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Abstract

We provide sufficient conditions for a qualitative probability (Bernstein, 1917; de
Finetti, 1937; Koopman, 1940; Savage, 1954) to have a unique countably-additive
measure representation, generalizing Villegas (1964) to allow atoms. Instead of
imposing a cancellation axiom or a solvability axiom, we propose a novel axiom of
divisibility: third-order smaller-atoms domination requires that for each atom A,
there are three pairwise disjoint events, each a union of atoms less likely than A
and each at least as likely as A.

Theorem 1 states that our divisibility axiom and monotone continuity (Villegas,
1964; Arrow, 1970) are sufficient to guarantee a qualitative probability has a unique
countably-additive measure representation, and are necessary for that representa-
tion to belong to a particular class that includes atomless measures, purely atomic
measures, and hybrids. Applications include beliefs about when a delivery will ar-
rive, intertemporal preferences over streams of indivisible goods, preferences over
parts of a heterogeneous good, and the analysis of incomplete data due to limited
granularity.

Keywords: smaller-atoms domination, qualitative probability, monotone conti-
nuity.

1 Introduction

1.1 Executive summary

From the doctor’s choice of treatment, to the employer’s choice of job applicant, to
the investor’s choice of portfolio, to the mortal’s choice of religion, and beyond: much
behavior, including much of the economic behavior we observe and strive to model, is the
selection of an action with uncertain consequences. Our standard model is founded on the
postulate that such choices, when made by someone who is rational, can be decomposed
into (1) beliefs about the relative likelihood of events, and (2) tastes among outcomes
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Govindan, Edward Green, Faruk Gul, Vilmos Komornik, Igor Kopylov, Massimo Marinacci, Jacob Sagi,
Tomasz Strzalecki, William Thomson, and Peter Wakker for helpful comments. I am particularly in-
debted to Asen Kochov for his guidance and valuable feedback.
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(Ramsey, 1931). This article revisits a well-studied question: when can such beliefs be
said to be consistent with classical probability theory?1

More precisely, suppose we are given a nonempty set of states S, a σ-algebra of events
A ⊆ 2S with S ∈ A, and a qualitative probability %l on A: a binary relation on A,
consisting of comparisons of events on the basis of relative likelihood, satisfying minimal
probabilistic requirements (Bernstein, 1917; de Finetti, 1937; Koopman, 1940; Savage,
1954). When does %l admit representation by a σ-measure2 µ : A → [0, 1]?

The discrete case faces technical challenges due to atoms: non-null events for which
each subset is either equally likely or null (Villegas, 1964). In fact, the large literature
addressing our question can be classified according to which of the following is imposed:

� there are no atoms;

� the qualitative probability satisfies a “cancellation” axiom;

� the qualitative probability satisfies a “solvability” axiom; or

� there are additional primitives beyond S, A, and %l.

In this article, we proceed without imposing any of the above. Instead, we impose a novel
divisibility axiom and a well-studied continuity axiom.

The divisibility axiom, third-order smaller-atoms domination (3-SAD), states that if
there are any atoms at all, then each is overwhelmed by those less likely. Formally, for
each atom A, there are three3 pairwise disjoint events, each a union of atoms less likely
than A and each at least as likely as A (Figure 1). In our discussion of applications, we
argue that this axiom may be interpreted as a requirement of sufficient doubt or sufficient
patience, depending on context.

In addition to 3-SAD, we impose monotone continuity (Villegas, 1964; Arrow, 1970).
As formulated by Arrow, a sequence of events (Ci) ∈ AN is vanishing if C1 ⊇ C2 ⊇ ... and
∩Ci = ∅. The axiom requires that if A � B, and if (Ci) is vanishing, then there is i ∈ N
such that A �l B ∪ Ci. On the appeal of this axiom, Arrow writes: “The assumption of
Monotone Continuity seems, I believe correctly, to be the harmless simplification almost
inevitable in the formalization of any real-life problem.”

Our main result, Theorem 1, states that %l is a qualitative probability satisfying 3-
SAD and monotone continuity if and only if it admits a unique σ-measure representation
belonging to a particular class. This class includes atomless measures, purely atomic
measures, and hybrids.

1Machina and Schmeidler (1992) call this question the first of two lines of inquiry culminating in the
modern theory of subjective probability.

2In this article, a measure is a finitely-additive probability measure, σ-additivity is countable-additivity,
and a σ-measure is a σ-additive measure.

3Why three? For each natural number k, we can define an analogous k-SAD axiom—so can we obtain
a similar result using only 1-SAD or 2-SAD? This is an open question discussed in the conclusion. We
remark that at least three has appeared in earlier research on a similar topic: given an ordering over a
product space, if there are only two “essential” factors, an additional condition is used to guarantee an
additive representation (Debreu, 1959). Intuitively, while addition is a binary operation, its cancellation
property is articulated with three elements.
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Figure 1: Third-order smaller atoms domination. In the illustration, each gray circle is
an atom, and a more likely event has a greater area. For the largest atom in the center,
there are three pairwise disjoint events (circled by dashed lines), each a union of less-likely
atoms and each at least as likely as the center atom. The top event is a union of a few
relatively large atoms, the rightmost event is a union of many relatively small atoms, and
the leftmost event is a union of atoms of different sizes. Not pictured, but allowed, is
a union of an infinite collection of atoms. The axiom requires that there are three such
events for each atom.

1.2 Applications

Beliefs about when a delivery will arrive
Our first application is a concrete example of our primary interpretation of the primi-

tives as beliefs. Suppose you are waiting for a delivery, unsure about the date and hour of
arrival. If you are certain the package will arrive by the end of the week, then your beliefs
do not satisfy 3-SAD. On the other hand, suppose the package is already late, leading
you to believe that each hour is more likely than the next, and suppose that you lack
conviction in the following manner: you are unwilling to wager on the package’s arrival
at a particular hour over its arrival some time later, regardless of the hour in question.
Moreover, for each hour t, you can partition the hours after t into three groups, each
of which you would bet on over t alone. In this case, your beliefs do satisfy 3-SAD. In
fact the axiom may be satisfied even if you do not believe each hour is more likely than
the next—say if delivery is deemed possible only during business hours of non-holiday
weekdays, or if for a given day afternoon hours are deemed more likely than morning
hours—provided the lack of conviction is adapted accordingly.

In this example, a special case is belief that there is a fixed probability p ∈ (0, 1) such
that for each hour t, p is the probability of arrival at t conditional on the package having

not yet arrived. In this case, 3-SAD is satisfied if and only if p ≤ 1

4
. Our axiom may

therefore be interpreted as a notion of sufficient doubt.

Intertemporal preferences
The standard model of intertemporal preference is a special case of the Savage model

with an alternative interpretation of its primitives: S = N, with its usual well-ordering,
the members of S interpreted as periods. This literature studies preferences of an agent (or
dynasty, or institution) over consumption streams, and the preferences with σ-measure
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subjective expected utility representations are precisely, in the language of Olea and
Strzalecki (2014), the time separable class. This central class contains:

� geometric discounting, (Samuelson, 1937; Koopmans, 1960; Koopmans, 1972; Ble-
ichrodt, Rohde, and Wakker, 2008),

� generalized hyperbolic discounting (Loewenstein and Prelec, 1992), and

� quasi-hyperbolic discounting (Laibson, 1997; Olea and Strzalecki, 2014).

Because this class uses atoms, the Savage (1954) characterization of subjective expected
utility does not apply. The standard approach in the literature is to take preferences
over consumption streams with a rich consumption space, such as Euclidean commodity
space.

By contrast, our theorem applies in the minimal case that commodity space has two
members, allowing us to handle for example the case where consumption in each period
consists of some indivisible goods (or objects) taken from a finite set. This setting is also
considered by Kochov (2013), who proposes patience: a weak axiom implied by 3-SAD.
Kochov establishes that if %l has a geometric representation and satisfies patience, then
%l has no other geometric representation; we revisit this result in our conclusion. Our
axiom may be interpreted as a stronger patience requirement, and in the special case
that beliefs admit a geometric representation, 3-SAD is satisfied if and only the discount

factor is at least
3

4
.

Preferences over parts of a heterogeneous good
Economic models often take goods as infinitely divisible. If, in the background, we

have in mind that a unit of such a good is physically a set in Euclidean space—such
as the milk within a particular carton—then we should also have in mind additional
structure preventing the trivialization of scarcity by duplication of the good through
clever disassembly and reassembly (Banach and Tarski, 1924). The measure-theoretic
approach is to consider a collection of parts into which the good may be divided, and to
attach to each of those parts a measure that preferences respect. When all agents share
a measure, the good is homogeneous; when the measures might differ, it is heterogeneous.

The classic problem of fair division, starting with Steinhaus (1948), is the problem
of partitioning a heterogeneous good (or a cake) into parts (or slices) and then assigning
those parts to agents according to some notion of fairness. Similarly, the model of land
for urban economics proposed by Berliant (1985) treats land as a heterogeneous good that
can be divided into parcels; this model has also been used in the context of fair division
(Berliant, Thomson, and Dunz, 1992). The standard assumption in both settings is that
each agent’s preferences are represented by a measure, and the use of atomless measures
has axiomatic foundations for both preferences over slices (Barbanel and Taylor, 1995) and
preferences over parcels (Berliant, 1986). Our theorem is also a preference representation
theorem for these settings, differing from the existing results in that it allows atoms:
crumbs in the context of cake-cutting,4 or parcels that cannot be subdivided (such as
perhaps cities or houses) in the context of land.

4An example of such a crumb is the small plastic figurine (la fève) in a French king cake. According
to tradition, whomever receives it with his slice is king for the day.
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Analysis of incomplete data due to limited granularity
The standard assumption of completeness—that comparisons are always possible—has

been criticized on both normative and positive grounds (von Neumann and Morgenstern,
1947; Aumann, 1962; Schmeidler, 1989; Mandler, 2005). Indecisiveness can be observed
and distinguished from indifference (Eliaz and Ok, 2006), and in fact has been in a recent
experiment (Cettolin and Riedl, 2013). The axiomatic investigation of this behavior spans
diverse settings; for example:

� an agent may defer to the likelihood appraisals of experts, reticent whenever they
disagree (Bewley, 2002; Gilboa, Maccheroni, Marinacci, and Schmeidler, 2010; Faro,
2015);

� refusal to compare may be due solely to fuzziness of tastes (Aumann, 1962; Au-
mann, 1964; Ok, 2002; Dubra, Maccheroni, and Ok, 2004; Evren and Ok, 2011; Ok,
Ortoleva, and Riella, 2012), or may derive from the joint consideration of tastes
and beliefs (Seidenfeld, Schervish, and Kadane, 1995; Nau, 2006; Galaabaatar and
Karni, 2013);

� decisive individuals may exhibit collective indecisiveness as a coalition (Baucells
and Shapley, 2008; Gul and Pesendorfer, 2014); and

� the researcher may be working with incomplete observational data (Nau, 2006).

Though we work with complete beliefs in this article, there is nevertheless a connection
to this last example in a natural special case: comparisons are observed only with limited
granularity. As an example, an investor’s beliefs about the return of a stock might be
observed only to the nearest dollar, the researcher for instance observing the comparison
between [2.5, 3.5) and [3.5, 4.5) while observing nothing involving strict subevents of
either. To be precise, suppose that there is a finest partition generating a σ-algebra for
which observations are complete, and suppose moreover that this partition is countably
infinite. Then assignment of probabilities to the associated events involves atoms, and
our theorem provides conditions under which this may be done unambiguously. It may be
of future interest to consider incomplete data sets for which data is completely observed
up to some level of granularity, beyond which data is partially observed.

Limitations
We remark that the systematic violation of one of our axioms, separability, has been

observed in an experiment where certain events are attached to probability appraisals
while others are not (Ellsberg, 1961); the favoring of the appraised events is a phenomenon
typically ascribed to ambiguity aversion (though not always, see Ergin and Gul (2009)).

1.3 Related literature

As mentioned above, the previous literature on our topic can be classified according to
which of four assertions is imposed. Though our article does not belong to any of these
four categories, it is closely related to each of them.

The literature with no atoms
The seminal contributions to the qualitative probability literature (Bernstein, 1917;

de Finetti, 1937; Koopman, 1940) imposed that S can be partitioned into an arbitrarily
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large number of equally likely events. This implies that there is a unique measure that
“almost represents” %l, though it may assign the same probability to two distinguished
events (see Kreps, 1988).

To guarantee representation, Savage (1954) imposed a stronger axiom, fineness-and-
tightness (see Section 2.3). Surprisingly, Savage’s axioms are in fact compatible when
|S| = |N|; they are only incompatible when S is finite (see Kreps, 1988, Chapter 8,
Problem 4.) That said, Savage’s axioms are incompatible with atoms, and under the
Continuum Hypothesis, they are incompatible with σ-additivity when |S| ≤ |R|.5

Savage deliberately avoided any continuity axiom implying σ-additivity, explaining:
“I know of no argument leading to the requirement of countable additivity[ . . . ]it therefore
seems better not to assume countable additivity outright as a postulate, but to recognize
it as a special hypothesis yielding, where applicable, a large class of useful theorems.”
But there have since been two particularly strong such arguments: first, σ-additivity is
required for avoiding money pumps (Adams, 1962; Seidenfeld and Schervish, 1983), and
second, σ-additivity is required to ensure that choice always respects strict first order
stochastic dominance (Wakker, 1993). Based on these observations and others, Stinch-
combe (1997) argues that a measure which is only finitely-additive indicates a misspecified
state space: “One summary[ . . . ]is that countably infinite constructions require countably
additive probabilities.”

Villegas (1964) identified the appropriate continuity axiom: if µ is a measure repre-
sentation of %l, then µ is a σ-additive if and only if %l is monotonely continuous. Further-
more, to guarantee representation by a σ-measure, it suffices to impose only monotone
continuity and atomlessness. We refer to this important result as Theorem V and appeal
to it directly in our proof. Unfortunately, these axioms are incompatible when |S| ≤ |N|.

While Kopylov (2010) does not explicitly study qualitative probabilities, it is clear
from his analysis that σ-measure representation is guaranteed by imposing only strong
monotone continuity when A is countably separated (Mackey, 1957). That there are no
atoms is then implied. Because Kopylov’s axioms are incompatible when |S| ≤ |N|, and
because A can only be countably separated when |S| ≤ |R|,6 it follows that under the
Continuum Hypothesis, this approach is custom-tailored to the |S| = |R| case.

Our result generalizes that of Villegas (1964) by weakening atomlessness to 3-SAD.
Like Savage (1954), our axioms are incompatible only when S is finite. Unlike the rest
of this part of the literature, our axioms are compatible with atoms, and are compatible
with σ-additivity whenever S is infinite.

The literature with cancellation
Even when S is finite, there are qualitative probabilities without measure representa-

tions (Kraft, Pratt, and Seidenberg, 1959). This was first demonstrated by means of a

5If |S| = |R|, then the existence of an atomless σ-measure defined on 2S is inconsistent with the
Continuum Hypothesis (Ulam, 1930). Savage escapes this predicament by relaxing σ-additivity, as there
are well-behaved atomless measures—for example when S = [0, 1], there are measures that (1) agree
with the Lebesgue measure on those sets where it is defined, and (2) assign the same number to any
pair of congruent sets (Banach, 1932). By contrast, we escape this predicament both by allowing A to
be any σ-algebra and by allowing atoms.

6A is countable separated if there is a countable collection of events A∗ ⊆ A such that for each distinct
pair s, s′ ∈ S, there is A ∈ A∗ with s ∈ A and s′ 6∈ A. That this implies |S| ≤ |R| can be seen from the
following argument of Faris (2007): index A∗ by the natural numbers, so that A∗ = {A1, A2, ...}, and
define the mapping ϕ from S to the Cantor set C (Cantor, 1883) by defining, for each i ∈ N and each
s ∈ S, ϕi(s) ≡ 1Ai

(s). Then ϕ is an injection, so |S| ≤ |C| = |R|.
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qualitative probability %l on the subsets of {s1, s2, s3, s4, s5} that includes the compar-
isons:

(1) { s1 } %l { s2, s4 }

(2) { s3, s4 } %l { s1, s2, }

(3) { s2, s5 } %l { s1, s4 }

(4) { s1, s2, s4 } �l { s3, s5 }

A necessary and sufficient condition for measure representation is finite cancellation
(Kraft, Pratt, and Seidenberg, 1959; Scott, 1964; Fishburn, 1970; Krantz, Luce, Suppes,
and Tversky, 1971), the assertion that there is no such list of comparisons. This condi-
tion is quite strong, alone necessary and sufficient for additive representation (Fishburn,
1970). Attempts to justify this axiom generally rely on enriched models—for example,
preferences over multi-sets of states, where such a multi-set is interpreted as a portfolio
of Arrow-Debreu-McKenzie securities—and as such it can be difficult to interpret.

Stronger and more complex conditions have been identified that guarantee measure
representation while allowing atoms when S is infinite (Domotor, 1969; Chateauneuf
and Jaffray, 1984; Chateauneuf, 1985). Chateauneuf (1985) in fact provides necessary
and sufficient conditions using an axiom that implies finite cancellation. We recommend
Fishburn’s excellent survey for more information (Fishburn, 1986).

By contrast, we do not impose any cancellation axiom. Rather, following Cantor
and Debreu (Cantor, 1895; Debreu, 1954; Debreu, 1964), we construct an order-dense
family of equivalence classes. Over our family—or more precisely, over carefully selected
representatives of our family’s classes—we define a binary operation. Following Peano
(1889), we show that this binary operation interacts appropriately with succession—that
is, addition by one—from which we derive cancellation, commutativity, associativity, and
all other properties of ordinary addition.

The literature with solvability
To our knowledge, there are two articles studying qualitative probabilities with atoms

that do not impose cancellation (Abdellaoui and Wakker, 2005; Chew and Sagi, 2006).
Both approaches involve solvability:7 for each pair of disjoint events, there is a subevent
of one that is as likely as the other. Abdellaoui and Wakker (2005) allow for mosaics
instead of σ-algebras and allow for measures that are not convex-ranged, while Chew and
Sagi (2006) work with an ordering of events induced from preferences over acts through
“exchangeability” and proceed without monotonicity. In both cases there may be atoms,
provided any pairwise disjoint collection of atoms is finite with equally likely members.

By contrast, our axioms imply that if there are atoms, then there is a pairwise disjoint
collection of atoms that is countably infinite with members that are not all equally likely.
We explain the difference in approach with a visual metaphor where size corresponds to
likelihood. Given two events, one larger than the other, we would often like to find a
piece of the larger that is the same size as the smaller. In the solvability approach, the
larger event is made of a fabric from which the desired piece can be cleanly cut. In our

7This is not quite the language used in either article. Abdellaoui and Wakker (2005) use “solvability”
to refer to a stronger axiom, while Chew and Sagi (2006) use “completeness” to refer the given axiom
and use “solvability” to refer to a related property for measures.

7



approach, we cannot always create the desired piece because the larger event may consist
of blocks that cannot be cut. Nevertheless, whenever the larger event has a rich enough
composition, the desired piece can be mosaicked by iteratively adding smaller and smaller
blocks to better-approximate the specified size.

The literature with additional primitives
We refer to works that use the entire Savage (1954) model: a state space S, an outcome

space X, and preferences % over acts f : S → X. Implicitly, A = 2S. To uncover the
embedded qualitative probability, first select a pair of outcomes x∗ and x such that the
act guaranteeing x∗ is preferred to that guaranteeing x. Beliefs can then be defined as
preferences among simple bets: A %l B if and only if the act returning x∗ on A and
x otherwise is at least as desirable as the act returning x∗ on B and x otherwise. It is
imposed that this is well-defined; %l does depend on the choice of x∗ and x.

Savage used only %l to deliver the unique measure representation of beliefs. But to
handle atoms that are not equally likely without using a cancellation axiom, others have
used the entire model, particularly when S is discrete. Typically this involves imposing,
at a minimum, that X has cardinality of at least the continuum and that X has a rich
topological structure. For example, X might be a simplex of objective “roulette lotteries”
that can be mixed (as in Anscombe and Aumann, 1963 and the vast literature that
followed), or an interval of dollar amounts (see Wakker, 1989; Gul, 1992; and references
therein), or Euclidean commodity space (as in the literature on intertemporal preferences
already mentioned).

In contrast to those who use the full Savage model under the uncertainty interpre-
tation, we do not rely on any extraneous assumptions about the space of outcomes to
deliver the measure representation, keeping our analysis firmly focused on beliefs. In
contrast to most studies of intertemporal preference, as mentioned above, our pursuit of
the Savage approach allows us to handle finite consumption spaces.

1.4 Outline

From here until the conclusion, the article is dedicated to technique. Section 2 introduces
the model, then clarifies the relationship between our result and Savage’s (Theorem S;
Savage, 1954) with Proposition 2.1: Savage’s axiom is equivalent to a continuity axiom,
a richness axiom, and a divisibility axiom. Each of the next three sections focuses on
modifying one of these axioms.

Section 3 (‘Continuity’) begins with Proposition 3.1: monotone continuity is equiv-
alent to the usual requirement that upper and lower contour sets are closed. Thus by
Theorem CD (Cantor, 1895; Debreu, 1954; Debreu, 1964), an order-dense family of equiv-
alence classes—what we call a quotient skeleton—guarantees a continuous representation.
We propose a stronger structure, called a dyadic skeleton, that guarantees a σ-measure
representation (Proposition 3.2). We then show that we can construct our dyadic skeleton
in pieces (Proposition 3.3), and that the atomless pieces have already been constructed
(Theorem V; Villegas, 1964).

In Section 4 (‘Richness’), we organize the atoms. Proposition 4.1 essentially allows us
to study the atoms in isolation as though they are singletons. To simplify this task by
taking the natural numbers as an auxiliary state space, we propose a tentative richness
axiom, no finite atom-catalogues, that is implied by our final hypotheses.

Section 5 (‘Divisibility’) is the heart of this article. We use a problem of making exact
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change and an observation about real sequences (Theorem K; Kakeya, 1914) to motivate
our smaller-atoms domination family. In particular, our axioms give the greedy trans-
forms, an idea inspired by Rényi (1957), a variety of powerful properties. We then outline
our central proof, the construction of the dyadic skeleton for the atoms (Proposition 5.1).

In Section 6, we state our main result, Theorem 1, then prove it using only the
propositions summarized here and Theorem V. Section 7 concludes.

2 Model

2.1 Qualitative probability

A likelihood space (S,A,%l) is a triple consisting of
(1) a set of states S with generic members s, s′,8

(2) a σ-algebra of events A ⊆ 2S, including S, with generic members A,B,C,9 and
(3) a likelihood relation %l: a binary relation on A.

We interpret %l as a collection of comparisons of events on the basis of relative likelihood:
A %l B denotes “A is at least as likely as B.” We write A ∼l B to denote A %l B and
B %l A, and write A �l B to denote A %l B but not A ∼l B. We emphasize that, for
convenience, we include degenerate triples (∅, {∅},%l) as likelihood spaces.

Formally, all our results concern likelihood spaces. That said, we often implicitly take
S and A as the set of states and σ-algebra, respectively, abusing notation by referring to
the likelihood space by its likelihood relation. In certain cases, however, we are instead
explicit about the entire likelihood space, particularly when comparing several likelihood
spaces or when imposing structure on the set of states and σ-algebra.

The following assumptions are standard:

◦ Order: The relation %l is complete and transitive.

◦ Separability: For each triple A,B,C ∈ A such that A ∩ C = B ∩ C = ∅,

A %l B if and only if A ∪ C %l B ∪ C.

◦ Monotonicity: For each pair A,B ∈ A, A ⊆ B implies B %l A.

◦ Nondegeneracy: There are A,B ∈ A such that A �l B.

We gather these standard assumptions in the following definition:

8Some study qualitative probability without specifying a set of states (Villegas, 1964; Villegas, 1967).
If A is abstractly taken to be an algebra, then by Stone’s Representation Theorem (Birkhoff, 1935; Stone,
1936) no generality is gained, while if A is abstractly taken to be a σ-algebra, the additional generality
is made explicit by the Loomis-Sikorski Representation Theorem (Loomis, 1947; Sikorski, 1960). The
former result relies on the Boolean Prime Ideal Theorem, which is weaker than the Axiom of Choice
(Halpern and Lévy, 1964). The latter result does not (Buskes, de Pagter, and van Rooij, 2008), nor does
the fact that no generality is gained when A is finite (Birkhoff, 1937).

9Savage (1954) is less general, asserting that A = 2S , while others are more general, allowing A to be
any algebra, or even any Boolean ring (Villegas, 1967) or mosaic (Kopylov, 2007; Abdellaoui and Wakker,
2005). The generalization is motivated by the distinction between “risk” and “ambiguity” (Knight, 1921)
illustrated by the Ellsberg paradox (Ellsberg, 1961): the collection of “subjectively risky events” (Epstein
and Zhang, 2001) need only be a mosaic.
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Definition: A qualitative probability space is a likelihood space that satisfies order,
separability, monotonicity, and nondegeneracy. A qualitative probability is the likelihood
relation of a qualitative probability space.10

Appendix 1 contains some basic lemmas about qualitative probability spaces.

2.2 Quantitative probability

We seek conditions under which our ordinal notion of qualitative probability space coin-
cides with the standard cardinal notion of (quantitative) probability space (Kolmogoroff,
1933). The notions coincide when the likelihood relation is represented by a measure,
formalized as follows:

Definition: A function R : A → R ∪ {−∞,+∞} is a representation of %l if for each
pair A,B ∈ A,

A %l B if and only if R(A) ≥ R(B).

In this case we say R represents %l.

Definition: A function µ : A → [0, 1] is a measure if
(1) µ(S) = 1, and
(2) for each finite, pairwise disjoint collection {Ai}i∈I ⊆ A,

µ(∪Ai) =
∑

µ(Ai).

A measure µ is moreover a σ-measure if
(3) for each countably infinite, pairwise disjoint collection {Ai}i∈I ⊆ A,

µ(∪Ai) =
∑

µ(Ai).

Let M(A) ⊆ [0, 1]A denote the set of measures and let Mσ(A) ⊆ M(A) denote the
set of σ-measures. In special cases where |S| ≤ |N| and A = 2S, we favor a slight
abuse of notation: because each σ-measure is determined by its assignment to singleton
events, we accordingly conflate a σ-measure with its restriction to singletons, favoring
∆(S) ≡ {µ ∈ [0, 1]S|

∑
µ(s) = 1} over Mσ(A).

In this article, we seek conditions guaranteeing there is µ ∈ Mσ(A) representing %l.
This is in contrast to Savage (1954), whose guaranteed representation may belong to
M(A)\Mσ(A).

2.3 Savage’s axiom and infinite divisibility

To guarantee measure representation, Savage (1954) introduces two separate conditions,
fineness and tightness, which are together equivalent to a condition he calls P6′:

◦ Fineness-and-tightness (P6′): For each pair A,B ∈ A such that A �l B, there is
a finite partition of S, {Ci}i∈I , such that for each i ∈ I, A �l B ∪ Ci.

10Savage (1954) and others give an equivalent definition using a weaker version of monotonicity and a
stronger version of nondegeneracy.
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Savage deduces from this axiom that there is a unique measure representation, and
moreover that it satisfies the following property:

Definition: A measure µ ∈ M(A) is infinitely divisible if for each A ∈ A and each
λ ∈ [0, 1], there is B ⊆ A such that µ(B) = λµ(A).

Theorem S (Savage, 1954):11 If %l is a qualitative probability satisfying fineness-
and-tightness, then there is a unique µ ∈M(A) representing %l. Moreover, µ is infinitely
divisible.

The class of qualitative probabilities satisfying these hypotheses is in one sense large:
their representations need not be σ-additive. But in another sense it is narrow: infinite
divisibility rules out atoms altogether.12 By contrast, the representations compatible with
our hypotheses are all σ-additive, but not all are atomless.

The elegance of fineness-and-tightness obscures how one might modify it to allow
atoms. To clarify our approach, and its relationship to Savage’s, we introduce three con-
ditions that appear unnecessarily strong, but are in fact together equivalent to fineness-
and-tightness for qualitative probabilities. These conditions involve partitions of the state
space into equally likely events (Bernstein, 1917; de Finetti, 1937; Koopman, 1940):

Definition: For each k ∈ N, a k-uniform partition is a partition of S, {A1
k, A

2
k, ..., A

k
k},

such that for each pair i, j ∈ {1, 2, ..., k}, Aik ∼l A
j
k.

◦ Uniform partition continuity: For each A ∈ A, if for each k ∈ N, there is
k-uniform partition {A1

k, A
2
k, ..., A

k
k} such that A1

k %l A, then A ∼l ∅.

◦ Uniform partition richness: For each k ∈ N, there is a k-uniform partition.

◦ Event divisibility: For each pair A,B ∈ A such that A �l B, there is B′ ⊆ A such
that B′ ∼l B.

Proposition 2.1: If %l is a qualitative probability, then uniform partition richness,
uniform partition continuity, and event divisibility are together equivalent to fineness-
and-tightness.

The proof is in Appendix 2. Our approach can be understood as the modification of
these three conditions to obtain another continuity axiom, another richness axiom, and
another divisibility axiom.

11If A is only required to be an algebra and a weaker version of fineness-and-tightness is imposed, then
a measure representation is still guaranteed (Wakker, 1981), but its range need only be a dense subset
of [0, 1] (Marinacci, 1993).

12Does infinite divisibility imply more than that there are no atoms? Under the Axiom of Choice, yes:
there is an atomless measure that is not infinitely divisible (Nunke and Savage, 1952).
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3 Continuity

3.1 Monotone continuity and standard continuity

As argued in Section 1.1, there are strong reasons to impose that the measure rep-
resentation is σ-additive (Adams, 1962; Seidenfeld and Schervish, 1983; Wakker, 1993;
Stinchcombe, 1997), and the appropriate axiom for doing so has been identified (Villegas,
1964).13 As presented by Arrow (1970):

Definition (Arrow, 1970): An event sequence (Ai) ∈ AN is vanishing if (1) A1 ⊇ A2 ⊇
..., and (2) ∩Ai = ∅.

◦ Monotone continuity (Villegas, 1964):14 For each pair A,B ∈ A and each
vanishing (Ci) ∈ AN, if for each i ∈ N, A ∪ Ci %l B, then A %l B.

For example, if S = N and for each i ∈ N, Ai = {i, i + 1, i + 2, ...}, then (Ai) is
vanishing. As Arrow writes: “Clearly, an event which is far out on a vanishing sequence
is ‘small’ by any reasonable standard.”

To compare monotone continuity to a more familiar axiom, consider pointwise conver-
gence, its associated topology (under which A is closed), and the standard requirement
that upper and lower contour sets are closed:

Definition: An event sequence (Ai) ∈ AN is convergent if for each s ∈ S, either
(1) there is i∗ ∈ N such that for each i ≥ i∗, s ∈ Ai, and
(2) there is i∗ ∈ N such that for each i ≥ i∗, s 6∈ Ai.

In this case, we say ∪∞i=1(∩∞j=iAj) = ∩∞i=1(∪∞j=iAj) is the (pointwise) limit of (Ai), written
limAi.

◦ Continuity: For each A ∈ A and each convergent (Bi) ∈ AN,
(1) if for each i ∈ N, Bi %l A, then limBi %l A, and
(2) if for each i ∈ N, A %l Bi, then A %l limBi.

Though continuity seems stronger than monotone continuity, in fact the two are equiv-
alent for qualitative probabilities, a point which to our knowledge has not been made
previously:

Proposition 3.1: If %l is a qualitative probability, then %l is monotonely continuous
if and only if %l is continuous.

The proof is in Appendix 3. Based on this equivalence, we are justified in writing
(monotone) continuity in stating our results while using continuity in our proofs, as well
as revisiting previous work involving standard continuity.

13In fact, this is the appropriate axiom even in the multiple priors model (Gilboa and Schmeidler,
1989), guaranteeing that the set of priors is a relatively weak compact set of σ-measures (Chateauneuf,
Maccheroni, Marinacci, and Tallon, 2005).

14This definition, which is convenient for our approach, is the equivalent contrapositive of the definition
in the introduction, whose informal statement we find simpler.
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3.2 Quotients and dyadic skeletons

A measure is σ-additive if and only if it is a continuous function when A has the topology
of pointwise convergence.15 We are thus interested, in part, in conditions guaranteeing a
binary relation has a continuous representation. Fortunately, this question is well-studied
(see Debreu, 1964), and it is fruitful to revisit a particular answer involving standard
continuity.

Define the quotient [A/∼l] ⊆ 2A to be the family of likelihood equivalence classes:

[A/∼l] ≡ {{B ∈ A|B ∼l A}|A ∈ A}.

A continuous representation can be guaranteed if [A/∼l] contains a structured subfamily
{Zi}i∈I about which the representation may be constructed. We propose to suggestively
refer to {Zi}i∈I a “skeleton” (using z as s is already assigned to the state space):

Definition: For each qualitative probability space (S,A,%l), a collection of equivalence
classes {Zi}i∈I ⊆ [A/∼l] is a (quotient) skeleton of (S,A,%l) if

(1) |I| ≤ N, and
(2) for each pair A,B ∈ A such that A �l B, there is Z ∈ ∪Zi such that A %l Z %l B.

Theorem CD (Cantor, 1895; Debreu, 1954; Debreu, 1964):16 If (S,A,%l) has
a quotient skeleton and %l is continuous, then %l has a continuous representation R.17

Guaranteeing a continuous representation that is moreover a measure requires a quotient
skeleton with additional structure. Define the dyadic rationals 2 ⊆ [0, 1] by:

2 ≡ {
∑
i∈F

(
1

2
)i|F ⊆ N, |F | < |N|} ∪ {1}.

Definition: For each qualitative probability space (S,A,%l), a collection of equivalence
classes {Zv}v∈2 ⊆ [A/∼l] is a dyadic (quotient) skeleton of (S,A,%l) if

[DS1] ∅ ∈ Z0 and S ∈ Z1,
[DS2] for each pair v, v′ ∈ 2 such that v + v′ ≤ 1, there are disjoint Zv ∈ Zv and

Zv′ ∈ Zv′ such that Zv ∪ Zv′ ∈ Zv+v′ , and
[DS3] for each four monotonic18 (vi), (v

′
i), (wi), (w

′
i) ∈ 2N such that

(i) for each i ∈ N, vi + wi ≤ 1 and v′i + w′i ≤ 1, and
(ii) lim vi = lim v′i and limwi = limw′i,

there are convergent (Ai), (A
′
i), (Bi), (B

′
i) ∈ AN such that

(i) for each i ∈ N, Ai ∈ Zvi , A′i ∈ Zv′i , Bi ∈ Zwi
, and B′i ∈ Zw′i ,

15Many texts on measure theory prove a version of this result using a weaker notion of continuity.
Though we did not find this particular statement elsewhere, we suspect it is well-known; in any case we
omit the straightforward proof as it is not essential to our main results.

16Cantor first proved the result under the stronger A �l Z �l B assumption (Cantor, 1895). Nearly
60 years later, at the suggestion of Savage, Debreu attempted to prove the result under the weaker
A %l Z %l B assumption (Debreu, 1954). Debreu then noticed an error in his own proof, which he
corrected 10 years later using his acclaimed Gap Lemma (Debreu, 1964).

17For narrative clarity, we have chosen a weaker statement than that in Debreu (1964). In fact %l can
be any binary relation and A need not be a σ-algebra. Moreover, without imposing continuity, Debreu
concludes that R is upper semi-continuous in any topology for which upper contour sets are closed and
lower semi-continuous in any topology for which lower contour sets are closed.

18Since these four sequences are bounded, they are also convergent.
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(ii) for each i ∈ N, Ai ∩Bi = A′i ∩B′i = ∅, and
(iii) limAi = limA′i and limBi = limB′i.

Proposition 3.2: If (S,A,%l) is a qualitative probability space that has a dyadic
skeleton and satisfies (monotone) continuity, then there is a unique µ ∈Mσ(A) such that
µ represents %l.

The proof is in Appendix 3. In establishing our main result, we do not assume
the existence of a dyadic skeleton; we construct one using our axioms. In order for
the construction to proceed in pieces, we introduce two similar notions: subspace and
coarsening.

Definition: For each likelihood space (S,A,%l) and each S ′ ∈ A, define the S ′-subspace
of (S,A,%l), (S,A,%l)|S′ , to be the likelihood space (A,A ∩ 2S

′
,%l|S′), where %l|S′ is

the binary relation on A ∩ 2S
′

defined by:

B %l|S′ C if and only if B,C ∈ A ∩ 2S
′

and B %l C.

Definition: For each likelihood space (S,A,%l) and each σ-algebra A′ ⊆ A with
∪A′ = S, define the A′-coarsening of (S,A,%l), (S,A,%l)|A′ , to be the likelihood space
(S,A′,%l|A′), where %l|A′ is the binary relation on A′ defined by:

B %l|A′ C if and only if B,C ∈ A′ and B %l C.

If (S,A,%l) is a qualitative probability space, then (i) S ′ �l ∅ implies (S,A,%l)|S′
is a qualitative probability space, and (ii) A′ ⊆ A is a σ-algebra with ∪A′ = S im-
plies (S,A,%l)|A′ is a qualitative probability space. We emphasize that because %l|S′
compares only subevents of S ′, and because %l|A′ compares only members of A′, both
notions are distinct from conditional qualitative probability (Savage, 1954). We do not
use conditional probabilities anywhere in this article, and we postulate nothing about
how beliefs change in response to new information.

The following proposition allows us to construct our dyadic skeleton in pieces:

Proposition 3.3: A qualitative probability space (S,A,%l) has a dyadic skeleton in
each of the following cases:

C1: there is σ-algebra A′ ⊆ A with ∪A′ = S such that (S,A,%l)|A′ is a qualitative
probability space with a dyadic skeleton,

C2: there are S ′, S ′′ ∈ A partitioning S such that (S,A,%l)|S′ is a qualitative probability
space with a dyadic skeleton and S ′′ ∼l ∅, and

C3: there are S ′, S ′′ ∈ A partitioning S such that (S,A,%l)|S′ and (S,A,%l)|S′′ are each
qualitative probability spaces with dyadic skeletons.

The proof is in Appendix 3.
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4 Richness

4.1 Atom-catalogues

Loosely speaking, the dyadic skeleton pieces corresponding to atomless subspaces have
already been constructed by previous work, so to complete the skeleton, it remains to
construct one final piece for one final space that is not atomless. In general, however,
there is not a unique choice for this final space. This section is dedicated to formalizing
these ideas. We begin with our notion of an event with no smaller subevent:

Definition: An atom is an event A ∈ A such that
(1) A �l ∅, and
(2) for each B ⊆ A, either B ∼l A or B ∼l ∅.

We write A⊕ ⊆ A for the collection of atoms.

Lemma 4 of Villegas (1964) incorrectly claims that for each monotonely continuous
qualitative probability, the collection of atoms is at most countably infinite. As a coun-
terexample, consider S = [0, 1] and the (monotonely continuous) qualitative probability
on 2S for which {0} ∼l S. That said, the following correction to that claim involves many
of the ideas already present in that work:

Definition: For each index set I ⊆ N, we say a tuple (Ai)i∈I ∈ (A⊕)I is an atom-
catalogue if

(1) for each pair i, j ∈ I, Ai ∩ Aj = ∅,
(2) for each pair i, j ∈ I such that i < j, Ai %l Aj, and
(3) for each A ⊆ S\(∪Ai), A 6∈ A⊕.

Proposition 4.1: If %l is a (monotonely) continuous qualitative probability, and if
A⊕ 6= ∅, then there is an atom-catalogue.

The proof is in Appendix 4. Though there may be many atom-catalogues, our ap-
proach is to study just one and our selection is not of consequence. Given this atom-
catalogue (Ai), we separately construct a dyadic skeleton for two spaces: (1) the atomless
subspace (S,A,%l)|S\∪Ai

, and (2) the coarsening of subspace (S,A,%l)|∪Ai
with respect

to the σ-algebra 2{Ai} ⊆ A. The construction of the first has been completed by previous
work:

Theorem V (Villegas, 1964): If %l is an atomless and (monotonely) continuous
qualitative probability, then it has a unique representation µ ∈ Mσ(A). Moreoever, µ is
infinitely divisible.

We thus turn our attention to the second space, which for convenience we refer to as
the coarsened subspace.

4.2 Richness and atom-standard spaces

Our investigation of the coarsened subspace is greatly simplified through the introduction
of an auxiliary state space. Anticipating an implication of our divisibility axiom, we
tentatively impose the following richness axiom:
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◦ No finite atom-catalogues: If I ⊆ N and (Ai)i∈I is an atom-catalogue, then
|I| = |N|.

Under no finite atom-catalogues, it is without loss of generality to assume our index
set is N and our atom-catalogue is (Ai)i∈N. In this case, our coarsened subspace has
state space ∪NAi and σ-algebra {∪JAi|J ⊆ N}. To simplify, we view N as an auxiliary
state space, and we identify each atom Ai with the singleton event {i} taken from the
auxiliary σ-algebra 2N. We propose the following definition to factor these details out of
the ensuing discussion:

Definition: We say the triple (S,A,%l) is atom-standard if
(1) S = {1, 2, ...},
(2) A = 2S,
(3) %l is a (monotonely) continuous qualitative probability,
(4) for each s ∈ S, {s} �l ∅, and
(5) for each pair s, s′ ∈ S, s < s′ implies {s} %l {s′}.

The following section, which is the heart of this article, is exclusively concerned with
atom-standard spaces.

5 Divisibility

5.1 Bus fares and greedy transforms

To motivate our approach, consider the following situation. You would like to take a bus,
and in order to do so, you must pay the fare with exact change. On your person you have
various coins in different denominations. Can you make exact change, and if so, how?

One possible approach is to use a so-called “greedy” algorithm: consider your coins,
one at a time, in non-increasing order of value. If the coin under consideration puts your
running total over the fare, then return it to your pocket; otherwise, place it into the
growing pile that you hope will pay your way. Once you have considered every coin,
present the pile to the bus driver.

It is easy to see the greedy algorithm can unnecessarily fail, for example if the fare is
30¢ when you have a quarter and three dimes. This failure is an implication of a broader
principle: determining whether or not you can make exact change is NP -complete.19

But there is a particular class of problems for which the greedy algorithm always works:
when you have a countably infinite collection of coins whose value tends to zero, your
total wealth exceeds the fare, and the value of each coin is less than the value of all
smaller coins:

Theorem K (Kakeya 1914, Kakeya 1915):20 For each (µi) ∈ [0, 1]N, if
(i) (µi) is non-increasing,
(ii) limµi = 0, and

19This is true even if it is given that all coin values and the fare are integers. This is the subset sum
problem, a special case of the knapsack problem. See for example Garey and Johnson (1979).

20For narrative clarity, we have chosen a slightly weaker statement. In fact Kakeya observes that for
each (µi) ∈ RN such that

∑
|µi| is finite, (iii) is necessary and sufficient for {

∑
i∈A µi|A ⊆ N} to be

convex.

16



(iii) for each i ∈ N,
∑

j>i µ(j) ≥ µ(i),
then for each v ∈ [0,

∑
µi], there is A ⊆ N such that∑

A

µ(i) = v.

Theorem K raises a series of related questions:

� What if coins are not assigned numerical values, but you can compare any two piles
of coins, and moreoever the fare is given by a pile of coins?

� What if you have to take a series of buses that may have different fares?

� If a sequence of fares converges to some limit, does the corresponding sequence of
coin piles generated by the greedy algorithm converge as well?

We investigate these questions and others, only instead of a collection of coins and a fare,
we have a collection of states and a target event.

Formally, for each event A, we define the greedy transform GA : A → A, which
associates each event B with another event GA(B) ⊆ A. This transform is an adaptation
of the greedy expansion from the mathematics literature on β-expansions (Rényi, 1957).21

In the analogy, A is the collection of coins in your wallet while B is the fare:

Definition:22 If (S,A,%l) is atom-standard, then for each pair A ∈ A, we define the
greedy transform GA : A → A as follows. For each B ∈ A, define GA(B) ⊆ A by:

� Define GA0 (B) ≡ ∅.

� For each i ∈ N, define

GAi (B) ≡
{
GAi−1(B) ∪ {i}, i ∈ A and B %l GAi−1(B) ∪ {i}
GAi−1(B), else.

� Clearly (GA
i (B)) ∈ AN is convergent. Define

GA(B) ≡ limGAi (B).

By construction and by continuity, B %l GA(B). Provided A %l B, when is equiva-
lence guaranteed?

5.2 Smaller-atoms domination

In order to discipline the greedy transforms, we introduce a parametric family of divisibil-
ity axioms based on Kakeya’s observation, with higher-parameter assumptions logically
stronger than lower-parameter ones. For each k ∈ N, we define:

21An earlier version of this work used a second transformation based on the quasi-greedy expansion,
which has interesting properties (de Vries and Komornik, 2009).

22To be completely formal, the notation should be GA|%l as the definition relies on %l. But since %l

will always be clear from context, we suppress it in the notation.
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◦ kth-order smaller-atoms domination (k-SAD): For each A ∈ A⊕, there are
A1,A2, ...,Ak ⊆ {A′ ∈ A⊕|A �l A′} such that

(1) for each pair i, j ∈ {1, 2, ..., k}, (∪Ai) ∩ (∪Aj) = ∅, and
(2) for each i ∈ {1, 2, ..., k}, (∪Ai) %l A.

These axioms have powerful implications for the greedy transforms. For example,
returning to the bus fare example, we have the following ordinal analogue of Theorem K:
under k-SAD, you can make exact change for k consecutive fares, provided the sum of
the fares does not exceed what’s in your wallet, even if coins are not assigned numerical
values. Two lemmas are essential to outlining our approach, and we state them formally
here; for the precise statements and proofs of the others, see Appendix 5.

First Halving Lemma: If (S,A,%) is atom-standard, then for each A ∈ A such that
A �l ∅ and %l|A satisfies 1-SAD, there is H ⊆ A such that H ∼l A\H and A �l H �l ∅.

Second Halving Lemma: If (S,A,%) is atom-standard and %l satisfies 2-SAD, then
for each A ∈ A such that A �l ∅, there are disjoint H(A), H ′(A) ∈ A such that

(1) A ∼l H(A) ∪H ′(A), and
(2) A �l H(A) ∼l H ′(A) �l ∅.

The Second Halving Lemma states that under 2-SAD, we can construct the pairs of
equally likely events that are fundamental to the approach outlined by Ramsey (1931) and
pursued by others, such as Gul (1992). But it is the proof technique for its own lemma,
the First Halving Lemma, that merits comment: by viewing the collection of events
ordered lexicographically as the canonical Cantor set (Cantor, 1883), we gain access to
order-topological properties of a bounded subset of the real line. In particular, each
closed collection of events has a lexicographic maximum, which under 1-SAD implies
the existence of our desired “half.” Informally, it is in this way that we first glimpse
cardinality in our ordinal relation.

5.3 The atom skeleton

Our objective is to construct a dyadic skeleton {Zv}v∈2. As each Zv is an equivalence
class, it suffices to construct, for each v ∈ 2, a representative event Av ∈ Zv.

Each v ∈ 2 can be written
p

2q
, where p, q ∈ {0, 1, ...} with p ≤ 2q. Our first step

is to construct, for each such pair p, q, an event Apq . We then go on to show that if
p

2q
=

p′

2q′
= v, then Apq = Ap

′

q′ , so that constructing Av ≡ Apq is well-defined.

The construction involves two ingredients: “halving” and “addition by one.” First,
for each q ∈ {0, 1, ...}, define A0

q ≡ ∅. Second, define the {A1
q} recursively:

� Define A1
0 ≡ S.

� For each q ∈ {0, 1, ...}, using the Second Halving Lemma, identify disjoint H and
H ′ such that A1

q ∼l H∪H ′. Define A1
q+1 ≡ GS(H); this, it turns out, is well-defined.

Finally, for each q ∈ {0, 1, ...}, define {Apq} recursively:

� For each p ∈ {0, 1, ..., 2q − 1}, define Ap+1
q ≡ GS(Apq ∪ GS\A

p
q (A1

q)).
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This process can be understood as the construction of a sequence of progressively finer
rulers (Figure 2).

Figure 2: Each row is one member in our sequence of progressively finer rulers. The
leftmost point on each is identified by ∅. The diagonal dotted lines represent construction
through “halving.” The horizontal dashed lines represent construction through “addition
by one.” It is then proved that any two events aligned vertically are in fact the same
event.

In order to derive cancellation, we generalize “addition by one.” For each q ∈ {0, 1, ...}
and each pair p, p′ ∈ {0, 1, ..., 2q} such that p+ p′ ≤ 2q, define Apq

⊎
Ap
′
q ∈ A by:

Apq
⊎

Ap
′

q ≡ GS
(
Apq ∪ GS\A

p
q (Ap

′

q )
)
.

To prove that this binary operation is in fact addition—that is, Apq
⊎
Ap
′
q = Ap+p

′
q —we

follow Peano’s axiomatization of addition (Peano, 1889); the essential step is establishing

that Ap+p
′

q = Apq
⊎
Ap
′
q implies A

p+(p′+1)
q = Apq

⊎
Ap
′+1
q , for which we use 3-SAD.

After verifying that {Zv}v∈2 satisfies all the requirements of a dyadic skeleton, we
establish:

Proposition 5.1: If (S,A,%l) is atom-standard and satisfies 3-SAD, then (S,A,%l)
has a dyadic skeleton.

The proof, which is the central proof of this article, is in Appendix 6.

6 Main result

In this section, we state and prove the primary theorem of our article. The proof relies on
several key results described in the body of this article, but visiting the appendix should
not be necessary.

Theorem 1: A likelihood relation %l is a qualitative probability satisfying (monotone)
continuity and 3-SAD if and only if it has a representation µ ∈Mσ(A) such that for each
A ∈ A,
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(i) if A is an atom, µ(∪{A′ ∈ A⊕|A �l A′}) ≥ 3µ(A) > 0, and
(ii) if A contains no atoms, for each λ ∈ [0, 1], there is B ⊆ A such that µ(B) = λµ(A).

Moreover, µ ∈Mσ(A) is unique and S is infinite.

Proof: It is trivial that our axioms are necessary for such a representation.
If A⊕ = ∅, then we are done by Theorem V, so assume A⊕ 6= ∅. Then by Proposi-

tion 4.1, there is an atom-catalogue (Ai)i∈I . Define S ′ ≡ ∪Ai and A′ ≡ A ∩ 2S
′
. Then

the subspace (S,A,%l)|S′ = (S ′,A′,%l|S′) is a qualitative probability space; by the def-
inition of atom-catalogue and by separability, it satisfies 3-SAD. By 1-SAD, |I| = N;
without loss of generality, I = N. Define A∗ ≡ 2{Ai}. Using N as an auxiliary state space,
the coarsening (S⊕,A⊕,%l|S′)|A∗ is an atom-standard qualitative probability space; by
the definition of atom-catalogue, separability, and continuity, it satisfies 3-SAD. Thus
by Proposition 5.1, this coarsening has a dyadic skeleton, so by Proposition 3.3 C1,
(S ′,A′,%l |S′) has a dyadic skeleton.

If S\S ′ ∼l ∅, then by Proposition 3.3 C2, (S,A,%l) has a dyadic skeleton. If S\S ′ �l ∅,
then by the definition of atom-catalogue and Theorem V, (S,A,%l)|S\S′ has a dyadic
skeleton, so by Proposition 3.3 C3, (S,A,%l) has a dyadic skeleton.

Since (S,A,%l) has a dyadic skeleton, by Proposition 3.2, there is a unique µ ∈Mσ(A)
such that µ represents%l. Conclusion (i) follows from 3-SAD, while Conclusion (ii) follows
from Theorem V applied to (S,A,%l)|S\S′ . �

7 Conclusion

We began by observing that Savage’s finite-and-tightness is equivalent to uniform par-
tition continuity, uniform partition richness, and event divisibility. We modified these,
respectively, to monotone continuity, no finite atom-catalogues (which is implied by the
other axioms), and 3-SAD, hypotheses that generalize those of Villegas as 3-SAD is
weaker than atomlessness.

An open question is whether 3-SAD can be weakened to 1-SAD or 2-SAD. Some steps
have been taken in this direction (Mackenzie, working paper A). In particular, monotone
continuity, 1-SAD, and finite cancellation (Kraft, Pratt, and Seidenberg, 1959; Scott,
1964; Fishburn, 1970; Krantz, Luce, Suppes, and Tversky, 1971) imply that there is
a σ-measure representation, which is moreover unique under 2-SAD. This article then
completes the progression: 3-SAD allows us to relax finite cancellation. That said, it is
not even known if 2-SAD is required for uniqueness, and there is some evidence it is not:
a corollary of Kochov (2013) is that a geometric representation is unique under 1-SAD.

The natural next step is embedding these hypotheses about beliefs into Savage’s
grander model of decision under uncertainty, a topic we pursue in the sequel (Mackenzie,
working paper B). We pursue both standard subjective expected utility and the more
general probabilistically sophisticated preferences that were introduced by Machina and
Schmeidler (1992) to address the Allais paradox (Allais, 1953; Allais, 1979).

Appendix 1

In this appendix, we state and prove (or provide a proof reference for) our primary lemmas
about qualitative probabilities: the Complement Lemma, the Domination Lemma, the
Half-Equivalence Lemma, and the Limit-Order Lemma.

20



The Complement Lemma states that order reverses under complements. This is a
slight extension of exercise 3 on page 32 of Savage (1972), and thus the proof is omitted.

• Complement Lemma (Savage, 1954): If %l is a qualitative probability, then for
each A ∈ A and each pair B,B′ ⊆ A, B %l B′ if and only if A\B′ %l A\B.

The Domination Lemma states that for any two pairs such that the first is disjoint
and dominates the second in likelihood, the union of the first is at least as likely as the
union of the second. Moreover, strict domination implies the union of the first is more
likely than the union of the second. This is a slight extension of exercise 5a on page 32
of Savage (1972), and thus the proof is omitted.

• Domination Lemma (Savage, 1954): If %l is a qualitative probability, then for each
four A,A′, B,B′ ∈ A, if

(1) A ∩ A′ = ∅,
(2) A %l B, and
(3) A′ %l B′,

then A ∪ A′ %l B ∪B′. Moreover, if A �l B, then A ∪ A′ �l B ∪B′.

The Half-Equivalence Lemma states that for any two disjoint pairs whose unions are
equally likely such that each pair’s members are equally likely, all four events are equally
likely.

• Half-Equivalence Lemma: If %l is a qualitative probability, then for each disjoint
pair A,A′ ∈ A and each disjoint pair B,B′ ∈ A, if

(1) A ∼l A′,
(2) B ∼l B′, and
(3) A ∪ A′ ∼l B ∪B′,

then A ∼l B.

Proof: For convenience, label the components of the Euler diagram for A,A′, B,B′

according to Figure 3:

Figure 3: Euler diagram for A,B,A′, B′. For example, UL ≡ A∩B andD ≡ A′\(B∪B′).

Assume, by way of contradiction, A 6∼l B; without loss of generality, assume A �l B.
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We claim DL ∪D �l UR ∪R. Otherwise, by separability,

B ∼l B′

= DR ∪ (UR ∪R)

%l DR ∪ (DL ∪D)

= A′

∼l A,

contradicting A �l B.
We claim L ∪R %l U ∪D. Otherwise, by separability,

A ∪ A′ = (UL ∪ UR ∪DL ∪DR) ∪ (U ∪D)

�l (UL ∪ UR ∪DL ∪DR) ∪ (L ∪R)

= B ∪B′,

contradicting A ∪ A′ ∼l B ∪B′. Similarly, U ∪D %l L ∪R, so L ∪R ∼l U ∪D.
But then by separability,

(L ∪R) ∪ (UL ∪ UR) ∼l (U ∪D) ∪ (UL ∪ UR)

= A ∪D
�l B ∪D
= (UL ∪ L) ∪ (DL ∪D)

�l (UL ∪ L) ∪ (UR ∪R),

contradicting L ∪R ∪ UL ∪ UR ∼l L ∪R ∪ UL ∪ UR. �

The Limit-Order Lemma states that for each pair of convergent sequences, if each
member of the first sequence is at least the corresponding member of the second, then
the limit of the first sequence is at least the limit of the second:

• Limit-Order Lemma:23 If %l satisfies order and continuity, then for each pair of
convergent sequences (Ai), (Bi) ∈ AN such that for each j ∈ N, Aj %l Bj, we have
lim(Ai) %l lim(Bi).

Proof: Let (Ai), (Bi) ∈ AN satisfy the hypothesis. Since %l is complete, by a standard
argument24 there is M ⊆ N such that that (B′i) ≡ (Bi)|M is a %l-monotonic sequence.
Define (A′i) ≡ (Ai)|M . Necessarily lim(Ai) = lim(A′i) and lim(Bi) = lim(B′i).

Case 1: (B′i) is non-decreasing. Then for each pair j, k ∈ N with k ≥ j,

A′k %l B
′
k

%l B
′
j,

so by continuity lim(A′i) %l B
′
j. Thus by continuity, lim(A′i) %l lim(B′i), so lim(Ai) %l

lim(Bi).

23Variants of this result appear in Villegas (1964) and Arrow (1970). This particular result does not
require A to be a σ-algebra; any Hausdorff space will do, as can be seen from the proof.

24A common proof of the Bolzano-Weierstrass Theorem includes a lemma stating that each real se-
quence has a monotonic subsequence; the standard proof of that lemma suffices here.
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Case 2: (B′i) is non-increasing. Then for each pair j, k ∈ N with k ≥ j,

A′j %H B
′
j

%H B
′
k,

so by continuity A′j %l lim(B′i). Thus by continuity, lim(A′i) %l lim(B′i), so lim(Ai) %l
lim(Bi). �

Appendix 2

In this appendix, we prove Proposition 2.1.

• Proposition 2.1: If %l is a qualitative probability, then uniform partition richness,
uniform partition continuity, and event divisibility are together equivalent to fineness-
and-tightness.

Proof: That any qualitative probability satisfying fineness-and-tightness necessarily
satisfies the other axioms is an immediate corollary of Theorem S.

Suppose %l is a qualitative probability satisfying uniform partition richness, uniform
partition continuity, and event divisibility, and let A,B ∈ A such that A �l B. By
event divisibility, there is B′ ⊆ A such that A �l B ∼l B′. Then (A\B′) �l ∅, else by
separability B′ %l B′ ∪ (A\B′) = A, contradicting A �l B′.

By uniform partition richness, for each k ∈ N, there is a k-uniform partition {A1
k, A

2
k, ..., A

k
k}.

If for each k ∈ N, A1
k %l (A\B′), then by uniform partition continuity, (A\B′) ∼l ∅, con-

tradicting (A\B′) �l ∅. Thus there is k ∈ N such that for each i ∈ {1, 2, ..., k}, (A\B′) �l
Aik. By monotonicity, (S\B′) %l (A\B′) �l A1

k, so by the Complement Lemma, (S\B) ∼l
(S\B′) �l A1

k. By event divisibility, there is C ⊆ (S\B) such that C ∼l A1
k.

Since B′ %l B, (A\B′) �l A1
k ∼l C, and B′∩ (A\B′) = ∅, by the Domination Lemma,

A = B′ ∩ (A\B′) �l B ∪ C. For each i ∈ {1, 2, ..., k}, since B %l B, C %l Aik, and
B ∩C = ∅, by the Domination Lemma, B ∪C %l B ∪Aik. Thus for each i ∈ {1, 2, ..., k},
A �l B ∪ Aik, as desired. �

Appendix 3

In this appendix, we prove Proposition 3.1, Proposition 3.2, and Proposition 3.3.

• Proposition 3.1: If %l is a qualitative probability, then %l is monotonely continuous
if and only if %l is continuous.

Proof: Clearly continuity implies monotone continuity, so suppose %l is a qualitative
probability satisfying monotone continuity.

Let A ∈ A and let (Bi) ∈ AN be convergent such that for each i ∈ N, Bi %l A. Define
B∞ ≡ limBi. For each i ∈ N, define Ci ∈ A by:

Ci ≡
∞⋃
j=i

(Bj\B∞).
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For each s ∈ B∞ and each i ∈ N, s 6∈ Ci. For each s ∈ S\B∞, since B∞ = limBi, there
is i∗ ∈ N such that for each i ≥ i∗, s 6∈ Bi; thus for each i ≥ i∗, s 6∈ Ci. Thus limCi = ∅,
and clearly C1 ⊆ C2 ⊆ ..., so (Ci) is vanishing. For each i ∈ N, Bi ⊆ B∞ ∪ Ci, so by
monotonicity B∞ ∪ Ci %l Bi %l A. Thus by monotone continuity, B∞ %l A.

Let A ∈ A and let (Bi) ∈ AN be convergent such that for each i ∈ N, A %l Bi. Define
B∞ = limBi. Then Bc

∞ = limBc
i . By separability, for each i ∈ N, Bc

i %l A
c. Thus by the

above argument, Bc
∞ %l A

c, so by separability, A %l B∞. �

• Proposition 3.2: If (S,A,%l) is a qualitative probability space that has a dyadic
skeleton and satisfies (monotone) continuity, then there is a unique µ ∈Mσ(A) such that
µ represents %l.

Proof: Let {Zv}v∈2 ⊆ [A/∼l] be a dyadic skeleton. We sometimes apply [DS3] using
only two sequences in 2

N, implicitly taking the other two to be constantly 0.

◦ Step 1: For each k ∈ {0, 1, ...}, there is Z ∈ Z( 1
2
)k such that Z �l ∅.

We proceed by induction on k. By [DS1], S ∈ Z1, and by nondegeneracy and mono-
tonicity, S �l ∅.

For the inductive hypothesis, assume k ∈ {0, 1, ...} is such that there is Z ∈ Z( 1
2
)k

such that Z �l ∅. By [DS2], there are disjoint Z ′, Z ′′ ∈ Z( 1
2
)k+1 such that Z ′ ∪ Z ′′ ∼l Z.

By separability, Z ′ �l ∅, else ∅ %l Z ′ ∪ Z ′′ ∼l Z, contradicting Z �l ∅. By induction we
are done. �

◦ Step 2: For each v ∈ 2 such that v > 0, there is Z ∈ Zv such that Z �l ∅.

Let v ∈ 2 such that v > 0. Since 2 is dense in [0, 1] there is k ∈ 2 such that v > (1
2
)k.

Since v − (1
2
)k ∈ 2, by [DS2] there are disjoint Z ∈ Z( 1

2
)k and Z ′ ∈ Zv−( 1

2
)k such that

Z ∪ Z ′ ∈ Zv. By Step 1, Z �l ∅, and by monotonicity, Z ′ %l ∅, so by separability,
Z ∪ Z ′ �l ∅. �

◦ Step 3: For each pair v, v∗ ∈ 2 such that v∗ > v, each A ∈ Zv∗ , and each B ∈ Zv,
A �l B.

Let v, v∗ ∈ 2 such that v∗ > v, let A ∈ Zv∗ , and let B ∈ Zv. Since v∗−v ∈ 2, by [DS2]
there are disjoint Z ∈ Zv and Z ′ ∈ Zv∗−v such that Z ∪ Z ′ ∈ Zv∗ . Since v∗ − v > 0 (and
since Zv∗−v ∈ [A/∼l]), by Step 2, Z ′ �l ∅. Thus by separability, A ∼l Z∪Z ′ �l Z ∼l B. �

◦ Step 4: Define µ : A → [0, 1].

For each v ∈ 2 and each A ∈ Zv, define µ(A) ≡ v.
Let A ∈ A\ ∪v∈2 Zv. Define

2
− ≡ {v ∈ 2|B ∈ Zv implies A %l B}, and

2
+ ≡ {v ∈ 2|B ∈ Zv implies B %l A}.

By monotonicity, S %l A %l ∅, so by [DS1], 0 ∈ 2
− and 1 ∈ 2

+. By Step 3, for each
pair v, v∗ ∈ 2 such that v∗ > v, (1) v∗ ∈ 2

− implies v ∈ 2
−\2+, and (2) v ∈ 2

+ implies
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v∗ ∈ 2+\2−. Thus inf(2+), sup(2−) are defined, and moreover inf(2+) ≥ sup(2−). Since
2
− ∪ 2+ = 2 and 2 is dense in [0, 1], inf(2+) = sup(2−). Define

µ(A) ≡ inf(2+)

= sup(2−). �

◦ Step 5: For each pair A,B ∈ A, µ(A) > µ(B) implies A �l B.

Let A,B ∈ A such that µ(A) > µ(B). Since 2 is dense in [0, 1], there are v′, v′′ ∈ 2

such that µ(A) > v′′ > v′ > µ(B). Let Zv′ ∈ Zv′ and Zv′′ ∈ Zv′′ . By Step 3, Zv′′ �l Zv′ .
If A ∈ ∪Zv, then by construction, A ∈ Zµ(A), so by Step 3, A �l Zv′′ . If A 6∈ ∪Zv,

then by construction, inf{v ∈ 2|C ∈ Zv implies C %l A} > v′′, so A �l Zv′′ .
If B ∈ ∪Zv, then by construction, B ∈ Zµ(B), so by Step 3, Zv′ �l B. If B 6∈ ∪Zv,

then by construction, v′ > sup{v ∈ 2|C ∈ Zv implies B %l C}, so Zv′ �l B.
Thus A �l Zv′′ �l Zv′ �l B. �

◦ Step 6: For each pair A,B ∈ A, µ(A) = µ(B) implies A ∼l B.

Let A,B ∈ A such that µ(A) = µ(B). We proceed with three cases whose proofs are
similar.

Case 1: µ(A) = 0. Since 2 is dense in [0, 1], there is decreasing (v+i ) ∈ 2N such that
lim v+i = 0. For each i ∈ N, define v−i ≡ 0. Since lim v+i = lim v−i , by [DS3] there are
convergent (A+

i ), (A−i ) ∈ AN such that
(i) for each i ∈ N, A+

i ∈ Zv+i and A−i ∈ Zv−i , and

(ii) limA+
i ∼l limA−i .

By construction, for each i ∈ N, µ(A+
i ) > 0 = µ(A), so by Step 5, A+

i �l A. Thus by
continuity, limA+

i %l A. By [DS1], for each i ∈ N, A−i ∼l ∅, so by continuity, limA−i ∼l ∅.
Altogether, ∅ %l A, so by monotonicity, A ∼l ∅. By a symmetric argument, B ∼l ∅, so
A ∼l B.

Case 2: µ(A) = 1. Since 2 is dense in [0, 1], there is increasing (v−i ) ∈ 2N such that
lim v−i = 1. For each i ∈ N, define v+i ≡ 1. Since lim v+i = lim v−i , by [DS3] there are
convergent (A+

i ), (A−i ) ∈ AN such that
(i) for each i ∈ N, A+

i ∈ Zv+i and A−i ∈ Zv−i , and

(ii) limA+
i ∼l limA−i .

By construction, for each i ∈ N, µ(A) = 1 > µ(A−i ), so by Step 5, A �l A−i . Thus by
continuity, A %l limA−i . By [DS1], for each i ∈ N, A+

i ∼l S, so by continuity, limA+
i ∼l S.

Altogether, A %l S, so by monotonicity, A ∼l S. By a symmetric argument, B ∼l S, so
A ∼l B.

Case 3: µ(A) ∈ (0, 1). Since 2 is dense in [0, 1], there are decreasing (v+i ) ∈ 2
N

such that lim v+i = µ(A) and increasing (v−i ) ∈ 2
N such that lim v−i = µ(A). Since

lim v+i = lim v−i , by [DS3] there are convergent (A+
i ), (A−i ) ∈ AN such that

(i) for each i ∈ N, A+
i ∈ Zv+i and A−i ∈ Zv−i , and

(ii) limA+
i ∼l limA−i .
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By construction, for each i ∈ N, µ(A+
i ) > µ(A) > µ(A−i ), so by Step 5, A+

i �l A �l A−i .
Thus by continuity, limA+

i %l A %l limA−i ∼l limA+
i , so A ∼l limA+

i . By a symmetric
argument, B ∼l limA+

i , so A ∼l B. �

◦ Step 7: µ represents %l.

Immediate from Step 5 and Step 6. �

◦ Step 8: For each disjoint pair A,B ∈ A, µ(A) + µ(B) ≤ 1.

Let A,B ∈ A be disjoint. Assume, by way of contradiction, µ(A) + µ(B) > 1.
Since 2 is dense in [0, 1], there are v, v′ ∈ 2 such that µ(A) > v, µ(B) > v′, and
v + v′ > 1. Then v > 1 − v′. By [DS2], there are disjoint Zv′ ∈ Zv′ and Z1−v′ ∈ Z1−v′

such that Zv′ ∪ Z1−v′ ∈ Z1. Then Zv′ ∪ Z1−v′ ∼l S. Since µ(A) > v > 1− v′ = µ(Z1−v′)
and µ(B) > v′ = µ(Zv′), by Step 7, A �l Z1−v′ and B �l Zv′ . But then by the
Domination Lemma, A ∪B �l Z1−v′ ∪ Zv′ ∼l S, contradicting monotonicity. �

◦ Step 9: For each disjoint pair A,B ∈ ∪Zv, µ(A ∪B) = µ(A) + µ(B).

Let A,B ∈ ∪Zv be disjoint. By construction, A ∈ Zµ(A) and B ∈ Zµ(B), and by
Step 8, µ(A) + µ(B) ≤ 1, so by [DS2] and the Domination Lemma, A ∪ B ∈ Zµ(A)+µ(B).
Thus by construction, µ(A ∪B) = µ(A) + µ(B). �

◦ Step 10: For each disjoint pair A,B ∈ A, µ(A ∪B) = µ(A) + µ(B).

Let A,B ∈ A be disjoint. By Step 8, µ(A) + µ(B) ≤ 1. We proceed with three cases.

Case 1: µ(A) + µ(B) = 0. Then necessarily µ(A) = 0 and µ(B) = 0, so by Step 7,
A ∼l ∅ and B ∼l ∅. By separability, A ∪ B ∼l ∅, so by Step 7, µ(A ∪ B) = µ(∅) = 0 =
µ(A) + µ(B).

Case 2: µ(A)+µ(B) = 1. Since 2 is dense in [0, 1], there are monotonic (v−i ), (w−i ) ∈
2
N such that

(1) for each i ∈ N, µ(A) ≥ v−i and µ(B) ≥ w−i , and
(2) lim v−i = µ(A) and limw−i = µ(B).

By [DS3], there are convergent (A−i ), (B−i ) ∈ AN such that
(1) for each i ∈ N, A−i ∈ Zv−i and B−i ∈ Zw−i , and

(2) for each i ∈ N, A−i ∩B−i = ∅.
Define A∞ ≡ limA−i and B∞ ≡ limB−i .

Let ε > 0. Since lim v−i = µ(A) and limw−i = µ(B), there is i∗ ∈ N such that
i ≥ i∗ implies µ(A) − v−i < ε

2
and µ(B) − w−i < ε

2
. By construction, i ≥ i∗ implies

µ(A−i ) + µ(B−i ) = v−i + w−i > µ(A) + µ(B) − ε = 1 − ε. By Step 9, i ≥ i∗ implies
µ(A−i ∪B−i ) > 1− ε.

Thus for each ε > 0, there is i ∈ N such that µ(A−i ∪ B−i ) > 1 − ε. Since for each
i ∈ N, A−i ∩ B−i = ∅, thus A∞ ∩ B∞ = ∅. By the Domination Lemma, for each i ∈ N,
A∞∪B∞ %l A−i ∪B−i , so by Step 7, µ(A∞∪B∞) ≥ µ(A−i ∪B−i ). Thus µ(A∞∪B∞) = 1,
so by Step 7, A∞ ∪B∞ ∼l S.
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By construction and by Step 7, for each i ∈ N, A %l A
−
i and B %l B

−
i , so by continuity,

A %l A∞ and B %l B∞. By the Domination Lemma, A ∪ B %l A∞ ∪ B∞ ∼l S, so by
monotonicity, A ∪B ∼l S. Thus by Step 7, µ(A ∪B) = 1 = µ(A) + µ(B).

Case 3: µ(A) + µ(B) ∈ (0, 1). Since 2 is dense in [0, 1], there are monotonic
(v+i ), (v−i ), (w+

i ), (w−i ) ∈ 2N such that
(1) for each i ∈ N, v+i ≥ µ(A) ≥ v−i and w+

i ≥ µ(B) ≥ w−i ,
(2) for each i ∈ N, v+i + w+

i ≤ 1, and
(3) lim v+i = lim v−i = µ(A) and limw+

i = limw−i = µ(B).
By [DS3], there are convergent (A+

i ), (A−i ), (B+
i ), (B−i ) ∈ AN such that

(1) for each i ∈ N, A+
i ∈ Zv+i , A−i ∈ Zv−i , B+

i ∈ Zw+
i

, and B−i ∈ Zw−i ,

(2) for each i ∈ N, A+
i ∩B+

i = A−i ∩B−i = ∅, and
(3) limA+

i = limA−i and limB+
i = limB−i .

Define A∞ ≡ limA+
i = limA−i and B∞ ≡ limB+

i = limB−i . Let ε > 0.
Since lim v+i = µ(A) and limw+

i = µ(B), there is i∗ ∈ N such that i ≥ i∗ implies
v+i − µ(A) < ε

2
and w+

i − µ(B) < ε
2
. By construction, i ≥ i∗ implies µ(A+

i ) + µ(B+
i ) =

v+i + w+
i < µ(A) + µ(B) + ε. By Step 9, i ≥ i∗ implies µ(A+

i ∪B+
i ) < µ(A) + µ(B) + ε.

Since lim v−i = µ(A) and limw−i = µ(B), there is i∗ ∈ N such that i ≥ i∗ implies
µ(A) − v−i < ε

2
and µ(B) − w−i < ε

2
. By construction, i ≥ i∗ implies µ(A−i ) + µ(B−i ) =

v−i + w−i > µ(A) + µ(B)− ε. By Step 9, i ≥ i∗ implies µ(A−i ∪B−i ) > µ(A) + µ(B)− ε.
Thus for each ε > 0, there is i ∈ N such that µ(A+

i ∪ B+
i ) < µ(A) + µ(B) + ε and

µ(A−i ∪B−i ) > µ(A) + µ(B)− ε. Since for each i ∈ N, A+
i ∩B+

i = ∅, thus A∞ ∩B∞ = ∅.
By the Domination Lemma, for each i ∈ N, A+

i ∪ B+
i %l A∞ ∪ B∞ %l A−i ∪ B−i , so by

Step 7, µ(A+
i ∪B+

i ) ≥ µ(A∞ ∪B∞) ≥ µ(A−i ∪B−i ). Thus µ(A∞ ∪B∞) = µ(A) + µ(B).
By construction and by Step 7, for each i ∈ N, A+

i %l A %l A
−
i and B+

i %l B %l B
+
i .

Thus by continuity, A∞ %l A %l A∞ and B∞ %l B %l B∞, so A ∼l A∞ and B ∼l B∞. By
the Domination Lemma, A∪B ∼l A∞∪B∞, so µ(A∪B) = µ(A∞∪B∞) = µ(A)+µ(B). �

◦ Step 11: µ ∈Mσ(A).

Since µ(S) = 1, by Step 10 and induction, µ ∈M(A). By Step 7, µ represents %l, so
by Theorem V, µ ∈Mσ(A). �

◦ Step 12: If µ′ ∈Mσ(A) represents %l, then µ′ = µ.

If µ′ ∈ Mσ(A) represents %l, then by [DS1] and [DS2], it is immediate that µ′ must
be defined as in Step 4. �

• Proposition 3.3: A qualitative probability space (S,A,%l) has a dyadic skeleton in
each of the following cases:

C1: there is σ-algebra A′ ⊆ A with ∪A′ = S such that (S,A,%l)|A′ is a qualitative
probability space with a dyadic skeleton,

C2: there are S ′, S ′′ ∈ A partitioning S such that (S,A,%l)|S′ is a qualitative probability
space with a dyadic skeleton and S ′′ ∼l ∅, and

C3: there are S ′, S ′′ ∈ A partitioning S such that (S,A,%l)|S′ and (S,A,%l)|S′′ are each
qualitative probability spaces with dyadic skeletons.
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Proof: We handle the cases in sequence.

C1: Let {Z ′v}v∈2 be a dyadic skeleton for (S,A,%l)|A′ . By [DS2], for each v ∈ 2, there
is Zv ∈ Z ′v. For each v ∈ 2, define

Zv ≡ {A ∈ A|A ∼l Zv}.

It is straightforward to verify {Zv}v∈2 is a dyadic skeleton for (S,A,%l).

C2: Let {Z ′v}v∈2 be a dyadic skeleton for (S,A,%l)|S′ . By [DS2], for each v ∈ 2, there is
Zv ∈ Z ′v. For each v ∈ 2, define

Zv ≡ {A ∈ A|A ∼l Zv}.

It is straightforward to verify {Zv}v∈2 is a dyadic skeleton for (S,A,%l).

C3: Let {Z∗v}v∈2 be a dyadic skeleton of (S,A,%l)|S′ and let {Z∗∗v }v∈2 be a dyadic
skeleton of (S,A,%l)|S′′ . By [DS2], for each v ∈ 2, there are Z ′v ∈ Z∗v and Z ′′v ∈ Z∗∗v . For
each v ∈ 2, define

Zv ≡ {A ∈ A|A ∼l Z ′v ∪ Z ′′v }.

We claim {Zv}v∈2 is a dyadic skeleton for (S,A,%l).

[DS1]: Since ∅ ∈ Z∗0 and ∅ ∈ Z∗∗0 , thus ∅ ∈ Z0. Since S ′ ∈ Z∗1 and S ′′ ∈ Z∗∗1 , thus
S = S ′ ∪ S ′′ ∈ Z1.

[DS2]: Let v, v′ ∈ 2 such that v + v′ ≤ 1. Then there are disjoint Z∗v ∈ Z∗v and
Z∗v′ ∈ Z∗v′ such that Z∗v ∪ Z∗v′ ∈ Z∗v+v′ , and there are disjoint Z∗∗v ∈ Z∗∗v and Z∗∗v′ ∈ Z∗∗v′
such that Z∗∗v ∪ Z∗∗v′ ∈ Z∗∗v+v′ . Then we have disjoint Z∗v ∪ Z∗∗v ∈ Zv and Z∗v′ ∪ Z∗∗v′ ∈ Zv′
such that (Z∗v ∪ Z∗∗v ) ∪ (Z∗v′ ∪ Z∗∗v′ ) = (Z∗v ∪ Z∗v′) ∪ (Z∗∗v ∪ Z∗∗v′ ) ∈ Zv+v′ .

[DS3]: Let (vi), (v
′
i), (wi), (w

′
i) ∈ 2N be convergent such that

(i) for each i ∈ N, vi + wi ≤ 1 and vi + w′i ≤ 1, and
(ii) lim vi = lim v′i and limwi = limw′i.

Then we have (A∗i ), (A
′∗
i ), (B∗i ), (B

′∗
i ), (A∗∗i ), (A

′∗∗
i ), (B∗∗i ), (B

′∗∗
i ) ∈ AN such that

(i) for each i ∈ N, A∗i ∈ Z∗vi , A
′∗
i ∈ Z∗v′i , B

∗
i ∈ Z∗wi

, B
′∗
i ∈ Z∗w′i , A

∗∗
i ∈ Z∗∗vi , A

′∗∗
i ∈ Z∗∗v′i ,

B∗∗i ∈ Z∗∗wi
, and B

′∗∗
i ∈ Z∗∗w′i ,

(ii) for each i ∈ N, A∗i ∩B∗i = A
′∗
i ∩B

′∗
i = A∗∗i ∩B∗∗i = A

′∗∗
i ∩B

′∗∗
i = ∅, and

(iii) limA∗i = limA
′∗
i , limB∗i = limB

′∗
i , limA∗∗i = limA

′∗∗
i , and limB∗∗i = limB

′∗∗
i .

For each i ∈ N, define

Ai ≡ A∗i ∪ A∗∗i
A′i ≡ A

′∗
i ∪ A

′∗∗
i ,

Bi ≡ B∗i ∪B∗∗i , and

B′i ≡ B
′∗
i ∪B

′∗∗
i .

That (Ai), (A
′
i), (Bi), (B

′
i) ∈ AN are as desired follows from construction and the definition

of pointwise convergence. �

28



Appendix 4

In this appendix, we prove Proposition 4.1.

• Proposition 4.1: If %l is a (monotonely) continuous qualitative probability, and if
A⊕ 6= ∅, then there is an atom-catalogue.

Proof: We show that each collection of atoms has a most-likely member, use this fact
to construct the atom-catalogue, and verify it satisfies the requirements.

◦ Step 1: There is no increasing sequence of atoms.

Assume, by way of contradiction, there is (Ai) ∈ (A⊕)N such that A1 ≺l A2 ≺l ....
Then for each pair i, j ∈ N with i > j, by monotonicity, Ai �l Aj %l Ai∩Aj, so since Ai is
an atom, thus Ai∩Aj ∼l ∅. For each i ∈ N, define Bi ≡ Ai\(

⋃
j<iAj) = Ai\(

⋃
j<iAj∩Ai);

by separability, (
⋃
j<iAi ∩ Aj) ∼l ∅, so by separability Bi ∼l Ai. By construction, the

Bi are pairwise disjoint. But then for each i ∈ N, Bi ∼l Ai %l A1, so by continuity,
∅ = limBi %l A1, contradicting that A1 is an atom. �

◦ Step 2: Construct the atom-catalogue (Ai).

We construct inductively. For the base step, by Step 1, there is a %l-maximum A1 in
A⊕, and for each B ∈ A⊕ such that B ⊆ S\A1, A1 %l B. For the inductive step, assume
that k ∈ N and we have pairwise disjoint A1, A2, ..., Ak such that

(1) A1 %l A2 %l ... %l Ak, and
(2) for each B ∈ A⊕ such that B ⊆ S\

⋃k
i=1Ai, Ak %l B.

Define A⊕k ⊆ A⊕ by:

A⊕k ≡ {B ∈ A
⊕|B ⊆ S\

k⋃
i=1

Ai}.

If A⊕k is empty, then we are done. If A⊕k is nonempty, then by Step 1 it has %l-maximum

Ak+1. Since Ak+1 ∈ A⊕ and Ak+1 ⊆ S\
⋃k
i=1Ai, thus by the inductive hypothesis,

A1, A2, ..., Ak+1 are pairwise disjoint and A1 %l A2 %l ... %l Ak+1. For each B ∈ A⊕ such
that B ⊆ S\

⋃k+1
i=1 Ai, B ∈ A

⊕
k , so by construction Ak %l B. �

◦ Step 3: Conclude.

By construction, we have (Ai) ⊆ A⊕ satisfying the first two requirements for an atom-
catalogue, and if {Ai} is finite, then it satisfies the third. Assume, by way of contradiction,
{Ai} is countably infinite and there is A ⊆ S\(∪Ai) such that A ∈ A⊕. By construction,
for each i ∈ N, Ai %l A. But then by continuity, ∅ = limAi %l A, contradicting that A
is an atom. �

Appendix 5

In this appendix, we prove our primary lemmas about smaller atoms domination axioms
and greedy transforms: the Idempotence Lemma, the 1-SAD Lemma, the Greedy Re-
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moval Lemma, the First Halving Lemma, the Second Halving Lemma, and the Conver-
gence Lemma. We abuse language in our informal summaries of these lemmas, writing
that an event satisfies k-SAD instead of writing that its associated subspace does.

The Idempotence Lemma states that each greedy transform is idempotent, and for
convenience includes the easy corollary that two images of a greedy transform that are
equally likely are in fact equivalent.

• Idempotence Lemma: For each pair A,B ∈ A, GA(GA(B)) = GA(B). Moreover, for
each A ∈ A and each pair B,B′ ∈ A, GA(B) ∼l GA(B′) implies GA(B) = GA(B′).

Proof: We proceed by induction on s, covering the base case with our inductive hy-
pothesis. Assume s ∈ S is such that for each s′ ∈ S,

GA(GA(B)) ∩ {s′ ∈ S|s′ < s} = GA(B) ∩ {s′ ∈ S|s′ < s}.

If s ∈ GA(B), then by construction,

GA(B) %l [GA(B) ∩ {s′ ∈ S|s′ < s}] ∪ {s}
= [GA(GA(B)) ∩ {s′ ∈ S|s′ < s}] ∪ {s},

so by construction, s ∈ GA(GA(B)).
If s 6∈ GA(B), then by construction,

[GA(GA(B)) ∩ {s′ ∈ S|s′ < s}] ∪ {s} = [GA(B) ∩ {s′ ∈ S|s′ < s}] ∪ {s}
�l B
%l GA(B),

so by construction, s 6∈ GA(GA(B)). Thus

GA(GA(B)) ∩ {s′ ∈ S|s′ < s+ 1} = GA(B) ∩ {s′ ∈ S|s′ < s+ 1}.

By induction, GA(GA(B)) = GA(B).
Now assume A ∈ A and B,B′ ∈ A are such that GA(B) ∼l GA(B′). Then GA(B) =

GA(GA(B)) = GA(GA(B′)) = GA(B′), as desired. �

The 1-SAD Lemma is the ordinal analogue of Theorem K: 1-SAD of A guarantees
that applying A’s greedy transform to an event B that is no larger than A yields an event
as likely as B.

• 1-SAD Lemma: If (S,A,%l) is atom-standard, then for each A ∈ A such that %l|A
satisfies 1-SAD and each B ∈ A such that A %l B, GA(B) ∼l B.

Proof: If A = ∅ the result is trivial, so assume A 6= ∅. Then by 1-SAD, |A| = |N|. For
convenience, re-index S so that (1) A = N, (2) index order is preserved for A, and (3)
members of S\A are not indexed by natural numbers. Since B %l GA(B), it suffices to
show GA(B) %l B.

Case 1: |A\GA(B)| = 0. Then GA(B) = A %l B.
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Case 2: 0 < |A\GA(B)| < |N|. Define s∗ ≡ max(A\GA(B)). By construction,
[GA(B)\{s∗+ 1, s∗+ 2, ...} ∪ {s∗}] �l B. Since %l |A satisfies 1-SAD, thus by separability

GA(B) = [GA(B)\{s∗ + 1, s∗ + 2, ...}] ∪ {s∗ + 1, s∗ + 2, ...}
%l [GA(B)\{s∗ + 1, s∗ + 2, ...}] ∪ {s∗}
�l B.

But this contradicts B %l GA(B), so in fact Case 2 is impossible.

Case 3: |A\GA(B)| = |N|. By construction, for each s ∈ A\GA(B), [GA(B)\{s +
1, s+ 2, ...}] ∪ {s} �l B. Thus by continuity,

GA(B) = lim
s∈S′\GA(B)

[GA(B)\{s+ 1, s+ 2, ...}] ∪ {s}

%l B. �

The Greedy Removal Lemma states that if A is (k+1)-SAD, then removing an image
of its greedy transform yields a subevent that is k-SAD.

• Greedy Removal Lemma: If (S,A,%l) is atom-standard, then for each k ∈ N, each
A ∈ A such that %l|A satisfies (k + 1)-SAD, and each B ∈ A,

%l|A\GA(B) satisfies k-SAD.

Proof: Let k ∈ N and assume %l|A satisfies k-SAD. If A = ∅ or B %l A, the result
is trivial, so assume A �l B %l ∅. By 1-SAD, |A| = |N|. For convenience, re-index S
so that (i) A = N, (2) index order is preserved for A, and (iii) members of S\A are not
indexed by natural numbers.

◦ Step 1: If k′ < k + 1 greedy transform sets Gi are iteratively removed from A, and if
A\ ∪Gi is nonempty, then %l |A\∪Gi

satisfies 1-SAD.

Let k′ ∈ N such that k′ < k + 1, and let B1, ..., Bk′ ∈ A. Define A1 ≡ A, and for each
i ∈ {1, 2, ..., k′}, define:

� Gi ≡ GAi(Bi),

� Ai+1 ≡ Ai\Gi.

By construction, the Gi are pairwise disjoint. We claim A\ ∪ Gi 6= ∅ implies %l |A\∪Gi

satisfies 1-SAD. Indeed, let s ∈ A\ ∪ Gi. Since %l |A satisfies (k + 1)-SAD, there are
pairwise disjoint B1, ..., Bk+1 ⊆ {s + 1, s + 2, ...} such that for each i ∈ {1, 2, ..., k + 1},
Bi %l {s}. By construction, for each i ∈ {1, 2, ..., k′}, {s} %l Gi ∩ {s+ 1, s+ 2, ...}. Thus
for each i ∈ {1, 2, ..., k′}, Bi %l Gi ∩ {s + 1, s + 2, ...}. By repeated application of the
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Domination Lemma,

B1 %l G1 ∩ {s+ 1, s+ 2, ...},
B1 ∪B2 %l

(
G1 ∩ {s+ 1, s+ 2, ...}

)
∪
(
G2 ∩ {s+ 1, s+ 2, ...}

)
,

...

k′⋃
i=1

Bi %l

k′⋃
i=1

(
Gi ∩ {s+ 1, s+ 2, ...}

)
Thus if {s} �l [{s+ 1, s+ 2, ...}\ ∪Gi], then Bk′+1 �l [{s+ 1, s+ 2, ...}\ ∪Gi], so by

the Domination Lemma,

k′+1⋃
i=1

Bi �l
k′⋃
i=1

(
Gi ∩ [A ∩ {s+ 1, s+ 2, ...}]

)
∪ [{s+ 1, s+ 2, ...}\ ∪Gi]

= {s+ 1, s+ 2, ...},

contradicting monotonicity. Thus [{s + 1, s + 2, ...}\ ∪ Gi] %l {s}. Since s ∈ A\Gi was
arbitrary, thus %l |A\∪Gi

satisfies 1-SAD. �

◦ Step 2: Conclude.

Let B ∈ A such that A �l B and let G1 = GA(B). Then there is s ∈ A\G1, else by
monotonicity B %l G1 = A �l B, contradicting B ∼l B. By Step 1, %l |A\G1 satisfies
1-SAD.

Let s ∈ A\G1 and define A1 ≡ {s + 1, s + 2, ...}. Then %l |A1 satisfies (k + 1)-SAD
and %l |A1\G1 satisfies 1-SAD. Thus there are pairwise disjoint B1, ..., Bk+1 ⊆ A1 such
that for each i ∈ {1, 2, ..., k + 1}, Bi %l {s}.

Define A2 ≡ A1\G1, and for each i ∈ {2, 3, ..., k + 1}, define:

� Gi ≡ G≤(Ai, {s}),

� Ai+1 ≡ Ai\Gi.

By construction, the Gi are pairwise disjoint. Assume, by way of contradiction, there is
i ∈ {2, 3, ..., k+1} such that {s} �l Ai. Let i∗ be the least such i. Then Bi∗ %l {s} �l Ai∗ ,
and for each i ∈ {1, ..., i∗ − 1}, Bi %l {s} %l Gi. But then by repeated application of the
Domination Lemma as in Step 1,

i∗−1⋃
i=1

Bi �l
i∗−1⋃
i=1

Gi ∪ Ai∗

= A1,

contradicting monotonicity.
Thus for each i ∈ {2, 3, ..., k + 1}, Ai %l {s}, so by monotonicity Ai is nonempty, so

by Step 1 %l |Ai
satisfies 1-SAD, so by the 1-SAD Lemma Bi ∼l {s}. Since s ∈ A\G1

was arbitrary, %l |A\G1 satisfies k-SAD. �

The First Halving Lemma states any event satisfying 1-SAD can be associated with
two disjoint subevents analogous to its halves:
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• First Halving Lemma: If (S,A,%) is atom-standard, then for each A ∈ A such that
A �l ∅ and %l|A satisfies 1-SAD, there is H ⊆ A such that H ∼l A\H and A �l H �l ∅.

Proof: Since A 6= ∅, by 1-SAD, |A| = |N|. Assume, without loss of generality, A = S =
N. Let C ⊆ [0, 1] be the canonical Cantor set (Cantor, 1883). Define Ψ : A → C by

Ψ(B) =
∑
s∈B

2s

3s
.

It is well-known that Ψ is an order-preserving homeomorphism when A has the lexico-
graphic order >LEX and C has the usual order >; thus each closed collection A′ ⊆ A
contains its >LEX-supremum. Furthermore, for each B ∈ A, Ψ(Bc) = 1−Ψ(B).

Define the collection of events A− ⊆ A by:

A− ≡ {B ∈ A|Bc %l B}

We claim A− is closed. Indeed, let (Bi) ∈ (A−)N be convergent and define B ≡ lim(Bi).
Then

lim(Bc
i ) = lim(Ψ−1(Ψ(Bc

i )))

= lim(Ψ−1(1−Ψ(Bi)))

= Ψ−1(lim(1−Ψ(Bi)))

= Ψ−1(1− lim Ψ(Bi))

= Ψ−1(1−Ψ(B))

= Bc.

Thus (Bi), (B
c
i ) are convergent such that for each i ∈ N, Bc

i %l Bi, so by the Limit-
Order Lemma,

lim(B)c = Bc

= lim(Bc
i )

%l lim(Bi),

and hence lim(Bi) ∈ A−. Thus A− is closed, so it contains its >LEX-supremum H.
Since H = S implies H �l Hc, contradicting H ∈ A−, thus Hc 6= ∅. Similarly,

Hc 6= S. Assume, by way of contradiction, |Hc| < |N|. Define s∗ ≡ maxHc. By 1-SAD
and separability,

H = [H\{s∗ + 1, s∗ + 2, ...}] ∪ {s∗ + 1, s∗ + 2, ...}
%l [H\{s∗ + 1, s∗ + 2, ...}] ∪ {s∗}.

Then by the Complement Lemma and separability,

([H\{s∗ + 1, s∗ + 2, ...}] ∪ {s∗})c %l Hc

%l H

%l [H\{s∗ + 1, s∗ + 2, ...}] ∪ {s∗}.

But then [H\{s∗ + 1, s∗ + 2, ...}] ∪ {s∗} ∈ A−, contradicting the >LEX-maximality of H.
Thus |Hc| = |N|.
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Finally, for each s ∈ Hc, H ∪ {s} 6∈ A−, else H ∪ {s} would contradict the >LEX-
maximality of H in A−. Thus by the Limit-Order Lemma,

H = lim
s∈Hc

(H ∪ {s})

%l lim
s∈Hc

(H ∪ {s})c

= Hc,

and thus H ∼l Hc.
Since A �l ∅, necessarily A �l H, else H %l A and Hc ∼l H %l A �l ∅, so by the

Domination Lemma, A ∼l H ∪ Hc �l A, contradicting A ∼l A. Necessarily H �l ∅,
else ∅ %l H and ∅ %l H ∼l Hc, so by the Domination Lemma, ∅ %l H ∪ Hc ∼l A,
contradicting A �l ∅. Thus A �l H �l ∅. �

The Second Halving Lemma states that under 2-SAD, each event can be associated
with two disjoint events analogous to its halves:

• Second Halving Lemma: If (S,A,%) is atom-standard and %l satisfies 2-SAD, then
for each A ∈ A such that A �l ∅, there are disjoint H(A), H ′(A) ∈ A such that

(1) A ∼l H(A) ∪H ′(A), and
(2) A �l H(A) ∼l H ′(A) �l ∅.

Proof: Let A ∈ A such that A �l ∅. Since %l satisfies 1-SAD and, by monotonicity,
S %l S\A, thus by the 1-SAD Lemma, GS(S\A) ∼l S\A. By the Complement Lemma,

(1) S �l S\A ∼l GS(S\A), and
(2) S\GS(S\A) ∼l S\(S\A) = A �l ∅.

Since %l satisfies 2-SAD, by the Greedy Removal Lemma, %l|S\GS(S\A) satisfies 1-SAD.
By the First Halving Lemma, there are disjoint H(A), H ′(A) ⊆ S\GS(S\A) such that

(1) A ∼l S\GS(S\A) = H(A) ∪H ′(A), and
(2) A ∼l S\GS(S\A) �l H(A) ∼l H ′(A) �l ∅,

as desired. �

The Convergence Lemma concerns generalized greedy transforms, each of which takes
as input a list of events and outputs the same number of events:

Definition: For each A ∈ A and each k ∈ N, the greedy transform GA : Ak → Ak
is defined as follows. For each (B1, B2, ..., Bk) ∈ Ak, GA(B1, B2, ..., Bk) ∈ Ak is defined
recursively by:

� GA0 (B1, B2, ..., Bk) ≡ ∅, and

� for each i ∈ {1, 2, ..., k},

GAi (B1, B2, ..., Bk) ≡ GS\(∪j<iGAj (B1,B2,...,Bk)(Ai).

The lemma states that for nice sequences of event lists, the associated sequence of
event lists output by a generalized greedy transform converges.

•Convergence Lemma: If (S,A,%) is atom-standard, k ∈ N, and (B1
i ), (B

2
i ), ..., (B

k
i ) ∈

AN are such that
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(1) for each j ∈ {1, 2, ..., k}, (Bj
i ) is monotonic, and

(2) for each i ∈ N, B1
i , B

2
i , ..., B

k
i are pairwise disjoint,

then for each A ∈ A and each j ∈ {1, 2, ..., k}, (GAj (B1
i , B

2
i , ..., B

k
i )) ∈ AN is convergent.

Proof: Let A ∈ A, let k ∈ N, and let (B1
i ), (B

2
i ), ..., (B

k
i ) ∈ AN satisfy the hypotheses.

For each i ∈ N and each j ∈ {1, 2, ..., k}, define Gj
i ∈ A by:

Gj
i ≡ GAj (B1

i , B
2
i , ..., B

k
i ).

To prove (G1
i ), (G

2
i ), ..., (G

k
i ) are convergent, we proceed by induction. We cover the base

step with our inductive hypothesis on j∗: assume j∗ ∈ {1, 2, ..., k − 1} is such that for
each j ∈ {1, 2, ..., k} such that j < j∗, (Gj

i ) is convergent. We claim (Gj∗

i ) is convergent.
Within the current inductive argument, we make a second inductive argument. We

cover the base step with our inductive hypothesis on s: assume s ∈ S is such that for
each s′ < s, there is i∗ ∈ N such that for each j ∈ {1, 2, ..., j∗}, either

(1) i ≥ i∗ implies s′ ∈ Gj
i , or

(2) i ≥ i∗ implies s′ ∈ Gj
i .

By the inductive hypothesis on j∗, there is i∗ ∈ N such that for each j ∈ {1, 2, ..., k} such
that j < j∗, either

(1) i ≥ i∗ implies s ∈ Gj
i , or

(2) i ≥ i∗ implies s ∈ Gj
i .

Assume, by way of contradiction, that for each i∗∗ ∈ N there are i1 ≥ i∗∗ and i2 ≥ i∗∗ such
that s ∈ Gj∗

i1
and s 6∈ Gj∗+1

i2
. Then there are i1, i2, i3 ∈ N with i3 > i2 > i1 > i∗ such that

s ∈ Gj∗

i1
, s 6∈ Gj∗

i2
, and s ∈ Gj∗

i3
. By definition of i∗, Gj∗

i1
∩ {s′ ∈ S|s′ < s} = Gj∗

i2
∩ {s′ ∈

S|s′ < s} = Gj∗

i3
∩ {s′ ∈ S|s′ < s}. Thus by construction, Bj∗

i1
%l G

j∗

i1
∩ {s′ ∈ S|s′ < s} ∪

{s} �l Bj∗

i2
, so (Bj∗

i ) is non-increasing. But then Bj∗

i3
%l G

j∗

i1
∩{s′ ∈ S|s′ < s}∪{s} �l Bj∗

i2
,

contradicting that (Bj∗

i ) is non-increasing.
By induction on s, (Gj∗

i ) is convergent. By induction on j∗, (G1
i ), (G

2
i ), ..., (G

k
i ) are

convergent. �

Appendix 6

In this appendix, we prove Proposition 5.1.

• Proposition 5.1: If (S,A,%l) is atom-standard and satisfies 3-SAD, then (S,A,%l)
has a dyadic skeleton.

Proof: The only notation carried from one step to the next is the notation in the step’s
statement.

◦ Step 1: Define {A1
q}q∈{0,1,...}, {H(A1

q)}q∈{0,1,...}, {H ′(A1
q)}q∈{0,1,...} ⊆ A such that for

each q ∈ {0, 1, ...},
(1) H(A1

q) ∩H ′(A1
q) = ∅,

(2) A1
q ∼l H(A1

q) ∪H ′(A1
q), and

(3) A1
q �l A1

q+1 ∼l H(A1
q) ∼l H ′(A1

q) �l ∅.

We proceed recursively. Define A1
0 ≡ GS(S) = S; by monotonicity and nondegeneracy,

A1
0 �l ∅.
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Suppose we have A1
q ∈ A such that A1

q �l ∅. Since %l satisfies 2-SAD, by the
Second Halving Lemma, there are disjoint H(A1

q), H
′(A1

q) such that
(1) A1

q ∼l H(A1
q) ∪H ′(A1

q), and
(2) A1

q �l H(A1
q) ∼l H ′(A1

q) �l ∅.
Define A1

q+1 ≡ GS(H(A1
q)); by the Half-Equivalence Lemma this is well-defined. Since

%l satisfies 1-SAD and, by monotonicity, S %l H(A1
q), thus by the 1-SAD Lemma,

A1
q+1 ∼l H(A1

q). �

◦ Step 2: For each q ∈ {0, 1, ...}, define {Apq}q∈{0,1,...,2q} ⊆ A such that for each p ∈
{0, 1, ..., 2q − 1},

Ap+1
q ∼l Apq ∪ GS\A

p
q (A1

q).

We proceed recursively. For each q ∈ N, define A0
q ≡ ∅. For each q ∈ {0, 1, ...} and

each p ∈ {0, 1, ..., 2q − 1}, define

Ap+1
q ≡ GS

(
Apq ∪ GS\A

p
q (A1

q)
)
.

Since %l satisfies 1-SAD and, by monotonicity, S %l Apq ∪ GS\A
p
q (A1

q), thus by the 1-SAD

Lemma, Ap+1
q ∼l Apq ∪ GS\A

p
q (A1

q).
By the Idempotence Lemma, this definition gives the same {A1

q}q∈{0,1,...} defined be-
fore. �

◦ Step 3: For each q ∈ {0, 1, ...} and each p ∈ {0, 1, ..., 2q}, %l|S\Ap
q

satisfies 2-SAD.

Let q ∈ {0, 1, ...} and p ∈ {0, 1, ..., 2q} be such that Apq 6= S. Since %l satisfies 3-SAD,
thus by the Greedy Removal Lemma and the Idempotence Lemma, %l|S\Ap

q
= %l|S\GS(Ap

q)

satisfies 2-SAD. �

◦ Step 4: For each q ∈ {0, 1, ...},
(1) p ∈ {0, 1, ..., 2q − 1} implies GS\A

p
q (A1

q) ∼l A1
q, and

(2) p ∈ {0, 1, ..., 2q} implies Apq = A2p
q+1.

We proceed by induction on q. For the base step, let q = 0. Then GS\A0
q(A1

q) =
GS(S) = S = A1

q. For the inductive hypothesis, assume q ∈ {0, 1, ...} is such that for each

p ∈ {0, 1, ..., 2q − 1}, GS\A
p
q (A1

q) ∼l A1
q.

Within the current inductive argument, we make a second inductive argument, on p.
For the base step, A0

q = ∅ = A0
q+1. For the inductive hypothesis, assume p ∈ {0, 1, ..., 2q−

1} is such that Apq = A2p
q+1. For convenience, define G1, G2, G

′
2 ∈ A by

� G1 ≡ GS\A
2p
q+1(A1

q+1),

� G2 ≡ GS\A
2p+1
q+1 (A1

q+1), and

� G′2 ≡ GS\[A
2p
q+1∪G1](A1

q+1).

We make three claims, which we prove in sequence:
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Claim 1: G1 ∼l A1
q+1,

Claim 2: G2 ∼l A1
q+1, and

Claim 3: Ap+1
q = A

2(p+1)
q+1 .

Proof of Claim 1: By the inductive hypothesis on p, Apq = A2p
q+1, so by Step 1,

monotonicity, and the inductive hypothesis on q,

S\A2p
q+1 = S\Apq
%l GS\A

p
q (A1

q)

∼l A1
q

�l A1
q+1.

Since by Step 3, %l|S\A2p
q+1

= %l|S\Ap satisfies 2-SAD, thus by the 1-SAD Lemma, G1 =

GS\A
2p
q+1(A1

q+1) ∼l A1
q+1.

Proof of Claim 2: Since by Claim 1, H(A1
q) ∼l A1

q+1 ∼l G1, necessarily S\[A2p
q+1 ∪

G1] %l H ′(A1
q), else by the Domination Lemma, the hypothesis on p, and the hypothesis

on q,

A1
q ∼l H(A1

q) ∪H ′(A1
q)

�l G1 ∪ S\[A2p
q+1 ∪G1]

= S\A2p
q+1

= S\Apq
%l GS\A

p
q (A1

q)

∼l A1
q,

contradicting A1
q ∼l A1

q.

By Step 2, A2p+1
q+1 ∼l A

2p
q+1 ∪G1. By the Complement Lemma, S\A2p+1

q+1 ∼l S\[A
2p
q+1 ∪

G1] %l H ′(A1
q) ∼l A1

q+1. By Step 3, %l|S\A2p+1
q+1

satisfies 2-SAD, so by the 1-SAD Lemma,

G2 = GS\A
2p+1
q+1 (A1

q+1) ∼l A1
q+1.

Proof of Claim 3: As argued in the proof of Claim 2, S\[A2p
q+1 ∪G1] %l H ′(A1

q) ∼l
A1
q+1. By Step 3, %l|S\A2p

q+1
satisfies 2-SAD, so by the Greedy Removal Lemma, %l|(S\A2p

q+1)\G1
=

%l|S\[A2p
q+1∪G1]

satisfies 1-SAD. Thus by the 1-SAD Lemma, G′2 ∼l A1
q+1.

Since H(A1
q) ∼l G1 and H ′(A1

q) ∼l G′2, thus by the Domination Lemma, A1
q ∼l

H(A1
q) ∪H ′(A1

q) ∼l G1 ∪ G′2. By the hypothesis on q, GS\A
p
q (A1

q) ∼l A1
q ∼l G1 ∪ G′2. By

Step 2, the hypothesis on p, and separability,

Ap+1
q ∼l Apq ∪ GS\A

p
q (A1

q)

= A2p
q+1 ∪ GS\A

p
q (A1

q)

∼l A2p
q+1 ∪ (G1 ∪G′2)

= [A2p
q+1 ∪G1] ∪G′2
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By Step 2, A2p
q+1 ∪G1 ∼l A2p+1

q+1 . By the first paragraph of this claim’s proof and Claim 2,

G′2 ∼l A1
q+1 ∼l G2. Thus by the Domination Lemma, [A2p

q+1 ∪G1]∪G′2 ∼l A
2p+1
q+1 ∪G2. By

Step 2, A2p+1
q+1 ∪G2 ∼l A2p+2

q+1 . Altogether, Ap+1
q ∼l A2p+2

q+1 .

By induction on p, we conclude the following: if q ∈ {0, 1, ...} is such that for each
p ∈ {0, 1, ..., 2q − 1}, GS\A

p
q (A1

q) ∼l A1
q, then

(1) for each p ∈ {0, 1, ..., 2q+1 − 1}, GS\A
p
q+1(A1

q+1) ∼l A1
q+1, and

(2) for each p ∈ {0, 1, ..., 2q}, Apq = A2p
q+1.

By induction on q, we are done. �

◦ Step 5: For each q ∈ {0, 1, ...} and each p ∈ {0, 1, ..., 2q}, Apq ∼l S\A2q−p
q .

Let q ∈ {0, 1, ...}. For each p ∈ {0, 1, ..., 2q}, define Bp
q ≡ S\A2q−p

q . We proceed by
induction on p.

For the base step, let p = 0. By Step 4, Bp
q = S\A2q

q = S\A1
0 = S\S = ∅, so A0

q ∼l B0
q .

For the inductive hypothesis, assume p ∈ {0, 1, .., 2q − 1} is such that Apq ∼l Bp
q .

Define A,B,C ′, B′, A′ ∈ A by:

A ≡ Apq ,

B ≡ GS\A(A1
q),

C ′ ≡ A2q−(p+1)
q

B′ ≡ GS\C′(A1
q)

A′ ≡ S\(C ′ ∪B′)

By Step 2, C ′ ∪ B′ ∼l A2q−p
q . By the Complement Lemma, A′ = S\(C ′ ∪ B′) ∼l

S\A2q−p
q = Bp

q . By the hypothesis on p, A′ ∼l Apq = A. By Step 4, B ∼l A1
q ∼l B′. Thus

by the Domination Lemma, A ∪B ∼l A′ ∪B′.
By Step 2, A ∪ B ∼l Ap+1

q , and by definition, A′ ∪ B′ = S\A2q−(p+1)
q = Bp+1

q , so
altogether Ap+1

q ∼l Bp+1
q . By induction on p, we are done. �

◦ Step 6: Define the binary operation
⊎

.

For each q ∈ {0, 1, ...} and each pair p, p′ ∈ {0, 1, ..., 2q} such that p + p′ ≤ 2q, define
Apq
⊎
Ap
′
q ∈ A by:

Apq
⊎

Ap
′

q ≡ GS
(
Apq ∪ GS\A

p
q (Ap

′

q )
)
. �

◦ Step 7: For each q ∈ {0, 1, ...} and each pair p, p′ ∈ {0, 1, ..., 2q} such that p+ p′ ≤ 2q,

Apq
⊎

Ap
′

q′ = Ap+p
′

q .

Let q ∈ {0, 1, ...} and let p ∈ {0, 1, ..., 2q}. We proceed by induction on p′. For the
base step, let p′ = 0. Then by the Idempotence Lemma, Apq

⊎
Ap
′
q = GS(Apq) = Apq .
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For the inductive hypothesis, assume p′ ∈ {0, 1, ..., [2q−1]−p} is such that Apq
⊎
Ap
′
q =

Ap+p
′

q . Define A,B,C ∈ A by:

A ≡ Apq ,

B ≡ GS\A(Ap
′

q ), and

C ≡ GS\(A∪B)(A1
q).

By hypothesis, Ap+p
′

q = Apq
⊎
Ap
′
q = GS(A ∪ B). Since %l satisfies 1-SAD and, by mono-

tonicity, S %l A ∪ B, thus by the 1-SAD Lemma, GS(A ∪ B) ∼l A ∪ B. Altogether,
Ap+p

′
q ∼l A ∪B.

By monotonicity and Step 4, S\Ap+p′q %l GS\A
p+p′
q (A1

q) ∼l A1
q, so by the Comple-

ment Lemma, S\(A ∪ B) ∼l S\Ap+p
′

q %l A1
q. By Step 3, %l|S\A satisfies 2-SAD, so by

the Greedy Removal Lemma, %l(S\A)\B = %lS\(A∪B) satisfies 1-SAD. Thus by the 1-SAD

Lemma, A1
q ∼l C. By Step 4, GS\A

p+p′
q (A1

q) ∼l A1
q, so GS\A

p+p′
q (A1

q) ∼l C.

Since Ap+p
′

q ∼l A ∪ B and GS\A
p+p′
q (A1

q) ∼l C, thus by Step 2 and the Domina-
tion Lemma,

Ap+p
′+1

q ∼l Ap+p
′

q ∪ GS\A
p+p′
q (A1

q)

∼l (A ∪B) ∪ C.

By Step 5, S\Apq ∼l A2q−p
q . Since 2q − p ≥ p′ + 1, by Step 2 and monotonicity,

A2q−p
q %l Ap

′+1
q , so S\Apq %l Ap

′+1
q . By Step 3, %l|S\Ap

q
satisfies 2-SAD, so by the 1-SAD

Lemma, GS\A
p
q (Ap

′+1
q ) ∼l Ap

′+1
q .

Since S\Apq %l Ap
′+1
q , by Step 2 and monotonicity, S\Apq %l Ap

′
q . By Step 3, %l|S\Ap

q

satisfies 2-SAD, so by the 1-SAD Lemma, Ap
′
q ∼l B. By Step 4, GS\A

p′
q (A1

q) ∼l A1
q, and as

argued above, A1
q ∼l C, so GS\A

p′
q (A1

q) ∼l C. Thus by Step 2 and the Domination Lemma,

Ap
′+1
q ∼l Ap

′
q ∪ GS\A

p′
q (A1

q) ∼l B ∪ C.

Altogether, GS\A
p
q (Ap

′+1
q ) ∼l B ∪ C. Since %l satisfies 1-SAD and, by monotonicity,

S %l Apq ∪ GS\A
p
q (Ap

′+1
q ), thus by the 1-SAD Lemma and separability,

Apq
⊎

Ap
′+1
q = GS

(
Apq ∪ GS\A

p
q (Ap

′+1
q )

)
∼l Apq ∪ GS\A

p
q (Ap

′+1
q )

∼l Apq ∪ (B ∪ C)

= A ∪ (B ∪ C).

Since (A∪B)∪C = A∪(B∪C), thus Ap+p
′+1

q ∼l Apq
⊎
Ap
′+1
q . By the Idempotence Lemma,

Ap+p
′+1

q = Apq
⊎
Ap
′+1
q .

By induction on p′, for each p′ ∈ {0, 1, ..., 2q−1}, Apq
⊎
Ap
′
q = Ap+p

′
q . Since q ∈ {0, 1, ...}

and p ∈ {0, 1, ..., 2q} were arbitrary, we are done. �

◦ Step 8: limA1
q = ∅.

By Step 2, monotonicity, and the Convergence Lemma, (A1
q) ∈ AN is convergent.

Assume, by way of contradiction, there is s ∈ limA1
q.
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We claim for each i ∈ N and each k ∈ N, A1
i �l {s, s + 1, ..., s + k}. We proceed by

induction on k. For the base step, let k = 0. Then by continuity and monotonicity, for
each i ∈ N, A1

i %l limA1
q %l {s}, so by Step 1, A1

i �l A1
i+1 %l {s}.

For the inductive hypothesis, assume k ∈ N is such that for each i ∈ N, A1
i �l {s, s+

1, ..., s + k}. Let i ∈ N. By Step 1, H(A1
i ) ∼l A1

i+1. By Step 4 and Step 1, H ′(A1
i+1) ∼l

A1
i+1 ∼l GS\A

1
i+1(A1

i+1). By the inductive hypothesis, A1
i+1 �l {s, s + 1, ..., s + k}. By

Step 4 and the inductive hypothesis, GS\A1
i+1(A1

i+1) ∼l A1
i+1 �l {s} %l {s+ k + 1}. Thus

by Step 1 and two applications of the Domination Lemma,

A1
i ∼l H(A1

i ) ∪H ′(A1
i )

∼l A1
i+1 ∪ GS\A

1
i+1(A1

i+1)

�l {s, s+ 1, ..., s+ k} ∪ {s+ k + 1}.

Since i ∈ N was arbitrary, for each i ∈ N, A1
i �l {s, s+ 1, ..., s+ k + 1}. By induction on

k, we are done.
Thus by continuity, for each i ∈ N, A1

i %l lim{s, s + 1, ..., s + k} = {s, s + 1, ...}. If
s = 1, then by Step 1, S = A1

0 �l A1
1 %l {1, 2, ...} = S, contradicting S ∼l S. Thus s > 1,

so by 2-SAD, for each i ∈ N, A1
i �l {s, s+ 1, ...} %l {s− 1}.

Thus for each s ∈ S, if for each i ∈ N, A1
i �l {s}, then (1) s 6= 1, and (2) for each

i ∈ N, A1
i �l {s− 1}. Then there can be no such s, contradicting that there is. �

◦ Step 9: Define {Av}v∈2 ⊆ A and {Zv}v∈2 ⊆ [A/∼l] such that for each pair v, v′ ∈ 2

such that v′ > v, Av′ �l Av.

Let v ∈ 2. Then there are p, q ∈ {0, 1, ...} such that p ≤ 2q and v =
p

2q
. Define

Av ≡ Apq , and

Zv ≡ {A ∈ A|A ∼l Av}.

By Step 4, this is well-defined.
Let v, v′ ∈ 2 such that v′ > v. Since v′ − v > 0, by Step 1, Step 2, and monotonicity,

Av′−v �l ∅. Similarly, A1−v �l ∅. By Step 5, S\Av ∼l A1−v �l ∅, so GS\Av(Av′−v) �l ∅.
Since %l satisfies 1-SAD and, by monotonicity, S %l Av ∪ GS\Av(Av′−v), thus by the
1-SAD Lemma, GS

(
Av ∪ GS\Av(Av′−v)

)
∼l Av ∪ GS\Av(Av′−v). Thus by Step 6, Av′ =

GS
(
Av ∪ GS\Av(Av′−v)

)
∼l Av ∪ GS\Av(Av′−v), so by separability, Av′ �l Av. �

◦ Step 10: For each convergent pair (vi), (v
′
i) ∈ 2N such that lim vi = lim vi, if (Avi), (Av′i) ∈

AN are convergent, then limAvi ∼l limAv′i .

Define v∞ ≡ lim vi = lim v′i, A∞ ≡ limAvi , and A′∞ ≡ limAv′i . Let v ∈ 2. If v > v∞,
then there is v′ ∈ 2 such that v > v′ > v∞. Since lim vi = v∞, there is i∗ ∈ N such that
for each i ≥ i∗, v′ > vi. Thus for each i ≥ i∗, Av′ �l Avi , so by Step 9 and continuity,
Av �l Av′ %l A∞. By the same argument, v > v∞ implies Av �l A′∞.

Similarly, for each v ∈ 2, v∞ > v implies A∞ �l Av and A′∞ �l Av.
Assume, by way of contradiction, A∞ 6∼l A′∞. Assume, without loss of generality,

A∞ �l A′∞. Define G ≡ GS(A′∞). Since %l satisfies 1-SAD and, by monotonicity,
S %l A′∞, thus by the 1-SAD Lemma, A∞ �l A′∞ ∼l G.
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Necessarily S\G �l ∅, else by the Complement Lemma and monotonicity, G %l S %l
A∞, contradicting A∞ �l G. Then there is q ∈ N such that S\G �l A1

q, else by Step 8
and continuity, ∅ = limA1

q %l S\G, contradicting S\G �l ∅.
Since %l satisfies 3-SAD, thus by the Greedy Removal Lemma, %l|S\G satisfies 2-SAD,

so by Step 1 and the 1-SAD Lemma, for each q′ ∈ N such that q′ ≥ q, GS\G(A1
q′) ∼l A1

q′ .

Then by Step 1, (GS\G(A1
q′)) ∈ AN is monotonic, so by the Convergence Lemma, it is

convergent. By the Limit-Order Lemma and Step 8, limGS\G(A1
q′) ∼l limA1

q′ = ∅, so

limGS\G(A1
q′) = ∅. Then limG ∪ GS\G(A1

q′) = G. Thus there is q∗ ∈ N such that (1)

q∗ ≥ q and thus GS\G(A1
q∗) ∼l A1

q∗ , and (2) A∞ �l G ∪ GS\G(A1
q∗), else by continuity

G %l A∞, contradicting A∞ �l G.
We proceed by reaching a contradiction in three cases:

Case 1: v∞ = 0. Then since
1

2q∗
> v∞, by monotonicity, A1

q∗ �l A∞ �l G ∪
GS\G(A1

q∗) %l GS\G(A1
q∗) ∼l A1

q∗ , contradicting A1
q∗ ∼l A1

q∗ .

Case 2: v∞ = 1. Since v∞ >
2q
∗ − 1

2q∗
, G ∼l A′∞ �l A2q

∗−1
q∗ . Since GS\G(A1

q∗) ∼l

A1
q∗ %l G

S\A2q
∗
−1

q∗ (A1
q∗), thus by the Domination Lemma, A∞ �l G ∪ GS\G(A1

q∗) �l

A2q
∗−1

q∗ ∪ GS\A
2q
∗
−1

q∗ (A1
q∗). Since %l satisfies 1-SAD and, by monotonicity, S %l A

2q
∗−1

q∗ ∪

GS\A
2q
∗
−1

q∗ (A1
q∗), thus by the 1-SAD Lemma, A2q

∗−1
q∗ ∪GS\A

2q
∗
−1

q∗ (A1
q∗) ∼l A2q

∗−1
q∗

⊎
A1
q∗ . But

then by Step 7, Step 4, and Step 1, A∞ �l A2q
∗−1

q∗
⊎
A1
q∗ = A2q

∗

q∗ = S, contradicting
S %l A∞.

Case 3: v∞ ∈ (0, 1). Define ε∗ ≡ 1

2q∗
. Since 2 is dense in [0, 1], there is v∗ ∈ 2 such

that 1 ≥ v∗ + ε∗ > v∞ > v∗. Then Av∗+ε∗ �l A∞ �l G ∼l A′∞ �l Av∗ .
Since 1 − v∗ ≥ ε∗, thus by Step 5, S\Av∗ ∼l A1−v∗ %l Aε∗ = A1

q∗ . Then by Step 3

and the 1-SAD Lemma, GS\G(A1
q∗) ∼l A1

q∗ ∼l GS\Av∗ (A1
q∗). Since G �l Av∗ , thus by the

Domination Lemma, A∞ �l G ∪ GS\G(A1
q∗) �l Av∗ ∪ GS\Av∗ (A1

q∗).

Since %l satisfies 1-SAD and, by monotonicity, S %l Av∗ ∪ GS\Av∗ (A1
q∗), thus by the

1-SAD Lemma, Av∗
⊎
Aε∗ = Av∗ ∪ GS\Av∗ (A1

q∗). But then by Step 7, A∞ �l Av∗
⊎
Aε∗ =

Av∗+ε∗ , contradicting Av∗+ε∗ �l A∞. �

◦ Step 11: Conclude.

We verify that {Zv}v∈2 satisfies [DS1], [DS2], and [DS3].

DS1: By Step 1 and Step 9, ∅ = A0 ∈ Z0 and S = A1 ∈ Z1.

DS2: Let v, v′ ∈ 2 such that v + v′ ≤ 1. Then there are p, p′, q ∈ {0, 1, ...} such that

v =
p

2q
and v′ =

p′

2q
, and p+ p′ ≤ 2q.

By construction, Apq ∈ Zv, Ap
′
q ∈ Zv′ , and Ap+p

′
q ∈ Zv+v′ . By Step 5, S\Apq ∼l A2q−p

q .

Since p + p′ ≤ 2q, thus by monotonicity and Step 2, S\Apq %l Ap
′
q . By Step 3, %l|S\Ap

q
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satisfies 2-SAD, so by the 1-SAD Lemma,

GS\A
p
q (Ap

′

q ) ∼l Ap
′

q .

Thus we have disjoint Apq ∈ Zv and GS\A
p
q (Ap

′
q ) ∈ Zv′ .

Since %l satisfies 1-SAD and, by monotonicity, S %l Apq ∪ GS\A
p
q (Ap

′
q ), thus by the

1-SAD Lemma, GS
(
Apq ∪ GS\A

p
q (Ap

′
q )
)
∼l Apq ∪ GS\A

p
q (Ap

′
q ). Thus by Step 7,

Ap+p
′

q = Apq
⊎

Ap
′

q

= GS
(
Apq ∪ GS\A

p
q (Ap

′

q )
)

∼l Apq ∪ GS\A
p
q (Ap

′

q ),

so Apq ∪ GS\A
p
q (Ap

′
q ) ∈ Zv+v′ .

DS3: Let (vi), (v
′
i), (wi), (w

′
i) ∈ 2N be monotonic such that

(i) for each i ∈ N, vi + wi ≤ 1 and v′i + w′i ≤ 1, and
(ii) lim vi = lim v′i and limwi = limw′i.

For each i ∈ N, define Ai, A
′
i, Bi, B

′
i ∈ A by:

Ai ≡ Avi ,

A′i ≡ Av′i ,

Bi ≡ GS\Ai(Awi
), and

B′i ≡ GS\A
′
i(Aw′i).

By Step 5, for each i ∈ N, S\Ai ∼l A1−vi , so since 1− vi ≥ wi, by Step 9, S\Avi %l Awi
.

Thus by Step 3 and the 1-SAD Lemma, for each i ∈ N, Bi ∼l Awi
. Similarly, for each

i ∈ N, B′i ∼l Aw′i . Thus for each i ∈ N,
(i) Ai ∈ Zvi , A′i ∈ Zv′i , Bi ∈ Zwi

, and B′i ∈ Zw′i , and
(ii) Ai ∩Bi = A′i ∩B′i = ∅.

Since %l satisfies 2-SAD and, by Step 2 and monotonicity, (Ai), (A
′
i), (Bi), (B

′
i) are

monotonic, thus by the Convergence Lemma, (GS1 (Ai, Bi)), (GS2 (Ai, Bi)), (GS1 (A′i, B
′
i)),

and (GS2 (A′i, B
′
i)) are convergent. By the Idempotence Lemma, these are, respectively

(Ai), (Bi), (A
′
i), (B

′
i); thus (Ai), (Bi), (A

′
i), (B

′
i) are convergent. By Step 10, limAi ∼l

limA′i. By the Limit-Order Lemma and Step 10, limBi ∼l limAwi
= limAw′i ∼l limB′i.

Altogether:
(iii) limAi = limA′i and limBi = limB′i. �
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