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1 Introduction

This paper documents a novel bidding pattern found in multiple datasets describing public

procurement auctions held in Japan: the density of bids just above the winning bid is very

low. Put differently, winning bids tend to be isolated. We show that these missing bids

indicate non-competitive behavior under a general class of asymmetric information models.

Indeed, this missing mass of bids makes it a profitable stage-game deviation for bidders

to increase their bids. Motivated by these findings, we develop structural tools that allow

us to quantify the extent of non-comptetitive behavior in the data. Finally, we propose

an explanation for why this bidding pattern arises, and discuss what it suggests about the

challenges of sustaining collusion.

Our data comes from two separate datasets of public procurement auctions taking place

in Japan. Our first data-set, already analyzed by Kawai and Nakabayashi (2014), assembles

roughly 90,000 national-level auctions for public work projects taking place between 2001

and 2006. Our second dataset, previously studied by Chassang and Ortner (2016), assem-

bles approximately 1,500 city-level auctions for public works projects taking place between

2007 and 2014. In both cases, we are interested in the distribution bidders’ margins of

victory/defeat. In other terms, for every (bidder, auction) pair, we are interested in the

difference ∆ between the bidder’s own bid and the most competitive bid among this bidder’s

opponents, normalized by the reserve price. When ∆ < 0, the bidder won the auction.

When ∆ > 0 the bidder lost. The finding motivating this paper is summarized by Figure 1,

which plots the distribution of margins of victory ∆ in the sample of national-level auctions.

The distribution follows a truncated bell curve, except that there is a visible gap in the

distribution at ∆ = 0.

Our primary goal for this paper is to clarify the sense in which this gap is suspicious. For

this purpose, we consider a fairly general model of repeated play in first-price procurement

auctions. A group of firms repeatedly participates in first-price procurement auction. Firms’
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Figure 1: Distribution of margins of victory ∆

costs can be serially correlated over time, and we allow for general asymmetric information.

We are interested in charaterizing the extent to which players’ behavior can be rationalized

as competitive, in the sense of being stage-game optimal at the player level.

Our first set of results identifies conditions that any dataset arising from a competitive

equilibrium must satisfy. In any competitive equilibrium, firms must not find it profitable

to increase their bids. We show that this incentive constraint implies that the elasticity of

firms’ counterfactual demand (i.e., the probability of winning an auction at any given bid)

must bounded above by -1. This condition is not satisfied in our data: since winning bids are

isolated, the elasticity of counterfactual demand is approximately zero for some industrial

sectors in our data.

Our second set of results builds on these observations to quantify the extent of non-

competitive behavior in the data. We propose a new measure of collusion corresponding to

the smallest share of the data that must be excluded, in order to rationalize the remaining
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data as competitive. We show that this program is computationally tractable and delineate

how different patterns of demand map into restrictions on the set of possibly competitive

histories.

Finally, we propose a tentative explanation for missing bids, and why they could plausibly

arise as an implication of collusive behavior. This is not entirely obvious because missing

bids are not rationalized by standard models of tacit collusion (i.e., Rotemberg and Saloner

(1986), Athey and Bagwell (2001, 2008)). In these models, the cartel’s main concern is

to incentivize losers not to undercut the winning bid. The behavior of designated winners

is stage game optimal. We show that missing bids arise as an optimal repsonse to noise.

Keeping the designated winner’s bid isolated ensures that small trembles in play do not cause

severe misallocations.

Our paper relates primarily to the literature on cartel detection.1 Porter and Zona (1993,

1999) show that suspected cartel members use different bidding strategies than non-cartel

members. Bajari and Ye (2003) design a test of collusion based on excess correlation across

bids. Porter (1983), Ellison (1994) and Chassang and Ortner (2016) build on classic theories

of repeated games (i.e., Green and Porter (1984), Rotemberg and Saloner (1986)) to detect

collusion. Conley and Decarolis (2016) propose a test to detect collusive bidders competing

in average-price auctions. Kawai and Nakabayashi (2014) analyze auctions with re-bidding,

and exploit correlation patterns in bids across stages to detect collusion. We provide a new

test of collusion that is robust to arbitrary information structures, and that allows us to

quantify the extent of collusion in the data.

Our paper also relates to a set of papers studying the internal organization of cartels.

Asker (2010) studies stamp auctions, and analyses the effect of a particular collusive scheme

on non-cartel bidders and sellers. Pesendorfer (2000) studies the bidding patterns for school

milk contracts and compares the collusive schemes used by strong cartels and weak cartels

(i.e., cartels that used transfers and cartels that didn’t). Clark and Houde (2013) document

1See Harrington (2008) for a recent survey of this literature.
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the collusive strategies used by the retail gasoline cartel in Quebec. We add to this literature

by documenting a novel bidding pattern, and argue that this bidding behavior reflects some

of the frictions that cartels face.

The paper is structured as follows. Section 2 describes our data and documents the

bidding patterns that motivate our paper. Section 3 introduces our framework. Section 4

presents our main theoretical findings: we show that missing bids are inconsistent with com-

petition, and derive bounds on the maximum share of competitive histories consistent with

the data. Section 5 illustrates our approach with data. Section 6 proposes an interpretation

of missing bids as a feature of optimal collusive behavior in noisy environments. Proofs are

collected in Appendix A unless mentioned otherwise.

2 Motivating Facts

We draw on two sets of data. The first dataset, analyzed in Kawai and Nakabayashi (2014),

consists of roughly 90,000 auctions held between 2001 and 2006 by the Ministry of Land,

Infrastructure, Transport and Tourism in Japan (the Ministry). The auctions are first-price

auctions with secret reserve price, and re-bidding in case there is no successful winner. The

auctions invlove construction projects, the median winning bid is USD 600K, and the median

participation is 10. Our second dataset, analyzed in Chassang and Ortner (2016), consists of

roughly 1,500 auctions held between 2007 and 2014 by the city of Tsuchiura in the Ibaraki

prefecture. Projects are allocated using a standard first-price auction with public reserve

price. The median winning bid is USD 130K, and the median participation is 4. In both

cases, the bids of all participants are publicly revealed after the auctions, and reported in

our data.

For any given firm, we investigate the distribution of

∆ =
own bid - most competitive bid

reserve price
.
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The value ∆ represents the margin by which a bidder wins or lose an auction. If ∆ < 0 the

bidder won, if ∆ > 0 he won. At ∆ = −0, the bidder barely won.

The left panel of Figure 2 plots the distribution of bid differences ∆ for a large firm in

the sample of auctions held by the Ministry. The right panel aggregates bid differences over

the sample firms in the data. The mass of missing bids around a difference of 0 is starkly

(a) single large firm (b) all firms

Figure 2: Distribution of bid-difference ∆ – national data.

visible. This pattern is not limited to a particular firm and remains clearly noticeable when

aggregating over all auctions in our sample.2

Figure 3 presents plots the distribution of ∆ for auctions held in Tsuchiura. The left

panel uses all the bids in the sample. Again, we see a significant mass of missing bids around

zero. The right panel shows that the pattern all but disappears when we exclude winning

bids from the analysis.

Our objective in this paper is to: 1) formalize why this pattern is suspicious; 2) delineate

what it implies about bidding behavior and the competitiveness of auctions in our sample; 3)

propose a possible explanation for why this behavior arises as a feature of optimal bidding.

To do so we use a model of repeated auctions.

2Note that the distribution of normalized bid-differences is skewed to the right since the most competitive
alternative bid is a minimum over other bidders’ bids.
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(a) all firms (b) non-winners

Figure 3: Distribution of bid-difference ∆ – city data.

3 Framework

We consider a dynamic setting in which, at each period t ∈ N, a buyer needs to procure

a single project. The auction format is a first-price auction with reserve price r, which we

normalize to r = 1.

In each period t ∈ N, a set N̂t ⊂ N of bidders is able to participate in the auction, where

N is the overall set of bidders. We think of this set of participating firms as those eligible

to produce in the current period.3 The sets of eligible bidders can vary over time.

Realized costs of production for eligible bidders i ∈ N̂t are denoted by ct = (ci,t)i∈N̂t
.

Each bidder i ∈ N̂t submits a bid bi,t. Profiles of bids are denoted by bt = (bi,t)i∈N̂t
. We let

b−i,t ≡ (bj,t)j 6=i denote bids from firms other than firm i, and define ∧b−i,t ≡ minj 6=i bj,t to

be the lowest bid among i’s opponents at time t. The procurement contract is allocated to

the bidder submitting the lowest bid at a price equal to her bid.

In the case of ties, we follow Athey and Bagwell (2001) and let the bidders jointly de-

termine the allocation. This simplifies the analysis but requires some formalism (which can

be skipped at moderate cost to understanding). We allow bidders to simultaneously pick

numbers γt = (γi,t)i∈N̂t
with γi,t ∈ [0, 1] for all i, t. When lowest bids are tied, the allocation

3See Chassang and Ortner (2016) for a treatment of endogenous participation by cartel members.
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to a lowest bidder i is

xi,t =
γi,t∑

{j∈N̂t s.t. bj,t=mink bk,t} γj,t
.

Participants discount future payoffs using common discount factor δ < 1. Bids are

publicly revealed at the end of each period.

Costs. We allow for costs that are serially correlated over time, and that may be correlated

across firms within each auction. Denoting by 〈., .〉 the usual dot-product we assume that

costs take the form

ci,t = 〈αi, θt〉+ εi,t > 0 (1)

where

• parameters αi ∈ Rk are fixed over time;

• θt ∈ Rk may be unknown to the bidders at the time of bidding, but is revealed to

bidders at the end of period t; we assume that θt follows a Markov chain;

• εi,t is i.i.d. with mean zero conditional on θt.

In period t, bidder i obtains profits

πi,t = xi,t × (bi,t − ci,t).

Note that costs include both the direct costs of production and the opportunity cost of

backlog.

The sets N̂t of bidders are independent across time conditional on θt, i.e.

N̂t|θt−1, N̂t−1, N̂t−2 . . . ∼ N̂t|θt−1.

Information. In each period t, bidder i gets a signal zi,t that is conditionally i.i.d. given

(θt, (cj,t)j∈N̂t
). This allows our model to nest many informational environments, including

8



asymmetric information private value auctions, common value auctions, as well as complete

information. Bids bt are observable at the end of the auction.

Transfers. Bidders are able to make positive transfers from one to the other at the end of

each period. A transfer from i to j is denoted by Ti→j,t ≥ 0. Transfers are costly, and we

denote by K
(∑

j 6=i Ti→j,t

)
the cost to player i of the transfers she makes. We assume that

K is positive, increasing and convex. Altogether, flow realized payoffs to player i in period

t take the form

ui,t = πi,t +
∑
j 6=i

Tj→i,t −K

(∑
j 6=i

Ti→j,t

)
.

Solution Concepts. The public history ht at period t takes the form

ht = (θs−1,bs−1,Ts−1)s≤t,

where Ts are the transfers made in period s. Our solution concept is perfect public Bayesian

equilibrium (σ, µ) (Athey and Bagwell (2008)), with strategies

σi : ht 7→ (bi,t(zi,t), (Ti→j,t(zi,t,bt))j 6=i),

where bids bi,t(zi,t) ∈ ∆([0, r]) and transfers (Ti→j,t(zi,t,bt))j 6=i ∈ ∆(Rn−1) depend on the

public history and on the information available at the time of decision making. We let H

denote the set of all public histories.

We emphasize the class of competitive equilibria, or in this case Markov perfect equilibria

(Maskin and Tirole, 2001). In a competitive equilibrium, players condition their play only

on payoff relevant parameters.

Definition 1 (competitive strategy). We say that (σ, µ) is competitive (or Markov perfect)

if and only if ∀i ∈ N and ∀ht ∈ H, σi(ht, zi,t) depends only on (θt−1, zi,t).
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We say that a strategy profile (σ, µ) is a competitive equilibrium if it is a perfect public

Bayesian equilibrium in competitive strategies.

We note that in a competitive equilibrium, firms must be playing a stage-game Nash

equilibrium at every period; that is, firms must play a static best-reply to the actions of

their opponents. Generally, an equilibrium may include periods in which firms collude and

periods in which they compete. This leads us to define competitive histories.

Competitive histories. Fix a perfect public Bayesian equilibrium (σ, µ). Given a public

history ht ∈ H and firm i’s private signal zi,t, let hi,t = (ht, zi,t). Note that, under perfect

public Bayesian equilibrium (σ, µ), firm i’s strategy at time t depends on hi,t.

Definition 2 (competitive histories). Fix an equilibrium (σ, µ) and a history hi,t = (ht, zi,t).

We say that (σ, µ) is competitive at hi,t if play at hi,t is stage-game optimal for firm i.

4 Inference

In this section, we show how to exploit equilibrium conditions at different histories to obtain

bounds on the share of competitive histories. The first step is to obtain aggregates of

counterfactual demand that can be estimated from data, even though the players’ residual

demands can vary with the history.

4.1 Counterfactual demand

Fix a perfect public Bayesian equilibrium (σ, µ). For all public histories hi,t = (ht, zi,t) and

all bids b′ ∈ [0, r], player i’s counterfactual demand at hi,t is

Di(b
′|hi,t) ≡ probσ,µ(∧b−i,t > b′|hi,t).
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For any finite set of histories H = {(ht, zi,t)} = {hi,t}, and any scalar ρ ∈ (−1,∞), define

D(ρ|H) ≡
∑
hi,t∈H

1

|H|
Di((1 + ρ)bi,t|hi,t)

to be the average counterfactual demand for histories in H.

Fix a set of histories H = {(ht, zi,t)} = {hi,t}, and define

D̂(ρ|H) ≡
∑
hi,t∈H

1

|H|
1∧b−i,t>(1+ρ)bi,t .

We say that set H is adapted to the players’ information if and only if the event hi,t ∈ H is

measureable with respect to player i’s information at time t prior to bidding. For instance,

the set of auctions for a specific industry with reserve prices above a certain threshold is

adapted. In contrast, the set of auctions in which the margin of victory is below a certain

level is not.

Theorem 1. Consider a sequence of adapted sets H such that |H| → ∞. Under any perfect

public Bayesian equilibrium (σ, µ), with probability 1, D̂(ρ|H)−D(ρ|H)→ 0.

In other words, in equilibrium, the sample residual demand conditional on an adapted

set of histories converges to the true subjective aggregate conditional demand. This result

can be viewed as a weaking of the equilibrium requirement that beliefs be correct. It may

fail in settings with sufficiently strong non-common priors.

The ability to legitimately vary the conditioning set H lets us explore the competitiveness

of auctions in particular subsettings of interest.

4.2 A Test of Non-Competitive Behavior

The pattern of bids illustrated in Figures 1, 2 and 3 is striking. Our first main result shows

that its more extreme forms are inconsistent with competitive behavior.
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Proposition 1. Let (σ, µ) be a competitive equilibrium. Then,

∀hi,
∂ logDi(b

′|hi)
∂ log b′

∣∣b′=b+i (hi)

≤ −1, (2)

∀H, ∂ logD(ρ|H)

∂ρ
∣∣ρ=0+

≤ −1. (3)

In other terms, under any non-collusive equilibrium, the elasticity of counterfactual de-

mand must be less than -1 at every history. The data presented in the left panel of Figure

2 contradicts the results in Proposition 1. Note that for every i ∈ N and every hi,

Di(b
′|hi) = probσ(b′ − ∧b−i < 0|hi)

= probσ(b′ − bi + ∆i < 0|hi),

where we used ∆i = bi−∧b−i

r
= bi − ∧b−i (since we normalized r = 1). Since the density

of ∆i at 0 is essentially 0 for some sets of histories in our data, the elasticity of demand is

approximately zero as well in these histories.

Proof. Consider a competitive equilibrium (σ, µ). Let ui denote the flow payoff of player i,

and let V (hi,t) ≡ Eσ,µ
(∑

s≥t δ
s−tui,s

∣∣hi,t) denote her discounted expected payoff at history

hi,t = (ht, zi,t).

Let bi,t = b be the bid that bidder i places at history hi,t. Since bi,t = b is an equilibrium

bid, it must be that for all bids b′ > b,

Eσ,µ
[
(b− ci,t)1∧b−i,t>b + δV (hi,t+1)

∣∣hi,t, bi,t = b
]

≥ Eσ,µ
[
(b′ − ci,t)1∧b−i,t>b′ + δV (hi,t+1)

∣∣hi,t, bi,t = b′
]

Since (σ, µ) is competitive, Eσ,µ[V (hi,t+1)|hi,t, bi,t = b] = Eσ,µ[V (hi,t+1)|hi,t, bi,t = b′]. Hence,
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we must have

bDi(b|hi,t)− b′Di(b
′|hi,t) = Eσ,µ

[
b1∧b−i,t>b − b′1∧b−i,t>b′

∣∣hi,t]
≥ Eσ,µ

[
ci,t(1∧b−i,t>b − 1∧b−i,t>b′)

∣∣hi,t] ≥ 0, (4)

where the last inequality follows since ci,t ≥ 0. Inequality (4) implies that, for all b′ > b,

logDi(b
′|hi)− logDi(b|hi)

log b′ − log b
≤ −1.

Inequality (2) follows from taking the limit as b′ → b. Inequality (3) follows from summing

(4) over histories in H, and performing the same computations. �

As the proof highlights, this result exploits the fact that in procurement auctions, zero is

a natural lower bound for costs (see inequality (4)). In contrast, for auctions where bidders

have a positive value for the good, there is no obvious upper bound to valuations to play

that role. One would need to impose an ad hoc upper bound on values to establish similar

results.

An implication of Proposition 1 is that, in our data, bidders have a short-term incentive

to increase their bids. To keep participants from bidding higher, for every ε > 0 small, there

exists ν > 0 and a positive mass of histories hi,t = (ht, zi,t) such that,

δEσ,µ
[
V (hi,t+1)

∣∣hi,t, bi(hi,t)]− δEσ,µ[V (hi,t+1)
∣∣hi,t, bi(hi,t)(1 + ε)

]
> ν. (5)

In other terms, equilibrium (σ, µ) must give bidders a dynamic incentive not to overcut the

winning bid.

Proposition 1 proposes a simple test of whether a dataset H can be generated by a

competitive equilibrium or not. We now refine this test to obtain bounds on the minimum

share of non-competitive histories needed to rationalize the data. We begin with a simple
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loose bound and then propose a more sophisticated program resulting in tighter bounds.

4.3 A simple bound on the share of competitive histories

Fix a perfect public Bayesian equilibrium (σ, µ) and a finite set of histories H. Let Hcomp ⊂ H

be the set of competitive histories in H, and let Hcoll = H\Hcomp. Define scomp ≡ |Hcomp|
|H| to

be the fraction of competitive histories in H.

For all histories hi,t = (ht, zi,t) and all bids b′ ≥ 0, player i’s counterfactual revenue at

hi,t is

Ri(b
′|hi,t) ≡ b′Di(b

′|hi,t).

For any finite set of histories H and scalar ρ ∈ (−1,∞), define

R(ρ|H) ≡
∑
hi,t∈H

1

|H|
(1 + ρ)bi,tDi((1 + ρ)bi,t|hi,t)

to be the average counterfactual revenue for histories in H. Our next result builds on

Proposition 1 to derive a bound on scomp.

Proposition 2. The share scomp of competitive auctions is such that

scomp ≤ 1− sup
ρ>0

R(ρ|H)−R(0|H)

ρ
.

Proof. For any ρ > 0,

1

ρ
[R(ρ|H)−R(0|H)] = scomp

1

ρ

[
R(ρ|Hcomp)−R(0|Hcomp)

]
+ (1− scomp)

1

ρ

[
R(ρ|Hcoll)−R(0|Hcoll)

]
≤ 1− scomp.

The last inequality follows from two observations. First, since the elasticity of counterfactual
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demand is bounded above by −1 for all competitive histories (Proposition 1), it follows that

R(ρ|Hcomp)−R(0|Hcomp) ≤ 0. Second,

1

ρ
[R(ρ|Hcoll)−R(0|Hcoll)] ≤ 1

ρ
((1 + ρ)R(0|Hcoll)−R(0|Hcoll)) = R(0|Hcoll) ≤ r = 1.

�

In words, if total revenue in histories H increases by more than κ × ρ when bids are

uniformly increased by (1 + ρ), the share of competitive auctions in H is bounded above by

1− κ.

For each each ρ ∈ (−1,∞), define

R̂(ρ|H) ≡
∑
hi,t∈H

1

|H|
(1 + ρ)bi,t1∧b−i,t>(1+ρ)bi,t .

Note that R̂(ρ|H) is the sample analog of counterfactual revenue. A result identical to

Theorem 1 establishes that R̂(ρ|H) is an unbiased estimate of R(ρ|H), whenever set H is

adapted. We have the following corollary to Proposition 2.

Corollary 1. Suppose there exists ρ > 0 and κ > 0 such that

R̂(ρ|H)− R̂(0|H)

ρ
≥ 2κ.

Then, with probability at least 1− 4 exp(−(ρκ2)|H|
8

), scomp ≤ 1− κ.

Corollary 1 allows us to obtain an estimate on the share of competitive histories.

4.4 Tight inference

We now seek to establish tight bounds on the set of competitive histories. We expand on

Section 4.3 by fully exploiting the empirical content of upwards deviations. In addition we

15



consider the empirical content of downward deviations.

Indeed, although the residual demand in our data is inelastic immediately around win-

ning bids, it is very elastic for large downward deviations. Moderate drops in price (a few

percentage points) lead to large increases in the likelihood of winning the contract. This

suggests that jointly considering upward and downward deviations will provide a tighter

bound on the share of competitive histories than the bound in Proposition 2 and Corollary

1.

For simplicity, we assume that players interact in a private value environment. Take as

given an adapted set of histories H and scalars (ρn){n=−n,...,0,...,n}, with ρn ∈ (−1,∞), ρ0 = 0

and ρn < ρn′ for all n′ > n. For each history hi,t ∈ H, let dhi,t,n = Di((1 + ρn)bhi,t |hi,t). That

is, (dhi,t,n){n=−n,...,0,...,n} is firm i’s subjective counterfactual demand at history hi,t if it had

set a bid equal to (1 + ρn)bi,t. For each n, define

Dn ≡
1

|H|
∑
hi,t∈H

dhi,t,n and D̂n ≡
1

|H|
∑
hi,t∈H

1(1+ρn)bhi,t<∧b−i,hi,t
.

Under perfect Bayesian equilibrium, subjective counterfactual demand at competitive

histories must satisfy four types of constraints: feasibility constraints, individual optimal-

ity constraints, aggregate consistency constraints, and ad hoc economic plausibility con-

straints. Formally, for every history h ∈ H there must exist costs ch and subjective demands

(dh,n)n=−n,··· ,n satisfying the following conditions

Feasibility. Costs and beliefs must be feasible, satisfying

∀h ∈ H, ch ∈ [0, bh]; ∀n, dh,n ∈ [0, 1]; ∀n, n′ > n, dh,n ≥ dh,n′ . (6)

Individual optimality. Bidding bh must be optimal, given cost and subjective believes:

∀n, [(1 + ρn)bh − ch] dh,n ≤ ((1 + ρ0)bh − ch)dh,0 (7)
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Aggregate consistency. Bidders’ subjective demand must be consistent with aggregate

data. Given a tolerance level T > 0, aggregate subjective demand at histories h ∈ H

is consistent with the data if and only if

∀n, Dn =
1

|H|
∑
h∈H

dh,n ∈
[
D̂n − T, D̂n + T

]
(8)

The aggregate consistency conditions must hold since, by Theorem 1, for all n D̂n is

an unbiased estimator of aggregate counterfactual demand Dn = 1
|H|
∑

h∈H dh,n.

Economic plausibility. In addition to incentive compatibility and aggregate consistency,

one may be able to impose plausible ad hoc constraints on the bidder’s economic

environment at each history h. We focus on two intuitive constraints on the bidder’s

costs ch and interim beliefs (dh,n):

bh
ch
≤ 1 +m (9)

and

∀n,
∣∣∣∣log

dh,n
1− dh,n

− log
Dn

1−Dn

∣∣∣∣ ≤ k (10)

where m ∈ [0,+∞] is a maximum markup, and k ∈ [0,+∞) provides an upper bound

to the information contained in any signal.4

From now on, we assume that, for each h ∈ H, there exists (dh,n) and a cost ch ∈

[bh/(1 +m), bh] satisfying (6), (7) and (10).5

4To see why, that that log
dh,n

1−dh,n
= log prob(Z|h)

prob(¬Z|h) for Z the event that ∧b−i > (1 + ρn)bh. Hence, k is a

bound on the log-likelihood ratio of signals that bidders get. One focal case in which k = 0 is that of i.i.d.
types.

5If this was not true for some history h ∈ H, then history h could not be rationalized by a competitive
model that satisfies conditions (9) and (10).
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The following Proposition shows that, if the histories in H are all competitive, then with

high probability the conditions above all hold simultaneously.

Proposition 3. Consider an economic environment in which conditions (9) and (10) hold.

There exists α > 0 and β > 0 such that, for all PBEs (σ, µ) and all adapted sets H, whenever

(σ, µ) is competitive at histories h ∈ H, then with probability at least 1 − β exp(−α|H|),

conditions (6), (7) and (8) hold simultaneously.

We define the share of non-competitive histories as the minimum share of histories that

must be excluded from the data so that the remaining histories are consistent with compet-

itive play. Formally:

Definition 3 (share of competitive histories). For any set of histories H, we define the

maximum share of competitive histories in H as

ŝcomp ≡
1

|H|
max

pC=(pCh )h∈H∈[0,1]|H|

∑
h∈H

pCh (11)

such that there exists ((dh,n), ch)h∈H satisfying history-level constraints (6), (7), (9), and

modified aggregate constraints and information constraints

∀n, 1∑
h∈H p

C
h

∑
h∈H

pCh dh,n ∈ [D̂n(pC)− T, D̂n(pC) + T ] (8′)

∀n,

∣∣∣∣∣log
dh,n

1− dh,n
− log

D̂n(pC)

1− D̂n(pC)

∣∣∣∣∣ ≤ k (10′)

where

∀n, D̂n(pC) ≡ 1∑
h∈H p

C
h

∑
h∈H

pCh 1(1+ρn)bh<∧b−i,h

Note that Program (11) allows us to discard fractions ph ∈ [0, 1] of each history h ∈ H.

As the following result shows, this convexification of the problem implies that ŝcomp is an

18



upper bound on the true share scomp of competitive histories in H.

Corollary 2. Consider a public perfect Bayesian equilibrium (σ, µ) and an economic envi-

ronment in which conditions (9) and (10) hold. Let H be an adapted set of histories such

that a share scomp ∈ (0, 1] is competitive. Then, there exists α > 0 and β > 0 such that, with

probability at least 1− β exp(−αscomp|H|), ŝcomp ≥ scomp.

The proof of Corollary 2 shows that constants α and β are equal to T 2/2 and 2(1+n+n),

respectively. Corollary 2 can be used to derive the following statistical test. Let H0 =

scomp ≥ s for some s ∈ (0, 1], and let H1 = scomp < s. Pick the tolerance level T such that

1− β exp (−αs|H|) = 0.05, where α = T 2/2 and β > 0 are the constants in the statement of

Corollary 2. We then reject the null hypothesis if ŝcomp < s.

A relaxed program. A difficulty with Problem (11) is that the optimization variable

pC belongs to [0, 1]|H| and the set of constraints is non-convex, making it computationally

intractable. We now propose a convex relaxation that is more amenable to computation.

For each history h ∈ H, let

(yh,n)n=−n,...,n ≡ (1(1+ρn)bh<∧b−i,h
)n=−n,...,n.

Vector yh records the bidding outcomes of each history h, and can take values in Y ≡

{(0, 0, ..., 0), (1, 0, ..., 0), ..., (1, 1, ..., 1)}. It turns out that ((yh,n))h∈H is a sufficient statistic

of data for Problem (11). As we show now, this allows us to consider solutions pC = (pCh )h∈H

such that pCh = qC(y) for all h ∈ H with yh = y. Indeed, note that for any pC = (pCh )h∈H ,

(D̂n(pC))n=−n,...,n =
1∑
h p

C
h

∑
y∈Y

y × ∑
h|yh=y

pCh


=

1

|H|
∑
y∈Y

y × |{h|yh = y}|qC(y)
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for qC(y) =
∑

h|yh=y p
C
h

|{h|yh=y}| . Looking for solutions of the form q : Y → [0, 1] makes Problem (11)

significantly easier in terms of computation.

Let Z be the set of beliefs zh = (dh,n)n=n,...n such that there exists a cost ch ∈
[

1
1+m

bh, bh
]

satisfying (6) and (7). Let

A(pC) = Πn[D̂n(pC)− T, D̂n(pC) + T ]

denote the set of aggregate constraints. Finally, for any Dn, define

B(Dn, k) ≡
Dn

1−Dn
exp(−k)

1 + Dn

1−Dn
exp(−k)

and B(Dn, k) ≡
Dn

1−Dn
exp(k)

1 + Dn

1−Dn
exp(k)

,

and let

I(pC) = Πn[B(D̂n(pC), k), B(D̂n(pC), k)]

denote the information constraints.

For any function q : Y → [0, 1] define s̃comp(q) ≡ 1
|H|
∑

y∈Y q(y)|{h|yh = y}|, and let

p(q) ∈ [0, 1]|H| be such that, for all h ∈ H, p(q)h = q(yh). For any set C, let Conv(C) denote

the convex hull of C.

Proposition 4. We have that

ŝcomp ≤ max
q:Y→[0,1]

{s̃comp(q) |Conv [Z ∩ I(p(q))] ∩ A(p(q)) 6= ∅} .

5 Case Studies

This Section takes the results of Section 4 to data. We start by using our results to analyze

two collusion cases of firms participating in auctions in our national data that were implicated

by the Japanese Fair Trade Commission (JFTC). The two cases are: (i) prestressed concrete
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providers, and (ii) firms installing electric traffic signs.6 It is worth highlighting that firms

in case (ii) admitted that they were violating anti-trust laws soon after the JFTC started

investigating them. In contrast, firms in case (i) denied the cases against them and the case

went to trial. As it turns out, firms in case (i) continued colluding for some time after the

JFTC launched its investigation.

Figure 4 shows the bidding behavior of implicated firms. The left panels plot the dis-

tribution of ∆ for prestressed concrete providers, before and after the JFTC started its

investigation. Consistent with the fact that firms in this market continued to collude for

a while after the investigation, the after-period features missing bids around bid difference

∆ = 0, but to a lesser extent than the before-period.

The panels on the right plot the same distributions for firms installing electric traffic

signs. Consistent with Proposition 1, the distribution of ∆ has missing mass around zero

only during the non-competitive period.

Next, we apply our results of Section 4.4 to these two markets. We proceed as follows.

First, we fix two downward deviations: ρ−2 = ρ− ∈ (−1, 0) and ρ−1 = limε↑0 ε = 0−, and one

upward deviation ρ1 = ρ+ ∈ (0,∞). Second, we pick mark-up and information constraint

parameters m ≥ 0 and k ≥ 0. Third, for each possible null hypothesis H0 = scomp ≥ s with

s ∈ (0, 1], we pick tolerance level T (s) such that 1 − β exp (−αs|H|) = 0.05, where α > 0

and β > 0 are the constants in the statement of Corollary 2.7 Then, our estimate of the

share of competitive histories in the data is the largest s ∈ (0, 1] such that ŝcomp ≥ s given

tolerance level T (s).

Figure 5 plots our estimate of the share of competitive histories in each of these markets,

before and after prosecution. Auctions in both markets became more competitive in the

period post-investigation. In the case of traffic signs, our estimates suggest that collusion

6See JFTC Recommendation and Ruling #5-8 (2005) for case (ii), and JFTC Recommendation #27-28
(2004) and Ruling #26-27 (2010) for case (i).

7Recall that α = T 2/2 and β = (1 + n+ n).
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Figure 4: Distribution of bid-difference ∆. Left-panel: prestressed concrete. Right-panel:
traffic signs.

stopped completely after the investigation. In contrast, our estimates suggest that there was

still some collusion after the investigation in the market for prestressed concrete.

Lastly, we look at the auctions run by the city of Tsuchiura. Chassang and Ortner (2016)

find evidence consistent with collusion in these auctions. Moreover, they show that the extent

of collusion fell after October 2009, when the city changed its procurement auction format

and introduced price floors.8

Figure 6 plots the distribution of bid differences ∆ for these auctions. The left-panel plots

the distribution for auctions taking place before October 2009, and the right-panel plots the

same distribution for auctions taking place after October 2009. Consistent with Proposition

1 and with the evidence in Chassang and Ortner (2016), auctions before the policy change

8In October 2009, the city of Tsuchiura switched from a standard first-price auction format to a first-price
auction with a minimum price; i.e., an auction in which bids below the minimum price are discarded.
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Figure 5: Share of competitive histories. Parameters: ρ− = −0.01, ρ+ = 0.001 and m = 1.5.

feature a more pronounced “gap” in the distribution of bid differences around ∆ = 0.

(a) Tsuchiura – before policy change (b) Tsuchiura – after policy change

Figure 6: Distribution of bid-difference ∆ in Tsuchiura.

Figure 7 plots our estimates of the share of competitive histories for auctions run in

Tsuchiura, before and after the change in the auction format. Our estimates are broadly

consistent with the idea that the extent of collusion fell after the city introduced price floors

into the auctions.
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Figure 7: Share of competitive histories. Parameters: ρ− = −0.01, ρ+ = 0.001 and m = 1.5.

6 Interpreting Missing Bids

This section has two objectives. First, we want to highlight that the bidding behavior we

observe in our data is not easily explained by standard models of collusion. Second, we put

forward an explanation for the bidding patterns we observe in these two datasets.

Workhorse model. We specialize the model in Section 3 as follows. We assume: (i) costs

are i.i.d. across firms and across periods, (ii) cost realizations are publicly observed by all

firms, and (iii) utility is perfectly transferable.

We denote by Σ the set of Subgame Perfect Equilibria of this game. For any σ ∈ Σ and

any history ht, let

V (σ, ht) = Eσ

[∑
i∈N

∑
s≥0

δsxi,t+s(bi,t+s − ci)
∣∣ht]

denote the total surplus generated by σ at history ht. Define

V ≡ max
σ∈Σ

V (σ, h0)

to be the highest surplus sustainable in equilibrium.
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For any cost realization c = (ci)i∈N , we denote by x∗(c) = (x∗i (c))i∈N the efficient al-

location (i.e., the allocation that assigns the contract to the lowest cost bidder and breaks

ties randomly). We denote by b(1) and b(2) the lowest and second lowest bids. The following

result, which is proved in Chassang and Ortner (2016), characterizes bidding behavior in

any equilibrium that attains V .

Proposition 5. Let σ be an equilibrium that attains V . Then:

(i) equilibrium σ is stationary on-path, and generates surplus V at every history.

(ii) for any cost realization c = (ci)i∈N , the lowest cost bidder wins at bid b∗(c) defined by

b∗(c) ≡ sup

{
b ≤ r :

∑
i∈N

(1− x∗i (c))[b− ci]+ ≤ δV

}
.

(iii) there is no money left on the table under equilibrium σ: b(2) − b(1) ≈ 0 at all periods.

By Proposition 5, the bidding patterns in our data cannot be rationalized by optimal

collusion. In an optimal equilibrium, firms never use strategies under which the winning

bidder has a short-run incentive to overcut the winning bid. Indeed, this would mean that

firms have to spend continuation surplus to provide incentives to the winner not to bid higher.

This creates efficiency losses relative to equilibria in which the winner is given incentives not

to overcut by having the second lowest bid right on top of the winning bid.

As a result, bids will be clustered in an optimal collusive equilibria, and the “money left

on the table” (i.e., the difference between the winning bid and the second lowest bid) will be

negligible. As Figures 1 and 8 show, this is in sharp contrast with the bidding patterns we

observe in our data, under which winning bids are isolated and the money left on the table

is significant.

Missing bids as coordination challenges. The fact that winning bids are isolated im-

plies that the allocation that this bidding behavior induces is robust to trembles or impre-
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Figure 8: Distribution of normalized bid difference b(2) − b(1) – national data.

cisions in the communication among cartel members. We now lay out a simple model to

illustrate how isolated winning bids may emerge as a response to such imperfections.

Suppose N = {1, 2}. We continue to assume that cost realizations are publicly observed

by all firms, that utility is perfectly transferable, and that costs are drawn i.i.d. across

firms and across periods from distribution F . Let ε ∼ G, where suppG = [−1, 1] and

g(ε) ≡ G′(ε) ∈ (g, g) for all ε ∈ [−1, 1] and some 0 < g < g. Firms choose intended bids

(b̂1, b̂2). With probability 1/2 firm 1 trembles and realized bids are (b̂1 + σε, b̂2), and with

probability 1/2 firm 2 trembles and realized bids are (b̂1, b̂2 + σε). For simplicity, we assume

that distribution F has finite support and that probF (ci < 1− σ) = 1.9

For each cost realization c = (c1, c2), let c(1) be the lowest cost. Let b̂(1) denote the

intended bid of the bidder with cost c(1), and let b̂(2) be the intended bid of her opponent.

9These assumptions simplify the exposition, but are not essential.
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As above, we let V denote the highest surplus sustainable in equilibrium.

Proposition 6. There exists σ > 0 and δ < 1 such that, if σ < σ and δ > δ, then in any

equilibrium that attains V and for any cost realization c with c1 6= c2:

(i) b̂(1) = b̂(2) − σ and the lowest cost bidder wins with probability 1.

(ii) The lowest cost bidder does not have a stage-game incentive to increase b̂(1).

Proposition 6(i) shows that the bidding patterns we observe in the data can be rational-

ized by a model in which bids are subject to trembles: in an optimal equilibrium, winning

bids will be isolated to guarantee that the lowest cost bidder always wins. Proposition 6(ii)

shows that, in an optimal equilibrium, there will be sufficient density of bids above intended

bi b̂(1), so that the winner does not have an incentive to increase her intended bid. We stress

that this feature of the model is consistent with our data, as Figure 8 illustrates.

7 Conclusion

This paper documents a novel bidding pattern from Japanese procurement auctions: winning

bids tend to be isolated. We show that this bidding behavior is a strong marker for collusion,

and propose structural methods to estimate the extent of collusion in a given dataset.

Lastly, we show that isolated winning bids can be rationalized by a model with trembles.

Indeed, isolated winning bids make the allocation robust, and guarantee that contracts are

allocated to the designated winner.
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Appendix

A Proofs

A.1 Proofs of Section 3

Proof of Theorem 1. Let H be a set of histories, and fix ρ ∈ (−1,∞). For each history

hi,t = (ht, zi,t) ∈ H, define

εi,t ≡ Eσ,µ[1∧b−i,t>bi,t(1+ρ)|hi,t]− 1∧b−i,t>bi,t(1+ρ)

= probσ,µ(∧b−i,t > bi,t(1 + ρ)|hi,t)− 1∧b−i,t>bi,t(1+ρ).

Note that D̂(ρ|H)−D(ρ|H) = 1
|H|
∑

hi,t∈H εi,t.

Note further that, by the law of iterated expectations, for all histories hj,t−s ∈ H with

s ≥ 0, Eσ,µ[εi,t|hj,t−s] = Eσ,µ[Eσ,µ[1∧b−i,t>bi,t(1+ρ)|ht, zi,t]− 1∧b−i,t>bi,t(1+ρ)|ht−s, zj,t−s] = 0.10

Number the histories inH as 1, ..., |H| such that, for any pair of histories k = (hs, zi,s) ∈ H

and k′ = (hs′ , zj,s′) ∈ H with k′ > k, s′ ≥ s. For each history k = (ht, zi,t), let εk = εi,t, so

that

D̂(ρ|H)−D(ρ|H) =
1

|H|

|H|∑
k=1

εk.

Note that, for all k̂ ≤ |H|, Sk̂ ≡
∑k̂

k=1 εk is a Martingale, with increments εk̂ whose

absolute value is bounded above by 1. By the Azuma-Hoeffding Inequality, for every

α > 0, prob(|S|H|| ≥ |H|α) ≤ 2 exp{−α2|H|/2}. Therefore, with probability 1, 1
|H|S|H| =

D̂(ρ|H)−D(ρ|H) converges to zero as |H| → ∞. �

10This holds since, in a perfect public Bayesian equilibrium, bidders’ strategies at any time t depend solely
on the public history and on their private information at time t.
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A.2 Proofs of Section 4

Proof of Corollary 1. Fix scalars ρ > 0 and κ > 0 satisfying the statements of the

Corollary. Then, Note that

2κ ≤ 1

ρ
[R̂(ρ|H)− R̂(0|H)]

=
1

ρ
[R(ρ|H)−R(0|H) + R̂(ρ|H)−R(ρ|H) + R̂(0|H)−R(0|H)]

≤ 1− scomp +
1

ρ
[R̂(ρ|H)−R(ρ|H)− R̂(0|H) +R(0|H)], (12)

where the second inequality follows since, by the arguments in the proof of Proposition 2,

1
ρ
[R(ρ|H)−R(0|H)] ≤ 1− scomp.

Next, note that for any scalar ρ′ ∈ (−1,∞),

R(ρ′|H)− R̂(ρ′|H) =
∑
hi,t∈H

εi,t,

where

εi,t = Eσ,µ[(1 + ρ′)bi,t1∧b−i,t>bi,t(1+ρ′)|hi,t]− (1 + ρ)bi,t1∧b−i,t>bi,t(1+ρ)].

By the law of iterated expectations, for all hj,t−s ∈ H with s ≥ 0,

Eσ,µ[εi,t|hj,t−s] = Eσ,µ[Eσ,µ[(1+ρ)bi,t1∧b−i,t>bi,t(1+ρ′)|ht, zi,t]−(1+ρ′)bi,t1∧b−i,t>bi,t(1+ρ)|ht−s, zj,t−s] = 0.

As in the proof of Theorem 1, number the histories in H as 1, ..., |H| such that, for any

pair of histories k = (hs, zi,s) ∈ H and k′ = (hs′ , zj,s′) ∈ H with k′ > k, s′ ≥ s. For each

history k = (ht, zi,t), let εk = εi,t, so that

R(ρ′|H)− R̂(ρ′|H) =
1

|H|

|H|∑
k=1

εk.
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Note that, for all k̂ ≤ |H|, Sk̂ ≡
∑k̂

k=1 εk is a Martingale, with increments εk̂ whose ab-

solute value is bounded above by 1.11 By the Azuma-Hoeffding Inequality, for all α > 0,

prob(|S|H|| ≥ |H|α) = prob(|R(ρ′|H)− R̂(ρ′|H)| ≥ α) ≤ 2 exp(−α2|H|/2).

Since this bound holds for all ρ′ ∈ (−1,∞), it follows that

prob(|R(ρ|H)− R̂(ρ|H)| ≥ ρκ

2
and |R(0|H)− R̂(0|H)| ≥ ρκ

2
) ≤ 4 exp(−(ρκ)2|H|/8).

Combining this with equation (12), it follows that with probability at least 1−4 exp(−(ρκ)2|H|/8),

scomp ≤ 1− κ. �

Proof of Proposition 3. Note first that conditions (6) and (7) must automatically hold

at every competitive history h ∈ H.

Note next that, by the arguments in Theorem 1, for all n, prob(|D̂n − Dn| ≥ T ) ≤

2 exp(−T 2|H|/2). It follows that

prob(∀n, |D̂n −Dn| ≥ T ) ≤ 2(n+ n+ 1) exp(−T 2|H|/2).

Therefore, with probability at least 1− 2(n+n+ 1) exp(−T
2

2
|H|), conditions (6), (7) and (8)

hold simultaneously. �

Proof of Corollary 2. Let Hcomp ⊂ H be the set of competitive histories in H, so that

scomp = |Hcomp|
|H| . Consider the vector pcomp = (pcomp

h )h∈H with pcomp
h = 1 for all h ∈ Hcomp and

pcomp
h = 0 otherwise.

Note first that, for all histories h ∈ Hcomp, the firms’ true believes and costs ((dh,n), ch)

must satisfy conditions (6), (7), (9) and (10). Hence, for all h ∈ Hcomp, set believes and

costs equal to the firms’ true believes and costs. For all h /∈ Hcomp, pick any beliefs and costs

11This follows since we normalized reserve price to 1.
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((dh,n), ch) that satisfy conditions (6), (7), (9) and (10).

For every pC ∈ [0, 1]|H| and every n, define

Dn(pC) ≡ 1∑
h∈H ph

∑
h∈H

pCh dh,n.

Since pcomp is such that pcomp
h = 1 for all h ∈ Hcomp and pcomp

h = 0 for all h /∈ Hcomp, it

follows that, for all n,

Dn(pcomp) =
1

|Hcomp|
∑

h∈Hcomp

dh,n.

Similarly, note that for all n,

D̂n(pcomp) =
1

|Hcomp|
∑

h∈Hcomp

1(1+ρn)bh<∧b−i,h
.

Using the arguments as in the proof of Theorem 1,

∀n, prob(|D̂n(pcomp)−Dn(pcomp)| ≥ T ) ≤ 2 exp(−T 2|Hcomp|/2)

These inequalities imply that, for pC = pcomp, conditions (8) hold simultaneously with

probability at least 1 − 2(n + n + 1) exp(−T 2|Hcomp|/2). The result follows by noting that

|Hcomp| = scomp(H)|H|. �

Proof of Proposition 4. Let pC ∈ [0, 1]C be a solution to Problem (11), and let

((dh,n), ch)h∈H be the corresponding beliefs satisfying all the constraints of the problem. For

every y ∈ Y , define H(y) ≡ {h ∈ H : yh = y}.

Consider any permutation α : H → H such that, for all y ∈ Y and all h ∈ H(y),

α(h) ∈ H(y). Let p̃C = (p̃Ch )h∈H be such that, for all h ∈ H, p̃Ch = pCα(h). Note that

p̃C is also a solution (11), together with beliefs and costs ((d̃h,n), c̃h)h∈H such that, for all
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h ∈ H, ((d̃h,n), c̃h) = ((dα(h),n), cα(h)). Moreover, note that, for all n, D̂n(p̃C) = D̂n(pC).

Hence, beliefs and costs ((d̃h,n), c̃h)h∈H satisfy the IC constraints, and the aggregate and

information constraints given p̃C .

Since this is true for any such permutation α, it follows that there exists pC ∈ [0, 1]|H|

and corresponding beliefs and costs ((dh,n), ch)h∈H , such that

(i) for all y ∈ Y and all h, h′ ∈ H(y), pCh = pCh′ = py ∈ [0, 1],

(ii) 1
|H|
∑

h p
C
h = 1

|H|
∑

h p
C
h = ŝcomp,

(iii) 1∑
h∈H pCh

∑
h∈H p

C
h × (dh,n) ∈ A(pC),

(iv) for all h ∈ H, (dh,n) ∈ Conv
[
Z ∩ I(pC)

]
.

Let q : Y → [0, 1] be such that q(y) = py, so that pC = p(q). Since
∑

h∈H
pCh∑

h∈H pCh
× (dh,n) ∈

Conv[Z ∩ I(pC)] ∩ A(p(q)), it follows that

ŝcomp ≤ max
q:Y→[0,1]

{s̃comp(q) |Conv [Z ∩ I(p(q))] ∩ A(p(q)) 6= ∅} .

�

A.3 Proofs of Section 6

Proof of Proposition 6. To establish Proposition 6, we proceed in two steps. First, we

consider the problem of finding the profile of intended bids (b̂1, b̂2) that maximize the sum

of the bidders payoffs, and show that this profile of intended bids satisfies the conditions

in Proposition 6 when σ is lower that some cutoff σ > 0. Second, we show that the payoff

maximizing profile of intended bids can be support in equilibrium whenever the players’

discount factor is higher than some cutoff δ < 1.
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Fix a cost realization c = (c1, c2). The profile of intended bids (b̂1, b̂2) that maximizes

the bidders’ sum of payoffs solves

max
b̂1,b̂2∈[0,1−σ]2

1

2
E
[
1b̂1+σε≤b̂2(b̂1 + σε− c1)] + (1− 1b̂1+σε≤b̂2)(b̂2 − c2)

]
(13)

+
1

2
E
[
1b̂1≤b̂2+σε(b̂1 − c1)] + (1− 1b̂1≤b̂2+σε)(b̂2 + σε− c2)

]
Note first that, for all cost realizations c = (c1, c2) with c1 = c2, the solution to program

(13) is to set b̂1 = b̂2 = 1− σ.

Consider next cost realizations c with c1 6= c2, and assume wlog that c1 < c2. Let

∆c ≡ min
c1,c2∈supF,c1 6=c2

|c1 − c2| > 0

denote the minimum possible difference between costs c1 and c2. As a first step, note that

the solution to program (13) is such that b̂1 ≤ b̂2. To see why, suppose by contradiction

b̂1 > b̂2, and consider an alternative bidding profile (b̂′1, b̂
′
2) = (b̂2, b̂1). Note that the expected

revenue of the cartel is the same under this alternative bidding profile, but the expected

procurement costs are strictly lower (since c1 < c2). Hence, the cartel is strictly better off

under this alternative bidding profile, a contradiction.

Next, we show that there exists σ1 > 0 such that, if σ < σ1, the solution to program (13)

is such that b̂1 = b̂2 − σ. To see why, consider any intended bid b̂1 ∈ (b̂2 − σ, b̂2]. Note that

the derivative of (13) with respect to b̂1 (evaluated at b̂1 ∈ (b̂2 − σ, b̂2]) is

1

2σ
(c1 − c2)

[
g

(
b̂2 − b̂1

σ

)
+ g

(
b̂1 − b̂2

σ

)]
+

1

2
G

(
b̂2 − b̂1

σ

)
+

1

2
− 1

2
G

(
b̂1 − b̂2

σ

)
≤−1

σ
∆cg + 1,

where the inequality follows since |c1 − c2| ≥ ∆c > 0 (and c1 < c2), and since g(ε) ≥ g > 0

for all ε ∈ [−1, 1]. It follows that, for σ small enough, this derivative is strictly negative,
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which cannot hold at an optimum. Hence, there exists σ1 > 0 such that, for all σ < σ1, the

solution to program (13) is such that b̂1 ≤ b̂2 − σ. Finally, note that if b̂1 < b2 − σ, then

increasing b̂1 slightly strictly increases the bidders’ payoffs (since a small increase in b̂1 does

not affect the allocation). Therefore, b̂1 = b̂2 − σ whenever σ < σ1. Finally, note that it is

optimal to set b̂2 = 1− σ.

Next, we show that there exists σ2 > 0 and δ < 1 such that, if σ < min{σ1, σ2} and

δ > δ, the bidding profile that solves program (13) can be sustained in equilibrium.

Let V̂ be the sum of the expected discounted payoffs that players get from playing at

each period the profile of bids that solve (13). Let V NE be a player’s expected discounted

payoffs from playing the (worst) stage game Nash equilibrium of this game at each period.

Note that: (i) for every δ, V̂ > 2V NE; and (ii) V̂ − (V NE
1 + V NE

2 )→∞ as δ → 1.

Suppose σ < σ1, and consider the following strategy profile. At each period, for any cost

realization c, firms bid according to the solution to (13). Note that under that solution, the

lowest cost firm wins with probability 1. In periods in which costs c are such that c1 6= c2,

the lowest cost firm pays her opponent a transfer equal to δ(V̂ /2 − V NE) if the contract is

allocated to the lowest cost firm. If the contract is allocated to the lowest cost firm and the

lowest cost firm pays the required transfer, then firms continue to play the same actions in

the next period. Otherwise, if either firm deviates, starting in the next period firms play the

stage game Nash equilibrium delivering payoffs V NE to each firm. In periods in which costs

c are such that c1 = c2, if the winning bid is weakly above 1 − 2σ, there are no transfers

and firms continue to play the same actions in the next period. If the winning bid is strictly

below 1−2σ, there are no transfers and starting next period firms play the stage game Nash

equilibrium delivering payoffs V NE to each firm.

Consider first cost realizations c with c1 6= c2. Note that the firm that wins the contract

has exact incentives to pay transfer δ(V̂ /2− V NE) to the other firm. Note further that the

winning firms does not have an incentive to decrease her bid. We show that there exists

σ2 > 0 such that, when σ < min{σ1, σ2}, the lowest cost firm does not have an incentive to
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increase her bid either. Suppose wlog that c1 < c2. Let T = δ(V̂ /2− V NE) be the transfer

that this firm pays to the other firm if she wins. Then, the payoff that this firm obtains

under this strategy profile if she places intended bid b > b̂1 = b̂2 − σ is

V1(b) =
1

2
E
[
1b+σε≤b̂2(b+ σε− c1 − T + δV̂ /2) + (1− 1b+σε≤b̂2)δV

NE
]

+
1

2
E
[
1b≤b̂2+σε(b− c1 − T + δV̂ /2) + (1− 1b≤b̂2+σε)δV

NE
]

=
1

2
E
[
1b+σε≤b̂2(b+ σε− c1)

]
+

1

2
E
[
1b1≤b̂2+σε(b− c1 − T )

]
+ δV NE, (14)

where we used T = δ(V̂ /2− V NE). Differentiating V1(b) with respect to b yields

V ′1(b) =
−1

2σ

[
(b̂2 − c1)g

(
b̂2 − b
σ

)
+ (b− c1)g

(
b− b̂2

σ

)]
+

1

2
G

(
b̂2 − b
σ

)
+

1

2
− 1

2
G

(
b− b̂2

σ

)
≤−1

2σ

[
(b̂2 − c1)g + (b− c1)g

]
+ 1,

which converges to −∞ as σ → 0. Hence, there exists σ2 > 0 such that, if σ < σ2, under

the proposed strategy profile the winning firm does not have an incentive to deviate at any

period. Define σ ≡ min{σ1, σ2}.

Next, we show that there exists δ1 < 1 such that, if δ > δ1, the losing firm does not have

an incentive to change her bid either at periods with c1 6= c2. Wlog, assume c1 < c2, and

note that firm 2 (the highest cost firm) cannot profit from bidding strictly above b̂2 = b̂1 +σ.

The expected payoff that firm 2 gets by bidding b < b̂1 + σ is

V2(b) =
1

2
E
[
1b̂1+σε≤b(T + δV̂ /2) + (1− 1b̂1+σε≤b)(b− c2 + δV NE)

]
+

1

2
E
[
1b̂1≤b+σε(T + δV̂ /2) + (1− 1b̂1≤b+σε)(b+ σε− c2 + δV NE)

]
=

1

2
E
[
1b̂1+σε≤bδ(V̂ − 2V NE) + (1− 1b+σε≤b)(b− c2)

]
+

1

2
E
[
1b̂1≤b+σεδ(V̂ − 2V NE) + (1− 1b̂1≤b+σε)(b+ σε− c2)

]
+ δV NE, (15)
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where again we used T = δ(V̂ /2−V NE). Note that if b ≤ b̂1−σ, firm 2 wins with probability

1 and obtains an expected payoff of b− c2 + δV NE, which for δ large enough is strictly lower

than the payoff of δV̂ /2 that the firm obtains from bidding b̂2. Fix ν > 0 small, and let δ1

be the lowest discount factor δ such that δ(V̂ /2− V NE) ≥ 1 + ν. Since b ≤ 1− σ < 1 + nu,

for δ > δ1 the losing firm 2 does not have an incentive to place intended bid b ≤ b̂1 − σ.

Consider next bids b ∈ (b̂1 − σ, b̂1 + σ) = (b̂1 − σ, b̂2), and suppose that δ > δ1. The

derivative of payoffs (15) with respect to b, evaluated at such a bid b, is

V ′2(b) =
1

2σ

[
(δ(V̂ − 2V NE)− (b− c2))g

(
b− b̂1

σ

)
+ (δ(V̂ − 2V NE)− (b̂1 − c2))g

(
b̂1 − b
σ

)]

+
1

2
G

(
b̂1 − b
σ

)
+

1

2
− 1

2
G

(
b− b̂1

σ

)
≥ 1

2σ
[2νg] > 0,

where we used the fact that δ(V̂ /2 − V NE) ≥ 1 + ν for all δ > δ1 and that 1 = r ≥

max{b − c2, b̂1 − c2}. Therefore, for δ > δ1 the high cost bidder does not have an incentive

to bid lower than b̂2 = b̂1 + σ.

Lastly, we consider cost realizations c with c1 = c2. Under the proposed strategy profile,

the expected payoff that bidder i = 1, 2 obtains from placing intended bid b when her

opponent bids b̂−i = 1− σ is

Vi(bi) =δV NE +
1

2
E

[
1bi+σε≥1−2σδ

(
V̂

2
− V NE

)]
+

1

2
E

[
1bi≥1−2σδ

(
V̂

2
− V NE

)]
1

2
E
[
1bi+σε<b̂−i

(bi + σε− ci)
]

+
1

2
E
[
1bi<b̂−i+σε

(bi − ci)
]

(16)

Note first that bidding bi < 1− 2σ is never optimal: since b̂−i = 1− σ, a bid if bi = 1− 2σ
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guarantees that bidder i wins the auction. Next, note that for all bi ∈ [1− 2σ, 1− σ),

V ′i (bi) =
−1

2σ

[
(b̂−i − ci)g

(
b̂−i − bi

σ

)
+ (bi − ci)g

(
bi − b̂−i

σ

)]
1

2
G

(
b̂−i − bi

σ

)
+

1

2
−G

(
bi − b̂−i

σ

)
+

1

2
g

(
1− 2σ − bi

σ

)
δ

(
V̂

2
− V NE

)

≥−1

2σ
2g + δ

(
V̂

2
− V NE

)
g.

Note that there exists δ2 < 1 such that, for all δ > δ2, V ′i (bi) > 0 for all bi ∈ [1− 2σ, 1− σ).

Hence, for such δ > δ2, firms don’t have an incentive to reduce their bids.

Letting δ = max{δ1, δ2}, we conclude that, for σ < σ and δ > δ, there exists an equi-

librium in which the intended bids that firms place at each period are the bids that solve

Program (13), and that delivers at each period a total surplus of V̂ . Since firms’ profits

cannot be larger than V̂ , this equilibrium attains V . �
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