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Abstract

We study a contracting problem in which the agent’s action is two-dimensional.

First, the agent controls the marginal distribution of a performance signal. Second, the

agent manipulates the correlation between this performance measure and some ex-

ogenous signal like the business cycle. The model allows us to revisit the Informative-

ness Principle, which originally assumes that the agent’s action is one-dimensional

and the information structure fixed. In the latter model, the principal is better off the

higher the exogenous correlation is between the two signals. However, in the model

with endogenous correlation, the principal may be better off incentivizing the agent to

lower the correlation between the two signals. The optimal contract then appears less

sensitive to exogenous signals than suggested by the standard approach. We examine

the difference in the structure of the optimal contract in the two models. Several other

applications of the new model are pursued as well.
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1 Introduction

Endogenous information structures in incentive problems has been discussed in various
contexts.1 However, most of the literature on the moral hazard problem assumes an ex-
ogenous information structure under which the principal devises an optimal incentive
formula. We here take first steps toward relaxing this assumption and study the new
problem of endogenous dependence structure, and shows its relevance in several appli-
cations. For instance, incentive schemes in reality are often plagued by various forms
of gaming: typically, in addition to providing a valuable input, the agent is tempted to
manipulate ex-post the information flow on which his performance evaluation is based.
The information structure used for contracting is hence endogenous. Another example is
a situation in which the agent is an advisor to the principal. Then, almost by by defini-
tion, the information is endogenous: the agent must be incentivized to provide accurate
information, i.e. to offer an information structure to the principal. We study a class of
models that encompasses these applications, emphasizing in particular the importance
of endogenous correlation of signals used in (optimal) incentive schemes. This allows to
revisit Holmström’s informativeness principle from a new angle and opens a tractable
new toolbox for contract theory.

1.1 Motivation: from exogenous to endogenous correlation

The classic view. Aligning the interest of an agent with that of the principal to over-
come moral hazard is the aim of incentive contracting. Optimal contracting relates the
observable output of an agent to how much the agent should be rewarded. A broad
insight in management essentially asserts that the more closely the output tracks the un-
observable input of the agent, the less costly are incentives. Simply put, all information
that is relevant to inferring effort ex-post should be used in the incentive formula: this is
the Informativeness Principle due to Holmström (1979). The precise statistical sense in
which this is true is called the sufficient statistics result. For concreteness, x will denote
the observable output and y the additional signal from now on.

1 Most notably from an ex-ante information perspective, typically in an adverse selection setting with
information gathering.
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In some instances, the Informativeness Principle is immediately intuitive: if y consists
of an additional noisy signal of the effort, then it should be used to increase the confidence
that the correct effort is taken in equilibrium. In other instances, this yields a slightly more
subtle insight: using an additional signal y in the incentive formula can be useful even if
does not provide any direct information on the behavior of the agent. Indeed, through
the way this additional signal y correlates with the direct signals x, it may still indirectly
contain some valuable information.2 This observation is the key to the incentive theory
of benchmarking: introducing a (stochastic) external benchmark (that the agent cannot
manipulate) helps reducing incentive costs.

Applications of this benchmarking theory are found in yardstick competition for reg-
ulated firms, incentive formula for CEOs that are relative to the industry and bonuses for
traders that depend on overall market performance. It is also the same logic that com-
mands using external factors in the incentive formula to reduce the variation of reward
that is not attributable to the agent’s hidden action.3

To be concrete, consider the case of the CEO of a firm which heavily consumes en-
ergy.4 There are a number of contractable indicators available (such as profit, market
value, turnovers, operating costs etc.) pertaining directly to the firm. Should external
indicators such as the price of energy also be used in the incentive contract? The CEO has
no impact on the price of energy, which implies that in isolation this signal does not con-
tain any intrinsic information on what the CEO is actually doing. But if the cost of input
increases, the profit of the firm decrease without the CEO being responsible for it. Hence
the contract could insure the CEO against this exogenous noise, by using the energy price
as an index of an exogenous tough environment, thereby tracking the actual performance
more closely. In other cases, a signal akin to the price of energy is not directly available,
but for instance (the evolution of) the market value of firms evolving in similar environ-
ments is, and can be used as a proxy for exogenous factors that have affected the industry
and are beyond the CEO’s control.

2This seemingly goes against the Controllability Principle asserting that agents should be held account-
able only for results they can control.

3Hence reconciling the Informativeness and the Controllability Principles.
4An interesting account of incentive theory as applied by BP can be found in Roberts (2004). Roberts

advocates the filtering out of oil price from the incentive formula.
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The alternative view. A partially discordant view has received growing attention in
the management literature (Lambert, 2001). The underlying idea can be summarized in
the example as: what if the CEO can also influence how dependent on energy the firm
is? Then the price of energy is also relevant for incentives, but for a somewhat different
reason now: the shareholders want the CEO to take it into account rather than be insu-
lated from its variations. In such a case, neutralizing the price of energy in the incentive
formula does not encourage the CEO to pursue a strategy that adapts to external cir-
cumstances. Obviously, the consequences for the optimal incentive formula are different
when this adaptation aspect is taken into account. In particular, it is less desirable to filter
out the effect of y. One way of modeling this has been proposed in the literature: maybe
the CEO can obtain early information on the realization on y and change his behavior
accordingly (Larmande and Ponssard, 2007; Feriozzi, 2011). Clearly, this is a substan-
tial conceptual step because the incentive problem now features adverse selection on top
of moral hazard. We offer a somewhat more direct view on this issue, by modeling the
adaptation effort as an explicit choice of correlation in the CEOs strategy.

Such a modeling assumption is motivated by a simple observation: if some factor is
part of the incentive formula, then a rational agent will try to do something about it. In the
example, even though the CEO can not influence the price of energy, he can still change
how sensitive to the price of oil the firm’s strategy is. Hence he will try to influence how
correlated with the price of energy the profit (or any relevant index used in the incentive
formula) is. Taking into account that correlation might be influenced by the agent is hence
important to understand how the agent can game the system. Beyond this gaming issue,
adaptation is sometimes even an objective of the principal, and implementing correlation
is a somewhat different incentive problem than in the standard case where the only task
of the agent is to stochastically increase x. Our approach enables a better understanding
of how to implement adaptation.

Our modeling strategy results in a multitask problem for the agent, even though he
still does not control the marginal distribution of y. The dependence between x and y is the
second dimension of moral hazard in that case. We demonstrate than in some cases,
there is a direct correspondence between choosing correlation and choosing indepen-
dently strategies that are conditional on y. The corresponding equivalent principal-agent
problem features a cost of adaptation. Hence we formalize that endogenous correlation
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comes at a cost of adaptation that depends on how different the course of actions chosen
are depending on the realization of y.

Applications. Accounting for the possibility that the agent manipulates correlation opens
a range of new results and predictions that can be useful in explaining pay for luck, asym-
metric benchmarking and the absence of negative correlation between risk and incentives
in the data.

For instance, we confirm that while benchmarking is extremely useful in many in-
stances, some of the limits that have been pointed out (Traders, herding, sensitivity of the
formula, pay for luck) are better understood when the agent can tamper with correlation
of the benchmark. Beyond misspecification of the benchmark, and control over the in-
centive formula (control of the board etc.), it is important to understand how the agent
can game the incentive system in this way. In order to properly model the situations
just mentioned, taking into account how the agent can influence the dependence to the
benchmark was a key missing link in the existing literature.

In other applications, it is even the essential part of the agent’s job to control the cor-
relation. Consider the extreme case of a forecasting exercise. The agent is to forecast, say,
the price of energy, and x is his report. Then the better the agent works, the more cor-
related x and y are. We here establish a formal link between information gathering and
adverse selection models on the one hand, and the dependence structure in the moral
hazard problem on the other hand. This offers a reduced model for moral hazard in fore-
casting.

1.2 Related literature

[TO BE COMPLETED]

2 Exogenous correlation and the value of information

At the heart of the paper is a parsimonious model that allows us to operationalize correla-
tion between exogenous and endogenous signals in a manner so tractable that it becomes
possible to contrast the cases where this correlation is or is not under the agent’s control.
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In this section, we start the analysis by introducing the core model and giving benchmark
results when correlation is exogenous. We then illustrate why the fact that correlation is
endogenous matters for the principal and how this affects optimal contracting.

2.1 Information, production and contracts

Formally, the agent controls the marginal distribution of x ∈ {0, 1}, the performance mea-
sure, which is fully characterized by p, the probability of x = 1. For instance in a typical
model, x is an ex-post profit and effort increases the occurrence of a high profit, and x = 1
represent hence a good outcome. We do not however impose any ordered structure, only
applications will determine the relevant interpretation. In turn, y is a binary exogenous
signal, a measure over which the agent does not have control: y = 1 occurs with a given
probability q. The signal y could represent the price of oil for a company like BP, the
benchmark against which the agent can be compared in a yardstick competition environ-
ment, or the state of the business cycle. We will denote a typical realization of (x, y) by
(i, j) ∈ {0, 1}2, and the corresponding probability by Pij = Prob[x = i, y = j]. The two
variables x and y can be correlated, through the parameter γ, that will be the focus of our
analysis. If γ = 0, the two random variables are independent. An increase in γ makes the
two variables more highly correlated.5 The following table summarizes the information
structure, which each cell containing the corresponding Pij:

y = 1 (1− p)q− γ pq + γ

y = 0 (1− p)(1− q) + γ p(1− q)− γ

x = 0 x = 1

Importantly, note that γ has no impact on the marginal distribution of x, which is
entirely determined by p. Note also that the information structure is exhaustively charac-
terized by the vector (p, q, γ): there are only three degrees of freedom since probabilities
sum to 1.

5An increase in γ consists of what Epstein and Tanny (1980) term a correlation increasing transformation
(CIT) in a more general model. Note that the feasibility conditions 0 ≤ Pij ≤ 1 must of course hold, which
constrains feasible (γ, p) pairs in a way that we make explicit in later sections.
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The agent controls the distribution of signals at a cost c(p, γ) that for convenience is
twice continuously differentiable and convex. However, we emphasize that at this point
costs are not necessarily assumed to be monotonic in p and γ. In fact, Section 4 contains
applications where it is reasonable to assume that costs are non-monotonic in at least one
of the variables. We introduce additional assumptions only in specific applications.

Finally, the wage to the agent will be denoted w, and can be conditional on both real-
izations of x and y. The vector of conditional wages is hence denoted {w11, w10, w01, w00},
where the first index pertains to x and the second to y.

2.2 Exogenous Correlation and the Informativeness Principle in the

standard model

We here consider first a benchmark case in which the agent cannot influence the correla-
tion, hence it is given at some level γ, and does not enter the agent’s costs, i.e. c(p, γ) ≡
k(p). In addition, to stay in line with classic moral hazard models, we will for now restrict
attention to an economically ”standard” model, in which the principal prefers stochasti-
cally higher production, which requires effort from the agent. This corresponds to the
following set of assumptions:

Definition 1 A standard model features the following assumptions:

1. The principal’s gross payoff is increasing in x (and hence in p).

2. The principal’s gross payoff does not depend on y (and hence neither on q nor on γ).

3. The agent’s cost is increasing in p.

Hence in a standard model, the principal directly cares only about x, but neither about
y nor about how x and y correlate.6 If y is used in the contract, this is hence purely
for its informational content. Note that we do not require exogenous correlation in this
definition.

We will further assume that both players are risk-neutral, that the agent is protected
by limited liability (nonnegative wages) and that his participation his ensured.7 We refer

6Typically, the principal can for instance maximize E[x] = p.
7For instance if the outside option is lower than the liability, here 0.

8



to this in short as ”limited liability” in the following. As is well-known, the issue for the
principal in such a case is that the agent will optimally receive a limited liability rent,
which can be decreased by using extraneous information, provided the additional signal
correlates non-trivially with the agent’s performance.8

In a standard model with limited liability, the problem of the principal can be decom-
posed into two stages (Grossman and Hart, 1983). Since the principal is risk-neutral, for
any given p he wishes to implement, he should optimally do that in the following cost-
minimizing way:

min
wij

∑
i,j

Pijwij

s.t.wij ≥ 0 (LL)

∑
i,j

∂Pij

∂p
wij = cp, (ICp)

where, since c is convex and the expected wage linear in p, the first-order approach is
valid and the incentive constraint has been replaced by its first-order condition, which
defines the unique p for any wage scheme. Then, as is well known, the likelihood ra-
tios

∂Pij
∂p /Pij are the key determinants of the optimal incentive scheme: Holmström (1979)

sufficient statistics result asserts that the signal y should be used if and only if these like-
lihood ratios depend on j. It is straightforward to prove that it is the case here if and only
if γ0 6= 0.

As a result, we obtain the following properties of the optimal incentive scheme:

Proposition 1 Consider a standard model with limited liability. When correlation is exogenous,
the optimal incentive scheme for implementing an interior p is such that:

• for any γ, w01 = w00 = 0,

• if γ < 0, w11 > 0 and w10 = 0,

8In Holmström (1979) setting, the agent is risk-averse and the usual interpretation is that the additional
signal helps reducing the risk borne by the agent and hence improves the risk/incentives trade-off. In the
limited liability model with a risk agent the parallel is that the additional signal helps reducing the rent to
the agent, and hence improves the rent/efficiency trade-off. We show in a later section that the insights
obtained in the limited liability case carry over fully to the case of a risk-averse agent.
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• if γ > 0, w10 > 0 and w11 = 0 ,

• if γ = 0, w11, w10 ≥ 0 with qw11 + (1− q)w10 = cp.

Proof. First, we associate the nonnegative Lagrange multipliers λij to the limited
liability constraints and µ to the incentive constraint to form the Lagrangian. By the
optimality condition for wij, one has

∂Pij
∂p /Pij = 1/µ − λij

µPij
, and by the complementary

slackness condition of the limited liability constraint λijwij = 0, it is straightforward to

see that wij is positive only if the corresponding likelihood ratio
∂Pij
∂p /Pij = 1/µ, and is

hence the highest among all pairs (i, j). This implies that w00 and w01 which correspond-
ing likelihood ratios are always negative have to be zero. Then it remains to compare
when w11 and w10 are associated to the highest likelihood ratio, which comparison leads
to ∂P11

∂p /P11 − ∂P10
∂p /P10 = q

pq+γ −
1−q

p(1−q)−γ
≥ 0 ⇔ γ ≤ 0. When γ = 0, the principal

can spread arbitrarily the incentive weight between the realizations of y, which are not
informative (clearly, risk-aversion would pin down equal wages here).

A few comments are in order regarding this proposition. First, the limited liability
model allows a simple characterization of incentive schemes, since generically only one
of the wages is positive, the one associated with the highest likelihood ratio. Second,
the result has a usual flavor that y should be used as a competitive benchmark (w10 >

w11) when there is positive correlation. To illustrate, suppose that y is the business cycle
and correlation is positive. Then a high performance for the firm is more likely when
the market is good, hence a high performance should be discounted in such favorable
circumstances.

2.3 Comparing Information Systems

The Informativeness Principle says that the exogenous information y should be used to
lower implementation costs if it is freely available and informative, i.e. γ 6= 0 in our set-
ting. However, it does not rank different information systems. The ranking of information
systems has been taken up by a subsequent literature, as exemplified by Grossman and
Hart (1983) and Kim (1995). This literature assumes that the agent’s cost of productive
effort is independent of the information system.
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In this section we rank information systems within the confines of the standard model
with limited liability. The deeper connection to Grossman and Hart (1983) and Kim (1995)
is detailed in the extensions in Section 5.

Proposition 1 allows us to explicitly calculate the implementation costs for any given
γ when p is interior. Letting C(p, γ) denote these costs,

C(p, γ) =


(

p− γ
1−q

)
cp if γ ≥ 0(

p + γ
q

)
cp if γ ≤ 0

.

It is immediately obvious that under the assumption that cp is independent of γ, imple-
mentation costs are strictly decreasing as we move further and further away from γ = 0
in either direction. The assumption holds if the agent’s cost of productive effort does
not depend at all on γ or, more generally, if c(p, γ) takes the form c(p, γ) = k(p) + κ(γ)

such that cpγ = 0. In either case, the incentive compatibility constraint is unaffected by
changes in γ and the limited liability constraint by assumptions renders the participation
constraint slack regardless of γ. Then, the principal is able to exploit the improved infor-
mation implied by the greater (positive or negative) correlation between x and y when γ

moves away from γ = 0. This conclusion is recorded in the following corollary.

Corollary 1 In a standard model with limited liability, exogenous correlation, and cpγ = 0, the
implementation cost is single-peaked in γ and maximized at γ = 0.

This result implies that the principal is better off the more extreme the correlation be-
tween x and y is, at least under the assumption that cpγ = 0. However, going forward, we
want the model to be able to accommodate richer interactions between p and γ, allowing
for cpγ 6= 0. A change in γ now affects the incentive compatibility constraint. Never-
theless, the main conclusion of Corollary 1 still holds under a relatively mild regularity
assumption on cp. Specifically we assume that cp is log-concave in γ. This assumption al-
lows cp to be convex in γ but rules out that the convexity is too extreme. The assumption
also implies that cpγ changes sign at most once as γ increases (and, if so, from positive to
negative).

In fact, cp is either increasing, decreasing, or single-peaked in γ. In either case, cp is
minimized at a corner. Stated differently, the incentive compatibility constraint is less
demanding at one of the corners. Intuitively, this effect then reinforces the effect from
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Corollary 1 and implies that implementation costs must be minimized as γ approaches
one of its extreme values. Log-concavity adds enough regularity to the problem that it
becomes possible to prove that implementation costs are themselves monotone or single-
peaked in γ.

Corollary 2 In a standard model with limited liability, exogenous correlation, and cp log-concave
in γ, the implementation cost is either monotonically increasing or decreasing in γ or single-peaked
in γ.

Proof. See the Appendix.

Thus, the worst level of correlation need no longer be at γ = 0. This is due to the
fact that the incentive compatibility constraint now depends on γ. However, it remains
the case that the principal prefers γ to be either as high as possible or as low as possible.
Indeed, the latter result may hold even when the regularity condition in Corollary 2 is
violated. To illustrate, assume that p ≤ max{q, 1− q}. Then either P11 → 0 as γ converges
to the lowest possible value or P10 → 0 as γ converges to the highest possible value, or
both.9 Recall that P11 and P10 are the probability that the positive wage will be paid out
if γ < 0 or γ > 0, respectively. In other words, the implementation costs can be made
arbitrarily small with extreme correlation.10

In summary, a main conclusion from the standard model with exogenous correlation
is that the principal prefers correlation to be extreme. In fact, Corollary 1 is robust to
general risk preferences, as we demonstrate in Section 5. However, we prove in the next
subsection that there is a tension between the principal and the agent on what the pre-
ferred level of correlation is. In Section 3 we turn to endogenous correlation and prove
that the added incentive constraint leads to a conclusion that is directly opposed to the
above corollaries: The optimal contract may induce a level of correlation that is not ex-
treme but rather surprisingly small.

9These properties follow from an examination of the feasible set. See Section 3 for details. If p >

max{q, 1− q} then either P01 or P00 converge to zero as γ converges to one of its extreme values. How-
ever, the wage is zero in the state (0, 1) and the state (0, 0) so implementation costs remain positive.

10However, implementation costs cannot be made exactly zero. When γ takes an extreme value, (p, γ) is
on the boundary of the feasible set and Proposition 1 does not apply in that case.
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2.4 Correlation manipulation by the agent

Suppose that the principal has chosen an optimal incentive scheme according to the pre-
vious analysis, and suppose for the sake of exposition that γ > 0 (the symmetric case
features exactly the same logic), so that the agent’s expected wage is (p(1− q)− γ)w10.
Then, if possible, the agent would want to decrease the correlation, to increase the occur-
rence of bonus. Suppose, at the extreme, that correlation is free, i.e. the agent can game
the incentive scheme by choosing γ at no cost. Then he would choose the most negative
correlation feasible (subject to the constraint that the probabilities Pij are well-defined).
While this does not affect the incentive power in terms of p, this does increase the imple-
mentation cost for the principal, who has to pay the wage w10 more often. More generally,
the agent always prefers the opposite correlation to what the principal would prefer, cre-
ating an extreme tension. This extreme conclusion relies on risk-neutrality, since for a
given p, the principal and the agent play a constant-sum game. But it illustrates why the
principal should be concerned by endogenous correlation: the agent is tempted to pre-
cisely counter the gains from conditioning on exogenous signal, to such an extent that if
correlation is freely manipulable the principal cannot use additional signals in contract-
ing as we shall see. Indeed, if manipulating correlation is costless, the principal faces the
following additional incentive constraint:

∑
i,j

∂Pij

∂γ
wij = 0, (IC0

γ)

leading to:
w11 − w01 = w10 − w00,

which says that the incentive wedge in both states j should be equal. It is then easy to see
that the only solution for the principal is to give up on using y in the contract,11 since one
must have wi1 = wi0 for all i. We summarize this observation as:

Proposition 2 In a standard model with limited liability, if the agent can costlessly choose any
feasible correlation level, then the optimal contract does not depend on y.

This corollary illustrates in a stark way that the intuition from the informativeness prin-
ciple is weakened when the information structure is endogenous. It is important to note

11This result is a particular case of the analysis in the next section, hence we omit the proof.
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that the main difference with Holmström (1979) model is that the agent here has a two-
dimensional action, and it is the resulting additional incentive constraint that precludes
the use of the exogenous signal.12 Observationally, however, the implication is striking:
the contract looks incomplete. Despite being informative and contractible, y is not used
by the principal.

3 Endogenous correlation and optimal contracts

In this section we reconsider the general model laid down in section 2.1 under the as-
sumption that γ is endogenous. The second part of the section considers an alternative
formulation of the model.

3.1 Endogenous correlation

The agent chooses the pair (p, γ). However, feasibility of (p, γ) evidently requires that
any of the four (x, y) outcomes occurs with a probability that is between zero and one.
Thus, eight conditions must be satisfied. Four of these are immediately eliminated as
being redundant.13 Depending on the relationship between p and q, two of the remain-
ing four conditions can then be eliminated. This process leads to the following succinct
characterization of the feasible set. In particular, (p, γ) is feasible if and only if

γ ≥
{
−pq if p ≤ 1− q
−(1− p)(1− q) if p ≥ 1− q

and γ ≤
{

(1− p)q if p ≥ q
p(1− q) if p ≤ q

.

The feasible set is pictured in Figure 1 when q < 1
2 .

As before, a contract stipulates four wages, one for each possible (x, y) combination.
Let wij denote the wage the agent is paid if (x, y) = (i, j). To begin, assume for concrete-
ness that the agent is risk neutral. His expected utility from action (p, γ) is then

EU(p, γ|w00, w01, w10, w11) = ((1− p) (1− q) + γ)w00 + ((1− p) q− γ)w01

+(p(1− q)− γ)w10 + (pq + γ)w11 − c(p, γ).
12Fleckinger (2012) shows that if correlation is affected by effort, classic results in multi-agent problems

are substantially altered. Still, effort is also one-dimensional in his setting.
13Clearly, for one probability to be one, all other three must be zero. This cannot happen whenever

0 < q < 1.
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0
1

γ

p

−q(1 − q)

q(1 − q)
P01 = 0

P00 = 0
P11 = 0

P10 = 0

Figure 1: Feasible set.

Note that the first four terms are linear in (p, γ). Hence, expected utility is concave in
(p, γ) since c(p, γ) is convex in (p, γ). The agent’s first-order conditions thus identify
the utility maximizing choice of (p, γ), assuming this is interior. Thus, if the principal
would like to induce the agent to choose a particular interior (p, γ), then he has to ma-
nipulate the contract, (w00, w01, w10, w11), to ensure that the agent’s first-order conditions
are satisfied at that particular (p, γ). In other words, the first-order approach (FOA) is
valid. In addition to these conditions, the optimal contract must typically also respect a
participation constraint or a limited liability constraint.

It is worth making two remarks at this point. First, note that the above justification of
the FOA does not rely on the agent’s risk neutrality. The reason is that his expected utility
from income remains linear in (p, γ) even if he is risk averse. However, we mainly focus
on the risk neutral case in the following. Second, the assumption that c(p, γ) is convex is
for simplicity only. Kirkegaard (2017, Section 5) considers a slightly more general model
in which the cost function is allowed to be non-convex. He proves that the agent’s first-
order conditions remain sufficient for any implementable (p, γ). The only complication is
that not all (p, γ) are implementable. The role of our convexity assumption is thus merely
to guarantee that any (p, γ) is implementable.
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Assuming the principal wishes to induce an interior action, the agent’s first order
conditions can be written as

(1− q) [w10 − w00] + q [w11 − w01] = cp(p, γ)

[w11 − w01]− [w10 − w00] = cγ(p, γ).

The term w10 − w00 can be thought of as the bonus to a good x outcome given y = 0.
Likewise, w11 − w01 is the bonus to a good x outcome given y = 1. Recall that we have
made no assumptions about the sign of cp or cγ. If, for instance, cp is negative – such that
increasing p marginally reduces costs – then at least one of the “bonuses” must be neg-
ative in order to prevent the agent from increasing p. Thus, unsurprisingly, the optimal
contract must qualitatively depend on the signs of cp or cγ. Indeed, solving the first-order
conditions for the bonuses (or penalties) yields

w11 − w01 = cp(p, γ) + (1− q)cγ(p, γ)

w10 − w00 = cp(p, γ)− qcγ(p, γ),

where the right hand sides are predetermined by the given (p, γ) that the principal is
seeking to induce. Evidently, the cheapest way to achieve a fixed w11 − w01 > 0 bonus
is to lower w11 and w01 at the same rate until the w01 ≥ 0 constraint binds. Similarly,
the cheapest way to achieve a fixed w11 − w01 < 0 penalty is to lower w11 until the lim-
ited liability constraint binds. Note that these arguments do not rely in any way on the
principal’s risk preferences. The constraints alone determine the optimal contract. Stated
differently, the optimal contract that induces any fixed (p, γ) is independent of the prin-
cipal’s level of risk aversion. The following proposition summarizes the optimal contract
for interior actions. Actions on the boundaries are considered in the next section.

Proposition 3 Consider the limited liability model. The unique optimal contract that induces a
given interior (p, γ) is given by

• w11 = cp + (1− q)cγ and w01 = 0 if cp + (1− q)cγ ≥ 0 but w01 = −
[
cp + (1− q)cγ

]
and w11 = 0 if cp + (1− q)cγ ≤ 0, and

• w10 = cp − qcγ and w00 = 0 if cp − qcγ ≥ 0 but w00 = −
[
cp − qcγ

]
and w10 = 0 if

cp − qcγ ≤ 0.
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This proposition should be related to proposition 1 where correlation is exogenous.
The first observation is that the optimal contract features in general two positive wages,
essentially one for each incentive constraints. Note also that it includes proposition 2
where cγ = 0 as a special case, which underlines in particular that the content of proposi-
tion 2 does not depend on the objective of the principal, but comes primarily from incen-
tive considerations. Also, it is only in cases where effort p is the main driver of costs, i.e.
when both cp + (1− q)cγ ≥ 0 and cp− qcγ ≥ 0, that the shape of the optimal contract is in
line with standard results, since then wages are paid only for high x. It is not generically
the case, and even in a standard model, when correlation is endogenous, wages can be
paid in case of failure (x = 0), if correlation is a significant driver of cost. As we will see
in other applications, this is a natural property fo optimal incentives for other classes of
model.

In light of Corollaries 1 and 2, it is natural to ask what level of correlation the principal
optimally induces. We study this in details in the next subsection but offer a motivating
example here.

Example 1: Consider the standard model, but now with endogenous correlation. As-
sume that cp + (1− q)cγ > 0 and cp − qcγ > 0. Then, given any interior (p, γ), it is possi-
ble to use Proposition 3 to derive implementation costs. Letting K(p, γ) denote these,

K(p, γ) = pcp + γcγ.

For the purposes of this example, assume that c(p, γ) takes the form c(p, γ) = k(p) +
κ(γ), as in Corollary 1. Assume moreover that κ(γ) is strictly convex and minimized at
γ = 0. Then, implementation costs simplify to

K(p, γ) = pk′(p) + γκ′(γ).

Now fix a value of p that the principal wishes to induce. To do so, he must induce
whichever γ minimizes γκ′(γ). Given the aforementioned assumptions on κ(γ), we note
that γκ′(γ) > 0 if γ 6= 0. Thus, γ = 0 is optimal.14 N

14Technically, K(p, γ) as stated relies on Proposition 3 which assumes (p, γ) is interior. However, in
Section 3.3 we prove that K(p, γ) is continuous even on the boundary when p is large enough. In this case,
γ = 0 is necessarily globally optimal.
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Two remarks to Example 1 are in order. First, it is optimal to induce zero correlation,
meaning that x and y turn out to be independent. In contrast, the Informativeness Princi-
ple asserts that this is the very worst level of correlation when correlation is exogenous. In
fact, Corollary 1 implies that extreme correlation is optimal in the model in Example 1 as
long as correlation is exogenous. Comparing Example 1 and Corollary 1 thus illustrates
the marked differences in the two models. In particular, we emphasize that it may be in
the principal’s interest to induce a low level of correlation.

Second, the optimal contract in Example 1 happens to induce the level of correlation
that minimizes the agent’s costs, c(p, γ). This is despite the fact that the participation
constraint is always slack, by assumption, in the limited liability model. Thus, γ = 0 is
not chosen to make it cheaper to induce participation, but solely to make it cheaper to
ensure incentive compatibility.

In general, however, one should not expect it to be the case that the agent’s cost-
minimizing level of correlation is induced. The optimal level of correlation is studied in
more detail in the next subsection, once again imposing the assumptions of the standard
model. It will be shown that the principal will often want to induce a level of correlation
that is even smaller than the agent’s cost-minimizing level of correlation.

3.2 Correlation Dampening in the Standard Model

We once again consider the standard model with limited liability, but now with endoge-
nous correlation. For simplicity, assume c is strictly convex in γ and let γ0(p) determine
the unique value of γ where costs are minimized, given p. We begin by explaining why
it is interesting and reasonable to focus on γ = γ0(p) as a benchmark. We then move to
the main result of the section, which is that the principal under certain conditions finds it
optimal to moderate the amount of correlation by implementing a γ value that is smaller
than γ0(p). In comparison, recall that Corollaries 1 and 2 imply that if γ is exogenous
then the principal is better off with an extreme level of correlation. Finally, we compare
optimal contracts under exogenous and endogenous correlation and note that an outsider
who thinks γ is exogenous generally overestimates the value of the signal y.

Consider a principal who is unable or unwilling to contract on y. He offers wage w1

if x = 1 and w0 if x = 0. Hence, the agent earns w1 with probability p and w0 with
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probability 1− p. Note that the agent cannot manipulate his compensation by changing
γ. Therefore, the agent always selects the cost-minimizing value of γ, γ0(p). Thus, in this
section we ask how γ changes when the principal begins contracting on y.

As before, we fix an interior p that is to be induced, and then ask which γ level the
principal should aim for. We confine attention to the limited liability model and assume
in addition that cp + (1− q)cγ > 0 and cp − qcγ > 0. The main insight that we want to
convey is that the principal often wants to moderate correlation to make it smaller even
than γ0(p). We first illustrate this property in a continuation of Example 1.

Example 1 (Continued): As before, assume that c(p, γ) takes the form c(p, γ) = k(p)+
κ(γ). However, assume now that κ(γ) is minimized at some γ0 6= 0. Recall that imple-
mentation costs for interior (p, γ) are

K(p, γ) = pk′(p) + γκ′(γ).

By definition, κ′(γ0) = 0. Hence, γ0κ′(γ0) = 0. By strict convexity, κ′(γ) < 0 at γ < γ0

and κ′(γ) > 0 at γ > γ0. Then, any γ that is strictly between 0 and γ0 produces γκ′(γ) <
0, whereas any γ outside this interval yields γκ′(γ) ≥ 0. Thus, as long as the optimal
correlation level to induce, γ∗, is interior, it must be the case that γ∗ is strictly between
0 and γ0. Note that γ∗ and γ0 have the same sign, yet |γ∗| < |γ0|. Hence, the principal
induces a correlation that is smaller than what would be cost-minimizing for the agent. It
is only if γ0 = 0 (independence is cheapest) that γ∗ = γ0. N

Example 1 illustrates that the principal not only wants to move away from extreme
correlation but that he may even desire a level of correlation below the agent’s cost-
minimizing level. To understand the intuition, write the incentive compatibility con-
straints as

(1− q)w10 + qw11 = cp (1)

w11 − w10 = cγ, (2)

utilizing the fact that w00 = w01 = 0. Note that an increase in w10 moves the left hand
side of the two equations in opposite directions. Increasing w10 means that productive
effort is rewarded more, but at the same time it punishes effort on γ since increasing γ

moves weight from the state (1, 0) to the state (1, 1). Note also that an important feature
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of Example 1 is that there is no interaction between p and γ in the agent’s cost function,
or cpγ = 0. Thus, a change in γ does not directly impact the incentive compatibility
constraint on p since cp is unaffected. We begin with two preliminary observations. To fix
ideas, assume that γ0 ≥ 0.

First, imagine that γ = 0. The left hand side of (1) in this case coincides with the
expected wage conditional on x = 1 (the wage is zero if x = 0). This must be constant to
give the agent the right incentives for productive effort. Thus, the principal is indifferent
between any (w10, w11) that satisfies (1) when γ = 0. Second, the specific contract that
satisfies (1) with w11 = w10 is equally profitable to the principal for all γ. However, such a
contract agrees with (2) if and only if γ = γ0. Combining the two observations means that
the principal is indifferent between the contract that implements γ = 0 and the contract
that implements γ = γ0.

Implementing a higher γ, γ > γ0, would mean that w11 is paid out increasingly often
and w10 less often. However, since cγ > 0 when γ > γ0, the only way to induce the agent
to increase correlation is to let w11 > w10. This is unprofitable, because the higher wage
would be paid out more often. Thus, implementing γ > γ0 is inferior to implementing
γ0.

Conversely, imagine implementing negative correlation, γ < 0. Since cγ < 0 when
γ < 0, this requires that w10 > w11. Note that with negative correlation the higher wage
would be paid out more often. Inducing zero correlation is better. Although w10 must
still exceed w11, the gap must be smaller and the higher wage is paid out less often.

In conclusion, the optimal γ cannot be below zero or above γ0. Indeed, it must be
strictly between the two because γ’s in that range require w10 > w11 for incentive com-
patibility and, since γ > 0, the smaller wage is paid out more often.

We next identify easily interpretable sufficient conditions for the correlation dampen-
ing effect to hold more generally. In particular, the assumption that cpγ = 0 is relaxed.
Let γ∗(p) denote an optimal level of correlation to induce for a fixed p.

Proposition 4 Assume that γ0(p) > 0 is interior and that cpγ(p, γ) ≥ 0 for all γ. Then, if
γ∗(p) is interior, it holds that γ∗(p) < γ0(p). Likewise, if γ0(p) < 0 is interior and cpγ(p, γ) ≤
0 for all γ then γ∗(p) > γ0(p) whenever γ∗(p) is interior.

Proof. As mentioned in the previous section, the cost of implementing any interior
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(p, γ) pair is
K(p, γ) = pcp + γcγ.

The derivative with respect to γ is

Kγ(p, γ) = pcpγ(p, γ) + γcγγ(p, γ) + cγ(p, γ).

Assume first that γ0(p) > 0 is interior and that cpγ(p, γ) ≥ 0 for all γ. Then, all three
terms are positive for any γ ≥ γ0(p), and the middle term is strictly positive. Hence,
Kγ(p, γ) > 0 for all γ ≥ γ0(p) that are interior. Thus, if γ∗(p) is interior it must be the
case that γ∗(p) < γ0(p). The second part is proven in a similar manner.

Thus, if p and γ are substitutes in the agent’s cost function, or cpγ ≥ 0, and γ0(p) >

0, then the principal induces a lower level of correlation than γ0(p) (and possibly even
negative correlation). By lowering γ, cp decreases. This makes the incentive compatibility
constraint on p less strenuous. Thus, there is a new positive effect of lowering γ below
γ0(p) in addition to the effect identified in the discussion of Example 1 above. In short,
the principal seeks to “moderate” the amount of correlation compared to the correlation
that minimizes the agent’s costs.15 Thus, x and y are less correlated when y is contractible
than when it is not. The caveat is that the proposition does not rule out that the principal
overdoes it and induces a γ of the opposite sign than γ0(p).

We continue with a comparison of endogenous and exogenous correlation. Assume
for concreteness that γ0(p) > 0 and, as in the proposition, that γ0(p) > γ∗(p). Then, the
principal finds it optimal to endogenously induce a level of correlation below a “natural”
level. In contrast, we know from Corollary 1 that when γ is exogenous, the principal
would be better off if γ increases (assuming γ ≥ 0 to begin with). In this case, the princi-
pal would be willing to pay for an exogenous increase in γ above its “natural” level. Of
course, the driver of this difference is that γ comes with its own incentive compatibility
constraint when it is endogenous.

Recall that under the assumption made thus far, an optimal contract that induces an

15It is clearly possible to construct examples where γ∗(p) > γ0(p) > 0. This could be done by assuming
that cγp is negative of a large enough magnitude. However, such examples are arguably less interesting or
surprising in light of Corollaries 1 and 2.
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interior (p, γ) pair consists of

w11 = cp + (1− q) cγ > 0

w10 = cp − qcγ > 0

w01 = w00 = 0.

Hence, the optimal contract that induces γ = γ0(p) features w11 = w10 = cp. Thus, the
agent’s remuneration is independent of y in this case. This is intuitive since he makes no
effort at changing the correlation between x and y. Nevertheless, it is interesting to con-
trast this outcome with the standard intuition based on the Informativeness Principle (see
Lemma 1). When γ is exogenous, the agent’s compensation depends on y because y is in-
formative about the agent’s productive action, p. However when γ is endogenous and
the principal seeks to implement γ0(p), his hands are tied by the agent’s incentive com-
patibility constraint. Making pay contingent on y would entice the agent to manipulate
the correlation.

To appreciate how the contract changes when the principal optimally manipulates γ,
assume that γ0(p) > 0 and γ∗(p) < γ0(p). Since c(p, γ) is convex in γ, it follows that
cγ(p, γ∗(p)) < 0. Hence, the contract now pays w10 > cp > w11 > 0. Thus, a high x is
rewarded more when y is low. This reward structure is necessary in order to induce the
agent to lessen the correlation. When γ > 0 is exogenous, a similar but more extreme
reward structure obtains, with w10 > 0 but w11 = 0. The reason is that the principal
needs to satisfy only a single incentive constraint in the latter case. One interpretation is
that the contract is more sensitive to y in the case where γ is exogenous. Thus, our theory
may explain why real world contract are often less sensitive to exogenous signals than
suggested by the Informativeness Principle.

Finally, consider once again the principal who cannot contract on y. If γ is endoge-
nous, the agent then selects γ = γ0(p) as explained earlier. Assume γ0(p) > 0. In this
case, w1 = cp and implementation costs are thus pcp. Now look at this problem from the
point of view of an “outside observer” who thinks that γ is exogenous. If he observes this
principal-agent relationship many times, he may estimate that γ is exogenously fixed at
γ0(p). Given Corollary 1 and fixing p, he thus believes that implementation costs can be
reduced to

C(p, γ0(p)) = pcp(p, γ0(p))− γ0(p)
1− q

cp(p, γ0(p))
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whereas implementation costs in reality are

min
γ

K(p, γ) = K(p, γ∗(p)) = pcp(p, γ∗(p)) + γ∗(p)cγ(p, γ∗(p)).

Proposition 5 Assume that γ0(p) 6= 0 and γ∗(p) are interior and that c(p, γ) = k(p) + κ(γ).
Then, K(p, γ∗(p)) > C(p, γ0(p)).

Proof. Note that

K(p, γ∗)− C(p, γ0) = pk′(p) + γ∗κ′(γ∗)− pk′(p) +
γ0

1− q
k′(p)

=
γ0

1− q

[
k′(p) +

γ∗

γ0
(1− q)κ′(γ∗)

]
.

By the argument in Example 1, γ∗
γ0
∈ (0, 1). By assumption, cp > 0 and cp + (1− q)cγ > 0.

Put together, this proves the result.

The proposition is fairly intuitive. It is trivially true that K(p, γ0(p)) > C(p, γ0(p))
because of the extra incentive constraint when γ is endogenous. It now turns out that the
ability to manipulate γ away from γ0(p) is not valuable enough to overcome the cost of
the extra constraint. However, this relies in part on the assumption that cpγ = 0, since this
implies that the incentive constraint on p is unaffected by changes in γ. It is conceivable
that cpγ 6= 0 may overturn the result (see the discussion following Proposition 4).

The implication of Proposition 5 is that the outside observer overestimates the cost
savings from contracting on y. If is it costly to collect data on y and write a more compli-
cated contract, then this may help explain why outside signals (y) are used less often in
practice than what the Informativeness Principle would suggest.

3.3 Contingency planning: Reformulating the model

Consider an agent who is planning ahead and thinking about how to build processes that
take into account the possibility that his productivity may depend on future contingen-
cies, as described by y. How much effort the agent devotes to thinking about any given
contingency is likely to impact how well he performs in said contingency. Think of the
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choice variables p0 and p1 as how much effort is devoted to preparing for contingency
y = 0 and y = 1, respectively.16 More concretely, change variables by defining

p0 =
p(1− q)− γ

1− q
= p− γ

1− q
(3)

p1 =
pq + γ

q
= p +

γ

q
. (4)

Our model can now be written as:

y = 1 (1− p1)q p1q
y = 0 (1− p0)(1− q) p0(1− q)

x = 0 x = 1

Note that p0 and p1 denote the conditional probability that x = 1 given y = 0 and y =

1, respectively. In other words, the agent’s choice variables determine the conditional
distributions of x given y. This formulation of the model is henceforth referred to as the
contingency-planning model. Here, (p0, p1) is feasible if and only if (p0, p1) ∈ [0, 1] ×
[0, 1]. Thus, the feasible set is more easily described than in the (p, γ) formulation of the
model.

As before, the marginal distribution of y is completely described by q, and is thus
again outside the agent’s control. A subtler point is that changes in p0 and p1 also change
the dependence structure between the two random variables. To see this, note that for
any given (p0, p1),

p = qp1 + (1− q) p0 (5)

γ = q (1− q) (p1 − p0) , (6)

meaning in particular that the dependence structure, as captured by γ, depends on p0

and p1. Thus, the formulation in terms of (p0, p1) pushes the dependence structure into

16Hence this interpretation is in line with the state-contingent model of Chambers and Quiggin (1998,
2000): the agent commits to a contingent production plan before the realization of y. A difference however
is that y is not observed by the principal in the original version of Chambers and Quiggin (1998), while our
focus here is precisely on the use of y in contracting.
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the background. Although the two models are mathematically equivalent, the most nat-
ural formulation is likely to depend on the application. Hence, we will make use of both
formulations and, at times, move from one to the other. However, since our main objec-
tive is to shed light on the consequences of endogenizing correlation, we do favor the first
model.

The consequence of working with a simpler feasible set in this formulation of the
model is that the cost function becomes a little more intricate. Let the transformed cost
function be denoted ĉ(p0, p1) and note that

ĉ(p0, p1) = c(qp1 + (1− q) p0, q (1− q) (p1 − p0)),

where the cost function on the right hand side is taken from the (p, γ) formulation of the
model. Two observations about moving from one model formulation to the other are now
pertinent. First, convexity of the cost function is preserved as we move from one model to
the other, since in either case the transformations of variables are linear transformations.
It is also clear that the agent’s utility from income is linear in (p0, p1). Hence, following
previous arguments, the FOA is valid in either formulation of the model. Second, note
that even if c(p, γ) is monotonic in its arguments it is not necessarily the case that ĉ(p0, p1)

is. For instance, note that increasing p0 amounts to increasing p but decreasing γ. Thus,
care must be taken to keep track of marginal costs when moving between the two models.

In the contingency planning formulation of the limited liability model, the agent’s first
order conditions take the even simpler form:

q(w11 − w01) = ĉp1(p0, p1)

(1− q)(w10 − w00) = ĉp0(p0, p1).

Thus, it is easy to derive the optimal contract that induces any interior (p0, p1).

Proposition 6 Consider the limited liability model. The unique optimal contract that induces a
given interior (p0, p1) is given by

• w11 =
ĉp1
q and w01 = 0 if ĉp1 ≥ 0 but w01 = − ĉp1

q and w11 = 0 if ĉp1 ≤ 0, and

• w10 =
ĉp0
1−q and w00 = 0 if ĉp0 ≥ 0 but w00 = − ĉp0

1−q and w10 = 0 if ĉp0 ≤ 0.
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Proposition 2 of course agrees with Proposition 1 once it is observed that

ĉp0 = (1− q)
[
cp − qcγ

]
(7)

ĉp1 = q
[
cp + (1− q)cγ

]
. (8)

The contingency planning model also simplifies the characterization of the optimal con-
tract when actions on the boundaries are to be implemented. Consider, for example,
implementing some (p0, p1) with p0 = 0. In this case, incentive compatibility requires

(1− q)(w10 − w00) ≤ ĉp0(p0, p1).

Note that if ĉp0 ≥ 0, then the constraint is satisfied at w10 = w00 = 0. Evidently, the
constraint is slack when ĉp0 > 0. On the other hand, if ĉp0 < 0 then the constraint can
be written (1− q)(w00 − w10) ≥ −ĉp0 > 0 and it follows that the optimal contract has

w10 = 0 and w00 =
−ĉp0
1−q . The incentive compatibility constraint is binding in this case.

Implementing p0 = 1 can be dealt with in a similar manner, as can p1 ∈ {0, 1}. Combined
with Proposition 2, the optimal contract can thus be characterized for any (p0, p1).

Proposition 7 Consider the limited liability model. The unique optimal contract that induces a
given (p0, p1) is characterized in Table 1.

ĉp0(p0, p1) ≥ 0 ĉp0(p0, p1) < 0

p0 = 0 w10 = 0, w00 = 0∗ w10 = 0, w00 = − ĉp0
1−q

p0 ∈ (0, 1) w10 =
ĉp0
1−q , w00 = 0 w10 = 0, w00 = − ĉp0

1−q

p0 = 1 w10 =
ĉp0
1−q , w00 = 0 w10 = 0, w00 = 0∗

(i) w00 and w10 as functions of p0.

ĉp1(p0, p1) ≥ 0 ĉp1(p0, p1) < 0

p1 = 0 w11 = 0, w01 = 0∗ w11 = 0, w01 = − ĉp1
q

p1 ∈ (0, 1) w11 =
ĉp1
q , w01 = 0 w11 = 0, w01 = − ĉp1

q

p1 = 1 w11 =
ĉp1
q , w01 = 0 w11 = 0, w01 = 0∗

(ii) w01 and w11 as functions of p1.
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Table 1: The optimal contract in the contingency planning formulation of the limited
liability model. An asterisk (*) indicates that an incentive compatibility constraint is slack.

Finally, consider once again the original endogenous correlation, or (p, γ), formulation
of the model. It may seem more tedious to derive the optimal contract for boundary
actions in that set-up, partly because of the shape of the feasible set and partly due to the
slightly more complicated form of the incentive compatibility constraints. An easier way
to obtain a characterization is to start with Proposition 7 and then use the relationships
in (3)-(4) and (7)-(8) to “convert” the optimal contract in the (p0, p1) formulation into
the (p, γ) formulation. To this end, Figure 2 reproduces Figure 1 but adds information
about how the boundaries in the two models relate. Any given (p, γ) can now be readily
translated into a form where Proposition 7 can be applied.

0
1

γ

p

p0 ∈ (0, 1), p1 = 1

p0 = 1, p1 ∈ (0, 1)
p0 ∈ (0, 1), p1 = 0

p0 = 0,

p1 ∈ (0, 1)

Figure 2: Boundaries in the (p, γ) formulation compared to the (p0, p1) formulation.

Now fix p at a large value for which p > max{q, 1− q}. Then, as γ moves towards
its lowest value we see that p0 → 1. Likewise, as γ moves towards its highest value,
p1 → 1. Assume moreover that ĉp0 > 0 and ĉp1 > 0. These assumptions are equivalent to
those imposed in Section 3.2, specifically that cp − qcγ > 0 and cp + (1− q)cγ > 0. It is
now clear from Proposition 7 that costs are continuous in γ, including at the boundaries.
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Conversely, implementation costs are discontinuous at one or both boundaries when p <

max{q, 1− q}.

4 Micro-foundations and applications

The current section is in two parts. The first presents a variety of scenarios, or stories,
meant in part to illustrate the applicability of the abstract model. These stories also
demonstrate that the agent’s costs may not be monotonic in the choice variables. In this
sense, they provide micro-foundations for different assumptions on the cost structure.
The second part focuses on properties of the optimal contract, including which action it is
optimal for the principal to induce. This part requires structure not only about the agent’s
cost structure but also about the principal’s objective function. Both elements generally
depend on the application.

4.1 Micro-foundations

4.1.1 A micro-foundation for the forecasting model

In this section, we provide a detailed analysis of the following forecasting scenario, cast in
the terms of our model. The goal of the principal is to match the state y, by following the
recommendation of the agent x. The effort of the agent hence consists of effort to correlate
x to y as much as possible. The typical payoff matrix for the principal is as follows:

y = 1 π01 ≤ 0 π11 > 0
y = 0 π00 > 0 π10 ≤ 0

x = 0 x = 1

Notice that here it is crucial that the principal’s ex-post payoff depends on both realiza-
tions of x and y, hence on γ. The timing of the game is:

1. the expert privately invests in the information structure and is committed to it

2. signal x realizes

3. The principal makes a decision based on x, but his payoff depends also on y
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4. signal y realizes

5. the expert is paid according to a contract conditional on (x, y) [or any restriction
thereof].

The important point is that the cost of the agent should naturally be increasing in γ,
which is here the ”true” effort, to the opposite of the standard model. Moreover, it is
natural to assume that by default, the agent chooses p only based on priors, i.e. a fre-
quency of x’s that is directly related to the prior q on y. This reduced-form model can be
micro-founded as follows. Consider an agent who does not observe the state directly, but
who nevertheless privately receives a non-verifiable and potentially informative signal.
The signal is drawn from some distribution F0(s) in state y = 0 and from some distribu-
tion F1(s|θ) in state y = 1. The supports of the two distribution functions coincide. Here,
θ ≥ 0 is a choice variable of the agent which captures how well he can distinguish the two
states from each other. Assume that F1(s|0) = F0(s), such that θ = 0 describes no effort –
the agent’s signal is completely uninformative in this case. Let f1(s|θ) denote the density
of F1(s|θ) and let f1θ(s|θ) and F1θ(s|θ), respectively, denote their partial derivatives with
respect to θ.

The agent updates his beliefs about the true state upon having observed the signal.
Assume that f1(s|θ) satisfies the (strict) monotone likelihood ratio property (MLRP), or

∂

∂s

(
f1θ(s|θ)
f1(s|θ)

)
> 0.

It follows that F1(s|θ) dominates F0(s) in terms of the likelihood-ratio for any θ > 0. Thus,
for any θ, there exists a threshold signal above which the agent is more likely to believe
that y = 1 than y = 0. It is costly for the agent to improve (increase) θ. For future
reference, MLRP also implies that F1(s|θ) is strictly decreasing in θ whenever s is interior.

The principal requires the agent to issue a “high” or “low” message, where the former
is interpreted as a forecast that y = 1 and the latter as a forecast that y = 0. The agent
is assumed to choose some threshold, z, such that a signal above z will result in a “high”
message and a signal below z will result in a “low” message.17 It is natural to assume that
there is no cost of changing z.

17There are other ways of partitioning the signal space to determine messages. We assume the threshold
structure for simplicity. Intuitively, this is not a restrictive given MLRP, especially not if accurate forecasts
are rewarded.
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In summary, the agent chooses the pair (z, θ). Given the (z, θ) pair, note that the prob-
ability that a “high” message is delivered is

p = q (1− F1(z|θ)) + (1− q) (1− F0(z))

= 1− [qF1(z|θ) + (1− q) F0(z)] .

Likewise, solving for γ yields

γ = q (1− q) [F0(z)− F1(z|θ)] .

Note that for any given θ, any p ∈ [0, 1] can be achieved at no cost by simply ma-
nipulating the threshold, z. However, doing so also changes γ. Thus, to change p while
holding γ constant it is generally necessary to change both z and θ. Consequently, chang-
ing p is costly. An exception occurs when γ = 0, since in this case the γ = 0 constraint
is costless as it is trivially satisfied at θ = 0. Then, z can be used to manipulate p with no
side-effects.

The agent’s problem is more complicated when x and y are correlated, or γ 6= 0. As
noted above, changing the threshold z does indeed change the marginal distribution of
x, but it also changes the correlation unless θ is adjusted at the same time. To summarize,
p is free for any given information structure, or θ, but this does not imply that p is free
given a fixed target for γ. Indeed, note that for any θ > 0, the MLRP implies that γ has
an inverse-u shape in z. It is intuitive that γ is small when z is very small or very large.
In these cases, the agent gives the same report for almost all z and so the correlation
between x and y naturally tends to be small. To obtain a high γ in these circumstances,
it is necessary to invest heavily in θ in order to make the signal sufficiently informative.
This observation in turn suggests that high and low p values are costlier to implement
than intermediate p values, given a fixed target for γ. This intuition is confirmed and
formalized in the following.

To better understand the cost structure, solve for F0(z) and F1(z|θ) given p and γ,
yielding

F0(z) = 1− p +
γ

1− q

F1(z|θ) = 1− p− γ

q
.
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Given (p, γ), the first equation uniquely determines z. This in turn implies that θ is
uniquely determined by the second equation. Note that an increase in γ necessitates
an increase in z. To satisfy the second equation, it is then necessary for θ to increase as
well. Stated differently, increasing γ is unambiguously costly, given p. This is intuitive
since γ measures the informativeness of the agent’s message. It is costly to generate a
more informative information structure without changing the “average” message (p).

An increase in p necessitates a decrease in z. The simultaneous increase in p and
decrease in z leads both sides of the second equation to decrease in value. Thus, it appears
ambiguous whether θ is increasing or decreasing in p, given γ. In the following, we prove
that costs are u-shaped in p, given γ > 0. Combining the above two equations yields the
condition that

F1(F−1
0 (1− p +

γ

1− q
)|θ) = 1− p− γ

q
,

which describes the relationship between p and θ more directly. Holding γ fixed, let θ(p)
denote the unique value of θ that solves the equation as a function of p. Then, it is easy to
show that for any interior p,

θ′(p) =
−1

F1θ(z|θ(p))

(
1− f1(z|θ(p))

f0(z)

)
,

where z = F−1
0 (1 − p + γ

1−q ). Given MLRP, F1θ(z|θ) < 0 for any interior z. Likewise,
MLRP implies that f1(z|θ) crosses f0(z) exactly once, from below. Hence, θ′(p) is first
positive and then later negative. In other words, θ(p) is u-shaped. Since higher θ are
costly, it then follows that costs are u-shaped in p, given γ > 0.

4.1.2 A micro-foundation for costs that are non-monotonic in γ

In the previous scenario, the agent’s cost function is u-shaped in p. Here, a complemen-
tary scenario is presented in which costs are u-shaped in γ. In a more specialized version
of the scenario, c(p, γ) is additively separable in p and γ.

We begin with the contingency-planning formulation of the model, where the agent’s
choice variables are (p0, p1). Hence, we think of the agent as preparing for the contingen-
cies y = 0 and y = 1. The idea is to think about a natural cost structure in this setting, and
then translate this back into the (p, γ) formulation to understand what it implies about
the properties of c(p, γ).
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There are several ways of modelling costs under contingency-planning, depending
on when the agent incurs costs. For instance, contingency-planning may involve costly
investments that are sunk before the state is realized. Alternatively, costs may be incurred
only after the state is realized. Here, we examine the latter case in more detail.

Consider an agent whose (commonly known) base skills are adequate for a probability
of success of p

0
in state y = 0 and p

1
in state y = 1. The agent can augment these

probabilities by purchasing productive machinery. However, he must place the order
before the state is realized. The order can be made state-dependent, such that p0− p

0
≥ 0

is the amount of machinery that he takes delivery of in state y = 0 and p1 − p
1
≥ 0 the

corresponding quantity in state y = 1. He pays only for the amount that was delivered.
Hence, when the order is placed, the agent’s expected costs can be written as

ĉ(p0, p1) = qk(p1 − p
1
) + (1− q) k(p0 − p

0
),

where k(·) is some increasing and convex cost function.18 Note that costs are assumed to
be independent of the state. Given (3) and (4),

c(p, γ) = ĉ
(

p− γ

1− q
, p +

γ

q

)
= qk

(
p +

γ

q
− p

1

)
+ (1− q) k

(
p− γ

1− q
− p

0

)
.

Costs are clearly increasing in p. However, note that

cγ(p, γ) = k′
(

p +
γ

q
− p

1

)
− k′

(
p− γ

1− q
− p

0

)
.

Thus, assuming k is strictly convex, it holds that

cγ(p, γ) ≷ 0⇐⇒ γ ≷ q(1− q)(p
1
− p

0
).

Stated differently, c(p, γ) is u-shaped in γ and, regardless of p, minimized at γ = q(1−
q)(p

1
− p

0
).Given (6), note that this level of correlation is achieved if p0 = p

0
and p1 = p

1
,

18Recall that we have chosen a parameterization where probabilities are linear in the action but where
costs may be non-linear. In the case of buying machinery, it is perhaps initially more logical to think about
costs as being linear in quantity and the improvement in productivity as being a concave function of the
quantity of machinery. However, since this is just another reparameterization of the problem, there is no
substantive difference between the two models.
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i.e. if the agent exerts zero effort. In fact, it obtains whenever p0− p
0
= p1− p

1
, i.e. when

p0 and p1 are increased at the same rate to achieve a higher p. Holding p fixed, a higher
level of correlation can be obtained by instead increasing p1 faster than p0. Conversely, a
lower level of correlation is obtained by increasing p0 faster than p1. The last two options
both involve an unbalanced increase in p0 and p1. This is costly due to the convexity of
k(·), given that p = qp1 + (1− q)p0 is held constant. Note also that the cost minimizing
value of γ can be non-zero. Specifically, the cheapest γ is non-zero when the agent’s base
skills yield a success with different probability in the two states.

Note that if the principal is risk neutral and the value that he attributes to a success
or failure, respectively, is the same in both states, then he cares directly only about p, i.e.
the probability of success. He takes an interest in γ only for the purposes of minimizing
implementation costs. Thus, this recreates the standard model. However, the principal’s
objective function depends directly on γ if the value of a success or failure depends on
the state.

To continue, consider the standard model. Assume that p
1
> p

0
, such that the agent’s

baseline productivity is higher in the good state. We show next that the correlation damp-
ening effect from Section 3 obtains in the current setting as well. This is despite the fact
that unlike what we assumed in Section 3, cpγ does not have a constant sign here. Specif-
ically, note that cpγ(p, γ) = 0 where cγ(p, γ) = 0. Thus, cpγ generally changes sign in a
neighborhood around γ0. Note that in this model it is trivially true that cp + (1− q)cγ > 0
and cp − qcγ > 0 since the former is proportional to ĉp1 = qk′(p1 − p

1
) and the latter is

proportional to ĉp0 = (1− q) k′(p0 − p
0
); see (7) and (8).

In the (p0, p1) formulation of the model, incentive compatibility in the interior re-
quires that w1j = k′(pj − p

j
), j = 0, 1. Contingent on state j, expected wage costs are

thus pjk′(pj − p
j
). Assuming an interior solution, it is optimal for the principal to equate

marginal implementation costs across states, or

∂p1k′(p1 − p
1
)

∂p1
=

∂p0k′(p0 − p
0
)

∂p0
. (9)

Of course, pjk′(pj− p
j
) must be locally convex in order for the first order condition to cor-

rectly solve the cost minimization problem. Here, we will impose a stronger assumption
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that implies convexity. To begin, it is easy to verify that

∂2pjk′(pj − p
j
)

∂p2
j

> −
∂2pjk′(pj − p

j
)

∂pj∂p
j

. (10)

Our assumption is that pjk′(pj − p
j
) is submodular in (pj, p

j
). Stated differently, the right

hand side of the above inequality is non-negative, thereby implying that pjk′(pj − p
j
) is

strictly convex in pj. The assumption is satisfied as long as k′(pj− p
j
) is not “too concave”

in pj, or, more accurately, when k′′(pj − p
j
) + pjk′′′(pj − p

j
) ≥ 0.

The submodularity assumption along with the inequality in (10) makes it possible to
utilize (9) to obtain the following comparative statics. First, it is optimal for the principal
to induce p1 > p0. Nevertheless, it holds that p1 − p

1
< p0 − p

0
. Translating this into the

(p, γ) formulation of the model, the first inequality implies that γ∗ > 0 while the second
inequality implies that γ∗ < γ0. Hence, as in Example 1, 0 < γ∗ < γ0.

————————–
I don’t know if we want to keep that (or maybe not in its present form)
In the special case where k(·) is quadratic, costs are

c(p, γ) = q
(

p +
γ

q
− p

1

)2

+ (1− q)
(

p− γ

1− q
− p

0

)2

,

which can be rewritten as

c(p, γ) =
[

p2 − 2p
(
(1− q) p

0
+ qp

1

)]
+

[
q
(

γ

q
− p

1

)2

+ (1− q)
(

γ

1− q
+ p

0

)2
]

.

Evidently, c(p, γ) is additively separable in p and γ in this case.
—————————-

4.2 Applications

4.2.1 Pay for luck [preliminary]

Suppose the principal can only observe the sum x + y, and assume that his objective is
to maximize E[x]. The observability restriction imposes that w10 = w01, hence if the
principal chooses to set a positive transfer when observing x + y = 1, he will sometimes
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reward the agent for a high y and a low x–the essence of pay for luck since the agent does
not control y. For a fixed correlation γ, we can apply the analysis in the first section (with
exogenous correlation), with the additional restriction that one of the states is just the
aggregation of (1, 0) and (0, 1) and the corresponding likelihood ratio is ∂(P10+P01)

∂p /(P10 +

P01) = 1−2q
p(1−q)+(1−p)q−2γ

. Following the same analysis as in the first lemma, we obtain
that the principal prefers to use a pay-for-luck scheme over paying only in state (1, 1)
if and only if γ ≥ q2 (note that, aside from feasibility consideration, this is true for any
p). Intuitively, it takes correlation to be positive (which is directly in line with lemma 1)
and luck to be sufficiently rare (low q) to make pay-for-luck a desirable scheme. Now, of
course, if the agent is remunerated only for x + y = 1, he will have incentives to decrease
correlation, which increases the likelihood of the remunerated result. On the contrary,
if the agent is paid for (x, y) = (1, 1), he will be tempted to increase correlation, which
makes in turn pay-for-luck a relatively more attractive scheme.

Note that this is the story with exogenous correlation, and (1) the full implementation
problem is not solved, raising interesting questions (2) the goal of the principal is still
simple, in that it does not depend directly on y (only through implementation costs).

Here a natural case is when by default the correlation is 0, so that y is just a standard
additive noise. When correlation is not manipulable, there is then no pay for luck (only
w11 > 0). It would then be interesting to see if the possibility for the agent to manipulate
correlation can make pay-for-luck an optimal contract. [To be continued...]

5 Extensions

5.1 Value of Information with risk-aversion

We have so far focused on the case where the agent is risk neutral and a moral hazard
problem exists due to limited liability. In this section we revisit the baseline model with
exogenous correlation. Both the principal and agent are assumed to be expected utility
maximizers, but no restrictions are now imposed on the Bernoulli utility functions. Thus,
to mention just a few possibilities, the principal and the agent can be risk averse or risk
loving, or have preferences that exhibit loss aversion. Moreover, we no longer impose a
limited liability constraint. Hence, the participation constraint comes into play.
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The purpose is to prove that even with this minimal structure, a main conclusion from
Lemma 1 survives. Specifically, it remains the case that the principal’s expected utility
is U-shaped in γ and minimized at γ = 0 (independence). Thus, if γ′ > γ′′ ≥ 0 or
γ′ < γ′′ ≤ 0 then the principal weakly prefers γ′ to γ′′. In comparison, the Informative-
ness Principle says merely that independence (γ = 0) is worse than any other level of
correlation. Of course, our model is endowed with a more specific signal structure that
allows the additional inference.

In line with the standard model, we now assume that costs depend on p only and
that γ is exogenous. This assumption implies that the participation constraint is unaf-
fected by an exogenous change in γ.19. The cost function c(p) need not be monotonic in
p. However, given p, it is assumed that a feasible contract exists (one that satisfies the
participation and incentive compatibility constraints) for all feasible values of γ. Also in
line with Lemma 1, the principal is assumed to directly care only about the value of x,
whereas the only use of y is to potentially lower implementation costs.

Fix some p that the principal wishes to induce. Consider two levels of correlation,
γ′ and γ′′, with γ′ > γ′′ ≥ 0. We want to show that the principal is weakly better off
with γ′ than with γ′′. To do so, we establish that if γ is fixed at γ′, then the principal
can effectively emulate an environment where γ takes the smaller value γ′′. Thus, when
γ = γ′, the principal can at the very least guarantee himself the exact same expected
payoff as if γ = γ′′.

Starting from γ = γ′, the following randomization device can be used by the principal,
for any ε ∈ [0, 1]:

• With probability 1− ε: The agent’s pay is based on (x, y) as realized.

• With probability ε: Use x as realized. With probability q this is paired with y = 1
and with probability 1− q it is paired with y = 0. The agent’s pay is then based on
the realized value of x and the artificially determined value of y.

Note that the randomization device effectively implements a mixture of the true joint
probability distribution and the probability distribution in which x and y are indepen-
dent. For this reason, the newly created distribution over (x, y) has an intermediate level

19The participation constraint never binds in the limited liability model. For this reason, Lemma 1 also
holds if costs are c(p, γ) = k(p) + κ(γ), for instance.
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of correlation. Specifically, note that the agent is paid according to (x, y) = (1, 1) with
probability

(1− ε)
(

pq + γ′
)
+ εpq = pq + (1− ε) γ′.

Similarly calculations for the other combinations of (x, y) confirm that the term involving
γ′ is always replaced by (1− ε) γ′. Now, pick ε ∈ (0, 1] in such a way that (1− ε) γ′ = γ′′.
Then, the randomization device recreates a joint probability distribution in which γ =

γ′′. Next, using the above method to determine (x, y), offer whatever contract would
be optimal if γ were to truly take the value γ′′. This contract must necessarily satisfy
the participation constraint if the true value of γ was γ = γ′′. However, since costs by
assumption are the same regardless of whether γ = γ′ or γ = γ′′, it follows that the
participation constraint remains satisfied. At the same time, note that the randomization
device does not change the incentive compatibility constraint with respect to p (recall
there is no incentive compatibility constraint with respect to γ since this is exogenous).
Thus, the agent will still accept the contract and choose the intended p. Thus, the marginal
distribution of x, which the principal cares about, is unchanged, and the distribution of
payments is the same as would be the case if γ = γ′′. In conclusion, the randomization
device allows the principal to reproduce the same expected utility as he would get if
γ = γ′′. It follows that he must weakly prefer γ′ to γ′′ when γ′ > γ′′ ≥ 0. Of course, an
analogous argument applies if γ′ < γ′′ ≤ 0.

The above randomization device establishes that the information system summarized
by γ′′ is a more “garbled” information system than that summarized by γ′. The reason
is that the former adds more noise by mixing in the joint distribution where signals are
independent. Thus, the result is closely related to Blackwell’s Theorem, although Black-
well’s Theorem in its original form applies only to decision problems. See e.g. Blackwell
and Girshick (1954) for a review. Grossman and Hart (1983) prove that more garbled
information systems are necessarily less valuable to the principal in a standard principal-
agent model. The randomization device used above borrows from their argument. Kim
(1995) contains a much more thorough examination of information systems, including
illuminating discussions of both the Informativeness Principle and Blackwell’s Theorem.

We now consider a slightly more general set-up. Specifically, to facilitate comparison
with the key results in Section 3.2, we now assume that costs can be written as c(p, γ) =

k(p) + κ(γ). Assume that κ(γ) is strictly convex and minimized at γ0. Note that this set-
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up perfectly matches Example 1. Consider some p for which γ0 is interior. Assume for
the sake of argument that γ0 > 0. We will show that any γ ∈ [0, γ0) leaves the principal
weakly worse off than if γ = γ0. Thus, the principal’s expected utility is maximized either
at γ ≥ γ0 or, possibly, at γ < 0. In other words, an exogenous γ in the range [0, γ0) can
never be desirable, compared to γ0. Recall that Example 1 in contrast shows that when γ

is endogenous, it is optimal for the principal to induce some γ ∈ (0, γ0), at least within
the confines of the limited liability model.

To prove that γ ∈ [0, γ0) is inferior to γ = γ0 when correlation is exogenous, let γ0

take the role of γ′ in the above argument. We use the randomization device to replicate
the distribution from γ = γ′′ ∈ [0, γ0). The additive cost structure does not influence
the incentive compatibility constraint with respect to p. Thus, the contract that is opti-
mal when γ = γ′′ remains incentive compatible when γ = γ′ and the randomization
device is used. It remains to show that the contract satisfies the participation constraint.
However, since the proposed contract is by definition optimal at γ = γ′′, the agent must
deem it worthwhile to incur costs κ(γ′′). Hence, the agent must also be willing to incur
cost κ(γ0) < κ(γ′′). Thus, the participation constraint is satisfied even at γ = γ0. Con-
sequently, if γ = γ0 the principal can once again guarantee himself at least the optimal
payoff that would arise if γ = γ′′.

As a final remark, note that the previous arguments are unaffected by e.g. a minimum
wage (or limited liability) or a cap on wages. Thus, the result is robust to a number of
exogenous constraints on the contracting environment.

5.2 A double-spanning model with more signal realizations

So far we have assumed that x and y each takes one of two values. In this section we
consider more general environments where where x can take one of n + 1 ≥ 2 values,
x ∈ {0, 1, ..., n}, and y one of m + 1 ≥ 2 values, y ∈ {0, 1, ..., m}, where n and m are finite.

There are several ways to model such environments. For instance, starting with the
contingency planning formulation of the original 2 × 2 model, one could imagine the
agent’s action being m + 1 dimensional, p = (p0, p1, ..., pm). The jth element, pj, deter-
mines the conditional distribution of x given y = j, j = 0, 1, ..., m.

An alternative is to start from the original (p, γ) formulation of the model. The agent’s

38



action now has k + 1 dimensions, with (p, γ) = (p, γ1, γ2, ..., γk). As before, p determines
the marginal (i.e. unconditional) distribution of x. The γi’s describe a number of correla-
tion increasing transformations in the sense of Epstein and Tanny (1980). However, there
are a plethora of potential correlation increasing transformations when m, n > 1.20 Thus
k may be very large.

Note that the contingency planning model and the endogenous correlation model are
equivalent if and only if m = n = 1. Thus, there is no unambiguous way to generalize the
model. Moreover, both avenues outlined above increase the dimensionality of the agent’s
action. Here, we opt for a simpler generalization. The generalization is inspired by the
original (p, γ) formulation of the model as well as the discussion of Blackwell’s result in
the preceding section.

The agent’s action remains two-dimensional. As before, we write it as (p, γ). The
idea is to let p determine the marginal distribution of x and γ determine how “garbled”
the joint distribution is. We further impose specific functional forms for how p and γ

perform these operations. In particular, let πi denote the marginal probability that x = i,
i = 0, 1, ...n. Let f and g denote two distinct distributions over x, where fi and gi denote
the probability that x = i for the two distributions, respectively. Then, we assume that for
p ∈ [0, 1],

Pi(p) = p fi + (1− p)gi. (11)

Hence, the marginal distribution of x, π(p), is a convex combination of f and g, with the
agent determining the weights. For this reason, Grossman and Hart (1983) refer to (11) as
a “spanning condition”. In the original formulation of our model, where n = 1, f and g
are degenerate distributions. Specifically, f produces x = 1 with probability one whereas
g produces x = 0 with probability one, or f1 = g0 = 1, f0 = g1 = 0.

To continue, define q as the marginal distribution of y, with qj > 0 denoting the proba-
bility that y = j, j = 0, 1, ..., m. We have now described the marginal distributions of x and
y. The role of γ is to determine their joint distribution. To do so, let A =

[
aij
]
(n+1)×(m+1)

denote an (n + 1)× (m + 1) matrix in which all the rows and columns sum to zero. Then,
a joint distribution where (x, y) = (i, j) occurs with probability

πi(p)qj + aij

20Let 0 ≤ i1 < i2 ≤ n and 0 ≤ j1 < j2 ≤ m. A correlation increasing transformation adds the same
probability mass to (x, y) = (i1, j1) and (x, y) = (i2, j2) while deducting it from (i1, j2) and (i2, j1).
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satisfies the property that the marginal distributions of x and y are π(p) and q, respec-
tively. Of course, feasibility still dictates that πi(p)qj + aij ∈ [0, 1] for all (i, j). Now, our
final assumption is that the joint probability that (x, y) = (i, j) is determined by

Pij(p, γ) = (1− γ)πi(p)qj + γ
(
πi(p)qj + aij

)
. (12)

Hence, the joint probability spans πi(p)qj (independence) and πi(p)qj + aij (non-independence),
with the weights determined by γ. Thus, in light of conditions (11) and (12), we refer to
the model as the double-spanning model.

Simplifying yields
Pij(p, γ) = πi(p)qj + γaij,

which is perhaps more directly comparable to our original formulation of the 2× 2 model.
In that model, aij = 1 if i = j and aij = −1 if i 6= j. Note that γ need not necessarily be
positive. Instead, the feasible set of (p, γ) pairs must satisfy p ∈ [0, 1] and Pij(p, γ) ∈ [0, 1]
for all (i, j). Finally, values of γ close to zero garbles the joint distribution by making it
appear more like the noisy distribution in which x and y are independent. Hence, the
Blackwell argument from the previous section applies in the benchmark model where γ

is considered exogenous. Thus, Corollary 1 extends to any n ≥ 1 and m ≥ 1. Note that
this holds true even without further assumptions on the primitives f , g, and A.

Given (11), the joint distribution can also be written as

Pij(p, γ) = (p fi + (1− p)gi) qj + γaij.

The technical importance of the double-spanning assumption now becomes clear. In par-
ticular, the agent’s expected utility from income is linear in his action, (p, γ), regardless
of his risk preferences. Thus, the first-order approach is valid as long as c(p, γ) is convex.

We next turn to a generalization of the correlation dampening results in Section 3.2.
Thus, we consider the standard model in which the principal cares directly only about x.
To fix ideas, it is natural to assume that the expected value of x is increasing in p, although
this assumption plays no formal role in the following. As before, we assume both parties
are risk neutral and that the agent is protected by limited liability.

For any interior (p, γ) action, the incentive compatibility constraints with respect to p

40



and γ are

∑
i

∑
j
( fi − gi) qjwij = cp

∑
i

∑
j

aijwij = cγ.

These constraints are useful in calculating implementation costs. Consider any contract[
wij
]
(n+1)×(m+1) that is feasible, i.e. satisfies incentive compatibility. The expected wage

costs to the principal are

E[w|p, γ] = ∑
i

∑
j

[
(p fi + (1− p)gi) qj + γaij

]
wij

= p ∑
i

∑
j
( fi − gi) qjwij + γ ∑

i
∑

j
aijwij + ∑

i
giqjwij,

or
E[w|p, γ] = pcp + γcy + ∑

i
giqjwij. (13)

The first two terms are the same for all feasible contracts. Hence, the principal’s problem
is equivalent to minimizing the last term, subject to incentive compatibility. Due to the
limited liability constraint, the last term is non-negative. At best, it can be made to equal
zero.

Imagine now that there is some value of x, i∗, for which gi∗ = 0 but fi∗ > 0. In words,
the distribution g produces x = i∗ with probability zero. In the 2× 2 model, i∗ = n = 1.
Imagine moreover that there exists an incentive compatible contract that pays wij = 0
whenever i 6= i∗. Only if x = i∗ will the agent possibly be paid, depending on j. Under
these assumptions it holds that giqjwij = 0 for all (i, j). Thus, the last term in (13) is zero
and the contract must be optimal.

Proposition 8 Fix some interior (p, γ) action to be implemented. Assume that there exists some
i∗ for which gi∗ = 0 but fi∗ > 0. Assume moreover that there is a feasible contract for which
wij = 0 whenever i 6= i∗. Then, implementations costs are

K(p, γ) = pcp + γcγ. (14)
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It is instructive to compare Proposition 8 to Proposition 3 in which the optimal contract
is characterized in the 2× 2 model. In that setting, we reduced the incentive compatibility
constraints to

w11 − w01 = cp + (1− q)cγ

w10 − w00 = cp − qcγ.

Thus, there exists a contract that pays strictly positive wages only when x = i∗ = 1 if and
only if cp + (1− q)cγ > 0 and cp − qcγ > 0. We imposed these assumptions in Section 3.2
and used them to establish that implementation costs in that case take the exact same form
as in (14). Thus, Proposition 8 describes a generalization of the environment examined in
Section 3.2. Since implementation costs are exactly the same, it follows that all the results
in Section 3.2 remains valid under the assumptions in Proposition 8.

Corollary 3 Given the assumptions in Proposition 8, the results in Section 3.2 remain valid for
any n ≥ 1, m ≥ 1.

To understand when a contract of the form assumed in Proposition 8 exists, note that
the incentive compatibility constraints simplify to

∑
j

fi∗qjwi∗ j = cp

∑
j

ai∗ jwi∗ j = cγ,

since gi∗ = 0 and wij = 0 if i 6= i∗. If pay is strictly positive only in states (i∗, j′) and
(i∗, j′′), j′ 6= j′′, then the constraints reduce to

fi∗qj′wi∗ j′ + fi∗qj′′wi∗ j′′ = cp

ai∗ j′wi∗ j′ + ai∗ j′′wi∗ j′′ = cγ.

Under the assumption that ai∗ j′qj′′ − ai∗ j′′qj′ 6= 0, these can be solved for

wi∗ j′ =
−cpai∗ j′′ + cγ fi∗qj′′

fi∗
(

ai∗ j′qj′′ − ai∗ j′′qj′
)

wi∗ j′′ =
cpai∗ j′ − cγ fi∗qj′

fi∗
(

ai∗ j′qj′′ − ai∗ j′′qj′
) .
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Of course, this is an admissible solution if and only if both are positive. Thus, pick j′

and j′′ in such a way that ai∗ j′ > 0 and ai∗ j′′ < 0. Such j′ and j′′ exists because the sum
of ai∗ j over j is zero. Then, the denominators are strictly positive. Both numerators are
likewise strictly positive if cp > 0 and |cγ| is small. Recall that these conditions fit with
those imposed in Section 3.2. In fact, in the 2× 2 model we have i∗ = 1 and fi∗ = 1. Let
i′ = 1 and i′′ = 0, in which case ai∗ j′ = a11 = 1, ai∗ j′′ = a10 = −1, qj′ = q and qj′′ = 1− q.
Then, we see that w11 = cp + (1− q)cγ and w10 = cp − qcγ, both of which are positive if
cp > 0 and |cγ| is small.

Proposition 9 Assume that there exists some i∗ for which gi∗ = 0 but fi∗ > 0. Then, for any
interior (p, γ) there exists a feasible contract with wij = 0 whenever i 6= i∗ if cp > 0 and |cγ| is
small.

6 Conclusion

The informativeness Principle is a very powerful tool in incentive theory. Yet, it could eas-
ily be over-interpreted, in particular when the information structure is endogenous. Our
approach shows that when the agent can control the correlation of the his performance
with external indicators, it becomes harder for the principle to rely on such extraneous in-
formation to reduce agency costs. A main insight is that in general the principal is better
off attenuating correlation in the optimal contract, or even giving up the use of external
indicators when the agent can freely choose correlation on top of effort level. Our ap-
proach also offers new reduced forms for several very different moral hazard problems.
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A Proofs

A.1 Proof of Corollary 2

Recall that implementation costs are

C(p, γ) =


(

p− γ
1−q

)
cp if γ ≥ 0(

p + γ
q

)
cp if γ ≤ 0

.

Note that C(p, γ) is differentiable with respect to γ, except at γ = 0. The derivative is

Cγ(p, γ) =


(

p− γ
1−q

)
cpγ − cp

1−q if γ > 0(
p + γ

q

)
cpγ +

cp
q if γ < 0

.

Since cp > 0 by assumption, the derivative can be written

Cγ(p, γ) =


cp

1−q (p(1− q)− γ)
cpγ

cp
− 1 if γ > 0

cp
q (pq + γ)

cpγ

cp
+ 1 if γ < 0

.

Note that Cγ is larger as γ approaches zero from the left than from the right. Thus, C(p, γ)

can never have a local minimum at γ = 0, although it may have a local maximum there.
The second derivative is

Cγγ(p, γ) =


cp

1−q

(
(p(1− q)− γ) ∂

∂γ
cpγ

cp
− cpγ

cp

)
if γ > 0

cp
q

(
(pq + γ) ∂

∂γ
cpγ

cp
+

cpγ

cp

)
if γ < 0

.

If C(p, γ) attains a stationary point at γ > 0 then cpγ

cp
> 0 is necessary. By log-concavity

∂
∂γ

cpγ

cp
≤ 0. Hence, C(p, γ) is locally strictly concave at such a point. Thus, there can be at

most one stationary point for γ > 0. Note also that log-concavity implies that cpγ

cp
> 0 for

all smaller levels of correlation. Thus, there can be no stationary point at γ < 0. A similar
argument show that if there is a stationary point at γ < 0 then it must be a maximum
and there can be no stationary point at γ > 0. Finally, if C(p, γ) has a local maximum
at γ = 0 then there can be no γ 6= 0 for which there is a stationary point because at
least one such hypothetical stationary point much be a minimum. However, this requires
convexity, which we ruled out before.
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In summary, it has been shown that C(p, γ) can have no interior minimum and at most
one interior maximum as a function of γ. Thus, C(p, γ) is either increasing, decreasing,
or single-peaked. This completes the proof.
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