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Abstract

We provide a robust (or detail-free) strategic foundation for the Walrasian Equi-

librium: a mechanism for an exchange economy with asymmetric information and

interdependent values that is ex-post individually rational, incentive compatible,

generates budget surplus and is ex-post nearly Pareto Effi cient, when there are

many agents. The level of ineffi ciency is proportional to the impact a single agent

has on the Walrasian price. Conversely, we show that mechanisms generating

smaller effi ciency losses must violate some of the constraints, and so our effi ciency

bound is tight. The tight robust asymptotic effi ciency is achieved by σ−Walrasian
Equilibrium mechanisms, in which the allocation is as if each agent traded knowing

all the information distributed in the economy, faced with the price that increases

in the quantity traded with slope σ.

Preliminary and Incomplete

1 Introduction

One way to achieve an effi cient allocation in an exchange economy, when all the para-

meters are publicly known, is to set the right prices. The problem becomes much harder

when we introduce asymmetric information, and so agents have private information about

relevant parameters of the economy. While asymmetric information inhibits effi ciency,

there is a sizeable literature on designing mechanisms for exchange that achieve near

effi ciency when there are many agents and each is informationally small : has only lit-

tle publicly relevant information that others do not.(see McLean and Postlewaite [2002],

[2004] and [2015])

Besides the cases when agents have information that is relevant only for themselves

(“private values”), however, the literature has focused mostly on the problem of Bayesian
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implementation (see the literature review section below). As is well known, this approach

is predicated on pretty strong assumptions. Mechanism designer must know the distrib-

ution of agents’types, beliefs that the agents have about each other, beliefs about beliefs

etc. The mechanism Bayes implementing near effi cient outcome depends on the fine

details of such knowledge (is not detail-free) and fails if the designer is wrong (is not

robust). A more demanding task is to find a mechanism for exchange that ex-post, or

pointwise, satisfies all the constraints and is near effi cient. This single mechanism for ex-

change would “work”for any distribution of types and beliefs of the agents. As a bonus,

such a mechanism, blind to the details of the informational environment, would have to

share some of the simplicity of the original symmetric information solution. The goal

of this paper is to provide such a mechanism. More precisely, we design a mechanism

for an exchange economy with asymmetric information and interdependent values that

is ex-post (for any realization of other agents’ signals) individually rational, incentive

compatible, generates budget surplus and is ex post nearly Pareto Effi cient when there

are many agents.

Let us rephrase the motivation using a concrete example. Suppose that the economy

has a large number of “English”and “American”and one stock to be traded. Each agent

gets a noisy signal of the per-unit value of the stock, and this value depends also on

the signals of his compatriots (see Example 2). In the symmetric information setting,

simply setting the right Walrasian Equilibrium (WE) price, which depends on all the

signals, will solve the problem. How to design a trade mechanism when the signals are

privately known? One mechanism would be a double-auction: each player submits a

demand schedule specifying how much he wants to buy (or sell) at any given price, and

the designer chooses the price that will clear the market. While the double-auction game

mirrors the features of the real-life trading, it is not a good choice as a mechanism, as

it will not lead to near effi cient allocation no matter how large the economy. This is

because a single price cannot aggregate all the relevant public information, the “average”

signal of the Americans and the “average”signal of the English (see Rostek and Weretka

[2012]). An alternative way, if the designer presumes he knows the commonly known

distributions fromwhich the signals are drawn, would be to elicit information of the agents

via appropriate scoring rules (“reward a good guess about the compatriots’signal”), much

in the spirit of Cremer and McLean [1985] and [1988], and then use this information

to, say, set the Walrasian Price. If the designer does not know the distribution, this

approach will not work. One could also try to use some version of the Vickrey-Clark-

Groves mechanisms, which are distribution free and based on transfers that make agents
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internalize ex-post the externalities they impose on the others. But such mechanisms

will typically run a budget deficit (e.g., McLean and Postlewaite [2015]). What else can

be done?

More precisely, in the paper we are looking at an environment with N agents with

quasilinear utilities over a single divisible good (“stock”) and money. Each player has

a one dimensional signal, and his utility depend on the whole profile of signals (“inter-

dependent values”). We make no assumptions, in fact we do not even specify the belief

hierarchies of the agents, or the mechanism designer. Regarding the utility functions,

beside the rather standard assumptions of differentiability and bounded derivatives of

marginal utilities (with respect to signals and quantity), as well as the single crossing

property, which means that my utility responds most to my signal (e.g., Dasgupta and

Maskin [2000]), we also assume that the agents are informationally small. This last as-

sumption means that the effect of any agent’s signal on the marginal utility of anyone else

converges to zero as the number of agents grow. It is the analog of the informational small-

ness assumption from the literature on Bayesian strategic foundations of WE (McLean

and Postlewaite [2002], [2004] and [2015]) in our distribution-free setting. Intuitively, in

our asymmetric information setting, for the environment to be truly competitive there

should be many competing agents and each should have a vanishing amount of publicly

relevant information that others do not.

A trading mechanism in this environment consists of an allocation and transfer rule.

We consider the mechanisms that satisfy ex-post individual rationality (IR), incentive

compatibility (IC), generate budget surplus (BS) and clear the market (MC). Ex-post IR

and IC here mean that the constraints have to be satisfied for any profile of signals of the

other agents. They imply Bayesian IR and IC in any informational setting. A different

implication is that such mechanism will work in fairly weak contractual situations, in

which each agent can walk away from the trasaction even after seeing the suggested

allocation and transfers, or, simply, faces a menu of allocation-tranfer pairs from which

he is free to choose or not (Chung and Ely [2002]), as in a spot market. Ex-post BS and

MC are standard feasibility constraints, where we assume that the surplus of money can

be freely disposed of (donated, burned). The objective is to achieve ex-post ε−Pareto
Effi ciency, for small ε > 0. It means that for any signal profile there is a fully Pareto

Effi cient allocation - Walrasian Equilibrium allocation in our setting - in which each agent

gets at most ε greater utility.

The main result of the paper is a construction of mechanisms that are robustly as-

ymptotically (f(N) + 1
N

)-effi cient: for suffi ciently large economy N they satisfy all the
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ex-post constraints and are O(f(N) + 1
N

)−Pareto Effi cient (Proposition 2). f(N) is the

bound on the effect of one agent’s signal on the marginal utility of others, and so a

measure of informational smallness; f(N) → 0 as N → ∞. Conversely, we show that a
quicker convergence to Pareto Effi ciency is not possible without violating the constraints

(Proposition 3). In other words, our positive result is tight.

In the paper we show that the goal is achieved by relatively simple σ−Walrasian
Equilibrium mechanisms, for σ > 0 small. In those mechanisms, for every signal profile

there is a “reference price”, mirroring the role of the Walrasian Equilibrium price. Each

agent’s allocation is simply what he would purchase (or sell) if he knew all the signals and

faced an upward sloping price schedule, with reference price as the intercept and price

increasing in the quantity with slope σ. We show how to construct the transfers as the

integrals of variable per-unit prices, which depend on the details of the utility functions,

so that the ex-post IR and IC are satisfied. Slopes of the order f(N) + 1
N
distort the

allocation only slightly and result in O(f(N) + 1
N

)−Pareto Effi ciency. Crucially, we

show that an appropriate choice of slopes of the same order also results in BS. On the

other hand, we show that in the case when each agent would have an impact on the

Walrasian Equilibrium price of order f(N) + 1
N
, an IR and IC mechanism that results in

an o(f(N) + 1
N

)-Pareto Effi cient allocation must run a budget deficit.

Literature Review. The question of strategic foundations of Walrasian Equilibrium
is of course not new. One strand of literature focused on the question of when the specific

mechanism of double auction guarantees asymptotic effi ciency. Important contributions

include Gresik and Satterthwaite [1989], Satterthwaite and Williams [1989], Rustichini

et al. [1994], Fudenberg et al. [2007] and Cripps and Swinkels [2006] for the private value

case, and Reny and Perry [2006] for the case of interdependent values. Going beyond the

double auctions, Gul and Postlewaite [1992], McLean and Postlewaite [2002] and [2004]

construct asymptotically effi cient mechanism in broader informational settings, drawing

from the insights of Cremer and McLean [1985] and [1988]. In our case we require a

stronger requirement of ex-post incentive compatibility and individual rationality. In

particular, unlike double auctions, the mechanism neither requires any assumptions on

the beliefs of the agents/distribution of signals, such as conditional independence, nor

the symmetry in the payoffs (see Rostek and Weretka [2012]). On the other hand, the

detail-free nature of the mechanism prevents the use of distribution-dependent scoring

rules to extract private information.

A different approach has been to analyze the limits of manipulability of the mecha-

nisms when there are many agents. Roberts and Postlewaite [1976], Jackson [1992] and
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Jackson and Manelli [1997] have analyzed the limits of manipulability of the Walrasian

Equilibrium allocation under certain conditions in the symmetric information setting.

McLean and Postlewaite [2015] have shown that under information-smallness the ben-

efits of ex-post deviations vanish when the agents are informationally small. We work

with asymmetric information economies and require full ex-post incentive compatibil-

ity. There is also a large literature on the limits of manipulability with many agents in

matching.

In the private value setting, the Vickrey-Clark-Groves (VCG) mechanism is fully

effi cient, satisfies the ex-post incentive compatibility and individual rationality but typ-

ically runs a budget deficit. However, in the auction context, when the seller’s value

of the good is commonly known, the VCG mechanism satisfies all the constraints. In

the private value case the mechanism is the celebrated Vickrey (second price) auction.

Dasgupta and Maskin [2000], Perry and Reny [2002] and Ausubel [2004] have shown how

to extend the VCG mechanism to the interdependent case (under the assumptions of

affi liation and symmetry the mechanism is simply the English auction).

In the case of an exchange when both sellers and buyers have private information,

the question of robust asymptotic effi ciency has been established only in the case of pri-

vate values and unit demands and supplies, by Wilson [1985] and McAfee [1992]. In an

ongoing work, Loertscher and Mezzetti [2013] consider an extension in which they allow

for multiunit demands, while preserving private values. Kojima and Yamashita [2014]

provide a mechanism that satisfies the ex-post constraints and creates a small expected

Pareto loss, under the assumptions that the types of the agents are independently dis-

tributed and agents are symmetric. In our case the almost Pareto Effi ciency is satisfied

robustly as well, and in particular without independence or symmetry assumptions.

2 Model

The exchange economy consists of N agents and a single good (an asset) that can be

traded among them. Each agent i observes a signal si ∈ [0, 1], and his utility of consump-

tion depends on the whole profile of signals s =(s1, ..., sN) ∈ [0, 1]N =: S. More precisely,

we will assume that agent i has a utility function

Ui(qi, ti, s) = ui(qi, s)− ti,
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where qi ∈ R is the quantity of the good the agent ends up with and ti is the amount of
money he pays. The function ui is continuously differentiable in all the arguments and

strictly concave in qi and we normalize ui(0, s) = 0. Note that the utilities are indexed

by the agents, and so we are not making any symmetry assumptions. We are also not

specifying at all the beliefs of the agents, and so the setting is entirely distribution-free.

We make the following additional assumptions on the utility function:

A1) mui(0, s) ∈ [−M,M ], ∀i∀s;
A2) ∂mui(qi,s)

∂si
∈ [cs, Cs], Cs > cs > 0, ∀i∀qi∀s;

A3)
∣∣∣∂mui(qi,s)∂sj

∣∣∣ ≤ φN , φN < cs, φN → 0 as N →∞, ∀i 6= j∀qi∀s;
A4) ∂mui(qi,s)

∂qi
∈ [cq, Cq], cq < Cq < 0, ∀i∀qi∀s;

First, all the assumptions impose uniform bounds on the utility functions. Inuitively,

this is necessary given our aim of providing uniform bounds on the convergence to the

effi cient allocation, or bounding the maximum effi ciency loss across all the agents and

signal realizations. The second assumption also normalizes the marginal (per-unit) utility

to be increasing in own signals.

The third assumption captures the notion of information smallness crucial for our

results: as the number of agents in the economy grows, the impact of each single agent

on the utility of any other agent vanishes. It captures the intuition that as the number

of agents grow, no single agent can have big informational impact on the economy.

The notion is very closely related to the version of informational smallness used in

the Bayesian setting (McLean and Postlewaite [2002], [2004] and [2015]), as the following

interpretation of our model illustrates. Imagine that each agent i has a private state

space Θi and a continuously differentiable utility function vi(qi, θi, si) − ti that depends
on the transfers ti, quantity qi, own type si and the state of the world θi and satisfies

assumptions A1, A2 and A4 and ∂muj
∂θi

bounded. Suppose also that i has a private prior

δi ∈ ∆(Θi × S1 × ... × SN) and that the agents are informationally small in the sense

that1 ∣∣∣∣∂δi(θi|s)∂sj

∣∣∣∣ ≤ φ′N , ∀i 6= j∀θi∀s

for a function φ′N such that φ
′
N → 0 as N → 0. In other words, any single agent j has a

small impact on i′s beliefs about the payoff relevant state to him. It is easy to see that

1The definition used by Mclean and Postleweite has a common finite state space Θ and common prior
δ. On the other hand, their requirement is weaker in that the bound need not hold for every s−j but
only for s−j with probability close to one. The strengthening that we require is dictated by the stronger,
ex-post version of the incentive compatibility that we use (and so the lack of prior distribution).

6



this model reduces to ours with

ui(qi, s) = Eδi [vi(qi, θi, si)|s].

Example 1 (“Fundamental Value Model”, Vives [2011], Rostek and Weretka [2012])
Suppose that the utilities are

Ui(qi, ti, s) = (αsi + βs)qi −
µ

2
q2i − ti,

for some constants α, β, µ > 0, where s is the arithmetic average of the signals. One

can think of (αsi + βs) as the expected per-unit value of the stock to trader i, and µ
2
q2i as

the cost of risk involved in holding qi units of the asset. Indeed, it can be shown that the

quadratic utility above is the certainty equivalent of holding qi units of a risky asset, when

agent i has CARA utility function, he believes that all the per-unit values θj are Normally

distributed with a constant correlation between any θi and θj, j 6= i, and sj = θj + εj for

iid Normally distributed noises εj. Additionally, we do not need to require any symmetry

between the agents, in which case the constants α, β and µ are indexed by i.

In the example the assumption A3 of information smallness is satisfied, since each

signal sj enters the utility of player i 6= j with coeffi cient β
N−1 . More generally, the

assumption of information smallness will be satisfied in the conditional iid setting (Reny

Perry ’06), when each agent i believes that agents j 6= i observe conditionally iid signals

of his value θi, under the appropriate regularity condition on the prior distribution of θi
and conditional distributions of the signals.2

Example 2 (“Group Model”’, Rostek and Weretka [2012]) A slightly more complicated
example will have the agents divided into, say, two groups (American and English), and

for each agent i in group A the utility is

UA
i (qi, ti, s) = (αsi + βhs

A + βls
E)qi −

µ

2
q2i − ti,

and similarly for the members of group E, where sA and sE are the average signals in

each group and βh > βl > 0. Intuitively, compared to Example 1 now the agents think

that the per-unit values θj are more correlated among the compatriots.

While the mechanism of a double auction will guranatee almost effi ciency in Example

1, this will not be true for Example 2 (Rostek and Weretka [2012]). Intuitively, the one

2Find a reference or crank through the Bayes formula to uncover the suffi cient regularity conditions.
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dimensional price cannot aggregate the relevant public information, the average signal of

the Americans and the average signal of the English, which is two dimensional. When

we send the numbers of agents in each group to infinity, each of them will act almost as

a price-taker, and the allocation will converge to that in a non-fully revealing Rational

Expectations Equilibrium, which is not approximately Pareto Effi cient.

A mechanism in our setting is {(qi(s), ti(s))}i≤N,s∈S, where {qi(s)}i≤N,s∈S is the allo-
cation and {ti(s)}i≤N,s∈S the transfers profile. Let us list below the properties that we
might want a mechanism to satisfy. All of the properties below need to hold “ex-post”,

and so for every realization of the signals, rather than only “in expectation”, for given

beliefs of the agents:

• Market Clearing. ∑
i

qi(s) = 0, ∀s.

• Budget Surplus. ∑
i

ti(s) ≥ 0, ∀s.

Note that the last is weaker than the “Budget Balance”. We are assuming free disposal

of money in our economy: surplus money can be freely burned (or donated).

• Individual Rationality

ui(qi(s), ti(s), s) ≥ ui(0, 0, s), ∀i∀s.

• Incentive Compatibility

ui(qi(s), ti(s), s) ≥ ui(qi(s
′
i, s−i), ti(s

′
i, s−i), s), ∀i∀s,s′i.

• ε-Pareto Effi ciency. For every s there is a Pareto Effi cient profile (q1, ..., qN , t1, ..., tN)

such that

ui(qi(s), s)− ti(s) ≥ ui(qi, s)− ti − ε, ∀i

IR says that even if agent i learns the signal realizations of everybody else, he still

prefers to participate in the mechanism (assuming everybody else do es and is truthful).

IC says that even if agent i learns the signal realizations of everybody else, he still finds

it optimal to report his type truthfully (assuming everybody else does and is truthful).
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The “ex-post”nature of the conditions is a strong requirement. The first and most

important interpretation is that it implies the more standard “Bayesian”version of the

constraints, for any beliefs that the agents might have about the signals of the oppo-

nents, beliefs about beliefs etc. In this sense a mechanism that satisfies those “ex-post”

constraints is robust to the misspecification of the belief hierarchy. A different way to

put it is that it is detail-free, as it does not depend on the fine details of the beliefs of

the agents, which, realistically, are not known by the mechanism designer.

Second interpretation is that the “ex-post”nature of the constraints means that the

mechanism will work under weak contractual conditions. In particular, they guarantee

that the mechanism will work even if the agents cannot be prevented from “walking away

from the table”, or changing their mind at any stage of the transaction, even after they

learn the allocation (compare to spot markets).

Likewise, ε-PE requires that the allocation is “almost” Pareto Effi cient for every

realization of types. It is an almost state- and agent- wise effi ciency, or simply pointwise

effi ciency. It is stronger than, for example, the asymptotic average effi ciency, when the

average - over states or agents - distance to the optimal allocation converges to zero.

This effi ciency concept is immune to changing Pareto weights on the agents, according to

a social preference, or weights on the states of the world, according to designer’s beliefs,

or his beliefs about the beliefs of the agents etc.

A particular Pareto Effi cient allocation, for any s, in our setting is the competitive or

Walrasian Equilibrium allocation, (q∗1(s), ..., q
∗
N(s)), which is defined implicitly by

mui(q
∗
i (s), s) = p∗(s), ∀i∑
i

q∗i (s) = 0,

where p∗(s) is the Walrasian price. The question is, of course, how to implement this

allocation. Had the information been symmetric and the realized state s known by the

mechanism designer - in other words, if we ignore the IC constraints - this would be an

easy task: letting agents buy or sell as much as they want at the Walrasian price would

do. The resulting allocation and the transfers would satisfy all the other constraints

besides IC.

It is relatively easy to show (see Myerson and Satterthwaite [1983]) that for a fixed

number of players there is typically no mechanism that implements an ε−PE allocation,
for small ε, and which satisfies all the other constraints (MC, BS, IR, IC). The purpose of
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this paper is to show that there is a class of mechanisms, which satisfies all the constraints

and is almost effi cient when N is suffi ciently large.

More precisely, for a function f : N → R+, fN → 0 as N → 0, we say that a

family of mechanisms {(qi(s), ti(s))}i≤N,s∈S parametrized by N is robustly asymptotically

f-effi cient if for N suffi ciently large each mechanism satisfies all the constraints MC, BS,

IR, IC and is O(fN)-Pareto Effi cient.

Fix a number σ ≥ 0. We call an allocation {qi(s)}i≤N,s∈S σ−Walrasian Equilibrium
(σ −WE) if for every profile s there exists a reference price pσ(s) such that

mu(qi(s), s) = pσ(s) + σ × qi(s), ∀i (1)∑
i

qi(s) = 0.

In other words, for any signal profile s the allocation is as if each agent chose freely when

faced with a posted price schedule, in with the price for the first (infinitesimal) unit was

the reference price pσ(s) and the per-unit price was linearly increasing in the quantity

purchased (decreasing in the quantity sold) with the slope σ. 0−WE allocation agrees

with the Walrasian Equilibrium allocation. We define a σ−WE mechanism as one whose

underlying allocation is σ −WE.

Lemma 1 For any σ ≥ 0 there exists exactly one σ −WE allocation.

The definition of a σ−WE mechanism pins down only the allocation and leaves the

definition of the transfers open. The direct interpretation of the allocation in analogy

with the Walrasian Equilibrium, as above, suggests transfers

ti(s) = [pσ(s) + σ × qi(s)]× qi(s). (2)

However, such transfers typically will not be (ex-post) IC. In a finite economy, faced

with a mechanism that allocates WE quantities and charges WE prices each agent has

incentive to misreport his signal and manipulate price in his favor.

Example 3 Let us consider the fundamental value model from Example 1. For a fixed

σ ≥ 0 and any s the σ −WE allocation is characterized by

αsi + βs− µqi = pσ(s) + σqi. (3)
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Imposing market clearing conditions yields

pσ(s) = (α + β)s,

qi(s) =
α

µ+ σ
(si − s).

On the other hand, for the agent i with signal si that knows the signal profile of the

other agents s−i, faces the σ−WE mechanism with transfers (2) maximization over the

reported s′i yields the local IC condition

∂

∂s′i

{
(αsi + βs)qi(s

′
i, s−i)−

µ

2
q2i (s

′
i, s−i)− (pσ(s′i, s−i) + σqi(s

′
i, s−i)) qi(s

′
i, s−i)

}∣∣∣
s′i=si

= 0,

αsi + βs− µqi(s)−
∂pσ(s)

∂si
qi(s)− 2σqi(s) = 0,

qi(s)

(
∂pσ(s)

∂si
+ σ

)
= 0,

where the last line follows from (3). In other words, for any σ ≥ 0 the σ−WE mechanism

with “naive”transfers (2) is not IC. Each buyer has an incentive to understate (seller to

overstate) his signal, given the impact it has on the “price”he faces.3

Following the Vickrey logic (see Hölmstrom [1979]), there is a way to modify the

transfers in a way that a σ −WE mechanism achieves IC and IR. More precisely, the

following Proposition shows that for any σ −WE allocation the IC and IR constraints

pin down the transfers.ti(·, s−i) up to a constant. The constant captures the rent of the
boundary type of agent i.

Proposition 1 For any σ ≥ 0 the transfers in any IR and IC σ −WE mechanism are

characterized by

ti (s) = ti(si, s−i) +

∫ qi(s)

qi(si,s−i)

[pσ (si (x) , s−i) + σx] dx, if qi(s) ≥ 0, (4)

ti (s) = ti(si, s−i)−
∫ qi(si,s−i)

qi(s)

[pσ (si (x) , s−i) + σx] dx, if qi(s) ≤ 0,

3In this linear model IC would be achievable with “naive”transfers as in (2) with σ < 0, which would
come at the expense of running a budget deficit.
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where si (x) , si and si are defined via

x = qi (si (x) , s−i) , (5)

si = inf{s′i|qi(s′i, s−i) > 0},
si = sup{s′i|qi(s′i, s−i) < 0},

and the constants ti(si, s−i) and ti(si, s−i) satisfy

ti(si, s−i) ≤ ui(qi(si, s−i), (si, s−i)), (6)

ti(si, s−i) ≤ ui(qi(si, s−i), (si, s−i)).

The economic intuition behind the result is as follows. Fix a profile of signals s and an

agent i that is a buyer, qi(s) > 0 In order to achieve IC the amount of money that i pays

for every x′th infinitesimal inframarginal unit of the good, x < qi(s), must equal his value

for this unit had he reported the type that makes him pivotal. Given the definition of the

σ−WE allocation in (1), agent i is pivotal for x′th unit of the good precisely when he re-

ports the type s′i such that qi(s
′
i, s−i) = x, and his value for it equals mui (x, (si (x) , s−i)),

which is pσ (si (x) , s−i) + σx. Of course, in the case when the slope σ is zero and so we

are incentivizing the WE allocation, this payment equals also the externality that the

buyer imposes on others by getting this unit, muj (qj (si (x) , s−i) , (si (x) , s−i)) for any j.

Integrating over such per-unit payments gives rise to the transfer functions in (4).

The conditions (6) are just the IR constraints for the types si and si. In the case

when there is a type si ∈ (0, 1) that results in agent i not trading, qi(si, s−i) = 0, then

si = si and the conditions (6) boil down to ti(si, s−i) ≤ 0. In the case when global IC

holds, those IR for the types si and si extend to IR holding for all the types.

In order to establish full IC it is suffi cient to establish the monotonicity of the alloca-

tion, i.e., show that qi(·, s−i) is weakly increasing for any i and s−i. To simplify notation
let ϕN = φN + 1

N
.

Lemma 2 Fix number of agents N , σ and a σ −WE allocation {qi(s)}i≤N,s∈S. There
are Cp, cp, Cq and cq(independent of σ and N), Cps > cps > 0, Cqs > cqs > 0 such that

for any profile of signals s and an agent i we have

∂pσ(s)

∂si
=

∑
j
∂muj(qj(s),s)

∂si
× (σ − ∂muj(qj(s),s)

∂qj
)−1∑

j(σ −
∂muj(qj(s),s)

∂qj
)−1

∈ [cpsϕN , CpsϕN ],
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as well as
∂qi(s)

∂si
=

∂mui(qi(s),s)
∂si

− ∂pσ(s)
∂si

σ − ∂mui(qi(s),s)
∂qi

∈ [
cqs

σ − cq
, Cqs].

The first part of the lemma will be crucial for our main results. It says that the

effect of the change in i′s signal on the reference price pσ(s) is a weighted average of

its effect on the marginal utilities of all the agents. Thus, given the assumption of

informational smallness, the extent to which each agent can affect the reference price

vanishes as the economy grows. If the slope σ of the σ −WE allocation is small, this

means that misreporting has limited effect on the “per-unit price”that he pays for each

x′th infinitesimal inframarginal unit, pσ (si (x) , s−i) + σx. The monotonicity and so the

global IC follows thus from the single-crossing assumption (i′s signal affects i′s marginal

utility most).

While the Proposition shows how to design IR and IC transfers, it is silent about BS.

On the negative note, the following is an easy corollary to the form of transfers in (4)

and each agent’s impact on prices, as in Lemma 2.

Corollary 1 Consider an IR, IC 0 −WE mechanism {qi(s), ti(s)}i≤N,s∈S and a signal
profile s such that

qi(s) 6= 0, for some i

si ∈ (0, 1). ∀i

Then the mechanism runs a budget deficit at s,
∑

i ti(s) < 0.

For the proof, it is enough to observe that each buyer with an interior signal must

pay the WE price p∗(s) for the marginal unit he purchases and a strictly lower price

p∗(s′i, s−i) for every inframarginal unit x < qi(s), for some s′i < si, and similarly for the

sellers.

Pick a σ −WE allocation {qi(s)}i≤N,s∈S together with transfers {ti(s)}i≤N,s∈S that
are determined by the local IC, i.e. (4), together with

ti(si, s−i) =
[
pσ(si, s−i) + σqi(si, s−i)

]
× qi(si, s−i), ∀i∀s−i (7)

ti(si, s−i) = −
[
pσ(si, s−i) + σqi(si, s−i)

]
× qi(si, s−i), ∀i∀s−i

In the case when si = si and so qi(si, s−i) = 0 we thus set the transfers ti(si, s−i) to be

zero. Intuitively, those are the largest transfers consistent with IR, and so the ones most

13



conducive to BS. In the case when, say, si = 0 and qi(0, s−i) > 0 the transfers leave strictly

positive surplus to agent i. While IR would be consistent with larger payments larger

payments would drive agent i′s utility strictly below that in the WE even if qi(0, s−i)

is close to the WE allocation q∗i (0, s−i). Note that the transfers for the boundary types

defined in (7) satisfy conditions (6), and so the mechanism {qi(s), ti(s)}i≤N,s∈S satisfies
MC, IC and IR.

The following is the main result of the paper.

Proposition 2 Fix C > 0 suffi ciently big. The CϕN −WE mechanisms defined by (1),

(4) and (7) are robustly asymptotically ϕN−effi cient.

The intuition for the result is as follows. For suffi ciently large economy, and so small

slope CϕN in the CϕN −WE allocation, the marginal utility mui(qi(s), (s)) of any agent

is close to the reference price pCϕN (s), which, in turn, must be close to the WE price

p0(s). Thus the allocation qi(s) must be close to the effi cient WE allocation. Regarding

the transfers, as we argued below Lemma 2, given the small effect of misreporting on the

reference price, the average price that, say, a buyer pays must be close to the reference,

and so the Walrasian price. This establishes asymptotic effi ciency of the mechanism.

Regarding budget surplus, the proof establishes that, for suffi ciently large C and N ,

the average price that any buyer pays is weakly greater than the reference price pCϕN (s)

and the average price that any seller gets is weakly lower than pCϕN (s). Let us fix a

signal profile s, a slope σ > 0 and focus on a buyer i such that si ∈ (0, 1), meaning that

qi(si, s−i) = 0. On the one hand, the “per-unit price”that i pays for the first infinitesimal

unit equals the reference price given his signal that makes him pivotal, pσ(si, s−i), which

is strictly lower than pσ(s). On the other hand, however, the strictly positive slope means

that the price he pays for the last unit, pσ(s) + σqi(s), exceeds the reference price. The

result follows from the careful comparison of those two price differences. Given Lemma

2 the excess of the reference price over the lowest “per-unit price” is proportional to

the price impact of misreporting, ϕN , and quantity purchased qi(s). In particular, it is

independent of the slope σ. The excess of the “per-unit price”for the last unit purchased

over the reference price is σqi(s). Given the bounds on how the “per-unit prices”change

with the quantity purchased (again, from Lemma 2), setting the slope σ = CϕN for

suffi ciently large C > 0 will result in the average price exceeding pσ(s), establishing BS.

Example 4 Consider the group model from Example 2. The σ−WE allocation and the

14



reference price pσ(s) satisfy

qi(s) =
α

µ+ σ
(si − s),

pσ(s) = (α + βh + βl)s.

For any signal profile s and an agent i we have si = si = s−i and qi(s−i, s−i) = 0. This

implies that for the IR and IC transfers ti (s) the average per-unit price equals

pi(s) :=
ti (s)

qi(s)
=

1

2
((α + βh + βl)s̄−i + (α + βh + βl)s+ σqi(s)) ,

and so

pi(s)− pσ(s) =
1

2

(
(α + βh + βl)s̄−i − (α + βh + βl)s+ σ

α

µ+ σ
(si − s)

)
=

=
(si − s)

2

(
σ

α

µ+ σ
− (α + βh + βl)

n− 1

)
.

This implies that BS is satisfied as long as

σ ≥ µ(α + βh + βl)

α(n− 1)− (α + βh + βl)
= O

(
1

N

)
.

On the other hand, picking a slope of order 1
N
guarantees asymptotic 1

N
−effi ciency.

In the case when βh = βl the model and the solution reduce to the fundamental value

model from Example 1.

Recall that the equilibrium of the double auction game satisfies the (ex-post) con-

straints and achieves the assymptotic effi ciency only for the fundamental value and not

the group model (RW 12). In contrast, the example shows that the mechanism design

problem of constructing a σ −WE mechanism that achieves both objectives is virtually

identical for both models.

In the following we establish that the effi ciency bound in Proposition 2 is actually

tight: the quicker convergence to Pareto Effi ciency is not possible. For that we must

complement A3 with

A3’) ∂mui
∂sj
≥ cφφN for cφ > 0, i 6= j;
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Proposition 3 There are e, E > 0 such that for suffi ciently large economy N and any

MC, IC, IR and eϕN−Pareto Effi cient mechanism {qi(s), ti(s)}i≤N,s∈S, for any signal
profile s such that

|qi(s)| ≥ EϕN , for some i

si ∈ [EϕN , 1− EϕN ], ∀i

the mechanism generates budget deficit,
∑

i ti(s) < 0.

In the case of quicker convergence to Pareto Effi iciency, budget need not run a deficit

for all the types, and the two qualifications as in the proposition are needed. Even the

0 −WE allocation together with IR, IC transfer balances the budget for the types at

which it is effi cient for no-one to trade; hence the first qualification. If all the agents have

boundary types - lowest types for the buyers and highest for the sellers - the 0 −WE

allocation with transfers as in (7) balances the budget; hence the second qualification.

The proof generalizes the intuition from Corollary 1 that establishes budget deficit for

the exactly optimal WE allocation together with IR, IC transfers. Given the impact of

own signal on the price of order ϕN and the form of IC transfers in (4), the average per-

unit price a buyer faces will dip below the reference price as long as the target allocation

is suffi ciently close to the Walrasian Equilibrium allocation.

3 Proofs

Proof. (Lemma 1) First, assumptions A1 and A4 and the continuous differentiability
of the utility functions ui quarantee that for any signal profile s, any agent i and any p

there is a unique quantity qi(p, s) that satisfies

mui(qi(p, s), s) = p+ σ × qi(p, s).

Second, the same assumptions guarantee that, for any s, there is unique p such that∑
i

qi(p, s) = 0.
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Proof. (Lemma 2) From the first order condition we have for any agent j

∂muj(qj(s), s)

∂qj

∂qj(s)

∂si
+
∂muj(qj(s), s)

∂si
=
∂pσ(s)

∂si
+ σ

∂qj(s)

∂si
.

This establishes the formula for ∂qi(s)
∂si

. On the other hand, since∑
j

qj(s
′)=0,

for all s′, it follows that

0 =
∑
j

∂qj(s)

∂si
=
∑
j

∂muj(qj(s),s)

∂si
− ∂ps(s)

∂si

σ − ∂muj(qj(s),s)

∂qj

,

which establishes the formula for ∂p
σ(s)
∂si

. The bounds follow from the assumptions A2-A4.

Proof. (Proposition 1) Necessity. Fix a σ − WE allocation {qi(s)}i≤N,s∈S. The
functions qi(·, s−i) are continuous (given the assumptions on ui) and Lemma 2 establishes
that they are also strictly increasing. We can thus define

ti (s) = t̃i (qi (s) , s−i) .

Fix a signal profile s and an agent i and consider the allocation qi(·, s−i) as a function
of i′s signal. Suppose that qi(s) > 0. The local IC implies that, for all s′i ∈ (si, si),

mui (qi (s
′
i, s−i) , (s

′
i, s−i))

∂qi (s
′
i, s−i)

∂s′i
=
∂t̃i (qi (s

′
i, s−i) , s−i)

∂qi

∂qi (s
′
i, s−i)

∂s′i
,

∂t̃i (qi (s
′
i, s−i) , s−i)

∂qi
= mui (qi (s

′
i, s−i) , (s

′
i, s−i)) ,
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and so

ti (s) = t̃i (qi (s) , s−i) = ti(si, s−i) +

∫ qi(s)

qi(si,s−i)

∂t̃i (x, s−i)

∂qi
dx =

= ti(si, s−i) +

∫ qi(s)

qi(si,s−i)

mui (x, (si (x) , s−i)) dx =

= ti(si, s−i) +

∫ qi(s)

qi(si,s−i)

[pσ (si (x) , s−i) + σx] dx.

We similarly establish that the local IC implies (4) in the case when qi(s) < 0. The

conditions (6) are implied by the IR constraints for the types si and si.

Suffi ciency. Lemma 2 establishes the monotonicity of the allocation, which, together
with the local IC, is suffi cient for the global IC. Given the global IC, global IR follows

from the IR satisfied by the types si and si.

Proof. (Proposition 2) By Proposition 1 the mechanism satisfies MC, IC and IR and

so it remains to establish asymptotic ϕN−effi ciency and BS. Fix C > 0 and consider the

C × ϕN −WE mechanisms as in the Proposition. Pick an agent i and suppose without

loss of generality that qi(s) > 0.

Assumptions A1 and A4 imply that there are constants q,mu > 0 that bound the

quantities allocatted and the marginal utilities in any σ−WE allocation {qi(s)}i≤N,s∈S:

|qi(s)| ≤ q, ∀i∀s (8)

|mui(qi(s), s)| ≤ mu, ∀i∀s

Assymptotic Effi ciency. Since

p∗(s) = p0(s) ∈ [pC/N(s)− CϕNq, pC/N(s) + CϕNq], (9)

it follows from A4 that

|qi(s)− q∗i (s)| ≤ −
CϕN
Cq

q, (10)

and so

|ui(q∗i (s), s)− ui(qi(s), s)| = |
∫ q∗i (s)

qi(s)

mui(x, (si (x) , s−i))dx| ≤ mu×−CϕN
Cq

q. (11)
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On the other hand for any s′i ∈ [si, si] we have

|pσ(s′i, s−i) + σqi(s
′
i, s−i)− p0(s)|

≤ |pσ(s′i, s−i) + σqi(s
′
i, s−i)− pσ(s) + σqi(s)|+ |pσ(s) + σqi(s)− p0(s)| ≤

≤ CpϕN + CϕN(qi(s)− qi(s′i, s−i)) + |pσ(s) + σqi(s)− p0(s)| ≤
≤ CpϕN + CϕN(qi(s)− qi(s′i, s−i)) + CϕNq ≤ ϕN(Cp + 2Cq),

where the second inequality follows from Lemma 2, si, s′i ∈ [0, 1] and the definition of a

CϕN −WE allocation, and the third inequality follows from (9).

Overall, using the above, (10) and the definition of transfers by (4) and (7) we have,

for si (q′i) as in (5),

|ti(s)− p∗(s)× q∗i (s)| ≤ |ti(s)− p∗(s)× qi(s)|+ |p∗(s)× qi(s)− p∗(s)× q∗i (s)| = (12)

≤ ϕN

(
qi(s)× (Cp + 2Cq) + p∗(s)×− C

Cq
q

)
.

Equations (11) and (12) establish the asymptotic ϕN−effi ciency. The case when i is
a seller (qi(s) < 0) is completely analogous.

Budget Surplus. Fix N such that CϕN < 1. We will show that for any s and i the

transfers satisfy ti(s) ≥ pCϕN (s)qi(s), which is suffi cient for BS. Recall that the transfers

satisfy

ti(s) =
[
pCϕN (si, s−i) + CϕNqi(si, s−i)

]
×qi(si, s−i)+

∫ qi(s)

qi(si,s−i)

[
pCϕN (si (x) , s−i) + CϕNx

]
dx,

with si (x) as in (5). Let us first bound the distance from pCϕN (s) of the lowest and the

highest "per-unit prices" that i must pay, pCϕN (si, s−i) + CϕNqi(si, s−i) and pCϕN (s) +

CϕNqi(s). Regarding the highest “per-unit price”, by definition, we have

pCϕN (s) + CϕNqi(s)− pCϕN (s) = CϕNqi(s). (13)

Regarding the lowest “per-unit price”,

pCϕN (si, s−i) + CϕNqi(si, s−i)− pCϕN (s)

= [pCϕN (si, s−i) + CϕNqi(si, s−i))− pCϕN (si, s−i)] + [pCϕN (si, s−i)− pCϕN (s)] =

= CϕNqi(si, s−i) + [pCϕN (si, s−i)− pCϕN (s)].
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From Lemma 2 we have that

∂pCϕN (s′i, s−i)

∂si
≤ ϕN

Cps(1− el)
cqs

∂qi(s
′
i, s−i)

∂si
, ∀s′i ∈ [si, si]

pCϕN (s)− pCϕN (si, s−i) ≤ ϕN
Cps(1− el)

cqs

(
qi(s)− qi(si, s−i)

)
,

and so

pCϕN (si, s−i) + CϕNqi(si, s−i))− pCϕN (s) = pCϕN (si, s−i) + CϕNqi(si, s−i)− pCϕN (s) ≥

(14)

≥ CϕNqi(si, s−i)− ϕN
Cps(1− el)

cqs

(
qi(s)− qi(si, s−i)

)
.

Thus, choosing C large shifts the range of “per-unit prices” to the right relative to

pCϕN (s). More precisely, for si (·) as in (5)

d(pCϕN (si (qi) , s−i) + CϕNqi)

∂qi
=
∂pCϕN (si (qi) , s−i)

∂si

∂si (qi)

∂qi
+ CϕN ∈ (15)

∈ ϕN [
cps
Cqs

+ C,
Cps(1− el)

cqs
+ C],

where the bounds follow from Lemma 2. The bounds (13) and (14) on the range together

with the bounds (15) on the slope of the marginal utilities as a function of quantity easily

establish that for every C∗ > 0 there exists C > 0 such that∫ qi(s)

qi(si,s−i)

[
pCϕN (si (x) , s−i) + CϕNx

]
dx ≥ (pCϕN (s) + C∗ϕN)× (qi (s)− qi(si, s−i)).

Thus, for suffi ciently high C (and so C∗) we have

ti(s)

=
[
pCϕN (si, s−i) + CϕNqi(si, s−i)

]
× qi(si, s−i) +

∫ qi(s)

qi(si,s−i)

[
pCϕN (si (x) , s−i) + CϕNx

]
dx ≥

≥
(
pCϕN (s)− ϕN

Cps(1− el)
cqs

(
qi(s)− qi(si, s−i)

))
× qi(si, s−i) + (pCϕN (s) + C∗ϕN)× (qi (s)− qi(si, s−i)) =

= pCϕN (s)× qi (s) + (qi (s)− qi(si, s−i))× ϕN
(
C∗ − Cps(1− el)q

cqs

)
≥ pCϕN (s)× qi (s) .
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The case when i is a seller (qi(s) < 0) is completely analogous. This establishes the proof.

Proof. (Proposition 3) To be completed.
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