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Introduction

The importance of reputation signals in markets where product quality is
imperfectly observed has been long emphasized. In particular, this is a key
consideration for the overall performance of trading platforms and online
markets that are becoming increasingly important mechanisms for trade.
We consider here reputation signals as imperfect aggregators of trade his-
tories that are correlated with �rm quality. This is the case, for example,
of quality badges given by some trading platforms that partition sellers into
a small number (in many cases two) of groups. This paper considers the
impact of such reputation mechanisms on market outcomes (e.g. prices and
market shares), the impact of information quality and the question of design
of optimal partitions.

More speci�cally, we consider a market where suppliers (e.g. retailers in
eBay) di�er in terms of quality but where consumers observe (coarse) im-
perfect signals (that are imperfectly correlated with quality.) Such is the
case, for example, of reputation signals in many online markets. Sellers are
heterogeneous in terms of quality and face costly entry and supply decisions.
Consumers di�er in preference for quality and the value of outside options.
We solve for the Competitive and Cournot equilibria for a given partition
of quality signals, determining prices and market shares of di�erent quality
segments as well as total welfare. We then consider the impact of changes
in reputation signals on prices and market shares and solve for the optimal
information partition. We also examine the impact of improvements in infor-
mation quality on prices and market shares of �rms as a function of quality
signals.

Reputation signals partition the set of sellers into a discrete set of cate-
gories in most cases as a result of some "testing" criteria. For example, in
California restaurants are given grades A,B,C or none based on the score
obtained in a health evaluation. eBay's high-quality sellers are classi�ed as
Top Rated Sellers, Airbnb calls its top quality host a �superhost� badge.
From the economic point of view, it is important to distinguish both the size
of the partition (i.e. the relative shares of sellers in each group) and their
informativeness (the respective conditional average qualities). While raising
the bar to qualify as a top seller might contribute to a more selected group,
this can come at the cost of reducing its size.

The economic impact of this change cannot be assessed without consid-
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ering the distribution of preference for quality of consumers and the supply
elasticity of sellers. On the demand side, we consider preferences given by
random coe�cients on the strength of preference for quality and an outside
good. In particular, our model nests two extreme cases widely used in the
literature: 1) the case where quality is valued equally by all agents but there
is heterogeneity in inside/outside options; 2) the case of pure vertical di�er-
entiation. On the supply side we consider two alternative market structures,
perfect competition and Cournot competition. In the �rst case, behavior is
captured by individual supply functions. For the latter, we assume marginal
cost is constant.

Our �rst results concern a reputation system given by a threshold of
quality z∗ that partitions perfectly �rms in two sets, with qualities below
and above this threshold. It is to note that as z∗ increases, there are several
channels that can impact demand and supply.

1. All things equal, the share and number of �rms in the low quality group
(high quality group) F (z∗) increases (decreases).

2. Expected quality increases in both partitions.

The impact of the latter e�ect is ambiguous: depending of the relative
changes in expected qualities and how these interact with preferences, it
might be that goods in di�erent partitions become more or less substitutable.
This makes it hard in general to determine the impact of the change in z∗ on
equilibrium prices and market shares without of further conditions. While
we show that the price of one of the groups must rise, we have examples
showing that either of the two prices could decrease. When the gap between
average qualities increases, the price of high quality goods is guarantee to
rise. More generally, results depend on the joint distribution of the two ran-
dom coe�cients, the distribution of �rm qualities and supply functions. We
provide conditions under which one or the other or both prices rise. These
are conditions that can be easily veri�ed in applications.

Our second set of results concern the design of an optimal partition,
restricting attention to the case of constant quality premium (i.e., where all
agents have the same preference for quality). These results apply generally
to the Cournot model and also to the case of perfect competition with linear
supply. We �rst show that total output is independent of the partition and
so is consumer surplus. Hence the optimal partition is the also the one that
maximizes �rm pro�ts. This in turn is the one that maximizes the average

3



of �rm output squared. As an example, for the case where the distribution
of qualities is uniform, the optimal partition divides the set of qualities into
intervals of equal size.

Our �nal set of results concerns the impact of improved information. We
model this as a mean preserving spread average qualities across partitions,
while keeping constant the size of these partitions. This could be the result
of a more e�ective record of sellers that results in less classi�cation errors.
We �rst show that better information always results in an increase in the
price of the high quality good. For the two special cases of additive quality
premium or pure vertical di�erentiation, we also show that the price of the
low quality good decreases. But while intuition suggests that this should
always be the case, we provide an example to the contrary where this price
rises.

Section 1 describes the general model. Section 2 considers the case of
perfect competition. Section 3 the case of Cournot competition. Section
4 considers the question of optimal partition (quality reputation signals).
Finally Section 5 considers the impact of improved information.

1 General Model

Firms di�er along two dimensions, quality z and �xed costs f . Production
technology is the same for all �rms, given by a strictly increasing supply
function q (p), the corresponding variable cost c (q).

We model the demand side as in a discrete choice model. Letting z denote
the quality of the good, the agent's utility is given by

U (z, θ) = θ1z + θ0

where the outside good's utility (no purchase) is normalized to zero.1 θ1 and
θ0 are random coe�cients that are jointly distributed Γ (dθ0, dθ1) . Goods
are only di�erentiated by quality, so this is a pure vertical di�erentiation
case. Given the linearity in z, we maintain similar expression for lotteries
over qualities where z is then interpreted as the corresponding mean. This
set up is similar to random coe�cient demand function, with two possibly

1Alternatively, letting θmax denote the highest θ0, we can write U (z, θ) = θ1z + θmax

where the value of the outside good θ̃0 = θmax − θ0.
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Figure 1: Demand

correlated random coe�cients.2

All consumers observe a coarse signal related to quality, which we call the
reputation signal. We assume this signal has the form of a partition of the
set of qualities Z into a �nite number of intervals determined by thresholds
z1 < ... < zn. For most of our analysis below we consider the case of a single
quality threshold z∗. Let pH and pL denote the price for �rms above and
below the threshold, respectively, and zH and zL denote the average quality
for �rms above and below the threshold, respectively.

As depicted in Figure 1, given prices pH and pL, the set of buyers in each
group are

AH (z, p) = {θ|θ1zH − pH ≥ θ1zL − pL; θ1zH ≥ pH}

AL (z, p) = {θ|θ1zH − pH < θ1zL − pL; θ1zL ≥ pL}

and the corresponding demand functions:

DH (z, p) = Γ (AH (z, p))

DL (z, p) = Γ (AL (z, p))

where Γ denotes the probability measure over θ.3

To study the e�ect of changes in z∗ on prices, quantity of high- and low-
quality sellers, and entry, we consider competitive and Cournot equilibrium
separately. Furthermore, the following special cases for the taste preference
on quality that we consider in more detail below are:

2We are working on the addition of horizontal di�erentiation that should be included

in the �nal version.
3Without loss of generality we normalize the size of the population to one.
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1. Additive quality premium: θ1 the same for all and θ0 following some
distribution Φ (θ0)

2. Increasing quality premium: Increasing function θ1 (θ0) and some dis-
tribution

3. Pure vertical di�erentiation: θ0 �xed and θ1 following some distribution
Φ (θ1)

2 Perfect Competition

On the supply side, potential participants di�er along two dimensions: qual-
ity z and �xed costs f that are independently distributed with cumulative
distribution functions F (z) and G (f) , respectively. Let π (p) denote vari-
able pro�t of the �rms with when faced by price p. Here, we consider the
case of a single quality threshold z∗. Letting pH and pL denote the price for
�rms above and below the threshold, respectively, we can de�ne total supply
for each group as follows:

QH = (1− F (z∗)) q (pH)n (pH)

QL = F (z∗) q (pL)n (pL)

where q (·) is the supply function of an individual �rm and n (p) = G (π (p))
is the fraction of �rms that participate when confronted with price p, i.e.
those with �xed cost f ≤ π (p) . Note that for simplicity we have assumed
the production technology is independent of quality. This implies that for
a given group, the share of output of all �rms is the same and thus average
quality is independent of price.

Letting S (p) = q (p)n (p) we can write4

QH (pH) = (1− F (z∗))S (pH)

QL (pL) = F (z∗)S (pL) .

A competitive equilibrium for threshold z∗ is a vector of prices p =
(pL, pH) such that QH (pH) = DH (z∗, p) and QL (pL) = DL (z∗, p).

4Note that S (p) contains all the supply-behavior information needed to solve for an

equilibrium and can be thus taken as a primitive. In the particular structure given above

it corresponds to the envelope of supply functions of �rms with di�erent �xed costs. The

general underlying assumption as explained above is that the supply function is the same

for �rms in all quality partitions, scalarly adjusting for the mass of �rms in each partition.
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Proposition 1. There exists a unique equilibrium.

Proof. (Existence can be easily proved from �xed point theorems impos-
ing continuity conditions.) Let (p1L, p

2
L) be an equilibrium price vector and

suppose towards a contradiction that there is another equilibrium vector
(p2L, p

2
H) . Suppose �rst that

p2H − p2L ≥ p1H − p1L. (1)

Then it must be the case that p2H ≤ p1H for otherwise supply cannot equal
demand in the H market under both equilibrium prices. But then it follows
from (1) that p2L ≤ p1L. Moreover, if the inequality were strict demand will
exceed suply in the L market under this alternative set of prices. It follows
that p2L = p1L and then immediately that the same is true in the H market.
In the converse case where p2H − p2L ≤ p1H − p1L, a similar argument can be
made.

As consumers strictly prefer high quality goods, it follows that pL < pH
and thus qL < qH . Total market shares of both groups depend on the number
of �rms in each quality partition that obviously varies with z∗.

2.1 Comparative Statics

This section considers the e�ect of changes in the quality threshold z∗ on
market prices and total quantities. It is to note that as z∗ increases, there
are several channels that can impact demand and supply.

1. All things equal, the share and number of �rms in the low quality group
(high quality group) F (z∗) increases (decreases).

2. Expected quality increases in both partitions.

The impact of the latter e�ect is ambiguous: depending of the relative
changes in expected qualities and how these interact with preferences, it
might be that goods in di�erent partitions become more or less substitutable.
This makes it hard in general to determine the impact of the change in z∗

on equilibrium prices and market shares without of further conditions. This
is explored in this section and the following ones.

Proposition 2. If z∗ increases at least one of the prices pH or pL must
increase.
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Proof. Suppose not. Then total supply cannot increase (and it will strictly
decrease for those that switch from H to L) . But if neither price increases,
total demand must increase since average quality is greater for both goods.
So there must be excess supply for at least one of the groups.

The following corollary provides su�cient conditions for a rise in pH .

Corollary 1. If z∗ increases and zH − zL increases too, then pH must in-
crease.

Proof. Suppose not. Then pL must increase. But then any consumer that
choseH initially must continue doing so, since by the hypothesis θ1 (z′H − z′L) ≥
θ1 (zH − zL) ≥ (pH − pL) ≥ (p′H − p′L) . Hence total demand for the H goods
increases. However supply strictly decreases as p′H ≤ pH and there are less
�rms in the H group.

While at least one price must increase, it is possible that either of the two
prices decrease. Examples are provided in the following section.

Corollary 2. If pL increases, QL must increase too. If pH decreases, QH

must decrease too.

Consider now a uniform increase in entry cost. With the assumption that
the distribution of �xed costs and quality is independent, this will not change
the average qualities of both groups. In consequence:

Proposition 3. An increase in �xed/entry costs increases both prices and
reduces QL and QH . The impact on average quality in the market is ambigu-
ous.

2.2 Additive Quality Premium

Now to study the e�ect of the change in information structure in more detail,
we assume that buyers preference is in the form of additive quality premium:
θ1 the same for all and θ0 following some distribution Φ (θ0). We conjecture
that for most results the assumption can be weakened to lack of correlation
between the two coe�cients (this is underway and will be discussed in the
�nal paper.)

The demand side can be thus expressed as follows. There is a baseline
demand function P (Q) and an additive quality o�set z̄ for a good of expected
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quality z̄ so that if total quantity in the market of all goods is Q, the demand
price for this good is P (Q) + z̄. 5

For example, in case where individual consumers buy or not a single
unit, this assumption implies that there is no correlation between the basic
willingness to pay for a good of normalized quality zero and the quality
premium: aggregate demand shifts in an upwards parallel way with quality.

A simple extension to Corollary 1 can be proven here.

Corollary 3. Suppose zH (z∗) − zL (z∗) is increasing (resp. decreasing) in
z∗. Then an increase in z∗ will result in an increase in pH (resp. pL).

Proof. If zH−zL increases with z∗, then if pL increases pH must also increase.
If pL decreases, then pH must increase by the previous proposition. Similar
proof applies to the converse case.

It follows immediately that when zH − zL does not change with z∗, both
prices must increase. This is the case when z is uniformly distributed.

More generally, without making further assumption one cannot rule that
either price decreases. Our �rst example gives conditions under which pL
decreases.

Example 1. Suppose that there are only 3 types of �rms with qualities
z1 < z2 < z3. Under the original threshold z

∗ the partitions are {z1} , {z2, z3}
while under z∗2 it is {z1, z2} , {z3} . Suppose that z2 ≈ z1 so that the average
quality of the L group remains basically unchanged. Assume that S(p) is
strictly convex. Suppose towards a contradiction that total output remain
unchanged (or where to decrease), then this assumption implies that the sum
of the output of �rms in groups 2 and 3 would rise and as the average quality
of the low group would remain unchanged, the output of �rms in group 1
would remain the same or increase. But then total output increases. This
proves that total output must rise and consequently pL decreases.

Our second example shows that pH can decrease when z∗ rises.

Example 2. Consider a similar setting as above, but now assume that
z2 ≈ z3 and that S (p) is strictly concave. The �rst assumption implies

5One can replace z with an increasing function ∆ (z) which denotes the quality pre-

miums rather than quality levels, all the proofs will go through and the only thing that

needs to be changing is the distribution of qualities with that distribution transformed by

this function.
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that the quality of the H group remains unchanged when z∗ rises. Now as-
sume towards a contradiction that Q remains unchanged or decreases. By
strict concavity of S (p) it follows that the total output of �rms of type 1
and 2 rises after the increase in z∗. So if pH were to increase, total output
would increase. This proves that total output must rise and consequently pH
decreases.

The following Proposition gives alternate su�cient conditions for either
of the prices to rise monotonically with z∗.

Proposition 4. 1) If supply function S (p) is concave then an increase in z∗

will result in an increase in pL. 2) If supply function S (p) is convex then an
increase in z∗ will result in an increase in pH . 3) If supply function is linear
then an increase in z∗ will result in an increase in both PL and pH .

Proof. See Appendix.

As a result of an increase in the quality threshold z∗, there will be a set of
�rms that switch from the �rst to the second partition. While our previous
results apply to the price changes faced by those �rms that remain in their
partitions, a natural question is what happens to

those �rms that switch. The following proposition shows that the price
faced by these �rms will go down which in turn implies that their quantity
supplied decreases.

Proposition 5. p′L < pH .

Proof. Suppose towards a contradiction that p′L ≥ pH . Since p
′
H > p′L it

follows that both prices have increased. Hence total output must increase
too, i.e. Q′ > Q. Then p′L = P (Q′) + z′L < P (Q) + zH = pH which is a
contradiction.

Additional properties can be obtained in the special case where the ag-
gregate supply function is linear.

Proposition 6. If Supply S (p) is linear, then total output Q is independent
of z∗.

Corollary 4. If Supply S (p) is linear market shares for those that stay in
the original groups increases while those that transition decreases.
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3 Cournot Model

We restrict here the analysis to a �xed set of �rms, without considering
explicitly the e�ect of changes in z* on entry. There is a total of N �rms
and given signal z∗ a fraction F (z∗) in the �rst group and (1− F (z∗)) in the
second. Demand structure is the same as in the competitive case considered
above. Assume �rms face a constant marginal cost c regardless of their type.
Equilibrium conditions are:

MRH = P ′ (Q) qh + P (Q) + zH = c (2)

MRL = P ′ (Q) ql + P (Q) + zL = c (3)

Multiplying each equation by the number of �rms in the respective group
and adding up we get:

p′ (Q)Q+Np (Q) +Nz̄ = Nc

where z̄ is the mean quality for the N �rms. Interestingly, this equation
determines Q independently of the signal threshold z∗.

Proposition 7. In the Cournot model, total quantity Q is independent of
z∗.

While total quantity does not change, the shares of both groups do. In
particular, as zL (z∗) and zH (z∗) increase, the output of individual �rms qL
and qH also increase. This is compensated by some of the H �rms becoming
now L �rms and lowering output. It follows then that the output share of
those �rms that remain low and high increases, while that of the �rms that
shift category decreases.

Corollary 5. Suppose marginal revenue is decreasing in Q. Then an increase
in z∗ increases the share of those �rms that remain in the L and H groups and
decreases for those that transition. The total share of the L group increases
while that of the H group decreases.

Another implication of the invariance of total output, is that consumer
surplus does not change with z∗. This occurs because price increases capture
exactly the change in average quality in each group.

Corollary 6. Consumer surplus is independent of z∗.
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The following Assumption is used to derive further properties.

Assumption 1. P is log concave.

The following Proposition considers the e�ect of an increase in z∗.

Proposition 8. Under Assumption 1, an increase in z∗ results in an increase
in both prices and quantities qL and qH supplied by �rms in each group.

Proof. As seen in the previous section, total output Q remains unchanged.
Also as z∗ increases, both zL and zH increase. At the original output levels
of �rms this results in higher marginal revenue and as a consequence both
qL and qH must increase.

We consider now the e�ect of an increase in the number of �rms. This is
a �rst step for analyzing equilibrium entry decisions that will be considered
in the future draft.

Proposition 9. Under Assumption 1, an increase in the number of �rms
keeping constant the distribution of qualities results in an increase in total
output, decrease in prices and decrease in qH and qL.

Suppose, towards a contradiction, that total output does not increase.
Then the assumption implies that marginal revenue for each type does not
increase at the original level of output, so each �rm's output cannot decrease.
But since there are more �rms, total output increases, a contradiction. The
increase in Q reduces marginal revenue and as a consequence decreases the
equilibrium output of �rms in both groups.

4 Optimal Partition

We consider here the optimal determination of the threshold z∗. Our analysis
is restricted to the case of additive quality premium. We �rst consider the
case of perfect competition and then the Cournot equilibrium. The last
section considers the impact of improved information.

4.1 Perfect Competition

In analyzing this it is convenient to formulate �rst a planners problem that
gives the competitive equilibrium allocations.
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4.1.1 A planner's problem

We explore here the connection between equilibrium and a restricted notion
of optimality. The results of this section will be used below when considering
the problem of an optimal partition. Let

C (y) = min
q,f

c (q)n+

∫ f

xdG (dx)

subject qn = y

where n = G (f) . This is the minimal cost (through intensive and extensive
margins) of producing quantity y. It is easy to show that the solution satis�es:

c′ (q) =
c (q) + f

q
= C ′ (y) , (4)

that is marginal costs equal average costs of the marginal �rm and this is
also equal to C ′ (y) .

4.1.2 The optimal partition

For a �xed z∗ the optimal program solved by the planner is:

U (z∗) = max
yL,yH

∫ Q

0

P (x) dx+ ∆L (z∗)F (z∗) yL + ∆H (z∗) (1− F (z∗)) yH(5)

−F (z∗)C (yL)− (1− F (z∗))C (yH)

where Q = F (z∗) yL + (1− F (z∗)) yH .
First order conditions for this problem imply:

P (Q) + ∆L (z∗) = C ′ (yL)

P (Q) + ∆H (z∗) = C ′ (yH)

and together with (4) the conditions for a competitive equilibrium.
Consider now the e�ect of an in increase in z∗ on welfare. By the envelope

theorem, it is su�cient to consider the direct e�ect of z∗ in (5) without
changing yL and yH . Note that Q = F (z∗) yL + (1− F (z∗)) yH so ∂Q/∂z∗ =
−f (z∗) (yH − yL) . We can then calculate:

∂U (z∗) /∂z∗ = f (z∗) (pLyL − pHyH − C (yL) + C (yH))

+F (z∗) ∆
′

L (z∗) yL + (1− F (z∗)) ∆
′

H (z∗) yH

= −f (z∗) (πH − πL) +QL∆
′

L (z∗) +QH∆
′

H (z∗)
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where πL = pLyL−C (yL) and πH = pHyH −C (yH). Observing more closely
the last line above, this is the e�ect of z∗ on total pro�ts since there is really
no direct e�ect of the change of z∗ on consumer surplus. This can be seen
more directly considering

CS (z∗) =

∫ Q

P (x) dx+ ∆L (z∗)QL + ∆H (z∗)QH (6)

−pLQL − pHQH

where QL = ∆L (z∗)F (z∗) yL and QH = ∆H (z∗) (1− F (z∗)) yH . Noting
that pL = P (Q) + ∆L (z∗) and pH = P (Q) + ∆H (z∗) equation (6) simpli�es
to:

CS =

∫ Q

P (x) dx− P (Q)

so all the quality premium is captured by �rms. Moreover, starting from an
equilibrium (e�cient allocation) the direct e�ect of total output on consumer
surplus is zero, explaining the above result.

4.1.3 Special Case: Linear Supply

Consider again the case of a linear supply function S (p) = Ap. In this case
total pro�ts are:

Π (z∗) = pLQL + pHQH − F (z∗)

∫ pL

0

S (p) dp− (1− F (z∗))

∫ pH

0

S (p) dp (1− F (z∗))

= F (z∗)Ap2L + (1− F (z∗))Ap2H − F (z∗)Ap2L/2− (1− F (z∗))Ap2H/2

=
1

2

[
P (Q)2 + 2P (Q)Ez + F (z∗) ∆L (z∗)2 + (1− F (z∗)) ∆H (z∗)2

]
Given that as seen above in the linear case Q is constant, the �rst two terms
do not depend on z∗. Thus the optimal z∗ is the one that maximizes

F (z∗) ∆L (z∗)2 + (1− F (z∗)) ∆H (z∗)2 .

We prove results for the case of additive quality premium, both with
linear supply and in the Cournot case.

Proposition 10. Both in the competitive model with linear supply and the
Cournot model, the optimal partition maximizes: NL (z∗) ∆L (z∗)2+NH (z∗) ∆H (z∗)2 .

Corollary 7. Both in the competitive model with linear supply and the Cournot
model, the optimal partition maximizes: NL (z∗) q2L (z∗) +NH (z∗) q2H (z∗) .
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4.2 Cournot Model

Since as observed before consumer surplus is invariant to z∗, the socially
optimal value maximizes �rm pro�ts. This is given by:

Π (z∗) = (P (Q)− c)Q+NL (z∗) qL (z∗) ∆L (z∗)

+NH (z∗) qH (z∗) ∆H (z∗)

Using equations (2) and (3), it follows that qL and qH and be written as

qL = a (Q) + b (Q) ∆L (z∗) (7)

qH = a (Q) + b (Q) ∆H (z∗) (8)

Substituting in the above equation

Π (z∗) = (P (Q)− c)Q+NL (z∗) [a (Q) + b (Q) ∆L (z∗)] ∆L (z∗)

+NH (z∗) [a (Q) + b (Q) ∆H (z∗)] ∆H (z∗)

= (P (Q)− c)Q+Na (Q) ∆z̄

+b (Q)
[
NL (z∗) ∆L (z∗)2 +NH (z∗) ∆H (z∗)2

]
.

Since the only term that depends on z∗ is the last term in brackets, this
proves:

Proposition 11. In the Cournot model, the optimal z∗ is the one that max-
imizes NL (z∗) ∆L (z∗)2 +NH (z∗) ∆H (z∗)2 .

Note that this is the same result that obtains in the case of perfect com-
petition with linear supply functions. In terms of observables, a more con-
venient representation can be obtained. Using (7) and (8) we can write

∆H = qH−a(Q)
b(Q)

and ∆L = qL−a(Q)
b(Q)

so

NL (z∗) ∆L (z∗)2 +NH (z∗) ∆H (z∗)2

= NL (z∗)

(
qL − a (Q)

b (Q)

)2

+NH (z∗)

(
qH − a (Q)

b (Q)

)2

=
2a (Q) [NL (z∗) qL +NH (z∗) qH ] + [NL (z∗) q2L +NH (z∗) q2H ]

b (Q)2

=
2a (Q)Q+ [NL (z∗) q2L +NH (z∗) q2H ]

b (Q)2

and since Q is independent of z∗, maximizing U (z∗) is equivalent to maxi-
mizing NL (z∗) q2L +NH (z∗) q2H . This proves:
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Proposition 12. In the Cournot model the optimal z∗ is the one that max-
imizes NL (z∗) q2L (z∗) +NH (z∗) q2H (z∗) .

This proposition provides a more convenient way for checking optimality.

Example 3. Suppose z is uniform between zero and one. Assuming N is
large, take the approximation NL = F (z∗)N and NH = (1− F (z∗))N.
Maximizing pro�ts is equivalent to maximizing M as given by:

M = (1− F (z∗)) ∆h (z∗)2 + F (z∗) ∆l (z∗)2

= (1− z∗)
(

1 + z∗

2

)2

+ z∗
(
z∗

2

)2

=
1

4

(
1 + z∗ − (z∗)2

)
This is maximized when z∗ = 1/2.

5 Improved Information

Given a partition in two groups L and H, we consider better information as
increasing the likelihood that higher quality �rms are included in theH group
and conversely for lower quality �rms. For example, for two levels of quality
z2 > z1, one possible de�nition is that the likelihood ratio P (H|z2) /P (H|z1)
is higher when the informational content of reputation signals (L,H) is bet-
ter. A better classi�cation system results in a mean preserving spread of zL
and zH , i.e. increases zH and decreases zL, preserving the average.

5.1 Comparative Statics

We examine here the e�ect of better information on prices.

Proposition 13. Better information always leads to higher pH .

Proof. If pH weakly decreases and so does pL, total demand will increase
(non-generically) so it will exceed supply. If pH weakly increases and pL
increases, then total demand for H group will strictly increase (generically)
so demand for this group will exceed supply.
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Example 4. It is possible for pL to increase as this example shows. Suppose
that consumers are distributed uniformly on the following sets: [(0, x) |0 ≤ x ≤ A]∪
[(x, 0) |0 ≤ x ≤ B] and A > B. Suppose the total measure of consumers is
A+B, so there is a mass B on the θ1−axis and A on the θ0−axis. Suppose
there are two types of �rms of total measure one, half of them of quality zero
and half of quality 2. Individual supply function S (p) = p for each �rm.
Initially there is no signal so only one group of average quality 1. Given price
p, demand will then be B − p+A− p = A+ b− 2p = S (p) = p. This solves
for p = A+B

3
and the supply of each group equal to half of this.

Now suppose that the scenario with a high quality signal is perfectly
separating. We construct the equilibrium so the high quality �rms serve the
quality sensitive consumers and the low quality �rm those that don't care
about quality. Demand for the low quality group is thus A − p and supply
1
2
p, so equilibrium price pL = 2

3
A > A+B

3
, the price in the original scenario.

Demand for the high quality group is B− p
2
and since supply is 1

2
p it follows

that pH = B. For pH > pL we would need B > A+B
3

or equally that B > A/2.
So this example seems to work provided that A > B > A/2.

So we need some extra conditions on the demand side or on supply to get
pL to decrease. In our example the gains from sorting are so large that they
support an increase of both prices. So limiting the gains from sorting or the
�spillover� to the L group should make it. One extreme case is when there is
constant quality premium.

Proposition 14. For the case of additive quality premium, an improvement
in the quality of information lowers pL.

Proof. If pL increases, then total demand must decrease. But since both
prices have increased, supply increases exceeding total demand.

The second case considered is increasing quality premium, or the case
of pure vertical di�erentiation. This is the case where all the mass of the
distribution lies on a unique value of θ0, without loss of generality equal to
one. Let G denote the cdf for θ1. Given prices pL and pH and assuming that
both groups have positive supply, total demand is given by 1 − G (pL/qL) .
Better information implies a decrease in qL and increase in qH . If pLdoes
note decrease, then from the above total demand decreases. But since pH
must increase too, then total supply would strictly increase and we get a
contradiction.
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Proposition 15. For the standard case of vertical di�erentiation, better in-
formation results in higher pH but lower pL.

5.2 Welfare e�ect

In this section we restrict attention to the case of constant quality premium
for either perfect competition with linear supply or Cournot competition, as
considered in Section 4Our results in that Section show that total surplus
can be expressed as a function that is monotonically increasing in Ez2i . By
Jensen's inequality this increases with a mean preserving spread. This proves
the following:

Proposition 16. A better information system, de�ned as a mean preserving
spread in quality signals zL and zH , increases total surplus.

As noted previously, the change in total surplus will be the same as the
change in total pro�ts while consumer surplus remains unchanged..
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6 Appendix

Proof of Proposition 4

Let z∗2 > z∗1 . Denote ∆1L and ∆2L the quality premium for the L group in each
of the two scenarios. De�ne similarly, ∆1H ,∆2H , q1L, q2L, q1H , q2H , p1L, p2L, p1H , p2H .
Suppose, towards a contradiction, that p2L ≤ p1L. Since ∆2L > ∆1L this im-
plies that Q2 > Q1. Note that

p1H = P (Q1) + ∆1H = P (Q1) + E (z ≥ z∗1)

=
1− F (z∗2)

1− F (z∗1)
(P (Q1) + E (z ≥ z∗2))

+
F (z∗2)− F (z∗1)

1− F (z∗1)
(P (Q1) + E (z∗1 ≤ z ≤ z∗2))

So it follows that:

Q1H = (1− F (z∗1))S (p1H)

≥ (1− F (z∗2))S (P (Q1) + E (z ≥ z∗2)) + [F (z∗2)− F (z∗1)]S (P (Q1) + E (z∗1 ≤ z ≤ z∗2))

> (1− F (z∗2))S (P (Q2) + E (z ≥ z∗2)) + [F (z∗2)− F (z∗1)]S (P (Q2) + E (z∗1 ≤ z ≤ z∗2))

≥ (1− F (z∗2)) q2H + [F (z∗2)− F (z∗1)] q2L

p2L = P (Q2) + ∆2L ≤ P (Q2) + E (z|z∗1 ≤ z ≤ z∗2)

p1H = P (Q1) + E (z|z > z∗1)

By the contradiction hypothesis, q2L = S (p2L) ≤ S (p1L) = q1L. It then
follows that:

Q1 = Q1H + F (z∗1) q1L

> (1− F (z∗2)) q2H + [F (z∗2)− F (z∗1)] q2L + F (z∗1) q2L

= Q2.

But then p2L > p1L, thus completing the proof of the �rst part.
Now to prove the case for convex supply function. Let z∗2 > z∗1 . Denote

∆1L and ∆2L the quality premium for the L group in each of the two scenar-
ios. De�ne similarly, ∆1H ,∆2H , q1L, q2L, q1H , q2H , p1L, p2L, p1H , p2H . Suppose,
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towards a contradiction, that p2H ≤ p1H . Since ∆2H > ∆1H this implies that
Q2 > Q1. Note that

p2L = P (Q2) + ∆2L = P (Q2) + E (z ≤ z∗2)

=
F (z∗1)

F (z∗2)
(P (Q2) + E (z ≤ z∗1))

+
F (z∗2)− F (z∗1)

F (z∗2)
(P (Q2) + E (z∗1 ≤ z ≤ z∗2))

So it follows that:

Q2L = F (z∗2)S (p2L)

≤ F (z∗1)S (P (Q2) + E (z ≤ z∗1)) + [F (z∗2)− F (z∗1)]S (P (Q2) + E (z∗1 ≤ z ≤ z∗2))

< F (z∗1)S (P (Q1) + E (z ≤ z∗1)) + [F (z∗2)− F (z∗1)]S (P (Q1) + E (z∗1 ≤ z ≤ z∗2))

≤ F (z∗1) q1L + [F (z∗2)− F (z∗1)] q1H

By the contradiction hypothesis, q2H = S (p2H) ≤ S (p1H) = q1H . It then
follows that:

Q2 = Q2L + (1− F (z∗2)) q2H

< (1− F (z∗1)) q1L + [F (z∗2)− F (z∗1)] q1H + (1− F (z∗2)) q2H

≤ (1− F (z∗1)) q1L + [F (z∗2)− F (z∗1)] q1H + (1− F (z∗2)) q1H

= Q1.

But then p2H > p1H , thus completing the proof.
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