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Abstract

We propose a new cooperative solution for discrete exchange economies and resource
allocation problems, the exclusion core. The exclusion core rests upon a foundational
idea in the legal understanding of property, the right to exclude others. By reinterpret-
ing endowments as a distribution of exclusion rights, rather than as bundles of goods,
our analysis extends to economies with qualified property rights, joint ownership, and
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There is a striking contrast between the simplicity of endowments in economic models

and the complexity of property in practice. In the former, agents are presumed to own

some goods with little elaboration; efficient exchange is the usual corollary. In practice,

ownership is hardly so straightforward. Co-owners of a house may be tenants in common

or joint tenants, subject to other bespoke arrangements. Socially-recognized, but formally

undocumented, claims to land are common in the developing world. More abstract forms of

property further muddy the waters. In an intellectual property dispute, parties may assert

ownership of the same invention; preventing others from using your idea is a patent’s chief

purpose. In light of such cases, the definition of an endowment and its relation to common

understandings of property is elusive, and little studied.

What does an “endowment” mean? How is it related to legal interpretations of property?

Do solutions to exchange and allocation problems capture these characteristics correctly? To

answer these questions, we study an exchange economy that places endowments and property

at the forefront. While Shapley and Scarf’s (1974) seminal “house market” is a benchmark

case, our setting is far more general. An agent may own multiple goods, none at all, or be

a co-owner with others. As in practice, property rights may be clearly defined, caught in a

web of competing claims, or even determined by relationships or social obligations.

Our model reveals new weaknesses of classic solutions to allocation problems, such as the

core. Thus, our key contribution is the development of a new cooperative solution concept

for exchange economies and allocation problems, which we call the exclusion core. The

exclusion core’s foundation is a reinterpretation of endowments as a distribution of exclusion

rights, rather than as bundles of things to trade. Drawing on a simple idea—the ability to

exclude others from goods in one’s own endowment—the exclusion core identifies intuitively-

compelling outcomes, even when the core is empty, excessively large, or as yet undefined.

At a high level, the exclusion core bridges two foundational insights, one in the legal

understanding of property and the other in the economic theory of exchange. First, the

exclusion core draws heavily on one defining principle of property—the right to exclude

others. This right is a classic characterization of property, with roots in the mid-eighteenth

century writings of William Blackstone and, later, Jeremy Bentham (Merrill, 1998). The

United States Supreme Court has called this right among “the most essential sticks in the

bundle of rights that commonly characterize property.”1 We show how this principle not

only defines the boundaries of each agent’s endowment, but is also sufficient to guide a

decentralized market toward an efficient outcome.
1Kaiser Aetna v. United States, 444 U.S. 164 (1979).
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Second, the exclusion core has a close relationship with acclaimed trading protocols,

particularly in our model. Agents in our economy have single-unit demand, goods are indi-

visible, and there are no transfers. This spartan setting insulates our analysis from confounds

associated with agents’ preferences and lets us focus squarely on the property and endow-

ment variables of interest. We show that the exclusion core has a close association with

David Gale’s top trading cycle (TTC) algorithm (Shapley and Scarf, 1974). We describe

this trading procedure after introducing our model, but we remark here that its theoret-

ical and practical importance cannot be overstated. Its idea of cyclic market clearing is

an alluring metaphor for trade. And, suitably generalized, it underpins proposed solutions

to many recent market design problems, including transplant organ exchange (Roth et al.,

2004), student-school assignment (Abdulkadiroğlu and Sönmez, 2003), airport landing slot

allocation (Schummer and Vohra, 2013), and refugee resettlement (Delacrétaz et al., 2016).

The exclusion core characterizes a generalization of the TTC algorithm in a large class of

economies, including those with private, public, and mixed ownership. Thus, the exclusion

core’s relevance to the above applications is immediate, though its logic applies broadly.

In the following section we propose a simple example that conveys the essence of our

solution while also highlighting the limitations of classic approaches. More importantly,

however, we explain how the idea of exclusion governs many other allocation problems, even

those not typically interpreted as exchange economies. By focusing on the distribution of

exclusion rights, it becomes possible to analyze economies with well-defined, contested, and

even conflicting claims to goods with a common toolkit.

We divide our formal analysis into two parts that differ in the relative complexity of the

property rights studied within. In Section 2 we treat endowments as an exogenous primitive.

This simplified setting allows us to introduce the direct exclusion core and its refinement,

the exclusion core. The latter is the focus of our analysis. The exclusion core coincides with

the strong core in Shapley and Scarf’s (1974) “house market,” a benchmark case.2 Generally,

however, the exclusion core is neither a subset nor a superset of the strong core. Unlike the

strong core, the exclusion core is never empty in our model and, unlike the weak core, its

outcomes are always efficient.

In Section 3 we apply the concept of the exclusion core to situations where social or

legal constraints introduce conflicting claims to goods. To model these cases, we introduce

2We define the strong and weak cores in Section 1. More formal definitions are presented in Section 2.
Care is required as both strong and weak cores have been called “the core” by different authors. The strong
core is defined with weak domination. The weak core is defined with strict domination. What we call the
strong core is sometimes called the strict core.
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relational economies where priorities over objects encode relationships among agents and

conditional endowments describe an endogenous distribution of exclusion rights. We adopt

the term “priorities” to highlight a technical parallel with discrete allocation problems, par-

ticularly those concerning student-school assignment (Abdulkadiroğlu and Sönmez, 2003).

However, priorities play a novel role in our model. They are not a rationing device in a

centralized assignment scheme. Rather, they constrain a decentralized market’s endogenous

endowment system and, thus, indirectly govern exclusion rights. We propose three versions

of our solution applicable to relational economies, the strong, weak, and unconditional ex-

clusion cores. These all stand on the same behavioral foundation as developed in Section

2, but differ only in how priorities map into endowments and exclusion rights. When the

priority structure is acyclic, the strong and weak exclusion cores coincide. In this case, and

unlike the strong core, they characterize a generalized TTC algorithm and are stable in the

sense of von Neumann and Morgenstern (1944). Thus, the exclusion core embodies a self-

enforcing “standard of behavior.” Acyclic priority structures are common in practice, and

include economies with private, public, and mixed ownership.

While we reference the related literature throughout our exposition, we offer a more

structured survey in Section 4. Our paper contributes to the study of exchange economies

by proposing the exclusion core, a new solution clarifying the foundations of exchange. Our

results also have implications for the practice of market design, which often involves the

identification of “good” centralized allocation procedures. We do not pursue this normative

objective, although we do offer a new rationale for the use of trading cycle algorithms in

applications, including those cited above. We show that such trading procedures identify

outcomes that are robust to the exercise of direct and indirect exclusion rights, which are

closely tied to a classic characterization of property.

Our solution’s motivation also lets us contribute to a debate hitherto limited to legal

scholars concerning the in rem and in personam interpretations of property (Merrill and

Smith, 2001b). As explained in Section 4, this debate should also be of interest to economists

as it addresses the foundations of impersonal exchange, commonly presumed in economic

analysis, and the informational complexity of markets. An in rem interpretation of property

is grounded in a few universal principles, with the right to exclude chief among them. Section

2 captures this paradigm. An in personam interpretation grounds property in a web of

inter-agent relationships and obligations. We introduce relational economies with priority

structures in Section 3 to model this perspective. Our analysis provides the first formal

framework bridging both paradigms.
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Though property rights are a touchstone for our analysis, the questions we consider are

distinct and unrelated to the bilateral externalities examined by Coase (1960) or the incentive

implications investigated by Grossman and Hart (1986) and Hart and Moore (1990). Our

focus on economy-wide allocations and trade sets our analysis apart from this literature,

which studies contractual arrangements.

We summarize our contributions and conclude in Section 5. With the exception of some

immediate corollaries, we relegate all proofs to the Appendix.

1 Motivating Examples

To motivate our argument, it is helpful to first consider a straightforward allocation problem,

which is an instance of our model. It highlights the limitations of existing theories and hints

at the power of our interpretation emphasizing exclusion.

Example 1 (The Kingdom). There are three agents—i, j, and k—and two indivisible goods,

called houses—h1 and h2. At most one agent can live in a house and each agent has use

for at most one house. Everyone strictly prefers h1 to h2 and there is no other medium of

exchange. Assume that agent k, whom we call the King, initially owns both houses.

Which final allocation of houses will, or should, arise in this economy? First, since the

King owns both houses, he will surely live in h1. As he cannot live in more than one house,

h2 should be occupied by either i or j. Either outcome is efficient. Finally, one agent, again

either i or j, will remain homeless as there are fewer houses than agents. Thus, either of two

allocations is intuitive, justifiable, and efficient.3

It is surprising that neither the strong core nor the weak core is able to converge on

the preceding assignments. Along with competitive equilibrium, these are the two most

prominent solutions for exchange and assignment economies. An allocation belongs to the

strong core if there does not exist a coalition of agents that can reallocate the houses they own

such that no coalition member is made worse off and at least one coalition member becomes

strictly better off. In the above example, the strong core is empty. Every arrangement can

be improved upon, or “blocked,” by some coalition. For example, if k is assigned to h1, i to

h2, and j is homeless, j and k can together reallocate h2 to benefit j. If instead house h1 is

3The example’s phrasing follows that of our model. An alternative framing is inspired by kidney exchange,
a notable application (Roth et al., 2004). Agent k has two kidneys, h1 and h2, and has volunteered to be
a live organ donor. There are two compatible recipients, i and j, who are equally deserving to receive a
donated organ. Clearly, k will keep one kidney and either i or j will get the transplant.
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occupied by k and h2 is occupied by j, i and k can together reallocate h2 to benefit i.4

The weak core is not empty, but it is also dissatisfying. An allocation belongs to the

weak core if there does not exist a coalition of agents that can reallocate the houses they

own such that all coalition members become strictly better off. In the above example, the

weak core is too large. In fact, any assignment where agent k inhabits house h1 belongs to

the weak core. This includes the odd situation where house h2 is vacant and both i and j

are homeless. Neither i nor j can access h2 since that house’s owner gains nothing from the

move. This inefficient outcome is dispiriting and is unlikely to arise in practice.5

The Kingdom’s troubles are neither special to the example, nor are they technical anoma-

lies. Rather, they are symptoms of a mis-calibration between the power of ownership rights

and agents’ desire to revise assignments. The strong core presumes agents have greater

power than they do in practice, while the weak core fails to recognize the power that agents

actually hold. Furthermore, neither core concept credits a coalition for its ability to obstruct

outcomes, which is a “powerful lever in bargaining” (Shapley and Shubik, 1971, p. 128).

The exclusion core avoids these shortcomings by viewing endowments through the lens of

exclusion. An allocation is in the (direct) exclusion core if no coalition can strictly gain from

a reassignment of houses that might exclude (i.e. evict) non-coalition members from houses

in the coalition’s endowment. In the example above, only the two intuitive and efficient

outcomes pass this test. In that economy, exclusion rights are vested in agent k. If i or j

occupies house h2, k gains nothing by evicting him and thus is unwilling to do so. Conversely,

if house h2 is vacant, k has no reason to prevent its occupancy. In each case, the King’s

conduct accords with intuition.

Associating endowments with exclusion rights proved insightful in the preceding example.

Importantly, this reinterpretation extends to economies where the rules surrounding property

contain ambiguities. The complexities (and headaches) surrounding joint, collective, or

ill-defined ownership immediately come to mind. Aside from legal prescriptions, status,

relationships, and social conventions also influence how goods are exchanged or allocated.

These variables define property rights in practice, often implicitly.

4A possible remedy for the strong core’s emptiness in the Kingdom is to assume, additionally, that the
King prefers h2 to be given to a specific agent. Regrettably, allowing for preferences over allocations, i.e.
externalities, begets more problems in general. Even the weak core can be empty (Mumcu and Saglam,
2007).

5The core concepts’ deficiencies are not driven by the economy’s housing shortage. Adding a third, univer-
sally least-preferred house h3, which is also owned by the King, does not change the example’s conclusions.
Problems occur even if i and j disagree about the relative merits of h2 and h3 with, say, j preferring h3 over
h2. The inefficient allocation where h2 is assigned to j and h3 to i is in the weak core.
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As an example, consider the allocation of seats on a city bus. This problem is not typically

viewed as one of property or trade. Nevertheless, a custom built on hierarchical exclusion

applies in most places around the world and the implied property rights are easy to spot.

When open seats are plentiful, anyone can sit down. However, an informal priority rule kicks

in when seats become scarce. A passenger in need may claim a seat provided the person

inconvenienced does not command comparable recognition. A teenager is expected to defer

to an elderly passenger; whether a blind man should defer to a pregnant woman, or vice

versa, is less obvious. Ambiguities notwithstanding, final outcomes are generally efficient.

An even more complex property regime pertains to transplant organs, which occupy a

grey zone between a donor’s personal property and a societal resource (Truog, 2005; Cronin

and Price, 2008; Cronin and Douglas, 2010). Organs from living donors are typically viewed

like personal property, though monetary compensation for donation is generally prohibited.

Organs from cadavers, in contrast, are treated as social resources to be distributed to the

persons with the “greatest need,” as determined by a medical authority. Yet, social conven-

tions muddle this dichotomy. For example, doctors often seek family members’ permission

before transplanting organs from deceased relatives even though the deceased had consented

to donation prior to death (Downie et al., 2008).6 In Ontario, Canada, around 20 percent

of willing donors have their wishes vetoed by their family postmortem (Bigham, 2016). In

the United Kingdom, family objections blocked 547 transplants from 2010–16 despite the

deceased donor’s prior consent (Quinn, 2016). Though the next of kin did not inherit their

relative’s organs, they sometimes have a right to exclude others from benefiting from them.

We argue that the examples above—the Kingdom, the bus, and the transplant center—

are instances of the same economic problem. Each case’s peculiarity is due to the prevailing

endowment, which is best understood as a distribution of exclusion rights. The exclusion

core unifies these and other situations under a common umbrella. It identifies allocations

where no coalition can gainfully exercise their rights of exclusion over others. Though the

three examples above conform to our formal model, the ideas we propose apply broadly.

2 Simple Economies

A simple economy 〈I,H,≻, ω〉 consists of agents, goods, preferences, and an endowment

system. I = {i1, . . . , in} is a finite set of agents whom we sometimes denote by i, j, or k.

6We thank Al Roth for bringing this practice to our attention via his blog. Downie et al. (2008) report that
69 percent of health care providers in Canada believed that a bereaved family’s wishes would be respected
despite the deceased donor’s consent to transplantation.
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H = {h1, . . . , hm} is a finite set of indivisible objects, called houses, that can be allocated

among the agents. Each agent may live in at most one house and each house h ∈ H may

shelter at most one agent. A house may be vacant and an agent need not be assigned to a

house. We model this latter outcome by the agent’s assignment to an outside option h0 /∈ H ,

which has unlimited capacity.7 An allocation µ : I → H ∪ {h0} is an assignment of agents

to houses such that |µ−1(h)| ≤ 1 for all h ∈ H . We interpret an allocation as the outcome

of some centralized or decentralized assignment, bargaining, or exchange process, which we

do not model directly. For brevity, we write µ(C) to denote
⋃

i∈C µ(i) for any C ⊆ I.

Each agent has a strict and rational preference defined over H ∪ {h0}. If agent i prefers

h to h′, then h ≻i h
′. We write h �i h

′ if h ≻i h
′ or h = h′. For convenience, we sometimes

define ≻i by listing houses in preferred order, i.e. ≻i : h, h
′, . . .. Unlisted houses are worse

than the outside option.

An endowment system specifies the houses in each coalition’s endowment. It is a function

ω : 2I → 2H satisfying three properties.

(A1) Agency: ω(∅) = ∅.

(A2) Monotonicity: C ′ ⊆ C =⇒ ω(C ′) ⊆ ω(C).

(A3) Exhaustivity: ω(I) = H .

Condition (A1) is an innocuous resolution of a degenerate case. It restricts ownership to

agents or groups. (A2) states that a coalition has in its endowment anything that belongs

to any sub-coalition. Finally, (A3) says that everything belongs to the grand coalition.

In this section, we further assume that the endowment system satisfies

(A4) Non-Contestability: For each h ∈ H , there exists Ch ⊆ I, such that for all C ⊆ I,

h ∈ ω(C) ⇐⇒ Ch ⊆ C.

We call Ch the minimal controlling coalition of house h. Condition (A4) guarantees that

each house has a well defined set of one or more co-owners without opposing and mutually

exclusive claims. We relax (A4) in Section 3.

Many economies satisfy (A1)–(A4), including those examined by Shapley and Scarf (1974)

and Hylland and Zeckhauser (1979), which we discuss below. These two cases bracket a

class of economies where each house’s minimal controlling coalition is either a singleton (and

the house is privately owned) or the grand coalition (and the house is part of the social

7The outside option is not required for our conclusions when there are sufficiently many acceptable houses.
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endowment). Economies in this class have been used to model the allocation of dormitory

rooms (Abdulkadiroğlu and Sönmez, 1999) and transplant organs (Roth et al., 2004).

2.1 The Strong and Weak Cores

Which allocations will, or should, arise given the agents’ preferences and endowments? Two

classic answers to this question are provided by the strong and weak cores. As explained in

Section 1, both consist of allocations that cannot be “blocked” by any coalition.

Definition 1. A non-empty coalition C ⊆ I can weakly block the allocation µ with allocation

σ if

1. σ(i) �i µ(i) for all i ∈ C and σ(i) ≻i µ(i) for some i ∈ C; and

2. σ(C) ⊆ ω(C) ∪ {h0}.

The strong core is the set of allocations that cannot be weakly blocked by any coalition.

Definition 2. A non-empty coalition C ⊆ I can strongly block the allocation µ with alloca-

tion σ if

1. σ(i) ≻i µ(i) for all i ∈ C; and

2. σ(C) ⊆ ω(C) ∪ {h0}.

The weak core is the set of allocations that cannot be strongly blocked by any coalition.

Strong core allocations are Pareto efficient. That is, no agent can be made strictly better

off without harming anyone. The strong core is a subset of the weak core.

Even in simple cases, the strong and weak cores often fail to offer satisfactory guidance, as

illustrated by Example 1 above. Their deficiencies can be traced to faults in the two variants

of blocking. Often it is too easy for a coalition to weakly block an allocation. This is because

weak blocking presumes agents who are indifferent among allocations always agree to join

a blocking coalition. Two arguments try to justify this behavior. The first is altruism—an

unaffected agent should help others. This is at best an incomplete behavioral justification.

Aiding one party very often harms another, which is hardly an altruistic disposition. The

second is not-modeled side payments. If an agent benefits from a reallocation, the reasoning

goes, he could bribe those who remain indifferent to enforce the reassignment. This argument

is unconvincing. Equally well a side payment could be extorted from a potentially harmed
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agent to prevent a blocking coalition’s formation. More fundamentally, any relevant transfers

should be modeled directly. In our case, they are absent to preserve the model’s simplicity.

In some applications, such as kidney exchange, transfers are prohibited (Roth et al., 2004).

Strong blocking is immune to the questionable incentives that plague weak blocking, but

it suffers from the opposite ailment. Often, it is too difficult for a blocking coalition to form

because agents who benefit from a reallocation of houses cannot induce those who remain

indifferent to cooperate. Consequently, unintuitive and inefficient outcomes persist.

2.2 The Direct Exclusion Core

Acknowledging the problems encountered by classic versions of the core, we propose an

alternative solution. Our proposal reverts to a fundamental tenet of property—the right to

exclude others. An agent exercising this right can prevent others from using property in his

endowment, thus securing and preserving his wellbeing. We explain this idea’s implications

in two steps. As a heuristic, we first define the direct exclusion core to show the immediate

consequences of the right to exclude. We then refine this solution by considering exclusion’s

indirect implications. This refinement leads to the exclusion core.

As a motivating case, consider an economy with three agents and three houses. Each

house hk is owned by agent ik and the agents’ preferences are

≻i1 : h2, h3, h1 ≻i2 : h1, h2 ≻i3 : h1, h3 .

Consider the allocation

µ(i1) = h3 µ(i2) = h2 µ(i3) = h1 .

Though Pareto efficient, i1 and i2 can strongly block µ with the allocation

σ(i1) = h2 σ(i2) = h1 σ(i3) = h3 .

The traditional interpretation of the move from µ to σ is that the coalition C = {i1, i2}

strictly gains by reallocating the houses in its endowment, ω(C) = {h1, h2}. This is true,

but another feature of this reallocation is noteworthy. The only agent harmed by the change

was i3. He was excluded from µ(i3) = h1—a house in the coalition’s endowment. In fact, the

eviction of i3, or the repossession of house h1, is a prerequisite for i1 and i2 to reallocate h1

among themselves. This feature hints at an alternative feasibility condition for blocking. A
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coalition can block an assignment whenever its members gain from an alternative and when

those harmed by any reallocation were excluded from houses belonging to the coalition.

Definition 3. A non-empty coalition C ⊆ I can directly exclusion block the allocation µ

with allocation σ if

1. σ(i) ≻i µ(i) for all i ∈ C; and

2. µ(j) ≻j σ(j) =⇒ µ(j) ∈ ω(C).

The direct exclusion core is the set of allocations that cannot be directly exclusion blocked

by any coalition. Thus, no coalition can gainfully destabilize or obstruct a direct exclusion

core allocation by drawing on their collective exclusion rights. This logic differs subtly from

the rhetoric of “enforcement” ascribed to classic definitions of blocking.

The direct exclusion core’s non-emptiness will be implied by Theorem 1 below. Here we

briefly highlight some of its properties.

Lemma 1. The direct exclusion core is a subset of the weak core.

Furthermore, direct exclusion core allocations are efficient.8 Any reallocation of houses that

benefits some agents but leaves all others unharmed is admissible. Pareto efficiency is an

immediate consequence. In the Kingdom economy (Example 1), the direct exclusion core

coincides with the two intuitive and focal allocations, as explained above.

2.3 The Exclusion Core

Like strong blocking, direct exclusion blocking insists that all blocking coalition members

strictly benefit from a proposed reallocation. This requirement is seemingly constraining

as many desirable reallocations require the acquiescence of unaffected third parties who

coincidentally (co-)own a reassigned house. The usual way to relax this constraint is to

replace the strict incentive condition (1) in Definition 3 with its weaker cousin. This approach

is misguided. The resulting solution would be stronger than the strong core and vulnerable

to the same criticisms concerning incentives. Instead, we rationalize the cooperation of third

parties by extending the logic of exclusion. An example illustrates the idea.

8The direct exclusion core does not generally coincide with the set of Pareto-efficient, weak core alloca-
tions. In Example 3, µ is a Pareto-efficient weak core allocation, but it can be directly exclusion blocked.
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Example 2. There are six agents and six houses. Each house hk is owned by agent ik. The

agents’ preferences are:

≻i1 : h3, h4, h1 ≻i2 : h1, h2 ≻i3 : h2, h5, h3

≻i4 : h2, h4 ≻i5 : h6, h5 ≻i6 : h3, h6

.

Figures 1(a) and 1(b) illustrate this economy’s two direct exclusion core allocations, µ and σ.

In each figure, there is a directed link from each house to its owner and from each agent to his

assignment. Both allocations belong to the weak core; σ is the only strong core allocation.

Agents i1 and i3 strictly prefer their assignment under σ over their assignment under µ.

To directly exclusion block µ with σ, agent i1 needs to move to h3 and agent i3 needs to

move to h2, as illustrated in Figure 1(c). The first move is feasible for the coalition. Agent i3
owns h3 and he can veto i6’s assignment to that house as mandated by µ. Thereafter, h3 is

available for i1. The second move is not feasible. While h2 = µ(i4) ≻i4 σ(i4), h2 /∈ ω({i1, i3}).

Thus, i1 and i3 cannot directly exclusion block µ.

Whereas i1 and i3 do not own house h2, we argue that they enjoy a form of indirect

control over the house at µ. House h2 is owned by i2 for whom µ(i2) = σ(i2) = h1 and h1 is

in the coalition’s endowment. While i2 is indifferent between µ and σ, his wellbeing depends

on the coalition’s continued accommodation. Agents i1 and i3 can press i2 to evict i4 from

h2 by threatening to displace him from h1. Acknowledging the power asymmetry at µ, agent

i2 would reasonably accept this demand. By exploiting i2’s dependency, i1 and i3 can forge

a repossession chain giving them an indirect veto over h2’s assignment at µ.

The story is entirely different when the prevailing allocation is σ (Figure 1(d)). The

coalition {i4, i5, i6} would like to block. However, houses h2 and h3 are inaccessible since the

coalition lacks leverage over those houses’ owners, i2 and i3, at σ. The coalition {i4, i5, i6} is

too isolated. Therefore, σ seems more robust and compelling as a final assignment than µ.

Example 2 shows that the right to exclude can be a powerful, though subtle, stick. It

secures an agent’s own goods and it offers a channel through which he can access more

options. Importantly, the chain of exclusion and repossession need not stop with one link,

as in the example. By exploiting the interdependencies implied by exchange, a coalition can

inductively relay credible threats of exclusion and eviction to all agents who are indirectly

linked to its endowment ω(C). First, (µ−1 ◦ω)(C) is the set of agents who are assigned by µ

to houses in ω(C). Thus, with one step of influence, coalition C secures direct and indirect

control over ω(C1) where C1 = C ∪ (µ−1 ◦ω)(C). At two steps of influence, it secures control

over ω(C2) where C2 = C1 ∪ (µ−1 ◦ ω)(C1). And so on. The recursive form ensures that a
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(c) A repossession chain at µ. The coalition
{i1, i3} can indirectly access h2.
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(d) Absence of a repossession chain at σ. The
coalition {i4, i5, i6} cannot access h2 or h3.

Figure 1: Direct exclusion core allocations in Example 2.

collectively-owned house is included once all co-owners are deemed (indirectly) dependent

on the coalition’s endowment.

Definition 4. The extended endowment of coalition C (at µ) is

Ω(C|ω, µ) := ω

(
∞⋃

k=0

Ck

)

where C0 = C and Ck = Ck−1 ∪ (µ−1 ◦ ω)(Ck−1) for every k ≥ 1.9

A coalition’s extended endowment does not bestow upon the group more property rights.

Rather, it better reflects the relative power agents enjoy when exclusion, or threats thereof,

underpin interaction. It also strengthens our previous blocking definition in a natural way.

Definition 5. A non-empty coalition C ⊆ I can indirectly exclusion block the allocation µ

with allocation σ if
9The infinite union in this definition simplifies notation. Since Ck−1 ⊆ Ck ⊆ I for all k, the union is finite

in practice.
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1. σ(i) ≻i µ(i) for all i ∈ C; and,

2. µ(j) ≻j σ(j) =⇒ µ(j) ∈ Ω(C|ω, µ).

The indirect exclusion core or, for simplicity, the exclusion core is the set of allocations that

cannot be indirectly exclusion blocked by any coalition.

Definition 5 has two components. First, all coalition members must strictly benefit from

the proposed reallocation of houses. We explained the importance of this requirement when

discussing the strong core above. Second, agents harmed by a blocking action must have

been excluded from houses in the coalition’s extended endowment. Paralleling Definition 3,

indirect exclusion blocking does not presume the imposition of a new allocation on the market

as a whole. Rather, a coalition’s interest and ability—through direct and indirect influence—

to impede a particular outcome is all that matters. At an exclusion core allocation, everyone’s

desire or ability to veto others’ assignments is neutralized.

Theorem 1. For any economy 〈I,H,≻, ω〉, the exclusion core is not empty.

We defer the proof of Theorem 1 to Section 3 where we generalize our model. Before

considering that generalization, we remark on the exclusion core’s properties and we examine

two important special cases. The exclusion core is a subset of the direct exclusion core and

its elements are Pareto efficient and belong to the weak core. The exclusion core’s relation

to the strong core is more nuanced. Since the strong core may be empty, the exclusion core

is not necessarily a subset of the strong core. The strong core is also not necessarily a subset

of the exclusion core, as confirmed by the next example.

Example 3. There are four agents and four houses. For each k ∈ {1, 2, 3}, ω(ik) = {hk}.

House h4 is owned collectively, i.e. h4 ∈ ω(I) and h4 /∈ ω(C) for all C ( I.10 The agents’

preferences are:

≻i1 : h2, h1 ≻i2 : h4, h3, h2 ≻i3 : h2, h3 ≻i4 : h1, h4, h3, h2 .

There are three strong core allocations, µ, ν, and σ, as illustrated in Figure 2. In the figure,

each house is pointing to its owner (if it has one) and each agent is pointing to his assigned

house. Only ν and σ belong to the exclusion core. The coalition C = {i1, i2, i4} can directly

(and, hence, indirectly) exclusion block µ with the allocation σ. This coalition cannot weakly

block µ with σ since σ(i2) = h4 and h4 /∈ ω(C).

10This economy is an example of a house allocation problem with existing tenants (Abdulkadiroğlu and
Sönmez, 1999).
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Figure 2: Strong core allocations in Example 3. Only ν and σ are exclusion core allocations.

2.4 Private and Public Ownership

Private and public ownership are two dichotomous cases often considered in economic anal-

ysis. In a private ownership economy, every house has a single owner. That is, for every

h ∈ H there exists an agent i such that h ∈ ω(i). An agent may own multiple houses, as in

Example 1, but no house is owned collectively.

Proposition 1. In a private ownership economy, the strong core is a (possibly empty) subset

of the exclusion core.

Shapley and Scarf (1974) analyze a particular private ownership economy where each

agent ik owns exactly one house, i.e. ω(ik) = {hk}, and h ≻i h0 for all i and h 6= h0. They

present an algorithm, attributed to David Gale, that constructs a strong core allocation in

their market. We will generalize this algorithm in the sequel and we summarize it here.

Algorithm 1 (Top Trading Cycles). Initially, all agents and houses are unassigned. In step

t ≥ 1 of the algorithm, each unassigned house points to its owner and each unassigned agent

points to his most preferred house that remains in the market. As there is a finite number

of agents and houses, there is at least one cycle of the form h → i → · · · → h′ → i′ → h. (A

cycle may be formed by one agent and one house.) Pick any cycle and to each agent in the

cycle assign the house that he is pointing to. Remove the assigned agents and houses from

the market. This process continues until all agents and houses have been assigned.

The TTC algorithm identifies the economy’s unique strong core allocation (Roth and

Postlewaite, 1977) and this allocation can be supported as a competitive equilibrium (Shapley

and Scarf, 1974). Roth (1982) shows that the TTC mechanism is strategy-proof11 and Ma

(1994) proves that it is the unique mechanism satisfying individual rationality,12 Pareto

11A (direct) mechanism is strategy-proof if it is a dominant strategy for each agent to truthfully communi-
cate his preferences to the mechanism. In each step of the TTC mechanism, each agent is assumed to point
to his most-preferred available house. He cannot improve his final assignment by pointing elsewhere.

12If µ is an individually rational allocation, then µ(i) �i h for all h ∈ ω(i) ∪ {h0} and for every agent i.
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optimality, and strategy-proofness. Furthermore, the strong core allocation is “stable” under

multiple definitions (Roth and Postlewaite, 1977; Wako, 1984, 1991; Kawasaki, 2015). All

things considered, the strong core allocation is this market’s most compelling outcome.

Proposition 2. The exclusion core and the strong core coincide in Shapley and Scarf’s

(1974) economy.

The polar opposite of a private ownership economy is the public ownership economy.

Hylland and Zeckhauser (1979) consider this assignment problem.13 In this case, all houses

belong only to the social endowment, i.e. ω(C) = ∅ for all C ( I and ω(I) = H . Given the

situation’s ex ante symmetry, any Pareto efficient assignment is as a reasonable outcome.14

Proposition 3. The exclusion core and the set of Pareto efficient allocations coincide in

Hylland and Zeckhauser’s (1979) assignment problem.

We present direct proofs of Propositions 1–3 in the Appendix. In Section 3.4 we provide

indirect proofs of the preceding (and stronger) results. Those arguments rely on a generalized

environment that we examine in the following section.

3 Relational Economies

In the previous section, the endowment system ω was an exogenous and unqualified dis-

tribution of the right to exclude. Though simple, this formulation overlooks the nuance

accompanying ownership rights in practice. These are often layered with caveats and am-

biguities. Status and relationships may impart implicit property rights, as in the bus and

transplant examples above. Thickets of conditional and competing claims can readily arise.15

A variant of a prior example illustrates the difficulty of capturing such cases with the rigid

interpretation of endowments presumed thus far.

Example 4 (The Diarchy). Recall the Kingdom from Example 1. There are three agents

and two houses. Everyone agrees that h1 is the best house, and h2 is second best. Suppose,

however, that agents j and k are “co-kings” and “co-own” everything. Agent i, the peasant,

owns nothing. Now, there are two focal allocations:

µ(i) = h0 µ(j) = h1 µ(k) = h2 and σ(i) = h0 σ(j) = h2 σ(k) = h1 .

13See also Koopmans and Beckmann (1957).
14Unlike Hylland and Zeckhauser (1979), we focus exclusively on deterministic outcomes.
15The thicket metaphor is due to Shapiro (2000), who used it to describe the complex and interdependent

claims typifying patents and intellectual property.
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In each case, the kings split the two houses while the peasant receives his outside option.

Both allocations are efficient and either is equally plausible given the economy’s symmetry.

Is there an endowment system that reasonably captures this situation? The problem’s

symmetry suggests two natural candidates. The first places all houses only in the kings’ joint

endowment: ω(i) = ω(j) = ω(k) = ∅ but ω({j, k}) = {h1, h2}. This endowment system

satisfies (A1)–(A4) and the preceding section’s analysis applies. Regrettably, the exclusion

core includes outcomes that are implausible given the context. For instance, the allocation

ν(i) = h2 ν(j) = h0 ν(k) = h1

belongs to the exclusion core even though a king is homeless. Despite his royal pedigree, j

cannot reclaim h2 without k’s assistance. But k is satiated and has no reason to aid j.

An alternative endowment system places each house in each king’s personal endowment:

ω(j) = ω(k) = {h1, h2} and ω(i) = ∅. This endowment system violates (A4) and every

allocation can be blocked by the king who does not receive h1. The exclusion core is empty.

The Diarchy’s troubles stem from the proposed endowment systems’ immutability and

insensitivity to the agents’ identities and relationships. More conditionality seems warranted.

For instance, if the peasant occupies h1 or h2, either king should be able to expel him.

However, a king should not have the same right when a house is occupied by a co-monarch,

lest a civil war is to follow.

3.1 Priorities

To analyze economies with competing and conditional claims, such as the Diarchy, we appeal

to the exclusion core, but we presume that endowments, i.e. exclusion rights, are endoge-

nously determined. To further this idea, we first amend our definition of an economy. A

relational economy 〈I,H,≻,⊲〉 consists of agents, houses, preferences, and a priority struc-

ture. The first three components are defined as before. The new primitive is the priority

structure ⊲ = (⊲h)h∈H , which is a family of orders that describe pre-existing social, legal,

or economic relationships among agents in relation to the economy’s goods. We are agnostic

about the priority structure’s origin. It may be formally codified by law or it may be infor-

mally set by inter-personal relations, relative status, or historical context.16 We emphasize

from the outset that priorities in our model are not synonymous with property or exclusion

rights per se. These will be derived below, naturally favoring agents with higher priorities.

16A formally-codified priority structure is found among creditors holding an issuer’s debt.
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Figure 3: Hasse diagrams of example priority structures.

Formally, each ⊲h is a strict partial order of the set of agents. We write i Dh j if i ⊲h j

or i = j. Many situations can be modeled with priorities and Figure 3 presents several

examples.17 If a house is part of the social endowment, no agent has priority over others,

i.e. i ⋫h j for all i and j, as in panel (a). If one agent ⊲h-dominates all others, it will prove

natural to call him the house’s “owner.” A diarchic structure occurs if two agents equally

dominate others, but not one another. More exotic cases, like in Figure 3(d), may describe

hierarchical relationships within families or across social groups. As conventions, we assume

that i ⋫h0 j for all i, j ∈ I and i⊲h ∅ for all i ∈ I and h ∈ H .

Priorities feature in many assignment models, particularly those concerning student-

school matching. We adopt the same terminology to highlight a technical parallel that will

be evident below. However, priorities carry a different interpretation in our setting than in a

school-choice or centralized assignment problem. In the latter, priorities are administratively-

defined rankings of students (the agents) that help ration places at desirable schools (the

houses). Abdulkadiroğlu and Sönmez (2003) offer two interpretations of priorities in this

context. First, they may impose an inviolable fairness requirement, “no justified envy,” on the

final assignment.18 In this case, Gale and Shapley’s (1962) deferred acceptance algorithm is

the preferred assignment method. Priorities do not have this meaning in our model. Second,

priorities may define students’ relative opportunities. A student with a higher priority at a

school should have a “better opportunity” to attend that school than someone with a lower

priority (Abdulkadiroğlu and Sönmez, 2003, p. 736). Our use of priorities is closer to this

second meaning. But, as we emphasize, priorities in our model should not be regarded

as rationing devices within a centralized assignment problem. Rather, they describe social,

legal, or economic relations that shape endowments and exclusion rights, as described below.

Our use of priorities in a decentralized economy bears some similarity Piccione and Rubin-

stein’s (2007) strength relation in their model of a “jungle economy.” Their strength relation

17Ehlers and Erdil (2010) model some of these situations with non-strict partial orders. Priorities have a
different interpretation in their analysis than in ours.

18A student would feel justified envy if he prefers to attend a school that enrolled a lower-priority student.

18



is a linear order of all agents, while priorities in our model are good-specific and possibly in-

complete. Furthermore, the link between priorities and agents’ rights in a relational economy

is mediated through conditional endowments, which we turn to next.

3.2 Conditional Endowments

An endowment system specifies a distribution of exclusion rights. In a relational economy,

it must address two requirements, both illustrated by the Diarchy. First, exclusion rights

are often qualified by the prevailing allocation. Thus, the endowment system should adjust

accordingly. We adopt the term conditional endowment system to emphasize this condi-

tionality. And second, conditional endowments should reflect the context conveyed by the

priority structure. Intuitively, if i⊲h j, then i should enjoy rights no less than j with respect

to house h.19 We investigate two approaches formalizing both desiderata.

Weak Conditional Endowments

A natural starting point places a house in a coalition’s conditional endowment if one of its

members dominates that house’s assigned occupant. A relational economy’s weak conditional

endowment system at µ, ωµ : 2
I → 2H , is an endowment system defined as follows. For every

house h ∈ H and coalition C ⊆ I, h ∈ ωµ(C) if and only if there exists an agent i ∈ C

such that i Dh µ
−1(h). Weak conditional endowments plug-in seamlessly into the definition

of exclusion blocking, without otherwise changing its behavioral rationale. The following

definition parallels Definition 5, with “ωµ” replacing “ω” in the second point.

Definition 6. A non-empty coalition C ⊆ I can indirectly exclusion block the allocation µ

with allocation σ given ωµ if

1. σ(i) ≻i µ(i) for all i ∈ C; and,

2. µ(j) ≻j σ(j) =⇒ µ(j) ∈ Ω(C|ωµ, µ).

The strong exclusion core of a relational economy is the set of allocations that cannot be

indirectly exclusion blocked given ωµ.

The intuitive derivation of ωµ gives the strong exclusion core great appeal. Regrettably,

it is easy to see that the strong exclusion core can be empty.

19See Campbell (1992) for a discussion of how hierarchical relations may qualify property rights.
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Example 5. Suppose I = {i, j, k} and H = {h1, h2}. Assume that i⊲h1 j⊲h1 k, k⊲h2 j⊲h2 i

and

≻i : h2, h1, h0 ≻j : h1, h0 ≻k : h1, h2, h0 .

Any assignment µ where µ(j) = h1 can be exclusion blocked by either i or k. But, if

µ(j) = h0, efficiency demands that µ(i) = h2 and µ(k) = h1. This assignment can be

exclusion blocked at ωµ by j.

The root of the preceding example’s problem is the economy’s cyclic priority structure.

Whether encountered in a consumer’s preference or in committee voting, cyclic relations

are a well-known challenge for economic analysis. The simplest strategy to address this

complication is to restrict the priority structure accordingly. A priority structure ⊲ is acyclic

if for all h ∈ H and agents i, j, and k,

i⊲h j & i 4h k =⇒ k ⊲h′ j ∀h′ 6= h, h0. (1)

Our definition of acyclicity is specifically phrased to accommodate incomplete priority struc-

tures; however, (1) reduces to the more-familiar Ergin (2002) acylicity when each ⊲h is a

linear order of all agents.20 It is related to strong acyclicity, which was proposed by Ehlers

and Erdil (2010) as an extension Ergin’s (2002) definition. Stronger forms of acyclicity are

also proposed by Kesten (2006). We discuss the following theorem’s proof in Section 3.3.

Theorem 2. For any relational economy with an acyclic priority structure, the strong ex-

clusion core is not empty.

While acyclicity appears to be a demanding requirement, it is satisfied by many common

situations. If house h is privately owned there is an agent i—the house’s owner—such that

i⊲h j for all j 6= i and j ⋫h k for all j, k ∈ I \{i}, as in Figure 3(b). Conversely, if house h is

part of the social endowment, i ⋫h j for all i, j ∈ I, as in Figure 3(a). Any economy featuring

a combination of houses that are privately owned or belong to the social endowment has an

acyclic priority structure.21 Even the Diarchy of Example 4 can be modeled with an acyclic

priority structure: j ⊲h i and k ⊲h i for all h ∈ H . In this case, the strong exclusion core

coincides with the two focal allocations where the kings split the houses among themselves.

20An Ergin (2002) cycle occurs if for distinct houses h and h′ and distinct agents i, j, and k, k⊲hi⊲hj⊲h′k.
A priority structure is Ergin (2002) acyclic if it does not contain an Ergin (2002) cycle. If ⊲h is a linear
order for each h, then (1) becomes k ⊲h i⊲h j =⇒ k ⊲h′ j. Hence, an Ergin (2002) cycle cannot occur.

21To confirm this fact, note that the antecedent in (1), i⊲h j & i 4h k, is never satisfied.

20



Strong Conditional Endowments

In economies with cyclic priority structures, a strengthening of the preceding definitions

offers a route to positive results. The proposed strengthening ensures the derived conditional

endowment system does not inherit the priority structure’s potentially problematic cycles.

A relational economy’s strong conditional endowment system at µ, ω∗
µ : 2

I → 2H , is an

endowment system defined as follows. For every house h ∈ H and coalition C ⊆ I, h ∈ ω∗
µ(C)

if and only if for every sequence of distinct houses (h0, h1, . . . , hk−1) ∋ h such that

µ−1(h0) ⋫h0 µ−1(h1) ⋫h1 · · · ⋫hk−2 µ−1(hk−1) ⋫hk−1 µ−1(h0), (2)

there exists i ∈ C such that i Dhℓ−1 (mod k) µ−1(hℓ) for some ℓ ∈ {0, . . . , k − 1}.

If house h belongs to a coalition’s strong conditional endowment, the coalition must D-

dominate other agents who may directly or indirectly acquire rights to house h at µ. If

h ∈ ω∗
µ(C), then there exists an agent i ∈ C such that iDh µ

−1(h).22 Thus, ω∗
µ(C) ⊆ ωµ(C)

for all C ⊆ I. Going further, coalition C must command a dominating position against

agents whose claim to h is more indirect. This fact is easiest to see in the special case where

each ⊲h is a linear order. In this case, (2) becomes

µ−1(h0)⊲hk−1 µ−1(hk−1)⊲hk−2 · · ·⊲h1 µ−1(h1)⊲h0 µ−1(h0),

which is a “cycle” formed by successive comparisons of the form µ−1(hℓ) ⊲hℓ−1 µ−1(hℓ−1).

When h ∈ ω∗
µ(C), at least one ⊲hℓ−1-dominating agent in this sequence is further dominated

by some i ∈ C, i.e. iDhℓ−1 µ−1(hℓ)⊲hℓ−1 µ−1(hℓ−1).

Replacing ωµ with ω∗
µ in Definition 6 leads to a corresponding version of the exclusion

core. The weak exclusion core of a relational economy is the set of allocations that cannot

be indirectly exclusion blocked given ω∗
µ.

Lemma 2. (a) The strong exclusion core is a subset of the weak exclusion core. (b) If the

priority structure is acyclic, the weak and strong exclusion cores coincide.

In Example 5, the priority structure was not acyclic and the strong exclusion core was empty.

The unique weak exclusion core allocation assigns i to h2 and k to h1. More generally, the

weak exclusion core identifies plausible final allocations even if the strong exclusion core

offers little guidance.

Theorem 3. For any relational economy, the weak exclusion core is not empty.
22Consider the case where the sequence referenced in the definition has length k = 1.
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3.3 Generalized Top Trading Cycles

We prove Theorems 2 and 3 in Appendix A. Our proofs are constructive and rely on an

algorithm introduced below. The algorithm identifies a strong exclusion core assignment

when the priority structure is acyclic (Theorem 2); otherwise, its output belongs to the

weak exclusion core (Theorem 3). Necessarily, this algorithm builds upon several precursors

given the exclusion core’s coincidence with certain assignments in benchmark cases. First,

the TTC algorithm identifies the unique exclusion core assignment in Shapley and Scarf’s

(1974) economy. Similarly, a Pareto efficient allocation in Hylland and Zeckhauser’s (1979)

market can be identified with a serial dictatorship.23 A mechanism that nests both the TTC

algorithm and the serial dictatorship is the “You Request My House—I Get Your Turn”

(YRMH-IGYT) mechanism of Abdulkadiroğlu and Sönmez (1999). This mechanisms was

proposed to solve the house allocation problem with existing tenants, where some houses have

an owner and others belong only to the social endowment. Our mechanism builds on the

“TTC variant” of the YRMH-IGYT mechanism, as presented by Abdulkadiroğlu and Sönmez

(1999) and Sönmez and Ünver (2010). It is is also an immediate descendant of the TTC

algorithm as applied to the school-choice problem with the tie-breaking of coarse priorities

(Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2009).24 Our algorithm reduces

to each of the above cases when the environment is appropriately restricted. This connection

is encouraging and binds the exclusion core to well-known economic models. Consequently,

our analysis adds a new justification for the use of trading cycle procedures in applications.

Algorithm 2 (Generalized Top Trading Cycles (GTTC)). Given 〈I,H,≻,⊲〉, let ⊲̃h be a

complete linear order of agents such that i ⊲h j =⇒ i ⊲̃h j for each h ∈ H . We call ⊲̃

a completion of ⊲.25 Let I1 := I and H1 := H . In step t ≥ 1 the algorithm proceeds as

follows with inputs I t and H t.

Step t. Let I t and H t be the sets of unassigned agents and houses, respectively, at step t.

Construct a directed graph a follows. The set of vertices is I t∪H t∪{h0}. Draw an arc from

i ∈ I t to h ∈ H t ∪ {h0} if and only if h is agent i’s most preferred house among those in

23In a serial dictatorship all agents are ordered. The first agent is assigned his most-preferred object.
The second agent is assigned his most-preferred object from those remaining. And so on. The resulting
assignment is Pareto efficient if preferences are strict.

24The main difference is our algorithm’s accommodation of a more general class of priority structures than
typically encountered in school-choice problems.

25It is tempting to regard ⊲̃ as a priority structure supplemented by a tie breaking rule (Ehlers, 2014).
While formally compatible with our model, we hesitate to emphasize this interpretation. If i ⋫h j and
j ⋫h i, then i and j are not ⊲h-comparable but do not necessarily have “equal claim” to house h.
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H t ∪ {h0}. For each h ∈ H t, draw an arc from h to the ⊲̃h-maximal agent in I t.

(a) If there exists an agent i who is pointing to h0, assign him to the outside option, i.e. set

µ(i) = h0, and remove him from the market. Set Ĩ t = {i} and H̃ t = ∅.

(b) Otherwise, the constructed graph contains at least one cycle. Choose any cycle and carry

out the implied assignments. That is, if i → h in the cycle then set µ(i) = h. Remove

the associated agents, Ĩ t ⊆ I t, and their assigned houses, H̃ t ⊆ H t, from the market.

Define I t+1 := I t \ Ĩ t and H t+1 := H t \ H̃ t.

The above process continues until I t = ∅. Any remaining houses are left unassigned.

An example in Appendix B illustrates Algorithm 2’s step-by-step operation. As there is

a finite number of agents and at least one agent is removed from the market in each step,

the algorithm terminates in a finite number of steps.

For a given economy, the Algorithm 2 is parameterized by the employed completion ⊲̃.

By varying this completion, we can identify a family of exclusion core outcomes.

Theorem 4. Every strong exclusion core allocation in the relational economy 〈I,H,≻,⊲〉

can be identified by the GTTC algorithm with some completion ⊲̃ of ⊲.

While Algorithm 2 can find all strong exclusion core allocations, it cannot find all weak

exclusion core allocations.26 The next corollary follows from Lemma 2 and Theorems 2–4.

Corollary 1. Denote the weak exclusion core by WEC, the strong exclusion core by SEC,

and the range (over all completions of the priority structure) of Algorithm 2 by GTTC.

(a) Given an arbitrary priority structure, SEC ⊆ GTTC ⊆ WEC.

(b) If the economy’s priority structure is acyclic, SEC = GTTC = WEC.

Since weak exclusion core allocations are Pareto efficient, all assignments identified by

Algorithm 2 also have this property. Additionally, the algorithm is strategy-proof. No agent

can improve his assignment by strategically misreporting his preference. This fact is a direct

26Consider the following example with three agents and three houses. The agents’ preferences are
≻i : h1, h2, h3, ≻j : h1, h2, h3, and ≻k : h1, h3, h2. Agents j and k jointly own h1 in the sense that j⊲h1

i and
k ⊲h1

i. Agent i is the sole owner of h2 and h3: i ⊲h j and i ⊲h k for h ∈ {h2, h3}. Otherwise, the agents
are not ⊲·-comparable. There are three weak exclusion core allocations. In two allocations, i always takes
h2 and either j or k claims h1. In the third allocation—ν(i) = h1, ν(j) = h2, and ν(k) = h3—agents j and
k trade away h1 to i in exchange for h2 and h3. The assignment ν cannot be identified by Algorithm 2.
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corollary to prior results derived by Roth (1982), Abdulkadiroğlu and Sönmez (1999), Roth

et al. (2004), and (in particular) Abdulkadiroğlu and Sönmez (2003), who extend Gale’s

TTC algorithm to an assignment problem with priorities. Though priorities have a different

meaning in our model, the argument is essentially identical and we omit the proof.

Drawing on the preceding analysis, we can highlight several further properties of the

exclusion core. First, the strong exclusion core is stable in the sense of von Neumann and

Morgenstern (1944) when the priority structure is acyclic.27,28 Thus, echoing their interpre-

tation, it defines a consistent “standard of behavior.” Trivially, the strong exclusion core

is internally stable since its outcomes cannot be indirectly exclusion blocked. Its external

stability is confirmed by the following proposition.

Proposition 4. Consider a relational economy with an acyclic priority structure. If µ is

not a strong exclusion core allocation, there exists a coalition C that can indirectly exclusion

block µ given ωµ with some strong exclusion core allocation σ.

Given Corollary 1, the preceding stability properties also apply to the weak exclusion core.

Second, the exclusion core exhibits intuitive comparative statics with respect to ⊲.

Changes in ⊲ may reflect changing legal or social norms. Given I and H , the priority

structure ⊲′ is a coarsening of ⊲ if for all h ∈ H and i, j ∈ I, i⊲′
h j =⇒ i⊲h j. Intuitively,

⊲′ coincides with ⊲ except some hierarchal relations among agents are possibly expunged.

Proposition 5. If ⊲′ is a coarsening of ⊲, the strong (weak) exclusion core of E ′ = 〈I,H,≻

,⊲′〉 contains the strong (weak) exclusion core of E = 〈I,H,≻,⊲〉.

Agent-level implications can be derived too. We say that the set of allocations A ≻i-

dominates the set A′ if for every µ ∈ A there exists µ′ ∈ A′ such that µ(i) �i µ
′(i) and for

every µ′ ∈ A′ there exists a µ ∈ A such that µ(i) �i µ
′(i). The next proposition formalizes

how Algorithm 2 respects a “priority improvement” for agent i (Balinski and Sönmez, 1999).

Given Corollary 1, it also applies to the exclusion core when the priority structure is acyclic.

Proposition 6. Let E = 〈I,H,≻,⊲〉 and E ′ = 〈I,H,≻,⊲′〉 be two economies where (i)

for all h ∈ H and k 6= i, k ⋫h i =⇒ k ⋫′
h i; and, (ii) for all h ∈ H and k, j 6= i,

27A set of outcomes A is von Neumann-Morgenstern (vNM) stable if it is (i) internally stable: every µ ∈ A
is not “dominated” by any σ ∈ A; and, (ii) externally stable: every µ /∈ A is “dominated” by some σ ∈ A. In
our context, the allocation σ “dominates” µ if there exists a coalition that can indirectly exclusion block µ
with σ given ωµ (Definition 6). Different definitions of “dominance” lead to different stable sets.

28In fact, a stronger conclusion follows. When indirect exclusion blocking (Definition 6) defines the domi-
nance relation, the strong exclusion core is the unique vNM stable set. Other dominance relations can lead
to multiple disjoint stable sets. For example, if weak blocking (Definition 1) defines the dominance relation,
the Kingdom economy (Example 1) has two disjoint vNM stable sets.
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k ⋫h j ⇐⇒ k ⋫′
h j.29 The set of allocations identified by the GTTC algorithm in E

≻i-dominates the corresponding set in E ′.

3.4 Conditional and Unconditional Endowments

We introduced relational economies to better model joint or qualified ownership. We conclude

by linking relational economies to the setting of Section 2 where an endowment system ω,

rather than a priority structure ⊲, is the economic primitive.

First, consider the relational economy 〈I,H,≻,⊲〉. We define its unconditional endow-

ment system, ω∗∗ : 2I → 2H , as follows. For all h ∈ H and C ⊆ I, h ∈ ω∗∗(C) if and only if

for every allocation µ there exists some i ∈ C such that iDh µ
−1(h).30 By replacing ωµ with

ω∗∗ in Definition 6, we can define the unconditional exclusion core of a relational economy as

the set of allocations that cannot be indirectly exclusion blocked given ω∗∗. It can be shown

that ω∗∗(C) ⊆ ω∗
µ(C) ⊆ ωµ(C) for all µ and C. Thus, a relational economy’s unconditional

exclusion core is not empty and contains its weak and strong exclusion cores.

Now, recalling Section 2, consider the simple economy 〈I,H,≻, ω〉 with an endowment

system ω satisfying (A1)–(A4). The priority structure ⊲ represents ω if for each h ∈ H ,

i⊲h j if and only if i ∈ Ch and j /∈ Ch. Theorem 1 is a corollary to the next lemma.

Lemma 3. Let 〈I,H,≻, ω〉 be an economy with an endowment system ω satisfying (A1)–

(A4). Suppose ⊲ represents ω.

(a) The exclusion core of the simple economy 〈I,H,≻, ω〉 coincides with the unconditional

exclusion core of the relational economy 〈I,H,≻,⊲〉.

(b) If 〈I,H,≻, ω〉 is a simple economy where every house is either privately owned or part

of the social endowment, then its exclusion core coincides with the strong, weak, and

unconditional exclusion cores of the relational economy 〈I,H,≻,⊲〉.

Lemma 3 lets us revisit the cases of private and public ownership introduced in Section

2.4. The following result, due to Sönmez (1999), points to a closer connection between the

exclusion core and the strong core in a private ownership economy.

Theorem 5 (Sönmez (1999)). Suppose there exists a Pareto efficient, individually rational,

and strategy-proof mechanism f in a private-ownership economy.

29Conditions (i) and (ii) adapt to our context Balinski and Sönmez’s (1999) definition of a priority im-
provement for agent i.

30Equivalently, h ∈ ω∗∗(C) if and only if C includes every ⊲h-maximal agent in the economy.
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(a) The strong core of the economy is either empty or a singleton.

(b) If the strong core is not empty, the unique element of the strong core is identified by f .

Noting that the GTTC algorithm satisfies the conditions of Theorem 5, two corollaries follow.

Corollary 2. In a private ownership economy, if the exclusion core contains more than one

allocation, the strong core is empty.

Corollary 3. In a private ownership economy, the exclusion core equals the strong core

whenever the latter is not empty.

Corollary 3 also implies the coincidence of the exclusion core and the strong core in Shapley

and Scarf’s (1974) economy.

An economy with both private and social endowments is the house allocation problem

with existing tenants, introduced by Abdulkadiroğlu and Sönmez (1999). In this problem,

every house either belongs to the social endowment or is owned by exactly one agent. No

agent owns more than one house. Such an economy’s exclusion core may differ from its strong

core (see Example 3). In this setting, the GTTC algorithm reduces to Abdulkadiroğlu and

Sönmez’s (1999) YRMH-IGYT mechanism. The following is a corollary to Theorem 4.

Corollary 4. In the house allocation problem with existing tenants, the exclusion core coin-

cides with the set of all possible allocations identified by Abdulkadiroğlu and Sönmez’s (1999)

YRMH-IGYT mechanism.

Corollary 4 provides a new characterization of the YRMH-IGYT mechanism, complementing

the axiomatization proposed by Sönmez and Ünver (2010).

Finally, the GTTC mechanism reduces to a serial dictatorship when all houses belong

only to the social endowment. Thus, the exclusion core coincides with the set of Pareto

efficient allocations, as shown directly by Proposition 3 above.

4 Related Literature

Our analysis bridges two previously segregated literatures. First, we contribute to the study

of discrete exchange economies. And second, we complement scholarship in law and eco-

nomics on the nature of property. We address each domain in turn.
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Trading Cycles and Discrete Exchange Economies

Shapley and Scarf (1974) were the first to study the core of a discrete exchange economy and

they introduced David Gale’s TTC algorithm, which Algorithm 2 generalizes. Formally, the

algorithm belongs to the class of “hierarchical exchange” mechanisms introduced by Pápai

(2000). Such mechanisms rely on an alternative definition of endowments, termed inheritance

trees. Pycia and Ünver (2017) introduce inheritance structures as part of their generaliza-

tion of Pápai’s (2000) model. An inheritance structure defines how unassigned houses are

inherited or transferred during a multi-step assignment process, like the TTC procedure.

For example, if agent i owns house h and exits the market with house h′, the inheritance

structure specifies the new owner of house h who may exchange it in the continuation of the

trading process. Svensson and Larsson (2005) introduce endowment rules, which are similar.

The analogues of an inheritance structure in our model are the completions “⊲̃h” oper-

ating within Algorithm 2. We regard these completions as purely technical devices and they

should not be conflated with endowments or property rights in our analysis. An inheritance

structure is a specification of contingent control within a sequential assignment procedure.

In contrast, an endowment system in our model describes a distribution of exclusion rights

in general and is logically independent of any particular trading protocol.

Two recent studies draw on the dynamics of a hierarchical exchange to propose new

variants of the core. Both combine weak blocking (Definition 1) with alternative definitions

of endowments. Ekici (2013) calls an allocation reclaim proof if it cannot be weakly blocked

by any coalition whose endowment is a combination of the pre-trade endowment and the

ex post allocation. Starting with Pápai’s (2000) model, Tang and Zhang (2016) define an

agent’s contingent endowment at allocation µ as the maximal set of houses he would have

feasibly inherited during trade leading to µ given the prevailing inheritance structure. In

contrast to these studies, our definitions overcome the problematic incentives underlying

weak blocking. Our derivations and interpretations of endowments are distinct as well.

Many variants of the Shapley and Scarf (1974) economy have been considered. Konishi

et al. (2001) show that the weak core may be empty if agents can consume multiple goods.

As the exclusion core is a subset of the weak core, we cannot offer new positive results for

this class of problems. To limit confounds, we have assumed a strict preference domain,

integral endowments, and deterministic final outcomes. Each of these assumptions has been

relaxed by many authors.31 Farsighted solutions have also been considered (Klaus et al.,

31For richer preference domains, see Alcalde-Unzu and Molis (2011), Jaramillo and Manjunath (2012), and
Saban and Sethuraman (2013). Kesten (2009), Athanassoglou and Sethuraman (2011), and Aziz (2015) study
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2010). We defer investigating these extensions to future research.

Competitive or Walrasian equilibrium is another prominent solution often applied to ex-

change economies. The (possible) absence of personal endowments precludes the meaningful

application of standard price equilibrium definitions to our setting, but generalized equilib-

rium notions are applicable. Richter and Rubinstein (2015) have recently introduced the

notion of a “primitive equilibrium.” Their definition does not rely on budget sets and it de-

liberately eschews endowments. Instead, they observe that equilibria in exchange economies

induce an ordering of goods, from more to less desirable. Exclusion core allocations identified

by the GTTC algorithm, which orders goods based on the step in which the good is assigned,

satisfy Richter and Rubinstein’s (2015) equilibrium definition.

Endowments and Property Rights

The interpretation of endowments and property that we advance is narrow. It is derived from

a basic principle, the right to exclude others. We cannot hope to account for this principle’s

philosophical, historical, and legal development here. Penner (1997), Merrill (1998), and

Merrill and Smith (2001b), among many others, elaborate on these points in detail. Klick

and Parchomovsky (2017) document the importance of the right to exclude for land values.

Its impact on patent and intellectual property law is undeniable (Mossoff, 2009).

We have sidestepped the familiar “bundle of rights” interpretation of property, which

is central in Coase’s (1960) analysis and in subsequent research emphasizing investment

incentives and control rights (Merrill and Smith, 2001b; Segal and Whinston, 2012). Instead,

our analysis suggests that efficient allocations depend on a small subset of the rights one

may associate with property. The right to exclude is the only stick necessary to ensure

efficient outcomes in our model. We have also set aside all implications associated with

the allocation of property rights. Formally, our model inhabits Coase’s hypothetical setting

without transaction costs. Reassuringly, all exclusion core outcomes are efficient.

To simplify exposition, we split our analysis into two parts. Section 2 examined simple

economies with exogenous endowments; Section 3 introduced relational economies and con-

ditional endowments. Importantly, this division also reflects a debate among legal scholars

concerning the nature of property. This debate is often framed as a spectrum running be-

tween in rem and in personam paradigms.32 Section 2 presumes an in rem interpretation

of property. An agent’s ownership rights are shaped by his relationship with a specific thing

fractional endowments. Abdulkadiroğlu and Sönmez (1998) and Carroll (2014) examine random outcomes.
32Merrill and Smith (2001b) examine this distinction with particular reference to economic analysis. See

also Campbell (1992), Merrill (1998), and Klick and Parchomovsky (2017) and the citations therein.
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and are universal in character. The Kingdom (Example 1) and Shapley and Scarf’s house

market operate naturally under this paradigm. Arruñada (2012) argues that in rem rights

are essential for impersonal exchange to be possible.

Conditional endowment systems formalize an in personam interpretation of property and

ownership. An agent’s rights are defined by his relationships with others, which we model

with priorities. Exclusion rights are constrained by the priority structure and qualified by

the prevailing assignment. Situations with overlapping claims or conditionality, such as the

Diarchy (Example 4) or cadaveric organ transplantation, follow this archetype. An agent’s

ability to participate in these markets anonymously is limited, and often impossible.

Our model provides a new formal setting for the comparison of in rem and in personam

paradigms. In fact, we provide an embedding of the former into the latter in Section 3.4

(Lemma 3). Still, our model’s sparsity masks some notable differences. Merrill and Smith

(2001a), for example, observe that in rem rights have a lower informational burden than

their in personam counterparts. This consideration is absent from our model but affects a

market’s operation and scalability in practice. Its further investigation is likely to be fruitful.

5 Concluding Remarks

Property plays a pivotal role in markets; however, its interpretation and relation to endow-

ments within economic analysis has been taken for granted. Drawing on a simple principle,

the right to exclude others, we propose a new solution for exchange economies and assignment

problems. The exclusion core rests on an interpretation of endowments as a distribution of

exclusion rights, which may be shared, sensitive to competing claims, or qualified by rela-

tionships. Classic solutions, such as the strong and weak cores, cannot be readily applied in

these cases; they miss the significance of exclusion for exchange. Our solution is compatible

with recognized property paradigms and highlights subtle, though powerful, incentives that

sustain efficient outcomes.

We have presented our theory in a simple setting and we hope that this exposition does

not mask our analysis’ broader conceptual message. The logic of indirect exclusion and

the role of repossession chains generalize. Nevertheless, even the simple model we have

analyzed is of great practical importance since it serves as a foundation for many market

design applications. Examples include the allocation of college dormitories, the exchange of

transplant organs, the allocation of airport arrival slots, and the assignment of students to

schools. The exclusion core’s tight connection with the TTC algorithm is a new justification
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for the latter’s use in these and related applications.

Favoring brevity, we have deferred investigating many extensions. Notably, we have

focused on deterministic allocations; “fair” outcomes may require randomization. It may

also prove interesting to extend our analysis to the case of club goods, which are excludable

but non-rivalrous. Finally, our analysis separates a good’s use and ownership, which are

sometimes conflated in models of exchange. Use dictates welfare while acquired ownership

or exclusion rights govern outside options, as the difference between a tenant and a landlord

illustrates. This distinction is immaterial in a one-period model but is salient in a dynamic

setting, which is another promising extension worth pursuing.

A Proofs

Proof of Lemma 1. Let µ be a direct exclusion core allocation. To derive a contradiction,

suppose µ can be strongly blocked by coalition C with allocation σ. Clearly, µ(i) �i h for

all h ∈ ω(i) ∪ {h0} for all i. (Else, µ can be directly exclusion blocked by a single agent.)

Thus, σ(i) ≻i µ(i) for all i ∈ C and σ(C) ⊆ ω(C). Let

σ̂(i) =







σ(i) if i ∈ C

h0 if i /∈ C & µ(i) ∈ σ(C)

µ(i) otherwise

.

Observe that σ̂(i) ≻i µ(i) for all i ∈ C. Moreover, if µ(i) ≻i σ̂(i), then σ̂(i) = h0. Thus,

µ(i) ∈ σ(C) ⊆ ω(C). Hence, C can directly exclusion block µ with σ̂—a contradiction.

Proof of Proposition 1. Let µ be a strong core allocation. Assume toward a contradiction

that µ can be indirectly exclusion blocked by C ⊆ I with σ. Thus, σ(i) ≻i µ(i) for all i ∈ C.

Moreover, if i ∈ C, then σ(i) = µ(j) ∈ H for some j ∈ I. (If σ(i) was not occupied or

σ(i) = h0, the allocation µ would not be Pareto efficient, a contradiction.)

To derive a contradiction, we will identify a coalition K that will be able to strongly

block µ. Start with any i0 ∈ C and define a sequence (i0, i1, . . .) of agents as follows:

1. If iℓ ∈ C, there exists h ∈ H such that σ(iℓ) = h. Set iℓ+1 = ω−1(h).

2. If iℓ /∈ C, then µ(iℓ) ∈ H∪{h0}. If µ(iℓ) = h0, set iℓ+1 = i0; otherwise, if µ(iℓ) = h ∈ H ,

set iℓ+1 = ω−1(h).
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As there is a finite number of agents, the defined sequence must eventually cycle. Without

loss of generality and relabeling if necessary, let K := (i0, . . . , ik) be the cycle. Next we show

that coalition K can strongly block µ with the allocation

σ̂(i) =







σ(i) if i ∈ K ∩ C

µ(i) if i ∈ K \ C

h0 otherwise

.

By construction, σ̂(i) �i µ(i) for all i ∈ K and σ̂(i0) ≻i0 µ(i
0). Moreover, for each agent iℓ,

ℓ < k, σ̂(iℓ) ∈ ω(iℓ+1) ∈ ω(K). And for agent ik, there either exists some iℓ ∈ {i0, . . . , ik−1}

such that σ̂(ik) ∈ ω(iℓ) or σ̂(ik) = µ(ik) = h0. Thus, σ̂(K) ⊆ ω(K) ∪ {h0}. Therefore,

coalition K can strongly block µ, which is a contradiction.

Remark A.1. When each house has at most one owner, it is simple to verify that Ω(C|ω, µ) =
⋃∞

k=0(ω ◦ µ−1)k(ω(C)). We use this simplified expression in the following proof.

Proof of Proposition 2. The TTC assignment is this economy’s unique strong core allocation.

By Proposition 1 it belongs to the exclusion core. Conversely, suppose µ is an exclusion core

allocation. The allocation µ can be represented as a directed graph where each house hk ∈ H

points to its owner, say hk → ω−1(hk) = ik, and each agent points to his assignment, i.e.

ik → µ(ik). As all houses are acceptable and |I| = |H|, µ(I) = H . The resulting graph

partitions the set of agents and houses into disjoint cycles {K1, . . . , KT}. Observe that i ∈

Kt ⇐⇒ ω(i) ∈ Kt ⇐⇒ µ(i) ∈ Kt. Hence, if i ∈ Kt and h ∈ Kt, h ∈
⋃∞

k=0(ω ◦µ−1)k(ω(i)).

Suppose coalition C = {i′1, . . . , i
′
k} can weakly block µ with σ. Thus, σ(i) �i µ(i) for all

i ∈ C, σ(i) ≻i µ(i) for some i ∈ C, and σ(C) ⊆ ω(C)∪{h0}. Clearly, the final condition can

be strengthened to σ(C) = ω(C). Furthermore, without loss of generality we may assume

that σ(·) assigns the houses in ω(C) cyclicly among the members of C. That is,

h′
1 → i′1 → · · · → h′

k → i′k → h′
1 (A.1)

where h′
ℓ = ω(i′ℓ) and σ(i′ℓ) = h′

ℓ+1. for ℓ ≤ k−1 and σ(i′k) = h′
1.

33 Let W = {i ∈ C | σ(i) ≻i

33If σ induces multiple cycles among agents in C, they are necessarily disjoint and without loss of generality
we may focus on any one of them involving an agent i ∈ C such that σ(i) ≻i µ(i).
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µ(i)} and define

σ̂(i) =







σ(i) if i ∈ W

µ(i) if i /∈ W & µ(i) /∈ σ(W )

h0 otherwise

.

Clearly, σ̂(i) ≻i µ(i) for all i ∈ W . Next, pick any j that µ(j) ≻j σ̂(j). There exists some

cycle Kj, as defined above, such that j ∈ Kj and µ(j) ∈ Kj . Furthermore, there exists

some i ∈ W such that σ̂(i) = µ(j). Without loss of generality, suppose i = i′1, according

to the enumeration in (A.1). There are two cases. First, if i′1 ∈ Kj, then µ(j) ∈
⋃∞

k=0(ω ◦

µ−1)k(ω(i′1)). Alternatively, and second, if i′1 /∈ Kj , then there exists some i′t ∈ W ⊆ C

such that i′t ∈ Kj . (If this was not the case, then for all i ∈ (i′2, . . . , i
′
k), σ̂(i) = µ(i). This

implies µ(i′k) = h′
1 ∈ Kj. But, h′

1 = ω(i′1) and hence i′1 ∈ Kj, which is a contradiction.)

Together, the preceding cases imply that µ(j) ∈
⋃∞

k=0(ω ◦ µ−1)k(ω(W )). As the choice of j

was arbitrary, we conclude that coalition W can indirectly exclusion block µ with σ̂, which

contradicts µ being an exclusion core allocation.

Proof of Proposition 3. As exclusion core allocations are Pareto optimal, it is sufficient to

show that no Pareto optimal allocation µ can be indirectly exclusion blocked. Suppose the

contrary. If coalition C can indirectly exclusion block µ with σ, there exists an agent j

who is harmed by the reallocation. Thus, µ(j) ≻j σ(j) and j /∈ C. Indirect exclusion

blocking implies that µ(j) ∈ Ω(C|ω, µ). Necessarily, C ( I, which implies ω(C) = ∅,

ω(C ∪ (µ−1 ◦ ω)(C)) = ∅, and so on. But then Ω(C|ω, µ) = ∅—a contradiction.

Proof of Lemma 2. Part (a) is immediate since ω∗
µ(C) ⊆ ωµ(C) for all C ⊆ I. To confirm

part (b), it is sufficient to verify that ωµ(C) ⊆ ω∗
µ(C) when ⊲ is acyclic. Let h ∈ ωµ(C). To

show that h ∈ ω∗
µ(C), we will confirm that the following statement is true for all k ≥ 1.

(⋆) For every (finite) sequence of distinct houses (h0, . . . , hk−1) ∋ h such that

µ−1(h0) ⋫h0 · · · ⋫hk−2 µ−1(hk−1) ⋫hk−1 µ−1(h0) there exists i ∈ C such that

i Dhℓ−1 (mod k) µ−1(hℓ) for some ℓ ∈ {0, . . . , k − 1}.

Suppose k = 1. In this case, h0 = h and 0 − 1 (mod 1) = 0. Since h ∈ ωµ(C), there

exists i ∈ C such that iDh µ
−1(h). But this implies iDh0 µ−1(h0), as desired.

Now, suppose k ≥ 2. Let (h0, . . . , hk−2, hk−1) be a sequence of distinct houses such that

µ−1(h0) ⋫h0 · · · ⋫hk−2 µ−1(hk−2) ⋫hk−2 µ−1(hk−1) ⋫hk−1 µ−1(h0).
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Without loss of generality, let h0 = h. Since h ∈ ωµ(C), there exists i ∈ C such that

iDhµ
−1(h). Equivalently, iDh0 µ−1(h0). There are two cases. If i = µ−1(h0), then iDhk−1 i =

µ−1(h0) and (⋆) is satisfied. Otherwise i ⊲h0 µ−1(h0) and there are two possibilities. If

iDh0 µ−1(h1), then we are done and (⋆) is satisfied. Else, i 4h0 µ−1(h1) and by acylcicity,

i⊲h0 µ−1(h0) & i 4h0 µ−1(h1) =⇒ µ−1(h1)⊲h′ µ−1(h0)

for all h′ 6= h0. In particular, µ−1(h1) ⊲h1 µ−1(h0). Since µ−1(h1) 4h1 µ−1(h2), acyclicity

implies that µ−1(h2)⊲h2µ−1(h0). Continuing in this manner by induction leads us to conclude

that µ−1(hk−1)⊲hk−1 µ−1(h0), which is a contradiction. Thus, (⋆) is true for all sequences of

length k′ ≤ k.

Proof of Theorem 2. Let µ be the assignment identified by Algorithm 2 for some completion

⊲̃ of ⊲. We note that Algorithm 2 constructs µ sequentially by removing cycles of agents

(Ĩ1, Ĩ2, . . .) and associated houses (H̃1, H̃2, . . .). To derive a contradiction, suppose coalition

C can indirectly exclusion block µ with σ. Thus, σ(i) ≻i µ(i) for all i ∈ C and

µ(j) ≻j σ(j) =⇒ µ(j) ∈ Ω(C|ωµ, µ). (A.2)

We organize the proof’s remainder as a series of claims.

Claim 1. Suppose i ∈ C and i ∈ Ĩ ti. Then σ(i) ∈ H̃ t for some t < ti.

Proof of Claim 1. At each step of the algorithm, each remaining agent points to his favorite

house that has not been removed from the market. Thus, if house σ(i) was not yet assigned

at step ti and σ(i) ≻i µ(i), agent i should have been pointing to some h �i σ(i) ≻i µ(i) at

step ti rather than at µ(i). Hence, σ(i) ∈ H̃ t for some t < ti. ⋄

Claim 2. Let J ⊆ I and suppose h ∈ ωµ(J). If h ∈ H̃ t, then there exists i ∈ J such that

i ∈ Ĩ ti for some ti ≤ t.

Proof of Claim 2. Suppose the contrary and that ti > t for all i ∈ J . Thus, each agent i ∈ J

remains in the market at step t when house h is assigned. First suppose that µ(j) = h and

j is ⊲̃h-maximal at step t. Since h ∈ ωµ(J), there exists i ∈ J such that i Dh µ−1(h). As

every agent in J is assigned after step t, i 6= j. Thus, i ⊲h µ−1(h) = j =⇒ i⊲̃hj, which

contradicts j being ⊲̃h-maximal at step t.
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Suppose instead that house h is assigned in step t as part of a cycle that involves two or

more agents and houses. Let

j0 → h0 → j1 → h1 → · · · → jk−1 → hk−1 → j0

be this cycle of k agents and k houses. For each ℓ, µ(jℓ) = hℓ and jℓ+1 (mod k) is ⊲̃hℓ-maximal

among agents in I t. Without loss of generality, let h = h0. Clearly, j0 4h0 j1. Since

h0 ∈ ωµ(J), there exists i ∈ J such that i Dh0 µ−1(h) = j0. Since i is assigned a house in

a later step, i ⊲h0 j0. Since h0 → j1 at step t and i ∈ I t, i 4h0 j1. Acyclicity implies that

j1 ⊲h′ j0 for all h′ 6= h0. In particular, this implies that j1 ⊲hk−1 j0 =⇒ j1⊲̃hk−1j0, which is

a contradiction since j0 was ⊲̃hk−1-maximal among agents in I t. ⋄

Claim 3. Let ti be the step of Algorithm 2 where agent i is assigned a house and removed

from the market, i.e. i ∈ Ĩ ti. Let J ⊆ I. There exists i ∈ J such that ti ≤ tj for all

j ∈ (µ−1 ◦ ωµ)(J).

Proof of Claim 3. Let j ∈ (µ−1 ◦ ωµ)(J). Observe that µ(j) ∈ ωµ(J) and µ(j) ∈ H̃ tj . By

Claim 2, there exists i ∈ J such that i ∈ Ĩ ti and ti ≤ tj. As the number of agents is finite,

there exists some i ∈ J who is assigned before all agents in (µ−1 ◦ ωµ)(J). ⋄

Henceforth, consider the earliest cycle occurring in Algorithm 2 that contains an agent j

such that µ(j) ≻j σ(j). Without loss of generality, µ(j) ∈ H . Suppose this cycle is removed

at step tj. Let Ĩ tj and H̃ tj be the sets of agents and houses, respectively, involved.

Claim 4. If i ∈ C, then i ∈
⋃

t>tj
Ĩ t, i.e. C ∩ (

⋃

t≤tj
Ĩ t) = ∅.

Proof of Claim 4. First, suppose there exists j1 ∈ C ∩ Ĩ tj . By Claim 1, σ(j1) ∈ H̃ t2 for

some t2 < tj . It follows that there exists j2 ∈ C ∩ Ĩ t2 . Otherwise, σ(j1) = µ(i′) ≻i′ σ(i
′) for

some i′ ∈ Ĩ t2 , which contradicts tj being the earliest cycle involving an agent who strictly

preferred their assignment under µ to that under σ. By Claim 1, σ(j2) ∈ H̃ t3 for some

t3 < t2. Clearly, we may continue this reasoning by induction without end, which is a con-

tradiction as there is a finite number of cycles. Thus, C ∩ Ĩ tj = ∅. Analogous reasoning,

starting the argument at any t′ < tj , confirms that C∩ Ĩ t
′

= ∅. Thus, C∩
(
⋃

t≤tj
Ĩ t
)

= ∅. ⋄

Continuing with the same agent j and his assignment µ(j) as above, we now argue that

µ(j) /∈ Ω(C|ωµ, µ). This will contradict (A.2) and therefore prove the theorem. Recall that
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Ω(C|ωµ, µ) = ωµ (
⋃∞

k=0Ck) where C0 = C and Ck = Ck−1∪ (µ−1 ◦ωµ)(Ck−1). As Ck−1 ⊆ Ck,

it is sufficient to show that µ(j) /∈ ωµ(Ck) for each k.

First, suppose µ(j) ∈ ωµ(C). Thus, there exists some i ∈ C such that iDµ(j) j. Further-

more, Claim 2 implies that there is some i′ ∈ C1 = C, such that i′ ∈ Ĩ ti′ and ti′ ≤ tj where

tj is the step of Algorithm 2 where house µ(j) is assigned. By Claim 4, no members of C

are assigned a house at step tj, or earlier. Hence, we have arrived at a contradiction.

Continuing by induction, suppose µ(j) /∈ ωµ(Ck′) for all k′ < k. Suppose µ(j) ∈ ωµ(Ck).

By definition, Ck = Ck−1 ∪ (µ−1 ◦ ωµ)(Ck−1). Again, Claim 2 implies that there is some

i′ ∈ Ck, such that i′ ∈ Ĩ ti′ and ti′ ≤ tj where tj is the step of Algorithm 2 where house µ(j)

is assigned. However, repeated application of Claim 3 implies that the agent in Ck who is

assigned a house earliest is necessarily a member of C1 = C. By Claim 4, no members of C

are assigned a house at step tj, or earlier, of Algorithm 2—a contradiction.

Proof of Theorem 3. Let µ be the assignment identified by Algorithm 2 for some completion

⊲̃ of ⊲. To prove Theorem 3, it is sufficient to modify the proof of Theorem 2 as follows.

First, replace ωµ with ω∗
µ throughout. And second, replace Claim 2 with the following.

Claim 2′. Let J ⊆ I and suppose h ∈ ω∗
µ(J). If h ∈ H̃ t, then there exists i ∈ J such that

i ∈ Ĩ ti for some ti ≤ t.

Proof of Claim 2′. If h ∈ H̃ t, there exists a cycle of agents and houses such that

j0 → h0 → j1 → h1 → · · · → jk−1 → hk−1 → j0.

For each ℓ, µ(jℓ) = hℓ, jℓ+1 (mod k) is ⊲̃hℓ-maximal among agents in I t, and h ∈ {h0, . . . , hk−1}.

In this cycle, each agent is pointing to the house that he is assigned and each house h′ is

pointing to the ⊲̃h′-maximal agent who remains in the market. It follows that j0 ⋫h1 j2 ⋫h2

· · · ⋫hk−1 jk−1 ⋫hk−1 j0. If h ∈ ω∗
µ(J), there exists i ∈ J such that iDhℓ−1 (mod k) µ−1(hℓ) = jℓ.

As jℓ was the ⊲̃hℓ−1 (mod k)-maximal agent remaining in the market and iDhℓ−1 (mod k) jℓ, house

hℓ−1 (mod k) must have pointed to agent i at some step t′ ≤ t of Algorithm 2. Hence, agent i

was not in the market at step t or jℓ = i. In either case, i ∈ Ĩ ti for some ti ≤ t. ⋄

Proof of Theorem 4. Let µ be a strong exclusion core allocation. We will construct a com-

pletion ⊲̃ such that µ is the assignment generated by the algorithm. The argument proceeds

as follows. We define a sequence of graphs. In each graph, we identify a set of agents who

are assigned their most-preferred house among those in the graph. We then order the agents
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such that each set is “cleared” together by the GTTC algorithm (if this set forms a certain

type of cycle) or in sequence (if this set forms a certain type of open path).

Let I1 := I,H1 := H . Construct a graph Γ1 with vertices I1 ∪H1 ∪ {h0}. Let there be

an arc from i ∈ I1 to h ∈ H1 ∪ {h0} if and only if µ(i) = h. Let there be an arc from each

h ∈ H1 to i ∈ I1 if and only if i is ⊲h-maximal among agents I1. Finally, there is an arc

from the outside option h0 to every i ∈ I1.

Let τ 1(i) denote the highest-ranked house in i’s preference order among H1 ∪ {h0}.

Claim 1. The graph Γ1 contains at least one cycle in which each agent i points to τ 1(i).

Proof of Claim 1. If τ 1(i) = h0 for some i, then µ(i) = h0. If the outside option is an agent’s

most-preferred assignment, he is always able to block any allocation that does not assign

him to h0. Thus, the cycle i → h0 → i satisfies the claim.

Instead, suppose τ 1(i) 6= h0 for all i. Note that for each i, house τ 1(i) must be occupied

by some agent at µ. Otherwise, if τ 1(i) is vacant, agent i would be able to indirectly exclusion

block µ unilaterally. Assume toward contradiction that there is no cycle satisfying the above

claim. Construct an alternating sequence of agents and houses as follows. First, fix some

enumeration of all agents in I1 = {i1, i2, . . .}. (This index can be arbitrary, but it must be

fixed.) Start with some agent i0 ∈ I1 and let h0 = τ 1(i0). Continuing by induction, given

a sequence (i0, h0, . . . , ik−1, hk−1), let ik be the agent with the lowest index number (given

the fixed enumerate) such that (a) ik Dhk−1 µ−1(hk−1) and (b) ik is ⊲hk−1-maximal among

agents in I1. Let hk := τ 1(ik). As there is a finite number of agents and houses, the sequence

(i0, h0, . . .) must eventually flow into a cycle. Relabeling as necessary, and without loss of

generality, let (i0, h0, . . . , ik−1, hk−1) be that cycle. Thus, i0 Dhk−1 µ−1(hk−1).

Let C be the set of agents in this cycle such that τ 1(iℓ) ≻iℓ µ(i
ℓ). It follows that C 6= ∅.34

Given the cycle (i0, h0, . . . , ik−1, hk−1) and the fact that hℓ ∈ ωµ(i
ℓ+1 (mod k)) for all ℓ, it fol-

lows that {h0, . . . , hk−1} ⊆ Ω(C|ωµ, µ). Thus, coalition C can indirectly exclusion block µ by

reallocating their most preferred houses among themselves, which is a contradiction. There-

fore, we conclude that there exists at least one cycle in Γ1 where each agent i points to τ 1(i). ⋄

Noting Claim 1, if Γ1 contains a cycle where i → h0 → i and µ(i) = τ 1(i) = h0, let

K1 = (i, h0). Otherwise, let K1 = (i0, h0, . . . , ik−1, hk−1) be a cycle in Γ1 in which each agent

i points to τ 1(i) 6= h0. By definition of Γ1, τ 1(i) = µ(i) for each agent i in K1.

34Otherwise the cycle (i0, h0, . . . , ik−1, hk−1) would form a cycle in the graph Γ1 where each agent i points
to τ1(i). This situation has been ruled out by assumption.
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Now, define I2 := I1 \ (K1∩I1) and H2 := H1 \ (K1∩H1). We can construct a graph Γ2,

with vertices I2∪H2∪{h0}, using the same procedure as for Γ1. It is straightforward to adapt

the argument of Claim 1 to conclude that Γ2 has a cycle K2 where each agent i ∈ K2 ∩ I2

is pointing to τ 2(i) = µ(i) and τ 2(i) is agent i’s most preferred house among those in

H2 ∪ {h0}. Continuing in this manner we can define a sequence of cycles (K1, K2, . . . , KT )

until no agents remain in ΓT . (The outside option h0 is always a member of ΓT .)

Next we will use the sequence of cleared cycles to define a completion ⊲̃h for each h ∈

H . Consider cycle K1. If K1 = (i, h0), there is nothing to do and we can move to K2.

Otherwise, suppose K1 defines a cycle of the form i0 → h0 → i1 → . . . hk−1 → i0. For

each hℓ let iℓ+1 (mod k) be the (unique) maximal element under ⊲̃hℓ , i.e. iℓ+1 (mod k)⊲̃hℓj for

all j 6= iℓ+1 (mod k). The remainder of ⊲̃hℓ can be defined in any manner not violating ⊲hℓ .

Continuing by induction, consider cycle Kt. If Kt includes the outside option, i.e. Kt =

(i, h0), there is nothing to do and we can move to Kt+1. Otherwise, suppose Kt defines a

cycle of the form i0 → h0 → i1 → . . . hk−1 → i0. For each hℓ define ⊲̃hℓ as follows. First,

identify all agents j ∈ I ∩ (∪τ<tK
τ ) such that j ⊲hℓ iℓ+1 (mod k). Let J be this set. Order

these agents in an arbitrary manner not violating ⊲hℓ . Place iℓ+1 (mod k) in the ⊲̃hℓ order

immediately after all agents in J . Rank all remaining agents J ′ = I \(J∪{iℓ+1 (mod k)}) in an

arbitrary manner after iℓ+1 (mod k) such that ⊲hℓ is not violated. The constructed completion

⊲̃hℓ should have the following structure:

j1 ⊲̃hℓ · · · ⊲̃hℓ jk
︸ ︷︷ ︸

J

⊲̃hℓ iℓ+1 (mod k)
⊲̃hℓ j′ ⊲̃hℓ · · ·

︸ ︷︷ ︸

J ′

.

Finally, if house h has not been assigned a completion as part of the preceding steps (and

thus it is unassigned under µ), we can let ⊲̃h be an arbitrary completion of ⊲h.

One can now verify that the GTTC algorithm outputs µ when ⊲̃h is the linear completion

of ⊲h for each h ∈ H . In particular, (up to the order of cleared simultaneous disjoint cycles

or simultaneous cycles involving h0) Kt is the cleared cycle in step t of the algorithm.

Proof of Proposition 4. Given 〈I,H,≻,⊲〉 and µ, let ⊲̃ be any admissible completion of the

priority structure ⊲ such that for each h, i⊲̃hµ
−1(h) ⇐⇒ i ⊲h µ−1(h).35 Let σ be the

allocation identified by the GTTC algorithm given ⊲̃. Let Ĩ t be the set of agents assigned to

a house in step t of the algorithm. Since ⊲ is acyclic, σ is an exclusion core allocation. We

will show that if µ is not an exclusion core allocation, the coalition C = {i | σ(i) ≻i µ(i)}

can indirectly exclusion block µ with σ given ωµ.

35Recall that by convention i⊲h ∅ for every h ∈ H .
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First, we observe that C 6= ∅. We know this because σ 6= µ and if µ(i) �i σ(i) for all i,

then σ would not be Pareto-optimal, a contradiction.

To derive a contradiction, suppose that C cannot indirectly exclusion block µ with σ.

Thus, ∃ j /∈ C such that µ(j) ≻j σ(j) and µ(j) /∈ Ω(C|ωµ, µ). Out of all the agents who

satisfy these conditions, let j0 be one who was assigned at the earliest step of the GTTC

algorithm.36 Suppose that j0 is assigned in step t0 of the GTTC algorithm, i.e. j0 ∈ Ĩ t0 .

Since σ(j0) �j0 h0, it follows that µ(j) 6= h0. Thus, that µ(j0) = h1 for some h1 ∈ H . Since

h1 ≻j0 σ(j0), h1 must have been assigned before step t0, say in step t1 < t0. Thus, there

must exist some agent j1 ∈ Ĩ t1 such that j1D̃h1i for all i ∈
⋃

t≥t1
Ĩ t. In particular, given the

definition of ⊲̃, j1⊲̃h1j0 = µ−1(j0) if and only if j1 ⊲h1 j0 and thus µ(j0) = h1 ∈ ωµ(j
1).

If σ(j1) ≻j1 µ(j
1), then j1 ∈ C and thus µ(j0) ∈ Ω(C|ωµ, µ), which is a contradiction. If

µ(j1) ≻j1 σ(j1) instead, then, since j0 ∈ Ĩ t0 , j1 ∈ Ĩ t1 , t1 < t0 and j0 was chosen to be the

earliest agent assigned by GTTC for whom both µ(j0) ≻j0 σ(j
0) and µ(j0) /∈ Ω(C|ωµ, µ), it

follows that µ(j1) ∈ Ω(C|ωµ, µ). Since µ(j0) ∈ ωµ(j
1), this means µ(j0) ∈ Ω(C|ωµ, µ), again

a contradiction.

Thus, we conclude h2 = µ(j1) = σ(j1). In this case, h2 is assigned at step t2 = t1

of the GTTC algorithm given ⊲̃.37 In particular, there exists an agent j2 ∈ Ĩ t2 = Ĩ t1 .

Such that j2D̃h2i for all i ∈
⋃

t≥t2
Ĩ t. In particular, given the definition of ⊲̃h2, this implies

j2 Dh2 µ−1(h2) = j1. We know that j2 6= j1. This is because the cycle formed by agents and

houses assigned at step t1 must include the agent who is assigned to h1 by the algorithm.38

Thus, j2 ⊲h2 j1, which implies µ(j1) = h2 ∈ ωµ(j
2).

Thus, we can find a chain of agents (j0, j1, . . . , jn) such that µ(jk) = σ(jk) for all k =

1, . . . , n − 1, jk ∈ Ĩ t1 for k = 1, 2, . . . , n, µ(jk) ∈ ωµ(j
k+1) for k = 1, . . . , n − 1, and

µ(jn) 6= σ(jn). The existence of such a jn in step Ĩ t1 is guaranteed because h1 = µ(j0) and

j0 /∈ Ĩ t1 . Now, regardless of whether µ(jn) ≻jn σ(jn) or σ(jn) ≻jn µ(jn), using arguments

similar to the ones we applied to j1 above we can see that µ(jn) is in the set Ω(C|ωµ, µ). But

this implies µ(jn−1), . . . , µ(j1), and µ(j0) belong to Ω(C|ωµ, µ) as well—a contradiction.

Proof of Proposition 5. Let ωµ be the weak conditional endowment system in E = 〈I,H,≻

⊲〉; define ω′
µ analogously for E ′ = 〈I,H,≻ ⊲′〉. To prove that the strong exclusion core of

E is a subset of the strong exclusion core of E ′, it is sufficient to show that for all C ⊆ I,

C 6= ∅, and any allocation µ, ω′
µ(C) ⊆ ωµ(C). Suppose h ∈ ω′

µ(C). Thus, there exists i ∈ C

36If multiple such agents are assigned in the same step, pick any of them.
37Since more than one house is assigned in the same step, h2 ∈ H .
38If j2 = j1, the identified cycle would involve only one agent and one house.
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such that iD′
h µ

−1(h). And so, iDh µ
−1(h), which implies h ∈ ωµ(C). The analogous result

for the weak exclusion cores follows similarly.

Proof of Proposition 6. Consider the economy E with priority structure ⊲. Let ⊲̃ be a

completion of ⊲ and let µ be the allocation identified by the GTTC algorithm given ⊲̃. Now

consider economy E ′ with priority structure ⊲′. For each h ∈ H , define ⊲̃′

h as any completion

of ⊲′
h such that for all k, j 6= i, k⊲̃hj ⇐⇒ k⊲̃

′

hj and i⊲̃hj =⇒ i⊲̃
′

hj. ⊲̃
′
= (⊲̃

′

h)h∈H is

an admissible completion for ⊲′. Each ⊲̃
′

h ranks i at least as high as ⊲̃h without changing

the order of the other agents. Let µ′ be the allocation identified by the GTTC algorithm

given ⊲̃
′. Because the top trading cycles algorithm with complete priority rankings respects

improvements in priorities,39 µ(i) �i µ
′(i). The lemma’s second part is proved analogously,

except agent i’s position in the derived completion is downgraded, if necessary.

Proof of Lemma 3. (a) When ⊲h represents ω, ω∗∗(C) = ω(C) for all C. The result follows.

(b) Generally, the weak exclusion core is contained in the unconditional exclusion core.

Noting part (a), it is sufficient to show that the exclusion core of 〈I,H,≻, ω〉 is contained in

the weak exclusion core of the corresponding relational economy.

If ⊲ represents ω, then h ∈ ω(i) ⇐⇒ i ⊲h j ∀j 6= i; otherwise, agents are not ⊲·-

comparable. Let µ be an exclusion core allocation in 〈I,H,≻, ω〉. Given this allocation,

h ∈ ωµ(i) if and only if (i) h ∈ ω(i), (ii) h = µ(i), or (iii) µ−1(h) = ∅. Suppose coalition

C can indirectly exclusion block µ with σ in the relational economy 〈I,H,≻,⊲〉 given ωµ.

If µ(j) ≻j σ(j), then µ(j) = h ∈ Ω(C|ωµ, µ) and j /∈ C. Thus, there exists a sequence of

agents i1, . . . , iK such that h ∈ ωµ(i
1), µ(i1) ∈ ωµ(i

2), . . . , µ(iK−1) ∈ ωµ(i
K) and iK ∈ C.

But, this implies h ∈ ω(i1), µ(i1) ∈ ω(i2), . . . , µ(iK−1) ∈ ω(iK). Therefore, h ∈ Ω(C|ω, µ)

and coalition C can indirectly exclusion block µ in 〈I,H,≻, ω〉, which is a contradiction.

B The GTTC Algorithm: An Example

Example B.1. To illustrates the operation of the GTTC algorithm, suppose there are four

agents and four houses. The agents’ preferences are

≻i1 : h2, h1, h4, h3 ≻i2 : h4, h1, h3, h2 ≻i3 : h3, h4, h1, h2 ≻i4 : h3, h1, h2, h4.

39The earliest reference to this property of the TTC algorithm we are aware of is by Abdulkadiroğlu and
Che (2010), who state it without proof in an unpublished working paper. (The proof is straightforward and
relies on the observation that when an agent’s priority ranking improves he will be assigned in an earlier
cycle by the algorithm.) Balinski and Sönmez (1999) introduced the notion of an assignment mechanism
“respecting improvements.” They examined the deferred acceptance algorithm in a college admissions setting.
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i1

i2 i3 i4
(a) ⊲h1 .

i1 i2 i3

i4

(b) ⊲h2 .

i1 i2

i3 i4
(c) ⊲h3 .

i1 i2 i3

i4

(d) ⊲h4 .

Figure B.1: Priority structures in Example B.1.
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h2
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(b) Step 2.

i1i2

i3i4

h1

h2

h3

h4

(c) Step 3.

Figure B.2: Operation of the GTTC algorithm given the completion (B.1).

Panels (a)–(d) of Figure B.1 define this economy’s priority structure.

First, suppose the completion of ⊲ is given by

⊲̃h1 : i1, i2, i3, i4 ⊲̃h2 : i4, i1, i2, i3 ⊲̃h3 : i1, i2, i3, i4 ⊲̃h4 : i4, i1, i2, i3. (B.1)

Panels (a)–(c) of Figure B.2 illustrate the GTTC algorithm’s operation. (We omit the outside

option h0 from the figure.) In step 1, i1 is assigned h2 and i4 is assigned h3. In step 2, agent

i2 is assigned h4. In step 3, i3 is assigned h1. The final allocation is

µ(i1) = h2 µ(i2) = h4 µ(i3) = h1 µ(i4) = h3.

Suppose instead that the completion of ⊲ is given by

⊲̃
′

h1
: i1, i2, i3, i4 ⊲̃

′

h2
: i4, i1, i2, i3 ⊲̃

′

h3
: i1, i2, i3, i4 ⊲̃

′

h4
: i4, i3, i1, i2. (B.2)

(B.2) is identical to (B.1) except i3 ranks ahead of i1 and i2 in ⊲̃
′

h4
. Figure B.3 illustrates

GTTC algorithm’s operation. (Again, the figure omits h0.) In step 1, i1 is assigned h2 and

i4 is assigned h3. In step 2, i3 receives h4. In step 3, i2 is assigned h1. The final allocation is

ν(i1) = h2 ν(i2) = h1 ν(i3) = h4 ν(i4) = h3.
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(a) Step 1.
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(b) Step 2.
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h1

h2

h3

h4

(c) Step 3.

Figure B.3: Operation of the GTTC algorithm given the completion (B.2).

It can be verified that µ and ν are the only possible assignments generated by the GTTC

algorithm in this economy. Every other completion will lead to one of these two assignments.
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