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Abstract

We study robust mechanisms to sell a common-value good. We assume that the

mechanism designer knows the prior distribution of the buyers’ common value but is

unsure about the buyers’ information structure. We use linear programming duality

to derive mechanisms that guarantee a good revenue among all information structures

and all equilibria. When there are two buyers and a uniform [0, 1] distribution of

common value, our mechanism guarantees a revenue of at least 0.27 for any information

structure and any equilibrium, which is 0.27/0.5 = 54% of the best possible revenue.

When there is a single buyer, we obtain the optimal mechanism that maximizes the

revenue guarantee among all information structures and all equilibria.

1 Introduction

In this paper we study robust mechanism design for selling a common-value good. A robust

mechanism is one that works well under a variety of circumstances, in particular under weak

assumptions about participants’ information structure. The goal of robust mechanism design

is to reduce the “base of common knowledge required to conduct useful analyses of practical

problems,” as envisioned by Wilson (1987).

The literature on robust mechanism design has so far largely focused on private value

settings.1 Common value is of course important in many real-life markets (particularly

∗I thank Gabriel Carroll, Vitor Farinha Luz and Ben Golub for comments and discussions.
1See Chung and Ely (2007), Frankel (2014), Li and Chen (2015), Yamashita (2015, 2016), Carroll (2015,

2016), Carrasco, Farinha Luz, Monteiro, and Moreira (2015), among others; we follow this literature by
adopting a max-min approach for robust mechanisms.
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financial markets) and has a long tradition in auction theory. Robustness with respect to

information structure is especially relevant in a common-value setting, since it is hard in

practice to pinpoint exactly what is a signal (or a set of signals) for a participant and to

quantify the correlation between the signal and the common value, not to mention specifying

the joint distribution of signals for all participants that correctly captures their beliefs and

higher order beliefs about the common value.

We are inspired by a recent paper of Bergemann, Brooks, and Morris (2015) which,

among other results, shows that in a first price auction of a common value good and for

a fixed prior distribution of value, there is a strictly positive lower bound such that for

any information/signal structure that is consistent with the prior the equilibrium revenue is

always above that lower bound. For example, if there are two buyers and a uniform [0, 1]

prior distribution for the common value, then the seller can guarantee a minimum revenue

of 1/6 for any information structure consistent with the prior and any equilibrium from

the information structure. Notice that the maximum revenue that the seller can possibly

achieve in equilibrium is 1/2 which is the expected common value, so the minimum revenue

guarantee of 1/6 is already 33% of the best case scenario. This is quite an attractive prospect

for a ambiguity averse seller (in the sense of Gilboa and Schmeidler (1989)) who has large

uncertainty about buyers’ information structure.

The natural followup question is whether we can achieve an even better revenue guar-

antee with alternative mechanisms. To answer this question we take a max-min approach,

where we first minimize the revenue over the set of information structures and equilibria

for a given mechanism, and then maximize the minimized revenue over the set of mecha-

nisms. Bergemann and Morris (2016) points out that we can combine information structure

and equilibrium into a single entity called Bayes Correlated Equilibrium, which is a joint

distribution over actions and value subject to incentive and consistency constraints. We

note that minimizing revenue over Bayes correlated equilibria for any fixed mechanism is a

linear programming problem, and we can equivalently solve the dual of that problem which

is a maximization problem over the dual variables of constraints associated with Bayes cor-

related equilibrium. These dual variables have the interpretation as transition probability

rates for a continuous-time Markov process over discrete states. Moreover, we can combine

the maximization over these dual variables with the maximization over the mechanism de-

sign variables, so we have a single maximization problem which is equivalent to but more

tractable than the original max-min problem.

This dual approach yields new mechanisms with better revenue guarantee than the first
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price auction. Here we describe the simplest mechanism given by our framework: suppose

two buyers, a single good to sell, and a uniform [0, 1] distribution of common value for the

good. Consider a binary mechanism: each buyer simultaneously says Yes or No, with the

following allocations and payments:

1. If one says No, then he pays nothing and does not get the good.

2. If one says Yes and the other says No, the Yes buyer pays 3/16 and gets the good.

3. If both say Yes, then each still pays 3/16 individually and each gets the good with

probability 1/2.

We claim that this mechanism guarantees a minimum revenue (over all information structures

and equilibria) of 3/16, which is higher than 1/6 from a first price auction. We leave the

proof of this claim and how we derive this mechanism to Section 3.1. Let us sketch here

some examples of information structure and illustrate the performance of this mechanism.

First, take the information structure in which both buyers know exactly the common value

v, for each v ∈ [0, 1]. Consider the symmetric mixed-strategy equilibrium in which a buyer

says Yes with probability ρ(v). For v ∈ [3/16, 3/8] each buyer is indifferent between Yes and

No, so

(1− ρ(v))v + ρ(v)v/2 = 3/16. (1)

In this mixed-strategy equilibrium, the expected revenue is∫ 3/8

3/16

(
3/16 · 2ρ(v)(1− ρ(v)) + 3/8 · ρ(v)2

)
dv + (1− 3/8) · 3/8 ≈ 0.277526, (2)

which is indeed higher than the lower bound of 3/16.

Consider another information structure with two signals (high and low): conditional on

v ≤ 1/4, both buyers get the low signals; conditional on 1/4 ≤ v ≤ 3/4, with probability 1/2

buyer 1 gets the high signal and buyer 2 gets the low signal (and vice versa with probability

1/2); conditional on v ≥ 3/4, both buyers get the high signals. Suppose that each buyer says

Yes if he gets the high signal and says No if he gets the low signal. This is an equilibrium:

conditional on a buyer receiving the low signal, his expected payoff from saying Yes is:∫ 1/4

0
v dv + 1

2

∫ 3/4

1/4
v/2 dv

1/2
− 3

16
= 0,
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which is the same as his payoff from saying No. And conditional on a buyer receiving a high

signal, his expected payoff from saying Yes is:

1
2

∫ 3/4

1/4
v dv +

∫ 1

3/4
v/2 dv

1/2
− 3

16
> 0,

which is strictly better than saying No. Finally, it is easy to see that the expected revenue

from this equilibrium is 3/16, exactly hitting the lower bound.

We generalize the previous mechanism by allowing for more messages. As the number of

messages increases, the revenue that the generalized mechanism guarantees (over all infor-

mation structures and all equilibria) becomes better. In the limit as the number of messages

tends to infinity, the generalized mechanism guarantees a revenue of 0.27 when there are

two buyers and a uniform [0, 1] distribution of common value. Moreover, we apply the same

methodology to the case of one buyer and show that the resulting mechanism achieves the

optimal revenue guarantee. Here we make a connection to Roesler and Szentes (2016), who

study the optimal information structure for a buyer when the seller is best responding to this

information structure. The information structure and revenue given by Roesler and Szentes

(2016) yield a subtle upper bound on the revenue that any mechanism can guarantee with

one buyer, and we show that our mechanism exactly achieves this upper bound.

Our paper is also related to Yamashita (2016), who studies revenue guarantee in mech-

anisms with private values. Besides the distinction between common vs. private value, the

two papers use different notions of guarantee. Our paper considers the minimum revenue

over every information structure and every equilibrium of the information structure, while

Yamashita (2016) considers the minimum revenue over every information structure and some

equilibrium of the information structure. Thus we use a more demanding notion of guarantee.

2 Model

Information

Suppose the mechanism designer has a single good to sell, and there are a finite number of

buyers (let I be the set of buyers, with 1 ≤ |I| < ∞). The buyers have a common value

v ∈ V = {v, v+ ν, v+ 2ν, . . . , v} for the good and have quasi-linear utility. Let p ∈ ∆(V ) be

the prior distribution of value; the prior p is known by the designer as well as by the buyers.

(The designer only knows the prior p about the value.) Without loss suppose that p(v) > 0
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for every v ∈ V .

Each buyer i may possess some additional information ti ∈ Ti about the common value

beyond the prior, where p̃ ∈ ∆(V ×
∏

i∈I Ti) such that margV p̃ = p,2 so his information

about the common value is informed by p̃( · | ti). As discussed in the introduction, the

information structure (Ti, p̃)i∈I is not known by the designer.

Mechanism

A mechanism is a set of allocation rules qi : M → [0, 1] and payment rules Pi : M → R
satisfying

∑
i∈I qi(m) ≤ 1, where Mi is the message space of buyer i, and M =

∏
i∈IMi the

space of message profile. We assume that a mechanism always has an opt-out option for

each buyer i: there exists a message mi ≡ 0 ∈ Mi such that qi(0,m−i) = Pi(0,m−i) = 0 for

every m−i ∈M−i.

Equilibrium

Given a mechanism (qi, Pi)i∈I and an information structure (Ti, p̃)i∈I , we have a game of

incomplete information. A Bayes Nash Equilibrium (BNE) of the game is defined by strategy

σi : Ti → ∆(Mi) for each buyer i such that for every ti ∈ Ti, the support of σi(ti) are best

responding to others’ strategies:

suppσi(ti) ∈ argmax
mi∈Mi

∑
(v,t−i)∈V×T−i

(vqi(mi, σ−i(t−i))− Pi(mi, σ−i(t−i))p̃(v, t−i | ti). (3)

The ex ante distribution µ ∈ ∆(V ×M) generated by any BNE (σi)i∈I of any information

structure (Ti, p̃)i∈I satisfies the following two conditions:∑
m∈M

µ(v,m) = p(v), v ∈ V, (4)∑
(v,m−i)∈V×M−i

µ(v,m)
(
vi(qi(mi,m−i)− qi(m′i,m−i))− Pi(mi,m−i) + Pi(m

′
i,m−i)

)
≥ 0,

i ∈ I, (mi,m
′
i) ∈Mi ×Mi. (5)

A distribution µ ∈ ∆(V ×M) that satisfies the above two conditions is called a Bayes

Correlated Equilibrium (BCE) of the mechanism (qi, Pi)i∈I . For any BCE µ, there exists

2Let margV p̃ be the marginal distribution of p̃ over V .
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an information structure and a BNE of that information structure that generates µ. See

Bergemann and Morris (2016) for more details.

Designer’s problem

Since the mechanism designer does not know the buyers’ information structure, a natural

way for him to design his mechanism is to be cautious and maximize the minimum revenue

among all information structure and equilibrium.

The mechanism designer wants to solve:

max
(qi,Pi)i∈I

min
µ∈∆(V×M)

∑
(v,m)

∑
i

µ(v,m)Pi(m) (6)

such that µ is a BCE of (qi, Pi)i∈I

2.1 Minimum-Revenue BCE

As a prerequisite to solve the designer’s problem, we first study the minimum revenue gen-

erated by its BCE for a fixed mechanism (Pi, qi)i∈I . We define

Ui(v,m) ≡ vqi(m)− Pi(m), m ∈M, v ∈ V. (7)

The BCE that minimizes revenue can be found by the following primal problem:

min
µ

∑
(v,m)

∑
i

Pi(m)µ(v,m) (8)

subject to:∑
(v,m−i)

(Ui(v,m)− Ui(v, (m′i,m−i)))µ(v,m) ≥ 0, i ∈ I, (mi,m
′
i) ∈Mi ×Mi,∑

m

µ(v,m) = p(v), v ∈ V,

µ(v,m) ≥ 0, v ∈ V,m ∈M.

For notational brevity, we omit the set of which a summation variable belongs when it is

obvious; for example, summing over m means summing over m ∈M .

6



The dual problem is:

max
(αi,γ)i∈I

∑
v

p(v)γ(v) (9)

subject to:

γ(v) +
∑
i

∑
m′i

(Ui(v,m)− Ui(v, (m′i,m−i)))αi(m′i | mi) ≤
∑
i

Pi(m), v ∈ V,m ∈M,

αi(m
′
i | mi) ≥ 0, i ∈ I, (mi,m

′
i) ∈Mi ×Mi,

where α(m′i | mi) is the dual variable for the obedience or incentive constraint of not playing

m′i when advised to play mi in (8), and γ(v) is the dual variable for the consistency constraint

of
∑

m µ(v,m) = p(v).

The dual problem can be succinctly written as:

max
(αi)i∈I

∑
v

p(v) ·min
m

Rev(v,m), (10)

where

Rev(v,m) ≡
∑
i

Pi(m) +
∑
m′i

(Ui(v,m
′
i,m−i)− Ui(v,m))αi(m

′
i | mi)

 . (11)

We note that Rev(v,m) is independent of the value of αi(mi | mi) for every mi.

Here is an interesting representation of Rev(v,m) by matrices when there are two buyers:

suppose buyer 1’s messages M1 are the rows, and buyer 2’s messages M2 are the columns,

Rev(v), Pi and Ui(v) are M1 ×M2 matrices,

Rev(v) = P1 + α1 · U1(v) + P2 + U2(v) · α2, (12)

where α1 is a M1 ×M1 transition rate matrix (or Q matrix): the off-diagonal entries of α1

are non-negative, each row of α1 sums to 0; and α2 is a M2 ×M2 transition rate matrix:

the off-diagonal entries of α2 are non-negative, each column of α2 sums to 0. Transition rate

matrix is the analogue of the transition probability matrix for a continuous-time Markov

process over discrete states (see Stroock (2013), Chapter 5).

The Problem (9) is bounded, by the following lemma:
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Lemma 1. For any {αi(m′i | mi)} such that αi(m
′
i | mi) ≥ 0 for m′i 6= mi, we have

min
m

Rev(v,m) ≤ v, (13)

for every v ∈ V .

Proof. Fix an arbitrary v ∈ V . Consider the problem:

max
γ,(αi)i∈I

γ (14)

subject to:

γ +
∑
i

∑
m′i

(Ui(v,m)− Ui(v, (m′i,m−i)))αi(m′i | mi) ≤
∑
i

Pi(m), m ∈M,

αi(m
′
i | mi) ≥ 0, i ∈ I, (mi,m

′
i) ∈Mi ×Mi.

The dual to the above problem is:

min
µ

∑
m

µ(m)
∑
i

Pi(m) (15)

subject to:∑
m−i

µ(m)(Ui(v,m)− Ui(v, (m′i,m−i))) ≥ 0, i ∈ I, (mi,m
′
i) ∈Mi ×Mi,∑

m

µ(m) = 1,

µ(m) ≥ 0, m ∈M,

which is minimizing the revenue over complete-information correlated equilibria µ (for the

fixed v). For any µ satisfying the constraints, we have
∑

m−i
µ(m)Ui(v,m) =

∑
m−i

µ(m)(vqi(m)−
Pi(m)) ≥ 0 for every i ∈ I and mi ∈ Mi because of the presence of the opt-out mes-

sage 0 ∈ Mi. Therefore,
∑

m µ(m)
∑

i(vqi(m) − Pi(m)) ≥ 0, and
∑

m µ(m)
∑

i Pi(m) ≤∑
m µ(m)

∑
i vqi(m) ≤ v. Thus the optimal solution of (14) is bounded above by v.
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3 Revenue Guarantee with Two Buyers

Given the previous derivations, mechanism designer’s problem in (6) can be written as:

max
(Pi,qi,αi)i∈I

∑
v

p(v) ·min
m

Rev(v,m) (16)

subject to:

Rev(v,m)

=
∑
i

Pi(m) +
∑
i

∑
m′i

(v(q(m′i,m−i)− q(m))− P (m′i,m−i) + P (m))αi(m
′
i | mi), v ∈ V,m ∈M,

qi(m) ≥ 0, i ∈ I,
∑
i

qi(m) ≤ 1, m ∈M,

qi(0,m−i) = Pi(0,m−i) = 0, m−i ∈M−i, αi(m
′
i | mi) ≥ 0, (mi,m

′
i) ∈Mi ×Mi, i ∈ I.

where we label the opt-out message as 0 ∈Mi.

The advantage of problem (16) over the equivalent problem (6) is that we minimize over a

finite set M instead of an infinite set in ∆(V ×M). Moreover, (16) is a bilinear programming

problem: fixing the mechanism (Pi, qi)i∈I the maximization problem over (αi)i∈I is linear;

and fixing the dual variables (αi)i∈I the maximization problem over (Pi, qi)i∈I is also linear.

In this section we restrict to the case of two buyers (I = {1, 2}) and symmetric mechanism

and dual variables in the sense of Definition 1. We abbreviate (q1, P1, α1) to (q, P, α). We

also allow the possibility of ν → 0 (the set of values becomes a continuum); as ν → 0, the

sum in (16) can be approximated by an integral, since the allocations and prices that we

obtain in the following sections are bounded.

Definition 1. Suppose there are two buyers I = {1, 2}. The tuple (qi, Pi, αi)i∈I is symmetric

if M1 = M2, q1(m1,m2) = q2(m2,m1), P1(m1,m2) = P2(m2,m1), and α1(m2 | m1) = α2(m2 |
m1) hold for every m1,m2 ∈M1 = M2.

3.1 Two Messages

Consider first a mechanism with two messages: M1 = M2 = {0, 1} (where 0 is the opt-out

message).

We write the objective of Problem (16) as:

Π =

∫
min(Rev(v, (0, 0)),Rev(v, (1, 0)),Rev(v, (1, 1))) p(dv), (17)
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which we want to maximize subject to feasibility constraints: 0 ≤ q(1, 0) ≤ 1 and 0 ≤
q(1, 1) ≤ 1/2 (recall that q(0, 1) = q(0, 0) = 0 = P (0, 0) = P (0, 1)). By symmetry we have

Rev(v, (0, 1)) = Rev(v, (1, 0)).

Suppose α(0 | 1) = 0 and α(1 | 0) = a > 0. Under these assumptions,

∂ Rev(v,m)

∂q(1, 0)
=

2av m = (0, 0)

0 m 6= (0, 0)
(18)

Similarly for the derivative with respect to q(1, 1). Thus we have

∂Π

∂q(1, 0)
≥ 0 and

∂Π

∂q(1, 1)
≥ 0, (19)

and to maximize Π we set q(1, 0) = 1 and q(1, 1) = 1/2.

We compute:

Rev(v, (0, 0)) = 2av − 2aP (1, 0), (20)

Rev(v, (1, 0)) = av/2− aP (1, 1) + P (1, 0),

Rev(v, (1, 1)) = 2P (1, 1).

Thus, we solve

Π∗ ≡ max
a≥0, P (1,0), P (1,1)

∫
min

(
2av − 2aP (1, 0),

av

2
− aP (1, 1) + P (1, 0), 2P (1, 1)

)
p(dv).

(21)

Suppose p is the uniform distribution on [0, 1]. The optimal solution to the above problem

is P (1, 0) = P (1, 1) = 3/16 and a = 1, and they give the maximum Π∗ = 3/16.

Proposition 1. Suppose there are two buyers and the prior p is the uniform distribution on

[0, 1]. The symmetric mechanism of M1 = M2 = {0, 1} and

q(0, 0) = q(0, 1) = 0, q(1, 0) = 1, q(1, 1) = 1/2, (22)

P (0, 0) = P (0, 1) = 0, P (1, 0) = P (1, 1) = 3/16,

guarantees a minimum revenue (among all BCE) of 3/16.

For comparison we note that for the same setting (two buyers, uniform distribution of

common value) the first price auction guarantee a minimum revenue (among all BCE) of
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1/6; see Bergemann, Brooks, and Morris (2015). And Lemma 1 implies that the revenue

that any mechanism can guarantee among BCE is bounded above by E[v] = 1/2 (since any

BCE revenue in any mechanism is less or equal to 1/2), although this bound is unlikely to

be tight.

For the mechanism in Proposition 1, the dual variables of α(1 | 0) = 1 and α(0 | 1) = 0

satisfies the complementary slackness conditions for Problems (8) and (9) with respect to

primal variables µ(v,m) such that

µ( · | v) =


1(0,0) v < 1/4

1
2
· 1(0,1) + 1

2
· 1(1,0) 1/4 ≤ v < 3/4

1(1,1) v ≥ 3/4

, (23)

margV µ = uniform distribution on [0, 1].

Recall that µ(v,m) is the BCE described in the introduction. From the complementary

slackness conditions we conclude that α solves Problem (9) and µ solves Problem (8), so µ

is the BCE that minimizes revenue for this mechanism.

3.2 General Messages

We can do better with more messages. In general we want to maximize:

Π =

∫
min
m∈M

(Rev(v,m)) p(dv), (24)

subject to the feasibility constraints. Thus, it makes sense to make Rev(v,m) over m as

redundant as possible, to minimize the number of things in min(·) inside the integral.

Consider a mechanism with k + 1 messages: M1 = M2 = {0, 1, . . . , k}. Our usual

assumption on the mechanism is:

q(0, j) = 0 = P (0, j), q(j, l) ≥ 0, q(j, l) + q(l, j) ≤ 1, (j, l) ∈ {0, 1, . . . , k}2. (25)
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We make the following additional assumptions:

Rev(v, (0, 0)) = Rev(v, (j, l)), v ∈ V, (j, l) ∈ {0, 1, . . . , k − 1}2 (26)

Rev(v, (0, k)) = Rev(v, (j, k)), v ∈ V, j ∈ {0, 1, . . . , k − 1}

α(j′ | j) =

a j′ = j + 1

0 j′ 6= j + 1
, (j, j′) ∈ {0, 1, . . . , k}2, (27)

where a is a positive constant.3

Condition (26) attempts to make Rev(v,m) as redundant as possible. Condition (27) is

for tractability and is inspired by binding local incentive constraints.

Under (27), Equation (26) holds if and only if

2q(1, 0) = q(j + 1, l)− q(j, l) + q(l + 1, j)− q(l, j), (j, l) ∈ {0, 1, . . . , k − 1}2,

q(1, k) = q(j + 1, k)− q(j, k), j ∈ {0, 1, . . . , k − 1}, (28)

and

−2aP (1, 0) = P (j, l) + P (l, j)− a(P (j + 1, l)− P (j, l))− a(P (l + 1, j)− P (l, j)),

(j, l) ∈ {0, 1, . . . , k − 1}2,

P (k, 0)− aP (1, k) = P (j, k) + P (k, j)− a(P (j + 1, k)− P (j, k)), j ∈ {0, 1, . . . , k − 1}.
(29)

Since

∂ Rev(v,m)

∂(q(j + 1, l)− q(j, l))
=


av m = (j, l) or (l, j), and j 6= l

2av m = (j, l), and j = l

0 otherwise

, (30)

in the optimum the feasibility constraint q(j, k) + q(k, j) ≤ 1 should bind (if not, we can

increase q(k, j) without decreasing any Rev(v,m) or violating any feasibility constraint):

q(j, k) + q(k, j) = 1, j ∈ {0, 1, . . . , k}. (31)

Lemma 2. For every k ≥ 1, there exists {q(j, l) : 1 ≤ j ≤ k, 0 ≤ l ≤ k} that satisfies

3By symmetry, the second line of (26) implies that Rev(v, (0, k)) = Rev(v, (k, 0)) = Rev(v, (k, j)) =
Rev(v, (j, k)), j = 0, 1, . . . , k − 1.
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Conditions (25), (28) and (31). For any such q we have q(1, 0) = (3k + 1)/(4k2) and

q(1, k) = 1/(2k).

Lemma 3. For any given values of a > 0, k ≥ 1, P (1, 0), P (1, k) and P (k, 0), there exists

{P (j, l) : 1 ≤ j ≤ k, 0 ≤ l ≤ k, (j, l) 6∈ {(1, 0), (1, k), (k, 0)}} that satisfies Condition (29).

For any such P we have

P (k, k) =
(
(1 + 1/a)k − 1

)2
aP (1, 0) + ((1 + 1/a)k − 1)(aP (1, k)− P (k, 0)). (32)

Using the above two lemmas and Equation (27), we compute:

Rev(v, (0, 0)) =
3k + 1

2k2
av − 2aP (1, 0), (33)

Rev(v, (0, k)) =
av

2k
− aP (1, k) + P (k, 0),

Rev(v, (k, k)) = 2
(
(1 + 1/a)k − 1

)2
aP (1, 0) + 2((1 + 1/a)k − 1)(aP (1, k)− P (k, 0)).

Define,

X ≡ aP (1, 0), Y ≡ aP (1, k)− P (k, 0) (34)

We thus solve:

Π∗ ≡ max
k≥1, a≥0, X, Y

∫
min

(
3k + 1

2k2
av − 2X,

av

2k
− Y, 2

(
(1 + 1/a)k − 1

)2
X + 2((1 + 1/a)k − 1)Y

)
p(dv).

(35)

Proposition 2. Suppose there are two buyers. There exists a symmetric mechanism that

guarantees a minimum revenue (among all BCE) of Π∗ defined in (35).

Proof. The proof is given by the construction above.

We now elaborate on the allocation and payment rules for the mechanism in Proposition 2.

Let us fix k, a, X, Y from solving (35).

Consider the following allocation rule:

q(j + 1, l)− q(j, l) =


(2k + 1)/(4k2) j < l

(3k + 1)/(4k2) j = l

(4k + 1)/(4k2) j > l

, (j, l) ∈ {0, 1, . . . , k − 1}2, (36)

q(j + 1, k)− q(j, k) = 1/(2k), j ∈ {0, 1, . . . , k − 1},
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where the first and second lines above are constructed to satisfy the first and second lines of

Condition (28), respectively. Because of Condition (31), we must have q(1, 0) = q(l+ 1, l)−
q(l, l) = (3k+ 1)/(4k2) by Lemma 2. In the proof to Lemma 2 we show that the above q is a

legitimate allocation rule (it satisfies the feasibility constraint (25)) and satisfies Condition

(31) as well.

Since q(0, l) = 0 for every l, Equation (36) is equivalent to:

q(j, l) =


j(2k + 1)/(4k2) j ≤ l, l < k

[l(2k + 1) + 3k + 1 + (j − l − 1)(4k + 1)]/(4k2) j > l, l < k

j/2k l = k

. (37)

Among the manifold of possibilities, we choose the following simplest solution to (29):

P (j, l)− a(P (j + 1, l)− P (j, l)) =

−aP (1, 0) 0 ≤ l < k,

−aP (1, k) l = k,
, j ∈ {0, 1, . . . , k − 1}. (38)

The case of 0 ≤ l < k in (38) clearly satisfies the first line of (29) and implies that P (j, 0) =

P (j, 1) = · · · = P (j, k− 1) for every j. And given P (k, 0) = P (1, 0) = · · · = P (k, k− 1), the

case of l = k in (38) implies the second line of (29).

Since we have P (j+ 1, l)−P (j, l) = (1 + 1/a)(P (j, l)−P (j−1, l)) in (38), Equation (38)

is equivalent to:

P (j, l) =

((1 + 1/a)j − 1)aP (1, 0) 0 ≤ l < k

((1 + 1/a)j − 1)aP (1, k) l = k
, (j, l) ∈ {0, 1, . . . , k}2. (39)

In Equation (39) we take (cf. (34)):

P (1, 0) = X/a, (40)

P (1, k) = (Y + P (k, 0))/a =
(
Y +

(
(1 + 1/a)k − 1

)
X
)
/a.

3.3 Uniform Distribution

Suppose the prior p is the uniform distribution on [0, 1]. In the Appendix we solve (35) and

get:
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Corollary 1. Suppose there are two buyers and the prior p is the uniform distribution on

[0, 1]. There exists a symmetric mechanism that guarantees a minimum revenue (among

all BCE) of Π∗ ≈ 0.273. This is given by k → ∞, a/k → 0.7367, X = 0.102496 and

Y = −0.201343 in (35).

For variables j and l in q(j, l) and P (j, l), let us re-parameterize them as x1 ≡ j/k and

x2 ≡ l/k. As k → ∞, the allocation rule for the mechanism of Corollary 1, as described in

(37), becomes:

q(x1, x2) =

x1/2 x1 ≤ x2

x1 − x2/2 x1 > x2

, (x1, x2) ∈M1 ×M2 = [0, 1]2. (41)

As k → ∞, the P defined in (39) is unfortunately discontinuous at x2 = 1. The dis-

continuity is driven by the fact that we have solved the two lines of (29) separately to get

(39).

Let

A ≡ lim
k→∞

a/k = 0.7367. (42)

As k →∞, Condition (29) is implied by the following ordinary differential equation:

P (x1, x2)− A · P1(x1, x2) + P (x2, x1)− A · P1(x2, x1) = C, (x1, x2) ∈ [0, 1]2, (43)

P (0, x2) = 0, P1(1, x2) = D, x2 ∈ [0, 1],

for constants C and D, where we abuse the notation by letting P1 be the partial derivative

of P with respect to the first parameter. We insist on P1(1, x2) = D so that both lines of

(29) are simultaneously implied by P (x1, x2)−A ·P1(x1, x2) +P (x2, x1)−A ·P1(x2, x1) = C.

We conjecture that there is a continuous solution to (43).

4 Revenue Guarantee with a Single Buyer

In this section we consider the case of one buyer I = {1} for comparison. In this case the

buyer does not necessarily know his own value, and each BCE corresponds to an information

structure about value and the associated equilibrium play. In the case of one buyer we know

sharp upper bound on the BCE revenue that the designer can guarantee. For example, if

the prior is the uniform distribution on [0, 1], the designer can guarantee (among all BCE)

a revenue of at most 1/4: fix any mechanism, there is a BCE corresponding to the buyer

15



knowing his value (i.e., the classical private-value information structure), and its revenue

must be less than 1/4 which is obtained by the private-value optimal mechanism (a posted

price of 1/2).4 In fact, a result of Roesler and Szentes (2016) gives a tighter and more subtle

upper bound: the designer can guarantee (among all BCE) a revenue of at most 0.2036

for uniform [0, 1] distribution. We will show that for the case of one buyer the analogues

of Assumptions (26) and (27) give a mechanism that guarantees exactly the Roesler and

Szentes upper bound.

As before we abbreviate (q1, P1, α1) to (q, P, α). Consider k+1 messages: M1 = {0, 1, . . . , k}.
Our usual assumption on the mechanism is

q(0) = P (0) = 0, 0 ≤ q(j) ≤ 1, j = 0, 1, . . . , k. (44)

Using our previous methodology (making Rev(v,m) as redundant as possible), we con-

sider (q, P, α) such that:

Rev(v, 0) = Rev(v, 1) = · · · = Rev(v, k − 1), v ∈ V, (45)

α(j′ | j) =

a j′ = j + 1

0 j′ 6= j + 1
, (j, j′) ∈ {0, 1, . . . k}2, (46)

for a constant a > 0.

Under Condition (46), Equation (45) holds if and only if for every j ∈ {1, 2, . . . , k − 1},

q(j + 1)− q(j) = q(j)− q(j − 1),

P (j + 1)− P (j) =

(
1 +

1

a

)
(P (j)− P (j − 1)).

As before, the optimum must have q(k) = 1; thus we are led to the following mechanism:

q(j) = j/k, P (j) = P (1)a

((
1 +

1

a

)j
− 1

)
, 0 ≤ j ≤ k. (47)

4A posted price of 1/2 guarantees a BCE revenue of 0: if the buyer has no information beyond the
prior, then not buying the good is an equilibrium. While this is not the only equilibrium, we can construct
information structure in which the unique equilibrium has very little revenue: for example, when the buyer’s
information about the value is the partition {[0, 0.99), [0.99, 1]}, the only equilibrium is that the buyer chooses
not to buy if v ∈ [0, 0.99) and to buy if v ∈ [0.99, 1].
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By our construction, Problem (16) becomes

Π∗ ≡ max
k≥1, a≥0, P (1)

∫
min

(
av

k
− aP (1), P (1)a

((
1 +

1

a

)k
− 1

))
p(dv). (48)

Proposition 3. Suppose there is one buyer. There exists a mechanism that guarantees a

minimum revenue (among all BCE) of Π∗ defined in (48).

Proposition 4. Suppose there is one buyer and the prior p admits a density on [0, 1]. If

ρ ≥ 0 and A ≥ 0 satisfy∫ ρ exp(1/A)

0

v p(dv) = ρ/A,

∫ 1

ρ exp(1/A)

p(dv) = exp(−1/A), ρ exp(1/A) ≤ 1, (49)

then as k → ∞, a/k → A and P (1)k → ρ, the mechanism in (47) guarantees a minimum

revenue (among all BCE) of ρ. Moreover, there exists ρ ≥ 0 and A ≥ 0 that satisfy (49)

such that ρ is the best BCE revenue that the designer can guarantee, i.e., it is a solution to

Problem (16).

As k →∞, a/k → A and P (1)k → ρ, the mechanism in (47) becomes:

q(x) = x, P (x) = ρA(exp(x/A)− 1), x ∈M1 = [0, 1], (50)

where we re-parameterize x ≡ j/k for q(j) and P (j).

The first part of Proposition 4 comes from solving (48) and taking the first order condi-

tion. The second part is due to Roesler and Szentes (2016). Roesler and Szentes (2016) study

the optimal information structure for the buyer given the seller is best responding to this

information structure. Such information structure has the following cumulative distribution

function for signals:

GB
π (s) =


1 s ≥ B

1− π/s s ∈ [π,B)

0 s < π

, (51)

where s ∈ [0, 1] is an unbiased signal of the buyer for his value (E[v | s] = s), 0 < π ≤ B

are two free parameters, and there is an atom of size π/B at s = B. If the buyer has this

distribution of signals (and observes the realization of the signal), then the seller is clearly

indifferent between every posted price in [π,B] and has an optimal revenue of π.
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Clearly, GB
π (s) is a distribution of unbiased signal of v if and only if the prior p is a

mean-preserving spread of GB
π (s), which holds if and only if∫ 1

0

s dGB
π (s) =

∫ 1

0

v p(dv), and

∫ x

0

GB
π (s) ds ≤

∫ x

0

p(v ≤ s) ds for every x ∈ [0, 1], (52)

i.e., GB
π has the same mean as p and second-order stochastically dominates p.

Roesler and Szentes (2016) prove that the best information structure for the buyer is

GB
π∗ , where π∗ is the smallest π such that Condition (52) holds for some B (such B must be

unique). We note that if the buyer has information structure GB
π∗ , then in any mechanism

and any BCE of that mechanism the seller’s revenue is at most π∗, since the best mechanism

for the seller given a fixed information structure is a posted price mechanism (any posted

price in [π∗, B] generates a revenue of π∗ by construction)5.

Simple algebra in the appendix shows that ρ = π∗ satisfies (49) with some A, which

proves the second part of Proposition 4.

5The order of quantifiers is important: suppose p is the uniform distribution. For every posted price
mechanism, there exists an information structure for the buyer and an equilibrium of that information
structure in which the seller gets at most 1/8; 1/8 is given by P (1) = 1/4 and a = 1 which maximize (48)
when k = 1. At the same time π∗ = 0.2036.

18



Appendix

A Proofs

Proof of Lemma 2. We first prove the second part of the lemma. By (31) we have q(k, k) =

1/2. By the second line of (28) this implies that q(j, k) = j/(2k) and q(k, j) = 1 − j/(2k),

j = 0, 1, . . . , k. Then we have

k − (k − 1)k

4k
=

k−1∑
j=0

q(k, j) =
k−1∑
j=0

k−1∑
l=0

q(l + 1, j)− q(l, j) = k2q(1, 0) (53)

where the last equality follows from the first line of (29). Thus, q(1, 0) = (3k + 1)/(4k2).

For the first part, we claim that q defined by Equation (36) satisfies Conditions (28), (25)

and (31).

Condition (28) is obvious.

We clearly have q(j, k) = j/(2k) for every j = 0, 1, . . . , k from the second line of (36).

The third line of (36) implies that q(k, 0) = [(3k + 1) + (k − 1)(4k + 1)]/(4k2) = 1 and that

q(k, l) − q(k, l + 1) = (4k − 2k)/(4k2) = 1/(2k), l = 0, 1, . . . , k − 1. This proves Condition

(31).

Finally, for Condition (25), we need to show that q(j, l) + q(l, j) ≤ 1. The case of j = k

is shown in the previous paragraph, and when j = l ≤ k − 1 this follows from the fact that

q(j, j) = j(2k + 1)/(4k2) < 1/2 from the third line of (36). So suppose l < j ≤ k − 1.

We have q(j, l) − q(j, l − 1) = −2k/(4k2) and q(l, j) − q(l − 1, j) = (2k + 1)/(4k2) by the

third line of (36). This implies that q(j, l) + q(l, j) > q(j, l − 1) + q(l − 1, j) for every l < j.

Thus, it suffices to show that q(j − 1, j) + q(j, j − 1) ≤ 1 for every j = 1, 2, . . . , k − 1. Since

q(j−1, j) = q(j, j)− (2k+1)/(4k2) and q(j, j−1) = q(j, j)− (2k+1)/(4k2)+(3k+1)/(4k2),

we have q(j − 1, j) + q(j, j − 1) < 2q(j, j) < 1.

Proof of Lemma 3. We first prove the existence part of the lemma. There exists

{P (j, l) : 1 ≤ l ≤ k − 1, 1 ≤ j ≤ l + 1}

that satisfies the first line of (29), for any given values of

{P (j, l) : 1 ≤ j ≤ k, 0 ≤ l ≤ k − 1} \ {P (j, l) : 1 ≤ l ≤ k − 1, 1 ≤ j ≤ l + 1}.
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For the second line of (29), we can rewrite it as Rev(v, (j − 1, k)) = Rev(v, (j, k)), i.e.,

P (j + 1, k)− P (j, k) = (1 + 1/a)(P (j, k)− P (j − 1, k)) + (P (k, j)− P (k, j − 1))/a, (54)

for j = 1, 2, . . . , k − 1. Equation (54) implies that

P (j + 1, k)−P (j, k) = (1 + 1/a)jP (1, k) +

j∑
j′=1

(1 + 1/a)j−j
′
(P (k, j′)−P (k, j′− 1))/a, (55)

and as a consequence, for any j = 0, 1, . . . , k:

P (j, k) = a((1 + 1/a)j − 1)P (1, k) +

j−1∑
j′=1

((1 + 1/a)j−j
′ − 1)(P (k, j′)− P (k, j′ − 1)). (56)

Clearly, the above equation can be satisfied for any given values of P (1, k) and P (k, j),

j = 1, 2, . . . , k − 1. This proves the first part of the lemma.

Now fix an arbitrary P that satisfies Condition (29).

We claim that

X(l) ≡
l−1∑
j=1

(1 + 1/a)l−j(P (l, j)− P (l, j − 1))

= P (l, l − 1) + a((1 + 1/a)l − 1)2P (1, 0)− (1 + 1/a)lP (l, 0), (57)

for every l = 1, 2, . . . , k. Equation (57) for l = k and Equation (56) together imply Equation

(32), which proves the second part of the lemma.

Clearly, (57) is true for l = 1. Suppose (57) is true for l = κ < k as an induction

hypothesis; we prove that this implies (57) is true for l = κ+ 1.

From Rev(v, (κ, j − 1)) = Rev(v, (κ, j)) we have:

P (κ+ 1, j)− P (κ+ 1, j − 1) (58)

= (1 + 1/a)(P (κ, j)− P (κ, j − 1)) + (1 + 1/a)(P (j, κ)− P (j − 1, κ))

− (P (j + 1, κ)− P (j, κ)),
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summing the above equation across j = 1, 2, . . . , κ− 1 gives:

κ−1∑
j=1

(1 + 1/a)κ+1−j(P (κ+ 1, j)− P (κ+ 1, j − 1)) (59)

=
κ−1∑
j=1

(1 + 1/a)κ+2−j(P (κ, j)− P (κ, j − 1)) +
κ−1∑
j=1

(1 + 1/a)κ+2−j(P (j, κ)− P (j − 1, κ))

−
κ−1∑
j=1

(1 + 1/a)κ+1−j(P (j + 1, κ)− P (j, κ))

=
κ−1∑
j=1

(1 + 1/a)κ+2−j(P (κ, j)− P (κ, j − 1)) + (1 + 1/a)κ+1P (1, κ)− (1 + 1/a)2(P (κ, κ)− P (κ− 1, κ)).

That is,

X(κ+ 1) (60)

=
κ−1∑
j=1

(1 + 1/a)κ+2−j(P (κ, j)− P (κ, j − 1)) + (1 + 1/a)κ+1P (1, κ)

− (1 + 1/a)2(P (κ, κ)− P (κ− 1, κ)) + (1 + 1/a)(P (κ+ 1, κ)− P (κ+ 1, κ− 1))

= (1 + 1/a)2[P (κ, κ− 1) + a((1 + 1/a)κ − 1)2P (1, 0)− (1 + 1/a)κP (κ, 0)] + (1 + 1/a)κ+1P (1, κ)

− (1 + 1/a)2(P (κ, κ)− P (κ− 1, κ)) + (1 + 1/a)(P (κ+ 1, κ)− P (κ+ 1, κ− 1)),

where in the last equality we have used the induction hypothesis (57) for l = κ.

From Rev(v, (κ, 0)) = Rev(v, (1, 0)) we have (1 + 1/a)P (κ, 0) − P (1, κ) = P (κ + 1, 0) −
2P (1, 0). Therefore, the previous equation is equivalent to:

X(κ+ 1) (61)

= (1 + 1/a)2P (κ, κ− 1) + a(1 + 1/a)2((1 + 1/a)κ − 1)2P (1, 0)− (1 + 1/a)κ+1(P (κ+ 1, 0)− 2P (1, 0))

− (1 + 1/a)2(P (κ, κ)− P (κ− 1, κ)) + (1 + 1/a)(P (κ+ 1, κ)− P (κ+ 1, κ− 1))

= (1 + 1/a)2P (κ, κ− 1) + [a(1 + 1/a)2((1 + 1/a)κ − 1)2 + 2(1 + 1/a)κ+1]P (1, 0)− (1 + 1/a)κ+1P (κ+ 1, 0)

− (1 + 1/a)2(P (κ, κ)− P (κ− 1, κ)) + (1 + 1/a)(P (κ+ 1, κ)− P (κ+ 1, κ− 1))

From Rev(v, (κ, κ)) = Rev(v, (1, 0)) we have (1 + 1/a)P (κ, κ)− P (κ+ 1, κ) = −P (1, 0).
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Therefore, the previous equation is equivalent to:

X(κ+ 1) (62)

= (1 + 1/a)2P (κ, κ− 1) + [a(1 + 1/a)2((1 + 1/a)κ − 1)2 + 2(1 + 1/a)κ+1 + (1 + 1/a)]P (1, 0)

− (1 + 1/a)κ+1P (κ+ 1, 0) + (1 + 1/a)2P (κ− 1, κ)− (1 + 1/a)P (κ+ 1, κ− 1).

From Rev(v, (κ−1, κ)) = Rev(v, (1, 0)) we have (1+1/a)P (κ, κ−1)+(1+1/a)P (κ−1, κ)−
P (κ+ 1, κ− 1) = P (κ, κ)− 2P (1, 0), Therefore, the previous equation is equivalent to:

X(κ+ 1) (63)

= [a(1 + 1/a)2((1 + 1/a)κ − 1)2 + 2(1 + 1/a)κ+1 − (1 + 1/a)]P (1, 0)

− (1 + 1/a)κ+1P (κ+ 1, 0) + (1 + 1/a)P (κ, κ).

Finally, using (1 + 1/a)P (κ, κ)− P (κ+ 1, κ) = −P (1, 0) again we get:

X(κ+ 1) (64)

= [a(1 + 1/a)2((1 + 1/a)κ − 1)2 + 2(1 + 1/a)κ+1 − (1 + 1/a)− 1]P (1, 0)

− (1 + 1/a)κ+1P (κ+ 1, 0) + P (κ+ 1, κ).

Since a(1 + 1/a)2((1 + 1/a)κ− 1)2 + 2(1 + 1/a)κ+1− (1 + 1/a)− 1 = a((1 + 1/a)κ+1− 1)2,

this proves (57) when l = κ+ 1.

Proof of Corollary 1. Suppose p is the uniform [0, 1] distribution. We want to maximize:

Π =

∫
min

(
3k + 1

2k2
av − 2X,

av

2k
− Y, 2

(
(1 + 1/a)k − 1

)2
X + 2((1 + 1/a)k − 1)Y

)
dv.

(65)

Fixing a and k, it is easy to see that ∂Π
∂X

= ∂Π
∂Y

= 0 have a unique solution in (X, Y );

substituting such (X, Y ) into (65) gives:

Π∗(a, k) =
a((1 + 1/a)k − 1)2

(
1 + 3k − 2(1 + 1/a)k(1 + k) + (1 + 1/a)2k(1 + 3k)

)
4k2(1 + 1/a)4k

. (66)

We numerically verify that maxa Π∗(a, k) is strictly increasing in k. Let us take k →
∞ and choose a sequence of {a(k)} such that A ≡ limk→∞ a(k)/k is a well-defined limit
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(potentially infinity). Applying Taylor’s theorem, we have

lim
k→∞

k log(1 + 1/a(k)) = k/a(k) = A,

thus

lim
k→∞

Π∗(a(k), k) =
A(exp(1/A)− 1)2(3− 2 exp(1/A) + 3 exp(2/A))

4 exp(4/A)
(67)

The above function is maximized at A = 0.7367, yielding Π∗ = 0.272651. Finally, we

substitute A = 0.7367 back to (X, Y ) that solves ∂Π
∂X

= ∂Π
∂Y

= 0.

Proof of Proposition 4. As k →∞, a/k → A and kP (1)→ ρ,∫ 1

0

min(av/k, aP (1)(1 + 1/a)k) p(dv)− aP (1)→
∫ 1

0

min(Av, ρA exp(1/A)) p(dv)− ρA = Π.

(68)

We maximize Π over A and ρ; the first order condition is:

∂Π

∂ρ
=

∫ 1

ρ exp(1/A)

A exp(1/A) p(dv)− A = 0, (69)

∂Π

∂A
=

∫ ρ exp(1/A)

0

v p(dv) +

∫ 1

ρ exp(1/A)

ρ(exp(1/A)− exp(1/A)/A) p(dv)− ρ = 0,

which is equivalent to (49). Moreover, we have Π = ρ under (69).

We now relate Roesler and Szentes (2016) to Equation (69), which simultaneously proves

the existence of ρ and A that satisfy (69) as well as their optimality in solving (16); see the

discussion about Roesler and Szentes (2016) following Proposition 4. Let µ ≡
∫ 1

0
v p(dv),

the requirement that GB
π has the same mean as p is equivalent to:

µ =

∫ 1

0

s dGB
π (s) = B −

∫ B

π

GB
π (s) dv = π +

∫ B

π

π/s ds = π + π logB − π log π, (70)

i.e.,

log(B) =
µ− π + π log π

π
. (71)

Clearly, B ≥ π if and only if π ≤ µ.

The requirement that GB
π second-order stochastic dominates p is equivalent to:∫ x

π

(1− π/s) ds = x− π − π log x+ π log π ≤
∫ x

0

p(v ≤ s) ds, (72)
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for every x ∈ [π,B].

Define

f(x, π) ≡
∫ x

0

p(v ≤ s) ds− (x− π − π log x+ π log π). (73)

Let π∗ be the minimum π such that minx∈[π,B] f(x, π) ≥ 0, and let B∗ be the correspond-

ing B from (71). Let x∗ be an arbitrary selection from argminx∈[π∗,B∗] f(x, π∗).

For π ≤ µ, B (defined by (71)) decreases as π increases. Moreover, ∂f
∂π

(x, π) > 0 for every

x > π. Thus, minx∈[π,B] f(x, π) is a continuously increasing function of π. So we must have

f(x∗, π∗) = 0.

If B∗ < 1, we must have f(B∗, π∗) > 0, for otherwise we would have
∫ 1

0
GB∗
π∗ (s) ds >∫ 1

0
p(v ≤ s) ds, which would contradict the fact that GB∗

π∗ has the same mean as p. If B∗ = 1,

then we have ∂f
∂x

(B∗, π∗) > 0. In any case B∗ 6= x∗. Since f(π∗, π∗) > 0, we also have

π∗ 6= x∗. Thus we must have ∂f
∂x

(x∗, π∗) = 0.

Therefore, we have (the first line is ∂f
∂x

(x∗, π∗) = 0, and the second line is f(x∗, π∗) = 0):

p(v ≤ x∗)− 1 + π∗/x∗ = 0, (74)∫ x∗

0

p(v ≤ s) ds− (x∗ − π∗ − π∗ log x∗ + π∗ log π∗) = −
∫ x∗

0

v p(dv) + π∗ log x∗ − π∗ log π∗ = 0,

where in the second equality of the second line we use integration by parts and substitute in

the first line. Clearly, the above equations are (49) with x∗ = ρ exp(1/A) and π∗ = ρ.
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