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Abstract

An informed sender influences a receiver’s decision by strategically disclosing infor-

mation. The sender pays miscalibration cost whenever the asserted probability distri-

bution of his message differs from the true probability distribution given the message.

We show that, when the sender’s miscalibration cost is sufficiently high, the sender can

achieve his optimal commitment solution in an equilibrium. Under some assumption on

the miscalibration cost function, the only rationalizable Sender’s strategy is his strategy

in the commitment solution.

JEL: D81, D82, D83

Keywords: Cheap talk, Costly miscalibration, Commitment, Bayesian persuasion

1 Introduction

The cheap talk literature (Crawford and Sobel (1982) and Green and Stokey (2007)) studies

communication games in which an informed party (Sender) sends a message to another party

(Receiver) whose action affects the payoffs of both. Sender’s message has no impact on his

payoff, and can be arbitrarily different from the real description of the world. In reality,

Sender’s talk is not completely cheap. He may be concerned about evidence that might

show up in the future and contradict his message. He may have an intrinsic aversion to

stating falsehoods. In this paper, we develop a model that incorporates Sender’s preferences

for being truthful.

In our model, Sender’s messages are probabilistic assertions. For example, a defendant

is either guilty or innocent. A prosecutor can say messages like “the defendant is guilty
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with probability 50%” or “the defendant is guilty with probability 100%.” Therefore, each

message is an asserted distribution over some state space. Sender incurs some cost, which

we call miscalibration cost, if the asserted distribution is different from the true conditional

distribution given the message.

The miscalibration cost is a proxy for unmodeled things that happen outside of Sender’s

interaction with Receiver. Consider the defendants that the prosecutor claimed to be guilty

with 50% probability. If only 30% of them are indeed guilty, then the prosecutor pays

some cost that depends on the discrepancy between the asserted distribution (50%) and

the true conditional distribution (30%) given this assertion. Thus, the cost enables us to

incorporate Sender’s consideration about the validity of his probabilistic assertions and, in

particular, about their consistency with the statistical evidence that might show up later,

without explicitly modeling the statistical test. This abstraction is useful in situations where

Sender’s assertions might be tested in the future, but it is not known how, when and by whom,

what kind of statistical evidence will be available and what evidence will have actually been

realized. In addition, the abstraction offers a tractable framework to analyze how costly

miscalibration, i.e., Sender’s caution not to be too far from the truth, affects communication.1

Our cost function depends on a parameter which we call the cost intensity. The cost

intensity measures how severely Sender is punished for discrepancy between his messages

and the true distributions. When the cost intensity is zero, the game is a cheap talk game.

We show that when the cost intensity is sufficiently high, Sender’s optimal payoff in equilibria

is arbitrarily close to the payoff he could get if he were able to commit to a strategy. The

results apply to a wide class of distance functions which we use to measure the discrepancy

between Sender’s messages and the true distributions.

The results connect our model to the Bayesian persuasion literature which studies sender-

receiver games with commitment on Sender’s side (Rayo and Segal (2010) and Kamenica

and Gentzkow (2011)). In that literature, Sender is able to commit to any strategy. This

is as if Sender’s strategy is observed by Receiver. Alternatively, commitment means that

whatever description Sender gives about the state of the world, the description must be true.

In our model, as in the cheap talk literature, Receiver does not observe Sender’s strategy.

Our model hence provides a foundation for the commitment assumption in the Bayesian

persuasion literature. From this aspect, our paper is also related to Best and Quigley (2017)

who provide a foundation for the commitment assumption by analyzing repeated interactions

1There is also an active literature showing that people have intrinsic aversion to stating falsehoods,
regardless of whether they are caught. See for instance Gneezy (2005), Fischbacher and Föllmi-Heusi (2008),
Abeler, Becker and Falk (2014), Gneezy, Kajackaite and Sobel (2017), Abeler, Nosenzo and Raymond (2017).
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between a long-run sender and short-run receivers. Moreover, our model bridges the cheap

talk and Bayesian persuasion models, and can be used to analyze the middle ground where

the talk is not completely cheap and the commitment is not absolute either.

Our paper is related to the literature on strategic communication with lying cost (Kartik,

Ottaviani and Squintani (2007) and Kartik (2009)). In these papers, the set of messages is

the state space, so Sender always declares a state. When the lying cost grows, the equilibrium

is arbitrarily close to a fully revealing equilibrium. Our model, with a larger message space

which allows the Sender to make probabilistic statements, delivers a different asymptotic

result: There is an equilibrium which is arbitrarily close to the commitment solution. Thus,

our model delivers a different intuition than Kartik, Ottaviani and Squintani (2007) and

Kartik (2009). They show that when lying is costly, Sender reveals all his information. We

show that when lying is costly, Sender obtains commitment power not to say a lie, but he is

not forced to reveal all his information.

Our paper is also related to the signaling literature (Spence (1973)). In that literature,

Sender’s payoff depends on the state, on the action by Receiver, and directly on the message

chosen by himself. Because we focus on Sender’s preferences for being truthful, the messages

have an impact on Sender’s payoff only when a message’s asserted distribution differs from

the true conditional distribution given the message. This payoff structure distinguishes ours

from the signaling models. Moreover, unlike the signaling literature as well as Kartik (2009)

and Kartik, Ottaviani and Squintani (2007), Sender’s miscalibration cost depends on the

entire strategy, not just the realized state and the message.

2 An example

In this section, we illustrate the main idea of our model through an example. An online

platform (Sender) promotes a product to a customer (Receiver). The product’s quality is

s ∈ S = {0, 2, 4} with a uniform prior. Receiver decides whether to buy the product or

not. Receiver’s payoff is (s − 3) if he buys the product and zero otherwise. Sender gets

commission payoff 1 whenever Receiver buys the product.

Sender’s strategy is a mapping from the state space S to the message space. The message

space is the set of distributions over states ∆(S). For any message m that Sender says

with positive probability, we let β(m) denote the conditional distribution over states by

Bayes’ rule. We also refer to β(m) as the true conditional distribution given m. (The

true conditional distribution given a message depends on Sender’s strategy. We omit this
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dependence in notation β(m) in this section.)

Consider a Sender’s strategy in Table 1. Sender says either message m0 or m1. Each

message is a distribution over states. Message m0 states that the state is 0. Message m1

states that the state is 2 or 4 with equal probability. By saying m0, the online platform says

that the product is a lemon. By saying m1, it says that the quality is weakly above 2. Each

column shows the probabilities with which Sender says m0 or m1 in each state.

message
state

0 2 4

m0 = (1, 0, 0) 1 0 0
m1 = (0, 1/2, 1/2) 0 1 1

Table 1: A calibrated strategy

message
state

0 2 4

m0 = (1, 0, 0) 1/2 0 0
m1 = (0, 1/2, 1/2) 1/2 1 1

Table 2: A miscalibrated strategy

Given the uniform prior and the strategy in Table 1, the posterior after message m0

is β(m0) = (1, 0, 0). The posterior after message m1 is β(m1) = (0, 1/2, 1/2). Since each

message coincides with the true conditional distribution given that message, we say that

this is a calibrated strategy. There are many other calibrated strategies. For example

Sender can choose to reveal no information at all, by announcing the prior (1/3, 1/3, 1/3)

at every state. Or he can choose to reveal all information by announcing the messages

(1, 0, 0), (0, 1, 0), (0, 0, 1) under the states 0, 2, 4, respectively.

Consider another Sender’s strategy in Table 2. Sender still uses the same messages m0, m1

as before. The only difference occurs when the state is 0: Sender now says m0 and m1 with

equal probability. In this case, the posterior after message m0 is β(m0) = (1, 0, 0), which

still coincides with m0. However, the posterior after message m1 is β(m1) = (1/5, 2/5, 2/5),

which differs from m1. Figure 1 illustrates this strategy. Each point in the triangle represents

a distribution over states. The black dot is the prior. The gray dots m0, m1 are the messages

that Sender uses. The black circles are the true conditional distributions given the messages.

Since the true conditional distribution β(m1) given m1 differs from the asserted distribution

m1, this strategy is not calibrated. If Sender uses this strategy to make recommendations,

then the distribution of the products about which Sender says m1 is in fact β(m1). Therefore,

what Sender claims about these products (that they are (0, 1/2, 1/2)) is not true. If an outside

group collects data and performs some statistical test, Sender might be caught.

In our model, whenever Sender says a message whose true conditional distribution differs

from its asserted distribution, Sender pays some cost which we call miscalibration cost. The

bigger the difference is, the higher the cost will be. In this section, we use the total-variation
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Figure 1: The miscalibrated strategy in Table 2

distance 1
2
|m− β(m)|1 to measure how much a message m differs from the true conditional

distribution β(m) given this message. For the strategy in Table 2, the total-variation distance

between m1 and β(m1) is 1/5. Since Sender says message m1 with probability 5/6, Sender

pays the following miscalibration cost for using this miscalibrated strategy:

5

6
· λ

1

2
|m1 − β(m1)|1 =

5

6
· λ ·

1

5
,

where λ > 0 is a parameter which measures the intensity of miscalibration cost. If Sender

uses a calibrated strategy, the asserted distribution and the true conditional distribution of

his message always coincide, so he pays no miscalibration cost.

We now claim that the game admits an equilibrium in which Sender plays the calibrated

strategy in Table 1 and Receiver buys the product with the probability

σ(m1) =







λ, for 0 < λ < 1,

1, for λ > 1,

if Sender says m1, and does not buy otherwise. Since β(m1) = m1, both buying and not

buying are Receiver’s best responses after m1. Since β(m0) = m0, not buying is Receiver’s

best response after m0. We next argue that Sender has no incentive to deviate. Consider a

deviation strategy which induces Receiver to buy more frequently: Sender says m1 in state

2 and 4, and says m0 and m1 with probability 1−α and α, respectively, in state 0. The true

conditional distribution given m1 is:

β(m1) =

(
α

2 + α
,

1

2 + α
,

1

2 + α

)

.
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Sender’s payoff from this deviation strategy is the probability that Receiver buys minus the

cost of miscalibration:

2 + α

3
σ(m1)

︸ ︷︷ ︸

prob. that Receiver buys

−
2 + α

3
︸ ︷︷ ︸

prob. of m1

λ
1

2

∣
∣
∣
∣

(

0,
1

2
,
1

2

)

−

(
α

2 + α
,

1

2 + α
,

1

2 + α

)∣
∣
∣
∣
1

︸ ︷︷ ︸

distance between m1 and β(m1)

=
2σ(m1)

3
+

α

3
(σ(m1)− λ).

Since σ(m1) 6 λ for any λ > 0, Sender prefers to choose α = 0. It can be shown that other

deviations are not profitable either.

It is easy to verify that this is Sender’s most preferred equilibrium. For sufficiently

high λ > 1, Sender achieves the same payoff as if he could commit to a strategy and pay

no miscalibration cost. This equilibrium is outcome equivalent to Sender’s commitment

solution. For intermediate λ ∈ (0, 1), if Receiver bought for sure after m1, then Sender

would say m1 for sure not only in state 2 and 4 but also in state 0. In other words, the

miscalibration cost is not severe enough for Sender to gain full commitment power. For

intermediate λ ∈ (0, 1), Receiver does not buy for sure after m1, so Sender has less incentive

to say m1 in state 0. This compensates the lack of commitment power on Sender’s side.

Sender’s equilibrium payoff 2min{λ, 1}/3 increases in λ, which can be interpreted as the

proxy of Sender’s commitment power.

3 Environment and main results

Let S be a finite set of states equipped with a prior distribution p with full support, and M

a Borel space of messages. A Sender’s strategy with message space M is given by a Markov

kernel κ from S to M : When the state is s, Sender randomizes a message from κ(·|s). For

a Sender’s strategy κ, let βκ : M → ∆(S) be such that βκ(m) is the conditional distribution

over states given m. (We suppressed the dependence of βκ on the prior p when no confusion

arises.) We sometimes use the notation βκ(s|m) for βκ(m)(s), both of which denote the

conditional probability of s given m.

We say that a strategy κ has finite support if κ(·|s) has finite support for every s, in which

case we let support(κ) = ∪ssupport(κ(·|s)). When κ has a finite support, the conditional
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probability βκ(s|m) is given by

βκ(s|m) =
p(s)κ(m|s)

∑

s′ p(s
′)κ(m|s′)

,

for every m ∈ support(κ), and is defined arbitrarily for m /∈ support(κ).

In Section 3.1 we consider Sender’s strategies with message space M = ∆(S), and intro-

duce the concepts of calibrated strategies and miscalibration. In Section 3.2 we review the

model of Sender-Receiver games, the definition of a cheap talk equilibrium and the defini-

tion of a commitment solution. Section 3.3 presents our definition of an equilibrium with

costly miscalibration and our main results that Sender achieves his commitment payoff in

an equilibrium when the miscalibration cost is sufficiently high.

3.1 Calibrated Sender’s strategies and miscalibration

From now on we assume that M = ∆(S), so that a message m is an asserted distribution

over states. We thus refer to βκ(m) as the true conditional distribution over states given

a message m. We say that a Sender’s strategy κ is calibrated if βκ(m) = m, a.s.. Under

a calibrated strategy, messages mean what they say, i.e. they can reliably be taken at face

value.

The term calibrated is used in the forecasting literature (Dawid (1982), Murphy and

Winkler (1987), Ranjan and Gneiting (2010)) for two related ideas: the purely probabilistic

sense which we use here, and the idea of calibration with the data, that a probabilistic forecast

(or a message in our terminology) matches the realized distribution of states on those times in

which the forecast was given.2 The following example illustrates the definition of “calibrated

strategies” in the familiar context of recommendation letters.

Example 1. Assume that the set of states, representing possible ranks of job candidates is

S = {1, 2, . . . , 10}, with a uniform prior. Consider two senders (references) I and J who use

the following strategies:

– Reference I, when writing a letter to a candidate of rank s, says that the candidate’s

rank is uniform in {1, . . . , s}.

– Reference J , when writing a letter to a candidate of rank s, says that the candidate’s

2 There is also a literature about strategic manipulation of calibration tests. See Olszewski (2015) for a
recent survey.
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rank is uniform in {1, . . . , 5} when s ∈ {1, . . . , 5} and says that the candidate’s rank

is uniform in {6, . . . , 10} when s ∈ {6, . . . , 10}

In our terminology, Reference I is not calibrated and Reference J is calibrated. When the

candidate is of rank 5, both references deliver the message “uniform over {1, . . . , 5}.” But,

while the empirical distribution of ranks of candidates about whom Reference J delivers this

message is indeed uniform over {1, . . . , 5}, so that the message can be taken at face value,

the candidates about whom Reference I delivers this same message are all of rank 5. This

example shows why, unlike Kartik (2009) and the signaling literature, Sender’s miscalibration

cost depends on the entire strategy, not just the realized state and the message. �

We now introduce a key component of our model: a measure of miscalibration for a

Sender’s strategy. To define this measure, let ρ : ∆(S) × ∆(S) → R+ be a continuous

function, where ρ(q,m) measures the distance between a message m ∈ ∆(S) and a truth

q ∈ ∆(S). We assume that ρ(q,m) = 0 if and only if m = q and that ρ is convex in q. Let

d(κ) =
∑

s

p(s)

∫

ρ(βκ(m), m) κ(dm|s) (1)

be the expected distance between an asserted distribution over states (given by the message

m) and the true conditional distribution given the message under the strategy κ. Note that

κ is calibrated if and only if d(κ) = 0.

3.2 Sender-Receiver games

We consider a game with incomplete information in which Sender, who observes the realiza-

tion of the state, sends a message to Receiver. Receiver then chooses an action based on the

message.

Let A be a finite set of actions. Let v, u : S × A → R be, respectively, Sender’s and

Receiver’s payoff functions. A Receiver’s strategy is given by a Markov kernel σ from M to

A, with the interpretation that Receiver randomizes an action from σ(·|m) after a message

m. Let BR(·) be the correspondence from ∆(S) to A such that BR(q) is the set of all

Receiver’s best actions when his belief about the state is q:

BR(q) = argmax
a

∑

s

q(s)u(s, a). (2)
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A Receiver’s strategy σ is a best response to Sender’s strategy κ if 3

support(σ(·|m)) ⊆ BR(βκ(m)) a.s..

For a profile (κ, σ) of Sender’s and Receiver’s strategies, we denote by πκ,σ ∈ ∆(S × A)

the induced distribution over states and actions when the players follow this profile. The

payoff to Sender under strategy profile (κ, σ) is given by

V0(κ, σ) =

∫

v dπκ,σ.

The reason we add the subscript 0 in Sender’s payoff function V0 will become clear later

when we define Vλ for every λ > 0.

Let CM = maxV0(κ, σ) be Sender’s maximal payoff over all profiles (κ, σ) such that σ is

a best response to κ. (It follows from Kamenica and Gentzkow (2011) that the maximum is

indeed achieved.) We call a profile (κ, σ) that achieves the maximum a commitment solution.

This is the highest payoff that Sender can achieve by committing to some strategy κ. This

would be the case if Receiver could observe Sender’s strategy.

We now turn to defining a cheap talk equilibrium. Here, the assumption is that Receiver

does not observe the strategy that Sender uses to generate messages. This requires adding in-

centive compatibility conditions on Sender’s side to the definition of a commitment solution.

In addition, following the cheap talk literature, we work with a perfect Bayesian equilibrium,

which specifies Receiver’s belief at the interim stage, after he observes the message m, and

his action given that belief. In an equilibrium, Receiver’s interim beliefs will be correct and

his interim response will be optimal.

Formally, a Receiver’s interim belief is a function µ : M → ∆(S). We say that Receiver’s

interim belief µ is correct with respect to a Sender’s strategy κ if µ(m) = βκ(m), a.s.. A

Receiver’s interim response is a Markov kernel α from ∆(S) to A. We say that Receiver’s

interim response α is optimal if support(α(q)) ⊆ BR(q) for every interim belief q. Note that

every pair (µ, α) generates a strategy σ of Receiver such that σ(a|m) = α(a|µ(m)) for every

message m and action a. If µ is correct with respect to some Sender’s strategy κ and α is

optimal, then the induced σ is a best response to κ.

Definition 1. A perfect Bayesian equilibrium (PBE) with cheap talk is given by (κ∗, (µ∗, α∗))

such that:

3The term a.s. means almost surely with respect to the probability distribution over messages induced
by κ. (Recall that βκ is defined up to a set of messages with probability zero.)

9



1. Sender best responds to Receiver’s behavior: For every κ it holds that V0(κ
∗, σ∗) >

V0(κ, σ
∗), where σ∗ is Receiver’s strategy generated by (µ∗, α∗).

2. Receiver’s interim belief µ∗ is correct with respect to κ∗.

3. Receiver’s interim response α∗ is optimal.

When the message space is M = ∆(S), it is a standard argument, following the revelation

principle, that any commitment solution and any cheap talk equilibrium can be implemented

with calibrated Sender’s strategies.

3.3 Costly miscalibration

We now introduce PBE in the game with costly miscalibration. The definition is the same

as Definition 1 except that Sender’s payoff is now given by

Vλ(κ, σ) = V0(κ, σ)− λd(κ). (3)

where d(κ) is given by (1) and λ > 0 is a parameter which measures the intensity of Sender’s

miscalibration cost.

Definition 2. A perfect Bayesian equilibrium (PBE) is given by (κ∗, (µ∗, α∗)) such that:

1. Sender best responds to Receiver’s behavior: For every κ it holds that Vλ(κ
∗, σ∗) >

Vλ(κ, σ
∗) where σ∗ is Receiver’s strategy generated by (µ∗, α∗).

2. Receiver’s interim belief µ∗ is correct with respect to κ∗.

3. Receiver’s interim response α∗ is optimal.

Proposition 3.1. Sender’s payoff under any PBE is at most CM .

Proof. Let (κ∗, (µ∗, α∗)) be a PBE, and let σ∗ be Receiver’s strategy induced by (µ∗, α∗).

Then

Vλ(κ
∗, σ∗) 6 V0(κ

∗, σ∗) 6 CM,

where the first inequality follows from (3) and the second from the definition of CM and the

fact that σ∗ is Receiver’s best response to κ∗.
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We now turn to our main results that when the cost intensity is high Sender can achieve

the commitment solution in an equilibrium. We first make the additional assumption that

the cost function ρ(q,m) has a kink at q = m. This assumption holds for the total-variation

distance ρ(q,m) = 1
2
|q −m|1, which is arguably the most natural distance function between

distributions over a finite set of states with no structure, and for the Euclidean distance

ρ(q,m) = |q −m|2.

Theorem 3.1. Assume that there exists some δ > 0 such that ρ(q,m) > δ|q − m|1. Then

for every game there exists λ̄ such that for every λ > λ̄ there exists a PBE in the game with

intensity λ such that Sender’s strategy is calibrated and his payoff is CM .

In Section 2 we demonstrated this result using an example with S = {0, 2, 4} and the

total-variation distance. In that example, the commitment solution was given by Sender’s

strategy in Table 1. Receiver buys the product after m1 and does not buy otherwise. This

strategy profile is a PBE when λ > 1.

Moving now to arbitrary cost functions, we show that the strong assertion of Theorem 3.1

does not hold. Consider the same example in Section 2 with the prior p = (1/4, 1/4, 1/2)

and the Kullback-Leibler distance given by

ρ(q,m) :=
∑

s∈S

q(s) log
q(s)

m(s)
.

The Kullback-Leibler distance is asymmetric in q,m, and is smooth. In the commitment solu-

tion, Sender uses a calibrated strategy with support m0 = (1, 0, 0) and m1 = (1/10, 3/10, 6/10).

It is easy to see that, for any intensity λ this strategy profile is not an equilibrium: If Re-

ceiver buys under m1 then Sender has incentive to deviate a bit and announce the message

m1 with some probability when the state is 0.4

We next construct an equilibrium in which Receiver buys the product only after the

following message m′
1:

m′
1 =

(
e−1/λ

10
,
1

3
−

e−1/λ

30
,
2

3
−

e−1/λ

15

)

.

4In the commitment solution, Sender says m1 with probability 1/3 in state 0 and probability 1 in state
2 or 4. If Sender deviates by increasing the probability of m1 in state 0 to 1/3 + α, then his payoff is

1

4

(

α+
1

3

)

+
3

4
−

1

12
λ

(

9 log

(
10

3α+ 10

)

+ (3α+ 1) log

(

10−
90

3α+ 10

))

.

The derivative of this payoff with respect to α at α = 0 is 1/4. Hence, Sender has incentive to deviate for
all λ > 0. Note that the miscalibration cost has no first-order impact on Sender’s payoff around α = 0.
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On the equilibrium path, Sender says m′
1 with probability one when the state is 2 or 4 and

with probability 1/3 when the state is 0. The true conditional distribution given message

m′
1 is

βκ(m
′
1) =

(
1

10
,
3

10
,
6

10

)

.

Receiver is indeed willing to buy after m′
1. Figure 2 illustrates this equilibrium. Receiver is

willing to buy if his belief is in the light-gray area. In this equilibrium, Sender’s strategy is

not calibrated. He makes a strong statement m′
1 which is in the interior of the light-gray

area, yet the true conditional distribution βκ(m
′
1) is just enough for Receiver to buy. Sender’s

payoff is 3
4
λ log

(
10e1/λ/9− 1/9

)
, which converges to Sender’s commitment payoff as λ goes

to infinity.

s = 0

s = 2

s = 4

b
p

bb
βκ(m

′
1)

b b

b
m′

1

b bm0 = βκ(m0)

Figure 2: An equilibrium with the Kullback-Leibler distance

As the intensity of miscalibration cost increases, there exists an equilibrium in which

Sender’s payoff converges to his commitment payoff. The next theorem shows that this

holds in general. In Theorem 3.2 and later in Lemma 4.2, a generic game means a game that

has no weakly dominated actions that are not strictly dominated for Receiver. (Example 2

in Section 6.5 shows that Theorem 3.2 does not hold for nongeneric games.)

Theorem 3.2. For a generic game it holds that for every ε > 0 there exists λ̄ such that for

every λ > λ̄ there exists a PBE in the game with intensity λ such that Sender’s payoff is at

least CM − ε.

12



4 Proof ideas

4.1 Theorem 3.1

As we already mentioned, it is a standard revelation principle argument that the commitment

solution can be implemented via a calibrated strategy of Sender, with Receiver believing

Sender’s message and playing Sender’s preferred action among all Receiver’s best responses

to that message. We have to show that playing this profile is an equilibrium. Since Sender’s

strategy is calibrated it is clear that Receiver best responds to Sender. The difficulty is to

prove that Sender will not deviate from this strategy. The key observation is the following

Lemma 4.1, which asserts that for sufficiently high intensity, Sender is always better off using

a calibrated strategy, regardless of Receiver’s strategy.

Lemma 4.1. Assume that there exists some δ > 0 such that ρ(q,m) > δ|q − m|1. There

exists λ̄ such that when λ > λ̄, if κ is a Sender’s strategy which is not calibrated and σ is a

Receiver’s strategy, then there exists a calibrated strategy of Sender that gives him a higher

payoff than κ against σ.

The lemma captures the intuition that when the cost intensity is high, miscalibration

simply is not worth it. However, the lemma is not obvious since Receiver’s strategy is not

continuous and arbitrarily small miscalibrations can completely change Receiver’s behavior.

In fact, the lemma does not hold for distance functions like the Kullback-Leibler distance.

The proof idea for Lemma 4.1 is that we can improve every miscalibrated strategy κ

by changing the probability in which Sender says each message of κ in a way that the true

conditional distribution given the message aligns with its asserted distribution. Thus the

messages remain the same but the true conditional distributions given the messages change.

In the proof, we use the property that, for any mixed action of Receiver, the difference

between the expected payoffs for Sender under two different distributions is bounded by

the total-variation distance between these distributions. This very property allows us to

show that any payoff gain from miscalibration is overshadowed by the miscalibration cost

for sufficiently high intensity.

The formal proofs are in Section 6.

4.2 Theorem 3.2

The first step of the proof is the following Lemma 4.2. It asserts that Sender can achieve

payoffs arbitrarily close to his commitment payoff using a calibrated strategy under which
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Receiver’s best response to every message is unique.

Lemma 4.2. For a generic game, for every ε > 0, there exists xa ∈ ∆(S) for each a ∈

A and a Sender’s calibrated strategy κ such that (i) BR(xa) = {a} for each a ∈ A, (ii)

support(κ) = {xa}a∈A, and (iii) if σ is Receiver’s best response to κ then Vλ(κ, σ) > CM − ǫ.

Figure 3 illustrates Lemma 4.2 for the example in Section 2. Receiver decides whether

to buy a = 1 or not to buy a = 0. He is willing to buy if his belief is in the gray area.

At the border of the gray and white areas, Receiver is indifferent. We first show that we

can decompose the prior p into the convex combination of beliefs (y0, y1) such that a is the

unique best response to ya. The commitment solution splits the prior p into the convex

combination of π0 and π1, with Receiver being indifferent between the two actions at π1. We

construct (x0, x1) by taking the convex combination of (y0, y1) and (π0, π1). Our construction

ensures that Receiver has a unique best response at both x0 and x1. As we move (x0, x1)

arbitrarily close to (π0, π1), Sender’s payoff from the calibrated strategy with support (x0, x1)

is arbitrarily close to CM .

s = 0

s = 2

s = 4

b
p

π0 b

π1
b

b

b

y0

y1

b

b

x0

x1

Figure 3: Decomposing p into {xa}a so that BR(xa) = {a}

Using Lemma 4.2, we consider an auxiliary game in which Sender, instead of announcing

a distribution over states, can either announce an action a or stay silent. Whenever Sender

says a, he pays cost relative to the asserted distribution xa and Receiver must take action

a. Whenever Sender stays silent, he pays no miscalibration cost and Receiver’s equilibrium

action is a best response to his equilibrium belief when Sender stays silent. Sender’s payoff in

this auxiliary game is at least CM − ε, since he can always use the strategy κ in Lemma 4.2

and pay no miscalibration cost. Moreover, for any equilibrium in this auxiliary game, the

true conditional distribution given message a must be sufficiently close to xa if the intensity

λ is high. This is because the payoff is bounded and thus it does not pay for Sender to be far
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away from xa. For any equilibrium in this auxiliary game, we can construct an equilibrium

in the original game. Sender uses the same strategy with two changes: (i) when he wants

to say a in the auxiliary game he now says xa, and (ii) when he wants to be silent, he now

says the true conditional distribution given the silence message. Receiver plays a when he

hears xa and plays the strategy which was played when Sender was silent in the auxiliary

game after every other message. Sender has no incentive to deviate since he is in the same

situation as in the auxiliary game. Receiver has no incentive to deviate either: Since the

true distribution conditional on message xa is sufficiently close to xa and a is the unique best

response to belief xa, a is also a best response to a ball of beliefs around xa.

5 Discussion

5.1 Rationalizable communication

In this paper, as in the cheap talk literature, we used PBE as our solution concept. We

argued that the optimal Sender’s equilibrium achieves the commitment solution. But the

game still admits other equilibiria. For example, even for high intensity λ, the “babbling

equilibrium” still exists. Under this equilibrium, Sender always declares the prior. Receiver

believes that the state is distributed according to the prior after every possible Sender’s

message, and best responds to the prior.

There is, however, an unsatisfactory aspect to the babbling equilibrium in our context.

Consider the online platform example from Section 2 with high cost intensity λ. Assume

that Receiver plays according to the babbling equilibrium and the message (0, 0, 1)—which

says that “the state is 4 with probability one”—arrives. What should Receiver do? The

message is a surprise, but given the high intensity, Sender is suffering very high cost if the

truth is far away from this message. It seems reasonable that Receiver will deduce that the

truth is close enough to this message, in which case Receiver will respond by purchasing

the product. PBE does not capture this intuition because it allows arbitrary beliefs “off

path.” These beliefs do not have to be rationalizable. In order to incorporate this intuition

in our analysis, we turn to the concept of extensive-form rationalizability (EFR hereafter,

Pearce (1984), Battigalli (1997), Battigalli and Siniscalchi (2002)). EFR dispenses with the

assumption that players’ beliefs are correct, but it requires that each player, at every point

in the game, forms a belief that is, as much as possible, consistent with the opponent being

rational.

EFR is usually defined in an environment with only countable information sets. This
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means a countable set of messages in Sender-Receiver games. Extending the definition to

Sender-Receiver games with a continuum message space is not obvious. (See Remark 1 below

for a detailed discussion and Friedenberg (2017) in which similar issues arise.) We say that

a message m is an atom of Sender’s strategy κ if m is an atom of κ(·|s) for some state s.

This means that under κ there is a strictly positive probability that Sender will say m.

Definition 3. Let Kn be sets of Sender’s strategies and let Σn be correspondences from M

to A of possible Receiver’s actions defined recursively as follows:

1. K0 is the set of all Sender’s strategies.

2. Σ0(m) = A for every message m ∈ M .

3. For every n > 1, Kn is the set of all κ ∈ Kn−1 that are Sender’s best responses to some

Receiver’s strategy σ such that support(σ(·|m)) ⊆ Σn−1(m).

4. For every n > 1 and every message m, Σn(m) is the set of all actions a such that

a ∈ BR(βκ(m)) for some strategy κ ∈ Kn−1 and m is an atom of κ. If no such κ exists

then Σn(m) = Σn−1(m).

We let K∞ = ∩nKn and Σ∞(m) = ∩nΣn(m). The strategies in K∞ are Sender’s rationaliz-

able strategies and the actions in Σ∞(m) are Receiver’s rationalizable actions after message

m.

Theorem 5.1. Assume that there exists some δ > 0 such that ρ(q,m) > δ|q −m|1. There

exists λ̄ such that for every λ > λ̄ Sender’s rationalizable strategies are his calibrated com-

mitment strategies, i.e., calibrated strategies κ such that Vλ(κ, σ) = CM for some Receiver’s

best response σ to κ.

Based on Theorem 5.1, in the example from Section 2, the only rationalizable strategy

for Sender is the calibrated strategy in Table 1. Receiver’s rationalizable actions after m are

actions in BR(m).

Remark 1. The idea is that if a message m is on path of some Sender’s strategy that was not

yet eliminated, then Receiver’s rationalizable actions for this message are the best responses

against the conditional beliefs over states under such Sender’s strategies. If the message m

is not on path of any of Sender’s strategies that were not yet eliminated then the message

is a surprise and all Receiver’s actions which were not yet eliminated remain. Thus EFR

requires, for each message m and each Sender’s strategy κ, defining whether m is on path of

κ and, if the message is on path, the conditional belief βκ(m).
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However, when the set of messages is a continuum, it is typical that every message

m is produced with probability zero. In this case, it is not obvious what it means for a

message to be on path, and the conditional distributions βκ(m) are only defined almost

surely in m. (More formally, there is an equivalence class of functions, called versions of the

conditional distributions, and these versions differ from one another on a set of messages m

with probability zero.) When there is only one κ on the table, as is the case of Definition 2

this is not a big issue since the definition does not depend on the version of the conditional

distribution. But in the definition of rationalizability, at each stage of the elimination there

is a set of Sender’s strategies, and Receiver needs to simultaneously choose versions of the

conditional distributions for all these strategies. The resulting set of rationalizable actions

for Receiver will depend on the choice of the version. Our approach in this paper is to

require Receiver to form a belief only when he receives a message that is produced with a

strictly positive probability for some remaining Sender’s strategy κ. For such a message m—

a message that practically shouts “I am not a surprise,” the conditional distribution βκ(m)

is unambiguously defined. As Theorem 5.1 shows, even under this weak definition of EFR,

it still narrows down the possible outcomes significantly in our environment.

6 Proofs

6.1 Preliminaries

By a generic game we mean a game that has no weakly dominated actions that are not

strictly dominated for Receiver. Since strictly dominated actions are not played in any

equilibrium or commitment solution, we can throw them away and consider a game with no

weakly dominated strategies.

We extend the distance function ρ to a function ρ : RS
+×∆(S) → R+ given by ρ(γq,m) =

γρ(q,m) for every q ∈ ∆(S) and γ > 0. We extend the best-response correspondence BR(·)

to a correspondence from R
S
+ to A given by the same formula (2).

For a Sender’s strategy κ we let

χκ =
∑

s

p(s)κ(·|s) (4)

be the distribution over messages induced by κ. Lemma 6.1 is essentially Aumann and

Maschler’s splitting lemma (see for example (Zamir, 1992, Proposition 3.2)). It says that a

distribution over messages in ∆(S) is induced by some calibrated strategy if and only if its
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barycenter is the prior p.

Lemma 6.1. 1. For every strategy κ it holds that

∫

βκ(m)χκ(dm) = p. (5)

2. If χ is a distribution over messages in ∆(S) such that
∫
m χ(dm) = p then there exists

a calibrated strategy κ such that χκ = χ.

6.2 Proof of Theorem 3.1

It is a standard argument (following the revelation principle) that the commitment solution

can be implemented with the message space M = ∆(S), a calibrated strategy κ∗ and Re-

ceiver’s strategy α∗ such that α∗(·|m) is concentrated on Sender’s preferred actions among

BR(m). In particular, if we let µ∗(m) = m then (κ∗, (µ∗, α∗)) satisfies Conditions 2 and 3

of Definition 2 and gives Sender payoff CM . To complete the proof, we need to show that

Sender does not gain from deviating. We know that (i) κ∗ gives Sender CM against α∗, (ii)

α∗ is a best response against all calibrated strategies, so by the definition of CM no calibrated

strategy gives more than CM against α∗, (iii) by Lemma 4.1 it follows that no miscalibrated

strategy gives Sender more than CM against α∗. Therefore, κ∗ is a best response against

α∗.

6.3 Proof of Lemma 4.1

Let L = 1/min{p(s) : s ∈ S}. (Here we use the full support assumption on p.) The choice

of L is such that, for every q ∈ ∆(S), p can be “split” into a convex combination of q and

some other belief q′ ∈ ∆(S), where L bounds the weight on q′. More explicitly, for every

belief q it holds that

(1− L|p− q|1)q(s) 6 (1− L|p− q|∞)q(s) 6 p(s),

for every state s. This implies that we can find some q′ ∈ ∆(S) such that

p = (1− L|p− q|1) · q + L|p− q|1 · q
′. (6)

(Here, we implicitly assume that 1 − L|p − q|1 > 0. We show later in the proof that it is

without loss to focus on q such that 1− L|p− q|1 > 0.)
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Fix a Receiver’s strategy σ and let η : ∆(S) × ∆(S) → R be such that η(q,m) =
∑

s,a q(s)σ(a|m)v(s, a) is Sender’s expected payoff when the distribution over states is q, the

message is m and Receiver follows σ. From the bound on v, there exists B > 0 such that

η is bounded |η(q,m)| 6 B for every q,m and satisfies the Lipschitz condition |η(q,m) −

η(q′, m)| 6 B|q − q′|1 for every q, q′ ∈ ∆(S).

For every Sender’s strategy κ with induced distribution χκ over messages given by (4),

the payoff V0(κ, σ) and the distance d(κ) under (κ, σ) can be written as

V0(κ, σ) =

∫

η(βκ(m), m) χκ(dm), and

d(κ) > δ

∫

|βκ(m)−m|1 χκ(dm).

(7)

We now fix a Sender’s strategy κ, with the aim of proving that if κ is miscalibrated

then it cannot be a best response. Suppose not. First, if κ′ is any calibrated strategy then

Vλ(κ
′, σ) = V0(κ

′, σ) > −B and Vλ(κ
′, σ) 6 Vλ(κ, σ) 6 B − λd(κ). Therefore we can assume

that

d(κ) 6 2B/λ, (8)

otherwise κ cannot be a best response.

Let χκ given by (4) be the distribution over messages induced by κ and let

q =

∫

m χκ(dm), (9)

be the barycenter of χκ. Then it follows from the convexity of the norm | · |1, (5) and (9)

that

|p− q|1 =

∣
∣
∣
∣

∫

(βκ(m)−m) χκ(dm)

∣
∣
∣
∣
1

6

∫

|βκ(m)−m|1 χκ(dm) 6
1

δ
d(κ). (10)

Let λ > 2BL
δ

. Then it follows from (10) and (8) that |p − q|1 6 1/L. Consider the

calibrated strategy that is induced (via part 2 of Lemma 6.1) by the distribution

(1− L|p− q|1)χκ + L|p− q|1δq′ ∈ ∆(∆(S)),

where q′ is given by (6) and δ· is the Dirac measure: With probability L|p− q|1 Sender says

q′, and with the complementary probability 1 − L|p− q|1 Sender uses χκ. (Note that, from

(6) and (9) it follows that the barycenter of this distribution is indeed p.) The payoff under

19



this strategy is given by

(1− L|p− q|1)

∫

η(m,m) χκ(dm) + L|p− q|1η(q
′, q′)

>

∫

(η(βκ(m), m)− B|βκ(m)−m|1) χκ(dm)− 2L|p− q|1B

>Vλ(κ, σ) +

(

λ−
B

δ

)

d(κ)− 2L|p− q|1B > Vλ(κ, σ) +

(

λ−
B(1 + 2L)

δ

)

d(κ),

where the first inequality follows from the Lipschitz condition and the bound on η, the

second inequality from (7), and the third inequality from (10). Therefore, if d(κ) > 0 and

λ > B(1 + 2L)/δ then the calibrated strategy defined above gives Sender a strictly better

payoff than κ.

6.4 Proof of Lemma 4.2

We divide the proof into several steps.

Claim 1. There exists ya ∈ R
S
+ \ {0} such that p =

∑

a∈A ya and BR(ya) = {a}.

Proof. For every action a, since a is not weakly dominated, there exists some belief qa ∈ ∆(S)

such that a is the unique best response to the belief qa, i.e., BR(qa) = {a}. Since p has

full support, there exists a small t > 0 such that p ≫
∑

a∈A tqa. Let ā be such that

ā ∈ BR(p−
∑

a tqa). Let yā = p−
∑

a tqa + tqā and ya = tqa for every a 6= ā.

Claim 2. There exists xa ∈ ∆(S), γa > 0 for each a ∈ A such that p =
∑

a∈A γaxa,
∑

a∈A γa = 1, BR(xa) = {a} and
∑

a,s γaxa(s)v(s, a) > CM − ε.

Proof. Let (κ, σ) be a commitment solution such that CM =
∑

s,a v(s, a)πκ,σ(s, a) where

πκ,σ is the distribution induced by the profile (κ, σ) over S × A. Let za(s) = ε′ya(s) + (1 −

ε′)πκ,σ(s, a) where ya are given by Claim 1 and ε′ > 0 is a sufficiently small number. Then

za ∈ R
S
+ \ {0} and a is the unique best response to za. Let xa ∈ ∆(S) and γa > 0 be such

that za = γaxa. Since p ∈ ∆(S), xa ∈ ∆(S) for a ∈ A and p =
∑

a∈A γaxa, it follows that
∑

a∈A γa = 1.

By the splitting lemma there exists a calibrated strategy κ such that χκ =
∑

a γaδxa
.

From Claim 2 the strategy κ satisfies the requirements in Lemma 4.2.
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6.5 Proof of Theorem 3.2

We now consider the following auxiliary game, in which Sender’s set of messages is A ∪ {⋄}

where ⋄ is a message that says “silent.” In the auxiliary game, if Sender says message

a ∈ A then Receiver must play action a and Sender pays miscalibration cost relative to

xa given in Claim 2, while if Sender says the silent message ⋄, Receiver can choose any

action from A and there is no miscalibration cost. Sender’s strategies can be represented

by w = {wm ∈ R
S
+}m∈A∪{⋄} such that

∑

m∈A∪{⋄} wm = p with the interpretation that wm(s)

is the probability that the state is s and Sender says m. Receiver’s strategies are given by

elements σ(·|⋄) ∈ ∆(A) (mixed actions, to be played after the silent message). The payoff

to Sender under the profile (w, σ(·|⋄)) is given by

Ṽλ(w, σ(·|⋄)) =
∑

a∈A,s∈S

(wa(s) + w⋄(s)σ(a|⋄)) v(s, a)− λ
∑

a∈A

ρ(wa, xa).

The payoff to Receiver under this profile is given by

Ũ(w, σ(·|⋄)) =
∑

a∈A,s∈S

(wa(s) + w⋄(s)σ(a|⋄))u(s, a).

In the auxiliary game, Sender has a convex compact set of strategies and a concave

payoff function (which follows from the convexity of the distance function ρ), and Receiver

has a finite set of pure actions. Therefore a PBE exists. Let w∗ = {w∗
m ∈ R

S
+}m∈A∪{⋄} be

Sender’s strategy under the PBE and let σ∗(·|⋄) ∈ ∆(A) be Receiver’s strategy which is a

best responds to some belief w̄ ∈ ∆(S).

For Sender’s equilibrium strategy w∗, we let |w∗
m| =

∑

sw
∗
m(s) be the probability that

Sender says m. If |w∗
m| > 0 then the posterior distribution over states conditioned on Sender

saying m is w∗
m/|w

∗
m|. Note that from the equilibrium property it follows that w̄ = w∗

⋄/|w
∗
⋄|

if |w∗
⋄| > 0. The following claim says that in the auxiliary game Sender does not miscalibrate

too much.

Claim 3. In the PBE of the auxiliary game, it holds that ρ(w∗
a/|w

∗
a|, xa) 6 B/λ for every

a ∈ A such that |w∗
a| > 0. Here, B > 0 is a constant.

Proof. Fix a ∈ A such that |w∗
a| > 0. Let w′ be the strategy given by w′

m = w∗
m for

m ∈ A \ {a}, w′
a = 0, and w′

⋄ = w∗
⋄ +w∗

a. So under w′ Sender plays like w∗ except that he is
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silent every time he was supposed to say a. Then

Ṽλ(w
′, σ(·|⋄))− Ṽλ(w

∗, σ(·|⋄)) =
∑

s

w∗
a(s)

(
∑

a′∈A

σ(a′|⋄)v(s, a′)− v(s, a)

)

+ λρ(w∗
a, xa)

> −B|w∗
a|+ λρ(w∗

a, xa),

where the inequality follows from the bounds on v. The assertion follows from the fact that

w′ is not a profitable deviation for Sender.

Claim 4. Sender’s payoff in the PBE of the auxiliary game is at least CM − ε.

Proof. Sender can use the strategy wa = γaxa for every a ∈ A and w⋄ = 0. Based on Claim 2,

Sender’s payoff is at least CM − ε.

Recall that w̄ is Receiver’s belief in the auxiliary game when Sender says ⋄. We now define

the PBE (κ∗, (µ∗, α∗)) in the original game as follows: κ∗ has a finite support {xa}a∈A ∪{w̄}

and satisfies

p(s)κ∗(xa|s) = w∗
a(s), and p(s)κ(w̄|s) = w∗

⋄(s).

Thus, Sender plays the same as in the auxiliary game except that when he wants to send the

message a in the auxiliary game he now says xa and when he wants to be silent he now says

w̄. Receiver’s belief is given by µ∗(xa) = w∗
a/|w

∗
a| for every a ∈ A such that |w∗

a| > 0 and

µ(m) = w̄ otherwise. Receiver’s response is given by α∗(w∗
a/|w

∗
a|) = a and α∗(w̄) = σ∗(·|⋄).

Thus, Receiver’s strategy is to play a when Sender says xa and to play the mixed action

σ∗(·|⋄) otherwise.

We claim that this is the desired equilibrium. First, note that Sender’s situation in the

original game is the same as in the auxiliary game: When he says xa Receiver plays a and

when he says anything else Receiver plays σ∗(·|⋄). Therefore playing the same strategy in

the original game is also an equilibrium, with payoff at least CM − ε by Claim 4. By the

definition of µ and κ Receiver has correct beliefs. Finally, Let λ be sufficiently high such that

a ∈ BR(q) for every q ∈ ∆(S) such that ρ(q, xa) 6 B/λ. Such λ exists by the continuity of

ρ and the fact that a is the unique best response to belief xa. Then by Claim 3 it follows

that Receiver best responds to his belief for every belief.

This following example shows that Theorem 3.2 does not hold for nongeneric games.

Example 2. Let S be {0, 1} with the prior {p, 1−p}. Let A be {a0, a1}. Sender’s payoff is 1

if Receiver chooses a1 and 0 if he chooses a0. If Receiver chooses a0, his payoff is 0. If Receiver
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chooses a1, his payoff is 0 in state 0 and −1 in state 1. This game is nongeneric since action

a1 is weakly dominated but not strictly dominated. In the commitment solution, Sender

uses a calibrated strategy and Receiver takes action a1 only after message (1, 0). Sender’s

commitment payoff is p. However, for any smooth cost function ρ, in every equilibrium

Receiver only chooses the safe action a0.

6.6 Proof of Theorem 5.1

Lemma 4.1 implies that for λ > λ̄ only calibrated Sender’s strategies survive first round

of elimination. Since all calibrated strategies are best responses to the Receiver’s strategy

that always chooses some fixed action a ∈ A it follows that K1 is the set of all calibrated

strategies. Since any message m is an atom of some Sender’s calibrated strategy, it follows

that Σ2(m) = BR(m). Therefore, by Lemma 4.2, for every Receiver’s strategy σ that

survived, Sender believes that he can get at least CM − ε against σ for every ǫ. Therefore a

rationalizable Sender’s strategy must be calibrated and give him CM against some Receiver’s

strategy σ such that support(σ(·|m)) ⊆ BR(m).
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