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Abstract

Evidence suggests that innovation benefits from low-powered incentives, yet inno-
vative organizations use widely varying incentive structures. I offer an explanation
based on a characteristic feature of creative work: dead ends. To solve a problem, an
agent works on successive ideas, each of which may succeed with some probability. At
each instant, the agent chooses whether to exert effort. The agent may also abandon
his idea, incurring delay to come up with a new one. High rewards for success can slow
innovation because the agent is reluctant to incur the cost of delay, spending too much
time on unpromising ideas. I apply this framework to study intellectual property rights
(IPR) and optimal contracts for innovation. Dead ends provide a new explanation for
the inverse U relationship between IPR and innovation, suggesting that “low-hanging
fruit” suffers most from strong IPR. In a principal-agent setting with moral hazard,
we get front-loading because high continuation values increase the cost of current in-
centives. Contract structure depends on whether the principal is more or less patient
than the agent. Impatient principals impose deadlines, while patient principals grant
tenure, using delay rather than the threat of termination to reduce incentive costs.

1 Introduction

Creative work is a major source of economic output. The literature on endogenous growth
is predicated on the importance of research and innovation, and firms invest billons of dollars
in R&D spending.1 Whether researching new drugs, designing new products, developing new
trading strategies, or starting new businesses, a large share of workers engage in innovative
activity as a central part of their jobs. How best to incentivize these workers is a natural
question for firms, governments, and other organizations.

∗I am especially grateful to Daron Acemoglu, Abhijit Banerjee, Ben Golub, Aditya Kuvalekar, and Elliot
Lipnowski for advice and feedback. I also thank Dhruva Bhaskar, Bob Gibbons, Yingni Guo, Harry Pei,
Roy Radner, and seminar participants at Harvard and MIT for helpful conversations and suggestions.
†Harvard University – esadler@fas.harvard.edu
1See Klette and Kortum (2004); Lentz and Mortensen (2008); Acemoglu et al. (2013) for recent contribu-

tions to the endogenous growth literature. The World Bank estimates that the United States spent 2.73%
of its GDP on R&D in 2013.

1



Intuitively, high rewards for innovative success should incentivize effort and lead to more
innovation, and indeed there is evidence suggesting that employee stock ownership is as-
sociated with greater innovative activity (Garrett, 2010; Chang et al., 2015). However, a
central message in studies of innovation and incentives is that innovation benefits from low-
powered incentives—payoffs that respond less drastically and less immediately to outcomes.
Extensive research, both in the field and the laboratory, finds that tolerance for early fail-
ure, long-run performance incentives, and ceding creative control are associated with higher
levels of innovation. In a corporate context, long-term incentives for research and devel-
opment heads (Lerner and Wulf, 2007), longer stock option vesting periods (Yanadori and
Marler, 2006), golden parachutes (Francis et al., 2011), and a failure-tolerant culture (Tian
and Wang, 2014) are all associated with firms creating more patents and more heavily cited
patents. Ederer and Manso (2013) present evidence from a laboratory experiment that long-
term incentives and tolerance for failure help motivate innovation, and Azoulay et al. (2011)
show how grants that are more failure tolerant, and give researchers more flexibility over
what projects to pursue, increase the output of academic scientists.

The incentives that innovative organizations use in practice are highly varied in strength
and structure. The routine output of an academic scientist has little if any near-term effect on
compensation—long-term effects come from improved job prospects and reputation, which
are often difficult to tie to any single piece of work. Traders in financial markets, who
engage in highly creative work to develop effective strategies, receive a majority of their
compensation through stock options and performance contingent bonuses, and they are often
subject to “up or out” promotion policies. Employees in technology startups are typically
compensated through equity in the company. Given the apparent efficacy of low-powered
incentives, why do we see so much variation, and what effect does this have on the level of
innovation across different organizations?

I offer a new perspective based on a distinguishing feature of creative work: dead ends.
As any experienced researcher knows, not every new idea works as intended. A serial en-
trepreneur might suffer several failures and bankruptcies before coming up with a successful
business plan. An academic scientist may try multiple experimental designs before convinc-
ing evidence emerges for or against a hypothesis. In each case, the worker decides not just
how hard to work, but also how long to keep trying before searching for a new approach.

The option to come up with a new idea leads to a non-trivial tradeoff: do I suffer delay
to start on a more promising project, or do I hold out just a bit longer hoping for a quick
success? This tradeoff offers a new explanation why high-powered incentives discourage
creativity. A high reward for success makes delay more costly, causing an individual to work
“too hard” on any one idea. In an agency setting, contractual features like tenure and “up
or out” emerge depending on whether the prinicpal or the agent is more patient. To model
the innovation process, I extend the exponential bandit framework of Keller et al. (2005).

To solve a creative problem, an agent successively comes up with ideas, and the agent
works on each idea until either he solves the problem or gives up to start on a new idea. Each
idea is good with independent probability p0. If an idea is good, and the agent exerts effort,
a breakthrough arrives at a constant positive rate. If the idea is bad, or the agent makes no
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effort, a breakthrough never arrives. At any time, the agent may give up and incur delay to
come up with a new idea—this option is the key departure from previous work. We could
imagine the agent taking a break from work to brainstorm, talk to colleagues, or read about
what others are doing until a new approach occurs to him. After formally describing the
innovative process, I study two applications in detail. First, for a self-employed agent, I ask
how incentives affect the rate of innovation and how dead ends might influence intellectual
property rights. I then consider a principal-agent setting with moral hazard, asking how
dead ends affect the structure of optimal contracts.

A self-employed agent chooses a constant threshold belief at which he gives up on any
idea. This threshold decreases as rewards increase or as the agent becomes less patient—
an impatient agent receiving a large reward for success spends more time working and less
time searching for ideas. Intuitively, we can think of the option to search as the “safe arm”
in a more standard bandit problem—though its value is determined endogenously. Higher
rewards and higher discount rates diminish the value of the safe arm relative to continued
experimentation. The expected time until success is a U -shaped function of the threshold
belief. As a result, impatient agents earning high rewards are slow because they spend a
lot of time working on dead ends. Conversely, patient agents earning low rewards are slow
because they give up easily. These results highlight that fast innovation is not the same
as efficient innovation, and we obtain a nuanced account of when low-powered incentives
facilitate faster innovation.

I emphasize that the tradeoff behind these results is fundamentally different than the
familiar exploration versus exploitation tradeoff. In the latter case (e.g. Manso, 2011), high
rewards for early success make it more costly to gather information, so an agent gravitates
towards the safe arm. Discounting the future makes information less valuable still, reinforcing
this effect. Here, impatience and high rewards make the safe arm less attractive. This occurs
because of a switching cost between the two actions, the cost of delay.

Our findings can inform a social planner who designs a regime of intellectual property
rights for innovative agents. A standard argument to limit protections is that they are ex-
post inefficient: information is non-rival, and intellectual property rights can impede free
dissemination and use of an innovation. Assuming the planner is more patient than the
agent, I suggest a rationale to limit protections even without any ex-post inefficiency. High
rewards cause short-sighted agents to work harder on any one idea than is socially optimal.
This result offers an alternative explanation for the inverse U-shaped relationship between
intellectual property rights and innovation (Qian, 2007). It also suggests that “low-hanging
fruit,” innovations with large benefits relative to development costs, suffers most from strong
protections.

In a second application, I introduce a principal who earns a payoff from the agent’s
success and designs a contract to incentivize the agent. The principal provides a flow of
resources for the agent to work on his ideas, but the agent can divert these funds for personal
gain. The principal observes when the agent starts on a new idea but does not observe the
diversion of funds. A technical lemma shows that the principal can implement any desired
experimentation policy and specifies the reward function that does so most cheaply. The
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agent extracts rents from two sources. First, to prevent the agent from diverting funds,
the principal must pay the agent at least the value these funds. Second, there is option
value from diverting funds today and collecting the intended continuation payoff tomorrow.
The principal must further compensate the agent for the value of this option. Since high
continuation values increase the cost of current incentives, optimal contracts must use front-
loading. Interestingly, the characterization of the optimal reward follows from a first order
approach despite the presence of hidden information. Diverting funds increases the chance
of success later—since the agent has not tried and failed, his belief about the likelihood of
success becomes higher than the principal’s. Nevertheless, the agent cannot gain from such
a deviation because the reward function front-loads his surplus: the agent loses more from
delaying his work than what he can later recoup.

An important feature of this analysis is that the principal and agent may have different
discount rates. With access to perfect financial markets, we should expect equal discount
rates, but this is hardly realistic for the relevant settings. An agent who diverts funds often
does not obtain cash; he might instead finance a pet project or office perks. Likewise, while
firms typically discount based on a market-interest rate, it is well-documented that markets
for financing innovation are incomplete (Lerner and Hall, 2010). External financing is typ-
ically more expensive than internal financing, so the capital structure of a firm affects the
required rate of return for R&D investments. For some principals (e.g. academic or gov-
ernment institutions), the value of an innovation includes less tangible benefits like prestige,
which are not traded in any market, and hence the relevant discount rate is partly subjective.
I call attention to this issue not merely for the sake of generality: the relationship between
the players’ discount rates affects the qualitative structure of an optimal contract.

When the agent is at least as patient as the principal, optimal contracts take a simple
form. The agent works continuously, the promised continuation value declines with each
new idea, and if the agent fails to achieve success, he is eventually fired. By imposing a
deadline, the principal reduces the option value of delaying work, thereby reducing the cost
of incentives early in the relationship. This is clearly inefficient as the principal fails to obtain
a solution with positive probability. In contrast, when the prinicpal is more patient than the
agent, the contract looks like a tenure arrangement: the agent is employed in perpetuity, and
the promised continuation value is bounded above zero. While the problem is sure to get
solved, we see a different form of inefficiency in these contracts. To reduce incentive costs,
the principal may periodically ask the agent to take a break from working on his ideas.

Hitting dead ends is an inherent part of innovation that has implications for the struc-
ture of incentives. This feature gives us a new rationale why low-powered incentives facilitate
faster innovation. Impatience can motivate an agent to work too hard on a given project
because coming up with new ideas entails costly delay. Weaker incentives can counteract this
effect. Dead ends also create a role for time preferences in the structure of optimal contracts.
The option to wait for a new idea means that high continuation values increase the cost of
current incentives. This leads to inefficient front-loading that manifests differently depend-
ing on who is more patient. Impatient principals impose deadlines, while patient principals
use extra delay. Beyond these applications, the underlying innovation model tractably ad-
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dresses important limitations of the experimentation literature and can potentially serve as
a workhorse model in a variety of contexts.

1.1 Related Work

Economic theory offers two main explanations why low-powered incentives help encourage
innovation. First, strong incentives may crowd out an agent’s intrinsic motivation. Work in
psychology documents that extrinsic rewards can impair an individual’s intrinsic motivation
to perform a task (Deci et al., 1999), and intrinsic motivation seems particularly important
in creative pursuits. Bénabou and Tirole (2003) develop a principal-agent model in which
this crowding out effect can appear. In their model, a principal has private information
about an agent’s ability to complete some task, and she can offer rewards to induce the
agent to try. If the principal receives a negatve signal, she may worry that the agent—who
also has private information about his ability—is too pessimistic to attempt the task. She
can use a strong reward to compensate, but this provides the agent with additional negative
information, undermining his self-confidence. While the reward can get the agent to try in
the short-run, the agent is more reluctatnt to undertake similar tasks in the future.

A second explanation stems from an agent’s aversion to uncertainty. In many cases, an
agent can choose whether to innovate or to rely on current knowledge. Innovating entails
a chance of failure, so rewards that are contingent upon success make pursuing innovation
more risky for the agent. Manso (2011) formalizes this idea using a two-period principal-
agent model. In each of the two periods, the agent may exploit an action with a known
chance of success, explore a new action with unknown chance of success, or shirk. Exploring
the new action leads to learning about its success probability—a success in the first period
leads to higher beliefs in the second period, with a failure leading to lower beliefs. The
optimal contract that induces exploration may reward failure in the first period while paying
nothing for a success. The principal offers high rewards for success in the second period so
that the agent finds it valuable to gather information in the first period. Manso explicitly
ties this incentive structure to common features of managerial compensation contracts like
stock options and golden parachutes. In a related model, Byun (2015) shows that ambiguity
about the likelihood of successful innovation exacerbates the effect. When an agent can
choose whether or not to innovate, or can choose between radical or incremental innovation,
strong performance incentives discourage the agent from choosing the riskier option.

In contrast with both of these frameworks, there is no question here whether the agent will
try to innovate—the agent’s decision concerns when to take another approach. As a result,
time preferences play a central role. The strength of incentives and the agent’s discount rate
jointly determine how the agent perceives the switching cost. When the agent decides to
switch determines how fast, not whether, the agent innovates. The tradeoff between working
more and waiting for a new idea tells us more about the conditions under which low-powered
incentives encourage creativity and has distinct implications for the design of incentives.

Methodologically, I build on a large and growing literature that studies experimentation
using exponential bandits. This literature includes work on strategic experimentation (Keller
et al., 2005; Keller and Rady, 2015), contest design (Halac et al., 2016a), and delegation (Guo,
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2016). The option to quit and come up with a new project is an innovation in this paper.
Much of the experimentation literature motivates itself through questions about firm R&D
or venture capital financing. A limitation in all of this work is the assumption that there is
only one possible project. After exerting enough effort without success, it is clearly optimal
to quit, and the game ends. The R&D division cannot reallocate its resources to a different
line of research. The venture capitalist cannot redirect his investment to a new start up.
Under this assumption, we miss an important tradeoff that should influence decisions about
when to halt a project.

Bergemann and Hege (2005), Hörner and Samuelson (2013), and Halac et al. (2016b)
are closest in spirit to the present paper; all study dynamic incentives for experimentation
in a principal-agent setting. Both Bergemann and Hege (2005) and Hörner and Samuelson
(2013) consider an investor financing an entrepreneur. The key contracting frictions are
moral hazard and limited liability, and like in this paper, inefficiency arises because the
agent can delay experimentation. In order to reduce incentive costs, the principal may ask
for less than full effort and terminates the project early. Two key differences in this paper are
the addition of commitment power and the availability of new ideas. In my model, when the
principal and the agent have the same discount rate, the prinicpal never asks for less than
full effort. This is due to commitment power: instead of delaying the agent’s effort to reduce
incentive costs, the principal commits to fire the agent if success takes too long. Both settings
lead to early termination but for different reasons. With a single project, the principal must
terminate eventually and does so when the expected payoff cannot compensate both the
investment and incentive costs. Here, the basic problem is stationary—without commitment
power the principal would never fire the agent—but the principal commits to fire the agent
to reduce earlier incentive costs.

Halac et al. (2016b) study a similar model, dispensing with limited liability but adding
adverse selection and commitment. In optimal contracts, high-ability agents experiment
efficiently, but low-ability agents quit too early. Without adverse selection, the principal can
obtain an efficient outcome in their framework—limited liability prevents that here. The
option to switch projects, and potentially different discount rates for the principal and the
agent, are notable differences in the present paper. While I do not formally analyze a model
with adverse selection, I discuss such an extension in section 4.4.

In a departure from these models, Moroni (2015) considers multi-stage projects. The
author studies experimentation in an organizational context. A project consists of multiple
“milestones,” and we can only proceed to the next milestone after obtaining success on the
first. Experimentation is divided among multiple agents. An important focus is when the
optimal contract uses monetary bonuses versus promotions to incentivize effort. A key finding
is that agents who succeed early are rewarded with additional responsibility to experiment
in the future, which yields a higher chance at a high monetary reward in later stages. Rather
than examine the tradeoff between bonuses and promotions in incentive provision, I explore
the optimal structure of monetary incentives.

Akcigit and Liu (2016) offer a different perspective on dead ends. They study a model
with a single risky arm and a safe arm, but there are two firms in competition to develop a
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patent. One firm may realize the risky arm is bad and secretly move to the safe arm, letting
the other firm continue to waste effort on the dead end. The authors study the inefficiency
due to competition and how to incentivize firms to share information about dead ends. The
model here differs in having infinitely many risky arms and just a single researcher. The ever
present option to switch creates distinct tradeoffs, and I focus on the structure of optimal
contracts.

This paper is also related to the literature on dynamic principal-agent models, and more
broadly to the literature on dynamic contracting. Demarzo and Sannikov (2006), Sannikov
(2008), and Zhu (2013) provide seminal contributions on the canonical continuous time
principal-agent model based on Brownian motion. Here, the delay to come up with a new
idea causes the players’ discount rates to affect qualitative features of the optimal contract.
As a result, the model offers new insights on the understudied role of time preferences
in dynamic contract design. Like in Zhu (2013), optimal contracts can involve periods of
“shirking,” but only if the principal is patient. Unlike the earlier paper, these periods
are neither a reward nor a punishment since no output is observed until the end of the
game—delay is used purely to reduce the cost of earlier incentives. Opp and Zhu (2015)
provide a recent contribution, showing how the opportunity to trade across time leads to
oscillating Pareto-optimal contracts—contracts on the Pareto frontier in our setting should
behave similarly. That optimal contracts for the principal do not exhibit oscillations is a
consequence of limited liability and agency costs.

With hidden information, it is not immediately clear that checking one-shot deviations
is sufficient to show that a contract is incentive compatible. As in the models of Prat
and Jovanovic (2014) and Di Tella and Sannikov (2016), we must show that the contract
obtained through a first order approach is in fact incentive compatible for the agent. In our
case, this follows because the contract we obtain through the first order approach front-loads
the agent’s surplus, and there is a bound on how hard the agent can work at a given instant.
The principal must always compensate the agent for the option value of shirking. As the
work progresses, this option value decreases, and so does the surplus the agent can earn.
While the agent could drive a wedge between his beliefs and the principal’s, there is no way
for him to profit from doing so.

Similar to the repeated delegation model of Lipnowski and Ramos (2015), the principal-
agent relationship in an optimal contract becomes less productive over time. In the delegation
model, this occurs as a discrete shift from always delegating to a continuation contract with
periods in which the agent cannot act. The threat of moving to the less productive regime
incentivizes good behavior during the more productive regime. Here, the agent’s continuation
value presents a more direct cost to the principal, causing a steady decline in the relationship
over time.

Finally, the application of section 3.2 relates to the literature on innovation and intel-
lectual property rights. Recent studies document an inverse U-shaped relationship between
the strength of intellectual property rights and the rate of innovation (Qian, 2007; Lerner,
2009). At least in developed countries, there is convincing evidence that stronger intellectual
property rights increase R&D spending (Kanwar and Evenson, 2003), but there is conflicting
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evidence on how this spending affects actual growth (Jones, 1995; Gould and Gruben, 1996).
While other models can generate the inverse U relationship (e.g. Horowitz and Lai, 1996;
Furukawa, 2010), the present paper uniquely captures this entire constellation of features.
Dead ends highlight that not only the level of investment matters: it matters how funds are
spent. Strong intellectual property rights may lead to inefficient effort on ideas that are best
abandoned.

2 The Innovation Process

An agent faces a problem requiring an innovative solution. A successful solution delivers
a payoff y > 0. To solve the problem, the agent can work on different ideas, which we
represent as exponential bandits. Each new idea is either good or bad, independently with
probability p0. Good ideas can lead to success, while bad ideas cannot.

Working on an idea requires costly effort. At each instant t the agent chooses an action
x(t) ∈ {0, 1}, incurring a flow cost cx(t) with c > 0. If the idea is good, and the agent
exerts effort, a success arrives at a constant rate λ > 0. If the idea is bad, or the agent
shirks, success never arrives. At any point in time, the agent can choose to abandon the
current idea to come up with a new one. Getting a new idea incurs a time delay, following
an exponential distribution with parameter γ > 0. The agent discounts the future at a rate
r > 0. Figure 1 summarizes the innovation process.

Figure 1: The process of innovation.
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Innovation follows a Markov process with transitions that depend on the agent’s choices.
Success is an absorbing state. We can distinguish two phases that may occur prior to success.
The creative phase corresponds to the delay necessary to come up with a new idea. During
this phase, the agent transitions to the working phase at the rate γ, reaching a good idea
a fraction p0 of the time. During the working phase, the agent transitions to success at a
rate λx(t) if and only if his idea is good. At any instant, the agent can voluntarily return
to the creative phase, which intuitively should occur when he is sufficiently convinced that
his idea is bad. Assume the agent begins in the creative phase. The agent chooses an effort
and quitting policy to maximize his expected discounted payoff.

In subsequent sections, I analyze two versions of the innovation problem. In the first,
a self-employed agent incurs the flow cost of any effort and earns the full value of success
when it arrives. In the second, a principal employs the agent, providing a flow of resources
to carry out the work and retaining the value of success—if the agent shirks at time t, he
pockets the flow value cdt that the principal provides. In this case, the principal designs a
contract to align incentives.

2.1 A Few Remarks

By varying how we interpret its components, this framework can serve a wide range of
applications. If we think of the agent as a scientist, an idea might represent a hypothesis or
an experimental design. In this case, we can interpret a creative phase as time spent reading
and brainstorming, while a working phase corresponds to actually conducting experiments
and analysis. If we think of the agent as an entrepreneur, an idea might correspond to a
particular product or marketing strategy. In addition to brainstorming, a creative phase
would include activities like procuring materials and equipment or hiring support personnel.
A working phase would correspond to the actual execution of the strategy. The two core
elements are dead ends and the delay to start a new idea. Key results are robust to many
embellishments of the basic model as long as these elements are present.

There are two components to the agent’s ability. A higher λ means the agent is more
efficient at working on existing ideas—the agent is more productive. In contrast, a higher
γ means the agent is more adept at coming up with new ideas—the agent is more creative.
Both attributes are valuable, but they have different effects on the agent’s decisions. A more
creative agent (higher γ) switches ideas more readily because doing so is less costly, while a
more productive agent (higher λ) learns faster while working and is therefore more willing
to work on ideas with a low chance of success.

The agent incurs the flow cost c only during the working phase, not in the creative phase.
Qualitative results would remain unchanged if we instead had separate flow costs cw > cc for
effort in the working and creative phases respectively. One way to interpret this is that the
working phase depends on physical resources that the creative phase does not. For instance,
activities like executing a business plan or conducting experiments clearly require capital
and equipment that are unnecessary for coming up with ideas. The principal-agent model of
section 4 is closely tied to this interpretation of effort. When the agent shirks, we interpret
this as diverting the principal’s funds for personal gain.
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In some contexts, we could also interpret the flow cost as psychological effort. A large
literature documents the role of “incubation” in creative problem solving—taking a break
from conscious work on a problem helps generate new insights.2 If we interpret the working
phase as consisting mainly of conscious effort, and the creative phase more as incubation
periods, our assumption on relative costs seems sensible. Solving the problem is similar
under the reverse assumption, but key comparative statics get reversed.

Finally, the framework implicitly assumes that the agent never returns to an old idea
once abandoned. Given our other assumptions, this is without loss: new ideas are always
available and no news is bad news, so if it is ever optimal to quit and search for a new
idea, the agent always prefers a new idea over returning to an old one. This feature of the
model seemingly conflicts with experience as researchers often return to old ideas. However,
the return to a previously abandoned project typically follows a novel insight, one that this
framework would model as a new idea of its own.

3 The Self-Employed Agent

In this section, a self-employed agent incurs the effort cost c and earns the full value of
success y. We could imagine an independent firm investing in R&D projects, an entrepreneur
self-funding a series of innovative business ventures, or an academic researcher seeking a
major breakthrough. A few observations simplify our analysis. First, if y is high enough to
ever induce effort, the agent always exerts effort 1. When the agent shirks, it delays success
while yielding no information about the idea’s quality. Hence, if the agent can obtain a
positive payoff from making effort, any such delay is strictly suboptimal. Consequently, the
agent’s policy amounts to choosing when to cease working on the current idea.

While the agent works without success, his belief p about whether the idea is good
steadily decreases. We can characterize the optimal strategy via a threshold belief p ≤ p0
at which the agent abandons an idea. If we write u(p) for the agent’s expected continuation
payoff given current belief p, we recognize this as a modified version of the exponential bandit
problem of Keller et al. (2005). The key difference is that the value of the “safe” arm is
determined endogenously as the value of incurring delay to come up with a new idea.

The first result of this section characterizes the threshold belief p at which the agent
quits working on the current idea. For notational convenience, I define the agent’s quitting
ratio

ρ =
p(1− p0)
p0(1− p)

. (1)

The agent’s quitting ratio measures how much bad news the agent can receive before giving
up. The lower the quitting ratio, the more negative information it takes to get the agent to
quit. The higher the quitting ratio, the more easily the agent gives up on the current idea.
We can also think of the quitting ratio as an inverse measure of how hard the agent works.

2For recent contributions in this area, see Sio and Rudowicz (2007), Hélie and Sun (2010), and Gilhooly
(2016).
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When ρ is small, the agent spends more time working on each idea, and hence spends a
higher fraction of his time making costly effort. I write T for the amount of time the agent
spends on an idea before giving up, and note that Bayes’ rule implies e−λT = ρ.

Proposition 1. The agent works if and only if y > c
λp0

. In this case, the equation

γ

r
ρ

(
1− λρ

r
λ

λ+ r

)
+ rρ

λy − c
λ(ry + c)(1− p0)

=
γ

λ+ r
+

cr

p0λ(ry + c)
(2)

uniquely characterizes the belief at which the agent abandons an idea.

Proof. The proof entails solving a Bellman equation for u(p) and explicitly computing u(p0)
to obtain the endpoints. See Appendix for details.

Equation (2) makes it straightforward to derive comparative statics using implicit differ-
entiation.

Proposition 2. The agent’s quitting ratio ρ has the following comparative statics.

(a) The quitting ratio is increasing in the cost c and decreasing in the value y.

(b) The quitting ratio is decreasing in the probability p0 that an idea is good, increasing in
creativity γ, and decreasing in productivity λ.

(c) The quitting ratio is decreasing in the agent’s discount rate r.

Proof. See Appendix.

Parts (a) and (b) of Proposition 2 are fairly intuitive. If you lower the cost of effort, or
increase the benefit, the agent works harder. If an idea is good with higher probability, the
agent finds it worthwhile to work more. If the agent is more creative and comes up with new
ideas faster, switching is less costly, and he spends less time on any one idea. If the agent
is more productive, it takes more bad news for him to quit, but since information arrives
faster, this may take more or less time depending on other parameters.

Part (c) is more subtle. Coming up with a new idea is relatively costly for an impatient
agent because the delay entails a larger discount to his reward. The option to switch functions
like the “safe” arm in a more standard experimentation problem. When the agent has
a higher discount rate r, this effectively reduces the value of the safe arm, which makes
experimentation (i.e. working on the current project) more attractive. As a result, the
impatient agent will work harder for lower y than a more patient agent.

3.1 The Rate of Innovation

This section demonstrates how low-powered incentives (i.e. a reduction in y) can lead
to faster innovation. We first find the experimentation policy that maximizes the rate of
innovation. Let µ denote the expected that time passes before the agent succeeds on some
idea. There is a unique quitting ratio ρ∗ that minimizes the expected time µ until success.
For ρ > ρ∗, the agent gives up too easily, resulting in slower innovation. For ρ < ρ∗, the
agent spends too much time working on dead ends, resulting in slower innovation.
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Proposition 3. The expected time until success µ achieves its minimum at the quitting ratio
ρ∗, which solves

γ(1− p0) [1− ρ(1− ln ρ)]− λρ = 0. (3)

For ρ > ρ∗, the time µ is strictly increasing in ρ; for ρ < ρ∗, the time µ is strictly decreasing
in ρ.

Proof. If T is the time spent on an idea before giving up, we can compute µ recursively as

µ =
1

γ
+ p0

∫ T

0

λte−λtdt+
(
1− p0(1− e−λT )

)
(T + µ)

=
1

γ
+
p0
λ

(1− e−λT ) + (1− p0)T +
(
1− p0(1− e−λT )

)
µ.

Solving yields

µ =
λ+ p0γ(1− e−λT ) + γλ(1− p0)T

p0γλ(1− e−λT )
= 1 +

λ− γ(1− p0) ln ρ

p0γλ(1− ρ)
.

This is a convex function of ρ on (0, 1). Taking first order conditions, we find a unique
minumum characterized by (3).

The quitting ratio that the agent chooses is a function of the discount rate r and the
value of success y. While higher y induces the agent to work more, the agent’s patience
limits how far this can go. From (2), we see that as y approaches infinity, or as c approaches
0, the quitting ratio approaches the solution to

γ

r
ρ

(
1− λρ

r
λ

λ+ r

)
+

ρ

1− p0
=

γ

λ+ r
. (4)

I refer to the solution ρ of (4) as the agent’s quitting floor. No matter how valuable success
is, or how little effort costs, the agent never works beyond the time that corresponds to ρ—it
is always better to think up a new idea at this point. The proof of Proposition 2 implies
that the agent’s quitting floor satisfies the same comparative statics as his quitting ratio. In
particular, the quitting floor is decreasing in the agent’s discount rate r. This means that
there are some effort levels that only very impatient agents ever exert: a more patient agent
will never work as hard no matter how large rewards are.

Building from the comparative statics in Proposition 2, I show that for y sufficiently high,
we have ρ < ρ∗: the agent works harder than the rate maximizing amount. Lower rewards
can therefore increase the rate of innovation, particularly when r is high.

Proposition 4. The agent’s quitting floor ρ is always less than ρ∗, so the agent works
harder than the rate maximizing amount for sufficiently high y. Moreover, the floor ρ is
strictly decreasing in r with

lim
r→0

ρ = ρ∗.
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Proof. Taking y → ∞ in part (c) of Proposition 2 implies ρ is decreasing in r. We can
rewrite (4) as

γ(1− p0)
[
1− ρ

(
1 +

λ

r
(1− ρ

r
λ )

)]
− (λ+ r)ρ = 0.

Taking the limit as r → 0 yields (3). Since ρ is decreasing in r, this also implies that ρ < ρ∗

as claimed.

Together with Proposition 2, Proposition 4 offers a detailed account of how the rate
of innovation varies with the agent’s incentives. Figure 2 shows the success time µ as a
function of the agent’s quitting ratio. Since the agent’s quitting floor ρ is lower than ρ∗, high-
powered incentives can induce the agent to keep working beyond the point that maximizes
the innovation rate. Fixing the discount rate r, the expected time µ needed to achieve success
on some idea is a U-shaped function of an innovation’s value y. When the value of success is
low, the agent spends most of his time trying to come up with fresh ideas. When the value
is high, the agent works too hard on each individual idea, wasting effort on dead ends.

Figure 2: The expected success time as a function of the quitting ratio.
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Fixing the value y, the time µ is a similarly U-shaped function of the discount rate r.
When the agent is impatient, the cost of delay motivatives him to work too hard. When
the agent is patient, he makes less effort and too readily gives up on each new idea. As the
agent becomes more patient, it gets harder to induce a quitting ratio below ρ∗. In the limit
as the agent becomes infinitely patient, the quitting floor is exactly equal to ρ∗: an infinitely
patient agent with no cost of effort would choose the quitting ratio that maximizes the rate
of innovation.

It may be tempting to interpret these findings as a slight tweak of the classic exploration-
exploitation tradeoff, and one would then conclude that the rationale given for low-powered
incentives is not so different from the one that Manso (2011) offers. However, upon closer
inspection, we can see that the two accounts of low-powered incentives are fundamentally
different. The story here revolves around intertemporal tradeoffs, not the value of infor-
mation, and there is no question of whether the agent will innovate, only when. Note the
natural analog to the action with known payoffs, the “safe arm,” is the option to quit and
come up with a new idea—the current idea is always less likely to succeed. In contrast with
models of exploration versus exploitation, increasing the reward for success makes the agent
less inclined to use the safe arm. While Manso studies a model without discounting, if one
were to discount second period payoffs in that model, rewards in an optimal contract would
need to increase. Here, an impatient agent requires less incentive to work. Moreover, the
account of when weaker incentives increase the innovation rate—when the value y is high or
the discount rate r is high—is a distinctive prediction of this model.

3.2 Innovation and Intellectual Property Rights

Intellectual property rights help innovators appropriate the value of their work, thereby
strengthening incentives to innovate. The standard argument to limit intellectual property
rights is that information is non-rival and essentially costless to replicate, so these protections
are ex-post inefficient. The previous section suggests a second argument to limit protections:
strong incentives may reduce innovation if they cause innovators to waste time on dead ends.
The present section explores the merits of this argument.

A benevolent social planner designs a regime of intellectual property rights for our agent.
Let α ∈ [0, 1] index the strength of intellectual property rights. The social value of success is
given by a (weakly) decreasing function w(α), while the value that the agent can appropriate
is a strictly increasing function y(α) with y(α) < w(α), and y(0) = 0. Assume that w and
y are continuously differentiable. We can think of α as a reduced-form representation for
a collection of laws related to patents, copyrights, trade secrets, etc. Stronger protections
allow the agent to obtain a larger reward, but these protections also reduce the overall social
value of an innovation.

The social planner discounts the future at a rate r̃, not necessarily equal to the agent’s
discount rate r. For simplicity, I assume the social planner chooses α to maximize the
expected discounted value w(α) − y(α) of success to the rest of society. That is, the social
planner ignores the value the agent derives from success as well as the cost of the agent’s
effort. This is a reasonable approximation if the social value of an innovation is much larger
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than what the agent can appropriate; moreover, the qualitative features of the planner’s
optimal choice are insensitive to whether we account for the agent’s welfare.

Proposition 5. The planner’s payoff is

π(α) = (w(α)− y(α))
λp0(γ + r̃)(1− ρ1+ r̃

λ )

(λ+ r̃)
(
r̃ + γ(1− ρ r̃λ ) + γp0ρ

r̃
λ (1− ρ)

) , (5)

where ρ is obtained by taking y = y(α) in (2).

Proof. Let T denote the amount of time the agent spends on each idea. Following a calcu-
lation similar to that for the agent’s utility, we have

π(α) = p0 (w(α)− y(α))

∫ T

0

λe−(r̃+λ)tdt+ (1− p0 + p0e
−λT )e−r̃T

γ

γ + r̃
π(α)

=
λp0
λ+ r̃

(w(α)− y(α)) (1− e−(r̃+λ)T ) + (1− p0 + p0e
−λT )e−r̃T

γ

γ + r̃
π(α).

Solving this yields

π(α) = (w(α)− y(α))
λp0(γ + r̃)(1− e−(r̃+λ)T )

(λ+ r̃) (r̃ + γ(1− e−r̃T ) + γp0e−r̃T (1− e−λT ))

= (w(α)− y(α))
λp0(γ + r̃)(1− ρ1+ r̃

λ )

(λ+ r̃)
(
r̃ + γ(1− ρ r̃λ ) + γp0ρ

r̃
λ (1− ρ)

) ,
giving (5).

Taking the first order condition, the planner should choose α such that

0 = π′(α) =
π(α)

w(α)− y(α)
(w′(α)− y′(α)) +

∂π

∂ρ

∂ρ

∂α
. (6)

The first term, which is strictly negative, represents the reduction in social value from
stronger protections, while the second term gives the effect of stronger incentives. Proposi-
tion 2 implies that ∂ρ

∂α
is negative, so at an optimal α we must also have ∂π

∂ρ
< 0. As a function

of ρ, the planner’s payoff looks like that of an agent with no effort cost. The derivation of
(4) implies that ∂π

∂ρ
< 0 whenever ρ > ρ̃, defined by

γ

r
ρ̃

(
1− λρ̃

r
λ

λ+ r

)
+

ρ̃

1− p0
=

γ

λ+ r
. (7)

We can use this to establish limit results for the planner’s optimal policy.
For each k > 0, define

wk(α) = kw(α) and yk(α) = ky(α).
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We should think of k as a measure of an innovation’s value relative to its effort cost c. High
k innovations deliver signficiant value with relatively little investment. If the social value of
success is given by wk(α), and the value the agent appropriates is yk(α), write πk(α) for the
associated planner’s objective, and let α∗k denote the planner’s optimal policy. In the proof
of the next result, I use π(w, y) to denote a version of the planner’s payoff function in which
we replace w(α) and y(α) with w and y respectively.

Proposition 6. We have

(a) limk→∞ α
∗
k = 0.

(b) If r̃ ≥ r, then limk→∞ yk(α
∗
k) =∞.

(c) If r̃ < r, then limk→∞ yk(α
∗
k) = y∗ <∞.

Proof. We can rewrite the first order condition as

1 = −w
′
k(α)− y′k(α)

wk(α)− yk(α)
· πk(α)
∂πk
∂ρ

∂ρ
∂α

= −w
′
1(α)− y′1(α)

w1(α)− y1(α)
· π1(α)
∂π1
∂ρ

∂ρ
∂α

.

Fixing α, observe that the only terms that change with k are the partial derivatives ∂π1
∂ρ

and
∂ρ
∂α

in the denominator. For any fixed α, the value of yk(α) grows without bound, so ρ(α)

approaches the agent’s quitting floor. This implies that ∂π1
∂ρ

approaches the derivative at ρ.

Similarly, the derivative ∂ρ
∂α

approaches zero, implying that the right hand side blows up for
large k if we bound α away from zero. We conclude that α∗k converges to zero.

If r̃ ≥ r, then ρ̃ < ρ, and ∂πk
∂ρ

> 0 for any ρ the planner can induce the agent to choose.

If we hold yk(α) = y fixed, and hence we hold ρ fixed, then for large k, the right hand side
of the first order condition approaches

−w
′
1(0)− y′1(0)

w1(0)− y1(0)
· π1(w, y)
∂π1
∂ρ

∂ρ
∂yk

(y)∂yk
∂α

(0)
.

The term ∂ρ
∂yk

evaluated at y is fixed by assumption, so the only term that varies with k is
∂yk
∂α

. This clearly grows linearly in k, implying that the right hand side of the first order
condition converges to zero. For large enough k, the planner wants to choose a higher α, so
we conclude that yk(a

∗
k) must grow without bound.

Finally, if r̃ < r, there exists y∗ such that the agent chooses ρ = ρ̃ if yk(α) = y∗. The
planner clearly never lets the agent appropriate more than y∗, and an argument essentially
identical to that in the previous paragraph shows that yk(α

∗
k) must converge to y∗.

Proposition 6 establishes a connection between time preferences and the optimal intel-
lectual property regime. An impatient planner allows the agent’s value to grow without
bound as the social value of success increases, while a patient planner caps the value the
agent can appropriate. Regardless of who is more patient, the optimal level of protection
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converges to zero as innovations become more valuable. This might seem counterintuitive
at first, but recall that we held the effort cost fixed. Many highly valuable innovations—like
new pharmaceuticals—are also very expensive to develop. In general, as the ratio y

c
increases

(i.e. the social value becomes high relative to the effort cost), the optimal level of protection
declines.

The proposition is valid if w(α) is only weakly decreasing, providing a rationale to limit
intellectual property rights even if they do not decrease the ex-post social value of innovation.
When the planner is more patient than the agent, and w(α)

c
is high, strong protections

incentivize wasted effort on dead ends. From a patient planner’s perspective, it is better for
the agent to give up on his ideas more quickly. Regardless of the planner’s discount rate,
the results in the last section imply that agents with high y(α)

c
innovate more slowly as we

increase α.
Our reasoning yields a novel explanation for the inverse U-shaped relationship between

intellectual property rights and innovation. Suppose the policy α applies to a large popula-
tion of agents with a distribution over k. An increase in α has two effects. First, potential
innovators with low k become willing to invest effort, creating more innovations. On the
other hand, innovators with high k innovate more slowly. As α increases, the latter effect
becomes more pronounced, and the new innovators are more marginal.

This analysis suggests at least two additional predictions that call for empirical valida-
tion. First, rightward shifts in the distribution of k should correspond to lower optimal
protections. We might expect less developed countries, ones with more “low-hanging fruit,”
to benefit less from intellectual property rights—this is broadly consistent with studies of
patent laws in developing countries. Second, innovation could benefit from policies that
target specific segments of the distribution of k. The most useful protections apply to inno-
vations that require a large amount of investment relative to their social value. Outside the
pharmaceutical industry, there is relatively little evidence that patents encourage innovation;
the high relative cost of drug development offers an appealing explanation.

3.3 Discussion

The simplicity of exponential bandits makes the model amenable to many tweaks and
extensions. Exploring the effects of small changes can help illuminate how robust key findings
are. First, I note that representing the switching cost as a delay is crucial for the results on
the rate of innovation. Suppose instead that the agent can switch instantaneously to a new
idea after paying a “setup cost” s. This leads to fundamentally different comparative statics
for the agent’s behavior given a fixed reward.

In the adjusted model, switching to a new idea always leads to faster success—if s = 0,
the agent always switches instantaneously and always works on an idea that is viable with
probability p0. The agent’s decision whether to switch hinges on whether getting a success
sooner (in expectation) can justify the cost s. When the value of success is higher, the
agent more readily switches, contrary to the comparative statics in the model with delay.
An impatient agent places more value on getting a success sooner, so an impatient agent
switches projects more rapidly, also contrary to the model with delay. Success occurs more
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quickly when the agent switches more quickly, so impatient agents are always faster, and
high-powered incentives unambiguously leads to faster innovation.

In reality, switching entails both a delay and a setup cost—new ideas require both time
and resources to develop. The relative importance of each cost should determine whether
high-powered incentives lead to more or less switching and faster or slower innovation. When
coming up with new ideas takes time, and this delay represents the main switching cost, we
should expect less frequent switching in response to higher rewards and more benefit from
low-powered incentives.

Complicating the agent’s decision problem can result in subtle changes. In the basic set
up, the agent’s decision is very simple because shirking never produces a reward. One way
we can extend the analysis is to assume that there are different rates of discovery λ1 > λ0 > 0
corresponding to effort levels 1 and 0 respectively. The agent now has a more substantive
choice whether to exert effort and earn his payoff faster or shirk while collecting a reward
more slowly.

One observation is that the agent has a stronger direct incentive to work at more opti-
mistic beliefs. As long as the agent is continuing on a given idea, which is currently good
with probability p, the expected flow payment from effort is

λ1py − c,

while the expected flow payment from shriking is

λ0py.

Since effort is more informative about idea quality than shirking, it is clear that the agent
makes effort when

p ≥ c

y(λ1 − λ0)
.

At pessimistic beliefs, where the expected flow payment cannot justify the cost of effort,
the agent may consider shirking if the value of information is low and the cost of delay is
sufficiently high.3

As a consequence, we get a more nuanced effect on behavior as the agent gets less patient:
impatient agents still exert more effort on each idea, but they also are more likely to shirk
before starting a new one. Mirroring the analysis in the proof of Proposition 1 (see the
Appendix), we can obtain the belief level at which the agent abandons a project. If the
agent shirks just before abandoning, this belief level is

p
0

=
1

λ0y

γr

γ + r
u(p0), (8)

and if the agent exerts effort before abandoning, it is

3This effect is similar to intrinsic motivation as formalized by Bénabou and Tirole (2003): the agent is
more willing to incur the cost of effort because he is more optimistic about the chance of success.
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p
1

=
1

λ1y

(
γr

γ + r
u(p0) + c

)
. (9)

Recall that u(p0) is the agent’s expected payoff at the moment he starts working on a new
project. There is a region in which the agent shirks if p

0
< p

1
.

Observe that u(p0) converges to zero as the agent becomes more and more impatient, and
both belief thresholds p

0
and p

1
are decreasing in r. As before, the agent spends more time

working on each idea when he is impatient. However, the constant cost term in p
1

implies
that for sufficiently high r, we are sure to have a region in which the agent shirks. Impatient
agents spend more time working on each idea, but they also spend more time shirking after
they become pessimistic.

4 A Principal-Agent Model

This section studies the innovation process in an agency setting. A principal hires an
agent to develop a successful idea, and the agent works according to the process described in
section 2. The principal enjoys the value of success y when it arrives and designs a contract to
incentivize the agent. Imagine a venture capitalist who funds an entrepreneur to implement
a series of business ideas, or a firm designing incentives for research employees. I assume
that the principal incurs the flow cost c, providing necessary resources for the agent’s work,
but the agent can choose to divert these funds for personal gain.

The principal can observe when a success arrives as well as transitions between the
creative and working phases in the innovation process. The principal cannot observe the
agent’s effort choice during the working phase (i.e. whether the agent diverts funds). The
principal discounts the future at a rate r̃ that is not necessarily equal to the agent’s discount
rate r. The agent has limited liability—the principal can never demand a payment—and all
transfers must conclude the instant a success arrives.4

At the beginning of the game, the principal commits to a contract, and we assume the
agent always accepts—equivalently, assume the agent’s outside option is zero, so it is always
incentive compatible to accept. A contract specifies a sequence of times, experimentation
policies, and reward functions {Ti, xi(t), wi(t)}i∈N. The value Ti is the length of the ith
working phase, the value xi(t) is the prescribed effort choice on the ith idea after working on
it for time t ≤ Ti, and wi(t) is an immediate payment to the agent if success occurs on the ith
idea after working on it for time t. This structure is without loss of generality since any non-
contingent payment does not contribute to effort incentives, and by assumption we do not
allow the principal to defer payment after success arrives. Note the principal can terminate
the agent’s employment by setting xi(t) = wi(t) = 0 for all t and all sufficiently high i.
Given the contract, the agent chooses a sequence of experimentation policies {x̂i(t)} i∈N

t∈[0,Ti]
to maximize his discounted expected payoff.

4This precludes an impatient principal from reducing incentive costs by offering enormous payments at
some far off date in the future.
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At the start of a new working phase, we can recursively express the contract as a quadru-
ple ζ = (T, x(t), w(t), u). The first three parts prescribe behavior in the current working
phase. The value u denotes the continuation utility that the principal offers the agent start-
ing from the next working phase. This captures all the information we need to analyze the
agent’s incentives. I write Z for the set of incentive compatible quadruples—that is, the
set for which the agent’s best response is to follow the prescribed effort choice x(t). Each
working phase functions as a stage game in a repeated interaction, and we can use methods
from dynamic programming to characterize the optimal contract. A novel feature is that the
principal controls the length of each stage game and therefore the discount rate applied to
later stages.

4.1 Two Lemmas

The first step towards understanding optimal contracts is to compute the players’ value
functions. In addition to the effort level x(t) at time t, we need to keep track of the agent’s
cumulative effort

X(t) =

∫ t

0

x(s)ds.

Conditional on a good idea, the probability that the agent has not succeeded by time t is
e−λX(t). Therefore, conditional on starting the current working phase, the probability that
the agent has not yet succeeded as of time t is

g(t) ≡ 1− p0 + p0e
−λX(t).

After time t, the probability p(t) that the idea is good is

p(t) =
p0e
−λX(t)

1− p0 + p0e−λX(t)
=
p0e
−λX(t)

g(t)
.

Consequently, if the agent follows the contract ζ = (T,w(t), x(t), u), he obtains a value

u(ζ) =

∫ T

0

λp(t)w(t)x(t)g(t)e−rtdt+ g(T )
γe−rT

γ + r
u

=

∫ T

0

λp0w(t)x(t)e−λX(t)−rtdt+ g(T )
γe−rT

γ + r
u. (10)

I say that a pair (π, v) of values is implementable if there exists an incentive compatible
contract such that the principal earns π in profit and the agent earns v. I also define the
principal’s maximum profit function π∗(v) as the maximum profit the principal can earn
through an incentive compatible contract that delivers utility v to the agent. The set of
implementable values is convex, so the function π∗(v) is concave.5 The maximum value the

5I assume that a public randomization device is available, so the principal can commit to any convex
combination of contracts.
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principal can obtain from the contract ζ is then

π(ζ) =

∫ T

0

[λp(t) (y − w(t))− c]x(t)g(t)e−r̃tdt+ g(T )
γe−r̃T

γ + r̃
π∗(u)

=

∫ T

0

x(t)e−r̃t
[
λp0e

−λX(t) (y − w(t))− cg(t)
]

dt+ g(T )
γe−r̃T

γ + r̃
π∗(u). (11)

We can recursively define π∗(v) as

π∗(v) = max
ζ∈Z
v(ζ)=v

π(ζ).

An important question is whether the principal can induce the agent to follow a given ex-
perimentation policy. We say that w(t) implements (T, x(t), u) if it is incentive compatible
for the agent to follow x(t) given w(t) and u. Since the principal can refrain from providing
the flow of resources c when x(t) = 0, it is clear that for w(t) constant and sufficiently high,
the agent is happy to follow the prescribed policy.

The real question is then: how cheaply can the principal implement x(t)? The main con-
straint is the agent’s ability to delay effort. As the agent works, he becomes more pessimistic
about whether the idea is good. This necessitates offering higher rewards later in the work-
ing phase to overcome the opportunity cost of diverting funds. However, doing so increases
the cost of incentives early in the working phase: the higher rewards are late in the working
phase, the greater the option value of delaying effort. At the end of the working phase, the
agent can choose to divert current funds and earn the continuation payoff u. The reward
at the end of the working phase must pay at least the value of this option, which in turn
increases the cost of incentives throughout the working phase. The optimal implementation
delivers the agent exactly the flow value of diverting funds plus the option value of delay.

Lemma 1 (Implementation). In an optimal contract, the reward function wx,u(t) satisfies

wx,u(t) =
γe−r(T−t)

γ + r
u+

cg(t)eλX(t)

λp0
+

∫ T

t

cg(s)

p0
x(s)eλX(s)−r(s−t)ds. (12)

Proof. See Appendix.

Each term in the optimal reward function has a clear interpretation. The first term in
equation (12) compensates the agent for the option value of diverting funds until the next
working phase. The second term compensates for the instantaneous benefit of diverting funds
at time t. The last term accounts for the additional option value of delaying effort within
the current working phase—success today eliminates the chance to divert funds tomorrow.

Increasing the continuation payoff u directly increases the reward the principal must pay
at each point in time. The third term shows that increasing experimentation has a sim-
ilar effect: the principal faces increasing marginal costs of experimentation because each
additional unit of the agent’s effort increases the cost of incentives for earlier effort. Min-
imizing incentive costs means reducing the agent’s continuation value, but doing so means
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less experimentation, which also reduces the principal’s value. The principal therefore faces
a tradeoff between lowering the cost of incentives early in the relationship and lowering the
continuation payoff later in the relationship.

The proof of Lemma 1 uses a first order approach, checking that the agent cannot benefit
from deviation at each instant. The presence of hidden information means it is not immedi-
ately obvious that this is sufficient because the agent can drive a persistent wedge between
his beliefs about the idea and the principal’s beliefs. Diverting funds now both gains the flow
payment cdt and increases the likelihood of success later in the working phase. However,
the agent is unable to translate this into an improvement because the reward function w
front-loads his surplus: after taking discounting into account, the third term in (12) drops
too quickly.

A key implication of Lemma 1 is that an impatient agent is good for the principal. When
the agent becomes less patient, his continuation value shrinks. When the principal incen-
tivizes effort later in the working phase, this translates to a lower increase in incentive costs
early in the working phase. As a result, the principal can implement any experimentation
policy more cheaply when the agent is less patient.

Corollary 1 (Impatience is a Virtue). Impatient agents are cheaper to incentivize: the cost
of implementing any experimentation policy is decreasing in the agent’s discount rate r.

Proof. On differentiating wx,u(t) with respect to r, this is immediate from (12).

Corollary 1 reflects that the main constraint on the principal’s costs is the agent’s will-
ingness to wait. If the agent is less patient, the option value of waiting goes down, reducing
incentive costs at present. I emphasize this is not simply a property of optimal policies: no
matter what experimentation plan the principal wishes to implement, she can do so more
cheaply if the agent is less patient. Regardless of the other model parameters, a principal
will always prefer to hire agents who are impatient.6

Using Lemma 1, the agent’s value in an optimal contract is

v(ζ) =

∫ T

0

λp0ux(t)
γe−λX(t)−rT

γ + r
+ cx(t)g(t)e−rt + λx(t)e−λX(t)

∫ T

t

cg(s)x(s)eλX(s)−rsdsdt

=

∫ T

0

cx(t)g(t)e−rt + cx(t)g(t)eλX(t)−rt
∫ t

0

λx(s)e−λX(s)dsdt+
γe−rT

γ + r
u

=

∫ T

0

cg(t)x(t)eλX(t)−rtdt+
γe−rT

γ + r
u. (13)

The agent earns the full flow of funds the principal provides, inflated by the factor eλX(t),
plus the discounted continuation value. Similarly, we can rewrite the principal’s maximum

6Acemoglu et al. (2016) present evidence that firms with young managers are more innovative, stressing
that a culture open to disruption plays a key role both in promoting innovation and allowing young managers
to rise in the ranks. To the extent that young people are less patient, as suggested in some studies (Harrison
et al., 2002; Bishai, 2004), the lower cost of providing incentives offers an alternative account of this pattern.
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value as

π(ζ) =

∫ T

0

x(t)e−r̃t
(
λp0ye

−λX(t) − 2cg(t)
)

dt+ g(T )
γe−r̃T

γ + r̃
π∗(u)

−
∫ T

0

λx(t)e−λX(t)−(r̃−r)t
(
p0γe

−rT

γ + r
u+ c

∫ T

t

g(s)x(s)eλX(s)−rsds

)
dt. (14)

Equation (14) already reveals an agency cost in our setting. The expected flow payment to
the principal can only be positive if y > 2c

λp0
. It is efficient to pursue a solution as long as

y > c
λp0

, and indeed the self-employed agent always works in this case. Because the principal
must provide the funds and compensate the agent for not diverting them, the principal only
finances projects worth at least twice this amount. For a range of y, agency costs prevent
the pursuit of profitable projects.

If the principal is not more patient than the agent, we can further simplify the problem.

Lemma 2 (No Delay). Suppose r̃ ≥ r. Prior to termination, we always have x(t) = 1 in an
optimal contract.

Proof. By delaying the agent’s effort, the principal gains from reduced incentive costs early
in the relationship, and loses value from delaying her own continuation payoff. The gains
from reduced incentive costs are proportional to the reduction in the agent’s continuation
value. Since r̃ ≥ r, delay reduces the principal’s continuation value at least in proportion
to the reduction in the agent’s continuation value. Instead of delaying effort at time t, the
principal could instead fire the agent. This reduces the two players’ continuation values at
the same rate. If r̃ > r, the principal is strictly better off firing the agent, and if r̃ = r,
the principal is indifferent between firing and delay. Hence, the principal can achieve the
optimal profit in a contract with no delay in the agent’s work.

An impatient principal is always better off firing the agent than delaying his efforts. In
the next subsection, this allows a relatively complete characterization of optimal contracts
when the principal is not more patient than the agent.

4.2 Optimal Contracts with an Impatient Principal

In this subsection, I restrict attention to the case with r̃ ≥ r—the principal is no more
patient than the agent. Under this assumption, Lemma 2 permits a simple representation
of contracts and value functions. We can express a contract recursively as a pair (T, u) in
which T denotes the length of the current working phase, and u is the promised continuation
utility starting with the next working phase. The value functions become

V (T, u) = c

∫ T

0

g(t)e(λ−r)tdt+
γe−rT

γ + r
u, and (15)
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π(T, u) =

∫ T

0

(
λp0ye

−λt − 2cg(t)
)
e−r̃tdt+ g(T )

γe−r̃T

γ + r̃
π∗(u)

−
∫ T

0

λe−(λ+r̃−r)t
(
p0γe

−rT

γ + r
u+ c

∫ T

t

g(s)e(λ−r)sds

)
dt, (16)

where g(t) = 1 − p0 + p0e
−λt since X(t) = t. Equation (15) implicitly defines a function

T (u, v) such that V (T (u, v), u) = v. The function π∗ is then simply

π∗(v) = max
u

π (T (u, v), u) . (17)

One way to understand the dynamics of a contract is through the sequence of continu-
ation values it offers the agent. Let u0 denote the agent’s value in the optimal contract for
the principal. This value is supported through a contract (T1, u1), where T1 is the length of
the first working phase, and u1 is the promised continuation value. We can likewise define
(Ti, ui) as the length and promised continuation value of the ith working phase in the op-
timal contract. Let S(u) denote the agent continuation value that supports the value pair
(π∗(u), u). The equation ui+1 = S(ui) characterizes the trajectory of the principal-agent
relationship over time.

Figure 3 illustrates the set of implementable value pairs (π, v). This set is necessarily
convex since we allow randomization. The maximum profit function π∗(v) traces the bound-
ary of this set. It should be clear that in the optimal contract, the elements of the sequence
{ui} correspond to points on the upward sloping part of the curve—if not, the principal can
obtain the same profit while offering the agent a lower value, which means lower incentive
costs in earlier working phases. This reveals another agency cost. The downward sloping
part of the curve captures the frontier of constrained-efficient outcomes, each of which is
supported through a continuation contract on the (inefficient) upward sloping part.7

Differentiating v = V (T (u, v), u) with respect to v and u respectively gives

1 =
∂V

∂T

∂T

∂v
, 0 =

∂V

∂T

∂T

∂u
+
∂V

∂u
.

Substituting yields

0 =
∂T
∂u
∂T
∂v

+
∂V

∂u
=⇒ ∂T

∂u
= −∂V

∂u

∂T

∂v
.

The first order condition for the maximization in (17) gives

0 =
∂π

∂T

∂T

∂u
+
∂π

∂u
,

7The notion of efficiency is potentially unclear when the principal and agent have different discount rates.
I say that a contract is efficient if the corresponding pair of net present values (π, v) is on the Pareto frontier
over all feasible and incentive compatible contracts.
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Figure 3: The set of implementable value pairs (π, v).

and substituting from above gives

∂π

∂u
=
∂π

∂T

∂T

∂v

∂V

∂u
=

∂π
∂T
∂V
∂T

∂V

∂u
.

Finally, the envelope theorem tells us that at u = S(v), we have

(π∗)′(v) =
∂π

∂T

∂T

∂v
,

implying that at u = S(v) we have

∂π

∂u
= (π∗)′(v)

∂V

∂u
.

Equations (15) and (16) allow us to compute the partial derivatives in the equations

∂π

∂u

∂V

∂T
=
∂π

∂T

∂V

∂u
and

∂π

∂u
(S(v)) = (π∗)′(v)

∂V

∂u
, (18)

from which we can obtain the following.
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Proposition 7. Suppose r̃ ≥ r. In an optimal contract {(Ti, ui)}:

(a) The continuation values ui are decreasing in i

(b) The principal eventually fires an unsuccessful agent.

Proof. We compute

∂π

∂u
(S(v)) = g(T )

γe−r̃T

γ + r̃
(π∗)′ (S(v))− p0γe

−rT

γ + r

∫ T

0

λe−(λ+r̃−r)tdt,
∂V

∂u
=
γe−rT

γ + r
.

The second part of (18) then becomes

g(T )
γe−r̃T

γ + r̃
(π∗)′ (S(v))− p0γe

−rT

γ + r

∫ T

0

λe−(λ+r̃−r)tdt = (π∗)′(v)
γe−rT

γ + r
,

which we can rewrite as

(π∗)′ (S(v)) =
(γ + r̃)e(r̃−r)T

(γ + r)g(T )

(
(π∗)′(v) + p0

∫ T

0

λe−(λ+r̃−r)tdt

)
. (19)

The leading factor at least one, indicating that (π∗)′ (S(v)) > (π∗)′(v) as long as S(v) > 0.
Since π∗ is concave, this means S(v) < v, proving part (a).

To prove part (b), we first note there is an upper bound on (π∗)′(u). Since the agent
always earns at least the value of the flow payment cdt, we necessarily have

π∗(u)

u
≤ λp0y − 2c

c

for all u, which implies (π∗)′(u) ≤ λp0y−2c
c

. In fact, by considering a contract with a single
working phase of length ε, we can see that

lim
u→0

π∗(u)

u
≥ λp0y − 2c

c
,

which then implies (π∗)′(0) = λp0y−2c
c

. If r̃ > r, then the leading factor in (19) is strictly
larger than 1 + ε for some ε > 0 and all T ≥ 0. The recursion for (π∗)′(ui) will eventually
exceed λp0y−2c

c
, implying the principal optimally terminates the agent’s employment.

If r = r̃, equation (19) simplifies to

(π∗)′ (S(v)) =
1

1− p0 + p0e−λT
(
(π∗)′(v) + p0

(
1− e−λT

))
.

By similar reasoning, if Ti > ε for some ε > 0 infinitely often, then the left hand side increases
without bound. Assuming that limi→∞ Ti = 0, we necessarily have limi→∞ ui = 0. We now
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make use of the first part of (18). We compute the remaining partial derivatives, assuming
r̃ = r, as

∂π

∂T
=
(
λp0ye

−λT − 2cg(T )
)
e−rT − λp0γu

γ + r
e−(λ+r)T

−
(
λp0e

−λT + rg(T )
) γe−rT
γ + r

π∗(u)

+

(
rp0uγe

−rT

γ + r
− cg(T )e(λ−r)T

)∫ T

0

λe−λtdt, and

∂V

∂T
= cg(T )e(λ−r)T − ruγe−rT

γ + r
.

Substituting and simplifying, equation (18) becomes

g(T )(π∗)′(u)

(
cg(T )eλT − ruγ

γ + r

)
+
(
λp0e

−λT + rg(T )
) γ

γ + r
π∗(u) +

λp0γu

γ + r
e−λT

=
(
λp0ye

−λT − 2cg(T )
)
− c(1− p0)g(T )eλT

∫ T

0

λe−λtdt.

Defining g̃(t) = g(t)eλt, we can further simplify this to

(λp0y − c) g̃(T )2 +

(
c+

rγ

γ + r
(π∗(u)− u(π∗)′(u))

)
g̃(T )

+
λp0γ

γ + r
(π∗(u) + u)− λp0y = 0. (20)

If the principal never fires the agent, this always holds with equality. In the limit as u
approaches zero, this approaches

(λp0y − c)g̃(T )2 + cg̃(T )− λp0y = 0,

with solution

g̃(T ) =
λp0y

λp0y − c
.

This implies that

lim
i→∞

Ti = ln

[
1

1− p0

(
λp0y

λp0y − c
− p0

)]
= ln

[
λp0y

λp0y − c
+

cp0
(1− p0)(λp0y − c)

]
> 0,

contradicting limi→∞ Ti = 0. We conclude that the principal fires the agent.
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Proposition 7 shows that the continuation values associated with each new working phase
are monotonically decreasing, and the principal eventually terminates the agent’s employ-
ment if no success arrives. An optimal contract thus front-loads the agent’s effort and be-
comes less productive over time. Since the principal eventually fires the agent, with positive
probability we never reach success. Hence, with an impatent principal, agency costs appear
in three ways: some worthwhile projects are not pursued, effort is inefficiently front-loaded,
and sometimes we quit without a success.

The proof of the proposition also offers a way to explicitly compute the number of working
phases in an optimal contract, along with other properties of π∗(v). Working backwards from
the point at which the agent is fired, we can define a sequence of agent values v1 < v2 < ...
such that an optimal contract delivering v ∈ (vk−1, vk] to the agent uses k working phases.
We can recursively compute these thresholds via

vk = V (tk−1, vk−1), π∗(vk) = π(tk−1, vk−1), (π∗)′(vk) =
∂π
∂T
∂V
∂T

(tk−1, vk−1).

The working phase length tk−1 can be computed from vk−1 using the first part of (18). In
the special case in which r̃ = r, we can solve (20) to obtain

g̃(tk) =
−
(
c+ rγ

γ+r
(π∗(vk)− vk(π∗)′(vk))

)
2(λp0y − c)

+

√(
c+ rγ

γ+r
(π∗(vk)− vk(π∗)′(vk))

)2
+ 4λp0 (λp0y − c)

(
y − γ

γ+r
(π∗(vk) + vk)

)
2(λp0y − c)

.

Following this recursion, when we reach k such that (π∗)′(vk) < 0, then k is the number of
working phases in an optimal contract.

4.3 Patience, Delay, and Tenure

This subsection addresses the case in which r̃ < r. With a patient principal, analysis
becomes more difficult because delaying the agent’s effort is a potentially useful way to
reduce incentive costs.

Proposition 8. For v sufficiently close to zero, the contract (T, x(t), u) that achieves π∗(v)
sets x(t) = 0 for some t.

Proof. See Appendix.

Delay reduces the agent’s continuation value, thereby reducing earlier incentive costs. Of
course, delay also reduces the principal’s continuation value, but at a lower rate. For some
promised continuation values, it is optimal for the principal to request a delay, so we see a
new form of inefficiency that fails to appear when r̃ ≥ r.
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On the other hand, with a patient principal, there is no reason to fire the agent. Given
an implementable value pair (π, v), we can also implement any pair (πe−r̃t, ve−rt) through
delay. Taking t sufficiently large, this implies that the ratio

π∗(v)

v

is unbounded near v = 0. This means the principal can always find a continuation contract
that is better than firing the agent.

Proposition 9. Suppose r̃ < r. In an optimal contract {(Ti, ui)}:

(a) The continuation values ui are bounded away from zero: the principal never fires the
agent;

(b) Success is reached with probability one.

Proof. See Appendix.

Proposition 9 highlights another important distinction in the contract structure depend-
ing on who is more patient. The contract still exhibits front-loading, but the agent has a
guaranteed lower bound on his continutation utility, no matter how many working phases
pass without a success. With a patient principal, optimal contracts resemble a tenure ar-
rangement. In contrast with the last section, we are sure to obtain a success eventually.

4.4 Discussion

A simple extension allows us to study how adverse selection affects optimal contracts.
Suppose there are two types of agents, a high type as above and a low type that can never
succeed. The agent knows his type, but the principal only has some prior. As work progresses
without a success, the principal becomes more pessimistic about the agent’s type. Since the
low type never succeeds, the pricipal writes a contract to incentivize the high type as before,
but chooses a time to fire the agent regardless of the relative discount rates. This stopping
time is naturally earlier than it would be without the low type, resulting in more inefficient
front-loading and a decrease in the high type’s reward relative to the model without adverse
selection.

In many cases, it seems natural that a principal should observe on what the agent is
working but not the level of effort or the diversion of resources—entrepreneurs pitch their
ideas to their supporters, managers talk to researchers and ask for updates. Still, we might
ask what happens if we relax this assumption. Doing so affords the agent another potentially
profitable deviation. Instead of working until the end of a planned working phase, the agent
could quit early and get a head start on coming up with a new idea. This brings the next
working phase forward in time and increases the continuation payoff. The principal would
need to compensate the agent for the value of this option, and it seems likely that this would
exacerbate front-loading in an optimal contract. However, there are two complications that
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make analysis of such a model less than straightforward. First, since the agent cannot
actually start working on the new idea until the previous planned working phase concludes,
valuing this option is a difficult exercise. Second, if the agent cheats multiple times, the
principal may infer this from observing creative phases that are too short.

5 Final Remarks

Dead ends are a pervasive and important feature of the innovative process. The same
problem often has multiple solutions, and not every idea a researcher tries will prove suc-
cessful. The implicit assumption that there is only one path to success is a key limitation
in the existing experimentation literature. Including this feature helps us understand how
incentives affect the rate of innovation, and it reveals a novel agency problem that is unique
to creative workers.

One contribution is a new rationale for why low-powered incentives encourage creativity.
The choice between continuing with the current idea and incurring delay to think up a new
one is fundamentally distinct from the more classical exploration-exploitation tradeoff. In
the latter case, strong incentives discourage risk taking for fear of failure. Here, strong
incentives lead the agent to spend more time on ideas that are more likely to fail: the agent
is reluctant to change course due to the cost of delay. Lower rewards can lead to faster
innovation because the agent is more willing to give up and try something new. This effect
carries implications for the design of intellectual property protections. We can explain the
inverse U relationship between intellectual property rights and innovative output and why
increased R&D spending may not lead to increased innovation.

In a principal-agent model, the ability of the agent to wait and come up with a new
idea leads to higher incentive costs. When the agent can earn a high continuation value
starting from his next idea, it becomes more expensive to incentivize effort on the current
idea. This gives the principal a reason to reduce the productivity of continuation contracts:
the agent’s effort is front-loaded, and the relationship becomes progressively less productive
over time. The structure of optimal contracts depends crucially on who is more patient. An
impatient principal gives the agent a deadline and fires him if success takes too long. A
patient principal grants the agent tenure, but may ask him to take breaks in order to reduce
incentive costs.

The tractability of this framework makes it suitable for a variety of applications. For
instance, we can ask how dead ends might impact contest design. Innovation contests may
specify a particular goal (e.g. a clock that keeps time within a given accuracy at sea), but
there are usually many possible ways to approach that goal. A contestant must continually
decide whether to keep going on the current approach or to try a different idea. We could
also ask how dead ends impact screening contracts in a richer setting than what I discussed.
Another promising avenue is to explore a market for creative talent in which agents can move
between different employers.
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A Appendix

Proof of Proposition 1

We derive a Bellman equation to characterize the agent’s behvaior. Write u(p) for the
agent’s continuation payoff when currently working on an idea that is good with probability
p, and write τ for the exponentially distributed time spent in the creative phase. Since the
agent always has the option to incur delay and come up with a new idea, we have for all p
that

u(p) ≥ E
[
e−rτ

]
u(p0) =

γ

γ + r
u(p0).

This will hold with equality at the abandonment belief p.
During a “period” dt, the agent succeeds with probability λdt if the idea is good, and

with probability zero otherwise. In the absence of success, the agent updates her belief to

p+ dp =
p(1− λdt)

1− p+ p(1− λdt)
.

Equivalently, the belief change is dp = −λp(1− p)dt. At the same time, the agent incurs a
flow cost cdt of effort. The value function therefore satisfies

u(p) = max

{
γ

γ + r
u(p0), −cdt+ e−rdtE[u(p+ dp) | p]

}
.

We split the continuation value E[u(p+ dp) | p] into two parts. The agent succeeds with
probability λpdt, yielding a continuation payoff of y. Otherwise, the continuation payoff is
u(p) + u′(p)dp. Taking e−rdt ≈ 1− rdt, when the agent continues working we have

u(p) = −cdt+ (1− rdt) (λpydt+ (1− λpdt)(u(p) + u′(p)dp))

≈ (λpy − c)dt+ (1− (λp+ r)dt)u(p)− λp(1− p)u′(p)dt,

where we have removed higher order terms. Rearranging, we arrive at the Bellman equation

u(p) = max

{
γ

γ + r
u(p0),

1

λp+ r
(λp [y − (1− p)u′(p)]− c)

}
.

Observe that the flow payoff can be positive if and only if λp0y > c, implying the first claim.
As long as the agent continues with the current idea, the value function satisfies the

differential equation

u′(p) +
r + λp

λp(1− p)
u(p) =

y

1− p
− c

λp(1− p)
.

We can solve this differential equation using the integrating factor

g(p) = e
∫ r+λp
λp(1−p)dp =

(
p

1− p

) r
λ 1

1− p
.

i



Solutions of this differential equation take the form

u(p) =
1

g(p)

∫
g(p)

(
y

1− p
− c

λp(1− p)

)
dp+

C

g(p)

=
λp

λ+ r

(
y +

c

r

)
− c

r
+ C(1− p)

(
1− p
p

) r
λ

,

where C is an arbitrary constant.
To find C and the abandonment belief p, we impose the boundary conditions u(p) =

γ
γ+r

u(p0) and u′(p) = 0. We compute the derivative

u′(p) =
λ

λ+ r

(
y +

c

r

)
− C r + λp

λp

(
1− p
p

) r
λ

.

The condition u′(p) = 0 gives

C =

(
λ

λ+ r

)(
λp

λp+ r

)(
y +

c

r

)( p

1− p

) r
λ

.

Substituting this into u(p) = γ
γ+r

u(p0) gives

γ

γ + r
u(p0) =

λp

λ+ r

(
y +

c

r

)
− c

r

+

(
λ

λ+ r

)(
λp(1− p)
λp+ r

)(
y +

c

r

)
.

Multiplying through by λp+ r, we find the quadratic term drops out, and we can solve for

p =
γru(p0) + (γ + r)c

λ ((γ + r)y − γu(p0))
,

which then implies

p

1− p
=

p0
1− p0

ρ =
γru(p0) + (γ + r)c

(γ + r)(λy − c)− γ(λ+ r)u(p0)
. (21)

To complete the proof, we must compute u(p0). The expected payoff is the probability
of finding a breakthrough in the current project times the discounted payoff from a break-
through, plus the probability of not finding a breakthrough times the continuation payoff
from starting over, less the accumulated flow cost of effort. Let T denote the amount of time

the agent spends on any research project. From Bayes’ rule, we have e−λT =
p(1−p0)
p0(1−p) = ρ.

ii



We calculate u(p0) as

u(p0) = p0y

∫ T

0

λe−(r+λ)tdt+
(
1− p0 + p0e

−λT ) e−rT γ

γ + r
u(p0)

− p0
∫ T

0

λe−λt
(c
r

(1− e−rt)
)

dt−
(
1− p0 + p0e

−λT ) c
r

(1− e−rT )

=
(
p0e
−(r+λ)T + (1− p0)e−rT

) γ

γ + r
u(p0) + p0

λy

λ+ r

(
1− e−(r+λ)T

)
− c

r

(
p0r

λ+ r
(1− e−(r+λ)T ) + (1− p0)(1− e−rT )

)
Solving and substituting ρ for e−λT gives

u(p0) =
(γ + r)

(
p0r(1− ρ1+

r
λ )(λy − c)− c(λ+ r)(1− p0)(1− ρ

r
λ )
)

r(λ+ r)
(
r + γ

(
(1− p0)(1− ρ

r
λ ) + p0(1− ρ1+

r
λ )
)) .

From (21) we now have

p0
1− p0

ρ =
r
(
λγp0(ry + c)(1− ρ1+ r

λ ) + cr(λ+ r)
)

(λ+ r)
(
λγ(ry + c)(1− p0)(1− ρ

r
λ ) + r2(λy − c)

) .
Multiplying through by the denominator and simplifying gives our result:

γ

r
ρ

(
1− λρ

r
λ

λ+ r

)
+ rρ

λy − c
λ(ry + c)(1− p0)

=
γ

λ+ r
+

cr

p0λ(ry + c)
.

If we differentiate the left hand side with respect to ρ, we obtain

γ

r

(
1− ρ

r
λ

)
+ r

λy − c
λ(ry + c)(1− p0)

> 0.

Therefore, the left hand side is strictly increasing in ρ. For ρ ∈ (0, 1), the left hand side
ranges from zero to

γ

λ+ r
+ r

λy − c
λ(ry + c)(1− p0)

>
γ

λ+ r
+ r

c
p0
− c

λ(ry + c)(1− p0)
=

γ

λ+ r
+

cr

p0λ(ry + c)
,

implying there is a unique solution.

Proof of Proposition 2

We derive each of these results by implicitly differentiating (2) with respect to the variable
in question. Starting with the cost c, we multiply both sides by ry + c and differentiate to
obtain

∂ρ

∂c

(
γ(ry + c)

r
(1− ρ

r
λ ) + r

λy − c
λ(1− p0)

)
+
γ

r
ρ

(
1− λρ

r
λ

λ+ r

)
− ρ

λ(1− p0)
=

γ

λ+ r
+

r

p0λ
.
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Solving gives

∂ρ

∂c
=

ρ
λ(1−p0) + r

λp0
+ γ

r(λ+r)

(
r − (λ+ r)ρ+ λρ1+

r
λ

)
r(λy−c)
λ(1−p0) + γ

r
(ry + c)(1− ρ rλ )

.

The denominator is clearly positive, and the numerator is positive if

r − (λ+ r)ρ+ λρ1+
r
λ > 0. (22)

Taking a first derivative shows the left hand side in (22) is strictly decreasing in ρ, taking
the value 0 at ρ = 1, so (22) holds, and ∂ρ

∂c
> 0 as desired. The calculation to show ∂ρ

∂y
< 0

is essentially identical, and I leave it as an exercise.
Proceeding similary, we differentiate (2) with respect to p0 to obtain

∂ρ

∂p0

(
γ

r
(1− ρ

r
λ ) + r

λy − c
λ(ry + c)(1− p0)

)
= −

(
rρ

λy − c
λ(ry + c)(1− p0)2

− cr

p20λ(ry + c)

)
,

which immediately implies ∂ρ
∂p0

< 0. Differentiating with respect to γ gives

∂ρ

∂γ

(
γ

r
(1− ρ

r
λ ) + r

λy − c
λ(ry + c)(1− p0)

)
= −ρ

r

(
1− λρ

r
λ

λ+ r

)
+

1

λ+ r
.

The inequality (22) implies the right hand side is positive, so ∂ρ
∂γ

> 0. Differetiating with
respect to λ gives

∂ρ

∂λ

(
γ

r
(1− ρ

r
λ ) + r

λy − c
λ(ry + c)(1− p0)

)
= − cr

λ2(ry + c)

(
1

p0
+

ρ

1− p0

)
+

γ

λ(λ+ r)2
(
ρ1+

r
λ (λ− (λ+ r) ln ρ)− λ

)
.

Using that ln ρ ≥ ρ−1
ρ

, the term on the second line is bounded above by

γ

λ(λ+ r)2
(
(λ+ r)ρ

r
λ − rρ1+

r
λ − λ

)
.

If we flip λ and r in (22), the inequality still holds by the same argument, implying this term
is negative, and hence ∂ρ

∂λ
< 0.

Finally, multiply both sides of (2) by y + c
r

and differentiate with respect to r to obtain

∂ρ

∂r

(
γ(ry + c)

r2
(1− ρ

r
λ ) +

λy − c
λ(1− p0)

)
= −

γ
(
y + c

r

)
r2(λ+ r)2

(
r2 − (λ+ r)2ρ+ λ(λ+ 2r)ρ1+

r
λ + r(λ+ r)ρ1+

r
λ ln ρ

)
− γc

r3(λ+ r)

(
r − (λ+ r)ρ+ λρ1+

r
λ

)
iv



The second term on the right is negative by (22). To complete the proof, we show that

r2 − ρ(λ+ r)2 + λρ1+
r
λ (λ+ 2r)− r(λ+ r)ρ1+

r
λ ln ρ

is positive for ρ ∈ (0, 1). Differentiating this expression with respect to ρ gives

(λ+ r)2
(
ρ
r
λ

(
1− r

λ
ln ρ
)
− 1
)
,

and differentiating a second time yields

− r
2

λ2
(λ+ r)2ρ

r
λ
−1 ln ρ > 0.

The expression and its first derivative are both zero at ρ = 1. Since the second derivative is
positive, the first derivative is negative on (0, 1), and hence the function is positive on (0, 1)
as desired.

Proof of Lemma 1

I first derive the reward function w(t) using a first order approach, and I subsequently
check that the agent cannot improve through multiple deviations. The net benefit from effort
at the instant t is (

λp0e
−λX(t)w(t)− cg(t)

)
e−rtdt, (23)

the expected value of success less the funds the agent could divert. Besides the immediate
gain from diverting funds, shirking delivers benefits that arrive later. In the current working
phase, there is an increased chance of success at times s > t, since p(s) is higher than it would
have been. At the end of the working phase, there is an increased continuation payoff, since
the chance of success in the current working phase goes down. Differentiating the expected
reward with respect to cumulative effort X at time s > t gives

−λ2p0w(s)x(s)e−λX(s)−rsdsdt,

and differentiating the continuation payoff with respect to cumulative effort gives

−λ p0γ

γ + r
e−λX(T )−rTudt.

The delayed benefits of shirking at time t are then

λdt

(∫ T

t

λp0w(s)x(s)e−λX(s)−rsds+
p0γ

γ + r
e−λX(T )−rTu

)
. (24)

The agent is willing to exert effort, and refrain from diverting funds, whenever (23) is at
least as large as (24). If (23) is less than (24), the agent can gain from a one-shot deviation.
The principal minimizes the agent’s reward by setting the two equal.

v



We can evaluate the integral in (24) using integration by parts. We have∫ T

t

λp0w(s)x(s)e−λX(s)−rsds = p0
(
w(t)e−λX(t)−rt − w(T )e−λX(T )−rT )

+

∫ T

t

p0e
−λX(s)−rs (w′(s)− rw(s)) ds.

Setting (23) equal to (24) and simplifying gives

λp0w(T )e−λX(T )−rT − λp0γ

γ + r
e−λX(T )−rTu

=

∫ T

t

λp0e
−λX(s)−rs (w′(s)− rw(s)) ds+ cg(t)e−rt

=

∫ T

t

λp0e
−λX(s)−rs (w′(s)− rw(s)) + crg(s)e−rs + λp0cx(s)e−λX(s)−rsds

+ cg(T )e−rT .

This implies that the reward w(t) satisfies the differential equation

w′(t)− rw(t) = −crg(t)

λp0
eλX(t) − cx(t) = −cr(1− p0)

λp0
eλX(t) − c

( r
λ

+ x(t)
)
.

Using the integrating factor e−rt, we have

∂

∂t

(
w(t)e−rt

)
= −ce−rt

(
r(1− p0)
λp0

eλX(t) +
r

λ
+ x(t)

)
,

implying

w(t) = ert
(
C +

∫ T

t

ce−rs
(
r(1− p0)
λp0

eλX(s) +
r

λ
+ x(s)

)
ds

)
,

for some constant C. Taking t = T , we have the boundary condition

λp0w(T )− λp0γ

γ + r
u = c(1− p0)eλX(T ) + cp0,

which gives us

w(T ) =
γ

γ + r
u+

c(1− p0)eλX(T )

λp0
+
c

λ
, C =

γe−rT

γ + r
u+

c(1− p0)eλX(T )−rT

λp0
+
ce−rT

λ
.
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Substituting and simplifying we have

w(t) =
γe−r(T−t)

γ + r
u+

c(1− p0)eλX(T )−r(T−t)

λp0
+
ce−r(T−t)

λ

+
c

λ

(
1− e−r(T−t)

)
+ cert

∫ T

t

r(1− p0)
λp0

eλX(s)−rs + x(s)e−rsds

=
γe−r(T−t)

γ + r
u+

c(1− p0)eλX(T )−r(T−t)

λp0
+
c

λ

+
c(1− p0)
λp0

∫ T

t

reλX(s)−r(s−t)ds+ c

∫ T

t

x(s)e−r(s−t)ds

=
γe−r(T−t)

γ + r
u+

c(1− p0)eλX(t) + cp0
λp0

+

∫ T

t

cg(s)

p0
x(s)eλX(s)−r(s−t)ds,

where the last line follows using integration by parts.
I now check that it is in fact an optimal strategy for the agent to follow the prescribed

experimentation policy x(t). Suppose instead the agent adopts the policy x̂(t), and we write
X̂ and ĝ for the corresponding functions of the agent’s actual policy as opposed to the
prescribed policy. Using Lemma ??, we compute the agent’s value as

v(ζ) =

∫ T

0

λp0wx,u(t)x̂(t)e−λX̂(t)−rt + cĝ(t) (x(t)− x̂(t)) e−rtdt+ ĝ(T )
γe−rT

γ + r
u

= c

∫ T

0

(
g(t)x̂(t)eλ(X(t)−X̂(t)) + ĝ(t) (x(t)− x̂(t))

)
e−rtdt

+ c

∫ T

0

λx̂(t)e−λX̂(t)

∫ T

t

g(s)x(s)eλX(s)e−rsdsdt+
γe−rT

γ + r
u

= c

∫ T

0

(1− p0)
(
eλ(X(t)−X̂(t)) − 1

)
x̂(t)e−rt + ĝ(t)x(t)e−rtdt

+ c

∫ T

0

(
1− e−λX̂(t)

)
g(t)x(t)eλX(t)e−rtdt+

γe−rT

γ + r
u

= c

∫ T

0

e−rt(1− p0)
(
eλ(X(t)−X̂(t)) − 1

)
(x̂(t)− x(t)) + g(t)x(t)eλX(t)−rtdt

+
γe−rT

γ + r
u,

where the second equality is obtained by changing the order of integration. Since x̂(t) ≤ x(t),
the integral is bounded above by

c

∫ T

0

g(t)x(t)eλX(t)−rtdt,

obtaining equality if and only if x̂(t) = x(t).
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Proof of Propositions 8 and 9

I first make a change of variables in our expression for the principal’s value (14). Let t(x)
denote the smallest t such that ∫ t

0

x(s)ds = x.

Taking X = X(T ), and g(x) = 1− p0 + p0e
−λx, the principal’s maximum profit is

π (t(x), X, T, u) =

∫ X

0

e−r̃t(x)
(
λp0ye

−λx − 2cg(x)
)

dx+ g(X)
γe−r̃T

γ + r̃
π∗(u)

−
∫ X

0

λe−λx−(r̃−r)t(x)
(
p0γe

−rT

γ + r
u+ c

∫ X

x

g(x)eλy−rt(y)dy

)
dx.

For notational convenience, define δ = γ
γ+r

and δ̃ = γ
γ+r̃

. The optimization problem defining

π∗(v) is then

max
t(x),X,T,u

∫ X

0

e−r̃t(x)
(
λp0ye

−λx − 2cg(x)
)

dx+ g(X)δ̃e−r̃Tπ∗(u)

−
∫ X

0

λe−λx−(r̃−r)t(x)
(
p0δue

−rT + c

∫ X

x

g(x)eλy−rt(y)dy

)
dx

s.t.

∫ X

0

cg(x)eλx−rt(x)dx+ δue−rT = v∫ X

0

t′(x)dx ≤ T

t′(x) ≥ 1, ∀x,

where t′(x) is a distribution—in particular it can contain (positive) Dirac masses.
The Lagrangian for this problem is

L (t(x), X, T, u) =

∫ X

0

e−r̃t(x)
(
λp0ye

−λx − 2cg(x)
)

dx+ g(X)δe−r̃Tπ∗(u)

−
∫ X

0

λe−λx−(r̃−r)t(x)
(
p0δue

−rT + c

∫ X

x

g(y)eλy−rt(y)dy

)
dx

− ρ
(∫ X

0

cg(x)eλx−rt(x)dx+ δue−rT − v
)

− µ
(∫ X

0

t′(x)dx− T
)

+

∫ X

0

ν(x)(t′(x)− 1)dx.

There exist multipliers µ, ν(x) ≥ 0 and ρ ∈ R such that L is maximized at an optimal
solution t(x), X, T, u. The envelope theorem implies that ρ = (π∗)′(v).
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To prove Proposition 8, we compute the partial derivative of the Lagrangian with respect
to X:

∂L
∂X

= e−r̃t(X)
(
λp0ye

−λX − 2cg(X)
)
− λp0e−λX δ̃e−r̃Tπ∗(u)

− λp0uδe−λX−(r̃−r)t(X)e−rT −
∫ X

0

λe−λx−(r̃−r)t(x)cg(X)eλX−rt(X)dx

− ρcg(X)eλX−rt(X) − µt′(X)

This implies that

(π∗)′(v) = ρ ≤
e−λX+(r−r̃)t(X)

(
λp0ye

−λX − 2cg(X)
)

cg(X)

≤ e(r−r̃)t(X)

(
λp0ye

−λX

cg(X)
− 2

)
.

For v close to zero, we know (π∗)′(v) is unbounded, implying that the value of t(X) must
grow without bound as v gets close to zero. If there is no delay in the contract, we have
X = t(X), implying that

v ≥
∫ t(X)

0

cg(x)e(λ−r)xdx

This means v is bounded away from zero, a contradiction. We conclude that for v close to
zero, the contract supporting π∗(v) uses delay.

To prove Proposition 9, we take the first order condition for u:

0 =
∂L
∂u

= g(X)δ̃e−r̃T (π∗)′(u)− δe−rT
(
p0

∫ X

0

λe−λx−(r̃−r)t(x)dx+ ρ

)
.

Since (π∗)′(u) is unbounded near zero, the derivative of the Lagrangian with respect to u is
necessarily positive for u sufficiently close to zero, so we never fire the agent. Rearranging
the first order condition for u, and taking ρ = (π∗)′(v), we have

(π∗)′ (S(v)) =
(γ + r̃)e−(r−r̃)T

(γ + r)g(X)

(
p0

∫ X

0

λe−λx−(r̃−r)t(x)dx+ (π∗)′(v)

)
.

If X is sufficiently close to zero, the leading term is strictly less than one. This implies that
(π∗)′ (S(v)) < (π∗)′(v), and hence S(v) > v. If Xi converges to zero, then ui does as well,
but this is inconsistent with S(v) > v. Therefore, we must have a positive lower bound on
Xi. This means that the sum of the Xi is unbounded, which establishes part (b).

Let X > 0 denote a lower bound on the sequence {Xi} in an optimal contract. We then
have

ui−1 ≥ e−r(Ti−X)

∫ X

0

cg(x)e(λ−r)xdx

for each i. If ui converges to zero, then Ti must converge to infinity. However, for T
sufficiently large, we can see again that S(v) > v, which is inconsistent with ui converging
to zero. We conclude that the sequence ui is bounded away from zero, proving part (a).
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