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Abstract

A seller makes repeated o�ers to a rationally inattentive buyer (Sims,

2003). The seller knows the product's quality, which is random. The

buyer needs to pay attention both to the product's quality and to the

seller's o�ers. I show that there is delay in trade that decreases in

product quality, and that the buyer obtains a signi�cant surplus, which

remains signi�cant in a frequent-o�ers environment with vanishing at-

tention costs. Finally, I show that revealing the product's quality to the

buyer reduces both the buyer's surplus and overall e�ciency.

Keywords: Complexity, bargaining, rational inattention, entropy

reduction.

1 Introduction

Many high-stakes bargaining situations are complex. Mergers and acquisitions

involve changing the ownership of di�erent kinds of assets and obligations.

Collective bargaining contracts set wages, bene�ts and work conditions for

many individuals. International trade agreements determine tari�s for millions
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of products, and so on. Given the stakes involved in these transactions, it is

of interest to understand the ways in which their complexity in�uences them.

As such, a large and growing literature has studied the way that complexity

in�uences the resulting contract (e.g., Segal, 1999; Battigalli and Maggi, 2002;

Tirole, 2009; Bolton and Faure-Grimaud, 2010). The current paper studies a

di�erent distortion: complexity's in�uence on bargaining.

A de�ning feature of complex trades is that they involve costly attention.

For example, one might need to carefully read long contracts, study intricate

product details, or hire expensive consultants such as lawyers, bankers or engi-

neers. Thus, I study complexity's e�ect on bargaining by incorporating costly

attention into an otherwise standard bargaining model. In particular, I look

at a rationally inattentive buyer who bargains with a fully rational seller over

a product of uncertain quality. The quality, v, is determined once and for

all at the beginning of the game and is observed by the seller. Each period,

the seller makes the buyer an o�er. The buyer then allocates her attention

by choosing which among all signal structures to use to learn about v, and

the seller's (past and current) o�ers. The signal structure, the buyer's prior,

and the seller's possibly mixed strategy determine the buyer's attention cost.

I follow Sims (2003) by making attention costs proportional to the expected

reduction in the entropy of the buyer's beliefs. Once the buyer chooses her

signal structure for the period, nature draws a signal. Given the signal, the

buyer updates her prior and chooses whether to accept or reject the seller's

o�er. If she accepts, trade occurs and the game ends. Otherwise, the game

proceeds to the next period.

I show that attention costs have two e�ects on bargaining. To understand

these e�ects, consider, �rst, the benchmark model in which the buyer can

perfectly observe both the seller's o�ers and product quality. It is well known

that this model has a unique equilibrium characterized by two features: 1)

trade happens immediately, meaning that there is no ine�ciency; and 2) the

seller obtains all the gains from trade. I show that these features are reversed

in my model.

The paper's �rst major result is that there is ine�cient delay in trade.
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Moreover, I show that this delay persists even when the seller makes o�ers

in�nitely often (Theorem 4). To understand the intuition for delay, consider

the limit as the time between o�ers goes to zero. Suppose that there is no delay

at the limit � i.e., the buyer accepts the seller's equilibrium o�ers for sure in

an instant. Then, the lowest-cost way for the buyer to execute this strategy is

to accept every o�er sequence in an instant. Any other strategy involves the

buyer acquiring additional information, and, hence, costs more. But then the

seller is best o� making very high o�ers, implying that the buyer's strategy is

suboptimal, a contradiction.

The paper's second major result is that the buyer's ex-ante payo� is pos-

itive. This result echos previous (Kessler, 1998) and concurrent (Roesler and

Szentes, 2016) studies showing how imperfect information can create commit-

ment power. My paper di�ers from these studies in three ways. First, the

buyer in my model needs to learn about the seller's product and o�ers si-

multaneously. Second, my seller does not get to observe the buyer's signal

structure before he makes his o�er, meaning she would always choose full in-

formation and lose all her commitment power if attention were free. Third,

my paper studies inattention in a repeated-o�ers model, giving the buyer an

additional channel through which to generate surplus: private information. I

demonstrate this channel by showing that in an environment with frequent

o�ers, the buyer obtains a signi�cant surplus even when attention costs are

negligible. More precisely, let v be the realized quality of the product, and

take vl to be the lowest possible quality the product can attain. Theorem 5

establishes that, when o�ers are frequent, as attention costs vanish, trade is

e�cient and the buyer's expected surplus converges to 1
2

(E [v]− vl).
The intuition for Theorem 5 is based on the related literature on the Coase

conjecture (see, for example, Fudenberg et al. (1985) and Gul et al. (1986)).

In this literature, a seller makes repeated o�ers to a buyer with private infor-

mation about her value. Lacking commitment, the seller attempts to go down

the demand curve as fast as possible as o�ers become more frequent. Antic-

ipating the decrease in prices, the buyer lowers her willingness to pay, hence

�attening her demand. In the limit, the seller's o�er converges to the value of
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the last buyer who buys the product in a calendar instant. The outcome is a

high surplus to the buyer and instant trade.

A similar Coasian dynamic arises when the buyer's attention is costly.

With costly attention, the buyer has private information about her signals.

These signals serve a similar role to that of private values in the Coase con-

jecture. When attention costs are positive, the Coasian argument fails due to

the above-mentioned delay. When attention costs vanish, delay disappears,

thereby unleashing the Coasian e�ect. Therefore, in the limit, trade happens

immediately at the valuation of the last buyer who purchases the product.

Therefore the key is to understand the value of the last buyer on the de-

mand curve. This buyer's information is characterized by two features. First,

she received a sequence of weakly informative but negative signals that led her

to reject the seller's past o�ers. Second, her last signal is a strongly informa-

tive and positive signal that leads her to accept the seller's current o�er. The

last buyer's valuation is, therefore, a horse-race between a sequence of weak

negative signals and a single positive and highly informative signal. A delicate

argument shows that these two balance each other exactly, thus leading the

last purchasing buyer to evaluate the good at 1
2

(v − vl).
I conclude by examining the role that quality uncertainty plays in my

model. Thus, I compare my model to one in which the buyer sees the product

quality before bargaining, but still needs to pay attention to the seller's o�ers.

Proposition 4 shows that revealing the product's quality to the buyer reduces

total surplus because doing so reduces attention costs but increases delay.

Overall, the surplus lost due to increased delay is strictly higher than the gain

from attention costs.

In addition to contributing to the literature on the e�ect of transaction

complexity on trade, the current paper also contributes to the growing litera-

ture on rational inattention based on expected entropy reduction (e.g., Sims,

1998; Van Nieuwerburgh and Veldkamp, 2010; Dessein et al., 2016; and Yang,

2015). A key feature of my paper is that the buyer needs to pay attention to

a strategic variable � i.e., the seller's o�ers. In most of the literature, the inat-

tentive agent pays attention to variables that are controlled by nature. These
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include variables determined exogenously or in aggregate, such as competitive

equilibrium prices.

The fact that the buyer pays attention to a strategic variable requires me

to introduce an equilibrium re�nement. I need a re�nement because zero-

probability events do not enter the expected entropy-reduction formula. By

threatening to collect the right information, the buyer can deter the seller from

making certain o�ers, hence implying that the threat costs the buyer nothing.

However, I show that one can eliminate many such threats by introducing a

re�nement in the spirit of Selten's (1975) perfect equilibrium. In particular,

for each o�-equilibrium history, I require the buyer's strategy to be a limit

of best responses to some sequence of belief perturbations that put positive

probability on said history. These perturbations make the buyer account for

the marginal cost of paying attention to o�-path events, which eliminates the

possibility of non-credible attention threats.

Even with my re�nement, it is still true that the buyer may obtain free

information in the absence of equilibrium uncertainty. After all, without un-

certainty, the buyer never needs to update her beliefs. However, I view the lack

of equilibrium uncertainty as a stylized, limiting case. This view is implicit in

other equilibrium concepts, such as Selten's (1975) perfect equilibrium, My-

erson's (1978) properness concept and Kreps and Wilson's (1982) sequential

equilibrium. These equilibrium concepts see players' strategies as having some

in�nitesimal uncertainty that must be accounted for by their peers. In this

paper, my credibility re�nement expresses this in�nitesimal uncertainty. This

re�nement leads the buyer to choose her signal structures as if there were un-

certainty, even if there is none. In this sense, a deterministic equilibrium can

be seen as an approximation for an equilibrium with in�nitesimal uncertainty.

Previous papers involving agents with expected entropy-reduction costs,

who pay attention to strategic uncertainty, avoided non-credible threats in

other ways. In Mat¥jka (2015), for example, a buyer needs to pay attention

to a price set by a monopolistic seller. Unlike the present model, in Mat¥jka's

(2015), the seller commits to the price distribution ex-ante, and the buyer

gets to observe this distribution before choosing how to allocate her attention.
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Attention threats are then circumvented by standard sub-game perfection.

Mat¥jka and McKay (2012) study a static competition model in which multiple

sellers compete for a buyer paying attention to quality and prices. They avoid

the issue of non-credible threats by directly restricting the buyer to a subset of

information structures known to arise as a solution to a full-support rational

inattention problem (Mat¥jka and McKay, 2015).

In addition to satisfying the above re�nement, I require the equilibrium to

satisfy two additional requirements. First, I require there to be no periods in

which the buyer rejects every o�er, regardless of the history. Second, when

the horizon is in�nite, I require the equilibrium to also be the limit of �nite

horizon equilibria. Both conditions have parallels in the bargaining literature

(e.g., Gul and Sonnenschein, 1988). Theorem 1 proves the existence of such

equilibria, while Theorem 3 characterizes them.

A main contribution of this paper is to consider a dynamic strategic interac-

tion between a seller and a rationally inattentive buyer. Yang (2013), Mat¥jka

and McKay (2012) and Martin (2012) also consider one or more rational sellers

making o�ers to one or more inattentive buyers with entropy-reduction costs.

However, unlike my model, the sellers in the aforementioned papers' models

all make a single o�er. Thus, theirs are static models, while mine is dynamic.

In contrast, Steiner et al. (2015) concurrently solved a dynamic rational inat-

tention decision problem with exogenous uncertainty. In contrast, my model

involves a strategic interaction with endogenous uncertainty.

Without attention costs, my model reduces to a one-sided repeated-o�ers

bargaining model with full information. Such a model also serves as the bench-

mark for the literature on bargaining with one-sided incomplete information in

a private-values setup (e.g., Sobel and Takahashi, 1983; Fudenberg et al., 1985;

Gul et al., 1986; Ausubel and Deneckere, 1989). Unlike the model studied here,

such models involve an uninformed proposer making o�ers to an informed re-

ceiver. As mentioned earlier, a classic result in this literature is the Coase

conjecture, which implies that there is no delay whenever o�ers are frequent

and the gains from trade are uniformly positive. The no-delay result breaks

when the receiver's information is also relevant to the proposer (Deneckere and
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Liang, 2006). My model di�ers from this literature in that I assume that it

is the proposer (seller), not the receiver (buyer), that has private information.

In addition, I assume that the receiver can pay attention to the proposer's

information, but also needs to pay attention to the proposer's o�ers.

Several studies examine one-sided repeated-o�ers bargaining models in

which both parties have private information about the gains from trade (Cram-

ton, 1984; Cho, 1990). When o�ers are frequent, such models often result in no

trade or a large equilibrium multiplicity with various predictions (Ausubel and

Deneckere, 1992; Tsoy, 2015). The source or multiplicity was �rst pointed out

by Rubinstein (1985), who studied an alternating-o�ers model in which the

discount rate of one of the players was private information. He showed that one

can support a large set of equilibrium outcomes by constructing belief-based

threats o� the equilibrium path. The multiplicity arising due to belief-based

threats is similar to the one arising in my model due to attention threats. De-

spite the similarities, my re�nement is insu�cient to reduce the multiplicity

in Rubinstein (1985).

Another model in which the informed party gets to make o�ers is Gul and

Sonnenschein's (1988). Theirs is an alternating-o�ers bargaining model be-

tween a buyer and a seller who is uncertain about the buyer's valuation of

the product. They show that taking the time between o�ers to zero results in

immediate trade in every equilibrium satisfying their re�nement. As in Gul

and Sonnenschein (1988), my re�nement does not identify a unique equilib-

rium. However, my model generates delay and a potentially negative ex-post

surplus to the buyer, outcomes that cannot arise in the analysis of Gul and

Sonnenschein (1988).

2 The cost of attention

A seller (S) bargains with a potential buyer (B) over a complex product. Each

period, S makes an o�er that B either accepts or rejects; if she accepts, the

parties trade and the game ends; otherwise, the period ends and S makes a

new o�er in the next period. The product's complexity necessitates a complex
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o�er, meaning that B accepts or rejects with less than perfect information

about S's product and o�ers. B's information depends on how much attention

she devotes to understanding both the product's value and S's o�ers. B knows

that this attention is costly and, therefore, allocates her attention optimally.

The model of inattention that describes B is due to Sims (2003).

Product quality Before S makes his �rst o�er, he observes the product's

quality: v. v is a random variable that takes on values according to the

distribution µ0 from a �nite set V = {vl, . . . , vh}, where vl ≤ v ≤ vh for all

v ∈ V .

Periods After the product's quality is realized, the game proceeds in periods

m = 1, 2 . . . . The number of periods can be either �nite or in�nite. The timing

within each period is as follows:

1. Every period begins with S making B an o�er, xm.

2. B then allocates her attention � i.e., she chooses a signal structure for

this period, Pm.

3. B observes the realized signal, sm, and decides whether to accept or

reject the o�er.

The parties trade and the game ends if B accepts the o�er. Otherwise, no

trade occurs, and the game either proceeds to the next period or ends if the

current period is the last.

Information Both players know their past actions and signals. S observes

the product's quality (v), but B does not. B sees neither S's o�ers, x, nor

the product's quality, v. All of B's information about v and x comes from her

equilibrium knowledge and her signals, s1, . . . , sm. S never observes B's signals

or her signal structure, though he knows B's equilibrium strategy.
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O�ers and seller's strategy S's o�er in each period is a number, xm ∈
X = [0, x̄],1 where x̄ > vh. I interpret x as a reduced form of S's o�ers.

For example, a payment plan o�ered by a car dealer to a potential buyer will

be represented by its expected discounted value. In other words, x is the

monetary value that B will give to S if a transaction takes place.2 Letting

xm = (x1, . . . , xm) denote a history of o�ers, one can summarize a period m

history for S via ωm = (v, xm). As such, the set Ωm := V × Xm denotes all

of S's period m histories. Taking Ω0 = V , I often refer to ωm ∈ Ωm as the

period m state. A strategy for S, σ : ∪m≥0Ωm → ∆X,3 is a mapping from

each period's state to the current period's (possibly random) o�er.

Signal structures After S makes his period m o�er, B chooses which in-

formation to collect about S's product and current and past o�ers. More

precisely, B chooses a period m signal structure, which is a probability tran-

sition kernel: Pm : Ωm → ∆N. This transition kernel speci�es the conditional

distribution over signals given the product's quality and S's history of o�ers.

The set of signals that B can use is the set of all positive integers � i.e., B can

use any discrete signal structure. I denote the set of all possible period m sig-

nal structures by Pm. A period m signal structure strategy, ρm, takes a history

of signal structures and signals, {(Pn, sn)}m−1
n=1 , and maps it to a distribution

over Pm.4

Beliefs and attention costs The transaction's complexity makes it costly

for B to pay attention to S's product and o�ers. As a result, each period m

signal structure comes at a cost. I assume that the cost is proportional to

Shannon's measure of mutual information. Formally, let µ be B's conditional

1The equilibrium does not depend on the upper bound, x̄. The bound merely ensures
integrability of certain functions used in solving for the buyer's strategy.

2One can generalize S's o�ers to include more dimensions. As long as preferences are
quasi-linear in money, this will not alter the analysis.

3For Y ⊂ Rn, let ∆ (Y ) denote the set of all Borel probability measures on Y . I drop
the brackets whenever possible without leading to confusion.

4Later, I show that one can restrict attention to a smaller subset of strategies. As such,
I omit the speci�cation of the appropriate σ-algebra over Pm.
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beliefs about ωm given her past information and S's equilibrium strategy. If µ

has �nite support,5 then one can de�ne the mutual information between ωm

and the signal structure Pm, conditional on previous signals, sm−1, as:

I
(
ωm, Pm|sm−1

)
= E

[
H
(
µ
(
·|sm−1

))
−H

(
µ
(
·|sm−1, sm

))
|sm−1

]
, (1)

where H (µ) = −
∑

ω µ (ω) lnµ (ω) is the entropy of B's beliefs. To ensure

continuity, I let 0 ln 0 = 0, c ln c
0

=∞ if c > 0, and 0 ln 0
0

= 0. I measures how

many bits B acquires by using her period m signal. The above cost function

comes from information theory: see Appendix A.1 for additional background.

Notice that mutual information depends on B's prior. The more informa-

tive the prior, the lower the mutual information. One can interpret this as

expressing an increased ease of paying attention to familiar information. For

example, B may �nd a non-standard transaction harder to understand than a

routine one. In the model, more-routine transactions would be interpreted as

less uncertain, hence resulting in lower attention costs.

Accepting or rejecting o�ers After observing the current signal, sm, B

chooses whether to accept or reject S's o�er. A periodm accept-reject strategy

for B is a mapping from a sequence of signal structures and realized signals,

{(Pn, sn)}mn=1, to an accept-reject decision.

Outcomes and payo�s An outcome of the game is the period in which

agreement is reached, m; the product's quality, v; the accepted o�er, xm; the

signal structures used by the buyer each period, (P1, . . . , Pm); the realized

signals, sm; and B's prior entering each period, {µ (·|sn−1)}mn=1.

Both players discount time at a constant rate r. If no trade ever takes place

during the game, both players obtain zero from the transaction. If the game

ends with B accepting an o�er xm at period m, S's payo� is US := e−r∆mxm,

5For a general µ, one can de�ne mutual information via:

I
(
ωm, sm|sm−1

)
=

∫
ln

(
Pm (sm|ωm)∫

Pm (sm|ωm)µ (dωm|sm−1)

)
Pm (dsm|ωm)µ

(
dωm|sm−1

)
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while B's transaction payo�s is e−r∆m (v − xm). From her transaction payo�

B subtracts her attention costs. Thus, B's payo�, if she accepts an o�er xm in

period m, is:

UB = e−r∆m (v − xm)−
m∑
j=1

e−r∆jκ I
(
ωm, sm|sm−1

)
. (2)

By assuming that the buyer's information cost is proportional to Shannon's

measure of mutual information, I assume that the buyer already understands

the prior joint distribution of the o�ers and quality but can pay further atten-

tion to these variables to understand more. Thus, she incurs attention costs

at the margin.

Recommendation strategies As a preliminary step in the analysis, I show

that an optimal strategy for B can be found within a class of recommendation

strategies. A recommendation strategy is de�ned by three properties. First,

each signal structure has only two signals; call them 0 and 1. Second, these

signals are interpreted as recommendations for B � i.e., she accepts for sure

if she observes 1 and rejects for sure otherwise. Third, B does not randomize

among signal structures.

Formally, a recommendation strategy is a sequence of functions: β =

(βm)m≥1, where βm (ωm) is the probability that B receives a recommendation

to accept. Thus, for every m, βm is a measurable mapping from Ωm into [0, 1].

The following lemma ensures that I can focus on recommendation strategies.

Lemma 1. For every strategy for B, there is a recommendation strategy with

the same distribution over trade outcomes6 after every history and with weakly

lower attention costs.

To prove Lemma 1, I use the chain rule for mutual information. The

chain rule states that the expected information gained by observing two signals

consecutively is equal to the information gained from observing both signals

6By trade outcomes, I mean product quality, o�ers made, period of trade and accepted
o�er.
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simultaneously. To use this property, I view each signal structure as composed

of two di�erent signals: an action recommendation and a residual. By the

chain rule, seeing this residual with any future signal instead of with today's

recommendation does not increase the total cost of attention. Therefore, one

can delay paying attention to this residual until the time it is used.

By Lemma 1, for every equilibrium, there is an outcome-equivalent equi-

librium in recommendation strategies. To see this, take any equilibrium in

non-recommendation strategies. Switch B's strategy to the recommendation

strategy from Lemma 1. By construction, the new recommendation strategy

must be optimal for B given S's strategy. S's strategy also remains optimal,

since he cannot distinguish between the B's old and new strategies. Therefore,

switching B's strategy and S's beliefs about that strategy results in consistent

beliefs and optimal play � i.e., an equilibrium � with the exact same outcomes

distribution. Appealing to Lemma 1, I assume henceforth that B uses only

recommendation strategies.

Recommendation strategies simplify the task of tracking B's beliefs. In

particular, period m arrives if and only if B sees m− 1 reject signals. Hence,

holding β �xed, m is a su�cient statistic for B's belief. As such, I let µm

denote B's belief over Xm × V , conditional on period m arriving but before

she sees the m-th signal.

Recommendation strategies also simplify B's attention costs. Abusing no-

tation, let I (βm, µm) stand for the mutual information between ωm and the

signal generated by βm conditional on previous signals leading to posterior µm.

Then, one can write:

I (βm, µm) =

∫ [
βm ln

(
βm∫
βmdµm

)
+ (1− βm) ln

(
1− βm∫

1− βmdµm

)]
dµm.
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3 Recommendation Perfect Equilibrium

3.1 De�nition and existence

In this subsection, I provide a formal de�nition of recommendation perfect

equilibrium and brie�y discuss the issues involved. The �rst issue I address

in my re�nement is the possibility of B automatically rejecting every o�er. In

particular, I wish to avoid periods in which B automatically rejects S's o�ers,

regardless of their content. Formally, I say that β is attentive if for every

period m, there exists some price history and some quality of the product,

(xm, v), such that βm (xm, v) > 0. Similar assumptions are often made in

bargaining models.7

Requiring B's strategy to be attentive assumes that B never automatically

rejects S's o�ers. To illustrate, take any equilibrium and adjust it in the

following way. In period 1, have B reject every o�er, regardless of its content.

At the same time, have S's �rst o�er always be equal to some x > vh. From

period 2 onward, let the players play according to the original equilibrium as

though period 1 never happened. Clearly, this is an equilibrium. Repeating

this logic to periods 2, 3, . . . then generates an equilibrium without trade after

any history.8 Assuming that B's strategy is attentive avoids equilibria such as

these.

A second and more subtle issue that arises in my model is B's ability to

make non-credible attention threats. Such threats involve B committing to

behave in a speci�c way towards o�-equilibrium o�ers. With suitably cho-

sen o�-path beliefs, one can sustain a large class of unreasonable sequential

equilibria. These threats are possible because mutual information does not

depend on o�-path signals. As such, B can treat zero-probability o�ers very

di�erently than she treats positive-probability ones. However, such an extreme

di�erential treatment of o�ers is non-credible in a way which I de�ne below.

7For example, Rubinstein (1985) assumes that the uninformed player never makes irrele-
vant o�ers. Similarly, Gul and Sonnenschein (1988) assume away the possibility of periods in
which o�ers are rejected for sure and are used only for communication between the players.

8One can actually show that for every set of periods M0 ⊂ {1, 2, . . .}, there exists an
equilibrium in which trade occurs in period m if and only if m ∈M0.
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See Appendix A.2 for an example of such threats and how the de�nition below

helps eliminate them.

Let Em [Ub|µm, β, σ] be B's expected utility conditional on: arriving at

period m, B's beliefs over Xm×V being µm, and future play being conducted

according to (β, σ). I say that the beliefs µ and strategies (β, σ) are consistent

if µ is updated according to Bayes rule whenever possible.

De�nition 1. For a consistent (µ, β, σ), β is a credible best response to

σ given µ if for every (xm, v), there is a µ∗ ∈ ∆ (Xm × V ) with µ∗ (xm, v) > 0

and a {µn, βn, εn}∞n=1 with µn = εnµ∗ + (1− εn)µm, ε
n ↓ 0 and βn → β,9 such

that βn maximizes Em [Ub|µn, βn, σ] for all n.10

In the in�nite horizon game, I require the equilibrium to also be the limit

of �nite horizon equilibria. Early papers in the bargaining literature also

focused on limits of �nite horizon equilibria (e.g., Sobel and Takahashi, 1983;

and Cramton, 1984). I do so in my analysis to exclude the players' strategies

from exhibiting complicated history dependence. Other studies often avoid

complicated dependencies on the past by focusing on stationary equilibria

(see, for example, Gul et al. (1986), Gul and Sonnenschein (1988), Ausubel

and Deneckere (1989) and Gul (2001)). B's imperfect observation of past

o�ers makes B's behavior too rigid to allow for stationary play. Focusing on

equilibria that can be approximated by �nite horizon play recovers some of

the simplicity lost by allowing for non-stationary strategies.

Combining all three requirements gives the following de�nition of a perfect

recommendation equilibrium.

De�nition 2. A consistent (µ, β, σ) is a perfect recommendation equi-

librium (PRE) if: (1) β is attentive and is a credible best response to σ

given µ; (2) σ is a best response to β after every history; and (3) with in�nite

periods, (µ, β, σ) is also a limit of �nite horizon PREs with the horizon going

to in�nity.

9Convergenence is de�ned using the topology of point-wise convergence.
10Note that the de�nition implies that β maximizes Em [Ub|µ, β, σ] for every m due to

upper hemicontinuity.
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I refer to a PRE from here on simply as equilibrium unless it creates con-

fusion. Theorem 1 below states that an equilibrium exists in both the �nite

and the in�nite horizon versions of the game.

Theorem 1. A PRE exists in both the �nite and in�nite horizon games. More-

over, in every PRE, players use simple strategies.

The proof of Theorem 1 for the �nite horizon is partially constructive

and partially dependent on a �xed-point argument. The main di�culty is to

ensure that β is attentive, since this property is de�ned via a strict inequality.

Requiring β to be a credible best response to σ does not imply that β must

be attentive. As such, to prove the theorem, I derive a set of necessary and

su�cient conditions for (µ, β, σ) to be an equilibrium in the �nite horizon.

I present these conditions in Theorem 3 in the next subsection. A �xed-

point argument then establishes that there is some (µ, β, σ) satisfying these

conditions for every �nite horizon.

For the in�nite horizon, I take a generic �nite horizon equilibrium sequence

with a horizon going to in�nity. Using the �nite horizon properties stated in

Theorem 3 below, one can connect the convergence of bm (x, v) and zm,v to

the convergence of zm+1,v and bm+1 (zm+1,v, v). Since these are members of a

countable product of compact subsets of R, one can ensure the existence of

a converging subsequence. Using the structure inherited from �nite horizon

equilibria, one can then prove the attentiveness of B's limit strategy. Once

attentiveness is established, I prove the optimality of B's limiting strategy via

su�cient conditions derived in the online appendix. Optimality of S's strategy

is then attained via standard continuity at in�nity arguments.

At this stage, the reader may wonder about equilibrium uniqueness. The

following theorem states that in the one-shot game, the equilibrium is unique.

Theorem 2. There exists a unique equilibrium in the one-shot game.

When there are more than two periods, one can obtain multiple equilib-

ria. Intuitively, the multiplicity comes from the interdependency of current

and future periods. Future periods are in�uenced by B's posterior over the

15



quality of the product at the end of the current period. However, behavior

at the current period, and, therefore, B's posterior, depend on both players

continuation values, which depend on the future. Combined, these can result

in multiple equilibrium paths.

3.2 Equilibrium characterization

The equilibrium satis�es several properties that I use throughout the analysis.

The �rst of these properties is simplicity. More precisely, S's strategy is simple

if it prescribes a single deterministic o�er, zm,v, for every period m and every

v. A v type S makes this o�er in period m, regardless of S's realized o�ers

in periods m
′
< m. B's strategy is simple if for every m, there is a function

bm from X × V to [0, 1] such that the probability B that accepts an o�er xm

made by a v type S is bm (xm, v), regardless of S's o�ers in previous periods.

Theorem 3 below shows that equilibrium strategies must be simple. As

such, from now on, I identify equilibrium strategies β and σ by their corre-

sponding simple counterparts, b and z. To put it di�erently, I often write

bm (xm, v) instead of βm (x1, . . . , xm, v), and say that S uses strategy z rather

than σ.

The theorem presents a few additional properties, for which I need more

notation. Let (µ, b, z) be an equilibrium of the game in simple strategies.

Denote the marginal of µm over V by µ̄m, and take bm,v := bm (zm,v, v) to

be the probability that B accepts the v-seller's period m equilibrium o�er,

conditional on arriving at period m. De�ne πm as the prior probability that

the buyer accepts the m-th o�er, conditional on arriving at period m � i.e.,

πm :=
∑

v µ̄m,vbm,v.

The characterization in Theorem 3 below takes the prior acceptance prob-

abilities, π1, π2 . . ., as given and uses them to construct simple strategies. In

principle, one can construct simple strategies in this way from an arbitrary

sequence of π's. Finding a sequence that generates simple strategies that av-

erage back to the same prior acceptance probability sequence is the key to

proving existence in the �nite horizon game. The characterization below is
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partial in that, while both necessary and su�cient when horizon is �nite, it is

only necessary when the horizon is in�nite.

Theorem 3. Equilibrium strategies are simple. Let (µ, b, z) be an equilibrium

in the M ∈ N ∪ {∞} horizon game. Then, the following must hold:

1. Delay: πm is strictly between 0 and 1 for all m.

2. Logit buyers: For all m, x and v:

bm (x, v) =
e

1
κ

(v−x+κ lnπm)

e
1
κ

(v−x+κ lnπm) + e
1
κ

(e−r∆um+1,v+κ ln(1−πm))
, (3)

where the continuation value, um,v, for m = M+1 is zero and for m ≤M

is:

um,v := κ ln
(
e

1
κ

(v−zm,v+κ lnπm) + e
1
κ(e−r∆um+1,v+κ ln(1−πm))

)
. (4)

3. Seller's prices: For all m and v:(
zm,v − κ

κ

)
− e−r∆

(
zm+1,v − κ

κ

)
=

(
bm,v

1− bm,v

)
, (5)

where zM+1,v := κ.

4. Values: B's equilibrium value is E [u1,v], and S's equilibrium value is

E [z1,v]− κ.

5. Monotonicity: zm,v, bm,v and v − zm,v are strictly increasing in v.

Moreover, vl − zm,vl < 0 < vh − zm,vh.

The theorem's part 1 says that in equilibrium, B both accepts and rejects

o�ers with positive probability. When o�ers are infrequent, B rejecting means

that there is a delay in agreement. The intuition for this delay is similar to the

intuition stated in the introduction. Suppose that there were no delay � i.e., B

accepts S's equilibrium o�ers for sure. Then, the lowest-cost way of executing

this strategy for B is to accept every o�er for sure. Any other strategy will
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have (at least in�nitesimally) positive costs. But then S is best o� o�ering

a very high price, making it best for B to reject for sure, a contradiction.

A similar intuition shows that rejecting for sure on path occurs only if B's

strategy is not attentive.

Equation 3 shows that B's optimal strategy takes Rust's (1987) dynamic

logit form. This echos a result of Steiner et al. (2015).11 In dynamic logit,

an agent needs to take an action every period, where each action's payo�s

are equal to an underlying utility plus an independent random shock with an

extreme value type I distribution. The underlying payo�s in B's response are

v − x + κ lnπm from accepting and κ ln (1− πm) from rejecting. Given these

underlying payo�s, Rust (1987) shows that um+1,v is the dynamic logit agent's

expected continuation utility given v and the future o�er distribution. The

dynamic logit continuation utilities are related to B's actual expected utility

in the following way: B's expected utility conditional on arriving at period m,

equals e−r∆(m−1)E [um,v] plus the discounted attention costs incurred in periods

1, . . . ,m− 1. As such, B's expected utility in equilibrium is equal to E [u1,v].

To derive B's optimal strategy, I transform B's problem to one involving

a strictly concave objective functional. I then use simple calculus of variation

arguments to characterize both B's optimal strategy and the continuation

value. I delegate this derivation to online Appendix B.

The necessity of simple strategies comes from B's strategy and the focus on

limits of �nite horizon equilibria. In the last period, S knows B's equilibrium

information exactly: the only way to arrive at period M is for B to receive

M−1 reject recommendations. As such, S knows B's recommendation strategy

in period M . The credibility of B's strategy and there being no future imply

that B's strategy takes the above logit form. Hence, S's last-period problem,

given v, is identical to the problem of a price-setting monopolist with zero

11The connection between Rust's (1987) model and the dynamic rational inattention
solution was �rst pointed out by Steiner et al. (2015). Steiner et al. (2015) independently and
concurrently solve for an optimal dynamic rational inattention rule, though for a di�erent
class of problems. They allow the agent to obtain free information, more general actions
and more general payo�s, but require the state space to be �nite. An in�nite state space
arises in my model due to the seller's o�ers. While these create some technical issues, the
underlying result remains unchanged.
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marginal costs facing a logit demand function. This problem is known to

be strictly log-concave and has a unique solution, zM,v � i.e. S's last period

strategy is simple. Simple future play can then be extended to simple present

play via a similar argument, proving necessity by backward induction.

Characterizing S's strategy is straightforward once we know B's strategy

and that strategies are simple. Since the players use simple strategies, S's

continuation value when moving from m to m+ 1, conditional on v, does not

depend on S's past o�ers. As such, the value of S's problem in period m, given

v, is:

wm,v := max
x

bm (x, v)x+ (1− bm (x, v)) e−r∆wm+1,v . (6)

Proving part 5 of the theorem implies that the upper bound x̄ does not bind.

One can, therefore, use equation 3 to calculate the �rst-order condition:

x− e−r∆wm+1,v =
κ

1− bm (x, v)
. (7)

Rearranging this condition gives wm,v = zm,v−κ, where zm,v is the solution to

S's period m problem, given v. Since the same is true for period m + 1, one

can substitute wm+1,v = zm+1,v − κ and rearrange to obtain equation 5.

Part 5 presents two properties of S's o�ers and B's net bene�t from accept-

ing these o�ers. The �rst property is that both are strictly increasing in the

product's realized quality. The second property is that B gets cheated on a

low-quality product and gets good value when buying a product of high qual-

ity.12 Thus, there are rip-o�s at the bottom and bargains at the top. Given

the �rst property, the second property follows from B both rejecting and ac-

cepting o�ers with positive probability. Doing so can only be optimal if B loses

from some o�ers but bene�ts from others. The �rst property comes from B's

best response function. For a rough intuition, examine S's last-period prob-

lem, given v, in a �nite-horizon game. The solution to this problem is readily

revealed by setting wM+1,v to zero in equation 7. Since bM (x, v) is increasing

in v − x, S's o�er must increase with product quality. But S's o�er increases

12Note that these two properties imply that zm,v < vh < x̄ for all v, thereby con�rming
that x̄ is a non-binding upper bound.
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only if bM,v increases too (equation 5), which, in turn, implies that B's net

bene�t from accepting, v − zM,v, must also increase. The property for the

last period follows. For previous periods, one needs to take the continuation

values into account. However, these values turn out not to matter due to equal

discounting and the relationship between wm,v, um,v and zm,v.

3.3 The case of no quality uncertainty

The current section discusses the case in which B knows v. There are a few

reasons to examine this case. First, this case is the main component in under-

standing the model in which B observes quality, but still needs to pay attention

to S's o�ers. I return to this model in Section 6. Second, the equilibrium takes

a simple form useful for understanding Proposition 2 and Theorem 4. Third,

this equilibrium brings out some fundamental features of the PRE re�nement

worth discussing in more detail. Let Bv (∆) be the bargaining game in which

the product's quality is v with probability 1. Proposition 1 below characterizes

and proves uniqueness of the equilibrium of Bv (∆).

Proposition 1. There exists a unique equilibrium in the game Bv (∆). In this

equilibrium:

1. S o�ers v every period with probability 1, regardless of the history.

2. B accepts v with probability:

πκ,∆v =

(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ
. (8)

3. B's expected utility is 0, and S's expected utility is v − κ.

Proof. Since S's quality is known to B, one has µ̄m,v = µ̄m+1,v = 1 and

bm,v = πm for all m. Rearranging equation 3 for x = zm,v and using repeated
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substitution gives the equality:13

um,v = κ
∞∑
j=m

e−r∆(j−m) [ln (1− πj)− ln (1− bj,v)] , (9)

implying that um,v = 0 for all m (since bm,v = πm). Equation 3 then implies

that zm,v = v for all m. Equation 5 then establishes that bm,v equals to π
κ,∆
v

for all ∆. Proposition 3, part 4 then gives that S's expected utility is v − κ.
The fact that B's expected utility equals zero follows from um,v = 0 ∀m and

Theorem 3, part 4.

The equilibrium described by Proposition 1 has several interesting features.

First, S always makes the same o�er, regardless of the past. Second, the prob-

ability that B accepts an o�er is independent of the period indexm. Third, the

total ine�ciency in equilibrium caused by delay is equal to κ. Thus, the lower

the attention cost parameter, the lower is the e�ciency loss in equilibrium.

The fourth feature of the equilibrium in Proposition 1 is that attention

is e�ortless. E�ortless attention comes from S using a deterministic strategy.

Since, in equilibrium, B knows both S's strategy and v, B's knowledge in-

cludes all there is to know in equilibrium. Note that e�ortless attention on

the equilibrium path does not mean that B perfectly observes S's o�ers. This

is because perfectly observing S's o�ers would constitute a non-credible atten-

tion threat that is ruled out by the credibility re�nement. By forcing B to

account for the marginal attention costs of her o�-path signals, the re�nement

leads to B only partially adjusting her acceptance probability in reaction to

o�-equilibrium o�ers.

The reason that B obtains free information is the absence of equilibrium

uncertainty. As mentioned in the introduction, I view the absence of equilib-

13To obtain the equality, note that: um,v = −κ ln
(

(1− bm,v) e−
1
κ (e−r∆um+1,v+κ ln(1−πm))

)
.

One can then separate the logarithm to obtain:

um,v = ln

(
1− πm
1− bm,v

)
+ e−r∆um+1,v .

Repeated substitution, gives equation 9.
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rium uncertainty as a stylized, limiting case. This view is implicit in other

equilibrium concepts, such as Selten's (1975) perfect equilibrium, Myerson's

(1978) properness concept and Kreps and Wilson's (1982) sequential equi-

librium. These equilibrium concepts see player's strategies as having some

in�nitesimal uncertainty that must be accounted for by their peers. In the

current game, one can interpret my credibility re�nement as expressing sim-

ilar in�nitesimal uncertainty. This re�nement leads B to choose her signal

structures as if there is uncertainty, even if there is none. In this sense, a

deterministic equilibrium can be seen as an approximation for an equilibrium

with in�nitesimal uncertainty.

4 Delay in Trade

This section presents the result that costly attention leads to delay that is

independent of the time between o�ers. As Gul and Sonnenschein (1988)

point out, the delay that arises in an environment with infrequent o�ers can

be misleading. In particular, restricting the time between o�ers con�ates the

calendar date of agreement with the number of o�ers needed to reach it. To

avoid con�ating the two, I show that inattention leads to delay that persists

even as the time between o�ers converges to zero.

Consider the in�nite-horizon game with some �xed time between o�ers

∆ > 0. In this game, each period m corresponds to the calendar date

∆ (m− 1). A sequence {∆n, µn, bn, zn} is a re�ning sequence if (µn, bn, zn)

is an equilibrium in a game with time between o�ers ∆n, ∆n converges to zero,

and {0,∆n, 2∆n, . . .} ⊂ {0,∆n+1, . . .} for all n. A function F : R× V → [0, 1]

is the agreement date distribution for (∆, µ, b, z) if Fv (t) is the probabil-

ity that trade occurred on or before calendar date t, conditional on quality

being v in the equilibrium (µ, b, z). A re�ning sequence is convergent if the

corresponding agreement date distribution sequence is such that F n
v converges

weakly14 for all v to a right continuous and increasing function Fv. I refer to

such an F as the sequence's limit agreement date distribution.

14Recall: Hn converges weakly toH ifHn (t)→ H (t) for every t in whichH is continuous.
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Proposition 2 below shows that delay arises as ∆ goes to zero and κ re-

mains constant. I interpret a lower ∆ as an increase in the rate at which

new information accumulates, but not necessarily as an increase at the rate in

which new information is absorbed. By �xing κ, I assume that absorbing the

same amount of information at any given moment results in the same cost of

attention. This assumption is in line with the chain rule of mutual informa-

tion: what matters is the amount of information B absorbs, not the number

of signals she uses to absorb it.

Proposition 2. Let F be a limit agreement date distribution. Then, there

exists t > 0 such that Fvl (t) < 1.

Proof. Let {(∆n, µn, bn, zn)}n be a convergent re�ning sequence, and take

{F n}n to be its corresponding agreement date distributions. I claim below

that, for every n, the probability, given vl, that B rejects S's equilibrium o�er

is at least 1−πκ,∆n

v . Note that, if true, one has that for every t ∈ {∆n, 2∆n, . . .}:

1− F n
vl

(t) ≥ µ (vl)
(
1− πκ,∆n

v

)t/∆n

→ µ (vl) e
−r( vh−κκ )t ,

where convergence follows from L'Hopital's rule. The proposition follows.

All that remains is to show the claim. To do so, note, �rst, that in every

period, there must be at least some v such that:

v − zm,v ≥ e−r∆ (v − zm+1,v) . (10)

If equation 10 is false for all v, B is strictly better o� accepting S's period

m + 1 o�er over his m-th o�er, meaning that B must be rejecting the m-

th o�er with probability 1, contradicting Theorem 3, part 1. One can now

rearrange equation 10 to obtain:

(
1− e−r∆

)
v ≥ zm,v − e−r∆zm,v = κ

(
1− e−r∆ +

(
bm,v

1− bm,v

))
≥ κ

(
1− e−r∆ +

(
bm,vl

1− bm,vl

))
,
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where the equality follows from equation 3, and the second inequality follows

from the monotonicity of bm,v (Theorem 3, part 5). The claim then follows

from rearranging the above inequality after noting that v ≤ vh.

One can get an intuition for Proposition 2's proof by considering the game

in which the product's quality is v with probability 1. For a �xed ∆, this game

has a unique equilibrium that yields a unique agreement date distribution, F∆,

satisfying:

F∆ (t) = 1−
(

κ

(1− e−r∆) (v − κ) + κ

) t
∆

.

Taking time between o�ers (∆) to zero and using L'Hopital's rule gives the

limit: lim∆→0 F∆ (t) = 1 − e−
r
κ

(v−κ)t. Thus, one obtains delay that persists

even when o�ers are made in�nitely often. The proposition shows that, given

vl, S's o�ers cannot be accepted at a higher rate than in Bvh (∆), the game

in which B knows that S's is of quality vh. Delay in the game with unknown

quality, therefore, follows from the existence of delay when quality is known.

Notice that when v is known, the limit agreement date distribution is

exponential with rate r
κ

(v − κ). As such, this distribution satis�es several

properties. First, trade can happen at any moment. Second, while the play-

ers do trade with probability 1, trade can take an arbitrary amount of time.

Third, delay is decreasing with the good's quality. Theorem 4 shows that these

properties are also present in the game with unknown quality.

Theorem 4. Let {∆n, µn, bn, zn}∞n=1 be a convergent re�ning sequence15 with

limit agreement date distribution F . Then:

1. Fv is absolutely continuous for all v and satis�es Fv (0) = 0.

2. Fv (t) is strictly increasing in t.

3. For all t: Fv (t) < limt→∞ Fv (t) = 1 .

4. Fv (t) is strictly increasing in v for all t > 0.

15Recall that Helly's selection theorem ensures that a convergent re�ning sequence exists.
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To prove Theorem 4, I begin by approximating each F n by a continuous

distribution, Gn, which agrees with F n for every t ∈ {0,∆n, . . .}. Gn is de�ned

by transforming bm,v into a date-dependent hazard rate for each v, λt,v. These

hazard rates can be shown to be uniformly bounded from above by a multiple

of r
κ

(vh − κ). This bound is useful for two reasons. First, it implies that

the hazard rates, as a function of calendar dates, belong to an L2 space.

Second, it allows me to evoke the Banach-Alaoglo theorem to generate a weakly

convergent subsequence of the said hazard rates. The result is an absolutely

continuous limit with Fv (0) = 0, establishing delay. The connection between

λt,v and bm,v then gives a continuous-time version of Theorem 3, which delivers

parts 2 to 4 of Theorem 4.

5 The Value of Inattention

In this section, I show that B bene�ts from her costly attention. I begin with

Proposition 3, which shows that B's expected utility in equilibrium is uniformly

bounded away from zero. This is in stark contrast to the case without costly

attenion, in which B's surplus is zero.

Proposition 3. There exists a δ > 0 such that for every equilibrium, B's

expected utility is larger than δ.

Proof. See the online appendix for the full proof. Here, I prove only that

E [Ub] > 0 for a given equilibrium (µ, b, z). Since bm,v is strictly increasing in

v for every m (Proposition 3), µ̄m,v/µ̄m,v′ is decreasing with m for every v >

v
′
. Therefore, µ̄m �rst-order stochastically dominates µ̄m′ for every m

′
> m.

Rearranging equation 3 for x = zm,v and using repeated substitution gives the

equality16:

um,v = κ
∞∑
j=m

e−r∆(j−m) [ln (1− πj)− ln (1− bj,v)] .

16To see why this equality holds, note that: um,v =

−κ ln
(

(1− bm,v) e−
1
κ (e−r∆um+1,v+κ ln(1−πm))

)
. The equality then follows from loga-

rithm rules and repeated substitution.
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Combining equation 9 with Theorem 3, part 4 then gives:

E [UB] = κ
∑
v

µ0,v

∞∑
m=1

e−r∆(m−1) (ln (1− πm)− ln (1− bm,v))

> κ
∞∑
m=1

e−r∆(m−1)

(
ln (1− πm)−

∑
v

µ̄m,v ln (1− bm,v)

)
> 0.

where the �rst inequality follows from µ̄m �rst-order stochastically dominating

µ̄m+1 for all m, and the second follows from Jensen's inequality. In the online

appendix, I extend the above argument by taking limits to uniformly bound

E [Ub] away from zero across all equilibria.

Intuitively, costly attention gives B some commitment power. Consider the

one-period game. The proof follows from two easily veri�able facts of mutual

information, I (β1, µ1). The �rst is that I (β1, µ1) is strictly convex in β1.
17 The

second fact is that I (β1, µ1) = 0 whenever β1 (ω1) = 0 for all ω1. The second

fact implies that B can always gauarantee herself zero by rejecting S's o�er

for sure, while the �rst implies that B's equilibrium strategy is a strict best

response. Since B chooses to accept S's o�er with some positive probability in

equilibrium, it must be that B's expected utility is strictly positive.

In a repeated-o�ers bargaining environment, costly attention has an addi-

tional surplus-generating e�ect: It generates a Coasian e�ect (see, for example,

Fudenberg et al. (1985) and Gul et al. (1986)). Since the Coasian is at its clear-

est when o�ers are frequent, I demonstrate this e�ect by examining the limit in

which attention costs vanish when ∆ is zero. Refer to
(
ŪS, ŪB

)
as κ-frequent

o�er utilities whenever there exists a re�ning sequence with attention cost

parameter κ such that E [Un
B] and E [Un

S ] converge to ŪB and ŪS, respectively.

Thus, ŪS (ŪB) is S's (B's) expected utility in some frequent-o�ers environment.

The following lemma establishes that frequent o�er utilities exist.

Lemma 2. Every re�ning sequence has a subsequence for which both E[Un
b ]

and E [Un
s ] converge.

17Here, β1 is de�ned up to µ1-almost sure equivalence. The fact follows from x lnx +
(1− x) ln (1− x) being strictly convex.
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Theorem 5 states that B and S split the uncertain portion of the surplus

when attention costs become negligible in a frequent-o�ers environment. S

still appropriates the sure portion of the surplus, which is vl. However, the

rest of the surplus is split evenly between the two players. In addition, in this

limit there is no ine�ciency. Thus, no surplus is lost due either to delay or to

costly attention.

Theorem 5. For any sequence
(
Ūn
S , Ū

n
B

)∞
n=1

of κn-frequent o�er utilities with

κn → 0,

lim
n→∞

Ūn
S =

1

2
E [v + vl]

lim
n→∞

Ūn
B =

1

2
E [v − vl] .

To understand Theorem 5, it is worth revisiting the literature on the Coase

conjecture. In this literature, a seller makes repeated o�ers to a buyer with

private information about her value. If the lowest value is above the seller's

marginal cost, the buyer's equilibrium strategy is described by a maximal

willingness to pay for each value. The seller then attempts to optimally price

discriminate, given his impatience and the buyer's demand. As o�ers become

in�nitely frequent, the seller goes down the demand curve within an arbitrary

small amount of calendar time. Anticipating the decrease in prices, the buyer

lowers her willingness to pay. As a result, the seller's o�ers converge to the

value of the last buyer on the demand curve in a calendar instant. The outcome

is a high surplus to the buyer and instant trade.

A similar dynamic arises when B is rationally inattentive. With rational

inattention, B has private information about her signals. These signals serve

a role similar to that of values in the Coase conjecture. When κ is positive,

the Coasian argument fails due to S's inability to rapidly go down the demand

curve. When κ vanishes, delay disappears, thereby unleashing the Coasian

e�ect. Therefore, in the limit, trade happens immediately at B's lowest will-

ingness to pay across time.

The key to understanding Theorem 5 thus comes from a S's last o�er,
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given v. One can show that this last o�er is made to B, who believes that

the product's quality is vl with probability approaching 1. Intuitively, this is

because the parties trade faster when S has a higher-quality product (Theorem

4). As such, the key is to characterize S's last o�er as B puts a probability

approaching 1 on the quality being vl.

I now provide a heuristic derivation of S's last o�er, given v. For this,

consider the limit of S's o�ers as the initial distribution of values converges to

putting a probability of 1 on vl. From continuity, the players' strategies in the

limit must still satisfy equations 3 and 5. Moreover, these equations must hold

with πm = πκ,∆vl
for all m from Proposition 1 since, in the limit, S's quality is

vl with probability 1. Since πm is constant, one can show that (3) and (5) can

hold only if both bm,v and zm,v are �xed across periods at some bκ,∆v and zκ,∆v .

Before taking ∆ to zero, de�ne λκ,∆v and λκ,∆vl as the constant hazard rates of

the agreement date distribution implied by bκ,∆v � i.e., bκ,∆v = 1− e−∆λκ,∆v and

πκ,∆vl
= 1− e−∆λκ,∆vl . Substituting into equations 3 and 5, using equation 9 and

rearranging gives the following two conditions:(
1− e−∆λκ,∆v

1− e−∆λκ,∆vl

)
= e

1
κ

(
v−zκ,∆v −κ ∆

1−e−r∆ (λκ,∆v −λκ,∆vl )
)

(11)(
e∆λκ,∆v − 1

1− e−r∆

)
=

zκ,∆v − κ
κ

(12)

Since X is compact, for every sequence ∆n that converges to zero, one can �nd

a subsequence for which zκ,∆
n

v converges to some z̄κv . Consider, now, the frac-

tions on the left-hand side of both equations, viewing both the numerator and

the denominator as functions of ∆. By applying the mean value theorem to

equation 12, one can obtain that λκ,∆
n

v must converge to λ̄κv = r
κ

(z̄κv − κ). Sim-

ilarly, applying the mean value theorem to equation 11 along with L'Hopital's

rule gives that, in the limit,

λ̄κv/λ̄
κ
vl

= e
1
κ(v−z̄κv−κr (λ̄κv−λ̄κvl)).

Note that by Proposition 1, we must have that λ̄κvl = r
κ

(vl − κ). Together with
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λ̄κv = r
κ

(z̄κv − κ), one can rearrange the above equation to get:(
z̄κv − κ
vl − κ

)
= e

1
κ

(v+vl−2z̄κv+κ).

Since the left-hand side remains �nite and strictly positive as κ goes to zero,

the right-hand side must do the same, which can only happen if z̄κv converges

to 1
2

(v + vl).

The above heuristic derivation may seem surprising to a reader familiar

with the Coase conjecture, who may have conjectured that B's lowest willing-

ness to pay is vl. The reason is that a v type S knows that B will receive a

positive ignal before her beliefs actually become an atom on vl. When κ is

small, this signal is extremely informative, partially o�setting B's very pes-

simistic beliefs.

6 More Information, Lower Surplus

This section explores the e�ciency implications of revealing the product's qual-

ity to B. I compare the total surplus in the standard game to the payo�s when

B knows quality but still needs to pay attention to S's o�ers. Applying Propo-

sition 1 quality-by-quality, one obtains that revealing v to B results in a unique

equilibrium in which the total surplus is given by E [v − κ]. Proposition 4 be-

low shows that this surplus is below the total surplus in the original game.

Proposition 4. There exists a δ > 0 such that for every equilibrium, the total

expected surplus is larger than E [v]− κ+ δ.

Proof. See the online appendix for the full proof. Here, I prove only that

E [Ub + Us] > v − κ for a given equilibrium (µ, b, z). Since bm,v is strictly

increasing in v for every m (Proposition 3), µ̄m,v/µ̄m,v′ is decreasing with m

for every v > v
′
. Therefore, µ̄m �rst-order stochastically dominates µ̄m′ for

every m
′
> m. Rearranging equation 3 for period 1, substituting equation 9
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and taking expectations in equilibrium gives:

1 =
∑
v

µ0,v

(
b1,v

π1

)
=
∑
v

µ0,v exp
1

κ

(
v − z1,v − κ

∞∑
m=1

e−r∆(m−1) ln

(
1− πm
1− bm,v

))
.

By Jensen's inequality, the above implies that:

0 >
∑
v

µ0,v

(
v − z1,v − κ

∞∑
m=1

e−r∆(m−1) ln

(
1− πm
1− bm,v

))

combined with w1,v = z1,v − κ (equation 7) and equation 9,

0 >
∑
v

µ0,vv − κ−
∑
v

µ0,vw1,v −
∑
v

µ0,v

∞∑
m=1

e−r∆(m−1) ln

(
1− πm
1− bm,v

)
= E [v]− κ− E [Us]− E [Ub] ,

giving E [Ub + Us] > E [v]− κ.

Proposition 4 asserts that revealing the quality of the product to B low-

ers total surplus. Recall that when B knows v, S's simple strategy means

that B's attention costs are zero. Hence, revealing v to B eliminates the in-

e�ciency caused by B's attention costs. In contrast, the ine�ciency due to

delay is present in both models. The above proposition suggests that delay

increases substantially when the product's quality is revealed to B. This is a

consequence of total surplus turning out to be convex in the seller's expected

pro�ts, conditional on v. When B is uncertain about v, the distribution of S's

conditional expected pro�ts becomes more concentrated, thus reducing overall

ine�ciency. Therefore, keeping B in the dark with respect to v results in less

delay, which more than compensates for B's positive attention costs.

7 Conclusion

Many transactions are inherently complex. As a consequence, the transactors

often need to invest valuable resources to study their contents. In other words,
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transactors need to pay costly attention to the transaction's details. This paper

studies the way in which complexity in�uences bargaining by looking at seller

who makes repeated o�ers to a rationally inattentive buyer in an attempt

to sell an indivisible product. It shows that a rationally inattentive buyer

earns a strictly positive surplus (Proposition 3), even when attention costs

are negligible (Theorem 5). When attention costs are positive, trade occurs

with delay (Proposition 2), which is decreasing with the value of the product

(Theorem 4). The resulting delay is accompanied by the buyer being unhappy

ex-post after buying cheap, low-quality products, and pleased ex-post when

buying expensive products of higher quality (Theorem 3, part 5). Finally, I

show that in the presence of rational inattention, total surplus is higher when

the buyer does not know the product's quality (Proposition 4).
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A Main Paper Appendix

A.1 About Shannon's measure of mutual information

Shannon (1948) was the �rst to suggest the use of entropy to measure informa-

tion. According to Shannon, to learn a random variable's outcome is to obtain

information equal to its distribution's entropy. Based on this idea, Shannon

(1948) suggested a measure of how much one learns about a variable by observ-

ing a signal. His answer is the expected di�erence between the entropy of the

variable's unconditional and conditional distributions upon observing the sig-

nal. This quantity is now known as Shannon's measure of mutual information

(Cover and Thomas, 2006).
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Formally, let µ ∈ ∆Ω be a prior on Ω; that is, µ is a Borel probability

measure on Ω ⊂ Rk. In period m of my bargaining game, Ω is Xm × V .

Suppose that µ has a �nite support {ω1, . . . , ωn}. Then, H, the entropy of µ,

is:

H (µ) = −
n∑
i=1

µ(ωi) lnµ(ωi)

In information theory, entropy is interpreted as a measure of the information

that one can learn about a random variable. For example, one can show that

H (µ) is proportional to the minimal expected number of yes or no questions

needed for learning ω's value. In my model, I interpret entropy as the level of

exertion needed to understand or process the information in question. That

is, it is the level of attention that the buyer needs to fully understand the o�er

and the product's value.

Let P̄ be the prior distribution of the signal: P (s) =
∫
P (s|ω)µ (dω). Then,

given the signal s ∈ SµP := {s ∈ S |
∫
P (s|ω)µ(dω) > 0}, the posterior on Ω

is:

µ(E|s) =

∫
E
P (s|ω)µ (dω)∫

Ω
P (s|ω)µ (dω)

for any Borel set E ⊂ Y . Then, Shannon's measure of mutual information,

I(s, ω), is the expected change in entropy between the prior µ and the posterior,

given the signal structure P :

I (ω, s) =
∑
s∈SµP

[H (µ (·))−H (µ (·|s))] P̄ (s) , (13)

which is the average change in entropy between the prior and the posterior

distribution that results from seeing the signal generated by P .

For the general case � that is, if µ is not discrete � one can de�ne Shannon's

measure of mutual information as:

I (ω, s) =

∫
ln

(
P (s|ω)

P̄ (s)

)
P (ds|ω)µ (dω) (14)
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which becomes the same as equation 13 when µ is discrete.

Note that attention costs depend on B's prior. To illustrate, suppose that

B only needs to pay attention to S's o�ers, and that the value of the product is

2. Let P be the signal structure that sends 0 if S's �rst o�er is strictly above 2,

and 1 otherwise. If B's prior about S's �rst o�er is uniform over [0, 2], then P

will send 1 for sure. In this case, P is completely uninformative and, therefore,

costs nothing. In contrast, P 's cost would be positive had B's prior been a

uniform distribution over [1, 3]. Hence, each single structure's informativeness

and, therefore, the attention cost depends on B's prior information.

A.2 Understanding Non-Credible Attention Threats

Requiring B's best response to be credible rules out non-credible attention

threats, which are most easily seen in the one-period model. In this model,

there is an extreme equilibrium in which B obtains a large surplus. To il-

lustrate, assume that V = {2, 4}, κ = 1 and that both qualities can occur

with equal probability. Suppose, further, that S o�ers 2 for sure regardless

of the product's quality. Let µ be B's beliefs, given S's strategy, σ. One can

show that a necessary and su�cient condition for β to be optimal for B in

this setting is to have β (x, v) = 1 µ-almost surely.18 Therefore, the strategy

de�ned by β (x, v) = 1 if x = 2 and 0 otherwise is optimal for B. Clearly, it is

also optimal for S to o�er 2 for sure, given β. Thus, (µ, β, σ) is a sequential

equilibrium. It turns out that by using a similar construction one can support

S o�ering for sure any x in [2, 2 + δ], where δ > 0 depends on the probability

of v = 2.

To understand how the above de�nition rules out non-credible attention

threats, consider my previous example. Suppose that we perturb B's belief

from the example by adding a probability of ε that S o�ers 6 whenever the

quality of the product is 4. Let µε denote B's perturbed beliefs. Recall that

the probability of v = 4 is 1
2
. Calculating B's expected utility from using β,

18I solve for the buyer's general optimal strategy in the dynamic game in appendix B.
To obtain that β (x, v) = 1 µ-almost surely is optimal here, one can also use the results of
Woodford (2008), Yang (2015) and Mat¥jka and McKay (2015).
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given µε, gives:

E [Ub|µε, β, σ] = 1− ε− 1

2
ln

(
2

2− ε

)
− 1

2

(
(1− ε) ln

(
2− 2ε

2− ε

)
+ ε ln

(
2

ε

))
,

where 1 − ε is B's expected transaction payo�s, while the remainder is B's

attention costs.

Compare β to the following alternative strategy: β
′
(x, v) = 1 for all x and

v. That is, B accepts every x o�ered by any quality with probability 1. B's

expected transaction payo� under β
′
is 1−2ε. Moreover, since β

′
is completely

uninformative, its attention cost is 0. Therefore, B's expected utility from β
′
,

given µε, is 1− 2ε. Hence, β
′
is strictly better for the buyer than β if and only

if:
1

ε
ln

(
2

2− ε

)
+

1

ε
ln

(
2− 2ε

2− ε

)
− ln

(
2− 2ε

2− ε

)
+ ln

(
2

ε

)
> 2.

As ε goes to zero, an application of L'Hopital's rule reveals that the left-hand

side goes to in�nity. In other words, for all small enough ε B prefers β
′
over

β. One can prove that this kind of logic extends to all perturbations involving

S o�ering 4.

De�nition 1 is a variation on Selten's (1975) perfect equilibrium and My-

erson's (1978) proper equilibrium. Similar to these equilibrium concepts, I

require B's strategy to be robust to mistakes. However, my robustness re-

quirement di�ers from those of Selten (1975) and Myerson (1978) in two ways.

First, in my formulation, B is aware of possible mistakes in her beliefs. While

I do so for analytical convenience, the di�erence between mistakes in beliefs

and mistakes in strategies is insubstantial in my setup. This is because by

the time B chooses her period m signal structure, S's m-th o�er has already

been determined. All that matters for B are her beliefs over that o�er � i.e.,

µm. Using beliefs that are consistent with perturbed strategies is, therefore,

equivalent to perturbing beliefs directly.

Second, De�nition 1 allows each history to have its own sequence of trem-

bles. In contrast, Selten (1975) and Myerson (1978) use a single tremble

sequence that puts positive weight on all histories. Putting positive weight on
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all histories in my setup is impossible due to the set of o�ers being a contin-

uum. I circumvent the continuum issue by using a di�erent tremble sequence

for each history.

A.3 Proof of lemma 1

The proof is based on the following facts, which I bring without proof. See a

standard information theory textbook (e.g. Cover and Thomas (2006)). The

�rst fact is the chain rule of mutual information. The second set of facts come

from two independent variables having zero mutual information.

Fact 1. For any two signals, sm and s
′
m: I

((
sm, s

′
m

)
, ωm|sm−1

)
= I (sm, ωm|sm−1)+

E
[
I
(
s
′
m, ωm|sm−1, sm

)
|sm−1

]
.

Fact 2. Let s
′
m be independent of ωm given (sm, s

m−1). Then:

1. I (sm, ωm|sm−1) = I
((
sm, s

′
m

)
, ωm|sm−1

)
.

2. I (sm+1, ωm+1|sm, sm+1) = I
(
sm+1, ωm+1|sm, s

′
m, s

m−1
)

I now prove that the buyer only ever randomizes over recommendation

strategies. For that, let am ∈ {0, 1} denote the buyer's choice to reject (am = 0)

or accept (am = 1) the seller's o�er. Fix any past signal realizations sm−1.

Consider replacing sm and sm+1 with am and (sm, sm+1), respectively. Then:

I
(
sm, ωm|sm−1

)
+ E

[
e−r∆ (1− am) I (sm+1, ωm+1|sm) |sm−1

]
=

I
(
(sm, am) , ωm|sm−1

)
+ E

[
e−r∆ (1− am) I (sm+1, ωm+1|sm) |sm−1

]
=

I
(
am, ωm|sm−1

)
+ E

[
I (sm, ωm|am) + e−r∆ (1− am) I (sm+1, ωm+1|sm) |sm−1

]
≥

I
(
am, ωm|sm−1

)
+ e−r∆E

[
(1− am)

(
I
(
sm, ωm|am, sm−1

)
+ I (sm+1, ωm+1|sm)

)
|sm−1

]
=

I
(
am, ωm|sm−1

)
+ e−r∆E

[
(1− am)

(
I
(
sm, ωm|am, sm−1

)
+ I (sm+1, ωm+1|am, sm)

)
|sm−1

]
=

I
(
am, ωm|sm−1

)
+ e−r∆E

[
(1− am)

(
I
(
sm, ωm+1|am, sm−1

)
+ I (sm+1, ωm+1|am, sm)

)
|sm−1

]
=

I
(
am, ωm|sm−1

)
+ e−r∆E

[
(1− am)

(
I
(
(sm, sm+1) , ωm+1|am, sm−1

))
|sm−1

]
where the second and last equalities following from the chain rule, and all

other the equalities following from am being independent of ωm given sm.
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The inequality follows from conditional mutual information being positive.

Conduct now the following replacements: �rst replace s1 with a1, and s2 with

(s1, s2), then replace (s1, s2) in period 2 with a2 and s3 with (s1, s2, s3) and

so on. By the above inequality, each such replacement weakly lowers the

buyer's expected costs. Since a's distribution is the same as the original, the

replacements do not in�uence the buyer's transaction payo�s. Thus, the buyer

is weakly better o� with the resulting recommendation strategy.

I now prove that it is without loss to assume that the buyer does not

mix. A buyer playing a mixed strategy is equivalent to one that condition

am's distribution on y, random variable independent of v which the buyer

observes for free at the beginning of the game. The law of iterated expectations

implies that the buyer's expected transaction payo�s do not change if she does

not condition am on y. I now show that not conditioning on y does not

increase the buyer's expected costs, proving that one can restrict attention

to pure strategies. To do so, I show by induction that the buyer cannot lose

in expectation by waiting to condition am's distribution on y. Note that y is

independent of ω1 and so I (y, ω1) = 0. Therefore,

E [I (a1, ω1|y)] = E [I (a1, ω1|y)] + I (y, ω1)

= E [I ((a1, y) , ω1)]

= I (a1, ω1) + E [I (y, ω1|a1)]

= I (a1, ω1) + E [I (y, ω2|a1)]

≥ I (a1, ω1) + e−r∆E [(1− a1) I (y, ω2|a1)]

Where the second equalities follow from the chain rule of mutual information,

the fourth equality follows from x2 being independent of (y, a1) conditional on

ω1 = (x1, v), and the last from positivity of conditional mutual information.

Hence, delaying the conditioning on y by one period does not increase costs.

I now show that delaying the conditioning on y from period k to period k + 1
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does not reduce expected costs. In particular,

E
[
I
(
ak+1, ωk+1|ak, y

)
+ I
(
y, ωk+1|ak

)
|ak
]

=

E
[
I
(
(ak+1, y) , ωk+1|ak

)
|ak
]

=

E
[
I
(
ak+1, ωk+1|ak

)
+ I
(
y, ωk+1|ak+1

)
|ak
]

=

E
[
I
(
ak+1, ωk+1|ak

)
+ I
(
y, ωk+2|ak+1

)
|ak
]
≥

E
[
I
(
ak+1, ωk+1|ak

)
+ (1− ak+1) e−r∆I

(
y, ωk+2|ak+1

)
|ak
]

where the steps follow the same logic as in one period. Therefore, inde�nitely

delaying the conditioning on y can only increase the buyer's expected value.

As such, it is without loss to assume that the buyer does not mix.

A.4 Other proofs

See online appendix.
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Online Proofs Appendix

(For Online Publication)

B The Buyer's Problem

In the current section I provide a set of necessary and su�cient conditions

for solving B's problem. The key to the solution is recasting B's problem of

choosing a recommendation strategy as a problem of choosing a conditional

cumulative distribution function given ωm. Recasting B's problem in this way

gives a concave objective function which is amenable to elementary variational

techniques.

Thus, let M = {1, . . . ,M} be the game's periods and �x some strategy

for S, σ. Combining σ with µ generates a Borel probability measure, µ, over

Ω := V ×XM . As in the main text, ωm represents ω's projection onto V ×Xm.

In what follows, I extend any function on V ×Xm to the domain Ω by taking

projections. I start with stating B's original problem, namely �nding the

optimal recommendation strategy. Let µβ,m be B's posterior over Ω conditional

on rejecting S's �rst m− 1 o�ers using the recommendation strategy β:

µβ,m (dω) =

[ ∏m−1
j=1 (1− βj (ω))∫ ∏m−1

j=1 (1− βj (ω))µ (dω)

]
µ (dω)

De�ne πm (β) :=
∫
βmµβ,m (dω). Then B's objective is:

U (β) :=

∫ { M∑
m=1

e−r∆j

[
m−1∏
j=1

(1− βj) (βmvm − κIm (βm))

]}
µ (dω) (15)

where vm (ω) = v − xm is B's transaction payo�, and Im is the mutual infor-

mation between βm and µβ,m:

Im (βm) =

∫ [
βm ln

(
βm

πm (β)

)
+ (1− βm) ln

(
1− βm

1− πm (β)

)]
µβ,m (dω)
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Let B be the set of all recommendation strategies endowed with L1 (µ) norm.

The goal of what follows is to prove a characterization theorem for the optimal

β. To introduce this theorem, let:

Vm (β, ω) = βmvm − κβm ln

(
βm

πm (β)

)
− κ (1− βm) ln

(
1− βm

1− πm (β)

)
take µ (·|ωm) to be a version of the µ's conditional probability, and de�ne for

every n ≥ m:

Ũn,m (β|ωm) =

∫ { M∑
k=n

e−r∆k

[
k−1∏
j=n

(1− βj)Vk (β, ω)

]}
µ (dω|ωm)

Given the above de�nition, we can prove the following Theorem:

Theorem 6. Solving B's problem:

1. β maximizes (15) in B only if:

βm (ωm) =
πm (β) e

1
κ
vm(ωm)

πm (β) e
1
κ
vm(ωm) + (1− πm (β)) e

1
κ
Ũm+1,m(β|ωm)

(16)

where it is understood that for βm (ωm) = πm (β) whenever πm (β) ∈
{0, 1}.

2. If β satis�es equation 16 with πm (β) ∈ (0, 1) for all m as well as:

lim
j→∞

E
[
e−r∆(j−m) ln

(
1− πj (β)

1− βj (ωj)

)
|ωm
]

= 0 (17)

µ-almost surely, then βm is optimal.

To prove the result I begin by recasting B's objective as being de�ned

over a di�erent domain. Denote by F the set of all measurable functions,

f : M × Ω→ [0, 1] satisfying:

1. fm (ω) = fm
(
ω
′)
whenever ω and ω

′
satisfy ωm = ω

′
m.

2. Fm (ω) :=
∑m

j=1 fj (ω) ≤ 1 for all m.
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I endow F with the L1 (µ) norm. Note that every β generates a f via: fβm :=

βm
∏m−1

j=1 (1− βj). Moreover, every f generates a β via:

βfm =
fm

1− Fm−1

unless Fm−1 (ω) = 1, in which case one can de�ne βfm (ω) = 0. Let:

um (f, ω) = fmvm − κ
(
fm ln

(
βfm

πm (βf )

)
+ (1− Fm) ln

(
1− βfm

1− πm (βf )

))
then B's objective can be written as:

U (f) := U
(
βf
)

=

∫ M∑
m=1

e−r∆mum (f, ω)µ (dω)

I therefore use U (f) to obtain the conditions for maximizing B's utility . I

begin by proving that U (f) is concave. Concavity of U (f) is useful for two

reasons. First, it allows me to show integrability of certain limits. This is

acheived using Lemma 6 below. Second, concavity of U (f) means that the

having a Gateaux derivative of zero is su�cient for obtaining a maximum.

To prove that U (f) is concave, let G be the set of all measurable functions

g : Ω→ [0, 1]. De�ne:

ϕ : Ω×G→ R

(g, ω) 7→ g (ω) ln

(
g (ω)∫

g (ω)µ (dω)

)
(setting ϕ to zero whenever g (ω) = 0 or

∫
g (ω)µ (dω) = 0). Noting that:

um (f, ω) = fm (ω) vm (ω)− κ (ϕω (fm) + ϕω (1− Fm)− ϕω (1− Fm−1))

then one can take Km = 1− e−r∆1[m<M ] and de�ne,

u∗m (f, ω) = fmvm − κϕω (fm)− κKmϕω (1− Fm)
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which, after some algebra reveals, that:

U (f) =

∫ M∑
m=1

e−r∆mu∗m (f, ω)µ (dω) (18)

Concavity of U (f) follows if ϕω is convex. I prove convexity of ϕω in the next

two lemmas.

Lemma 3 (Log-Sum inequality). Let (ai)
n
i=1 and (bi)

n
i=1 be non-negative num-

bers. Then:
n∑
i=1

ai ln
ai
bi
≥

(
n∑
i=1

ai

)
ln

∑n
i=1 ai∑n
i=1 bi

with equality if and only if ai
bi

is constant.

Proof. The function g (c) = c ln c is strictly convex since g
′′

(c) = 1
c
> 0. Set

ci = ai
bi
and set αi = bi∑n

i=1 bi
. Then by Jensen's inequality:

n∑
i=1

ai∑
j bj

ln
ai
bi

=
∑
i

αig (ci) > g

(∑
i

αici

)
=

∑n
i=1 ai∑n
j=1 bj

ln

(∑n
i=1 ai∑n
j=1 bj

)

the lemma follows.

Lemma 4. ϕω (g) is convex.

Proof. Fix g and g
′
. Then by the log-sums inequality (3):

αg (ω) ln

(
g (ω)∫
gdµ

)
+ (1− α) g

′
(ω) ln

(
g
′
(ω)∫
g′dµ

)
≥
(
αg (ω) + (1− α) g

′
(ω)
)

ln

(
αg (ω) + (1− α) g

′
(ω)∫

αg + (1− α) g′dµ

)
as required.

Lemma 5. U (f) is concave.

Proof. As noted in equation 18above, U (f) =
∫ ∑M

m=1 e
−r∆mu∗m (f, ω)µ (dω).

The result immediately follows from lemma 4.
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I now turn to proving Theorem 6. I begin with the necessary conditions

for maximum, and then continue to su�ciency.

B.1 Proof of Theorem 6 Part 1

To prove Theorem 6 part 1, I suppose f is optimal. Given that, I show that

the functions ϕω(1−Fm)
1−Fm ,

∑M
j=m e

−r∆(j−1) ϕω(1−Fj)
1−Fj , and 1

fm
ϕω (fm) are integrable.

Integrability of these functions then assures me two things. First, the Gateaux

derivative of U at f is well de�ned. Second, fm (Fm) attains a value of zero

(one) only if fm (Fm) is zero (one) µ-almost surely. This therefore assures

me that βfm (ω) is zero (one) only if πm
(
βf
)
is zero (one). In other words,

βfm (ω) = 0 (= 1) with positive probability if and only if βfm = 0 (= 1) almost

surely. It remains then to deal with an interior f . For an interior f , I consider

what happens to B's objective as a result of a particular perturbations. This

perturbation increases fm (ω) while reducing fm+j (ω) for all j ≥ 1 propor-

tionally. f being interior means that the perturbation is feasible both in the

positive and in the negative direction. As such, the Gateaux derivative at that

point must be zero, which implies part 1 of Theorem 6.

I now turn to proving that ϕω(1−Fm)
1−Fm ,

∑M
j=m e

−r∆(j−1) ϕω(1−Fj)
1−Fj , and 1

fm
ϕω (fm)

are integrable. I do so in a few steps:

Lemma 6. Let g : [0, 1]→ R be concave. Then for all 0 ≤ γ ≤ ε < 1:

g (1)− g (ε)

1− ε
≤ g (1)− g (γ)

1− γ

Proof. Set δ = 1−ε
1−γ . By concavity: g (ε) ≥ δg (γ) + (1− δ) g (1). Therefore:

g (ε) ≥ g (1) − δ (g (1)− g (γ)), or: δ (g (1)− g (γ)) ≥ g (1) − g (ε). Dividing

both sides by 1− ε gives the desired inequality.

Lemma 7. For every g : Ω→ [0, 1] : (1)For all a 6= 0: ϕω (ag) = aϕω (g); (2)

ϕω is bounded from below by −1/e; and (3) ϕω (g) is integrable.

Proof. (1) By de�nition: ϕω (ag) = ag (ω) ln
(

ag(ω)∫
agµ(dω)

)
= aϕω (g). (2) Since

g ∈ [0, 1]: ϕ (g) ≥ g ln g. The result then follows from min {α lnα : α ∈ [0, 1]} =
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−1/e. (3) By log-sums inequality:
∫
g ln g∫

gµ(dω)
µ (dω) ≤ 0. Result then fol-

lows from (2).

Lemma 8. Suppose f maximizes U (f). Then both ϕ(1−Fm)
1−Fm and

∑M
j=m e

−r∆(j−1) ϕ(1−Fj)
1−Fj

are µ-integrable for all m.

Proof. We will begin by showing that the second expression is integrable for

m = 1. Suppose otherwise. Since
∑M

j=1 e
−r∆(j−1)ϕ (1− Fj) ≥ 0 is integrable,

this implies that
∑M

j=1 e
−r∆(j−1) Fj

1−Fjϕ (1− Fj) is not integrable. Take f 0 to

be such that f 0
j = 0 for all j. Then by optimality of f and lemma 6 we have

that for all 0 ≤ ε < 1:

0 ≤ U (f)− U (εf + (1− ε) f 0)

1− ε
≤ U (f)− U

(
f 0
)

(19)

Letting:

ζj (ω, ε) =
1

1− ε

(
ϕω (1− Fj)− ϕω (1− εFj)

)
one can write (1− ε)−1 (U (f)− U (εf + (1− ε) f 0)) as:

∫ M∑
j=1

e−r∆(j−1)
(
fjvj − κϕ (fj)− κCjζj (ω, ε)

)
µ (dω)

Since vj is bounded, and both ϕ and ζ are integrable, equation 19 can be

rewritten as:

1

κ

∫ M∑
j=1

e−r∆(j−1) (fjvj − κϕ (fj))µ (dω) ≥
∫ M∑

j=1

Kje
−r∆(j−1)ζj (ω, ε)µ (dω)

≥ 1

κ

∫ M∑
j=1

e−r∆(j−1) (fjvj − κϕ (fj))µ (dω)−
(
U (f)− U

(
f 0
))

Note that the above holds for all ε < 1. As such, there exists a sequence

εl with εl → 1 and that
∫ ∑M

j=1Kje
−r∆(j−1)ζj (ω, ε)µ (dω) converges to some
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�nite limit L∞ <∞. Note that:

lim
l→∞

ζj (zM , εl) =
dϕ (1− εFj)

dε

∣∣∣∣
ε=1

= − Fj
1− Fj

ϕ (1− Fj) +

( ∫
Fjµ (dω)∫

(1− Fj)µ (dω)
− Fj

1− Fj

)
(1− Fj)(20)

Applying the log sums inequality,

ϕ (1− Fj) + ϕ ((1− ε)Fj) ≥ ϕ (1− εFj)

which implies:

ζj (ω, ε) ≥ −ϕ (Fj) (21)

for every ω and all ε, and therefore:

M∑
j=1

e−r∆(j−1)ζj (ω, ε) ≥ −
M∑
j=1

e−r∆(j−1)ϕ (Fj)

which is integrable. Hence by Fatou's lemma:

lim
l→∞

∫ M∑
j=1

e−r∆(j−1)ζj (zM , εl)µ (dω) = lim inf
l→∞

∫ M∑
j=1

e−r∆(j−1)ζj (ω, εl)µ (dω)

≥
∫

lim inf
l→∞

M∑
j=1

e−r∆(j−1)ζj (ω, εl)µ (dω)

=

∫ M∑
j=1

e−r∆(j−1) lim
l→∞

ζj (zM , εl)µ (dω)

But: ∫ ( ∫
Fjµ (dω)∫

(1− Fj)µ (dω)
− Fj

1− Fj

)
(1− Fj)µ (dω) = 0

for all j then suggests that
∫ ∑M

j=1 e
−r∆(j−1) Fj

1−Fjϕ (1− Fj)µ (dω) is bounded

from above. Moreover, since equation 21 holds for all ε, it must also hold in
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the limit, i.e.

M∑
j=1

e−r∆(j−1) lim
l→∞

ζj (ω, εl) ≥ −
M∑
j=1

e−r∆(j−1)ϕ (Fj)

implying that
∫ ∑M

j=1 e
−r∆(j−1) Fj

1−Fjϕ (1− Fj)µ (dω) is also bounded from be-

low, a contradiction. Therefore
∑

j≥1 e
−r∆(j−1) ϕ(1−Fj)

1−Fj is integrable.

I now prove that ϕ(1−Fm)
1−Fm and

∑M
j=m+1 e

−r∆(j−1) ϕ(1−Fj)
1−Fj are both integrable

for all m. Suppose both are for all j ≤ m− 1, but that one of them is not for

j = m. Then both must not be integrable and in opposite directions since:

M∑
j=1

e−r∆(j−1)ϕ (1− Fj)
1− Fj

=
m−1∑
j=1

e−r∆(j−1)ϕ (1− Fj)
1− Fj

+
M∑

j=m+1

e−r∆(j−1)ϕ (1− Fj)
1− Fj

+ e−r∆m
ϕ (1− Fm)

1− Fm

is integrable. Using equations 21 and 20 for every j we obtain that:

− Fj
1− Fj

ϕ (1− Fj) +

( ∫
Fjµ (dω)∫

(1− Fj)µ (dω)
− Fj

1− Fj

)
(1− Fj) ≥ −ϕ (Fj)

for all j. Since∫ ( ∫
Fjµ (dω)∫

(1− Fj)µ (dω)
− Fj

1− Fj

)
(1− Fj)µ (dω) = 0

it must be that
Fj

1−Fjϕ (1− Fj) ≤ ∞ for all j, a contradiction.

The above lemma immediately leads to the following result:

Corollary 1. Assume f maximizes U (f). Then µ {Fm = 1} > 0 implies

µ {Fm = 1} = 1.

Lemma 9. Suppose f maximizes U . Then the function 1
fm
ϕ (fm) is integrable

for all m.
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Proof. Suppose, by contradiction, that m is such that 1
fm
ϕ (fm) is not inte-

grable. Since ϕ (fm) is integrable, it must be that fm−1
fm

ϕ (fm) is not. Let f+

be such that f+
j = 0 for all j 6= m and f+

m = 1 for every ω. Then by concavity

of U and optimality of f , we have for all 0 ≤ ε < 1:

0 ≤ U (f)− U (εf + (1− ε) f+)

1− ε
≤ U (f)−U

(
f+
)

= U (f)−e−r∆m
∫
vmµ (dω)

De�ne ζj (ω, ε) as in lemma 8 and ξm (ω, ε) = 1
1−ε (ϕω (fm)− ϕω (εfm + 1− ε)),

we have that 1
1−ε (U (f)− U (εf + (1− ε) f+)) is equal to:

∫ (
−vm +

M∑
j=1

e−r∆(j−1)fjvj

)
µ (dω)− κ

∑
j 6=m

e−r∆(j−1)ϕ (fj)− κ
M∑
j=m

e−r∆(j−1)Kjϕ (1− Fj)

−κe−r∆m
∫
ξm (ω, ε)µ (dω)− κ

(
1− e−r∆

) ∫ m−1∑
j=1

e−r∆(j−1)ζj (ω, ε)µ (dω)

and therefore we obtain that there are L and L̄ such that:

L ≤ e−r∆(m−1)

∫
ξm (ω, ε)µ (dω) +

(
1− e−r∆

) ∫ m−1∑
j=1

ζj (ω, ε)µ (dω) ≤ L̄

for all ε. Thus, there exists a sequence εl → 1 such that:

∫
e−r∆(m−1)ξm (ω, εl) +

(
1− e−r∆

)m−1∑
j=1

e−r∆(j−1)ζj (ω, εl)µ (dω)→ L̄∞

where L̄∞ ∈
[
L, L̄

]
. Using the log-sum inequality (Lemma 3) we have

ϕ (1− Fj) + ϕ ((1− ε)Fj) ≥ ϕ (1− εFj)

implying that for all ε:

m−1∑
j=1

e−r∆(j−1)ζj (ω, ε) ≥ −
m−1∑
j=1

e−r∆(j−1)ϕ (Fj)

49



while using the log-sum inequality (3):

ϕ (fm) + ϕ ((1− ε) (1− fm)) ≥ ϕ (εfm + 1− ε)

gives:

ξm (ω, ε) ≥ ϕ (1− fm) (22)

we can therefore use Fatou's lemma to obtain:

L̄∞ ≥
∫

lim inf
l→∞

(
e−r∆mξm (ω, ε) +

(
1− e−r∆

)m−1∑
j=0

e−r∆jζj (ω, ε)

)
µ (dω)

≥
∫
e−r∆mϕ (1− fm)µ (dω)

+
(
1− e−r∆

)m−1∑
j=0

e−r∆j
∫
ϕ (Fj)µ (dω) =: L∞ > −∞

However, for every ω:

lim
l→∞

ξm (ω, εl) =
dϕ (εfm + 1− ε)

dε

∣∣∣∣
ε=1

=
fm − 1

fm
ϕ (fm) + fm

(
fm − 1

fm
−
∫
fmµ (dω)− 1∫
fmµ (dω)

)
and:

lim
l→∞

ζj (ω, εl) =
dϕ (1− εFj)

dε

∣∣∣∣
ε=1

= − Fj
1− Fj

ϕ (1− Fj) + (1− Fj)
( ∫

Fjµ (dω)∫
(1− Fj)µ (dω)

− Fj
1− Fj

)
since ∫

fm

(
fm − 1

fm
−
∫
fmµ (dω)− 1∫
fmµ (dω)

)
µ (dω) = 0

and ∫
(1− Fj)

(
−Fj

1− Fj
+

∫
Fjµ (dω)∫

(1− Fj)µ (dω)

)
µ (dω) = 0
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we have that:

L̄∞ ≥
∫ (

e−r∆m
(
fm − 1

fm

)
ϕ (fm)−

(
1− e−r∆

)m−1∑
j=1

e−r∆(j−1) Fj
1− Fj

ϕ (1− Fj)

)
µ (dω) ≥ L∞

The result then follows from
Fj

1−Fjϕ (1− Fj) being integrable for every j (lemma

8 ).

Lemma 9 immediately implies the corollary:

Corollary 2. Suppose that f maximizes U (f). Then µ {fm = 0} > 0 implies

µ {fm = 0} = 1.

With the above integrability results in hand, I now turn to discussing the

e�ect of perturbing the optimal f slightly. I begin with the following standard

de�nitions.

De�nition 3. For any f ∈ F, we say that the measurable function η : Ω→ R
is an f -feasible direction if there exists ε̄ > 0 such that for all 0 < ε < ε̄:

f + εη ∈ F. We denote the set of f -feasible directions by Ff .

De�nition 4. U is Gateaux di�erentiable at f if there exists a bounded linear

functional dUf : Ff → R such that for every η ∈ Ff :

lim
ε→0

∣∣∣∣1ε (U (f + εη)− U (f)− dUf (η))

∣∣∣∣ = 0 (23)

we then say that dUf is U 's Gateaux derivative.

Lemma 10. Suppose f maximizes U . Let:

Λf,m (ω) = e−r∆m
(
vm − κ

1

fm
ϕ (fm)

)
+ κ

M∑
j=m

e−r∆jKj
ϕ (1− Fj)

1− Fj

and de�ne dUf (η) =
∫ ∑M

m=1 Λf,mηmµ (dω). Then dUf (η) is: (1) bounded;

(2) is the Gateaux derivative of U .
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Proof. Fix some f -feasible direction η. Assume without loss of generality that

f + η ∈ F, and let αε = 1− ε, while de�ning fα = f + (1− α) η. Then:

0 ≥ 1

ε
(U (f + εη)− U (h)) =

1

1− αε
(U (fαε)− U (f))

=

∫ M∑
m=1

e−r∆m
(
u∗m (fαε , ω)− u∗m (f, ω)

1− αε

)
µ (dω)

since u∗m is concave (4), we have by 6:

u∗m (fα, ω)− u∗m (f, ω)

1− α
= −

(
u∗m (f, ω)− u∗m (fα, ω)

1− α

)
≥ −

(
u∗m (f, ω)− u∗m

(
f 1, ω

))
and therefore:(

u∗m (fα, ω)− u∗m (f, ω)

1− α

)
+
(
u∗m (f, ω)− u∗m

(
f 1, ω

))
≥ 0

for all ω. Moreover, lemma 6 implies that (1− α)−1 (u∗m (fα, ω)− u∗m (f, ω)) is

increasing with α. Therefore, by the monotone convergence theorem:

lim
α→1

∫ M∑
m=1

e−r∆m
(
u∗m (fα, ω)− u∗m (f, ω)

1− α

)
µ (dω)

=

∫ M∑
m=1

e−r∆m lim
α→1

(
u∗m (fα, ω)− u∗m (f, ω)

1− α

)
µ (dω)

note that:
(
fαmvm−fmvm

1−α

)
= vmηm. In addition:

lim
α→1

(1− α)−1 (ϕ (fm)− ϕ (fαm)) =
d

dα
ϕ (fαm)

∣∣∣∣
α=1

= −ηm
ϕ (fm)

fm
+

(
fm
∫
ηmµ (dω)∫

fmµ (dω)

)
− ηm
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and:

lim
α→1

(1− α)−1 (ϕ (1− Fm)− ϕ (1− Fα
m)) =

d

dα
ϕ (1− Fα

m)

∣∣∣∣
α=1

=

(
m∑
j=1

ηj

)
ϕ (1− Fm)

1− Fm

+
m∑
j=1

ηj −
(1− Fm)

∫ ∑m
j=1 ηjµ (dω)∫

(1− Fm)µ (dω)

since: ∫ [(
fm
∫
ηmµ (dω)∫

fmµ (dω)

)
− ηm

]
µ (dω) = 0

and: ∫ [ m∑
j=1

ηj −
(1− Fm)

∫ ∑m
j=1 ηjµ (dω)∫

(1− Fm)µ (dω)

]
µ (dω) = 0

we obtain that equation 23 holds. Boundedness of dUf (η) for all feasible η

follows from concavity of U and lemma 6 which imply:

0 ≥ lim
α→1

1

1− α
(U (fα)− U (f))

≥ U
(
f 1
)
− U (f) ≥ v −

(
ln 2

1− e−r∆

)
− v̄

thereby concluding the proof.

Proof of Theorem 6 Part 1. Suppose f maximizes U . Note that by corol-

laries 1 and 2 the condition holds for any m such that µ {fm = 0} > 0 or

µ {fm = 1} > 0. Suppose then that µ {0 < fm < 1} = 1. Note that:

πm
(
βf
)

=

∫
βfmµβf ,m (dω)

=

∫ (
fm

1− Fm−1

)(
1− Fm−1∫

(1− Fm−1)µ (dω)

)
µ (dω) =

∫
fmµ (dω)∫

(1− Fm−1)µ (dω)
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Note that:

ϕ (fm)

fm
− ϕ (1− Fm)

1− Fm
= ln

 fm/ (1− Fm−1)∫ (
fm

1−Fm−1

)(
1−Fm−1∫

1−Fm−1µ(dω′)

)
µ (dω)



− ln

 (1− Fm) / (1− Fm−1)∫ (
1−Fm

1−Fm−1

)(
1−Fm−1∫

1−Fm−1µ(dω′)

)
µ (dω)


= ln

(
βfm

πm (βf )

)
− ln

(
1− βfm

1− πm (βf )

)
and:

ϕ (1− Fj)
1− Fj

− ϕ (1− Fj−1)

1− Fj−1

= ln

 (1− Fj) / (1− Fj−1)∫ ( 1−Fj
1−Fj−1

)
1−Fj−1∫

(1−Fj−1)µ(dω′)
µ (dω)


= ln

(
1− βfj

1− πj (βf )

)

and therefore:

Λf,m = e−r∆m
(
vm − κ

1

fm
ϕ (fm)

)
+ κ

M∑
j=m

e−r∆jKj
ϕ (1− Fj)

1− Fj

= e−r∆mvm − κe−r∆m
(

1

fm
ϕ (fm)− ϕ (1− Fm)

1− Fm

)
+κ

M∑
j=m+1

e−r∆j
(
ϕ (1− Fj)

1− Fj
− ϕ (1− Fj−1)

1− Fj−1

)

= e−r∆m
(
vm − κ ln

(
βfm

πm (βf )

))
+ κ

M∑
j=m

e−r∆j ln

(
1− βfj

1− πj (βf )

)
(24)

Fix any ωm in the support of µ, and de�ne fωm as following: (1) fωmj = fj if

either ω
′
m 6= ωm or both j < m and j = m hold; (2) fωmm

(
ω
′)

= 1− Fm−1

(
ω
′)

whenever ω
′
m = ωm; and (3) fωmj

(
ω
′)

= 0 if ω
′
m = ωm and j > m. Let
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fα = αf + (1− α) fωm . Then obviously the following:

ηα = fα − f = (1− α) (fωm − f)

is a feasible direction for all α ∈ [0, 1]. Note that η = η1 satis�es ηj
(
ω
′)

= 0 if

j < m or ω
′
m 6= ωm, ηm (ωm) = 1−Fm (ωm), while ηj

(
ω
′)

= −fj
(
ω
′)
whenever

both j > m and ω
′
m = ωm. Since η is feasible and f is optimal, we must have

that dUf (η) ≤ 0. Note that the perturbation −η is also feasible, and therefore

0 ≥ dUf (−η) = −dUf (η). Hence, we must have dUf (η) = 0. Therefore:

∫ (
Λf,m (ωm) (1− Fm)−

M∑
j=m+1

fjΛf,j

)
µ (dω|ωm) = 0

where µ (dω|ωm) is a version of µ's conditional probability. The above can be

rewritten as:
(1− Fm (ωm)) e−r∆m

(
vm − κ ln

(
βfm

πm (βf )

))
+κe−r∆m (1− Fm (ωm)) ln

(
1− βfm

1− πm (βf )

)
 = (25)



−κ (1− Fm (ωm))

∫ M∑
j=m+1

e−r∆(j−1) ln

(
1− βfj

1− πj (βf )

)
µ (dω|ωm)

+κ

∫ M∑
j=m+1

M∑
k=j

fje
−r∆k ln

(
1− βfk

1− πk (βf )

)
µ (dω|ωm)

+

∫ M∑
j=m+1

fje
−r∆j

(
vj − κ ln

(
βfj

πj (βf )

))
µ (dω|ωm)


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But: ∫ M∑
j=m+1

M∑
k=j

fje
−r∆k ln

(
1− βfk

1− πk (βf )

)
µ (dω|ωm)

=

∫ M∑
k=m+1

(
k∑

j=m+1

fj

)
e−r∆k ln

(
1− βfk

1− πk (βf )

)
µ (dω|ωm)

=

∫ M∑
k=m+1

(Fk − Fm) e−r∆(k−1) ln

(
1− βfk

1− πk (βf )

)
µ (dω|ωm)

and therefore we obtain the equality:
(1− Fm (ωm)) e−r∆m

(
vm − κ ln

(
βfm

πm (βf )

))
+κe−r∆m (1− Fm (ωm)) ln

(
1− βfm

1− πm (βf )

)
 =

∫ M∑
j=m+1

e−r∆j

(
fjvj − κfj ln

(
βfj

πj (βf )

)
− κ (1− Fj) ln

(
1− βfj

1− πj (βf )

))
µ (dω|ωm) =

∫ M∑
j=m+1

e−r∆juj (f, ω)µ (dω|ωm)

thus, dividing both sides of equation 25 by e−r∆m (1− Fm (ωm)) gives:

vm − κ ln

(
βfm

πm (βf )

)
+ κ ln

(
1− βfm

1− πm (βf )

)
=

∫ M∑
j=m+1

e−r∆j
(

uj (f, ω)

1− Fm (ωm)

)
µ (dω|ωm)

= Ũm+1,m (β|ωm)

dividing both sides by κ, exponentiating and solving for βfm proves that βfm
satis�es equation 16. The theorem follows.

B.2 Proof of Theorem 6 Part 2

I now turn to proving part 2 of Theorem 6. I begin by providing an expression

for B's expected utility for any β satisfying the conditions of Part 2. Using
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this expression, I show that the Gateaux derivative of B's objective is zero at

any β satisfying part 2 of the theorem. The result then follows from concavity

of U (f).

Lemma 11. Suppose β satis�es equation 16. If µ {0 < β1 < 1} > 0. Then:

U (β) = κ

∫
ln
(
π1 (β) e

1
κ
v1(ω) + (1− π1 (β)) e

1
κ
e−r∆Ũ2(β,ω1)

)
µ (dω) (26)

moreover, for every m such that µ {0 < βm < 1} > 0:

Ũm (β, ωm−1) = κ

∫
ln
(
πm (β) e

1
κ
vm(ω) + (1− πm (β)) e

1
κ
e−r∆Ũm+1(β|ωm)

)
µ (dω|ωm−1)

(27)

Proof. I prove equation 26. The proof of 27 is similar and therefore omitted.

If µ {0 < β1 < 1} > 0 and β satis�es 16 then:

V1 (β, ω) = β1v1 − κ
(
β1 ln

(
β1

π1 (β)

)
+ (1− β1) ln

(
1− β1

1− π1 (β)

))
= β1v1 − κ

(
β1

1

κ
v1 + (1− β1)

1

κ
e−r∆U2 (β|ω1)

)
+κ ln

(
π1 (β) e

1
κ
v1(ω) + (1− π1 (β)) e

1
κ
e−r∆U2(β|ω1)

)
= κ ln

(
π1 (β) e

1
κ
v1(ω) + (1− π1 (β)) e

1
κ
e−r∆U2(β|ω1)

)
−e−r∆Ũ2 (β, ω1)

but:

U (β) =

∫ (
V1 (β, ω) + (1− β1) e−r∆Ũ2 (β, ω1)

)
µ (dω)

the conclusion follows.

I now turn to proving the su�cient condition for β to be an optimum. Note

that:

vm − κ ln

(
βm

πm (β)

)
= e−r∆Um+1 (β, ωm)− κ ln

(
1− βm

1− πm (β)

)
(28)
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therefore:

Vm (β, ω)

1− Fm−1

= βmvm − κβm ln

(
βm

πm (β)

)
− κ (1− βm) ln

(
1− βm

1− πm (β)

)
= βme

−r∆Um+1 (β, ωm)− κ ln

(
1− βm

1− πm (β)

)
which implies:

Um (β, ωm−1) =

∫ (
e−r∆Um+1 (β, ωm)− κ ln

(
1− βm

1− πm (β)

))
µ (dω|ωm)

by iterative substitution,

Um (β, ωm−1) = −κ
∫ M∑

j=m

e−r∆(j−m) ln

(
1− βj

1− πj (β)

)
µ (dω|ωm)

using equations 24 and 28 then gives
∫

Λfβ ,mµ (dω|ωm) = 0 for all m and µ-

almost every ωm. Therefore, dUfβ = 0. Optimality of β follows from U being

concave.

C Infrequent O�ers Environment

The current appendix includes proofs pertaining to an infrequent o�ers en-

vironment. These include Theorem 3, Theorem 1 and Proposition 4. The

results regarding frequent o�er limits, lemma 1, and as well as proof of several

auxiliary results are delegated to the online proofs appendix.

A simple seller's problem LetW : R+ → R+ to be Lambert's W function,

de�ned by: W (zez) = z, or, equivalently, as: W (z) eW (z). Also, de�ne the

function D (x, c) =
(

1 + e−
1
κ

(c−x)
)−1

. The lemma below turns out to tightly

characterize the seller's strategy in equilibrium.

Lemma 12. Consider the function: H (x, c, d) = D (x, c)x+ (1−D (x, c)) d,

where d ≥ 0. Then:
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1. H−d is strictly log-concave over x ∈ R+, and the problem: maxxH (x, c, d)

has a unique solution in R+.

2. x∗ = arg max {H (x, c, d) |x ∈ R+} if and only if one of the following

holds:

x∗ = d+ κ+ κW
(
e

1
κ

(c−d−κ)
)

(29)

H (x∗, c, d) = x∗ − κ (30)

D (x∗, c)

1−D (x∗, c)
=

1

κ
(x∗ − κ− d) (31)

moreover, x∗ is strictly increasing in c.

3. The solution to max {H (x, c, d) : x ∈ X} is unique, equal to min {x∗, x̄},
and is weakly increasing in c.

Proof. Part 1: note that ln (H − d) = ln (x− d) − ln
(

1 + e
1
κ

(x−c)
)
. Part 1

follows from concavity of ln (x− d) and convexity of ln
(

1 + e
1
κ

(x−c)
)
. Part 2:

Since ln (H − d) is strictly concave, the following FOC is both necessary and

su�cient for a solution:

(x∗ − d)−1 − 1

κ
(1−D (x∗, c)) = 0

which can be rearranged to obtain equation 30 and: D (x∗, c) = (x∗ − d− κ) / (x∗ − d),

giving 31. The FOC can be rearranged to e
1
κ

(c−x) = 1
κ

(x− d− κ)which can

be rearranged to be: e
1
κ

(c−d−κ) = 1
κ

(x− d− κ) e
1
κ

(x−d−κ) or:

1

κ
(x− d− κ) = W

(
e

1
κ

(c−d−κ)
)

which can be easily rearranged to give the desired equality. x∗ increasing in c

follows from equation 30. Part 3: Follows from log concavity which implies

that ∂ ln (H − d) /∂x > 0 for all x < x∗.
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C.1 Proof of Theorem 3

Finite Horizon Suppose �rst that the game's horizon is some �nite M . I

prove the lemma in steps. I begin by using a backward induction argument

to prove that the player's strategies are simple, and that the buyer's strategy

satis�es equation 3 with πm being strictly between 0 and 1. I then turn to

proving that the seller's strategy satis�es equation 5 and that the monotonicity

condition (part 5) holds. I conclude by proving part 4.

De�nition 5. Suppose (β, σ, µ) are consistent. We say that a sequence {µn, βn, εn}∞n=1

is a (xm, v) perturbation sequence for some (xm, v) if there exists a µ∗ ∈
∆ (Xm × V ) with µ∗ (xm, v) > 0 such that: (1) µn = εnµ∗ + (1− εn)µm;

(2) εn > 0, εn → 0 and βn → β; and (3) βn maximizes Em [Ub|µn, βn, σ] for all

n.

Given some (xm, v)-perturbation sequence, {µn, βn, εn}∞n=1, let π
n
m =

∫
βnmdµn.

Note that β is a credible best response to σ if and only if there is (xm, v)-

perturbation sequence for every (xm, v).

Period M : I begin by proving the lemma for period M .

Lemma 13. For all
(
xM , v

)
: βM

(
xM , v

)
= D

(
xM , v + κ ln πM

1−πM

)
.

Proof. Let {µn, βn, εn}∞n=1 be a
(
xM , v

)
-perturbation sequence. By Lebesgue's

dominated convergence theorem:
∫
βnMdµM →

∫
βMdµM , which implies

∫
βnMdµn →∫

βMdµM . Using theorem 6:

βM
(
xM , v

)
= lim

n→∞
βnM
(
xM , v

)
= lim

n→∞

πnMe
1
κ

(v−xM )

1− πnM + πnMe
1
κ

(v−xM )

=
πMe

1
κ

(v−xM )

1− πM + πMe
1
κ

(v−xM )
= D

(
xM , v + κ ln

πM
1− πM

)
as required.

Lemma 14. 0 < πM < 1.
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Proof. By lemma 13, if πM =
∫
βMdµM = 0 then βM

(
xM , v

)
= 0 for all(

xM , v
)
contradicting βM being attentive, while

∫
βMdµM = 1 implies βM

(
xM , v

)
=

1 for all
(
xM , v

)
which cannot possibly be in equilibrium since then the seller's

best response in M is to o�er ∞.

Note that the seller's expected value conditional on arriving to period M ,

the history
(
xM−1, v

)
and o�ering xM is: H

(
xM , v + κ ln πM

1−πM
, 0
)
. Let x∗M,v

and zM,v be the unique solutions for this problem in R+ and X respectively

(Lemma 12). Clearly, σ
(
zM,v, x

M−1, v
)

= 1 for all
(
xM−1, v

)
. Suppose zM,v ≥

x̄ for some v. Then zM,vh ≥ x̄ > vh by weak monotonicity of zM,v (Lemma

12). Moreover,

x∗M,vh
= κ+ κW

(
πM

1− πM
e
vh−κ
κ

)
≥ x̄ > vh

which implies:

W

(
πM

1− πM
e
vh−κ
κ

)
>
vh − κ
κ

⇐⇒ πM >
vh − κ
vh

But this means that πM > 1
v

(v − κ) for all v, implying x∗M,v > v for all v. But

then zM,v = min {xM,v, x̄} > v for all v, meaning that the buyer's best response

is to set bM,v = 0 for all v, giving πM = 0, a contradiction. Since zM,v = x∗M,v for

all v, Lemma 12 gives equation 5, and strict monotonicity of both zM,v and bM,v

in v. Equation 3 then gives monotonicity of v − zM,v. Note that the expected

value of 1−bM,v is 1−πM . Therefore, 1−bM,vl > 1−πM > 1−bM,vh . Equation 3

then implies that (1− bM,v) / (1− πM) is equal to
(

1− πM + πMe
1
κ(v−zM,v)

)−1

.

The conclusion that vl − zM,vl < 0 < vh − zM,vh follows.

Inductive Step: Simple buyer strategy and part 3: Suppose now that

for periods j ≥ m+1 Proposition 3 holds. For some (xm, v), let {µn, βn, εn}∞n=1

be a (xm, v)-perturbation sequence. Since βnj (xj, v)→ βj (xj, v) for all (xj, v),

Lebesgue's dominated convergence gives: πnm+j → πm+j for all relevant j ≥ 0.

Moreover, since πm+j ∈ (0, 1) for all j ≥ 1: unm+j,v → um+j,v. Therefore, by
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Theorem 6:

βm (xm, v) = lim
n→∞

βnm (xm, v) = lim
n→∞

πnme
1
κ

(v−xm)

(1− πnm) e
e−r∆
κ

unm+1,v + πnme
1
κ

(v−xm)

=
πme

1
κ

(v−xm)

(1− πm) e
e−r∆
κ

um+1,v + πme
1
κ

(v−xm)

= D

(
xm, v + κ ln

πm
1− πm

− e−r∆um+1,v

)
πm ∈ (0, 1): Note that πm = 0 contradicts β being attentive, and πm = 1

implies seller's o�er is x̄ regardless of past, contradicting β being optimal.

Hence, buyer's m period strategy is simple and satis�es equation 2.

Simple seller strategy: The above together with the induction assumption

imply that a v seller's m period problem is:

max
xm

H

(
x, v + κ ln

πm
1− πm

− e−r∆um+1,v, e
−r∆ (zm+1,v − κ)

)
independent of xm−1. Hence seller's strategy is simple.

Parts 2 and 4 of lemma: Let x∗m,v and zm,v be the seller's problem's

unique solutions in R+ and X respectively (Lemma 12). I now prove that

bm,v is strictly increasing. Rearranging equation 3 for any j implies that

bj,v = e
1
κ

(v−zj,v−κ lnπj−uj,v). Hence,

uj,v =
1

κ

(
v − zj,v − κ ln

(
bj,v
πj

))
(32)

Substituting the above for j = m + 1 in equation 3 for m and rearranging

gives:

bm (x, v)

1− bm (x, v)
=

(
πm

1− πm

)(
bm+1,v

πm+1

)e−r∆
e

1
κ(v−x−e−r∆(v−zm+1,v)) (33)
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But equation 31 of Lemma 12:

bm
(
x∗m,v, v

)
1− bm

(
x∗m,v, v

) =
1

κ

(
x∗m,v − κ− e−r∆ (zm+1,v − κ)

)
combining the above two display equations gives:

(
bm
(
x∗m,v, v

)
1− bm

(
x∗m,v, v

)) e
(

bm(x∗m,v,v)
1−bm(x∗m,v,v)

)
=

(
πm

1− πm

)(
bm+1,v

πm+1

)e−r∆ (
e(

v−κ
κ )
)(1−e−r∆)

(34)

Since bm+1,v is strictly increasing in v, the above implies that bm
(
x∗m,v, v

)
is

strictly increasing in v. Equations 29 and 31 together along with the above

give that x∗m,v is also strictly increasing. Take now any v < v
′
. The above

implies that bm,v < bm,v′ whenever x
∗
m,v′

≤ x̄. If x∗m,v ≤ x̄ < x∗
m,v′

then

bm,v′ > bm

(
x∗
m,v′

, v
′
)
> bm,v. Suppose then x

∗
m,v > x̄. Then equation 33 gives:

bm,v′

1− bm,v′
− bm,v

1− bm,v
=

(
πme

− x̄
κ

1− πm

)
(
bm+1,v′

πm+1

)e−r∆ (
e(

1−e−r∆)v
′
+e−r∆z

m+1,v
′

) 1
κ

−
(
bm+1,v

πm+1

)e−r∆ (
e(1−e−r∆)v+zm+1,v

) 1
κ

 > 0

where the inequality follows bm+1,v and zm+1,v being both strictly increasing

in v. Therefore bm,v is strictly increasing. I now show that x∗m,v = zm,v.

Suppose otherwise. Monotonicity of x∗m,v in v and Lemma 12 part 4 mean

that zm,vh = x̄. But:

zm,vh = vh−κ ln

(
bm,vh
πm

)
+κ

M∑
j=m

e−r∆(j−m) ln

(
1− bj,vh
1− πj

)
< vh−κ ln

(
bm,vh
πm

)
< vh

(35)

where the equality follows equation 9 for m + 1 and equation 3, and both

inequalities follow from bj,v being strictly increasing in v for all j ≥ m. A

contradiction. Therefore zm,v is also increasing. Finally, note that equation 9

means that um,v is also strictly increasing in v, giving monotonicity of v− zm,v
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by equation 32. Equation 35 establishes vh − zm,vh > 0. A straightforward

derivation shows that an equivalent of equation 35 holds for for vl but with the

reverse inequalities, and hence vl− zm,vl < 0. Equation 5 follows from Lemma

12, which also implies E [Us|v] = z0,v − κ.
Part 4: E [Us] = E [z1,v] − κ follows from above. Theorem 11 implies

E [Ub] = E [u1,v].

In�nite Horizon Consider now the equilibrium in the in�nite horizon. The

equilibrium is simple since it is the limit of �nite horizon equilibria, which are

simple. Let (µ, b, z) be the in�nite horizon equilibrium. A simple convergence

argument establishes equation 5. Similarly, one can use a simple convergence

argument to establish that

bm (x, v) = D

(
x, v + κ ln

πm
1− πm

− e−r∆um+1,v

)
and hence equation 3 as long as πm ∈ (0, 1) for allm. Take

{(
µM , bM , zM

)}
M∈N

to be such that N ⊂ N is an in�nite set of integers,
(
µM , bM , zM

)
is an equilib-

rium in the M horizon game, and
(
µM , bM , zM

)
converge to (µ, b, z). Suppose

by contradiction that πm = 1. Clearly, we must have bm (zm,v, v) = 1 for all v.

Therefore,

exp

[
−1

κ

(
v + κ ln

πMm
1− πMm

− e−r∆uMm+1,v − x
)]
→ 0

Take any x ∈ R+. Since b
M
m (x, v) satis�es equation 3,

bMm (x, v) =
(

1 + e−
1
κ(v−x+κ ln( πm

1−πm )−e−r∆um+1,v)
)−1

=
(

1 + e
1
κ

(x−zm,v)e−
1
κ(v−zm,v+κ ln( πm

1−πm )−e−r∆um+1,v)
)−1

implying bMm (x, v) → 1. Therefore bm (x, v) = 1 for all x, a contradiction to

zm,v being optimal. Suppose now by contradiction that πm = 0. A similar

argument to above implies bm (x, v) = 0 for all x and v, contradicting b being

attentive. Equation 5 follows from convergence of zMm,v. Since b
M
m+1,v is strictly
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monotone in v, bm+1,v must be weakly increasing in v. Since equation 34 holds

in limit (but with zm,v replacing x∗m,v), strict monotonicity of bm,v follows.

Analogous arguments to those made in the �nite horizon establish that zm,v

and v−zm,v are both strictly increasing in v, and that vh−zm,vh > 0 > vl−zm,vl .
Part 5 follows from Theorem 11 and Lemma 12.

C.2 Proof of Theorem 1

Su�cient condition for credible best response I begin by stating the

lemma bellow that helps characterize the player's optimal strategy in equilib-

rium. The lemma's proof is based on Theorem 6 above.

Lemma 15. Let (µ, b, z) be a consistent simple strategy pro�le such that the

buyer's strategy satis�es equation 3 and that πm ∈ (0, 1) for all m. Suppose

further that either the game's horizon is �nite or that:

lim
m→∞

e−r∆m ln

(
1− bm,v
1− πm

)
= 0

for all v. Then the buyer's strategy is a credible best response to z given µ.

Proof. Fix any (xm, v). Suppose wlog that xm < zm,v. Clearly, bm (xm, v) >

bm,v. Let α be such that bm,v = αbm (x̄, v) + (1− α) bm (xm, v). Let x̃m =

(z1,v, . . . , zm−1,v, x̄), and de�ne µS via setting µS (xm, v) equal to (1− α)µm (z1,v, . . . , zm,v, v),

µS (x̃m, v) equal to αµm (z1,v, . . . , zm,v, v), and for every v
′ 6= v: µS

(
·, v′
)

=

µm
(
·, v′
)
. By construction the buyer's posterior over V after using bm and

reaching period m+ 1 is the same under µm and µS. The same holds for every

µε = εµS+(1− ε)µm for ε ∈ (0, 1). It is therefore straightforward to show that

(βm, βm+1, . . .) satis�es the conditions of Theorem 6 when the distribution over

Xm × V is µε = εµS + (1− ε)µm for ε ∈ (0, 1) and future o�ers determined

according to z. b being a credible best response follows.

Proof of Theorem in Finite Horizon De�ne the function Φ : [0, 1]M →
[0, 1]M via the following process:

1. Start by setting uπM+1,v = 0 and zπM+1,v = κ.
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2. Given uπm+1,v de�ne the function b
π
m as in (3).

3. Given zπm+1,v and b
π
m, de�ne z

π
m,v as the solution to (5).

4. Let µπ1 , . . . , µ
π
M to be (some) beliefs consistent with the players using

(bπm, z
π
m).

5. De�ne: Φm =
∑

v µ
π
m,vb

π
m,v, where b

π
m,v := bπm

(
zπm,v, v

)
.

I divide the Theorem's proof into three parts. I begin by proving a lemma

that bounds the ratio
bπm,v
πm

from above. The second part establishes that Φ

has a �xed point in (0, 1)M . The third and �nal part uses this �xed point to

construct an equilibrium.

Part 1

Lemma 16. Suppose that parts (2) and (3) of Theorem 3 hold for (bπ, zπ)

where π > 0. Then for all m:
bπm,v
πm
≤ e

v−κ
κ .

Proof. De�ne
bπM+1,v

πM+1
to be 1 forM+1. Then the claim clearly holds for period

M + 1. Suppose it holds for period m + 1. Note that (3) and (4) imply

uπm,v = v − zπm,v − κ ln
bπm,v
πm

. Therefore,

bπm,v
πm

=

(
πm + (1− πm) e

− 1
κ

(
v−zm,v−e−r∆

(
v−zm+1,v−κ ln

bπm+1,v
πm+1

)))−1

≤
(
πm + (1− πm) e−

1
κ((1−e−r∆)(v−κ)+e−r∆(v−κ))

)−1

≤ e
v−κ
κ .

The �rst inequality follows from both equation (5) (which can be rearrange

to give zm,v − e−r∆zm+1,v ≥
(
1− e−r∆

)
κ) and the induction assumption. The

second inequality following from v > κ for all v.

Part 2

Lemma 17. Φ has a �xed point in (0, 1)M .
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Proof. Fix any ε ∈
(
0, 1

2

)
. Begin de�ne the mapping Φε : [ε, 1− ε]M →

[ε, 1− ε]M via: Φε
m (π) = min {max {ε,Φm (π)} , 1− ε}. Note that Φε is con-

tinuous it is a composition of continuous functions. Therefore, by Brouwer's

theorem Φε admits a �xed point. Let πε be such a �xed point. By compactness,

there exists a sequence ε→ 0 such that πε → π0 ∈ [0, 1]M . Below I claim that

π0
m ∈ (0, 1) for all m. Therefore, there exists an ε̄ > 0 such that for all ε < ε̄,

πε̄m is a �xed point of Φε. But that implies that πε̄m ∈ [ε̄, 1− ε̄] ⊂ (ε, 1− ε) for
all m, implying that πε̄ is an interior �xed point of Φ0, as required.

It remains to prove the claim that π0
m ∈ (0, 1). Plan: Prove that π0

m < 1

for all m by induction from period 1 and that π0
m > 0 for all m by inducting

backwards from period M .

Suppose �rst that π0
1 = 1. Then there exists a subsequence of ε such that∑

v µ
πε

1,vb
πε

1,v ≥ πε1 for all ε, implying that
∑

v µ̄
πε

1,vb
πε

1,v → 1. As such, for all v

bπ
ε

1,v → 1 . (5) then implies that zπ
ε

1,v → ∞. But this can only hold if π0
1 → 0,

a contradiction. To make the inductive argument, note that π0
j < 1 for all

j < m implies µ̄m,v > 0 for all v. Reapplying the period 1 argument proves

then claim.

Suppose now that π0
M = 0. (5) implies zπ

ε

M,v → κ, and therefore:

1 ≥
∑
q

µ̄π
ε

M,v

(
bπ

ε

M,v

πεM

)
=

∑
q

µ̄π
ε

M,v

(
πεM + (1− πεM) e−

1
κ(v−zπ

ε

M,v)
)−1

→
∑
q

µ̄π
0

M,ve
v−κ
κ > 1

where the �rst inequality comes from πεM ≥
∑

q µ̄
πε

M,vb
πε

M,v and the last from

v > κ for all v. Suppose now that π0
m = 0 and π0

j > 0 for all j ≥ m+ 1. Then

bπ
ε

m,v → 0 meaning that zπ
ε

m,v − e−r∆zπ
ε

m+1,v →
(
1− e−r∆

)
κ by (5). Together
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with uπεm+1,v = v − zπεm+1,v − κ ln

(
bπ
ε

m+1,v

πεm+1

)
this implies:

∑
q

µ̄π
ε

m,v

(
bπ

ε

m,v

πεm

)
=

∑
q

µ̄π
ε

m,v

(
πεm + (1− πεm)

(
bπ

ε

m+1,v

πεm+1

)−e−r∆
e−

1
κ((1−e−r∆)v−(zπ

ε
m,v−e−r∆zπ

ε

m+1,v))

)−1

→
∑
q

µ̄0
m,v

(
b0
m+1,v

π0
m+1

)e−r∆
e(1−e−r∆)( v−κκ )

=
∑
q

µ̄0
m,v

(
1

e
v−κ
κ

b0
m+1,v

π0
m+1

)e−r∆
e
v−κ
κ

=
∑
q

µ̄0
m+1,v

(
1

e
v−κ
κ

b0
m+1,v

π0
m+1

)e−r∆
e
v−κ
κ

>
∑
q

µ̄0
m,v

1

e
v−κ
κ

b0
m+1,v

π0
m+1

e
v−κ
κ = 1

where the inequality follows from Lemma 16 and v > κ for all v, and the last

equality follows from (3). However, by choice of πε: 1 ≥
∑

q µ
πε

m,v

(
bπ

ε

m,v/π
ε
m

)
for all ε, a contradiction.

Part 3 Let π be the interior �xed point of Φ, and let (bm, zm,v) =(
bπm, z

π
m,v

)
. I begin by proving tha t z is optimal for S. By construction, bm

satis�es (3) and is therefore b is a credible best response to S's strategy by

Lemma 15. I prove that zm,v is optimal inductively backward from period M .

S's period M problem given v is

max
xM

H

(
x, v + κ ln

πM
1− πM

, 0

)
.

Lemma (12) implies that zM,v solves the above problem, and that the problem's

value is zM,v − κ. Assuming that the value of S's problem from period m + 1

conditional on v is zm+1,v − κ and that zm+1,v solves that problem, we obtain
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that S's period m problem given v is:

max
xm

H

(
x, v + κ ln

πm
1− πm

− e−r∆um+1,v, e
−r∆ (zm+1,v − κ)

)
Then (29) from Lemma 12 gives that zm,v is optimal.

In�nite Horizon I prove this result in steps. In the �rst step I establish

some bounds that must hold in every equilibrium, �nite or in�nite horizon, and

that πm is uniformly bounded from below across all �nite horizon equilibria.

One therefore obtains that the same bound must hold in the in�nite horizon as

well via limits. In the second step I establish that convergence of the buyer's

strategy in every period and the seller's best response imply that the limit is

optimal for the seller. The �nal step simply connects all these results together

to give the said theorem.

The �rst step itself is divided into two lemmas. The �rst and more compli-

cated of the two bounds the ratio bm,v
πm

from below. The second step establishes

additional bounds that must hold for every equilibrium. The bounds appear-

ing in both Lemmas give an appropriate compactness condition that gives the

existence of a convergent equilibrium sequence.

Lemma 18. Let (µ, b, z) be an equilibrium for horizon M ∈ N ∪ {∞}. Then
bm,v
πm
≥ 1

2
for all m.

Proof. I prove the Lemma for �nite horizon. The property follows for in�nite

horizon via limits. De�ne the functions

% (a, v, q) =
a

1− a
e(1−e−r∆)( v−κκ )qe

−r∆
(36)

R (a, v, q) =
W (% (a, v, q))

a (1 +W (% (a, v, q)))
(37)

Rc (a, v, q) = [(1− a) (1 +W (% (a, v, q)))]−1 (38)

I prove the lemma in steps. In the �rst step I establish that bm,v
πm

= R
(
πm, v,

bm+1,v

πm+1

)
for all v andm. In the second step, I prove that either arg mina∈[0,1]R (a, v, q) =
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0 or R (a, v, q) ≥ 1/2 for all a ∈ [0, 1], v and q. In the third I establish that

R (0, v, q) = e(1−e−r∆)( v−κκ )qe
−r∆

. In the fourth and �nal step I show by induct-

ing back from M that R
(

0, v, bm+1,v

πm+1

)
> 1

2
for all m, and therefore bm,v

πm
≥ 1

2
,

which completes the proof.

Step 1 : bm,v
πm

= R
(
πm, v,

bm+1,v

πm+1

)
for all v and m, where

bM+1,v

πM+1
:= e

1
κ

(v−κ).

Proof. (16) and (4) give bm,v = e
1
κ

(v−zm,v−κ lnπm−um,v) and therefore

ln

(
bm,v
πm

)
=

1

κ
(v − zm,v − um,v)

Recall that zM+1,v := κ and uM+1,v := 0, and so the de�nition
bM+1,v

πM+1
:= e

1
κ

(v−κ)

is also consistent with the above equation. Recall further that a v seller's

m ≤M period problem is:

max
x≥0

H

(
x|v + κ ln

(
πm

1− πm

)
− e−r∆um+1,v, e

−r∆ (zm+1,v − κ)

)
where zM+1,v := κ and um+1,v := 0. Using equation 32 above and equations

29 and 31 from Lemma 12,

bm,v =

W

((
πm

1−πm

)(
e(

v−κ
κ )
)(1−e−r∆) ( bm+1,v

πm+1

)e−r∆)
1 +W

((
πm

1−πm

)(
e(

v−κ
κ )
)(1−e−r∆) (

bm+1,v

πm+1

)e−r∆) =
W
(
%
(
πm, v,

bm+1,v

πm+1

))
1 +W

(
%
(
πm, v,

bm+1,v

πm+1

))
(39)

dividing by πm completes the proof of the current step.

Step 2: Either arg mina∈[0,1] R (a, v, q) = 0 or R (a, v, q) ≥ 1/2 for all a ∈
[0, 1], v and q.

Proof. Note �rst that R (·, v, q) is continuous, and therefore,

R (1, v, q) = lim
a→1

W
(

a
1−ae

(1−e−r∆)( v−κκ )qe
−r∆
)

a
(

1 +W
(

a
1−ae

(1−e−r∆)( v−κκ )qe−r∆
)) = 1
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I now claim that either R (0, v, q) < 1
2
, in which case arg mina∈[0,1]R (a, v, q) =

0, or that R (a, v, q) ≥ 1
2
for all a. Note that if 1 ∈ arg mina∈[0,1] R (a, v, q)

then we are done. Suppose then that the minimizer of R is in the interior, i.e.

a ∈ (0, 1). Let a be that minimizer. Then the �rst order condition, ∂R
∂a

= 0,

must hold. Taking derivative of R:

∂R

∂a
= − 1

a2

W

1 +W
+

1

a

∂%

∂a

(
W

% (1 +W )2 −
W 2

% (1 +W )3

)
= −R

a
+

%

a2 (1− a)

W

% (1 +W )3

= −R
a

+
R

a

Rc

(1 +W )
=
R

a

(
Rc

(1 +W )
− 1

)
where the second equality follows from ∂%

∂a
= %/a (1− a). Hence, at a : Rc =

(1 +W ), or W = (1− a)−1/2 − 1. Therefore,

R (a, v, q) =
(1− a)−1/2 − 1

a (1− a)−1/2

=
(

1− (1− a)1/2
)
/a

= 1/
(

1 +
√

1− a
)

let f (a) = 1/
(
1 +
√

1− a
)
. The above suggests that R (a, q, v) ≥ min f (a).

Note that:

df

da
=

1
2

(1− a)−1/2 a− 1 + (1− a)1/2

a2

=
1− (1− a)1/2

2a2 (1− a)1/2

which is never 0 in (0, 1). Therefore the minimum of f is either f (0) or f (1).

Since f (1) = 1 and f (0) = 1/2, one has min f = 1/2.

Step 3: R (0, v, q) = e(1−e−r∆)( v−κκ )qe
−r∆
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By continuity,

R (0, v, q) = lim
a→0

W (% (a, v, q))

a (1 +W (% (a, v, q)))

= lim
a→0

∂%
∂a

(a, v, q)
(
eW (%(a,v,q)) (1 +W (% (a, v, q)))

)−1

(1 +W (% (a, v, q))) + ∂%
∂a

(a, v, q) (eW (%(a,v,q)) (1 +W (% (a, v, q))))
−1

= lim
a→0

∂%

∂a
(a, v, q) = e(1−e−r∆)( v−κκ )qe

−r∆

where the second equality follows from L'Hopitals rule and dW (z) /dz =(
eW (z) (1 +W (z))

)−1
,19 and the last equality follows from ∂%

∂a
= (1− a)−2 e(1−e−r∆)( v−κκ )qe

−r∆
.

Step 4: bm,v
πm
≥ 1

2
for all m.

Proof. By de�nition,
bM+1,v

πM+1
= e

v−κ
κ . Hence Step 3 gives R

(
0, v,

bM+1,v

πM+1

)
=

e
v−κ
κ > 1

2
. which implies that

bM,v
πM

= R
(
πM , v,

bM+1,v

πM+1

)
≥ 1

2
by Step 2. Suppose

Step 4 holds form+1. Then by Step 3: R
(

0, v, bm+1,v

πm+1

)
= e(1−e−r∆)( v−κκ )

(
bm+1,v

πm+1

)e−r∆
,

which is a geometric mean of two numbers larger than 1
2
. Step 2 then implies:

bm,v
πm

= R
(
πm, v,

bm+1,v

πm+1

)
≥ 1

2
, thereby concluding the proof.

.

Lemma 19. Let (µ, b, z) be an equilibrium of the game. Then: (1) bm,v ≤
(vh − κ) /vh for all v and m; (2) v− 2vh ≤ um,v ≤ vh + 2κ; (3) Then for every

m there exists a constant ηm > 0 such that for every equilibrium with horizon

M ∈ {m+ 1, . . . ,∞}: πm ≥ ηm.

Proof. Part 1: Suppose otherwise. Then bm,vh >
1
vh

(vh − κ) since bm,v Add

increases with v. Together with (5) we obtain zm,vh > vh + e−r∆ (zm+1,vh − κ).

Combined with zm,vh < vh (Theorem (3) part (5)) we obtain zm+1,vh < κ. But

a simple rearranging of (5) shows that zm+1,vh ≥ κ, a contradiction.

19This follows frm the implicit function Theorem. I include some facts about Lambert's
W function in appendix ... [REFERENCE].
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Part 2: To prove the lower bound,

um,v = v − zm,v − κ ln
bm,v
πm

≥ v − zm,v − (vh − κ)

≥ v − 2vh

where �rst inequality follows from part 2 of the current lemma, and second

inequality from zm,v ≤ zm,vh < vh for all v. To prove the upper bound,

um,v = v − zm,v − κ ln
bm,v
πm

≤ vh − κ ln
bm,v
πm

≤ vh + 2κ

where the second inequality follows from Lemma 18.

Part 3: Suppose otherwise. Then there exists a sequence {(µn, bn, zn,Mn)}n≥0

where (µn, bn, zn) is an equilibrium with horizon Mn ≥ m + 1 such that

πnm → 0. Note that one can assume without loss that
(
µ̄nj,v, π

n
j,v, b

n
j,v, z

n
j,v

)
→(

µ̄∞j,v, π
∞
j,v, b

∞
j,v, z

∞
j,v

)
converges along the sequence for all j ≤ m+1 by compact-

ness. Since πnm ≤ vh−κ
vh

< 1 (current lemma, part 1), it must be that bnm,v → 0

for all v, which gives znm,v − e−r∆znm+1,v →
(
1− e−r∆

)
κ by (5). Together with

unm+1,v = v − znm+1,v − κ ln
(
bnm+1,v

πnm+1

)
this implies the following contradiction:

1 =
∑
q

µ̄nm,v

(
bnm,v
πnm

)
=

∑
v

µ̄nm,v

(
πnm + (1− πnm)

(
bnm+1,v

πnm+1

)−e−r∆
e−

1
κ((1−e−r∆)v−(znm,v−e−r∆znm+1,v))

)−1

→
∑
v

µ̄∞m,v

(
b∞m+1,v

π∞m+1

)e−r∆
e(1−e−r∆)( v−κκ ) (∀n: bnm+1,v

πnm+1
∈
[

1
2
, e

1
κ

(v−κ)
]
)

=
∑
v

µ̄∞m,v

(
1

e
v−κ
κ

b∞m+1,v

π∞m+1

)e−r∆
e
v−κ
κ

=
∑
v

µ̄∞m+1,v

(
1

e
v−κ
κ

b∞m+1,v

π∞m+1

)e−r∆
e
v−κ
κ (π∞m = 0 implies ∀v : b∞m,v = 0)

73



Notice, however, that bj,v/πj ≤ e
1
κ

(vh−κ) for all j and n, and
∑

v µ̄
n
m,v

bnm+1,v

πnm+1
=

1 < e
vl−κ
κ . Therefore one has

b∞m+1,v

π∞m+1
≤ e

v−κ
κ with a strict inequality for at least

one v. Since for all x ∈ (0, 1) one has xe
−r∆

> x, one obtains that:

∑
v

µ̄∞m+1,v

(
1

e
v−κ
κ

b∞m+1,v

π∞m+1

)e−r∆
e
v−κ
κ >

∑
v

µ̄∞m+1,v

1

e
v−κ
κ

b∞m+1,v

π∞m+1

e
v−κ
κ

= 1 (For all n:
∑
v

µ̄nm,v
bnm+1,v

πnm+1

= 1)

a contradiction.

The next Lemma shows that convergence of the player's strategies means

that the seller's strategy at the limit is still optimal.

Lemma 20. Let (cm)∞m=0 and (cnm)∞n,m=0 be such that cnm, cm ≥ 0 and cnm → cm

for every m. De�ne J : X∞ → R+ and Jn : X∞ → R+ by:

J (x∞) =
∞∑
j=0

e−r∆j
j−1∏
k=0

(1−D (xk, ck))D (xj, cj)xj

Jn (x∞) =
n∑
j=0

e−r∆j
j−1∏
k=0

(1−D (xk, c
n
k))D

(
xj, c

n
j

)
xj

And let J∗ = max J and J∗n = max Jn. Note that both exist since both functions

are continuous and X∞ is compact. Then: (1) J∗n → J∗. (2) If x∞(n) ∈
arg max Jn for every n is such that x∞(n) → x∞ for some x∞ ∈ X∞, then

x∞ ∈ arg max J .

Proof. Since cnm → cm for every m, for every N and ε > 0, there is an Nε > N

such that for all n > Nε:∣∣∣∣∣
N∑
j=0

e−r∆j

(
j−1∏
k=0

(1−D (xk, ck))D (xj, cj)−
j−1∏
k=0

(1−D (xk, c
n
k))D

(
xj, c

n
j

))
xj

∣∣∣∣∣ < ε

Hence, for every n > N and every x∞: |J (x∞)− Jn (x∞)| < ε+ e−r∆N

1−e−r∆ x̄. This

is also true for any x∞ ∈ arg max J , implying that: |J∗ − J∗n| < ε + e−r∆N

1−e−r∆ x̄.

74



Since N was arbitrary, J∗n → J∗. If x∞(n) ∈ arg max Jn for every n is such that

x∞(n) → x∞ for some x∞ ∈ X∞. Fix an N and ε > 0. Then since cnm → cm

and xnm → xm for all m, there exists an Nε > N such that for all n > Nε:∣∣∣∣∣
N∑
j=0

e−r∆j

(
j−1∏
k=0

(1−D (xk, ck))D (xj, cj)xj −
j−1∏
k=0

(1−D (xnk , c
n
k))D

(
xnj , c

n
j

)
xnj

)∣∣∣∣∣ < ε

since x∞ ∈ X∞, this implies that for every n > N :
∣∣J (x∞)− Jn

(
x∞(n)

)∣∣ <
ε+ e−r∆N

1−e−r∆ x̄, thereby implying that J∗n = Jn
(
x∞(n)

)
→ J (x∞). Therefore:

|J (x∞)− J∗| ≤
∣∣J (x∞)− Jn

(
x∞(n)

)∣∣+
∣∣Jn (x∞(n)

)
− J∗

∣∣
=

∣∣J (x∞)− Jn
(
x∞(n)

)∣∣+ |J∗n − J∗| → 0

as required.

Proof of Theorem 1. Take any sequence
{(
µM , bM , zM

)}
M

of M horizon

equilibria with M → ∞. By Lemma 19, uMm,v belongs to a compact inter-

val. Since the same is true for
(
πMm , b

M
m,v, z

M
m,v

)
, Cantor's diagonal method

implies that there exists a subsequence for which πMm , bMm,v, z
M
m,v and u

M
m,v all

converge. Let
{(
µM , bM , zM

)}
M

be that sequence. Lemma 19 implies that

πMm ≤ (vh − κ) /vh for all M,m, implying the same for πm. Convergence of

bm (x, v) the follows from equation 3, while πm > 0 follows from Lemma 19.

Lemma 20 gives that following z is optimal for the seller, and Lemma 15 im-

plies that b is a credible best response for the buyer, thereby concluding the

proof.

C.3 Proof of Propositions 3 and 4

In the text I proved that for every equilibrium we have
∑

v µ0 (v)u1,v > 0

(
∑

v µ0 (v) (u1,v + w1,v) > E [v] − κ) . I now show that the same argument

bounds
∑

v µ0 (v)u1,v (
∑

v µ0 (v) (u1,v + w1,v)) away from zero (E [v]−κ). Sup-
pose otherwise. Then there is a sequence of equilibria (µn, bn, zn) with a corre-

sponding un such that
∑

v µ0 (v)un1,v → 0 (
∑

v µ0 (v) (u1,v + w1,v)→ E [v]−κ).
Let pnm,v = bnm,v/π

n
m. Note that for every n, m and v,

(
µ̄nm,v, b

n
m,v, z

n
m,v, p

n
m,v

)
is
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in a compact interval of R+(for p
n
m,v see Lemma 19). Therefore there exists

a convergent subsequence. Let that subsequence be the sequence itself with

limits
(
µ̄∞m,v, b

∞
m,v, z

∞
m,v, p

∞
m,v

)
. Note that πnm ≤ vh−κ

vh
for all m and n by Lemma

19 and therefore πm = limn→∞ π
n
m ≤ vh−κ

vh
< 1. Similarly, Lemma 19 implies

that πm > 0.

Below I prove Lemma 21 which shows that pm,v is strictly increasing,

which implies that bm,v is strictly increasing. But then one can apply ex-

actly the same argument as for the single equilibrium case to obtain that

limn→∞
∑

v µ0 (v)un1,v > 0 (limn→∞
∑

v µ0 (v)
(
un1,v + wn1,v

)
> E [v]−κ), thereby

concluding the proof. I now turn to proving the Lemma.

Lemma 21. Let {(µn, bn, zn)}∞n=1 be a sequence of equilibria with horizons

{Mn}∞n=1 all in {m+ 1, . . . ,∞}. De�ne pnk,v := bnk,v/π
n
k . Suppose that πnk →

π∞k ∈ (0, 1) and pnk,v → p∞k,v for every k ≤ m+1. Then p∞k,v is strictly increasing

for all k ≤ m.

Proof. Note that every in�nite horizon equilibrium is a limit of a sequence of

�nite horizon equilibria. Therefore, by Cantor's diagonal method, any limit of

a sequence that includes in�nite horizon equilibria is also the limit of equilibria

with only �nite horizons. Suppose then that Mn is �nite for all n. Recall from

Step 1 of Lemma 18 that: pnm,v =
bnm,v
πnm

= R
(
πnm, v, p

n
m+1,v

)
for all v and m,

where pnMn+1,v := e
1
κ

(v−κ) and R is de�ned via:

% (a, v, q) =
a

1− a
e(1−e−r∆)( v−κκ )qe

−r∆

R (a, v, q) =
W (% (a, v, q))

a (1 +W (% (a, v, q)))

where W : R+ → R+ is Lambert's W function, de�ned by the equation:

W (yey) = y. Clearly, pnMn+1,v is strictly increasing in v for all n < ∞. As-

suming that pnm+1,v strictly increases in v for all n, I now prove by induction

that pnm,v is. Notice that % (a, v, q) strictly increases in q and in v since W (·)
is strictly increasing. Therefore R (a, v, q) also strictly increases in q and in

v. Since pnm+1,v and v are both strictly increasing functions of v, we have that

pnm,v = R
(
πnm, v, p

n
m+1,v

)
strictly increases with v.
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I now prove the claim. Fix any m. Since π∞m > 0, p∞m,v = R
(
π∞m , v, p

∞
m+1,v

)
by continuity of % and W . Since pnm+1,v strictly increases with v for all n,

p∞m+1,v weakly increases with v. But R (a, v, q) strictly increases in v even

when q is constat. Therefore p∞m,v = R
(
π∞m , v, p

∞
m+1,v

)
strictly increases in v,

as required.

C.3.1 Proof of Theorem 2

The Theorem's proof is based on various pieces of the proof of Lemma 18. The

proof of the Theorem requires several steps. The �rst step establishes that two

equilibria in the one-shot game are distinct if and only if they have di�erent

π's. The second step proves that the function:

fv : [0, 1]→ R+

π 7→ R
(
π, v, e

1
κ

(v−κ)
)

is strictly convex. The third step then uses the convexity of the above function

to show that (µ, b, z) and (µ′, b′, z′) are both equilibria of the one shot game

if and only if they have the same ex-ante choice probability, i.e. same π.

Equilibrium uniqueness in the 1-shot game follows.

Step 1 : Let (µ, b, z) and (µ′, b′, z′) be equilibria of the one shot game.

Then(µ, b, z) = (µ′, b′, z′) if and only if:

π1 =
∑
v

µ0,vb1,v =
∑
v

µ0,vb
′

1,v = π
′

1

Proof. Only if is obvious. Take now any two equilibria, (µ, b, z) and (µ′, b′, z′)

such that π1 = π
′
1. Since there is only one period, we have b = b

′
by Theorem

3, part 2. By Lemma 12,

z1,v = κ+ κW

(
e

1
κ

(
v−κ+κ ln

π1
1−π1

))
= κ+ κW

(
π1

1− π1

e
v−κ
κ

)
= z

′

1,v,
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where the last equality follows from π1 = π
′
1.

Step 2: f as de�ned above is strictly convex.

Proof. Rewrite R
(
π, v, e

1
κ

(v−κ)
)
:

R (π, v, q) =
W
(
πe

v−κ
κ

1−π

)
π
(

1 +W
(
πe

v−κ
κ

1−π

))
=

 π

W
(
πe

v−κ
κ

1−π

) + π


−1

so a su�cient condition for R to be strictly convex is for:

φ (a) = a

(
1 + 1/W

(
ae

v−κ
κ

1− a

))

to be strictly concave and increasing in a. Note that the �rst derivative of φ

is:

1 +

[
1 +W

(
ae

v−κ
κ

1− a

)]−1

W

(
ae

v−κ
κ

1− a

)
> 0

while the second derivative of φ is:

d2φ

da2
=

(1− a)2
(

1 + 2W
(
ae
v−κ
κ

1−a

))
−
(

1 +W
(
ae
v−κ
κ

1−a

))2

a (1− a)2W
(
ae
v−κ
κ

1−a

)(
1 +W

(
ae
v−κ
κ

1−a

))3

φ is concave if:

(1− a)2

(
1 + 2W

(
ae

v−κ
κ

1− a

))
−

(
1 +W

(
ae

v−κ
κ

1− a

))2

< 0
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for all a in the range. However:

(1− a)2

(
1 + 2W

(
ae

v−κ
κ

1− a

))

−

(
1 +W

(
ae

v−κ
κ

1− a

))2

= a (a− 2)

(
1 + 2W

(
ae

v−κ
κ

1− a

))

−

(
W

(
ae

v−κ
κ

1− a

))2

which is strictly negative for all a ∈ (0, 1). Therefore φ is strictly concave,

implying the desired result.

Step 3: The one shot game has a unique equilibrium.

Proof. By step 1 of Lemma 18 's proof, π must satisfy:
∑

v µ0,vfv (π) = 1. But

by step 2 of the same lemma, fv (1) = 1 for all v, implying
∑

v µ0,vfv (1) = 1.

Notice that strict convexity of fv implies strict convexity of a 7→
∑

v µ0,vfv (a).

But then
∑

v µ0,vfv (1) = 1 =
∑

v µ0,vfv (π) implies that
∑

v µ0,vfv (a) 6= 1 for

all a ∈ [0, 1] \ {π, 1}. Hence, all equilibria of the one shot game must have the

same π, implying (by step 1) that they are all identical.

D Frequent o�er results from main paper

D.1 Proof of theorem 4

In what follows, let {(∆n, µn, bn, zn)}∞n=1 be a re�ning sequence. Take F n :

R × V → [0, 1] to be the agreement date distribution function of the n-th

equilibrium. Let F̄ n be the unconditional distribution of the calendar agree-

ment time, i.e F̄ n (t) =
∑

v µ0 (v)F n
v (t). By Helly's selection theorem and

Cantor's diagonal argument, there exists a subsequence such that F n
v (t) and

F̄ n weakly converge to some Fv and F̄ . Let that subsequence be the sequence

itself. De�ne Tn = {0,∆n, 2∆n, . . .} as the set of possible agreement dates

for the n-th element. In what follows I often use a t subscript instead of the
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period subscript m = 1 + t/∆ to referring to equilibrium quantities, µnt , b
n
t,v,

znt,v, π
n
t , u

n
t,v and w

n
t,v, whenever t ∈ Tn.

I prove the theorem through a sequence of lemmas. Lemma 22 establishes

an important bound on πm. Lemma 23 proves that the limits of Fv and F̄

are absolutely continuous. Lemma 24 shows that the expected utility-related

objects, ut,v and wt,v, have well-de�ned limits, and that these limits satisfy

the appropriate limit versions of equations 9 (for u) and equation 7 (for w).20

Lemma 25 characterizes the hazard rates of the limiting date distributions,

which are then used in Lemma 26 to prove that said hazard rates are positive.

Lemma 27 then shows that these hazard rates increase with v, while Lemma

28 proves that trade occurs with probability 1. The theorem follows.

Lemma 22. For all m: πm ≤ 2πκ,∆vh
.

Proof. By proof of Proposition 2, for all m there exists at least one v such

that: bm,v ≤ πκ,∆v . Applying Lemma 18 implies:

πm ≤ 2bm,v ≤ 2πκ,∆v ≤ 2πκ,∆vv

as required.

Lemma 23. F̄ and Fv are absolutely continuous and are equal to zero at t = 0.

Moreover, the hazard rate of F̄ , λ̄t, is bounded from above by 3r
(
vh−κ
κ

)
for all

t.

Proof. For every n, t and v ∈ V de�ne:

λ̄nt = = − 1

∆n

ln
(

1− πnd t
∆n e
)

= − 1

∆n

ln

(
1− F̄

(⌊
t

∆n

⌋
+ ∆n

)
1− F̄

(⌊
t

∆n

⌋) )
λnt,v = − 1

∆n

ln
(

1− bnd t
∆n e,v

)
20For w, Lemma 24, part (2), corresponds to:

wm,v =

∞∑
j=0

e−∆j

(
bm+j,v

1− bm+j,v

)
which is obtained by combining equation 5 and 7 to obtain wm,v as a function of wm+1,v,
and using repeated substitution.
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and de�ne for every t: Ḡn (t) = 1− e−
∫ t
0 λ̄

n
s ds and Gn

v (t) = 1− e−
∫ t
0 λ

n
s,vds. Note

that for every t ∈ Tn:

∫ t

0

λ̄nsds = =

t/∆n∑
j=1

∆n

(
− 1

∆n
ln
(
1− πnj

))
= −

t/∆n∑
j=1

ln
(
1− πnj

)
and therefore:

Ḡn (t) = 1−
t/∆n∏
j=1

(
1− πnj

)
= F̄ n (t)

and similarly Gn
v (t) = F n

v (t) for all t ∈ Tn. By lemma 22,

λ̄nt ≤ −
1

∆n
ln
(
1− 2πκ,∆n

vv

)
note that:

1− 2πκ,∆n
vv = 1− 2

( (
1− e−r∆n)

(vh − κ)

(1− e−r∆n) (vh − κ) + κ

)

=
κ− 2

(
1− e−r∆n)

(vh − κ)

(1− e−r∆n) (vh − κ) + κ

and therefore:

−1

∆n
ln
(
1− 2πκ,∆n

vv

)
=
−1

∆n
ln

(
κ− 2

(
1− e−r∆n)

(vh − κ)

(1− e−r∆n) (vh − κ) + κ

)
→ 3

r

κ
(vh − κ)

Note that together lemma 22 and lemma 19 part 2 imply that bnm,v ≤ 2e(
vh−κ
κ )πκ,∆n

vv

for all n. Therefore:

λns,v ≤ − 1

∆n
ln
(

1− 2e(
vh−κ
κ )πκ,∆n

vv

)
=

1

∆n

(
ln
((

1− e−r∆n)
(vh − κ) + κ

)
− ln

(
κ− 2e(

vh−κ
κ ) (1− e−r∆n)

(vh − κ)
))

→
(

1 + 2e(
vh−κ
κ )
)
r

(
vh − κ
κ

)
for all v. Thus, for every ε > 0, there exists an Nε such that for all n > Nε:
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0 < λ̄ns ≤ 3r
(
vh−κ
κ

)
+ ε and 0 < λns,v ≤

(
1 + 2e(

vh−κ
κ )
)
r
(
vh−κ
κ

)
+ ε for all s

and v. This implies that:

∥∥λ̄ns∥∥2
,
∥∥λns,v∥∥2

≤
((

1 + 2e(
vh−κ
κ )
)
r

(
vh − κ
κ

)
+ ε

)2

and therefore, by the sequential Banach-Alaoglu theorem (theorem 10), there

exists a subsequence in which λ̄nk ⇀ λ and λnkv ⇀ λv. Note that ϕ is absolutely

continuous with respect to Lebesgue measure, with density −re−rt. Letting

gt (s) = −1[s≤t]
ers

r
, note that the linear functional de�ned by:

|L (f)| =

∣∣∣∣∫
R+

gt (s) f (s) dϕ

∣∣∣∣
≤

∣∣∣∣ertr
∣∣∣∣ ∣∣∣∣∫

R+

f (s) dϕ

∣∣∣∣ ≤ ∣∣∣∣ertr
∣∣∣∣ ‖f‖2

therefore:
∫
gt (s) λ̄nks dϕ →

∫
gt (s) λ̄sdϕ for all t. However,

∫
gt (s) fsdϕ =∫ t

0
fsdt, and therefore we've obtain that Ḡnk (t) → 1 − e−

∫ t
0 λ̄sdt ≡ Ḡ (t) for

all t. Clearly, Ḡ is continuous everywhere. Since F̄ nk (t) = Ḡnk (t) for all

t ∈ T (∆nk), this implies that for all t ∈ ∪k≥0T (∆nk): F̄ nk (t) → Ḡ (t), and

therefore Ḡ (t) = F̄ (t) for all t ∈ ∪k≥0T (∆nk). For every t /∈ ∪k≥0T (∆nk),

there exists a sequence (tia)i≥0 in ∪k≥0T (∆nk) such that tia ↓ t. Since F̄

is right-continuous, we have that F̄ (tia) → F̄ (t). But F̄ (tia) = Ḡ (tia) →
Ḡ (t). Therefore: Ḡ (t) = F̄ (t) for all t. A similar argument establishes that

F nk
v (t) → F (t) = 1 − e−

∫ t
0 λs,vds for all t. Fv (t) = 0 for all v follows from

F n
v (0) = b1,v → 0.

Lemma 24. Let λt,v be the time-dependent hazard rate of Fv. Then for every

v there are two functions continuous in t, uv : R+ → R and wv : R+ → X

such that: (1) For every t ∈ ∪nTn, unt,v → ut,v and wnt,v → wt,v; and (2) For
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every v and t,

ut,v = κ

∫ ∞
t

e−r(s−t)
(
λs,v − λ̄s

)
ds

wt,v = κ

∫ ∞
t

e−r(s−t)λs,vds

Proof. De�ne λnv and λ̄n as in lemma 23. For every t ∈ Tn:

ln

(
1− πnt
1− bnt,v

)
= ∆

(
λnt,v − λ̄nt

)
and therefore:

unt,v = κ
∞∑

j=t/∆n

e−r(j∆
n−t)∆n

(
λnj∆n,v − λ̄nj∆n

)

let: g∆n (t) = −1
r
er(t−∆nb t

∆n c). Then:

unt,v = κert
∫ ∞
t

g∆n (s)
(
λns,v − λ̄ns

)
dϕ

= κert
(∫ ∞

t

g∆n (s)λns,vdϕ−
∫ ∞
t

g∆n (s) λ̄nsdϕ

)
however, for every ∆ > ∆n: (g∆n (t))2 ≤ 1

r2 e
2r∆n

, and therefore by the dom-

inated convergence theorem: g∆n → −1
r
in L2 (R+, dϕ). Hence, by lemma

35:

unt,v = κert
(∫ ∞

t

g∆n (s)λns,vdϕ−
∫ ∞
t

g∆n (s) λ̄nsdϕ

)
→ −κe

rt

r

∫ ∞
t

(
λs,v − λ̄s

)
dϕ = κ

∫ ∞
t

e−r(s−t)
(
λs,v − λ̄s

)
ds

83



for all t ∈ ∪n≥0Tn. Similarly, for every t ∈ Tn:

wnt,v = κ

∞∑
j=t/∆n

e−r(j∆
n−t)

(
bj∆n,v

1− bj∆n,v

)

= κ
∞∑

j=t/∆n

e−r(j∆
n−t) (e∆nλnj∆n,v − 1

)
using the mean value theorem, there exists a ∆∗n ∈ (0,∆n) such that:

wnt,v = κert
∞∑

j=t/∆n

e−rj∆
n

∆nλnj∆n,ve
∆∗nλ

n
j∆n,v

= κert
∫ ∞
t

e∆∗nλ
n
j∆n,vg∆n (s)λnj∆n,vdϕ

since we have
(
λnj∆n,v

)2
<
((

1 + 2e(
vh−κ
κ )
)
r
(
vh−κ
κ

)
+ ε
)2

, we can again use

the dominated convergence theorem to obtain that e∆∗λnj∆n,vg∆n → −1
r
in

L2 (R+, dϕ), thereby implying: wnt,v → κ
∫∞
t
e−r(s−t)λs,vds. For every n and

t /∈ Tn set:

unt,v = un∆ndt/∆ne,v

wnt,v = wn∆ndt/∆ne,v

Clearly, these converge to the obvious extensions of ut,v and wt,v to all t:

ut,v = κ
∫∞
t
e−r(s−t)

(
λs,v − λ̄s

)
ds and wt,v = κ

∫∞
t
e−r(s−t)λs,vds which are

continuous.

Lemma 25. The ratio λt,v/λ̄t is: (1) equal to exp 1
κ

(v − κ− (wt,v + ut,v)); (2)

is in the interval
[

1
2
, e

v−κ
κ

]
; and (3) The following equality holds:

∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)(
λt,v
λ̄t

)
= 1

Proof. For every n and t (not necessarily in Tn), set: pnt,v = exp 1
κ

(
v − κ−

(
wnt,v + unt,v

))
(where wnt,v and u

n
t,v are de�ned as in lemma 24's proof). Since unt,v → ut,v and
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wnt,v → wt,v, we have that p
n
t,v → pt,v ≡ exp 1

κ
(v − κ− wt,v − ut,v). Note that

pt,v is continuous in t since ut,v and wt,v are. By equations 3 and 5 of Propo-

sition 3 one has that for every t ∈ Tn: pnt,v = bnt,v/π
n
t . Lemma 19 for all

t ∈ Tn and v then gives: 1
2
≤ pnt,v ≤ e

v−κ
κ . Thus, 1

2
≤ pt,v ≤ e

v−κ
κ for all

t ∈ ∪n≥0Tn, implying 1
2
≤ pt,v ≤ e

v−κ
κ for all t by continuity of pt,v. Therefore,(

pnt,v
)2 ≤ e2( v−κκ ). Hence, by the dominated convergence theorem, pnt,v → pt,v in

L2 (R+, dϕ). But this means that for every g ∈ L2 (R+, dϕ), gtp
n
t,v → gtpt,v in

L2 (R+, dϕ). Thus, by Lemma 35 and Riesz representation theorem (theorem

9) we have that pnt,vλ̄
n
t ⇀ pt,vλ̄t. Note, however, that every t:

pt,v =
1− e−∆nλnt,v

1− e−∆nλ̄nt

and therefore by the mean-value theorem, there exists ∆n
1 ,∆

n
2 ∈ (0,∆n) such

that:

pnt,v =
λnt,ve

−∆n
1λ

n
t,v

λ̄nt e
−∆n

2 λ̄
n
t

and therefore:

e
−∆n

((
1+2e(

vh−κ
κ )

)
r( vh−κκ )+ε

)
λnt,v < λ̄nt p

n
t,v < λnt,ve

∆n(3r( vh−κκ )+ε)

therefore, for every bounded linear operator L ∈ L2 (R+, dϕ):

L
(
λ̄nt p

n
t,v

)
< e∆n(3r( vh−κκ )+ε)L (λnv )→ L (λv)

L
(
λ̄nt p

n
t,v

)
> e

−∆n

((
1+2e(

vh−κ
κ )

)
r( vh−κκ )+ε

)
L (λnv )→ L (λv)

and therefore pnv λ̄
n ⇀ λv. Hence, by theorem 7, pt,vλ̄t = λt,v in L

2 (R+, dϕ).

Therefore: λt,v/λ̄t = exp 1
κ

(v − κ− wt,v − ut,v). Note that for every k and
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every t ∈ Tn:

1 =
∑
v

µ0 (v)

(
1− F n

v (t−∆n)

1− F̄ n (t−∆nk)

)
pnt,v

→
∑
v

µ0 (v)

(
1− Fv (t)

1− F̄ (t)

)
pt,v =

∑
v

µ0 (v)

(
1− Fv (t)

1− F̄ (t)

)
pt,v

which extends to all t by continuity in t of Fv (t), F̄ (t) and pt,v. The desired

equality follows.

Lemma 26. λ̄t > 0 and λt,v > 0 for almost every t.

Proof. I claim that λ̄t > 0 almost everywhere. λt,v > 0 almost everywhere

then follows from lemma 25 part 2. Suppose by contradiction that there is an

open ball, (t, t+ ε) such that s ∈ (t, t+ ε) implies λ̄s = 0. Then by lemma 25:

λt,v/λ̄t = exp
1

κ

(
v − κ− e−rε (wt+ε,v + ut+ε,v)

)
=

(
e
v−κ
κ

)1−e−rε (
λt+ε,v/λ̄t+ε

)e−rε ≥ λt+ε,v/λ̄t+ε

for all v with a strict inequality for vl since
(
λt,vl/λ̄t

)
≤ 1 < e

vl−κ
κ for all t

(since pnt,vl < 1 for all t ∈ ∪nTn). Therefore:

∑
v

µ0 (v) e−
∫ t+ε
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
>
∑
v

µ0 (v) e−
∫ t+ε
0 (λs,v−λ̄s)ds

(
λt+ε,v
λ̄t+ε

)

I now show that the above inequality leads to a contradiction. By lemma 25

part 2, λs,v ≤ e
v−κ
κ λ̄s = 0 for all s ∈ (t, t+ ε). Thus,

∑
v

µ0 (v) e−
∫ t+ε
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
=

∑
v

µ0 (v) e−
∫ t
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
= 1

=
∑
v

µ0 (v) e−
∫ t+ε
0 (λs,v−λ̄s)ds

(
λt+ε,v
λ̄t+ε

)

where the �rst equality follows from λs,v = e
v−κ
κ λ̄s = 0 for all s ∈ (t, t+ ε),
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and second and third equalities follow from lemma 25 part 3.

Lemma 27. λt,v is strictly increasing in v for almost all t.

Proof. Note that for every t ∈ ∪Tn, λt,v/λ̄t = limn→∞ b
n
t,v/π

n
t (see proof of

lemma 25). Therefore λt,v must be weakly increasing for all t ∈ ∪Tn, and
therefore weakly increasing in v for all t due to continuity. Suppose there

is an open ball (t, t+ ε) for ε > 0 and v < v
′
such that λs,v = λs,v′ for all

s ∈ (t, t+ ε). Since λt,v/λ̄t is continuous, we must also have λt,v = λt,v′ . By

lemma 25 parts 2 and 3 and lemma 24:

1 =
λt,v′

λt,v

= exp
1

κ

(
v
′ − v −

((
wt,v′ + ut,v′

)
− (wt,v + ut,v)

))
= exp

1

κ

(
v
′ − v − 2κ

∫ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)
implying that κ

∫∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds = 2

(
v
′ − v

)
> 0. But:

1 ≤ λt+ε,v′

λt+ε,v

= exp
1

κ

(
v
′ − v − 2erεκ

∫ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)
< exp

1

κ

(
v
′ − v − 2κ

∫ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)
= 1

since erε > 1, a contradiction. Therefore λt,v is strictly increasing almost

everywhere.

Lemma 28. For every v:limt→∞ Fv (t) = 1. Therefore, limt→∞ F̄ (t) = 1.

Proof. Suppose otherwise. Then
(
λt,v/λ̄t

)
≥ 1/2 for all t and v implies that

λ̄t → 0. But, since λ̄t is bounded, we can use the dominated convergence theo-

rem to obtain that:
(
λt,vl/λ̄t

)
= exp 1

κ

(
vl − κ− κ

∫∞
t
e−r(s−t)

(
2λs,vl − λ̄s

)
ds
)
→

e
vl−κ
κ > 1, a contradiction.
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Proof of Theorem 4. Part 1 follows from lemma 23. Part 2 follows from 26.

For Part 3, limt→∞ Fv (t) = 1 follows from Lemma 28. Fv (t) < 1 for all t and

v follows from Lemma 23 which implies λ̄t < 3r
(
vh−κ
κ

)
, and Lemma 25, which

implies that λt,v < 3re−r(
vh−κ
κ )λ̄t. Together we obtain that

∫ s
0
λt,vdt < ∞ for

all s ∈ R+, hence implying that Fv (s) = 1 − e−
∫ s
0 λtdt < 1 for all s. Part 4

follows form Lemma 27.

D.2 Proof of lemma 2

By Proposition 3, for every equilibrium: E [Ub] =
∑

v µ0 (v)u1,v, and E [Us] =∑
v µ0 (v)w1,v. The result then follows from lemma 24.

D.3 Proof of Theorem 5

Let
(
λv, λ̄, uv, wv

)
be a κ-frequent o�ers collection if there exists a convergent

re�ning sequence {∆n, µn, bn, zn} with limit F such that: (1) λt,v is the hazard

rate of Fv; (2) λ̄t is the hazard rate of F̄ =
∑

v µ0 (v)Fv; (3) uv : R+ → R+ and

wv : R+ → X are continuous functions such that unt,v → ut,v and w
n
t,v → wt,v

for all t ∈ ∪nTn. Note that every convergent re�ning sequence generates a

κ-frequent o�ers collection by lemmas 23 and 24. Lemmas 23, 24, 25, 26 and

27 all prove various properties of these collections. The lemma below proves

another such property:

Lemma 29. Let
(
λv, λ̄, uv, wv

)
be a κ-frequent o�ers collection. Then wt,vh +

ut,vh ≤ vh − κ

Proof. Follows from lemmas 25 and 27.

I now turn to proving the theorem. Let
{(
Ūn
s , Ū

n
b

)}∞
n=1

be a sequence

of κn-frequent o�er utilities with κn → 0 and take
(
λnv , λ̄

n, unv , w
n
v

)
to be the

corresponding κn-frequent o�ers collections. By Proposition 3 part 4, it follows

that Ūn
s =

∑
v µ0 (v)wn0,v and Ū

n
b =

∑
v µ0 (v)un0,v.

I now prove the theorem through a sequence of lemmas. Lemma 30 proves

that the total surplus, conditional on quality being vl, converges to vl. Lemma
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31 proves that the hazard rates must satisfy a few properties at the limit at κ

goes to zero. The next few lemmas use these properties to prove the theorem

for (almost) every t > 0: Lemma 32 establishes that the total surplus condi-

tional on any v converges to v. Combining this result with the characterization

of u and w from Lemma 24, I prove Lemma 33, which shows that, conditional

on v, B and S split the di�erence in surplus above vl. Lemma 34 shows that

B's surplus conditional on vl is zero, hence proving the desired result for all

t > 0. Extending the result to t = 0 using continuity concludes the proof.

Lemma 30. For all t: wnt,vl + unt,vl → vl.

Proof. By lemmas 27 and 25:
(
λnt,vl/λ̄

n
t

)
∈
[

1
2
, 1
]
for all t. Lemma 25 then

implies that κ−1
n

(
vl − κn − wnt,vl − u

n
t,vl

)
must remain �nite. wnt,vl + unt,vl → vl

follows.

Lemma 31. For every t:

1. κn
∫ t+ε
t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds→ (1− e−rε) vl

2. limn→∞ κn
∫ t+ε
t

λ̄nsds ≥ (1− e−rε) vl

3. For almost all t:λ̄nt →∞.

Proof. Part 1: By lemma 24:

wnt,vl + unt,vl = κn

∫ t+ε

t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds+ e−rε

(
wnt+ε,vl + unt+ε,vl

)
But by lemma 30, wnt,vl + unt,vl → vl for all t. The lemma follows for all t and

ε > 0.

Parts 2 and 3: By lemmas 27 and 25, λ̄ns > λns,vl for all s. Therefore:

κn

∫ t+ε

t

λ̄nt ds = κn

∫ t+ε

t

(
2λ̄nt − λ̄nt

)
ds

> κn

∫ t+ε

t

(
2λns,vl − λ̄

n
s

)
ds

> κn

∫ t+ε

t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds→

(
1− e−rε

)
vl
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implying part 2. Part 3 then follows from κn → 0 and the fact that choice of

t and ε were arbitrary.

Lemma 32. For every v, for t = 0, and for almost all t > 0 : wnt,v +unt,v → v.

Proof. I begin by proving that wnt,vh +unt,vh → vh for almost all t > 0 by contra-

diction. Suppose otherwise. Then there exists a subsequence
(
λmv , λ̄

m, wm, um
)
,

an interval [t1, t2], and a Borel measurable function f : R+ → R satisfying

f > 0 almost everywhere in [t1, t2] such that vh − κm − wmt,vh − u
m
t,vh

> f (t)

almost everywhere in [t1, t2] for all m larger than some M . Then for m > M :

wmt1,vh + umt1,vh >

∫ t2

t1

e−r(s−t1)κm
(
2λmt,vh − λ̄

m
t

)
ds

≥
∫ t2

t1

e−r(s−t1)
(

2e
f(s)
κm − 1

)
κmλ̄

m
t ds

≥
∫ t2

t1

e−r(s−t1) lim inf
m→∞

(
2e

f(s)
κm − 1

)
κmλ̄

m
t ds

where the second inequality follows from Fatou's lemma. By lemma 31,

lim inf
m→∞

κm

∫ t2

t1

λ̄ms ds ≥
(
1− e−r(t2−t1)

)
vl

and hence, 2κm
∫ t2
t1
λ̄ms e

f(s)
κm ds→∞. Together, these imply wmt1,vh +umt1,vh →∞

a contradiction to wmt1,vh + umt1,vh ≤ vh from lemma 29. To prove the result

for all v, note that λnt,v is weakly increasing in v for all t (lemma 27). As

such, v − κ − wnt,v − unt,v is increasing in v (lemma 25 part 1). The result for

almost all t > 0 then follows from convergence for vh and vl (lemma 30). To

prove the lemma for t = 0, note that by lemma 25,
∑

v µ0 (v)
(
λn0,v/λ̄

n
0

)
= 1

for all n and
(
λn0,v/λ̄

n
0

)
≥ 1

2
for all v. Therefore, exp 1

κ

(
v − κ− wn0,v − un0,v

)
converges to a strictly positive but �nite number, which can only occur if

v − κn − wn0,v − un0,v → 0.

Lemma 33. For every v, for t = 0, and for almost all t > 0: unt,v − unt,vl =

wnt,v − wnt,vl →
1
2

(v − vl).
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Proof. Applying lemma 32:

wnt,v + unt,v −
(
wnt,vl + unt,vl

)
→ v − vl

But by lemma 24, unt,v − unt,vl =
∫∞
t
e−r(s−t)

(
λns,v − λns,vl

)
ds = wnt,v − wnt,vl .

Therefore, unt,v − unt,vl = wnt,v − wnt,vl →
1
2

(v − vl) for almost all t and all v.

Lemma 34. For almost all t > 0, and every v: wnt,v → 1
2

(v + vl) and unt,v →
1
2

(v − vl).

Proof. By lemma 33, for almost every t, s > 0:
(
wnt,v − wnt,vl

)
−e−rs

(
wnt+s,v − wnt+s,vl

)
converges to 1

2
(1− e−rs) (v − vl). Note that for every n, and almost every

t > ε > 0:∫ t

0

(
λns,v − λns,vl

)
ds >

∫ t

ε

(
λns,v − λns,vl

)
ds

>

∫ t

ε

e−r(s−ε)
(
λns,v − λns,vl

)
ds

=
1

κn

((
wnε,v − wnε,vl

)
− e−r(t−ε)

(
wnt,v − wnt,vl

))
→∞

where the �rst inequality follows from lemma 27 and the last equality from

lemma 24. Hence,

µ0 (v) (1− F n
v (t))

µ0 (vl)
(
1− F n

vl
(t)
) =

µ0 (v)

µ0 (vl)
e−

∫ t
0 (λns,v−λns,vl)ds → 0

for almost all t and for all v > vl. Therefore:

1− F̄ n (t)

1− F n
vl

(t)
=

∑
v

µ0 (v)

(
1− F n

v (t)

1− F n
vl

(t)

)
= µ0 (vl) +

∑
v>vl

µ0 (v)

(
1− F n

v (t)

1− F n
vl

(t)

)
→ µ0 (vl)
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And thus:

0 ≤

(∑
v

µ0 (v)

(
1− F n

v (t)

1− F̄ n (t)

)
unt,v

)
− unt,vl

=

(
1− F n

vl
(t)

1− F̄ n (t)

∑
v

µ0 (v)

(
1− F n

v (t)

1− F n
vl

(t)

)
unt,v

)
− unt,vl

= µ0 (v)

(
1− F n

vl
(t)

1− F̄ n (t)

)
unt,vl

+

(
1− F n

vl
(t)

1− F̄ n (t)

)∑
v>vl

µ0 (v)

(
1− F n

v (t)

1− F n
vl

(t)

)
unt,v − unt,vl → 0

note that by lemmas 27 and 24:

ut,vl =

∫ ∞
t

e−r(s−t)
(
λs,vl − λ̄s

)
ds < 0

and from lemma 25:

∑
v

µ0 (v)

(
1− F n

v (t)

1− F̄ n (t)

)
unt,v =

∫ ∞
t

e−r(s−t)

(∑
v

µ0 (v)

(
1− F n

v (t)

1− F̄ n (t)

)
λs,v − λ̄s

)
ds

>

∫ ∞
t

e−r(s−t)

(∑
v

µ0 (v)

(
1− F n

v (s)

1− F̄ n (s)

)
λs,v − λ̄s

)
ds

= 0

where the inequality follows from lemma 27. Therefore:

0 ≤ −unt,vl ≤

(∑
v

(
µ0 (v) (1− F n

v (t))

1− F̄ n (t)

)
unt,v

)
− unt,vl

for all n. But this implies: limn→0 u
n
t,vl
→ 0 for almost all t. As such, wnt,vl → vl

for almost all t, and therefore wnt,v → 1
2

(v + vl) for all v.
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Proof of Theorem 5. Note that for every t > 0:

0 > un0,vl = κn

∫ t

0

e−rs
(
λns,vl − λ̄

n
s

)
ds+ e−rtunt,vl

> κn

∫ t

0

e−rs
(
λns,vl − λ

n
s,vh

)
λnsds+ e−rtunt,vl

=
((
wn0,vh − w

n
0,vl

)
− e−rt

(
wnt,vh − w

n
t,vl

))
+ e−rtunt,vl

→ −
(
1− e−rt

)(vh − vl
2

)
where the both equalities follows from lemma 24, the inequality follows from

lemma 27, and convergence follows from lemmas 33 and 34. Since t is ar-

bitrary, un0,vl → 0. Lemma 33 then implies wn0,vl → vl, w
n
0,v → 1

2
(v + vl)

and un0,v → 1
2

(v − vl). The theorem follows from Ūn
s =

∑
v µ0 (v)wn0,v and

Ūn
b =

∑
v µ0 (v)un0,v.

D.4 Technical Results for Frequent O�ers Limit

The following section states (and proves when necessary) some technical results

used in the proofs of Theorem 4 and Theorem 5.

Let ϕ be the Lebesgue measure; i.e. the unique σ-additive measure over

Ω =
(
R+,BR+

)
, where BR+ is the Borel σ-algebra, satisfying ϕ ([t, t+ s]) =(

e−rt − e−r(t+s)
)
for all t, s ≥ 0. As usual, let L2 (Ω, dϕ) be the set of all equiva-

lence classes of measurable functions satisfying: f : Ω→ R, f is ϕ-measurable

and:
∫
R+
|f |2 dϕ < ∞, equipped with the norm: ‖f‖2 =

(∫
R+
|f |2 dϕ

)1/2

. A

map L from L2 (Ω, dϕ) to the real numbers is a linear functional if: L (af1 + bf2) =

aL (f1) + bL (f2). A linear functional is continuous if L (fn) → L (f) when-

ever fn → f (according to the ‖·‖2), and it is bounded if |L (f)| ≤ K ‖f‖2

for some �nite number K. It is well known that a functional is continuous

if and only if it is bounded. We let L2 (Ω, dϕ)∗ be the set of continuous lin-

ear funtionals, also known as the dual of L2 (Ω, dϕ). A sequence of functions

(fn) ∈ L2 (Ω, dϕ) is said to converge weakly to f ∈ L2 (Ω, dϕ), denoted by

fn ⇀ f if: L (fn) → L (f) for every L ∈ L2 (Ω, dϕ)∗. Below is a statement

of a few famous theorems from functional analysis, specialized to the current

93



setting. The next theorem is often seen as a consequence of the Hahn-Banach

theorem.

Theorem 7. Suppose f ∈ L2 (Ω, dϕ) satis�es L (f) = 0 for all L ∈ L2 (Ω, dϕ)∗.

Then f = 0, and therefore if fn ⇀ g and fn ⇀ h then g = h

Proof. Lieb and Loss (2010), pages 56 to 57.

Theorem 8. Let (fn)n≥0 be a sequence of functions in L2 (Ω, dϕ) such that

for every L ∈ L2 (Ω, dϕ)∗, the sequence L (fn) is bounded. Then there exists a

�nite C > 0 such that ‖fn‖2 < C for all n.

Proof. Lieb and Loss (2010), pages 58 to 59.

The theorem below is a specialization of the Riesz representation theorem

speci�c for our purposes.

Theorem 9. For every L ∈ L2 (Ω, dϕ)∗ there exists a unique g ∈ L2 (Ω, dϕ)

such that: L (f) =
∫
R+
g (x) f (x)ϕ (dx). Moreover, for every g ∈ L2 (Ω, dϕ),

Lg (f) =
∫
R+
g (x) f (x)ϕ (dx) is a bounded linear functional.

Proof. Lieb and Loss (2010), pages 61 to 63.

The following is a version of the Banach-Alaoglu theorem.

Theorem 10. Let (fn)n≥0 be a sequence of functions bounded in L2 (Ω, dϕ).

Then there exists a subsequence (fnk)k≥0 and an f ∈ L2 (Ω, dϕ) such that

fnk ⇀ f .

Proof. Lieb and Loss (2010), pages 68 to 69.

Lemma 35. Let (fn)n≥0 , (g
n)n≥0 be two sequences in L2 (Ω, dϕ). Suppose

fn ⇀ f and gn → g for some f and g in L2 (Ω, dϕ). Then:
∫
R+
fn (x) gn (x) dϕ→∫

R+
f (x) g (x) dϕ.

Proof. Note that: fngn − fg = fn (gn − g) + (fn − f) g. Then:∣∣∣∣∫
R+

fn (x) (gn (x)− g (x)) dϕ

∣∣∣∣ ≤ ‖fn‖2 ‖g
n − g‖2 ≤ C ‖gn − g‖2 → 0
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Since g ∈ L2 (Ω, dϕ), we have that L (h) =
∫
R+
h (x) g (x) dϕ ∈ L2 (Ω, dϕ)∗

and therefore
∫
R+

(fn (x)− f (x)) g (x) dϕ→ 0. The conclusion follows.
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