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Abstract

This paper studies the repeated game where multiple principals compete

by offering short-term contracts to multiple agents, whose types are iid over

periods. Agents send private messages to principals about their purported

types as well as the contracts offered by other principals. The repeated game

with patient players is shown to be tractable in the following two senses.

First, all social choice functions (mappings from type profiles to action pro-

files) that can be supported with arbitrarily complex mechanisms can be sup-

ported with direct mechanisms on path, and all deviations can be punished

by offering mechanisms whose message space asks for a type and an action

report. Second, lower bounds on the payoffs with respect to arbitrarily compli-

cated mechanisms may be calculated explicity by solving simple programming

problems. Neither result holds in the one-shot game.
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1 Introduction

Because buyers are looking for better deals in the market, they are informed about

contracts or terms of trade offered by sellers in the market. A seller, who might

not be aware about what competing sellers are doing, thus has an incentive to

come up with a sophisticated trading scheme that make buyers reveal their market

information, on which the seller’s terms of trade can then depend. For a simple

example we can turn to a Bertrand duopoly, with a common constant marginal cost

c. In a one-shot pricing game between duopolists, the monopoly price cannot be

supported in equilibrium because firms have an incentive to cut prices. However as

soon as sellers can offer price-matching contracts, they can use agents to implicitly

collude even in the one-shot setting and charge a price higher than a competitive

level. Unlike the single-principal setting, restricting attention to direct mechanisms

and allowing terms of trade depend to depend only on buyer’s payoff types, entails

loss of generality as shown in McAfee (1993) and Peck (1997).

The above immediately leads to a conceptual question: What class of mecha-

nisms can we restrict attention to in such settings? For the one-shot competing

mechanism game, Epstein and Peters (1999) identifies a class of universal mecha-

nisms. However there is no simple description of this class as the message spaces

resemble the universal type-space for hierarchies of belief: the best response to any

mechanism may be a more complicated mechanism; these are referred to as ‘com-

plex mechanisms’ although they include all mechanisms, even very simple ones that

take the same action after every history. Yamashita (2010) offers a simplification

by showing that the subclass of recommendation mechanisms is also sufficient to

support all equilibrium allocations when there are at least three agents: Each prin-

cipal asks agents to suggest which direct mechanism he should offer, and commits

to offer the direct mechanism recommended by a majority of agents. Recommenda-

tion mechanisms also encode punishments in the following sense—If any principal

deviates from offering the recommendation mechanism, agents recommend the use

of a mechanism that punishes the deviating principal in the same period.1 How-

ever, each principal’s worst equilibrium payoff is defined with reference to the set of

mechanisms that are allowed in the competing mechanism game, which cannot be

1The significance of having three or more agents is that one agent’s deviation from the common
recommendation has no effect.
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parsimoniously described; thus the set of equilibrium allocations is not identified in

terms of primitives of the model. Furthermore, no algorithm to construct them is

available — if one knew the complex mechanisms that punish a certain principal,

it would be simple to construct the corresponding recommendation mechanism; but

we are not aware of a simple way of finding the direct mechanisms that principals

must offer.

Following Yamashita (2010), we study a competing mechanism game with at

least two principals and at least three sellers. We assume that a principal cannot

make his action decision explicitly contingent on others’ contracts but can commit

to any mapping from agents’ messages. We then study the repeated version of the

above game where each agent’s private payoff type is repeatedly drawn indepen-

dently across periods. Specifically, our timeline is as follows. At the beginning of

every period each principal offers a mechanism that is seen by the agents only. Each

agent privately observes her payoff type and the mechanisms; they send private mes-

sages to the principals, who execute the mechanisms they offered at the beginning

of the period. For simplicity, mechanisms and actions are assumed to be observable

at the end of the period.2

We study perfect Bayesian equilibrium of the repeated game where all players

are patient. Our repeated game combines short-term mechanisms with long-term

interaction. Many real-life competing mechanism games are of this nature: for

example, buyers repeatedly rent a car from one of two competing rental enterprises;

various suppliers deliver raw materials to firms who manufacture similar products.

Contracts govern the buyer-seller interaction, while a longer term interaction is

ongoing, both among sellers and across the two sides of the market.

To describe our results we start with complete information, where agents’ payoff

types are fixed and observable. We find that the set of equilibrium allocations that

can be supported in the repeated game are the same as those that can be supported

in the one-shot game in the sense that the lower-bound of equilibrium payoffs of

any principal is the minmax value over mixed actions in both games. Thus more

complicated contracts do not expand the set of the equilibrium allocations.

However, as we now describe, results differ significantly when agents possess pri-

vate information. A major contribution of our work is to show that, even in this

2Actually only agents need to observe the actions and mechanisms; see the discussion in the
last section.
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setting, the repeated game with patient players is tractable in two ways. First,

‘simple’ mechanisms very close to direct mechanisms (DMs) can mete out all pun-

ishments. Second, the lower bound on a principal’s equilibrium payoff admits a

tractable characterisation in terms of primitives. This paper is thus very much

about the complexity of mechanisms needed, rather than the equilibrium payoffs

supported, as in a repeated game.

Let us see why this simplification obtains when players are patient. It is helpful to

note the two points at which mechanisms may need to be complex. First, principals

may be tempted to offer more complicated mechanisms on the equilibrium path so as

to garner information about the mechanisms offered by the others and outwit them.

We shall see that this one is easy to deter when the game is repeated because we do

not need to deter deviations comtemporaneously. A simple example might illustrate

this: in the one-shot game duopolists might need to match the deviating seller’s price

upon buyers’ reports on the deviator’s price in order to support high prices because

they cannot do anything if they find out at the end of the game that their competitor

undercut them. However, if the game is repeated and all players are patient they do

not need to use this; a low price by a competitor can simply be punished by a price

war later. However this observation may not be enough to simplify mechanisms

because there is a second source of complexity off the equilibrium path—a principal

who deviates from the path can offer complex mechanisms after he deviates; some of

these might give him a higher utility, for example by rewarding agents for witholding

information that would make it easier for the other principals to punish him. This

problem doesn’t arise in the duopoly pricing game because one action, setting a

zero price, punishes the deviating principal irrespective of what he does or what the

types are, but such a punitive action doesn’t always exist. The key step in the paper

is to show how this complexity can be tackled.

The difficulty is simplifying off-path punishments in such settings. Suppose that

principal 1 must punish principal 2 for having deviated. First, we instruct the

agents to induce a fixed action from the deviating principal that depends only on

the mechanism that 2 offers (and nothing else). If agents do not do so, they can be

identified and punished in the repeated game. This means that in the repeated game

the deviating principal cannot do any better by offering an arbitrary mechanism off

the path following his deviation than he could by offering a single, possibly mixed,

action. Second, when the deviating principal cannot use very complicated best
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responses, simple mechanisms suffice to mete out punishments.

In addition, we show that a weaker notion of incentive compatibility can be ap-

plied in the repeated game. In contrast to the one-shot game, these two equilibrium

properties allow us to express the lower-bound on a principal’s equilibrium payoff

in the repeated game in terms of model primitives: It is equal to his maxmin value

over his action space and the other principals’ incentive compatible direct mecha-

nisms conditional on the principal’s action. These two equilibrium properties make

the lower bound is lower than that in the one-shot setting. The weaker notion of

incentive compatibility can also be applied to the equilibrium allocations. Combin-

ing it with the reduced lower-bound implies that the repeated game supports more

allocations in equilibrium. When players are patient, principals can support an allo-

cation that yields principals’ payoffs above their lower bounds by offering only DMs

on the equilibrium path but action-reporting DMs (ADMs) off the path following

a principal’s deviation: ADMs ask agents to report what action they are inducing

from the deviating principal, along with their types.

2 A general model of competing mechanisms

We first describe the underlying one-shot game. The sets of principals and agents3

are, respectively, J := {1, · · · , J} and I := {J + 1, · · · , J + I} with J ≥ 2 and

I ≥ 3. Each agent i has a type θi drawn from a finite set Θi according to the known

distribution µi; the joint distribution µ on Θ := ×iΘi is the product of marginals

µi. Each principal j makes a decision aj (henceforth referred to as an action) from a

finite4 set Aj; a random action of principal j is denoted by αj ∈ Aj := 4Aj. A profile

of pure actions is a = (a1, . . . , aJ) ∈ A := ×j∈JAj, while a profile of random actions

is α ∈ A := ×j∈JAj, and A−j := ×k 6=jAk. The vN-M (von Neumann-Morgenstern)

expected utility function for player ` (principal or agent) is u` : A×Θ→ R; payoffs

are uniformly bounded by ū < ∞, i.e. | u`(α, θ) |< ū for all α ∈ A, all ` ∈ I ∪ J ,

3To avoid confusion, we use feminine pronouns for agents and masculine pronouns for principals.
4Finiteness of the type and action spaces is not critical for our results, but are usually made in

the literature. With a modicum of technicalities we can deal with a compact set of actions and a
countable type-space.

6



and all θ ∈ Θ. All this information is encapsulated in the underlying game:

G := (J ; I; (Aj)j∈J ; (Θi)i∈I ; (µi)i∈I ; (u`)`∈J∪I) . (1)

The underlying game can be thought of as the simplest game where each principal’s

strategy space is the set of random (mixed) actions.

Fix an underlying game G as in (1), a collection of compact sets {Mj = ×i∈IMij |
j ∈ J }, and a collection {Γj | j ∈ J } where Γj is the set of all continuous mappings

from the domain Mj to Aj; let Γ := ×jΓj . A mechanism is sufficiently general in

terms of the degree of communication so that the class of mechanisms contains all

best-responses to any profile of mechanisms the others may choose. The one-shot

competing mechanism game (G,Γ) is the game with the following timing of moves:

1. Each principal j simultaneously offers a mechanism γj from Γj.

2. After observing mechanisms, all agents simutaneously send private messages,

one to each principal, without observing others’ messages; agent i’s message

to j is mij ∈Mij.

3. A principal’s action is determined by his mechanism,5 given the messages he

receives, so that princpal j takes action γj(mj) ∈ Aj when he receives the

profile of messages mj := (mij)i∈I ∈Mj.

4. Finally, each player ` ∈ I ∪ J earns the payoff u`(γ1(m1), . . . , γJ(mJ), θ).

The following assumptions are maintained throughout: first, messages from

agent i to principal j private, i.e. it is not observable by other players, princi-

pals or agents. However the mechanisms offered and the actions chosen are assumed

to be revealed at the end of the period to principals and agents; while eventual ob-

servation of mechanisms by the other principals may be regarded as too strong, our

results would go through substantively unchanged even if principals never observed

the others’ mechanisms (see Section 5.2).

We also allow all players to observe the draw of a public correlation device at

the beginning of the period, before principals offer their mechanisms. The PCD

5The class mechanisms is general enough to include everyday mechanisms and recommendation
mechanisms in Yamashita (2010).
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makes correlated actions feasible. An allocation or social choce function is a map-

ping f : Θ → 4A from type profiles to probability distributions over actions. A

direct mechanism with outcome f under truthtelling can be formulated in the fol-

lowing ways. First, all players observe the draw ω of a random variable distributed

uniformly on the interval [0, 1) and principal j takes an action πj(θ, ω). In this

formulation principals use a mechanism πj : Θ× [0, 1)→ Aj, which is essentially a

pure mechanism conditional on any draw. However when punishing a principal for

a deviation we might want the other principals to play a truly (ie not a predictable)

mixed action. This is why it is useful to think of a direct mechanism as a map-

ping πj : Θ × [0, 1) × [0, 1) → Aj where the second variable is privately observed.

For notational convenience we assume that the first randomness (correlation) has

already been resolved and write the second one (independent mixing) is yet to be

resolved; accordingly our mechanism maps into the space of random actions; hence-

forth a direct mechanism is πj : Θ → 4Aj; this notation, maintaining consistency

with a large part of the literature, means that the principal’s mixing probabilities

are observed. Alternatively we could have the principals announcing the mixing

probabilities in each period and then we could employ a statistical test to check if

the actual distributions are close to the distributions announced; since the game is

repeated and players are patient, standard laws of large numbers apply. However

this issue seems orthogonal to the main concern of this work and we circumvent

it by writing the mechanism as πj : Θ → 4Aj and assuming that mixed actions

are observed. We employ PBE (perfect Bayesian equilibrium) as the equilibrium

solution concept.

3 Complete information

In this section, we focus on complete information, i.e. agents do not have private

information about types; we model this by letting µi be degenerate at the type

profile θ = (θJ+1, . . . , θJ+I) ∈ Θ = ×i∈IΘi, where θi is the fixed type of agent i.

For economy of notation, we consider two principals (J = 2) in this section, but

this is without loss of generality. The point in studying mechanism design without

private information is to highlight the role of mechanisms in a world with multiple

principals because each principal wants to extract information from agents about
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the mechanisms offered by all other principals. In addition to types that represent

exogenous private information, competition among principals generates endogenous

private information: agents have better market information than principals. The

complete-information model shows how competing mechanisms can be used to sus-

tain certain choices (of type-contingent action) using messages from the agents.

3.1 One-shot game: role of mechanisms

As a baseline model, consider the one-shot game with complete information but no

mechanisms, i.e. the underlying game G. Agents play no role; this is the standard

one-shot game where each principal j independently takes an action αj ∈ Aj. The

set of PBE payoffs coincides with Nash equilibrium payoffs, say N(G). With a

public correlation device, we can get payoffs in the convex hull co(N(G)).

We shall show that even with complete information and without repetition,

agents play a vital role as soon as we allow the principals to use mechanisms rather

than confining them to simple actions; this creates additional equilibrium payoffs in

the one-shot game that are not Nash payoffs of the underlying game. To character-

ize the set of equilibrium allocations and payoffs, we first derive the lower bound on

each principal j’s equilibrium payoff using recommendation mechanisms, where each

principal asks agents to recommend actions and commits to playing the action that

is recommended by a majority of agents; if one principal unilaterally deviates from

offering such a mechanism, all agents recommend that the other principals choose

action profiles that punish the deviating principal. Thus these recommendation

mechanisms, proposed in Yamashita (2010), not only implement the equilibrium

actions but also encode punishments to punish deviating principals.

Under complete information, agents only need to recommend an action to each

principal. Each principal ` offers a recommendation mechanism

r` : AI` → A`,

which leads principal ` to pick α′` if the majority of messages is α′`.
6

Let uj(γ`, γj, θ) denote principal j’s payoff in the worst continuation equilibrium

of the one-shot messaging game (among agents) after the vector of the mechanisms

6Recommendation mechanisms in Yamashita (2010) reduce to this under complete information.

9



(γ`, γj) is offered. The minmax value (or payoff) of principal j in the one-shot game

(G,Γ) is

w1
j := min

γ`∈Γ`

max
γj∈Γj

uj(γ`, γj, θ).

The next lemma shows this general minmax value w1
j equals the simple minmax

value, where all principals are allowed to use only actions (or, equivalently, constant

mechanisms). It also shows how to ‘threaten’ to punish principal j with the payoff

w1
j using recommendation mechanisms.

Lemma 1 The minmax value of any principal j in the complete-information com-

peting mechanism game (G,Γ) equals the minmax of the underlying game G:

w1
j = min

α`∈A`

max
αj∈Aj

uj(α`, αj, θ). (2)

Proof. First of all, note that a simple action αj is a constant mechanism that

always assigns αj regardless of agents’ messages. If principal j deviates to a simple

action αj, agents can recommend to principal ` an action that minimizes principal

j’s payoff conditional on αj, which is

ϕ̄j`(αj) := arg min
α`∈A`

uj(α`, αj, θ). (3)

This is the worst punishment that principal ` can induce in a continuation equilib-

rium upon principal j playing αj.
7 The maximum payoff that principal j can receive

by playing a simple action is then

max
αj∈Aj

uj(ϕ̄
j
`(αj), αj, θ) = max

αj∈Aj

min
α`∈A`

uj(α`, αj, θ).

Since the class of mechanisms Γj includes the set of actions Aj, we have

w1
j ≥ max

αj∈Aj

min
α`∈A`

uj(α`, αj, θ). (4)

Suppose that principal l commits to taking the action that is recommended by

a majority of agents; let agents recommend the action αj` to principal `, regardless

7No agent can change this by a unilateral deviation.
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of principal j’s mechanism, where

αj` ∈ arg min
α`∈A`

{
max
αj∈Aj

uj(α`, αj, θ)

}
; (5)

the maximum payoff that principal j can receive is then

min
α`∈A`

max
αj∈Aj

uj(α`, αj, θ).

Since this is one way of punishing principal j, we have

w1
j ≤ min

α`∈A`

max
αj∈Aj

uj(α`, αj, θ) ∀ j ∈ J . (6)

Since minmax and maxmin values are equal with random actions (von Neumann’s

Minmax Theorem), (4) and (6) immediately imply (2).

Lemma 1 expresses each principal’s minmax payoff in terms of primitives.

A (possibly correlated) action profile α ∈ 4A, which chooses the pure action pro-

file a ∈ A with probability α[a], is strictly individually rational (SIR) for principals

if

uj(α, θ) =
∑
a∈A

uj(a, θ)α[a] > w1
j ∀j∈J ,

where w1
j is the principal’s one-shot minmax value given by equation (2). The set

of (correlated) action profiles that induce SIR payoffs is

F∗ := {α ∈ 4A | uj(α, θ) > w1
j ∀j ∈ J }. (7)

Let F̄∗ be the closure of F∗, which includes vectors of payoffs in which some prin-

cipal’s payoff may be equal to his minmax value. The lower bounds identified in

Lemma 1 characterize the set of equilibrium allocations as follows. The proof in

Yamashita (2010) simplifies to this under complete information.

Theorem 1 In the one-shot competing mechanism game (G,Γ),

1. (correlated) action profiles in F̄∗ are supportable in a PBE;

2. such a PBE can be constructed using only recommendation mechanisms (r1, r2),
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under which each principal j asks every agent to send a message in his space

of actions Aj and commits to take the action recommended by a majority.

Proof. Any action profile that gives any principal j a payoff strictly below his

own minmax value cannot be sustained in equilibrium so that any action profile is

supportable in a PBE must be SIR and therefore cannot be outside F̄∗. All payoffs

within this set are feasible thanks to the public correlation device. In equilibrium,

each principal ` offers a recommendation mechanism r` : AIj → Aj regardless of the

realization of the public correlation device. Fix α∗ ∈ F̄∗. Given the realization of

the public correlation device, suppose that α = (α1, α2) ∈ A in the support of α∗

is the action profile that needs to be supported in equilibrium. Agents follow three

rules:

1. if principals offer r = (r1, r2), all agents send the message αj to principal j;

2. if principal j unilaterally deviates and offer anything other than rj, agents

recommend the action profile αj`, defined in (5), to principal ` 6= j, and send

messages to principal j that form an equilibrium of the induced one-shot mes-

saging game among the agents (naturally what messages are allowed depends

on the mechanism j deviated to);

3. if anything else happens agents can send to non-deviating principals any mes-

sages that represent a continuation equilibrium of the induced one-shot mes-

saging game among the agents.

Obviously, agents cannot deviate unilaterally and impact the equilibrium because

I ≥ 3. If principal j deviates, agents recommend that the other principal ` takes

the action αj`, which by Lemma 1 gives j a payoff w1
j , which is no better than the

equilibrium payoff uj(α, θ) by hypothesis. So it is a best response for principal j to

offer rj.

If random actions are allowed so that the maxmin and minmax are the same,

then it significantly reduces the amount of the information that a non-deviator needs

to know in order to punish a deviator. Because the non-deviating principal ` can

simply take the action αj` that minmaxes deviating principal j, he only needs to

know whether or not the other principal has deviated (more generally, with more
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than two principals he needs to know the identity of the deviator, if any). Therefore,

each principal offers a recommendation mechanism in equilibrium, and leaves agents

to recommend which action (equilibrium or punitive) he needs to take.

3.2 Repeated game with complete information

The infinitely repeated game (G,Γ)∞ (δ) involves playing the competing mechanism

stage-game G at each time t ≥ 1, with a common discount factor δ ∈ (0, 1) across

periods, where principals are allowed to use mechanism profiles in Γ. Let us fix the

type profile at θ = (θJ+1, . . . , θJ+I) ∈ Θ = ×i∈IΘi for all periods. Let γt ∈ Γ and

αt ∈ A be the mechanisms offered and the actions chosen at time t by the principal.

Starting with the null history h−1, a t-period history ht is constructed from the

(t− 1)-period history according to the formula ht = ht−1 ◦ (γt, αt), where ◦ denotes

concatenation. At the end of period t, both agents and principals observe the history

ht.8 Enforcement is harder if principals cannot observe mechanisms offered or actions

taken by the other principals; this is discussed later. The (average) discounted payoff

of player ` ∈ J ∪ I from period τ onwards is (1− δ)
∑

t≥τ δ
t−τu` (αt, θ), where αt is

the action profile taken at time t.

Recall that the set of correlated action profiles that induce feasible and strictly

individually rational payoffs in the one-shot game (G,Γ) is F∗ = {α∗ ∈ 4A |
uj(α) > 0 ∈ supp(α∗) is SIR for principals}. We showed that w1

j in the one-shot

game (G,Γ) is the same as j’s minmax value over complex mechanisms in Γ. This

argument is valid because even if a non-deviating principal cannot change his mech-

anism upon a competing principal’s deviation, the remmendation mechanism can

induce the same effect. In the repeated game, a non-deviating principal can acutally

change his mechanism after a competing principal’s mechanism and hence the same

w1
j is of course j’s minmax value, which shown to be equal to the minmax value

over actions in Lemma 1.

Theorem 2 (Complete-information folk theorem) Let (G,Γ) be any one-shot

competing mechanism game with the complete information. Then there exists δ < 1

such that for any δ ≥ δ

8Our notational convention for time-dependent variables is to use κt to denote the value at
period t of the variable κ of the stage-game, with the understanding that t is a superscript and
not an exponent.
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1. any (correlated) action profile in F∗is the outcome of a PBE of the infinitely

repeated game (G,Γ)∞(δ);

2. such a PBE can be supported using simple actions, i.e., constant mechanisms

on and off the path.

This is nothing but the standard folk theorem for infinitely repeated games, with

the minmax value given by Lemma 1. The set of equilibrium allocations supported

in the one-shot game is F̄∗ , the closure of F∗, whereas the set of equilibrium

allocations supported in Theorem 2 in the repeated game based on the folk theorem

argument is F∗. Because any equilibrium allocation in the one-shot game is also an

equilibrium allocation in the repeated game, the set of equilibrium allocations that

can be supported in the repeated game is also F̄∗.
The key message is that mechanisms that principals need to use on and off the

path to support equilibrium allocations in F∗ are simpler in the repeated game than

in the one-shot game. In the latter it is essential for principals to commit them-

selves to take a certain action according to the rule described in the recommendation

mechanism. However, in the repeated game, they do not need commitment power

because principals only need to take single actions on and off the path—each prin-

cipal ` only needs to take his equilibrium action on the path, andαj` off the path

following principal j’s deviation.9

Notably, in the repeated game, principals who make equilibrium actions corre-

lated by choosing their actions contingent on the realization of the PCD. However,

in the one-shot game, agents make equilibrium actions correlated by choosing the

recommendation of an action to each principal contingent on the realization of the

PCD given each principal’s recommendation mechanism; each principal offers his

recommendation mechanism independent of the realization of the PCD in the one-

shot game.

9The folk theorem does not cover those allocations in F̄∗ \ F∗that induce payoffs where some
principals get exactly equal their minmax values. These allocations may be supported in equilib-
rium of the repeated game if principals offer recommendation mechanisms rather than just direct
mechanisms.
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4 Incomplete information

Let F be the set of all possible correlated stage-SCFs f : Θ → 4A. A stage-SCF

can be effected under truthtelling if principals offer a probability distribution over

direct mechanisms; a profile of direct mechanisms (DMs) π = (π1, . . . , πJ), one for

each principal, where direct mechanism (DM) offered by principal j is denoted by

a mapping πj : Θ → Aj. Let Πj be the set of all DMs available to principal j, the

nature of which depends on the application under consideration; let Π := ×j∈JΠj.

Recall that J ≥ 2 and I ≥ 3.

4.1 One-shot game with incomplete information

Yamashita (2010) studies equilibrium allocations supportable in the incomplete-

information game of competing mechanisms. Let γ be a profile of mechanisms

offered, and let u1
j(γ) denote the worst payoff of principal j over all equilibria of the

messaging game among agents that is induced by γ. The minmax value of principal

j is then defined as

w1
j := min

γj∈Γ−j

max
γj∈Γj

u1
j(γ−j, γj). (8)

Suppose that we wish to construct an equilibrium where the principals offers the

profile of DMs π∗. This can be done if all principals offer recommendation mech-

anisms; the only difference with the complete information case is that agents now

have to recommend direct mechanisms, which of course have to satisfy UIC. On the

equilibrium path all agents recommend π∗j to each principal j; if any principal j

unilaterally deviates all agents recommend the direct mechanisms to the others that

give the lowest possible payoff to principal j in some (UIC) continuation equilib-

rium.While anything that can be supported with arbitrarily complex mechanisms

can also be supported with recommendation mechanisms, the minmax value cannot

be found in terms of model primitives; therefore it is not easy to determine which

payoffs are indeed equilibrium payoffs. Although recommendation mechanisms feel

more familiar because they involve recommending the ubiquitous direct mechanisms,

this model is still hard to apply because we do not know how to construct the actual

direct mechanisms that agents must recommend.
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4.2 Repeated game with incomplete information

We now turn to the repeated version of the game of incomplete information, which is

our main object of study. As before, the repeated game allows us to relax incentive

compatibility because deviation can be deterred if they can be detected at the end

of the period. We first explain the right notion of IC in this dynamic setting.

4.2.1 Incentive compatibility

The key reason why the repeated game is simpler is that we can relax incentive

compatibility; we start by explaining this intuition, which comes through even in

the case with one agent with two possible types, θ and θ′. Suppose that each principal

j offers a DM πj such that πj(θ) = αj and πj(θ
′) = α′j. The agent sends a pair of

messages, the first to principal 1 and the second to principal 2, and induces the

following action profiles:

(θ, θ) (θ, θ′) (θ′, θ) (θ′, θ′)

(α1, α2) (α1, α
′
2) (α′1, α2) (α′1, α

′
2)

Pairs of type messages such as (θ, θ′) and (θ′, θ) are inconsistent, i.e. the agent’s

type message to one principal is different from her type message to the other. In the

one-shot game, incentive compatibility should be defined over all four profiles of type

messages because principals cannot punish the agent even if they can detect her lies

at the end of the period; such a profile of mechanisms is called UIC (unrestrictedly

incentive compatible). In the repeated game, if (α1, α
′
2) or (α′1, α2) is taken by

principals at the end of the period, it shows that the agent lied to at least one

principal; principals can punish the agent subsequently. But if (α1, α2) or (α′1, α
′
2)

occurs, principals do not know whether the agent lied or not because her type

messages are consistent (i.e., messages to both principals are the same); so we still

need incentive compatibility over {(θ, θ), (θ′, θ′)}. Therefore, in the repeated game

profiles of mechanisms do not need to impose incentive compatibility over message

profiles that induce actions that could not arise if the agent reported truthfully. We

say that such a profile of mechanisms is CIC (constrained incentive compatible).

Since our model has multiple agents, CIC has to be defined with more care

because it is possible that some inconsistent message profile of agent i leads to

to off-path actions only for certain consistent type messages by agents other than
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i; however detection with positive probability rather than certainty is enough to

punish patient agents in future. Therefore we impose incentive compatibility over

only profiles of messages, consistent or not, that necessarily induces an action profile

that is on path, but not on a profile of inconsistent type messages that induces with

positive probability an action profile that cannot happen under truthful reporting.

Now let us formalize the notion of IC with multiple agents. Given a profile of DMs

π := (π1, . . . , πJ) in a period, the expected payoff of agent i of type θi, when the

other agents truthfully report their types, is

Eµ−i
[ui(π1(θi1, θ−i), · · · , πJ(θiJ , θ−i), θi, θ−i)] ,

where Eµ−i
[·] is the expectation operator with respect to the probability distribution

µ−i over Θ−i.

Given any profile of DMs π, the set of all actions profiles induced by truthful

type reports is given by

Â(π) := {π(θ) | θ ∈ Θ},where π(θ) := (π1(θ), . . . , πJ(θ)) ∀θ ∈ Θ.

For any given π, we define Bi(π) ⊂ (Θi)
J for each i as the set of all profiles of

type reports of agent i, one report to each principal, that lead to an action profile in

Â(π) irrespective of the types of the other agents as long as they report truthfully:

Bi(π) :=
{

(θi1, . . . , θiJ) ∈ (Θi)
J
∣∣∣[π1(θi1, θ−i), . . . , πJ(θiJ , θ−i)] ∈ Â(π) ∀θ−i ∈ Θ−i

}
.

We propose below two different definitions of incentive compatibility (IC), both

defined on the agent’s stage-game payoff, depending on what kind of misreports are

being deterred.

Definition 1 A profile of DMs π = (π1, . . . , πJ) satisfies IC over Di ⊂ (Θi)
J with

respect to (w.r.t.) µ if for all i ∈ I and all θ = (θi, θ−i) ∈ Θ we have

Eµ−i
[ui(π(θ), θ)] ≥

Eµ−i
[ui(π1(θi1, θ−i), . . . , πJ(θiJ , θ−i), θ)] ∀(θi1, . . . , θiJ) ∈ Di, (9)

where π(θ) = [π1(θi, θ−i), . . . , πJ(θi, θ−i)].
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1. If π satisfies (9) over Di = (Θi)
J we say that π is unrestrictedly incentive

compatible (UIC).

2. If π satisfies (9) over Di = Bi(π), we say that π is constrained incentive

compatible (CIC). Clearly (θi, . . . , θi) ∈ Bi(π) for any θi ∈ Θi.

Letting ΠU (respectively ΠC) denote the set of all possible profiles of UIC (CIC)

DMs, (Θi)
J ⊃ Bi(π) clearly implies ΠU ⊂ ΠC : a weaker notion of IC needs to deter

fewer deviations.

Let us clarify the notions of IC in terms of the DMs that belong to each class, and

the misreports that each notion deters using contemporaneous incentives. Consider

agent i contemplating a unilateral deviation from truth telling. We say that agent i

reports consistently if she reports the same type to all principals (i.e.θ̃i1 = · · · = θ̃iJ),

and inconsistently if {θ̃i1, . . . , θ̃iJ} contains at least two distinct elements, i.e. she

sends different messages to at least two principals. Consistent reports can be false:

agent i sends θ′i = θ̃i1 = · · · = θ̃iJ to all principals when her type is in fact θi 6= θ′i.

Both notions of IC ensure that such consistent lies are not profitable. In addition,

UIC imposes IC with respect to all inconsistent lies as well; it is the appropriate

notion of IC in a one-shot model because agents cannot be punished even if a lie is

detected at the end of the game. CIC imposes incentive compatibility over only those

messages of i that are in Bi(π). CIC is appropriate in the repeated setting because

inconsistent messages (θ̃i1, . . . , θ̃iJ) outside Bi(π) will induce ‘unexpected’ action

profiles with positive probability; when agents are patient, the delayed punishment

for this deters such inconsistent messages.10Given the notion of IC captured in K ∈
{U,C}, a stage-SCF f is said to be induced by π ∈ ΠK if f(θ) = π(θ) for all θ ∈ Θ.

4.2.2 Lower bound on a player’s equilibrium payoff

In order to characterize all feasible equilibria in the repeated game (G,Γ)∞(δ), SCFs

relative to Γ, it is important to lower bound each player’s equilibrium payoff As

discussed earlier, we consider the continuation equilibria where the profile of direct

mechanisms induced by agents’ messages from principals’ mechanisms satisfies CIC;

hence we denote by wCj the principal j’s minmax value in this repeated game.

10The reader might wonder if we could further weaken incentive compatibility by using statis-
tical tests to check if the agents reported distribution of types closely approximates the actual
distribution. This is addressed later.
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We start by introducing some notation. Let

ΠC
−j(αj) := {π−j ∈ Π−j | (αj, π−j) satisfies CIC}.

Let Ψj
−j be the set of all mappings ϕj−j that assigns to each action in Aj a profile

of DMs for principals except j so that ϕj−j(αj) ∈ ΠC
−j(αj) for all αj ∈ Aj. Let

uCj (γ−j, γj) be the lowest stage payoff that principal j receives in a continuation

equilibrium at (γ−j, γj). Since principals can change their mechanisms following a

principal’s deviation, principal j’s minmax value is

wCj := min
γ−j∈Γ−j

max
γj∈Γj

uCj (γ−j, γj). (10)

Most importantly, in the repeated game, we can express this lower bound in

terms of actions and DMs as follows.

Theorem 3 For every principal j, the minmax value wCj satisfies

wCj = max
αj∈Aj

min
π−j∈ΠC

−j(αj)
Eµ[uj(π−j(θ), αj, θ)]. (11)

Off the path following j’s deviation, the following properties are satisfied:

1. wCj is achieved if each principal ` (6= j) offers an action-reporting DM (ADM)

where agents are asked to report their types and principal j’s action;

2. principal j cannot do any better by offering a mechanism in Γj than he does

by offering an action in Aj .

Proof. See Appendix.

This is one of our key results. In a sense it is the main result, because the folk

theorem stands on it. It can be decomposed into two separate results, one about

mechanisms and the other about minmax payoffs. The first notes that nothing much

more complicated than a direct mechanism is needed to mete out punishments. Note

that there is no a priori restriction on mechanisms; this is an equilibrium result. The

second result is that the calculation of the minmax value reduces to the calculation of

a maxmin value of a simpler game with a much more restricted space of mechanisms,

where it is just a linear programming problem.
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The first step in proving this lemma is to use the agents to restrict a deviating

principal’s set of best responses; this is where the agents’ patience plays a critical

role. Once we are able to restrict the deviating principal to a simple action, the

other principals just need to extract this information from the agents and to offer

the worst possible profile of direct mechanims for the deviating principal.

Of course, off the path following principal j’s deviation, the other principals can

offer recommendation mechanisms instead of ADMs. However, reporting the devi-

ating principal’s action to a non-deviating principal is simpler than recommending a

DM that each non-deviating principal should implement. In a one-shot game, non-

deviating principals cannot force agents to induce always the same action from a

deviating principal j’s mechanism γj regardless of their types. The fact that agents

can be punished in the future in the repeated game makes it possible to give incen-

tives to them to induce the same action gj(γj) from γj if j deviated. This implies

that a deviating principal can be punished more severely. As shown later, this, to-

gether with a weaker notion of IC (CIC) in the repeated game, makes j’s minmax

value in the repeated game with Γlower than that in the one-shot game with Γ.

Agents’ minmax values should be clearly identified because they need to be

punished when induced from j’s mechanism γj is not gj(γj). It is much simpler to

identify agent i’s minmax value wCi than a principal’s minmax value. Let uCi (γ)

be the lowest stage payoff that agent i receives in a continuation equilibrium at γ.

Then, wCi is defined as wCi := min
γ∈Γ

uCi (γ). Agents’ communication with principals

in a continuation equilibrium induces a profile of CIC DMs. Therefore, we have

wCi = min
π∈ΠC

Eµ[ui(π(θ), θ)]. (12)

4.2.3 A folk theorem for competing mechanisms

Now we are ready to establish the folk theorem with i.i.d. private types. What

stage-SCFs and payoff profiles can we support in a perfect Bayesian equilibrium

(PBE) of (G,Γ)∞ (δ)? The stage-SCF f ∈ F is strictly individually rational (SIR)

(w.r.t. µ ∈ 4Θ) if each player ` gets an expected payoff above wC` :

Eµ [u` (f(θ), θ)] > wC` for all ` ∈ I ∪ J . (13)
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Define

FC(µ) := {f ∗ ∈ 4(F) | f ∈ supp(f ∗) is SIR w.r.t. µ and is induced by π ∈ ΠU}

We make the standard full dimensionality assumption (FD) that set of expected

payoffs is full dimensional, i.e. dim[u(FC(µ))] = J + I.

The theorem below shows that any (correlated) SCF f ∗ ∈ FC(µ) is supportable

in a PBE of (G,Γ)∞ (δ), provided players are sufficiently patient. Given the real-

ization of the public correlation device, suppose that f ∈ F in the support of f ∗

is the SCF that needs to be supported in equilibrium. Principals offer a profile of

DMs π = (π1, . . . , πJ) such that πj = fj for all j. If principals continue offering π,

play a truthful continuation equilibrium in which agents report their true types. If

principal j unilaterally deviates at time t, it is observed at the end of the period;

at t + 1 the other principals offers the ADMs τ̄ j−j with the majority rule in (24) to

punish j. Off the path following principal j’s deviation, principal j can best respond

with an action if agents follow the above protocol.

Theorem 4 (Folk Theorem) Consider i.i.d. types with distribution µ ∈ 4Θ.

Under the standard full dimensionality assumption on the expected payoffs in a model

with interdependent values,

1. any (correlated) SCF f ∗ ∈ FC(µ) is the outcome of a PBE of (G,Γ)∞ (δ)

relative to Γ for high δ;

2. DMs suffice on path, while off the path following a deviation by principal j,

all other principals employ ADMs while j offers a simple action, i.e. constant

mechanism.

Proof. See the appendix.

Principals’ ability to commit to more complex mechanisms (e.g. ADMs) than

DMs off the path prevents deviations from DMs; every principal simply relies on

DMs on the path, correctly foreseeing all strategic interactions based on ADMs off

the path. Therefore, in an equilibrium of the repeated game, we should observe only

DMs.
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4.3 Comparison: one-shot vs. repeated games

For comparision between one-shot and repeated games, let us first describe the set of

SCFs that are supported by equilibria in the one-shot game. Even when an agent’s

inconsistent type messages are detected, she cannot be punished in the one-shot

game. Therefore, the proper notion of IC is UIC. Recall that u1
j(γ−j, γj) in (8), i.e.,

the lower bound for principal j’s equilibrium payoff, is the payoff for principal j in

the worst continuaton equilibrium at γ = (γ−j, γj). Let Π1(γ) denote the set of all

profiles of UIC DMs that can be induced by all continuation equilibria of the one-

shot game at γ ∈ Γ, the superscript 1 referring to the “one-shot” game. Then, in

this one-shot game, the lower bound for principal j’s equilibrium payoff w1
j specified

as

w1
j = min

γ−j∈Γ−j

max
γj∈Γj

u1
j(γ−j, γj), where u1

j(γ) := min
π∈Π1(γ)

Eµ [uj (π (θ) , θ)] . (14)

To formulate the set of SCFs that are supported by equilibria of the one-shot

game, we say that an SCF f is SIR for principals (w.r.t. µ ∈ 4Θ) if

Eµ [uj (f(θ), θ)] > w1
j ∀j ∈ J ;

Define

F1(µ) := {f ∗ ∈ 4(F) : f ∈ supp(f ∗) is SIR ∀j ∈ J and is induced by π ∈ ΠU}.
(15)

The set of (correlated) SCFs supported in equilibria of the one-shot game (G,Γ) is

the closure of F1(µ), denoted by F̄1(µ). This does not provides a characterization

of equilibrium allocations in the one-shot game because w1
j is not given in terms of

model primitives.

The lower bound of agent i’s equilibrium payoff is not well defined in the one-

shot game in terms of model primitives. Because it is the lowest possible equilibrium

payoff in the one-shot game, it can be specified as

w1
i = min

π∈F̄1(µ)
Eµ [ui (π (θ) , θ)] . (16)

Give the lower bound of principal j’s payoff wCj that can be supported in a PBE
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of the repeated game, we can compare it with that in a PBE of the one-shot game.

In contrast to the case with no private information on agents’ types, the lower-bound

of players’ equilibrium payoff in the repeated game is generally lower than that in

the one-shot game when there is private information on agents’ types.

Theorem 5 For any principal j, wCj ≤ w1
j and, for any agent i, wCi ≤ w1

i .

Proof. First, consider principal j’s lower bound. From (22), we know that

wCj = min
γ−j∈Γ−j

max
αj∈Aj

uCj (γ−j, αj),

where uCj (γ−j, αj) is the lowest payoff that principal j receives in a continuation

equilibrium at (γ−j, αj) in the repeated game.

Because the proper notion of IC is UIC in the one-shot game, Π1
−j(γj, α−j) denote

the set of all profiles of UIC DMs for principals except j that can be induced by a

continuation equilibrium of the one-shot game at (γ−j, αj). Following the notation

in (14), let us define u1
j(γ−j, αj) as

u1
j(γ−j, αj) := min

π−j∈Π1
−j(γj ,α−j)

Eµ [uj (π−j (θ) , αj, θ)] , (17)

that is, principal j’s lowest payoff in a continuation equilibrium at (γ−j, αj) in the

one-shot game. Because CIC is a weaker notion than UIC, any profile of UIC DMs

in π−j can be supported in a continuation equilibrium at (γ−j, αj) in the repeated

game. It implies that uCj (γ−j, αj) ≤ u1
j(γ−j, αj) and hence

wCj = min
γ−j∈Γ−j

max
αj∈Aj

uCj (γ−j, αj) ≤ min
γ−j∈Γ−j

max
αj∈Aj

u1
j(γ−j, αj) (18)

Because any single action is strategically equivalent to a constant mechanism in Γj

that assigns the same action regardless of agents’ messages, we have that

min
γ−j∈Γ−j

max
αj∈Aj

u1
j(γ−j, αj) ≤ min

γ−j∈Γ−j

max
γj∈−j

u1
j(γ−j, γj) = w1

j . (19)

Combining (18) and (19) yields wCj ≤ w1
j for all j.

Now consider agent i’s lower bound. Note that F̄1(µ) ⊂ ΠU because UIC is the

notion of IC in the one-shot game. Because ΠU ⊂ ΠC , we then have F̄1(µ) ⊂ ΠC .
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Therefore, we can conclude that

wCi = min
π∈ΠC

Eµ[ui(π(θ), θ)] ≤ min
π∈F̄1(µ)

Eµ [ui (π (θ) , θ)] = w1
i .

Clearly, all SCFs that can be supported in a PBE of the one-shot game must be

supported in a PBE of the repeated game. Therefore, the set of all SCFs that can

be supported in a PBE of the repeated game is

F∗(µ) := FC(µ) ∪ F̄1(µ).

Therefore, it is larger than F̄1(µ).

Theorem 6 Any SCF f ∗ in F∗(µ) can be supported in a PBE of (G,Γ)∞ (δ) for

high δ as follows.

1. For any SCF f ∗ in FC(µ), we can apply Theorem 4 (Folk Theorem) for the

proof.

2. Any f ∗ ∈ F∗(µ) \ FC(µ) can be supported as a PBE when every principal

offers a recommendation mechanism proposed by Yamashita.

Proof. Any SCF in FC(µ) is shown to be supported via the Folk theorem argument

(Theorem 4) with DMs on the path and ADMs off the path: In this case, each pplayer

`’s equilibrium payoff is strictly greater than wC` .

How about payoffs in F∗(µ)−FC(µ)? This is the case where wC` = w1
` for some

` ∈ I ∪ J , then we cannot apply Theorem 4. The reason is that the player specific

punishments constructed in Lemma 2 for the Folk theorem do not work in this

setting because if a player is already at his/her static lower bound w1
` and it is the

same as his dynamic lower bound wC` , we cannot lower it further for punishment. In

this case, non-deviating principals offer Yamashita’s recommendation mechanisms

every period. This is a repetition of Yamashita’s static game.

Note that the lower bound in F∗(µ) is still wC` for all ` ∈ I ∪ J . Except for

the knife-edge case of wC` = w1
` for some `, we can apply the Folk theorem to show

how to support any f ∗ ∈ F∗(µ) in a PBE of the repeated game by using simple
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mechanisms such as DMs on the path (and ADMs off the path). This is because

principals do not need to stipulate how to punish a competing principal’s deviation

in their current mechanisms.

Notably, in the repeated game, principal j cannot do any better than offering

a simple action off the path following his deviation. Together with it, relaxing the

notion of IC lowers the lower bound of principals’ equilibrium payoffs. (i.e., wCj ≤
w1
j ). Relaxing the notion of IC also lowers the lower bound of agents’ equilibrium

payoffs (i.e., wCi ≤ w1
i ). Furthermore, a weaker notion of IC admits additional

profiles of DMs on the equilibrium path. Therefore, repeated interaction between

players makes it possible to support more social choice functions.

5 Discussion

Our paper investigates the repeated game when principals can commit themselves

to one-shot or short-term mechanisms, while the on-going relation among prin-

cipals and agents governs the long-term relationship without explicit contractual

obligations. We now discuss which of our assumptions was made for the analytical

simplicity and can be relaxed.

5.1 Markov types

Our results in the case with incomplete information are based on the assumption that

types are i.i.d. draws. A more general assumption would be that the types form a

Markov chain with the transition matrix P and an initial distribution µ0 ∈ 4Θ. We

conjecture that theorem 4 can be extended to the case where types evolve according

to independent irreducible aperiodic Markov chains.

5.2 Observability

We assume that, at the end of each period, mechanisms and actions are observable to

both principals and agents; so DMs are enough on the equilibrium path. Howeverour

results extend without any technical changes if only agents, but not principals,

observe all actions and mechanisms at the end of each period. Since principals do not

observe mechanisms and actions, on-path mechanisms must ask agents to report not
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only their own types but also the identity of any principal who may have deviated;

the corresponding message space is simply the product of the type space with the

set {0, 1, . . . , J}, where 0 signifies that no principal has deviated; principals base

their action on the report sent by a majority. This creates no additional difficulty

for our folk theorem because there is common knowledge of who the deviator is.11

However, the principal’s action choice in his equilibrium mechanism depends on

only agents’ type reports but not the identity of the deviating principal that they

report. Although messages on the deviator’s identity is purely cheap talk, no agent

can affect play by unilaterally deviating from reporting a deviator.

5.3 Two agents

A principal’s deviation is observable because mechanisms and actions are observable.

However, an agent’s deviation may not be easily detected when there are only two

agents. Off the path following principal j’s deviation, non-deviators offer ADMs. If

two agents’ reports on j’s action to principal ` are not consistent, principal ` knows

that at least one agent has deviated. However, other principals do not because

agents’ action reports to principal ` are not observable by them. This makes it

difficult to punish agents’ deviation because all principlas should punish agents

together after their deviation. Of course, if there are three or more agents, we can

always assume agents’ truthful reporting of j’s action to other principals.

Therefore, if there is a tie on agents’ reports on j’s action to principal ` off the

path following j’s deviation, principal ` should let other principals know about that

so that they can all punish agents in the following periods. Principal ` may choose

an action that is not chosen in any circumstances given agents’ truthful reports. For

any given (α̃j` , θ̃`), if #{i : α̃ji` = αj} = #{i : α̃ji` = α′j} = I/2, then

τ̄ j` (α̃j` , θ̃`) = α̂` /∈ {α` = ϕ̄j`(αj)(θ) ∀(αj, θ) ∈ Aj ×Θ} (20)

Suppose that there are two agents and they both report principal j’s true action. If

an agent deviates to report a false action, then their action messages are inconsistent.

Suppose that one reports αj and the other α′j. Principal ` assigns action α̂` regardless

11Off the path following a principal’s deviation, non-deviating principals offer an extended DM
that ask agents about their types, the deviating principal’s action, and for the identity of any
player who might have deviated from carrying out the on-going punishment.
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of agents’ type messages. The formulation in (20) implies that α̂` is never assigned by

principal j if both agents report principal j’s true action. It implies that by taking

α̂`, principal ` informs the other principals and agents that incosistent messages

on principal j’s action were reported. Then, agents can be punished subsequently.

Therefore, if the action space is sufficiently rich to ensure the existence of such an

action α̂` that satisfied (20), then agents’ truthful reporting on principal j’s action

can be enforceable even with only two agents or in the case of a tie.

6 Conclusion

Our paper studies a very natural game—repeated period-by-period contracting

among multiple principals and agents. The one-shot version of this model is well

studied. While it is indeed a very natural model, its use has been hampered by

its complexity at two levels. First, one might want to compute the equilibrium

allocation, say by computing lower bounds on the payoffs. Second, leaving aside

a characterisation, partial or full, we might simply be interested in understanding

how to support a particular equilibrium allocation. Unfortunately neither has been

tackled in the one-shot game, largely because all manner of deviations need to be

deterred contemporaneously. Usually repeating a game introduces complexity: in

the world of competing mechanisms, the model becomes more tractable as we move

from the one-shot game to the repeated game with patient players—pointing this

out is our main contribution. The key insight is that agents can be used to play

the role of monitor, and they in turn can be monitored by the principals. Thanks

to the participation of agents in the punishment of deviating principals, it is possi-

ble to lower the minmax value. This lowered value is achieved by agents reducing

the complex mechanisms of a deviating principal to simple actions. Furthermore,

computing the minmax values reduces to a simple programming problem.
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A Appendix

A.1 Proof of Theorem 3

Proof. The set of mechanisms Γj is sufficiently large to include all possible constant

mechanisms. Because a constant mechanism is equivalent to an action, it is clear

that

min
γ−j∈Γ−j

max
γj∈Γj

uCj (γ−j, γj) ≥ min
γ−j∈Γ−j

max
αj∈Aj

uCj (γ−j, αj) (21)

We now show that (21) holds with equality. The image set of a mechanism γj is

denoted by im(γj). Take an selection gj : Γj → Aj where gj(γj) ∈ im(γj) is an

arbitrary action. Then, for every possible γj that principal j can offer off the path

following his deviation, let agents send messages that induce gj(γj) ∈ im(γj) in the

continuation equilibrium irrespective of their own types. . Therefore, this type

of communication behavior completely neutralizes principal j’s ability to make his

action choice contingent on agents’ messages: Principal j cannot do any better by

offering a complex mechanism in Γj than by offering a single action in Aj:

uCj (γ) = uCj (γ−j, gj(γj)) ∀γ.

This implies that

min
γ−j∈Γ−j

max
γj∈Γj

uCj (γ−j, γj) = min
γ−j∈Γ−j

max
γj∈Γj

uCj (γ−j, gj(γj)) ≤ min
γ−j∈Γ−j

max
αj∈Aj

uCj (γ−j, αj).

Combining this with (21) we find that inequality (21) holds with equality:

min
γ−j∈Γ−j

max
γj∈Γj

uCj (γ−j, γj) = min
γ−j∈Γ−j

max
αj∈Aj

uCj (γ−j, αj) (22)

Now we can focus on principal j’s deviation to a single action in Aj without

loss of generality. For any given single action αj that principal j takes, for the

other principals, punishing principal j in a continuation equilibrium is equivalent to

choosing a profile of their CIC DMs conditional on αj. Therefore, principal j’s lowest

possible payoff conditional on αj can be realized if other principals can implement

ϕ̄j−j(αj) = {ϕ̄j`(αj)} 6̀=j ∈ ΠC
−j(αj), where ϕ̄j`(αj) is principal `’s DM and ϕ̄j−j(αj) is
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defined as

ϕ̄j−j(αj) ∈ arg min
π−j∈ΠC

−j(αj)

Eµ[uj(π−j(θ), αj, θ)]. (23)

The DM ϕ̄j`(αj) can be implemented if principal ` offers an ADM τ̄ j` in which he

commits to take DM ϕ̄j`(αj) when a majority of agents report αj in addition to their

types. Let us define a profile of ADMs for principals except j that can implement

ϕ̄j−j. Let τ̄ j` be principal `’s ADM where each agent i’s message space is Ti` = Aj×Θi.

Let T` = ×i∈ITi`. Then, τ̄ j` is a mapping from T` into A`. Let (α̃ji`, θ̃i`) denote a pair

of messages that agent i sends to principal `, where α̃ji` is principal j’s action that

agent i reports to principal ` and θ̃i` is the type that she reports to him as her type.

In this ADM, principal ` asks agents about principal j’s action and their types. Let

α̃j` be a profile of all agents’ messages on principal j’s action and θ̃` a profile of all

agents’ messages on their types. Then, τ̄ j` (α̃j` , θ̃`) ∈ A` denotes principal `’s action

when (α̃j` , θ̃`) is a profile of agents’ messages. We use the notation τ̄ j` (α̃j` , ·) to denote

a DM that is assigned when a profile of agents’ messages on principal `’s action. For

the implementation of ϕ̄j`, we use an ADM with the majority rule:

τ̄ j` (α̃j` , ·) = ϕ̄j`(αj) if #{i : α̃ji` = αj} > I/2 (24)

Assuming Γ−j is sufficiently large to include ADMs, we have the following equal-

ity given agents’ truthful reporting to principals, except j, who offer ADMs with the

majority rule in (24):

min
γ−j∈Γ−j

max
αj∈Aj

uCj (γ−j, αj) = max
αj∈Aj

Eµ[uj(ϕ̄
j
−j(αj)(θ), αj, θ)]. (25)

Applying the definition of ϕ̄j−j(αj) in (23), it is straightforward to see that

max
αj∈Aj

Eµ[uj(ϕ̄
j
−j(αj)(θ), αj, θ)] = max

αj∈Aj

min
π−j∈ΠC

−j(αj)
Eµ[uj(π−j(θ), αj, θ)]. (26)

(22), (23), and (26) lead to (11).

Finally, we need to show what action gj(γj) in the image of γj leads to the

lowest possible payoff for principal j in the worst continuation equilibrium off the

path where principal j’s mechanism is γj. Because the other principals can imple-

ment CIC DMs ϕ̄j−j(αj) that punishes principal j most severley given his action αj,
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the action gj(γj) that agents induce from principal j’s mechanism γj in the worst

continuation equilibrium is

gj(γj) ∈ min
αj∈im(γj)

Eµ[uj(ϕ̄
j
−j(αj)(θ), αj, θ)]. (27)

Therefore, agents send messages that induce an action gj(γj) defined in (27) when

principal j offers γj off the path following his deviation.

A.2 Proof of Theorem 4

Caveat: In discussions related to folk theorems, generic players are denoted by i

and j unless explicitly noted otherwise.

Definition 2 Fix a SIR SCFf ∈ F that is induced by π ∈ ΠC . A family of vectors

{β1, . . . , βJ+I} ⊂ SC is said to be a PSP (Player-Specific Punishment) for the target

payoff v = u(f) if it satisfies the following properties ∀i, j ∈ I ∪ J :

1. strict individual rationality (SIR): βij > wj;

2. target payoff domination: βij < vj;

3. payoff asymmetry (PA): βii < βji if i 6= j.

Lemma 2 Fix a SIR SCFf ∈ F that is induced by π ∈ ΠC . There exists a family

of I + J profiles of mechanisms {πi : Θ → A | i ∈ I ∪ J } such that each πik is

one-to-one and the family {βi := Eµu (πi(θ)) | i ∈ I ∪ J } is a PSP for v = u(f).

Proof. Given full-dimensionality we can construct12 a PSP {βi | i ∈ I ∪ J }. Since

β
i ∈ u(FC(µ)), by construction there exists a family of DMs {πi | i ∈ I ∪ J } such

that β
i

:= Eµu
(
πi(θ)

)
. Since properties 1,2 and 3 above rely on strict inequalities

it is easy to see that there is an r > 0 such that any family {yi | yi ∈ B(β
i
, r)} is

also a PSP. If any such πik, for i ∈ I ∪ J and k ∈ J , is not one-to-one, replace it

with a new DM πik as follows. (If any πik is one-to-one, set πik(θ) = πik(θ).) Fix any

enumeration of the type-space Θ = {θ1, . . . , θL}. Let

πik(θ
1) := πik(θ

1),

12See Abreu, Dutta and Smith (1991).
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and for l ≥ 1 pick an arbitrary element

πik(θ
l+1) ∈ B

(
πik(θ

l), r
)
\
{
πik(θ

1), . . . , πik(θ
l)
}
.

Now define βi := Eµ[u (πi(θ))] for all i ∈ I ∪ J .

Proof of the Theorem.

Fix any (correlated) SCF f ∗ ∈ FC(µ). Suppose that f in the support of f ∗is a SCF

that needs to be supported given the realization of the public correlation device; let

v := u(f) denote the corresponding payoff.

Let ū := maxI,A,Θ |ui(a, θ)| be the least upper bound on the payoffs in the stage-

game. Find a parameter q ∈ (0, 1) such that

ū(1− q) < βii(2− q)− wCi ∀i ∈ I ∪ J . (28)

Such a q exists because at q = 1 this inequality becomes 0 < βii − wCi , which is

satisfied by construction of βi (see Lemma 2). Use Lemma 2 to find a family of

profiles of direct mechanisms {πi : Θ → A | 1 ≤ i ≤ I + J} such that each πik is

one-to-one and the family {βi := Eµu (πi(θ)) | i ∈ N} is a PSP for v = u(f).

Strategies are defined by the following rules.

1. Play starts in phase I. Each principal j offers the DM π∗j = fj. Agents report

the actual type θti to all principals at time t. If principal j deviates unilaterally

(offers a mechanism other than π∗j ), agents play a one-shot continuation equi-

librium in the current period; play moves to phase IIj from the next period.

If π∗ is offered but the action profile chosen in the current period does not

belong to Â(π∗), all players can infer that some agent deviated; if one agent i

can be identified as the deviator, move to phase IIi; otherwise move to phase

IIj with probability 1/I for each agent j (not for principals).

2. Phase IIj proceeds as follows for 1 ≤ j ≤ J . Let gj : Γj → Aj be as in

equation (27) and ϕ̄jk(α̃j) be as defined in (23). Principal j can potentially

offer any complex mechanism in this phase. When γj is offered by principal

j, agents send messages to j to induce the action gj(γj) ∈ im(γj) irrespective

of their types. Each principal k 6= j offers the ADM τ̄ jk that asks the agents
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to report the action gj(γj) and their true type; if a majority of agents reports

gj(γj), the DM ϕ̄jk(g
j(γj)) is used by principal k to determine his own action.

Phase IIi proceeds as follows for J + 1 ≤ i ≤ J + I. Principals offer the profile

πi that attains the minmax value wCi of agent i. If any player l deviates while

in this phase, start phase IIl; otherwise, switch to phase IIIi with probability

1− q ∈ (0, 1) after each period spent in phase IIi.

If a deviation is detected, then (i) start phase IIl if player l can be identified

as the deviator w.p. 1; (ii) if there is no unique player who can be identified

as the deviator, move to phase IIj with probability 1/I for each agent j (not

for principals). If there is no deviation, switch to phase IIIj with probability

1− q ∈ (0, 1) independently across time after each period spent in phase IIj.

3. In phase IIIj, for 1 ≤ j ≤ J+I, principal k offers π̄jk ∈ Πk, which has expected

payoff vector βj; agents report truthfully. Remain forever in this phase, unless

any player l deviates unilaterally and triggers phase IIl.

Verification of Equilibrium:

A deviation by a principal is observable by all players. However not all deviations

by agents can be detected with probability 1. If principals offer a profile of DMs

π satisfying CIC, no consistent but false type report is profitable; any profitable

profitable inconsitent type report by agent i is detected with a minimum probability

min
(θ̃ij)j∈(Θ̃)J

µ
{
θ−i ∈ Θ−i | (π1(θ̃i1, θ−i), . . . , πJ(θ̃iJ , θ−i)) /∈ Â(π)

}
.

For any profile π, let pmin(π) be the minimum of the above probabilities over all

agents i. Now define

pmin := min{pmin(π∗), pmin(π̄1), . . . , pmin(π̄I+J).}

By the one-shot deviation principle, it suffices to show that the proposed strat-

egy is unimprovable, i.e. no one-shot deviation by any player i from any phase is

profitable.

Let Lij denote player j’s expected utility from the beginning of phase IIi. First,

with j = i, player i’s lifetime (discounted average) payoff in phase IIi is defined
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recursively as Lii = (1− δ)wCi + δ (qLii + (1− q)βii), so that

Lii =
(1− δ)wCi + δ(1− q)βii

1− δq
. (29)

Note that Lii → βii as δ → 1. When calculating Lij for j 6= i we have to bound the

expected utility on both sides:

(1− δ)(−ū) + δ
(
qLij + (1− q)βij

)
≤ Lij ≤ (1− δ)ū+ δ

(
qLij + (1− q)βij

)
.

As δ → 1 it is easy to check that Lij → βij.

1. Phase IIIi for 1 ≤ i ≤ I + J : Note that the mechanisms used in this phase

are all one-to-one by construction; this means that any deviator, principal or

agent, is commonly known to all players, and the quantity pmin plays no role.

From the definitions it is clear that the difference in the lifetime payoffs to

one-shot deviation and conformity is at least

(1− δ)ū+ δLii − βii = (1− δ)
[
ū− (1 + δ − δq) βii − δwCi

1− δq

]
(30)

using (29). An immediate implication of inequality (28) defining q is that (30)

is strictly negative for all δ close to 1, so that i cannot profitably deviate from

Phase IIIi. Since βij > βjj ∀j 6= i, it is immediate that (1− δ)ū + δLii − βii for

such δ and therefore players j 6= i do not have a profitable one-shot deviation

either from Phase IIIi.

2. Phase IIi for 1 ≤ i ≤ I + J : Any agent j will not deviate from IIi if

(1− δ)ū+ δ{(1− p)Lij +
p

I

∑
k 6=j

Lkj +
p

I
Ljj} ≤ Lij,

where p ≥ pmin is the prob with a deviation is detected when agent j deviates.

Hence a sufficient condition is

maxk β
k
j −mink β

k
j

maxk βkj − β
j
j

<
pmin

I
.

Caveat: When we choose the betas we have to make sure that for some ε > 0
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we have βjj + 2ε = βij = βkj for all k, i 6= j and that the perturbation to make

one-to-one is less than ε.

Since deviation by any principal j are obs w.p. 1, it is easier to check that

deviations are not profitable.

3. Phase I for 1 ≤ i ≤ I + J : A deviation by a principal is identified with

probability 1. Note that unlike a usual repeated game this probability may be

strictly lower than 1 in case an agent sends an inconsistent message outside her

Bi(π
∗). (Recall that inconsistent messages within Bi(π

∗) cannot be detected

and are deterred by IC.)

(1− δ)ū+ δ{(1− p)vj +
p

I

∑
k 6=j

Lkj +
p

I
Ljj} ≤ vj,

which simplifies to ∑
k 6=j

βkj + βjj < Ivj,

which is satisfied because vj > βij (target payoff domination) for all i and j;

strategies in phase I are therefore unimprovable.

In sum, for high δ, the posited strategy profile is unimprovable after all histories,

and hence is an equilibrium. �
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