T
p
�i(T ) is the geometric mean of �i(⌧)

�i(⌧�1) ’s. Therefore, max
⌧2{1,...,T}

�i(⌧)
�i(⌧�1) will be weakly

higher than lim⌧!1
⌧
p
�i(⌧) when T is large enough, and hence the first cuto↵ will eventually

be higher than the second cuto↵.

Although the first cuto↵ may be strictly higher than the second, the two cuto↵s in the

theorem are “tight” in the following sense. If the social discount factor is below the first

cuto↵, there exist some T and individual discount functions �i(⌧)’s such that the planner is

not intergenerationally Pareto. Similarly, if the social discount factor is above the second

cuto↵, we can find some individual discount functions �i(⌧)’s such that for all finite T ,

the planner is intergenerationally Pareto and strongly non-dictatorial. To understand more
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concretely the two cuto↵s, we examine two popular special cases in the next subsection. We

also use them to illustrate why the cuto↵s are tight.

The first part of the theorem can be proved in two steps. According to Lemma 1,

intergenerational Pareto is equivalent to (intergenerational) utilitarianism. First, focus on

one arbitrary individual i and his o↵spring. We show that there exist strictly positive

weights such that the weighted sum of their utility functions is an EDU function with any

discount factor that is strictly higher than max
⌧2{0,...,T�1}

�i(⌧+1)
�i(⌧)

. Thus, without loss of generality,

assume that every generation-t individual i has an EDU function with a discount factor that

is su�ciently close to but strictly higher than max
⌧2{0,...,T�1}

�i(⌧+1)
�i(⌧)

. Next, let all individuals’

weights be equal to some small number " > 0, except for the least patient individual and his

o↵spring. We show that we can find strictly positive weights for the least patient individual

and his o↵spring such that the weighted sum of all individuals’ utility functions is an EDU

function with the social discount factor �.

For the second part, suppose we are in the first period. The planner’s period-1 utility is

U1 =
TX

t=1

NX

i=1

!(i, t)Ui,t,

in which !(i, t) � 0 is the weight the planner assigns to generation-t individual i. Consider

how the planner discounts period-⌧ consumption. Since instantaneous utility functions are

identical, the equation above implies

�⌧�1 =
⌧X

t=1

NX

i=1

!(i, t)�i(⌧ � t).

By letting ⌧ = 1,
PN

i=1 !(i, 1) = 1 and hence the sum of all weights is greater than 1. Now,

suppose individual 1’s asymptotic average discount factor is the lowest. When ⌧ is large

enough (and hence T must be large enough), we know that �i(⌧ � s) � �1(⌧ � s). Hence,

�⌧�1 =
⌧X

t=1

NX

i=1

!(i, t)�i(⌧ � t) � �1(⌧ � 1)
⌧X

t=1

NX

i=1

!(i, t) � �1(⌧ � 1).
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Therefore, � � lim⌧!1
⌧
p
�1(⌧) when ⌧ is large enough.

Although this theorem does tell us which individual the planner should be more patient

than, it is not very helpful in pinning down social discount factors, because the least patient

individual’s discount factors can be quite low. Thus, many social discount rates can satisfy

our requirements. However, as will be shown below, this is no longer the case once we relax

an unrealistic assumption in the benchmark case.

4.2 Individual Quasi-Hyperbolic Discounting and Exponential Dis-

counting

We say that the generation-t individual i has a quasi-hyperbolic discounting utility (QHDU)

function if his discount function satisfies

�i(⌧) =

8
<

:
1, if ⌧ = 0,

�i�⌧i , if ⌧ 2 {1, . . . , T � 1}

for some �i 2 (0, 1] and �i > 0. It is immediate that if a generation-t individual i has a

QHDU function, then

max
⌧2{0,...,T�1}

�i(⌧ + 1)

�i(⌧)
= lim

⌧!1
⌧
p
�i(⌧) = �i.

The following result is an application of Theorem 1.

Corollary 1 Suppose T < +1, and each generation-t individual i has a QHDU function

with an instantaneous utility function u, �i 2 (0, 1), and �i > 0. Then,

1. for each � > mini �i, the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. for each � < mini �i, there exists some T ⇤ > 0 such that if T � T ⇤, the planner is not

intergenerationally Pareto.
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This corollary shows that the two cuto↵s of Theorem 1 are identical. Moreover, the second

cuto↵ of Theorem 1 is tight, because mini lim⌧!1
⌧
p
�i(⌧) = mini �i, and Corollary 1 shows

that for any social discount factor above mini �i, the planner must be intergenerationally

Pareto and strongly non-dictatorial.

In Section S2 in the Supplemental Material, we reinterpret the generation-(t + 1) indi-

vidual i as a future self of the generation-t individual i, which also o↵ers a reinterpretation

of intergenerational Pareto and allows us to discuss how our findings are related to the

time-inconsistency literature. A stronger version of Corollary 1 can also be found.

Next, we present a result that is stronger than Theorem 1 under the assumption that all

individuals have EDU functions.

Proposition 2 Suppose T < +1, and each generation-t individual i has an EDU function

with discount factor �i and instantaneous utility function u. Then, the planner is intergen-

erationally Pareto and strongly non-dictatorial if and only if � > mini �i.

This result is di↵erent from Theorem 1, because in Theorem 1, the second cuto↵ works

under the assumption that T is su�ciently large. Proposition 2 does not require this. Similar

to Corollary 1, Proposition 2 has only one cuto↵ for the social discount factor.14

This proposition also shows that the first cuto↵ of Theorem 1 is tight. To see this, note

that min
i

max
⌧2{0,...,T�1}

�i(⌧+1)
�i(⌧)

= mini �i. From Proposition 2, we know that any social discount

factor below mini �i implies that the planner is not intergenerationally Pareto.

Because individuals have exponential discount functions and public consumption, Propo-

sition 2 can be directly compared to Jackson and Yariv (2014, 2015). Assuming that indi-

viduals have EDU functions, Proposition 2 shows that under intergenerational Pareto, the

planner can simultaneouly have an exponential discounting expected utility function and be

strongly non-dictatorial.

In Jackson and Yariv (2014, 2015), adding more current-generation exponential discount-

ing individuals to the aggregation cannot help eliminate the negative result. Compared to

14Imagine that we write a corollary of Theorem 1 under the additional assumption that all individuals
have EDU functions, rather than the stronger proposition. The two cuto↵s of this corollary will also be
identical.
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Jackson and Yariv, we add future-generation exponential discounting individuals to the ag-

gregation, and this helps. To see why, first recall that when ui = u, Jackson and Yariv

(2014) show that utilitarian aggregation of the current generation leads to a social discount

function that exhibits present bias. The fact that future generations will not care about past

consumption as much as past generations did helps us remove the present bias.

In our model, past consumption does not enter future generations’ utility functions; that

is, �i(⌧) = 0 for any ⌧ < 0.15 This implies that, for example, generation-t individual i’s rela-

tive discount factor applied to period-t consumption (relative to period-(t�1) consumption)

is equal to “�i(0)/�i(�1) = +1.” Thus, generation-t is “infinitely patient” between period

t� 1 and period t. The infinite patience can be used in the aggregation to o↵set the present

bias generated by aggregating the current generation alone.

4.3 Individual Long-Run Discount Factors

In the two special cases above, the two cuto↵s from Theorem 1 merge into one. This is not

a coincidence. Let us introduce the following assumption:

the relative discount function
�i(⌧ + 1)

�i(⌧)
is increasing in ⌧. (6)

In the time-inconsistency literature, when an individual has an increasing relative discount

function, the individual has present bias.

Now, since �i(⌧+1)
�i(⌧)

is increasing and bounded, we know that lim⌧!1
�i(⌧+1)
�i(⌧)

exists, and is al-

ways above max
⌧2{0,...,T�1}

�i(⌧+1)
�i(⌧)

for any finite T . Moreover, it can be shown that if lim⌧!1
�i(⌧+1)
�i(⌧)

exists, the average discount factor has a limit, and the asymptotic relative discount factor

and the asymptotic average discount factor coincide,

lim
⌧!1

�i(⌧ + 1)

�i(⌧)
= lim

⌧!1
⌧
p
�i(⌧).

15In Section S3 in the Supplemental Material, we show that when individuals use positive exponential
discount factors to backward discount past consumption, our results continue to hold.
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Therefore, assumptions (5) and (6) imply (4).

Definition 4 When lim⌧!1
�i(⌧+1)
�i(⌧)

exists, we call �⇤i := lim⌧!1
�i(⌧+1)
�i(⌧)

= lim⌧!1
⌧
p
�i(⌧)

individual i’s long-run discount factor.

We immediately have the following corollary.

Corollary 2 Suppose T < +1, and each generation-t individual i’s discounting utility

function has an instantaneous utility function u and a discount function �i such that (5) and

(6) hold. Then,

1. for each � > mini �⇤i , the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. for each � < mini �⇤i , there exists some T ⇤ > 0 such that if T � T ⇤, the planner is not

intergenerationally Pareto.

From here on, to simplify the statement of our results, we focus on the case in which

each individual i’s long-run discount factor �⇤i is well defined.

5 Social Discounting and Individual Instantaneous Util-

ity Functions

Corollary 2 shows that if all individuals share the same instantaneous utility functions, the

social discount factor only has to be higher than the lowest individual long-run discount

factor. The assumption that all individuals share the same instantaneous utility function

is clearly unreasonable. As long as |X| � N (i.e., the number of deterministic consump-

tion goods is higher than the number of individuals in each generation), generically, the

instantaneous utility functions should not only be di↵erent, but also linearly independent.

Definition 5 An N-tuple of continuous expected utility functions (ui)i2N is linearly inde-

pendent if there are no constants ↵1, . . . ,↵N that are not all zero, and
P

i2N ↵iui(p) = 0 for

all p 2 �(X).
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It turns out that when individual instantaneous utility functions are linearly independent,

the cuto↵ for the social discount factor jumps from mini �⇤i to maxi �⇤i ; that is, generically,

social discounting must be more patient than the most patient individual’s long-run dis-

counting. If the social discount factor is lower than the highest individual long-run discount

factor and if the time horizon is long enough, there are two consumption sequences such that

all individuals from all generations prefer one to the other, but the planner disagrees.

Theorem 2 Suppose T < +1, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function ui and a discount function �i such that (5) and (6)

hold and (ui)i2N is linearly independent. Let the planner’s instantaneous utility function u

be an arbitrary strict convex combination of (ui)i2N .16 Then,

1. for each � > maxi �⇤i , the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. for each � < maxi �⇤i , there exists some T ⇤ > 0 such that if T � T ⇤, the planner is not

intergenerationally Pareto.

To understand why we assume that the planner’s instantaneous utility function is a

strict convex combination of individual instantaneous utility functions, note that Lemma

1 implies that the intergenerationally Pareto and strongly non-dictatorial planner’s utility

function is equal to a weighted sum of individual utility functions with positive weights.

Thus, the planner’s instantaneous utility function must also be a weighted sum of individual

instantaneous utility functions. Since instantaneous utility functions are normalized, the

weights must sum up to 1.

Notice that the planner’s instantaneous utility function—in other words, her risk attitude—

is independent of the cuto↵ for the social discount factor. This is somewhat surprising.

Suppose there are two individuals, 1 and 2, and individual 2 is more patient. The above

theorem says that even if the social discount factor is close to individual 2’s discount factor,

16By a strict convex combination of (ui)i2N , we mean that u is in the interior of the convex hull of
u1, . . . , uN .
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it is not necessarily the case that the planner’s risk attitude is also close to individual 2’s

risk attitude. We can have a planner whose risk attitude is close to individual 1’s, but the

social discount factor is close to individual 2’s.

If there are many individuals with a wide range of long-run discount factors, this result

may imply that the planner must be very patient in order to be intergenerationally Pareto.

If so, perhaps the near-zero social discount rate used by Stern (2007) can be justified. If one

thinks that a market rate is higher than the lowest individual discount rate, this result also

rules out the use of a market rate as the social discount rate.

The theorem also shows that the cuto↵ for the social discount factor in Theorem 1 is

not robust. When ui = uj for all i, j 2 N , the cuto↵ is mini �⇤i . If we introduce a small

perturbation to ui’s, then generically the cuto↵ jumps discontinuously to maxi �⇤i .

Theorem 2 assumes (5) and (6); that is, individual relative discount functions are in-

creasing and bounded. If we replace (6) with (4), as in Theorem 1, the only change in the

statement of Theorem 2 will be that instead of one cuto↵, we will have two cuto↵s similar

to Theorem 1.

To prove the first part of this theorem, again, we show that there are strictly positive

weights for each individual i and his o↵spring such that the weighted sum of their utility

functions is an EDU function with any new discount factor that is higher than that individ-

ual’s maximal relative discount factor. Let the new discount factor be equal to the social

discount factor � >maxi �⇤i . Without loss of generality, assume that every individual i has an

EDU function with discount factor �. The EDU functions only di↵er in ui’s, and hence can

be aggregated easily. The intuition behind the second part of this theorem will be discussed

following Proposition 3.

Similar to Theorem 1, the second part of Theorem 2 requires that the time horizon be long

enough. In Proposition 2, we show that when individual discount functions are exponential,

the second part of Theorem 1 will become independent of T . The same holds when (ui)i2N

is linearly independent, as shown in the proposition below.

Proposition 3 Suppose T < +1, and each generation-t individual i has an EDU function

25



with discount factor �i and instantaneous utility function ui such that (ui)i2N is linearly

independent. Then, the planner is intergenerationally Pareto and strongly non-dictatorial if

and only if � > maxi �i.

The if part follows from the first part of Theorem 2. We explain the proof of the only-

if part of Proposition 3 below, which will also explain the idea behind the second part

of Theorem 2. Note that when (ui)i2N is linearly independent and u is in the interior of

co({ui}i2N), there is a unique way to write u as a strict convex combination of (ui)i2N .17

Suppose
P

i2N �iui = u, in which �i > 0 (because the planner is strongly non-dictatorial)

and
P

i2N �i = 1. Focus on the first period. The planner’s utility function is

U1(p) =
TX

t=1

NX

i=1

!(i, t)Ui,t(p) =
TX

t=1

NX

i=1

!(i, t)
TX

⌧=t

�⌧�t
i ui(p⌧ ),

in which !(i, t) > 0 is the weight the planner assigns to the generation-t individual i. Clearly,

the planner’s instantaneous utility function for period-1 consumption is

u(p1) =
NX

i=1

!(i, 1)ui(p1) (7)

for any p1. Since u can be written as a unique strict convex combination of (ui)i2N , it must

be the case that

!(i, 1) = �i (8)

for any i 2 N . Similarly, the planner’s instantaneous utility function for period-2 consump-

tion satisfies

�u(p2) =
NX

i=1

!(i, 1)�iui(p2) +
NX

i=1

!(i, 2)ui(p2) (9)

for any p2. Then, equations (7), (8), and (9), together with the strongly non-dictatorial

property, imply that

�i� = �i�i + !(i, 2) ) � > �i

17We use co(·) to denote the convex hull.
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for any i 2 N , which means � > maxi �i. We omit the proof of Proposition 3.

5.1 Gradual Transition of the Cuto↵

Let us further illustrate how the cuto↵ changes “discountinuously” from the least patient

individual’s long-run discount factor to the most patient individual’s. An individual’s in-

stantaneous utility function describes his risk attitude. Let ⇥ be some positive integer.

Suppose there is a linearly independent ⇥-tuple of instantaneous utility functions (u✓)⇥✓=1

that represent ⇥ generic types of risk attitude. Assume that individual i’s instantaneous

utility function ui 2 {u✓}⇥✓=1, and for each type u✓, at least one individual’s instantaneous

utility function is equal to u✓. If ⇥ = 1, we are in the case of Theorem 1. When ⇥ = N , we

are in the case of Theorem 2. Define �⇤✓ := min
k2{i2N :ui=u✓}

�⇤k; that is, for each ✓, let �
⇤
✓ be the

least patient individual’s long-run discount factor whose type is u✓. Define

�⇤maxmin := max
✓
�⇤✓ .

Theorem 3 Suppose T < +1, and for some linearly independent ⇥-tuple of instantaneous

utility functions (u✓)⇥✓=1 such that {ui}i2N = {u✓}⇥✓=1, each generation-t individual i’s dis-

counting utility function has an instantaneous utility function ui 2 {u✓}⇥✓=1 and a discount

function �i such that (5) and (6) hold. Let the planner’s instantaneous utility function u be

an arbitrary strict convex combination of (ui)i2N . Then,

1. for each � >�⇤maxmin, the planner is intergenerationally Pareto and strongly non-dictatorial;

2. for each � <�⇤maxmin, there exists some T ⇤ > 0 and some such that if T � T ⇤, the

planner is not intergenerationally Pareto.

Intuitively, for each type of risk attitude u✓, we can apply Theorem 1 to show that the

cuto↵ for the social discount factor implied by aggregating type-u✓ individuals is �⇤✓ . When

aggregating across types, we apply Theorem 2 to show that the maximal �⇤✓ is the cuto↵ for

the social discount factor.
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6 Social Discounting and the Time Horizon

In many economic models (and perhaps in reality), the time horizon is infinite. In this

section, we show that the finding in our main Theorem 2 with linearly independent (ui)i2N

continues to hold when T = +1. In Section A.9 in the Appendix, we present a related

result that does not assume that (ui)i2N is linearly independent, and show that even when

ui’s are identical, the cuto↵ for the social discount factor will jump from mini �⇤i to maxi �⇤i

when T = +1.

One of the main challenges in extending our main result to the infinite-horizon case is to

establish the equivalence between intergenerational Pareto and (intergenerational) utilitari-

anism. The lemma below establishes the equivalence under the setting of our main theorem

(Theorem 2).

Lemma 2 Suppose T = +1, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function ui such that (ui)i2N is linearly independent. The

planner’s preference (%t)t2T is intergenerationally Pareto if and only if in each period t 2 T ,

there exists a sequence of nonnegative numbers (!t(i, s))i2N,s�t such that 0 <
PN

i=1

PT
s=t !t(i, s) <

1, and

Ut =
NX

i=1

TX

s=t

!t(i, s)Ui,s.

Note that the lemma above assumes that (ui)i2N is linearly independent.18 This assump-

tion holds generically, is consistent with the assumption in our main theorem (Theorem 2),

and holds if we assume that (ui)i2N satisfies the “independent prospects condition,” which

is often imposed in the literature.19

If the set of individuals is compact, we can apply a result in Zhou (1997) to establish the

equivalence between intergenerational Pareto and (intergenerational) utilitarianism without

18If discount functions and instantaneous utility functions can depend on time as in Lemma 1, we may need
equicontinuity assumptions on the set of individual discount functions and instantaneous utility functions.

19See Fishburn (1984), Weymark (1994), and Börgers and Choo (2017). In Fishburn’s proof, there are
two cases to be analyzed. One is under the independent prospects condition, but Fishburn has not given the
condition a name.
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assuming linearly independent (ui)i2N . When T = +1, we have countably infinitely many

generations, and hence the set of individuals is not compact.

Theorem 4 Suppose T = +1, and each generation-t individual i’s discounting utility func-

tion has an instantaneous utility function ui and a discount function �i such that (5) and (6)

hold and (ui)i2N is linearly independent. Let the planner’s instantaneous utility function u

be an arbitrary strict convex combination of (ui)i2N . Then,

1. for each maxi �⇤i < � < 1, the planner is intergenerationally Pareto and strongly non-

dictatorial;

2. for each � < maxi �⇤i , the planner is not intergenerationally Pareto.

An additional step in the first part of the result is to show that the weights the planner

uses to aggregate individual utility functions are absolutely summable. The second step is

similar to Theorem 2.

7 Conclusion

The value of a policy or a public project that a↵ects generations of individuals often cru-

cially depends on which social discount rate is used for the evaluation. However, there is

no consensus on which social discount rate is the right one to use. This paper considers a

few important and widely used assumptions in economics, and characterizes the set of social

discount rates that are compatible with those assumptions. The key assumptions are (i) in-

dividuals discount future consumption in a general and heterogeneous way, (ii) the planner

has an exponential discounting expected utility function, (iii) the planner takes into account

every individual’s preference from every generation strictly, and (iv) the planner is intergen-

erationally Pareto, which means that if all individuals from all generations agree that one

consumption sequence is better than another, the planner must agree.

We show that for a generic set of individual instantaneous utility functions, the social

discount factor should be higher than the highest individual long-run discount factor, as
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long as the time horizon is long enough. Therefore, using a near-zero social discount rate is

justifiable.

30



References

Aliprantis, C. and K. Border (2006). Infinite Dimensional Analysis: A Hitchhiker’s Guide
(3 ed.). Berlin, Heidelberg: Springer.

Arrow, K. (1999). Discounting, Morality, and Gaming. In P. Portney and J. Weyant (Eds.),
Discounting and Intergenerational Equity, Chapter 2, pp. 13–22. New York, London: Re-
sources for the Future.

Asheim, G. and S. Zuber (2014). Escaping the Repugnant Conclusion: Rank-Discounted
Utilitarianism with Variable Population. Theoretical Economics 9 (3), 629–650.

Bain, J. (1960). Criteria for Undertaking Water-Resource Developments. American Eco-
nomic Review 50 (2), 310–320.

Boadway, R. (2012). From Optimal Tax Theory to Tax Policy: Retrospective and Prospective
Views. Cambridge, London: MIT Press.

Börgers, T. and Y. Choo (2017). Revealed Relative Utilitarianism. Working Paper, Univer-
sity of Michigan.

Caplin, A. and J. Leahy (2004). The Social Discount Rate. Journal of Political Econ-
omy 112 (6), 1257–1268.

Chambers, C. and F. Echenique (2017). On Multiple Discount Rates. Working Paper,
California Institute of Technology.

Chambers, C. and T. Hayashi (2006). Preference Aggregation under Uncertainty: Savage
vs. Pareto. Games and Economic Behavior 54 (2), 430–440.

Craven, B. and J. Koliha (1977). Generalizations of Farkas’ Theorem. SIAM Journal on
Mathematical Analysis 8 (6), 983–997.

De Meyer, B. and P. Mongin (1995). A Note on A�ne Aggregation. Economics Letters 47 (2),
177–183.

Drugeon, J.-P. and B. Wigniolle (2017). On Time-Consistent Collective Choice with Het-
erogeneous Quasi-Hyperbolic Discounting. Working Paper, Paris School of Economics.

Eckstein, O. (1957). Investment Criteria for Economic Development and the Theory of
Intertemporal Welfare Economics. Quarterly Journal of Economics 71 (1), 56–85.

Farhi, E. and I. Werning (2007). Inequality and Social Discounting. Journal of Political
Economy 115 (3), 365–402.

Feldstein, M. (1964). The Social Time Preference Discount Rate in Cost Benefit Analysis.
Economic Journal 74 (294), 360–379.

Fishburn, P. (1984). On Harsanyi’s Utilitarian Cardinal Welfare Theorem. Theory and
Decision 17 (1), 21–28.

31



Fleurbaey, M. and S. Zuber (2015). Discounting, Risk and Inequality: A General Approach.
Journal of Public Economics 128, 34–49.

Frederick, S., G. Loewenstein, and T. O’Donoghue (2002). Time Discounting and Time
Preference: A Critical Review. Journal of Economic Literature 40 (2), 351–401.

Galperti, S. and B. Strulovici (2017). A Theory of Intergenerational Altruism. Economet-
rica 85 (4), 1175–1218.

Gollier, C. and R. Zeckhauser (2005). Aggregation of Heterogeneous Time Preferences.
Journal of Political Economy 113 (4), 878–896.

Halevy, Y. (2015). Time Consistency: Stationarity and Time Invariance. Economet-
rica 83 (1), 335–352.

Hammond, P. (1987). Altruism. In J. Eatwell, M. Milgate, and P. Newman (Eds.), The
New Palgrave: A Dictionary of Economics (1 ed.)., pp. 85–87. Basingstoke: Palgrave
Macmillan.

Harsanyi, J. (1955). Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons
of Utility. Journal of Political Economy 63 (4), 309–321.

Jackson, M. and L. Yariv (2014). Present Bias and Collective Dynamic Choice in the Lab.
American Economic Review 104 (12), 4184–4204.

Jackson, M. and L. Yariv (2015). Collective Dynamic Choice: The Necessity of Time Incon-
sistency. American Economic Journal: Microeconomics 7 (4), 150–178.

Jonsson, A. and M. Voorneveld (2017). The Limit of Discounted Utilitarianism. Working
Paper, Stockholm School of Economics.

Laibson, D. (1997). Golden Eggs and Hyperbolic Discounting. Quarterly Journal of Eco-
nomics 112 (2), 443–478.

Marglin, S. (1963). The Social Rate of Discount and the Optimal Rate of Investment.
Quarterly Journal of Economics 77 (1), 95–111.

Millner, A. (2016). Non-Paternalistic Social Discounting. Working Paper, London School of
Economics.

Millner, A. and G. Heal (2017). Time Consistency and Time Invariance in Collective In-
tertemporal Choice. Working Paper, London School of Economics.

Mirrlees, J. (2007). Taxation of Gifts and Bequests. Slides for a Talk at the Centenary of
James Meade Conference.

Mongin, P. (1995). Consistent Bayesian Aggregation. Journal of Economic Theory 66 (2),
313–351.

32



Mongin, P. (1998). The Paradox of the Bayesian Experts and State-Dependent Utility
Theory. Journal of Mathematical Economics 29 (3), 331–361.

Munkres, J. (2000). Topology (2 ed.). Upper Saddle River: Prentice Hall.

Nordhaus, W. (2007). A Review of the Stern Review on the Economics of Climate Change.
Journal of Economic Literature 45 (3), 686–702.

Piacquadio, P. (2017). The Ethics of Intergenerational Risk. Working Paper, University of
Oslo.

Pigou, A. (1920). The Economics of Welfare. London: Macmillan & Co., Limited.

Ramsey, F. (1928). A Mathematical Theory of Saving. Economic Journal 38 (152), 543–559.

Ray, D., N. Vellodi, and R. Wang (2017). Backward discounting. Working Paper, New York
University.

Sen, A. (1961). On Optimizing the Rate of Saving. Economic Journal 71 (283), 479–496.

Solow, R. (1974). The Economics of Resources or the Resources of Economics. American
Economic Review 64 (2), 1–14.

Stern, N. (2007). The Economics of Climate Change: The Stern Review. Cambridge, UK:
Cambridge University Press.

Strotz, R. (1955). Myopia and Inconsistency in Dynamic Utility Maximization. Review of
Economic Studies 23 (3), 165–180.

Weitzman, M. (2001). Gamma Discounting. American Economic Review 91 (1), 260–271.

Weymark, J. (1994). Harsanyi’s Social Aggregation Theorem with Alternative Pareto Prin-
ciples. In E. W. (Ed.), Models and Measurement of Welfare and Inequality, pp. 869–887.
Berlin, Heidelberg: Springer.

Zhou, L. (1997). Harsanyi’s Utilitarianism Theorems: General Societies. Journal of Eco-
nomic Theory 72 (1), 198–207.

Zuber, S. (2011). Can Social Preferences Be Both Stationary and Paretian? Annals of
Economics and Statistics (101/102), 347–360.

Zuber, S. and G. Asheim (2012). Justifying Social Discounting: The Rank-Discounted
Utilitarian Approach. Journal of Economic Theory 147 (4), 1572–1601.

33



A Appendix

A.1 Proof of Proposition 1

Proof. If Part If there exists a unique i 2 N such that Ut = Ui,t for any t 2 T , the planner

takes only individual i into account in period t. The corresponding weights in period t are

!i = 1, and !j = 0 for all j 6= i. According to Lemma 1, the planner’s preference (%t)t2T is

current-generation Pareto.

Only-If Part Suppose the planner’s preference (%t)t2T is current-generation Pareto.

Then, according to Lemma 1, there exists an N -tuple of nonnegative weights (!i)i2N , such

that
NX

i=1

!i

TX

⌧=1

�⌧�1
i ui(p⌧ ) =

TX

⌧=1

�⌧�1u(p⌧ );

that is, for ⌧ = 1, . . . , T � 1,

NX

i=1

!i�
⌧�1
i ui(p⌧ ) = �⌧�1u(p⌧ ).

Let ⌧ = 1, 2, and 3. We have

8
><

>:

PN
i=1 !iui(p) = u(p),

PN
i=1 !i�iui(p) = �u(p),

PN
i=1 !i�2i ui(p) = �2u(p),

for any p 2 �(X). Let p = x⇤. The first equation shows that
P

i2N !i = 1. Combining the

second and the third equations above,

 
NX

i=1

!i�i

!2

=
NX

i=1

!i�
2. (10)

Since
P

i2N !i = 1, by Jensen’s inequality, equation (10) holds if and only if �i’s are identical

or there exists one i 2 N such that !i = 1. With a generic N -tuple of discount factors

(�i)i2N , �i 6= �j for any i 6= j. Therefore, there exists a unique i 2 N such that !i = 1, and

!j = 0 for any j 6= i, which means that Ut = Ui,t.

A.2 Proof of Proposition 2

Proof. The following lemma will be useful in proving Proposition 2.
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Lemma 3 Given a positive N-tuple (�i)i2N , if � > mini �i, there exists a finite sequence of

strictly positive numbers (!t(i, s))t2T,i2N,s�t such that the following equation holds

NX

i=1

⌧X

s=t

!t(i, s)�
⌧�s
i = �⌧�t (11)

for any t 2 T and ⌧ � t.

Proof. Without loss of generality, we assume that �1 = mini �i. First, we fix all the weights

other than individual 1’s. Let !t(i, s) = ✏t(s) > 0 for any i � 2, t � 1, and s � t. The

remaining part is to find (!t(1, s))t2T,s�t such that

1. equation (11) holds;

2. !t(1, s) > 0, for any t � 1 and s � t.

Construct (!t(1, s))t2T,s�t by the following recursive formula:

!t(1, s) =

8
>><

>>:

1�
NP
i=2

!t(i, s), if s = t,

�s�t �
NP
i=1

!t(i, t)�
s�t
i � · · ·�

NP
i=1

!t(i, s� 1)�i �
NP
i=2

!t(i, s), if s > t.
(12)

It can be verified that (12) ensures that equation (11) holds for any t 2 T and ⌧ � t. The

remaining part is to show that (!1,t(s))t2T,s�t derived from (12) are strictly greater than

zero, if (✏t(s))t2T,s�t are small enough. We prove it in two steps.

Step 1 Setting ✏t(s) = 0, the recursive formula (12) becomes

!t(1, s) =

(
1, if s = t,

�s�t�1(� � �1), if s > t,

for each t 2 T . This can be proved by induction. Since � > �1, we have !t(1, s) > 0.

Step 2 Plugging ✏t(s) into formula (12), we have,

8
>>>>>>><

>>>>>>>:

!t(1, t) = 1� (N � 1)✏t(t),

!t(1, t+ 1) = � � �1 �


NP
i=2

(�i � �1)

�
✏t(t)� (N � 1)✏t(t+ 1),

!t(1, t+ 2) = �(� � �1)�


NP
i=2

�i(�i � �1)

�
✏t(t)�


NP
i=2

(�i � �1)

�
✏t(t+ 1)� (N � 1)✏t(t+ 2),

...

35



Then, we know that !t(1, s) = F (s)
t (✏t(t), . . . , ✏t(s)|�, �1, . . . , �n), in which F (s)

t is an a�ne (and

hence continuous) function of ✏t(t), . . . , ✏t(s). By continuity of F (s)
t , the weights !t(1, s)’s are

strictly greater than zero, if ✏t(s)’s are small enough.

Now we are able to prove Proposition 2.

If Part Since the planner’s instantaneous utility function u is identical to individual

instantaneous utility function u, the if part follows from Lemma 3 immediately.

Only-If Part Suppose the planner’s preference is intergenerationally Pareto and strongly

non-dictatorial. For each t 2 T , there exists a finite sequence of strictly positive numbers

(!t(i, s))i2N,s�t such that

Ut(p) =
TX

s=t

NX

i=1

!t(i, s)Ui,s(p) =
TX

s=t

NX

i=1

!t(i, s)
TX

⌧=s

�⌧�s
i u(p⌧ )

=
TX

⌧=t

⌧X

s=t

NX

i=1

!t(i, s)�
⌧�s
i u(p⌧ ).

Then, for 8t, 8⌧ � t, the following equality holds,

⌧X

s=t

NX

i=1

!t(i, s)�
⌧�s
i u(p⌧ ) = �⌧�tu(p⌧ ). (13)

Let ⌧ = t, t+ 1 in (13). We have

( PN
i=1 !t(i, t)u(pt) = u(pt),PN
i=1 !t(i, t)�iu(pt+1) +

PN
i=1 !t(i, t+ 1)u(pt+1) = �u(pt+1).

Combining the above two equations,

NX

i=1

!t(i, t)� =
NX

i=1

!t(i, t)�i +
NX

i=1

!t(i, t+ 1).

Rearranging the above equation, we have
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� =

NP
i=1

!t(i, t)�i +
NP
i=1

!t(i, t+ 1)

NP
i=1

!t(i, t)

>

NP
i=1

!t(i, t)�i

NP
i=1

!t(i, t)

>

NP
i=1

!t(i, t)mini �i

NP
i=1

!t(i, t)

= min
i2N

�i

A.3 Proof of Theorem 1

Proof. Part I We prove Part I in two steps. First, we prove a lemma for the one-individual

case. Then, we apply Proposition 2 to complete the proof.

Lemma 4 Assume that N = {i}. Suppose T < +1, and each generation-t individual

i’s discounting utility function has an instantaneous utility function u and a discount func-

tion �i(⌧) such that (4) and (5) hold. For any � > �̂i := max
⌧2{0,...,T�1}

�i(⌧+1)
�i(⌧)

, the planner is

intergenerationally Pareto and strongly non-dictatorial.

Proof. We want to show that for any � > �̂i and each t 2 T , there exists a finite sequence

of strictly positive numbers (!t(i, s))t2T,s�t such that

Ut(p) =
TX

⌧=t

�⌧�tu(p⌧ ) =
TX

s=t

!t(i, s)Ui,s(p).

Given any � > �̂i, for each t 2 T , we can construct (!t(i, s))s�t according to the following

formula:

!t(i, s) =

8
<

:

1, if s = t,

�s�t�1
⇣
� � �̂i

⌘
+

s�1P
⌧=t

h
�̂i�i(s� 1� ⌧)� �i(s� ⌧)

i
!t(i, ⌧), if s > t.

(14)

Note that by assuming � > �̂i, for s > t, the first term of !t(i, s) is strictly greater than

0. According to the definition of �̂i, the second term of !t(i, s) is greater than 0. Hence,

!t(i, s) > 0 for any s � t. Then,

Ut(p) =
TX

s=t

!t(i, s)Ui,s(p) =
TX

s=t

!t(i, s)

"
TX

⌧=s

�i(⌧ � s)u(p⌧ )

#
=

TX

⌧=t

"
⌧X

s=t

�i(⌧ � s)!t(i, s)

#
u(p⌧ ).
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We want to prove that Ut(p) =
PT

⌧=t �
⌧�tu(p⌧ ) by induction. Consider

P⌧
s=t �i(⌧ �

s)!t(i, s). When ⌧ = t,
P⌧

s=t �i(⌧ � s)!t(i, s) = !t(i, t) = 1 = �0. Suppose for some ⌧ � t,

we have proven that
P⌧

s=t �i(⌧ � s)!t(i, s) = �⌧�t. We want to prove that for ⌧ + 1,

⌧+1X

s=t

�i(⌧ + 1� s)!t(i, s) = �⌧�t+1. (15)

To prove (15), we only need to notice that according to (14),

⌧+1X

s=t

�i(⌧ + 1� s)!t(i, s) = !t(i, ⌧ + 1) +
⌧X

s=t

�i(⌧ + 1� s)!t(i, s)

= !t(i, ⌧ + 1) + �̂i

"
�⌧�t +

⌧X

s=t

�i(⌧ + 1� s)

�̂i
!t(i, s)� �⌧�t

#

= !t(i, ⌧ + 1) + �̂i

"
�⌧�t +

⌧X

s=t

�i(⌧ + 1� s)

�̂i
!t(i, s)�

⌧X

s=t

�i(⌧ � s)!t(i, s)

#

= !t(i, ⌧ + 1) + �̂i�
⌧�t +

⌧X

s=t

h
�i(⌧ + 1� s)� �̂i�i(⌧ � s)

i
!t(i, s) = �⌧�t+1.

By induction, we know that
P⌧

s=t �i(⌧ � s)!t(i, s) = �⌧�t for any ⌧ � t. Now, we know

that Ut(p) =
PT

⌧=t �
⌧�tui(p⌧ ).

Lemma 4 states that in each period t, the planner can aggregate individual i’s utility

functions from the tth generation to the T th generation to derive an EDU function with any

discount factor greater than �̂i. Then, by Proposition 2, in each period t, the planner can

aggregateN exponential discounting individuals from the tth generation to the T th generation

one more time, and obtain an EDU function with any social discount factor greater than

mini �̂i.

Part II Define �̃i := lim⌧!1
⌧
p
�i(⌧). Without loss of generality, we assume that �̃1 is the

unique minimum of �̃1, . . . , �̃N . The proof can easily be extended to the case with multiple

minima. We prove it by contradiction. Suppose the planner is intergenerationally Pareto.

For each t 2 T , there exists a finite sequence of nonnegative numbers (!t(i, s))i2N,s�t such

that the following equality holds:

⌧X

s=t

NX

i=1

!t(i, s)�i(⌧ � s)u(p⌧ ) = �⌧�tu(p⌧ ) (16)

for any t 2 T and ⌧ � t.
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By letting ⌧ = t, equation (16) shows that
P

i2N !t(i, t) = 1 for any t 2 T . Then,

�⌧�t =

⌧P
s=t

NP
i=1

!t(i, s)�i(⌧ � s)

NP
i=1

!t(i, t)

�

NP
i=1

!t(i, t)�i(⌧ � t)

NP
i=1

!t(i, t)

. (17)

Since �̃1 = mini �̃i, there exists T1 > 0 such that for 8⌧ > T1, �1(⌧ � t) = mini �i(⌧ � t).

Hence, (17) becomes

�⌧�t �

NP
i=1

!i,t(t)�1(⌧ � t)

NP
i=1

!i,t(t)

= �1(⌧ � t). (18)

According to our assumptions, � < �̃1. Then, there exists T2 > 0 such that for 8⌧ > T2,

�⌧�t < �1(⌧ � t). (19)

Let T ⇤ = max{T1, T2}. Then, (18) and (19) contradict each other.

A.4 Proof of Theorem 2

Proof. Part I We prove this theorem in two steps. First, again we consider the special

case in which there is only one individual i to be aggregated across generations. Since the

individual relative discount factor is increasing, �⇤i � �̂i := max
⌧2{0,...,T�1}

�i(⌧+1)
�i(⌧)

. By Lemma 4,

because the social discount factor � > maxi �⇤i � �⇤i , for any i 2 N and t 2 T , we can find

some positive (!t(i, s))s�t such that

TX

s=t

!t(i, s)Ui,s(p) =
TX

⌧=t

�⌧�tui(p⌧ );

that is, we can aggregate each individual’s utility functions across generations into an EDU

function with discount factor �.

Consider any N -tuple of strictly positive numbers (�i)i2N such that
P

i2N �i = 1. To-

gether with the weights (!t(i, s))i2N,s�t we have found above, let the planner’s utility function
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satisfy

Ut(p) =
NX

i=1

TX

s=t

�i!t(i, s)Ui,s(p) =
NX

i=1

TX

⌧=t

�⌧�t�iui(p⌧ )

=
TX

⌧=t

�⌧�t
NX

i=1

�iui(p⌧ ) =
TX

⌧=t

�⌧�tu(p⌧ ),

in which u =
P

i2N �iui is an arbitrary strict convex combination of (ui)i2N .

Part II We prove it by contradiction. Suppose there exists an intergenerationally Pareto

planner with the social discount factor � < maxi �⇤i . By intergenerational Pareto, for each

t 2 T , there exists nonnegative numbers (!t(i, s))i2N,s�t such that the following equality

holds for each t 2 T :

TX

⌧=t

�⌧�tu(p⌧ ) =
TX

⌧=t

NX

i=1

⌧X

s=t

!t(i, s)�i(⌧ � s)ui(p⌧ ).

Since p⌧ ’s are arbitrary, the equation above implies that

( PN
i=1 !0(i, 0)ui(p0) = u(p0),P⌧
s=0

PN
i=1 !0(i, s)�i(⌧ � s)ui(p⌧ ) = �⌧u(p⌧ ).

(20)

Recall that u is a strict convex combination of (ui)i2N and (ui)i2N is linearly independent.

There is a unique way to write u as a convex combination of (ui)i2N . Thus, the first equation

of (20) implies that !0(i, 0) > 0 for each i. Combining the two equations of (20), we have

NX

i=1

!0(i, 0)�
⌧ui =

NX

i=1

⌧X

s=0

!0(i, s)�i(⌧ � s)ui.

Since (ui)i2N is linearly independent, the above equation is equivalent to

!0(i, 0)�
⌧ui =

⌧X

s=0

!0(i, s)�i(⌧ � s)ui.

for 8i 2 N .

Rearrange the above equation. We have

�⌧ =

P⌧
s=0 !0(i, s)�i(⌧ � s)

!0(i, 0)
=
!0(i, 0)�i(⌧) +

P⌧
s=1 !0(i, s)�i(⌧ � s)

!0(i, 0)
� !0(i, 0)�i(⌧)

!0(i, 0)
= �i(⌧)
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for 8i 2 N . Hence, for any i 2 N and ⌧  T � 1,

� � ⌧
p
�i(⌧). (21)

Without loss of generality, we assume �⇤N is a maximum of {�⇤i }i2N . Since � < �⇤N =

lim⌧!1
⌧
p
�N(⌧), there exists T ⇤ such that for any ⌧ � T ⇤, � < ⌧

p
�N(⌧), which contradicts

(21).

A.5 Proof of Theorem 3

Proof. Part I We prove Part I in two steps. First, we aggregate individuals who share the

same u✓. For each ✓ 2 ⇥, I✓ := {i 2 N : ui = u✓} is called a “family,” which is the set of i’s

whose instantaneous utility functions are u✓. By Corollary 2, we know that for each ✓ and

each � > mini2I✓ �
⇤
i , there exists a sequence of weights (!t(i, s))t2T,i2I✓,s�t such that

U ✓
t (p) =

TX

⌧=t

�⌧�tu✓(p⌧ ) =
TX

s=t

X

i2I✓

!t(i, s)Ui,s(p).

for each t 2 T . Now, we have |⇥| exponential discounting expected utility functions U ✓
t ’s

with linearly independent instantaneous utility functions u✓’s.

Next, we apply Proposition 3 to aggregate U ✓
t ’s. It follows immediately that if � >

max✓2⇥ mini2I✓ �
⇤
i , the planner is intergenerationally Pareto and strongly non-dictatorial.

Part II We prove its contrapositive. Suppose there exists an intergenerationally Pareto

planner with the social discount factor � < �⇤maxmin. By intergenerational Pareto, for each t 2
T , there exists a finite sequence of positive numbers (!t(i, s))i2N,s�t such that the following

equality holds:

�⌧�tu(p⌧ ) =
X

✓2⇥

X

i2I✓

⌧X

s=t

!t(i, s)�i(⌧ � s)u✓(p⌧ ). (22)

for each t 2 T and ⌧ � t.

By letting ⌧ = t in equation (22), we have

u(pt) =
X

✓2⇥

X

i2I✓

!t(i, t)u
✓(pt). (23)

Recall that u is a strict convex combination of (ui)i2N . Equation (23) shows that
P

✓2I✓ !t(i, t) >

0 for each ✓. Combining equations (22) and (23), we have

X

✓2⇥

X

i2I✓

�⌧�t!t(i, t)u
✓(p⌧ ) =

X

✓2⇥

X

i2I✓

⌧X

s=t

!t(i, s)�i(⌧ � s)u✓(p⌧ ).
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Since (u✓)⇥i=1 is linearly independent, the above equation is equivalent to

X

i2I✓

�⌧�t!t(i, t) =
X

i2I✓

⌧X

s=t

!t(i, s)�i(⌧ � s)

for 8✓ 2 ⇥. Rearranging the above equation, we obtain

�⌧�t =

P
i2I✓

P⌧
s=t !t(i, s)�i(⌧ � s)
P

i2I✓ !t(i, t)
>

P
i2I✓ !t(i, t)�i(⌧ � t)
P

i2I✓ !t(i, t)
. (24)

Letting ⌧ go to infinity, it is easy to see that (24) becomes � � mini2I✓ �
⇤
i for 8✓ 2 ⇥.

Hence, � � max✓2⇥ mini2I✓ �
⇤
i = �⇤maxmin.

A.6 Preliminaries of Lemma 2

The proof of Lemma 2 uses a generalization of Farkas’ lemma for dual pairs due to Craven and

Koliha (1977). To state the generalized Farkas’ lemma, we first introduce some definitions.

A dual pair is 3-tuple (A,A0,�) consisting of two vector spaces A and A0 and a function

� : A ⇥ A0 ! R such that (i) � is bilinear, (ii) if �(a, a0) = 0 for any a 2 A, then a0 = 0,

and (iii) if �(a, a0) = 0 for any a0 2 A, then a = 0. Properties (ii) and (iii) are called the

separation properties. The weak topology of A is characterized by the following: A sequence

(an)1n=1 of A converges to a 2 A if and only if �(an, a0) converges to �(a, a0) for any a0 2 A0.

The weak topology of A0 is similarly defined. A nonempty subset S ⇢ A is a convex cone if

↵a + �b 2 S for any ↵, � � 0 and a, b 2 S. We use S 0 to denote the anticone of the convex

cone, in which S 0 := {a0 2 A0 : �(a, a0) � 0 for any a 2 S}.
Suppose (A,A0,�) and (B,B0,') are dual pairs and  : A ! B is a continuous linear

map. Then,  0 : B0 ! A0 is the topological adjoint of  if

�(a, 0(b0)) = '( (a), b0)

for any a 2 A and b0 2 B0. We state Craven and Koliha’s Theorem 2 below.

Theorem 5 (Craven and Koliha (1977)) Let (A,A0,�) and (B,B0,') be dual pairs, let S

be a convex cone in A, and let  : A ! B be a continuous linear map. If  (S) is closed in

weak topology and b 2 B, the following statements are equivalent:

1. The equation  (a) = b has a solution a 2 S.

2.  0(b0) 2 S 0 ) '(b, b0) � 0.
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A.7 Proof of Lemma 2

Proof. The if part is straightforward to verify.

Only-If Part Suppose the generation-t individual i’s utility function is Ui,t(p) =
P1

⌧=t �i(⌧�
t)ui(p⌧ ), the planner’s utility function is Ut(p) =

P1
⌧=t �t(⌧ � t)ut(p⌧ , ⌧), and intergener-

ational Pareto holds. To apply Theorem 5, let A = `1, A0 = `1, B = Cb(X1), and

B0 = ca(X1), in which `1 is the set of absolutely summable sequences, `1 is the set of

bounded sequences, Cb(X1) is the set of continuous and bounded functions on X1, and

ca(X1) is the set of countably additive signed measures on X1. Note that since X is com-

pact, X1 is also compact in the product topology. The norm of A0 and B is the sup norm,

and the norm of B0 is the total variation. By defining

�(a, a0) =
1X

n=1

ana
0
n

and

'(b, b0) =

Z

X1
b db0

for any a 2 A, a0 2 A0, b 2 B, and b0 2 B0, (A,A0,�) and (B,B0,') are dual pairs (p. 211 of

Aliprantis and Border (2006)).

For any sequence ~!t = (!t(1, t), . . . ,!t(N, t),!t(1, t+1), . . . ,!t(N, t+1), . . . ) 2 `1, define

a function  : A ! B such that

 (~!t)(x) =
1X

s=t

NX

i=1

!t(i, s)Ui,s(x) (25)

for any x = (x1, x2, . . . ) 2 X1. In the main text, Ui,s is defined on �(X)1 when T = 1.

Here, we restrict attention to degenerate lotteries of�(X)1. We claim that (Ui,s(x))i2N,s�t 2
`1, and hence  (~!t)(x) is well defined. We prove this claim when we later prove that  is

a continuous function.

We want to verify that  is continuous and maps from A to B. Then, let S = {a 2 A :

a � 0}. We want to verify that  (S) is closed in weak topology. After verifying them, we

apply Theorem 5.

Step 1 First, we show that  (~!t) is a continuous function on X1. The product topology

of X1 is metrizable. For any x,y 2 X1,

⇡(x,y) := sup
⌧

⇢
min{kx⌧ � y⌧k , 1}

⌧

�

induces the product topology on X1, in which X ⇢ Rm and k·k is the Euclidean metric of
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Rm (p. 125 of Munkres (2000)). Intuitively, when x and y are close, x⌧ and y⌧ are close

when ⌧ is small, but x⌧ and y⌧ can be far apart when ⌧ is large. We need to show that when

� is small enough, if ⇡(x,y) < �, then | (~!t)(x)�  (~!t)(y)| is small enough. Without loss

of generality, let � < 1. Then, ⇡(x,y) < � implies that kx⌧ � y⌧k < ⌧� for ⌧  1/�. For

⌧ > 1/�, x⌧ and y⌧ can be far apart.

Pick some "(1), "(2), "(3) > 0 that can be arbitrarily small. Since ~!t 2 `1, (�i(⌧))1⌧=0 2
`1, and N is finite, there exists some &(1), &(2) such that

P1
s=&(1)

PN
i=1 !t(i, s) < "(1) and

P1
⌧=&(2) �i(⌧ � s) < "(2) for each i 2 N . Now, let � be chosen so that

kx& � y&k < max{&(1), &(2)} · � < "(3). (26)

Note that &(1) depends on "(1), but not on "(2) and "(3). Similarly, &(2) depends on "(2), but

not on "(1) and "(3). Then,

| (~!t)(x)�  (~!t)(y)| =

�����

1X

s=t

NX

i=1

!t(i, s)Ui,s(x)�
1X

s=t

NX

i=1

!t(i, s)Ui,s(y)

�����


1X

s=t

NX

i=1

!t(i, s) · |Ui,s(x)� Ui,s(y)|


1X

s=t

NX

i=1

!t(i, s)

" 1X

⌧=s

�i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|
#


&(1)X

s=t

NX

i=1

!t(i, s)

" 1X

⌧=s

�i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|
#

+
1X

s=&(1)

NX

i=1

!t(i, s)

" 1X

⌧=s

�i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|
#
.

Since ui is continuous on a compact set, ui is uniformly continuous and ui is bounded by
1
2� > 0 for any i 2 N for some � > 0. Thus,

1X

s=&(1)

NX

i=1

!t(i, s)

" 1X

⌧=s

�i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|
#
< �"(1) ·

 1X

⌧=0

�i(⌧)

!
.
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Then,

&(1)X

s=t

NX

i=1

!t(i, s)

" 1X

⌧=s

�i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|
#

=
&(1)X

s=t

NX

i=1

!t(i, s)

" P&(2)

⌧=s �i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|
+
P1

⌧=&(2) �i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|

#
.

We know that
1X

⌧=&(2)

�i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )| < "(2)�

and hence

&(1)X

s=t

NX

i=1

!t(i, s)

" 1X

⌧=&

�i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|
#
< "(2)�

&(1)X

s=t

NX

i=1

!t(i, s).

Since ui is uniformly continuous on X, if kx⌧ � y⌧k < "(3), |ui(x⌧ )� ui(y⌧ )| < ✏(3), in which

✏(3) can be arbitrarily small as "(3) gets arbitrarily small. Then,

&(1)X

s=t

NX

i=1

!t(i, s)

2

4
&(2)X

⌧=s

�i(⌧ � s) · |ui(x⌧ )� ui(y⌧ )|

3

5

 ✏(3) ·
&(1)X

s=t

NX

i=1

!t(i, s) ·
&(2)X

⌧=s

�i(⌧ � s).

Thus,

| (~!t)(x)�  (~!t)(y)| < �"(1) ·
 1X

⌧=0

�i(⌧)

!
+ "(2)�

&(1)X

s=t

NX

i=1

!t(i, s) (27)

+✏(3) ·
&(1)X

s=t

NX

i=1

!t(i, s) ·
&(2)X

⌧=s

�i(⌧ � s).

We first pick a small "(1), which guarantees that the first term of the right-hand side of (27)

is arbitrarily small. By picking "(1), &(1) is determined. Then, we choose a small "(2) to cause

the second term of the right-hand side of (27) to be small. This step does not a↵ect the first

term of the right-hand side of (27). By choosing a small "(3), we ensure that the last term

of the right-hand side of (27) is also arbitrarily small. This step does not a↵ect the first two

terms of the right-hand side of (27), and � is pinned down by "(1), "(2), and "(3) via equation

(26). Thus, we know that  (~!t) : X1 ! R is a continuous function.
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Step 2 Next, we show that  : A ! B is continuous. Let  # : B# ! A# be the algebraic

dual of  such that �(a, #(b#)) = '( (a), b#) for any a 2 A and b# 2 B#, in which A#

and B# are the algebraic duals of A and B, respectively, and � and ' are similarly defined

for A,A# and B,B#, respectively. It is known that  0 is identical to the restriction of  #

to B0, and that to show that  : A ! B is continuous, it su�ces to show that  #(B0) ⇢ A0,

that is,  #(ca(X1)) ⇢ `1. For any µ 2 B0 and ~!t 2 A,

�(~!t, 
#(µ)) = '( (~!t), µ)

=

Z

X1
 (~!t) dµ

=

Z

X1

 1X

s=t

NX

i=1

!t(i, s)Ui,s(x)

!
dµ

=
1X

s=t

NX

i=1

!t(i, s)

Z

X1
Ui,s(x) dµ

�

The last equality is by the Fubini–Tonelli theorem. By applying the theorem again,

Z

X1
Ui,s(x) dµ =

Z

X1

1X

⌧=s

�i(⌧ � s)ui(x⌧ ) dµ (28)

=
1X

⌧=s


�i(⌧ � s)

Z

X1
ui(x⌧ ) dµ

�
.

To understand
R
X1 ui(x⌧ ) dµ, think of ui(x⌧ ) as a function defined on X1 that only depends

on the ⌧ th component of x, x⌧ . Then,
R
X1 ui(x⌧ ) dµ =

R
X ui(x⌧ ) dp⌧ , in which p⌧ is µ’s

marginal distribution on x⌧ . Since ui is continuous on a compact set,
R
X1 ui(x⌧ ) dµ is

bounded above by maxx2X ui(x) and below by minx2X ui(x). Therefore,
R
X1 Ui,s(x) dµ is

bounded above by
1X

⌧=s

�i(⌧ � s)max
x2X

ui(x) = max
x2X

ui(x)
1X

⌧=0

�i(⌧)

and below by
1X

⌧=s

�i(⌧ � s)min
x2X

ui(x) = min
x2X

ui(x)
1X

⌧=0

�i(⌧),

because (�i(⌧))1⌧=0 2 `1. Both bounds only depend on i. Therefore,

�(~!t, 
#(µ)) = �(~!t, a

0),
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in which

a0 =

0

B@

R
X1 U1,t(x) dµ,

R
X1 U2,t(x) dµ, . . . ,

R
X1 UN,t(x) dµ,R

X1 U1,t+1(x) dµ,
R
X1 U2,t+1(x) dµ, . . . ,

R
X1 UN,t+1(x) dµ,

. . .

1

CA 2 `1.

Hence,  is continuous. Note that the two bounds above also show that (Ui,s(x))i2N,s�t 2 `1

for each x 2 X1, which proves our claim that  (~!t)(x) is well defined.

Step 3 We show that  (S) is closed in weak topology (induced by ca(X1)). Since S

is convex and  is linear,  (S) ⇢ Cb(X) is convex. When X1 is compact, the topological

dual of Cb(X1) is ca(X1). It is known that a convex set of a normed space (Cb(X1) with

the sup norm) is closed in the norm topology if and only if it is closed in the weak topology

induced by the topological dual. Therefore, we only need to show that  (S) is closed in

the norm topology. Take a sequence (f (n))1n=1 of  (S) such that f (n) 2  (S) converges to

f 2 Cb(X1) in sup norm. Convergence in sup norm implies pointwise convergence; that is,

for any x 2 X1, f (n)(x) converges to f(x). Since f (n)’s are functions on a compact set X1,

by the Arzelà–Ascoli theorem, sup norm convergence implies that (f (n))1n=1 is equicontinuous.

Below, we want to show that f 2  (S); that is, there exists some ~!t 2 S such that

f =  (~!t). Since f (n) 2  (S), there exists an ~!(n)
t 2 S such that

f (n) =
1X

s=t

NX

i=1

!(n)
t (i, s)Ui,s.

Step 3-1 We first show that such an ~!(n)
t 2 S is unique. Suppose there exists another

~$(n)
t 2 S such that

f (n) =
1X

s=t

NX

i=1

$(n)
t (i, s)Ui,s.

Suppose the smallest s � t such that ~!(n)
t and ~$(n)

t di↵er is ŝ. Consider the following element

of X1,

x(y,ŝ) = (x⇤, . . . , x⇤| {z }
(ŝ�1) times

, y, x⇤, x⇤, . . . ),

for any y 2 �(X). Note that Ui,s(x) depends on x⌧ only if ⌧ � s. Because ui(x⇤) = 0,

f (n)(x(y,ŝ)) =
ŝX

s=t

NX

i=1

!(n)
t (i, s)Ui,s(x

(y,ŝ))

=
ŝX

s=t

NX

i=1

$(n)
t (i, s)Ui,s(x

(y,ŝ)).
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Since ~!(n)
t (i, s) and ~$(n)

t (i, s) coincide for any s < ŝ, we know that

NX

i=1

!(n)
t (i, ŝ)Ui,ŝ(x

(y,ŝ)) =
NX

i=1

$(n)
t (i, ŝ)Ui,ŝ(x

(y,ŝ))

NX

i=1

!(n)
t (i, ŝ)ui(y) =

NX

i=1

$(n)
t (i, ŝ)ui(y)

for any y 2 �(X). Since (ui)i2N is linearly independent, the equality above holds for any

y 2 �(X) if and only if !(n)
t (i, ŝ) = $(n)

t (i, ŝ) for every i 2 N , which is a contradiction.

Therefore, we have a sequence
⇣
~!(n)
t

⌘1
n=1

of S such that  
⇣
~!(n)
t

⌘
= f (n). We want to

find some ~!t in `1 such that  (~!t) = f .

Step 3-2 We construct each ~!(n)
t from f (n). First, we claim that there exists an N -tuple

(yi)Ni=1 in X such that rank(B) = N , in which B is an N ⇥N matrix

0

BBBB@

u1(y1) u2(y1) . . . uN(y1)

u1(y2) u2(y2) . . . uN(y2)
...

...
. . .

...

u1(yN) u2(yN) . . . uN(yN)

1

CCCCA
.

Note that B does not depend on time or n.

To find y1, let y1 = x⇤. Let B1 denote a 1 ⇥ N matrix that consists of the first row

of B with y1 = x⇤. Clearly, B1 has rank 1. Suppose we have found y1, . . . , yk�1 2 X

such that Bk�1 is a (k � 1) ⇥ N matrix that consists of the first (k � 1) rows of B and

has rank 1  k � 1 < N . We claim that we can find yk 2 X such that Bk is a k ⇥ N

matrix that consists of the first k rows of B and has rank k. Suppose not; that is, for any

yk 2 X, rank(Bk) =rank(Bk�1) = k � 1. This implies that for any yk 2 X, there exists

�1(yk), . . . ,�k�1(yk) 2 R such that

(u1(yk), . . . , uN(yk)) =
k�1X

j=1

�j(yk) · (u1(yj), . . . , uN(yj));

that is, the kth row of Bk can be written as a linear combination of the first (k � 1) rows of

Bk.

Consider the homogeneous system of linear equations,
PN

i=1 �̃iui(yj) = 0, j = 1, . . . , k�1.

Since there are N unknown variables (�̃i’s) but only k � 1 equations and k � 1 < N , the
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system always has some nontrivial solution (�̃i)Ni=1. Therefore,

NX

i=1

�̃iui(yk) =
NX

i=1

"
�̃i

k�1X

j=1

�j(yk)ui(yj)

#

=
k�1X

j=1

�j(yk)
NX

i=1

�̃iui(yj) = 0

for any yk 2 X, which contradicts the assumption that (ui)i2N is linearly independent.

Therefore, we can find an N -tuple (yi)Ni=1 in X such that the N ⇥N matrix B has full rank.

Step 3-3 We first construct each ~!(n)
t from f (n) via matrix B constructed above. Note

that

f (n)(x(yk,t)) =
NX

i=1

1X

⌧=t

!(n)
t (i, ⌧)Ui,s(x

(yk,t))

=
NX

i=1

!(n)
t (i, t)ui(yk),

in which x(yk,s) = (x⇤, . . . , x⇤| {z }
(s�1) times

, yk, x⇤, x⇤, . . . ) as defined previously, and yk’s are the elements

of X that we find when constructing B. Therefore,

0

B@
u1(y1) . . . uN(y1)

...
. . .

...

u1(yN) . . . uN(yN)

1

CA

0

B@
!(n)
t (1, t)

...

!(n)
t (N, t)

1

CA =

0

B@
f (n)(x(y1,t))

...

f (n)(x(yN ,t))

1

CA ,

in which the first matrix of the left-hand side is B. Hence,

0

B@
!(n)
t (1, t)

...

!(n)
t (N, t)

1

CA = B�1

0

B@
f (n)(x(y1,t))

...

f (n)(x(yN ,t))

1

CA . (29)

Since f (n) converges, by letting n go to infinity, we define !t(i, t) as the limit of !(n)
t (i, t).

From (29), we know that !(n)
t (i, t) is a linear combination of (f (n)(x(yk,t)))k2N that takes the

following form:

!(n)
t (i, t) =

NX

k=1

tX

⌧=t

⇣(i,t)t (k, ⌧) · f (n)(x(yk,⌧)).

It is important to note that for any i 2 N ,
⇣
⇣(i,t)t (k, ⌧)

⌘

k2N,⌧=t
is independent of n. The
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reason there is a redundant summation (⌧ from t to t) will become clear once we move on

to !(n)
t (i, s).

Next, because

f (n)(x(yk,s)) =
NX

i=1

1X

⌧=t

!(n)
t (i, ⌧)Ui,s(x

(yk,s))

=
NX

i=1

sX

⌧=t

!(n)
t (i, ⌧)�i(s� ⌧)ui(yk).

Therefore,

0

B@
!(n)
t (1, s)

...

!(n)
t (N, s)

1

CA = B�1

0

B@
f (n)(x(y1,s))�

P
i2N
Ps�1

⌧=t !
(n)
t (i, ⌧)�i(s� ⌧)ui(y1)

...

f (n)(x(yN ,s))�
P

i2N
Ps�1

⌧=t !
(n)
t (i, ⌧)�i(s� ⌧)ui(yN)

1

CA

= B�1

0

B@
f (n)(x(y1,s))

...

f (n)(x(yN ,s))

1

CA� B�1

0

B@

P
i2N
Ps�1

⌧=t !
(n)
t (i, ⌧)�i(s� ⌧)ui(y1)

...
P

i2N
Ps�1

⌧=t !
(n)
t (i, ⌧)�i(s� ⌧)ui(yN)

1

CA

Again, since f (n) converges, by letting n go to infinity, we define !t(i, s) as the limit of

!(n)
t (i, s). Recursively, we also know that !(n)

t (i, s) is a linear combination of (f (n)(x(yk,⌧)))k2N,t⌧s

that takes the following form:

!(n)
t (i, s) =

NX

k=1

sX

⌧=t

⇣(i,s)t (k, ⌧) · f (n)(x(yk,⌧)).

It is important to note that for any i 2 N and s � t,
⇣
⇣(i,s)t (k, ⌧)

⌘

k2N,t⌧s
is independent

of n.

We have found the ~!t such that !t(i, s) = limn!1 !(n)
t (i, s); that is, !(n)

t converges to !t

“pointwisely.” We can show that ~!t = (!t(i, s))i2N,s�t 2 `1. Consider x⇤ = (x⇤, x⇤, . . . ) 2
X1. Since ui(x⇤) = 1,

f (n)(x⇤) =
1X

s=t

NX

i=1

!(n)
t (i, s) ·

1X

⌧=0

�i(⌧).

Since f (n)(x⇤) converges to f(x⇤), we know that there exists some ⇢ > 0 such that f (n)(x⇤) 
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⇢ for any n 2 N. Because
P1

⌧=0 �i(⌧) > 1,

1X

s=t

NX

i=1

!(n)
t (i, s)  ⇢

for any n 2 N. Thus, for any fixed n0 2 N,
Pn0

s=t

P
i2N !

(n)
t (i, s)  ⇢. Let n go to infinity, we

know that
Pn0

s=t

P
i2N !t(i, s)  ⇢. Since

Pn0

s=t

P
i2N !t(i, s)  ⇢ for any n0 2 N, we know

that
P1

s=t

P
i2N !t(i, s)  ⇢, which means ~!t 2 `1.

Step 3-4 We want to show that ~!(n)
t converges in `1. If we can show this, ~!(n)

t ’s limit

must be ~!t. Then, because  is continuous,  
⇣
~!(n)
t

⌘
= f (n), and f (n) converges to f , we

know that  (~!t) = f , which completes the proof of Step 3. Because `1 is complete, to show

that ~!(n)
t converges in `1, we only need to show that

⇣
~!(n)
t

⌘1
n=1

is a Cauchy sequence; that

is, for any " > 0, there exists some  > 0 such that for any n, ñ � ,

NX

i=1

1X

s=t

���!(n)
t (i, s)� !(ñ)

t (i, s)
��� < ". (30)

Let x(⇤,s) = (x⇤, . . . , x⇤
| {z }

s times

, x⇤, x⇤, . . . ). Recall that for any x,y 2 X1, the metric of X1 is

⇡(x,y) := sup
⌧

⇢
min{kx⌧ � y⌧k , 1}

⌧

�
.

Therefore, when s is large, x⇤ and x(⇤,s) are close.

Note that for any "0 > 0, there exists some 0 > 0 such that for any ̃0 � 0,

|f (n0)(x⇤)� f (n0)(x(⇤,̃0))| < "0

for any n0, because (f (n))1n=1 is equicontinuous. Then,

"0 > |f (n0)(x⇤)� f (n0)(x(⇤,̃0))|

=

�����

NX

i=1

1X

s=t

!(n0)
t (i, s)U(x⇤)�

NX

i=1

1X

s=t

!(n0)
t (i, s)U(x(⇤,̃0))

�����

=

�����

NX

i=1

1X

s=t

"
!(n0)
t (i, s)

1X

⌧=0

�i(⌧)

#
�

NX

i=1

̃0X

s=t

"
!(n0)
t (i, s)

̃0�sX

⌧=0

�i(⌧)

#�����

�
NX

i=1

1X

s=̃0

!(n0)
t (i, s).
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This shows that for any "0 > 0, there exists 0 > 0 such that for any ̃0 � 0 and any n0,

NX

i=1

1X

s=̃0

!(n0)
t (i, s) < "0. (31)

Back to equation (30). Note that

NX

i=1

1X

s=t

���!(n)
t (i, s)� !(ñ)

t (i, s)
��� 

NX

i=1

0X

s=t

���!(n)
t (i, s)� !(ñ)

t (i, s)
��� (32)

+
NX

i=1

1X

s=0

!(n)
t (i, s) +

NX

i=1

1X

s=0

!(ñ)
t (i, s).

The second and third terms of the right-hand side are both less than "0 due to equation (31).

Since f (n) converges to f in sup norm, for any "00 > 0, there exists 00 such that if n and

ñ are greater than 00, |f (n)(x) � f (ñ)(x)| < "00 for any x 2X1. Now, recall that from Step

3-3, we know that

!(n)
t (i, s) =

NX

k=1

sX

⌧=t

⇣(i,s)t (k, ⌧) · f (n)(x(yk,⌧)),

in which for any i 2 N and s � t,
⇣
⇣(i,s)t (k, ⌧)

⌘

k2N,t⌧s
is independent of n. Therefore, the

first term of the right-hand side of (32) becomes

NX

i=1

0X

s=t

�����

NX

k=1

sX

⌧=t

⇣(i,s)t (k, ⌧)
⇥
f (n)(x(yk,⌧))� f (ñ)(x(yk,⌧))

⇤
�����

 "00
NX

i=1

0X

s=t

NX

k=1

sX

⌧=t

���⇣(i,s)t (k, ⌧)
��� ,

as long as n and ñ are greater than 00. The inequality above shows that the first term of

the right-hand side of (32) can also be arbitrarily small.

Step 4 Finally, we want to show that the following equation

Ut =
1X

s=t

NX

i=1

!t(i, s)Ui,s =  (~!t) (33)

has a nonnegative solution; that is, there exists some ~!t 2 S that solves (33). If we can find

such an ~!t, it must be the case that
PN

i=1

P1
s=t !t(i, s) > 0, because of the normalization

assumption on expected utility functions. Applying Theorem 5, we know that we can find a
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nonnegative solution ~!t to (33) if and only if for any µ 2 B0,

Z

X1
Ui,s dµ � 0 (34)

for any i 2 N and s � t implies
R
X1 Ut dµ � 0.

To see this, first note that by the Hahn–Jordan decomposition theorem, µ can be uniquely

decomposed into ↵µ+ � �µ� in which ↵, � � 0 and µ+ and µ� are probability measures on

X1. Thus, (34) becomes

↵

Z

X1
Ui,s dµ+ � �

Z

X1
Ui,s dµ�

for any i 2 N and s � t. Notice that Ui,s’s are time-additively separable. Again, as in

equation (28), probability measures µ+ and µ� can be identified with p 2 �(X)1 and q 2
�(X)1, in which p⌧ and q⌧ are the marginal distributions of µ+ and µ� on x⌧ , respectively.

Hence, (34) becomes

↵Ui,s(p) � �Ui,s(q)

for any i 2 N and s � t.

Suppose ↵ � �. The other case can be proved in a similar way. Let us use x⇤ to

denote the sequence (x⇤, x⇤, . . . ). Since instantaneous utility functions are all normalized,

Ui,s(x⇤) = 0 for any i 2 N and s � t. Then, (34) becomes

Ui,s(p) �
�

↵
Ui,s(q) +

✓
1� �

↵

◆
Ui,s(x⇤)

for any i 2 N and s � t. Since Ui,s’s are time-additively separable, we know that for ev-

ery i 2 N and s � t, the generation-s individual i prefers p to �
↵q+

�
1� �

↵

�
x⇤, in which

�
↵q+

�
1� �

↵

�
x⇤ 2 �(X)1 is the period-by-period mixture between q and x⇤. By intergen-

erational Pareto, this means that

Ut(p) � �

↵
Ut(q) +

✓
1� �

↵

◆
Ut(x⇤)

↵Ut(p) � �Ut(q)Z

X1
Ut dµ � 0.

Therefore, we know that (33) has a nonnegative solution.
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A.8 Proof of Theorem 4

Proof. Part I Since u is a strict convex combination of (ui)i2N , suppose u =
P

i �iui for

some �1, . . . ,�N > 0 such that
P

i �i = 1. For each i 2 N and each t 2 T , we want to

construct a sequence of strictly positive and absolutely summable numbers (!t(i, s))1s=t such

that
1X

s=t

!t(i, s)Ui,s(p) =
1X

⌧=t

�⌧�tui(p⌧ ).

If this can be done, then in period t, let �i!t(i, s) be the planner’s utilitarian weight for the

generation-s individual i, in which case

NX

i=1

1X

s=t

�i!t(i, s)Ui,s(p) =
1X

⌧=t

�⌧�tu(p⌧ ) = Ut(p),

which means that the planner is intergerationally Pareto and strongly non-dictatorial.

Next, we show that the following recursive definition of (!t(i, s))1s=t works: For each s � t,

!t(i, s) =

(
1, if s = t,
Ps�1

�=t[� · �i(s� �)� �i(s� � + 1)]!t(i, �), if s > t.
(35)

First, it can be verified that each !t(i, s) is strictly positive, because � > maxi �⇤i and the

individual relative discount factor is increasing. Second, it can be verified inductively that

for any finite ⌧ ,
⌧X

s=t

NX

i=1

!t(i, s)�i(⌧ � s)ui(p⌧ ) = �⌧�tu(p⌧ )

for any p⌧ 2 �(X). These two steps are similar to the steps in the proof of Lemma 4. Thus,

we only have to show that (!t(i, s))1s=t is summable. Clearly,
Pn

s=t !t(i, s) is increasing in n.

If we can show that
Pn

s=t !t(i, s) is bounded above and the bound is a constant, this part of

the theorem is proven.

Sum up both sides of equation (35) from s = t to n. We can obtain that

1 =
n�1X

s=t

 
(1� �)

n�1�sX

⌧=0

�i(⌧) + �i(n� s)

!
!t(i, s) + !t(i, n).

Because
Pn�1�s

⌧=0 �i(⌧) > 1 and �i(n� s) > 0, (1� �)
Pn�1�s

⌧=0 �i(⌧) + �i(n� s) > 1� �, which
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implies that

1 >
n�1X

s=t

(1� �)!t(i, s) + !t(i, n)

> (1� �)
n�1X

s=t

!t(i, s).

Therefore,
Pn�1

s=t !t(i, s) is bounded above by 1/(1� �) for any n.

Part II Without loss of generality, we assume that �⇤N is the unique maximal of {�⇤i }i2N .
The proof can easily be extended to the case with multiple maxima. We prove the con-

trapositive of this part. Suppose the planner is intergenerationally Pareto and strongly

non-dictatorial. According to Lemma 1, for each t 2 T , there exists a sequence of nonneg-

ative numbers (!t(i, s))i2N,s�t such that Ut =
P

i,s !t(i, s)Ui,s. Hence, equality (16) holds;

that is, for any t and ⌧ � t,

⌧X

s=t

NX

i=1

!t(i, s)�i(⌧ � s)ui(p⌧ ) = �⌧�tu(p⌧ ).

Consider a consumption sequence that yields x⇤ in every period, (x⇤, x⇤, . . . ). Then, the

equation above becomes
⌧X

s=t

NX

i=1

!t(i, s)�i(⌧ � s) = �⌧�t.

Since ui’s and u are normalized, we know that for each t,
P

i2N !t(i, t) = 1. Due to the

strongly non-dictatorial property, in particular, !t(N, t) 2 (0, 1). Then,

�⌧�t =
⌧X

s=t

NX

i=1

!t(i, s)�i(⌧ � s)

> !t(N, t)�N(⌧ � t).

Therefore, � > ⌧�t
p
!t(N, t)�N(⌧ � t) for every ⌧ implies that � � �⇤N .

A.9 Utilitarianism with Infinite Time Horizon

Theorem 4 in Section 6 requires that (ui)i2N be linearly independent. Below, we state a

result related to Theorem 4 without assuming that (ui)i2N is linearly independent. This

result will show that even when ui’s are identical, the cuto↵ for the social discount factor

will jump from mini �⇤i to maxi �⇤i when T = +1. To state it, we first define utilitarianism.

Definition 6 The planner is intergenerationally utilitarian if in each period t 2 T , there
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exists a sequence of nonnegative numbers (!t(i, s))i2N,s�t such that 0 <
PN

i=1

PT
s=t !t(i, s) <

1, and

Ut =
NX

i=1

TX

s=t

!t(i, s)Ui,s.

The result below shows that if we assume intergenerational utilitarianism rather than

intergenerational Pareto, we can extend Theorem 4 to the case without linear-independence

assumptions on ui’s. The reason we assume intergenerational utilitarianism rather than

intergenerational Pareto is that the equivalence between intergenerational utilitarianism and

intergenerational Pareto is not yet established.

Proposition 4 Suppose T = +1, and each generation-t individual i’s discounting utility

function has an instantaneous utility function ui and a discount function �i such that (5)

and (6) hold. Let the planner’s instantaneous utility function u be an arbitrary strict convex

combination of (ui)i2N . Then,

1. for each maxi �⇤i < � < 1, the planner is intergenerationally utilitarian and strongly

non-dictatorial;

2. for each � < maxi �⇤i , the planner is not simultaneously intergenerationally utilitarian

and strongly non-dictatorial.

The proof of this proposition turns out to be identical to the proof of Theorem 4, except

that Lemma 2 is not needed here.

Proposition 4 covers the case in which ui’s are identical. Thus, Proposition 4 says that

if T = +1, the cuto↵ for the social discount factor again jumps from mini �⇤i to maxi �⇤i ,

compared to Theorem 1/Corollary 2.

Note that the second part of Proposition 4 is weaker than our previous results. In

Proposition 4, if the social discount factor is lower than the highest individual long-run

discount factor, then either intergenerational utilitarianism is violated or the planner has

ignored some individual from some generation.

However, there is still some discontinuity between Proposition 4 and Theorem 1/Corollary

2. In Theorem 1/Corollary 2, if the social discount factor is lower than the lowest individual

long-run discount factor, we know that intergenerational Pareto is violated, which implies

that at least one of the two conditions, intergenerational utilitarianism or the strongly non-

dictatorial property, is violated as in Proposition 4.

The intuition for this discontinuity in the second part of the result is the following. For

simplicity, suppose ui’s are the same. Fixing an arbitrarily large but finite T , the planner

can always attach small enough utilitarian weights to individuals with high �⇤i . In this way,
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the planner can keep her social discount factor low. However, if T is infinite, fixing any

strictly positive weights, as ⌧ increases to infinity, �i(⌧) of the individual with the highest �⇤i
dominates all the other individuals’ discount factors regardless of his weight. Therefore, the

social discount factor cannot be strictly less than maxi �⇤i .
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