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1 Introduction

Many long-running relationships are not based on explicit contractual engagements but

rather depend on an implicit web of mutual obligations generated by the exchange of

favours. In this paper, we study a dynamic relationship between a principal and and

agent in which (a) heterogenous opportunities for joint production and trade arrive

exogenously, (b) utility from these projects is non-transferable, and (c) there is lim-

ited commitment to future production. Our results characterise those subgame perfect

equilibria that maximise the principal’s payoffs.

Because potential projects are differentiated and utility is non-transferable, a critical

decision in this relationship concerns the selection of those project opportunities that

are actually produced. We interpret the demand for a favour as the production of a

project that benefits the principal but not the agent, and the supply of a favour as the

production of a project that benefits the agent but not the principal. By demanding a

favour, the principal incurs a utility debt towards the agent whose level is determined

by the agent’s loss from producing that particular project. The principal’s repays this

debt through taking losses, denominated in her own utility units, on the production of

future projects. However, because future opportunities are stochastic and outside the

principal’s control, her ability to return utility to the agent is constrained.

Because optimal relationships are Pareto-efficient, mutually beneficial projects are

produced and mutually disagreeable projects are not produced. Therefore, optimal

relationships are completely characterised by their associated demand and supply for

favours. Our main results establish that the supply for favours is backloaded, while the

demand for favours is front-loaded. Both these properties imply that the agent is better

off as the relationship progresses, and hence our results are in line with well-known

backloading results for dynamic relationships (e.g., Ray (2002)). However, our results

are not driven by the standard calculus through which promising high future rewards to

the agent optimally provides incentives for his current actions. Rather, backloading the

supply of favours is part of the principal’s optimal distribution of project production

over future opportunities. Specifically, some projects are more efficient as tools for the

principal to return utility to the agent, in that the agent’s gains from trade are high

relative to the principal’s loss. Our backloading result is driven by the fact that the

2



principal will not promise to supply a favour to the agent through a less efficient project

if some future opportunity with a more efficient project is passed over. Our frontloading

result for the demand for favours is driven by similar incentives: if the principal ever

passes over asking for a favour at a project that has high efficiency in terms of extracting

utility from the agent, then any future opportunity at lower-efficiency projects must also

be passed over.

That is, the principal’s ability to extract utility from the agent is conditioned on the

availability of projects with which to return this utility in the future. From Proposition

1, we know that the set of such project becomes more constrained over the relationship’s

lifetime, so that the principal must reduce her demands on the agent over time: a favour

that is passed over at some history is never asked in any future history (Part 2).

Our paper has close links to the literature on dynamic risk-sharing studies the trans-

fer of stochastic income between players as a tool for self-insurance (e.g., Kocherlakota

(1996), Ligon et al. (2002) and Thomas and Worrall (1988)). These models typically

feature a stationary environment in which income shocks are iid, while we allow for an

arbitrary stochastic process generating project opportunities (Dixit et al. (2000), who

focus on a Markov process for income shocks, is an important exception). Also, in our

model both the principal and the agent are risk-neutral in every stage game, although

utility is non-transferable and their payoffs, because they depend on the current project

opportunity, are time-varying. Therefore, risk-sharing plays no role in our results, and

our focus is on the selection of those joint projects that are produced. A subsequent

literature has studied the case in which the (risk-neutral) players’ ability to transfer in-

come, interpreted as providing a favour, is privately observed (e.g., Abdulkadiroglu and

Bagwell (2012), Hauser and Hopenhayn (2008) and Möbius (2001). Related to these is

the literature on dynamic contracts with and without commitment, e.g., Garrett and

Pavan (2012), Guo and Hörner (2014) and Lipnowski and Ramos (2015)). These envi-

ronments give rise to equilibria described by “chips mechanisms” in which truth-telling

constraints ration players’ demands for favours as a function of their previous supply.

In this paper, project opportunities and their production are publicly observed. By

abstracting from informational asymmetries between the principal and the agent, we

allow for a rich space of possible project opportunities, and we obtain detailed results

on the dynamics of project selection and production.
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Another closely related literature studies related models in which the agent and/or

the principal take actions in the relationship (e.g., Albuquerque and Hopenhayn (2004),

Kovrijnykh (2013), Thomas and Worrall (1994, 2014)), which has close connections to

the literature on relational contracts (e.g., Doornik (2006), Halac (2014), Levin (2003)).

These models typically exploit transferability of utility to focus on stationary equilibria,

while optimal relationships are not stationary in our environment, even if we assume

that project opportunities are generated by an iid, or Markov, stochastic process. A

notable exception is Board (2011), who characterises optimal supply contracts when po-

tential suppliers have stochastic costs (Fong and Li (2013) also consider non-stationary

dynamics in relational contracts).

2 Model

A principal and an agent participate in a long-lived relationship in which opportunities

for joint projects may accrue in each period t = 1, 2, .... Specifically, let U ⊂ R2 be a

finite set and let u = {ut}t≥1 be a U -valued stochastic process that describes the arrival

of projects over time. Let ut = (u1, ..., ut) denote a project history at t. In any period,

any fraction of a project can be produced if the principal and the agent unanimously

agree to do so. Specifically, the principal declares 0 ≤ kP ≤ 1, the agent declares

0 ≤ kA ≤ 1, and the project is produced with intensity

k =

kP if kP = kA

0 otherwise.

The payoffs to the principal and the agent if the project at t is produced with intensity

k are kut = (kuP,t, kuA,t). Both project opportunities and production decisions, and

hence all players’ payoffs, are publicly observed. Because each player receives a payoff

of 0 if no project is produced, it follows that player i prefers to produce the project

if ui,t > 0 and not to produce it if ui,t < 0. For simplicity, we assume that if a joint

project is available, then the players’ preferences over production are strict. Specifically,

if u 6= 0, then uA 6= 0 and uP 6= 0. Finally, the players discount future payoffs with

common factor 0 ≤ δ < 1.

A relationship process κ = {κt}t≥1 is a stochastic process such that 0 ≤ κt ≤ 1
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for all t. We interpret κt as the recommended intensity with which the project at t is

produced, with this recommendation conditioned on the project history at t. Formally,

we impose that all relationship processes κ are adapted to the filtration generated by

u. In words, a relationship process specifies a complete plan for what projects should

be produced by the principal and the agent in all contingencies that can arise during

their interaction. Let K denote the set of all relationship processes.

Given a relationship process κ and time t, let

Ui,t = Et
∞∑
t′=t

δt
′−tκt′ui,t′ ,

denote the associated discounted sum of payoffs to player i starting from t, where Et
stands for the expectation conditional on the information available at t, which resides

in project histories ut. Note that we can rewrite

Ui,t = κtui,t + δEtUi,t+1.

A relationship process κ is player i-feasible at t if Ui,t ≥ 0, and simply player-i feasible if

it is player-i feasible at all t. A relationship process κ∗ is optimal if (i) it is both principal

and agent-feasible, and (ii) E0U
∗
P,1 ≥ E0UP,1 for all relationship processes κ that are

both principal and agent-feasible. Optimal relationship processes are those feasible

relationship process that are preferred by the principal, and they always exist, as we

establish in Lemma 2 in the Appendix. Our most general results are obtained in the

model in which the principal can commit to her production decisions in the relationship.

In that case, we require only that relationship processes are agent-feasible.

Any feasible relationship process can be supported by a subgame perfect equilibrium

of the game between the principal and the agent. First, note that 0 is a subgame perfect

equilibrium payoff for both the principal and the agent: this payoff is attained by the no-

production strategy profile in which both players refuse to undertake any project after

any history. Second, note that no subgame perfect equilibrium can deliver a payoff

lower than 0 to any player: both players can secure the payoff 0 unilaterally following

any history by refusing to undertake any future projects. By definition, a relationship

process is feasible if, following all project histories, both players obtain at least their

payoff from the no-production equilibrium which describes the worst possible outcome
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of their interactions. Therefore, by standard arguments, feasible relationship processes

characterise all subgame perfect equilibrium payoffs of this game.

Optimal relationship processes must be Pareto efficient. In particular, this implies

that if the preferences of the principal and the agent over the project at t are aligned,

then an optimal relationship process implements jointly optimal decisions.

Lemma 1. If the relationship process κ∗ is optimal, then

1. if uP,t, uA,t > 0, then κ∗t = 1, and

2. if uP,t, uA,t < 0, then κ∗t = 0.1

This simple result has the important implication that an optimal relationship process

can be identified with the production decisions it prescribes for those projects on which

the two players disagree. To this end, define the sets D = {v ∈ U : vP > 0 > vA} and

S = {w ∈ U : wA > 0 > wP}. Given a relationship process κ, we say that the principal

demands a favour with intensity κt at t if vt ∈ D, and conversely that the principal

supplies a favour with intensity κt at t if wt ∈ S. Given some relationship process κ,

define the demand process D = {Dt}t≥1 such that ∆Dt = κt if and only if vt ∈ D.

Similarly, define the supply process S = {St}t≥1 such that ∆St = κt if and only wt ∈ S.

Lemma 1 implies that any optimal relationship process κ∗ is completely characterised

by its corresponding demand and supply processes (D∗, S∗).

3 Commitment by the Principal

It turns out that the decomposition of an optimal relationship process into demand and

supply processes is quite fruitful. In this section, we assume one-sided commitment by

the principal and characterise optimal relationship processes in two steps. First, we fix

an optimal demand process and provide a characterisation of the associated optimal

supply process. Second, we fix an optimal supply process and provide a characterisation

of the associated optimal demand process. These results hold generally: in particular,

we impose no restriction on the underlying project process u. In our third set of results

in this section, we impose additional structure on the process driving project arrivals

1The proofs of all results are in the Appendix.

6



to refine our results: we assume that u is a Markov process and provide a complete

characterisation of optimal relationship process.

For all these results, a first task is to determine those projects that the principal

would prefer to use to demand favours from the agent, or to supply favours to the

agent, irrespective of any dynamic incentive considerations. To this end, we define

an ordering of projects such that u � u′ if and only |uP/uA| > |u′P/u′A|. In words, if

v, v′ ∈ D and v � v′, then project v has a comparative advantage over project v′ when

it is used by the principal to demand favours from the agent: in this case the ratio

vP/|vA| measures the efficiency of project v, from the principal’s perspective, as a tool for

extracting utility from the agent. Conversely, if w,w′ ∈ S and w′ � w, then project w

has a comparative advantage over project w′ when it is used by the principal to supply

favours to the agent: in this case the ratio wA/|wP | measures the efficiency of project

w, from the principal’s perspective, as a tool for providing utility to the agent. For

simplicity, we assume that the ordering � is complete on D ∪ S (i.e., that all project

pairs are ranked strictly by comparative advantage).

3.1 Optimal Supply of Favours

Our first main result shows backloading the supply of favours is optimal.

Proposition 1. Suppose that the demand and supply processes (D∗, S∗) are optimal.

Then (without loss of generality for optimal payoffs), for all w ∈ S, there exists a

R+-valued process Tw = {Tw}t≥1 such that, for all t,

∆S∗t =


1 if Twt

t ≤ t,

t+ 1− Twt
t if t < Twt

t < t+ 1,

0 if Twt
t ≥ t+ 1.

(1)

Given any time t and project w, the process Tw has the following properties.

1. Twt′ = Twt for all t′ > t such that D∗t′ = D∗t .

2. Tw is non-increasing.

3. Tw
′

t =∞ for all w′ ∈ S if and only if D∗t = 0.
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4. If Twt < Twt−1, then V ∗A,t = 0.

5. If Twt < ∞, then Tw
′

t ≤ t for all w � w′, and if Twt > t, then Tw
′

= ∞ for all

w′ � w.

Optimal supply processes can be characterised by simple time-threshold rules. The

collection of threshold processes {Tw}w∈S identifies those projects that are used to

supply favours by the principal: any project with Twt
t ≤ t is produced with full intensity

at t; no project with Twt
t ≤ t+1 is produced with any intensity at t; and any project with

t < Twt
t < t + 1 is produced with interior intensity. We interpret bTwt c as the time at

which the principal plans to use project w to supply favours to the agent, conditional

the relationship’s status at time t. As we will also establish for demand processes

below, the linearity of stage payoffs in production intensity implies that optimal supply

processes are typically bang-bang. Interior project intensities are needed to overcome

rounding issues due to the discreteness of time periods: project intensities would be 0

or 1 with probability 1 in the continuous-time limit of our model.

Optimal supply processes are constant when the relationship is in between two

favours demanded by the principal (Part 1). That is, the principal adjusts her plan for

returning utility to the agent only after she has asked for a new favour, for which she

incurs a utility debt. Also, asking for a new favour never leads the principal to enact a

less generous supply process: the time Twt at which she starts to use project w to supply

favours to the agent can only move forward (Part 2). Notice the associated backloading

property exhibited by optimal supply processes, which we will discuss in detail below:

by agreeing to use some project to supply a favour to the agent following some history,

the principal also commits to supplying a favour to the agent in all future occurrences of

this project. Not surprisingly, it is never optimal for the principal to supply any favours

to the agent before she has demanded any favours. However, as soon as the principal

demands a first favour, then in exchange she commits to supplying favours infinitely

often in the future (Part 3). Now while the principal can adjust her supply of favours

whenever she demands a new favour, she only does this if failure to do so violates agent-

feasibility. In particular, if an optimal supply process becomes more generous when the

principal demands a new favour, the agent must be indifferent between enacting the

project and quitting the relationship (Part 4). In particular, by Part 3 this implies that
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the agent’s feasibility constraint always binds when a first favour is demanded. This

does not imply that the agent’s feasibility constraint always binds in a relationship

process. In fact, the agent’s constraint must be slack for some histories following a

demand for a favour: if not, then the agent’s continuation payoff following the favour

would be 0, and because providing a favour is costly, the agent’s feasibility constraint

would fail. Therefore, the principal’s incentives to smooth her supply of favours while no

intervening favours are demanded does benefit the agent, who obtains utility when not

strictly necessitated by incentives. However, the principal delays adjusting thresholds

until doing so is necessary.

The principal’s selection of projects to use to supply favours is driven by their rank

in comparative advantage: at most one project w∗ has t < Tw
∗

t < ∞; for all projects

w∗ � w we have Twt ≤ t (and hence ∆S∗t = 1); and for all projects w � w∗ we

have Twt = ∞ (and hence ∆S∗t = 0) (Part 5). That the time thresholds {Tw}w∈S
are non-increasing implies that this threshold project w∗ is increasing (with respect

to �) over time. Put differently, the principal transitions to supplying favours with

less advantageous projects as the relationship matures and her demands for favours

accumulate.

The key insights for our backloading result comes from the arguments that establish

Parts 2 and 5 of Proposition 1. These rely on intertemporal smoothing, for which the

driving force is the principal’s incentive to concentrate the supply of future favours on

those projects with a comparative advantage for delivering utility to the agent (i.e.,

that are lower ranked under �). More precisely, fix a project history ut, times t′, t′′ ≥ t,

projects w � w and histories ut
′

and ut
′′

with ut′ = w and ut′′ = w. If the principal

supplies a favour at ut
′′

but not at ut
′
, then she can gain by increasing her supply at

ut
′

and deceasing it at ut
′
. This can be done while keeping the agent indifferent at ut,

so that no agent-feasibility constraint is violated at any time r ≤ t. The difficulty is to

do this in a way that does not violate any feasibility constraints between times t and

either t′ or t′′. Clearly, the agent is better off at ut
′
. The agent is worse off at ut

′′
,

but his feasibility constraint must still be satisfied. The reason is that when a favour

is supplied, the agent always achieves a stage payoff that is higher than under the no-

production process, so that supplying fewer favours at ut
′′

cannot lead to a failure of

agent-feasibility. The problem, however, is that offering a lower payoff at ut
′′

can lead
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to the failure of a feasibility constraint between t and t′′. However, this concern is only

relevant if, between t and t′′, there is some history at which the principal demands a

favour. If not, then by the same argument as detailed above, supplying a favour with

lower intensity at ut
′′

cannot lead to a failure of agent-feasibility prior to t′′. That is,

the principal is free to transfer the supply of favours from w to w while no further

favours have been asked. When can the principal transfer the supply of favours from

w to w without regard for whether or not intervening favours have been asked? This

is possible when history ut
′

follows history ut
′′
. In that case, the smoothing operation

described above increases the agent’s payoff in the future, so that the incentives that

support the asking of intervening favours are strengthened. Together, these steps imply

that the principal cannot supply favour w in the current period if future opportunities

to supply favour w are unused.

3.2 Optimal Demand for Favours

Our second main result shows that frontloading the demand for favours is optimal. Here,

as with the optimal supply of favours, the ranking of two projects vt and vt′ with respect

to � will be critical to determining whether the principal demands a favour at histories

ut and ut
′
. However, an important remark is that while their ranking in comparative

advantage orders the principal’s marginal benefit from demanding these favours, the

principal’s marginal cost to demanding these favours is endogenous. Specifically, the

principal’s accumulated commitments to supply favours can differ at these two histories.

The marginal cost of asking for an additional favour is measured by the project w that

has a comparative advantage in providing utility to the agent, but only among those

projects that have not yet been committed to supplying favours.

We need to introduce some notation before stating our result. LetW t−1 = min�{w ∈
S : Twt−1 > t + 1} and W t−1 = max�{w ∈ S : Twt−1 < t + 2}. To interpret these two

projects, suppose that the principal is in a position to demand a favour from the agent

on some project vt at t. The project W t−1 is the principal’s preferred project among

those that, if the principal does not demand a favour at t, would not be used to supply

favours to the agent at t + 1, given the principal’s supply commitments {Twt−1}w∈S in-

herited from t− 1. Similarly, the project W t−1 is the principal’s least preferred project
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among those that, if the principal does not demand a favour at t, would be used to

supply favours to the agent with some intensity at t + 1, given the principal’s supply

commitments inherited from t−1. Note that from Proposition 1, we have W t−1 � W t−1

whenever W t−1 6= W t−1.

Proposition 2. Suppose that the demand and supply processes (D∗, S∗) are optimal.

Then (without loss of generality for optimal payoffs), for all v ∈ D there exists a R+-

valued process T v = {T v}t≥1 such that, for all t,

∆D∗t =


1 if T vtt ≥ t+ 1,

T vtt − t if t < T vtt < t+ 1,

0 if T vtt ≤ t.

(2)

Given any time t and project v, the process T v has the following properties.

1. T v is non-increasing.

2. If v � W t−1, then T vt > t, and if W t−1 � v, then T vt ≤ t.

As with the supply of favours, optimal demand processes can be characterised by

simple time-threshold processes {T v}v∈S: any project with T vtt ≥ t+1 is produced with

full intensity at t; no project with T vtt ≤ t is produced with any intensity at t; and any

project with t < T vtt < t+1 is produced with interior intensity. Here, we interpret bT vt c
as the time at which the principal plans to stop demanding the production of project v,

conditional on the relationship’s status at time t. That T v is non-increasing implies a

frontloading property for optimal demand processes: if the principal ever passes on the

opportunity to demand a favour following some history, then the principal also commits

to never demanding any favour in all future occurrences of this project (Part 1).

To decide whether to demand a favour at some history, the principal compares the

rank, in comparative advantage for extracting utility from the agent, of this favour with

the rank, in comparative advantage for returning utility to the agent, of the favour she

would need to supply to the agent in exchange (Part 2). The marginal cost of demanding

a favour at time t is determined by {Twt−1}w∈S , which describe the supply commitments

accumulated in the relationship’s history up to t. Specifically, any marginal increase in

supply commitments at t will be delivered in future occurrences of project W t−1, so that
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the principal must demand a favour with some intensity at t if v � W t−1. Conversely,

any marginal reduction in supply commitments at t will reduce the production of future

occurrences of projects that rank no better than W t−1 in comparative advantage, so

that the principal cannot demand a favour with any intensity if W t−1 � v. Note that

the fact that supply thresholds {Tw}w∈S are non-increasing implies that both W and

W are non-decreasing processes with respect to �. In this sense, the frontloading of the

demand for favours is the natural complement to the backloading of their supply: as

the principal accumulates supply commitments over time, her marginal cost for asking

new favours increases, choking off the principal’s ability demand additional favours.

By highlighting the relationship between the principal’s demand for favours at t and

her accumulated supply commitments at t−1, we can also predict dynamics properties

of optimal demands. Specifically, given history ut, let v∗ denote the project with v∗ �
W t−1 that is worst-ranked by comparative advantage. Then we know that this project

must be demanded with some intensity at time t (again, Part 2). But it must also be

the case that all projects v � v∗ are also demanded with some intensity at t. Hence,

those projects demanded as favours by the principal satisfy a threshold property in

comparative advantage. Similarly, those projects that will never be demanded in the

future also satisfy a threshold property in comparative advantage determined by the

relationship’s supply history. Let v∗ denote the project with W t−1 � v∗ that is best-

ranked by comparative advantage. Then no project with v∗ � v is ever again demanded

with any intensity. As for our key claims from Proposition 1, the dynamic results of

Proposition 2 are established through intertemporal smoothing arguments.

3.3 Markov Project Processes

In this section we impose additional structure on the process driving joint project op-

portunities: we assume that u is a Markov process. This allows us to sharpen our results

considerably, and in fact we provide a complete characterisation of optimal relationship

processes in this case. An important note is that a Markov project process u does not

generate optimal demand and supply processes that are themselves stationary, that is,

that specify the same production decisions following two histories with the same cur-

rent project opportunity. In fact, optimal relationship processes are history-dependent
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even in the special case of iid project processes. There are two related explanations

for this fact. First, as we established in Propositions 1 and 2, the backloading of the

supply of favours and the frontloading of the demand for favours naturally induces non-

stationarity in project production. Second, the history of agent-feasibility constraints

matters for optimal relationship processes, and two occurrences of the same project can

be treated differently if they are preceded by different histories of production decisions.

Recall that agent-feasibility constraints can only bite if the principal demands a

favour. The key to Proposition 3 below to all projects at which the principal can

demand a favour (projects v ∈ D ), it associates a relationship process that extends a

minimal level of generosity of the principal towards the agent. The critical implication

of the process u being Markov is that these minimal processes are history-independent.

In turn, these minimal processes are used to construct the time-thresholds {T v}v∈D and

{Tw}w∈S that characterise optimal demand and supply processes in Propositions 1 and

2 through an explicit, recursive procedure.

Proposition 3. For all v, v′ ∈ D and all w ∈ W, there exist τ vv
′
, τ vw ≥ 0 that recur-

sively define the R+-valued processes T v = {T vt }t≥1 and Tw = {Twt }t≥1 as follows.

1. T v1 = Tw1 =∞ for all v ∈ D and w ∈ S.

2. Given any t > 1,

T vt =

t+ τ vtv if t+ τ vtv < T vt−1,

T vt−1 otherwise,
for all v ∈ D, and

Twt =

t+ τ vtw if t+ τ vtw < Twt−1,

Twt−1 otherwise,
for all w ∈ S.

In turn, the collection of processes ({T v}v∈D, {Tw}w∈S) define the optimal supply process

S∗ through (1) and the optimal demand process D∗ through (2).

Given an opportunity for the principal to demand favour vt at time t, bτ vtv′c is

interpreted as the number of periods following t during which the principal would

demand favour v′, and bτ vtwc is interpreted as the number of periods following t during

which the principal would supply favour w. Whether or not the principal ever commits
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to a relationship process described by {τ vtv′}v′∈D and {τ vtw}w∈S following some demand

for favour vt depends on the project history. If vt is the the principal’s first opportunity

to demand a favour, then the principal will temporarily commit to time thresholds

{τ vtv′}v′∈D and {τ vtw}w∈S from t on. These commitments are revisited whenever an

opportunity for a new favour v′t′ arises at t′ > t, in which case there are two possibilities.

First, if the inherited demand and supply processes are sufficiently generous to ensure

agent-feasibility, then the principals’ commitments from t are extended from t′ on. Note

that commitments {τ vtv′}v′∈D and {τ vtw}w∈S may have initially been less generous than

{τ v′t′v′′}v′′∈D and {τ v′t′w}w∈S . However, at t′ the time remaining before the principal stops

demanding favour v′′ is t + τ vtv
′′

and the time remaining before she starts to supply

favour w is t+ τ vtw, so that inherited commitments will always be more generous than

new commitments if enough time has elapsed since an original demand for a favour.

Second, if inherited commitments fall short of those set by {τ v′t′v′′}v′′∈D and {τ v′t′w}w∈S ,

then the relationship process is updated to these more generous commitments, which are

themselves revisited the next time a project arrives at which a favour can be demanded

by the principal.

Proposition 3 reproduces the properties of optimal relationship processes for general

project processes derived in Propositions 1 and 2, and adds an exact description of

how the history of binding agent-feasibility constraints shapes the current state of the

relationship between the principal and the agent under Markov project processes. We

can go further: a key step in the proof of Proposition 3 is the construction of a ranking

of projects at which the principal can demand a favour in terms of the stringency of

their corresponding agent-feasibility constraint.

Corollary 1. Given any projects v, v ∈ D, if either

τ vv
′ ≤ τ vv

′
for some v′ ∈ D or τ vw

′ ≤ τ vw
′

for some w′ ∈ S,

then both

τ vv ≤ τ vv for all v ∈ D and τ vw ≤ τ vw for all w ∈ S.

Given two projects v and v at which the principal can demand a favour, the result-

ing time thresholds ({τ vv′}v′∈D, {τ vw}w∈S) and ({τ vv′}v′∈D, {τ vw}w∈S) can be ranked
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uniformly in terms of their generosity to the agent. This yields a concrete sense in

which project u is more difficult for the principal to demand then project u: in return,

the principal must commit (at least provisionally) to demand less, and supply more,

future favours to the agent. Intuitively, this ranking of projects v ∈ D depends on two

factors: the cost to the agent associated with favour v (indexed by |vA|), and the value

to the agent of future project opportunities conditional on having reached project v.

This last factor depends on the project process u. However, if the project process is iid,

then the value to the agent of future project opportunities is history-independent. In

that case, the stringency of agent-feasibility constraints for favours that the principal

can demand are ranked solely by their stage costs to the agent.

Corollary 2. If the project process u is iid, then, given any projects v, v ∈ D,

τ vv ≤ τ vv for all v ∈ D and τ vw ≤ τ vw for all w ∈ S if and only if |vA| ≥ |vA|.

This provides a comparative statics result of sorts, which shows how optimal rela-

tionship processes vary with the properties of the project process u. As noted above,

even if the process u is iid, optimal demand and supply processes are not stationary and

depend on the relationship’s history of transitions to favours that are more costly to

demand for the principal. However, in this case the ranking of favours in terms of their

cost to the principal is independent of u. If u is Markov and displays some persistence,

then this ranking of favours by their cost, while stationary, depends on the details of

the process u.

The proof of Proposition 3 constructs optimal relationship processes through an

inductive sequence of reduced problems. To this end, fix any project v ∈ D and suppose

that u1 = v. We define the reduced problem

max
κ∈K

UP,1 subject to UA,1 ≥ 0, (3)

which corresponds to the problem of finding an optimal relationship process conditional

on u1 = v, but in which agent-feasibility is only required to hold at t = 1. This problem

has a solution characterised by fixed time thresholds
(
{τ vv′}v′∈D, {τ vw}w∈S

)
: contrary

to the corresponding history-dependent thresholds of Propositions 1 and 2, these need

not be adjusted at times t > 1 because no future agent-feasibility constraints need to be
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accommodated. Nevertheless, this solution has properties that are expected given our

results for general project processes. First, if τ vv > 0, then τ vv = ∞ for all v � v. In

words, an optimal demand process for problem (3) has the principal select a threshold

project, with all projects ranked higher in comparative advantage always demanded,

and all projects ranked lower in comparative advantage never demanded. Second, if

τ vw < ∞, then τ vw = 0 for all w � w. In words, an optimal supply process for

problem (3) has the principal select a threshold project, with all projects ranked higher

in comparative advantage never supplied, and all projects ranked lower in comparative

advantage always supplied. Third, if v′ � w′ and τ vv
′
< ∞, then τ vw

′
= 0. In words,

the lowest-ranked project (in comparative advantage) among those that are demanded

by the principal must be succeeded (in comparative advantage) by the highest-ranked

project (in comparative advantage) among those that are supplied by the principal.

This last point implies the following comparison of solutions to the reduced problem

3 for different initial u1 = v: if the principal demands less favours following u1 = v

than following u1 = v, then she must also supply more favours following u1 = v than

following u1 = v. In words, solutions to (3) following u1 = v and u1 = v are ordered by

their generosity to the agent.

Now consider the project v1 with the most generous solution to (3), which we denote

by (D1∗, S1∗). Because the process u is Markov and this relationship process becomes

more generous over time, then it must be agent-feasible whenever v1 occurs at times

t > 1. Furthermore, the pair (D1∗, S1∗) must also be agent-feasible whenever any other

project v occurs at times t > 1. This follows because, again, u is Markov, and also

because (D1∗, S1∗) is the most generous solution to (3) among all initial projects u1 = v.

Finally, because the the solution to the reduced problem (3) is agent-feasible, it follows

that no feasible relationship process can yield higher payoffs to the principal following

any history at which project v1 occurs.

With project v1 assigned as the costliest project for the principal in our ordering of

projects from D, we proceed inductively to define the second project in this ordering.
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Given any v 6= v1, we define the reduced problem

max
κ∈K

U1,t subject to UA,1 ≥ 0,

UA,t ≥ 0 at each t > 1 at which ut = v1, (4)

(D,S) = (D1∗, S1∗) at each t > 1 with ut = v1 and UA,t = 0,

which corresponds to the problem of finding an optimal relationship process conditional

on (i) u1 = v, (ii) on agent-feasibility being required at t = 1, and (iii) on agent-

feasibility being required at all t > 1 with ut = v1, with the processes (D1∗, S1∗) being

specified whenever this constraint binds at such histories. For the same reasons as above,

the solution to problem (4) is such that (i) either the relationship has transitioned to

(D1∗, S1∗) following some occurrence of v1, or otherwise (ii) this solution characterised

by fixed time thresholds
(
{τ vv′}v′∈D, {τ vw}w∈S

)
. Furthermore, these time thresholds

are ranked by their generosity to the agent. The second project v2 in our ordering of

projects from D, interpreted as the second-costliest favour for the principal to demand,

is therefore the project for which the solution to (4) is the most generous to the agent,

and we can define the corresponding processes (D2∗, S2∗). Furthermore, for the same

reasons as above, the pair (D2∗, S2∗) is agent-feasible at all t > 1, so that no feasible

relationship process can yield higher payoffs to the principal following any history at

which project v2 occurs. This inductive process can be repeated to rank all favours

in D in terms of how costly they are for the principal to demand and to complete the

construction of the optimal relationship process if u is Markov.

Note the critical feature of this construction: the project v2 is determined by an-

ticipating transitions to more generous relationship process generated by demanding

the costliest favour v1 at some future time. Demands of less costly favour are also

anticipated, but in these cases the adjustments to (D2∗, S2∗) are not necessary to main-

tain agent-feasibility. Furthermore, anticipating costlier favours in the future allows the

principal to demand more of less costly favours than she could do otherwise. To see

this, note that from above, we know that the solution to problem (3) given u1 = v2 is

not, in general, agent-feasible if v1 occurs at t > 1. Also, the processes (D1∗, S1∗) are

not optimal for the principal given u1 = v 6= v1, because they are too generous towards

the agent. Therefore, by anticipating that the relationship may transition to the more

generous (D1∗, S1∗) following some histories, the solution to problem (4) for u1 = v2
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can be less generous to the agent before such a transition than the solution to problem

(3) for u1 = v2 would be.

4 Conclusion

This project is not complete, and we are still pursuing further results. We are investi-

gating how to relax our assumption that the principal can commit to her production

decisions in a relationship process. There are two avenues for doing this. The first

is more straightforward: derive conditions under which optimal relationship processes

under commitment are also principal-feasible. For example, if the principal is suffi-

ciently patient and common-interest projects arrive often enough under the process u,

then the relationship will generate enough surplus to provide incentives to the principal

at all histories. The second approach is more ambitious, and more difficult: try to

characterise optimal relationship processes without commitment directly, by modifying

our existing arguments to integrate the principal’s feasibility constraints. The model in

which the project process u is Markov offers a tractable environment in which to apply

this approach.
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A Appendix

Existence of Optimal Relationship Processes. A simple adaptation of a proof from Dixit

et al. (2000) establishes the existence of optimal relationship processes.
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Lemma 2. There exists an optimal relationship process.

Proof. Note that because U is finite and time is discrete, any relationship process can

be identified with a point in [0, 1]∞, a compact set in the product topology. The set of

feasible relationship processes Kf is a closed subset of this space, and hence it is also

compact. Furthermore, the set of feasible relationship processes is nonempty because

it contains the no-production relationship process. Therefore, because the principal’s

utility UP,0 : [0, 1]∞ → R is continuous, it follows that the problem

max
κ∈Kf

E0UP,1

has a solution, which is an optimal relationship process.

Refinement of Optimal Relationship Processes. There is indeterminacy in optimal

relationships that is due solely to zero-probability events. To refine our results, we

consider a sequence {un}n≥1 of perturbed versions of the process u, which is such that

un
a.s.→ u and, for all times t and project histories ut, P0(un,t = ut) > 0 (such a sequence

is easy to contruct). In what follows, we drop references to the perturbed versions of

u, but we use extensively, and without special reference, the fact that, for all project

histories ut, P0(ut) > 0. Therefore, our results describe those optimal processes κ∗ for

the process u that are selected by the limits of the optimal processes for the processes

{un}.

Proof of Lemma 1. Suppose, towards a contradiction, that κ∗ is optimal and that, for

some project history ut such that uP , uA > 0, we have that κ∗t < 1. Fix a relationship

process κ̃ that is identical to κ∗ except that κ̃t = 1 at ut. It follows that κ̃ is feasible

because κ∗ is feasible. Furthermore, ŨP,t > U∗P,t, yielding the desired contradiction. The

proof for the case of u such that uP , uA < 0 is similar, and is omitted.

Proof of Proposition 1. We proceed in a number of steps.

Step 1. Fix optimal processes (D∗, S∗), project history ut, its superhistories ut
′

and

ut
′′
, and projects w � w. Suppose that (i) ut′ = w and D∗t′ = D∗t at ut

′
, and that (ii)

ut′′ = w and D∗t′′ = D∗t at ut
′′
. We show that

if ∆S∗t′ < 1, then ∆S∗t′′ = 0.
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To see this suppose, towards a contradiction, that ∆S∗t′ < 1 at ut
′

and that ∆S∗t′′ > 0

at ut
′′
. Now consider an alternative supply process S̃, identical to S∗ except that (i)

∆S∗t′ < ∆S̃t′ ≤ 1 at ut
′
, (ii) 0 ≤ ∆S̃t′′ < ∆S∗t′′ at ut

′′
and (iii)

ŨA,t − U∗A,t = δt
′−tPt(ut

′
)[S̃t′ − S∗t′ ]wA − δt

′′−tPt(ut
′′
)[S∗t′′ − S̃t′′ ]wA = 0. (5)

Such a process S̃ always exists. Also, note that the pair (D∗, S̃) is agent-feasible for

all times r ≤ t. To show that the pair (D∗, S̃) is agent-feasible for times r > t, we

proceed recursively. First note that, for all r such that either (i) D∗r > D∗t or (ii)

r > max{t′, t′′}, we have that ŨA,r = U∗A,r ≥ 0, where the inequality follows because

the pair (D∗, S∗) is agent-feasible. Second, whenever D∗max{t′,t′′} = D∗t , we have that

κ̃max{t′,t′′}uA,max{t′,t′′} ≥ 0 and therefore

ŨA,max{t′,t′′} ≥ δEmax{t′,t′′}U
∗
A,max{t′,t′′}+1

≥ 0,

where the final inequality follows because the pair (D∗, S∗) is agent-feasible. Third,

the two previous remarks ensure that, for all min{t′, t′′} < r ≤ max{t′, t′′} such that

D∗r = D∗t , we have that ŨA,r ≥ 0. Fourth, whenever D∗min{t′,t′′} = D∗t ,

ŨA,min{t′,t′′} ≥ δEmin{t′,t′′}ŨA,min{t′,t′′}+1

≥ 0.

Finally, the previous remarks together ensure that, for all t < r ≤ min{t′, t′′} such that

D∗r = D∗t , we have that ŨA,r ≥ 0.

It remains only to note that, by (5), we have

ŨP,t − U∗P,t = −δt′−tPt(ut
′
)[S̃t′ − S∗t′ ]|wP |+ δt

′′−tPt(ut
′′
)[S∗t′′ − S̃t′′ ]|wP |

= δt
′′−tPt(ut

′′
)[S∗t′′ − S̃t′′ ]|wP |

[
1−

|wP |/wA

|wP |/wA

]
> 0,

where the inequality follows because w � w, contradicting the optimality of (D∗, S∗).

Step 2. Fix optimal processes (D∗, S∗), project history ut, its superhistories ut
′

and

ut
′′
, and projects w � w. Suppose that (i) ut′ = w and D∗t′ > D∗t at ut

′
, and that (ii)
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ut′′ = w and D∗t′′ = D∗t at ut
′′
. We show that

if ∆S∗t′ < 1, then ∆S∗t′′ = 0.

To see this suppose, towards a contradiction, that ∆S∗t′ < 1 at ut
′

and that ∆S∗t′′ > 0

at ut
′′
. Now consider an alternative supply process S̃, identical to S∗ except that (i)

∆S∗t′ < ∆S̃t′ ≤ 1 at ut
′
, (ii) 0 ≤ ∆S̃t′′ < ∆S∗t′′ at ut

′′
and (iii)

ŨA,t − U∗A,t = δt
′−tPt(ut

′
)[S̃t′ − S∗t′ ]wA − δt

′′−tPt(ut
′′
)[S∗t′′ − S̃t′′ ]wA = 0. (6)

Note that the pair (D∗, S̃) is agent-feasible for all times r ≤ t. To show that the pair

(D∗, S̃) is agent-feasible for times r > t, we proceed recursively. First note that, for all r

such that either (i) D∗r > D∗t′ , (ii) D∗r = D∗t′ and r > t′, or (iii) r > max{t′, t′′}, we have

that ŨA,r = U∗A,r ≥ 0. Second, if D∗t′ > D∗t , then we have that κ̃A,t′uA,t′ ≥ κ∗A,t′uA,t′ , and

therefore ŨA,t′ ≥ U∗A,t′ ≥ 0. Third, the previous remarks imply that if (i) D∗r = D∗t′ and

r < t′, or if (ii) D∗r = D∗t and r > t′′, then ŨA,r ≥ U∗A,r ≥ 0. Fourth, if D∗r < D∗t′ , then

given the previous remark we can assume that r ≤ t′′. Because κ̃A,t′′uA,t′′ ≥ 0 we have

that

ŨA,r ≥ δIt′′≥t′ErU∗A,r+1 + δIt′′<t′ErŨA,r+1

≥ 0,

where the final inequality follows because the pair (D∗, S∗) is agent-feasible and, by the

previous remarks, the pair (D∗, S̃) is agent feasible for those t′′ < r + 1 ≤ t′. Fifth,

the previous remark implies that if D∗r = D∗t and t < r < t′′, we have that ŨA,r ≥ 0.

Finally, an argument as in Step 1 shows that (6) and the fact that w � w imply that

ŨP,t − U∗P,t > 0, yielding the desired contradiction.

Step 3. Fix optimal processes (D∗, S∗), project history ut−1, its superhistories ut and ut
′
,

a superhistory ut
′′

of ut, and projects w � w. Suppose that (i) ut′ = w and D∗t′ = D∗t−1

at ut
′
, and that (ii) ut′′ = w and D∗t′′ = D∗t at ut

′′
. We show that, if U∗A,t > 0, then

if ∆S∗t′ < 1, then ∆S∗t′′ = 0.

To see this suppose, towards a contradiction, that ∆S∗t′ < 1 at ut
′

and that ∆S∗t′′ > 0

at ut
′′
. Now consider an alternative supply process S̃, identical to S∗ except that (i)

∆S∗t′ < ∆S̃t′ ≤ 1 at ut
′
, (ii) 0 ≤ ∆S̃t′′ < ∆S∗t′′ at ut

′′
and (iii)

ŨA,t−1−U∗A,t−1 = δt
′−(t−1)Pt−1(ut

′
)[S̃t′−S∗t′ ]wA−δt

′′−(t−1)Pt(ut
′′
)[S∗t′′−S̃t′′ ]wA = 0. (7)
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Note that the pair (D∗, S̃) is agent-feasible at all times r ≤ t− 1. Also, let S̃∗ be such

that ŨA,t ≥ 0, so that the pair (D∗, S̃) is agent-feasible at t. The proof that the pair

(D∗, S̃) is agent-feasible at all times r > t follows from arguments very close to those

in Steps 1 and 2, and is omitted. Finally, an argument as in Step 1 shows that (7) and

the fact that w � w imply that ŨP,t−1 − U∗P,t−1 > 0, yielding the desired contradiction.

Step 4. The results of Steps 1 and 2 imply that to any optimal processes (D∗, S∗)

corresponds a S-valued threshold process W = {Wt}t≥1 such that, for all t,

∆S∗t =

1 if Wt � wt,

0 if wt � Wt,

and where W is non-decreasing (with respect to �), and such that, given any history

ut and its superhistory = ut
′
, Wt′ = Wt if Dt′ = Dt. The threshold is given by

Wt = max
�
{w ∈ S : Pt(∆S∗t′ > 0, ut′ = w,D∗t′ = D∗t , t

′ ≥ t) > 0} ,

if this is well-defined, and by

Wt = min
�
S,

otherwise.

Step 5. Steps 1 and 2 do not determine optimal relationship processes at time t if

wt = Wt. We now show that, without loss of generality for optimal payoffs, we can

restrict attention to relationship processes with the property that, for all times t′ ≥ t

at which D∗t′ = D∗t , there exists time TWt such that ∆S∗t′ = 1 if and only if t′ ≥ TWt .

More precisely, fix optimal processes (D∗, S∗) and history ut, and consider an alternative

supply process Ŝ, identical to S∗ except that, at all superhistories ut
′
of ut with D∗t′ = D∗t

and ut′ = Wt,

∆Ŝt′ =


1 if T̂ ≤ t′,

t′ + 1− T if t′ < T̂ < t′ + 1

0 if T̂ ≥ t′ + 1.

Note that ÛA,t ≥ U∗A,t if T̂ = t. Also, limT̂→∞ ÛA,t ≤ U∗A,t. By continuity of ÛA,t in T̂ ,
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there exists some T̃ ≥ t such that ŨA,t = U∗A,t. Also, note that

ŨP,t − U∗P,t = |WP,t|Et

[∑
t′≥t

δt
′−t
[
∆S∗t′ −∆ST̃t′

] ]

=
|WP,t|
WA,t

[
U∗A,t − ŨA,t

]
= 0.

To verify that the pair (D∗, S̃) is agent-feasible, first note that ŨA,r = U∗A,r ≥ 0 if either

(i) r ≤ t or (ii) r > t and D∗r > D∗t . Second, if r ≥ T̃ and D∗r = D∗t , then because

κ̃ruA,r ≥ κ∗ruA,r, it follows that ŨA,r ≥ U∗A,r ≥ 0. Third, if t < r < T̃ and D∗r = D∗t ,

then by the previous point and because κ̃A,ruA,r ≥ 0, it follows recursively that

ŨA,r ≥ δErŨA,r+1

≥ 0.

The last point is to establish that the procedure above, which modifies S∗ at a single

history in a payoff-invariant way, can extended simultaneously to all histories. We do

this in Step 9 below.

Step 6. We show that, without loss of generality for optimal payoffs, the supply process

S∗ defined in Step 5 can be taken such that, given any time t, project history ut and

any superhistory ut
′

such that Wt = Wt′ , we have that TWt
t ≥ TWt

t′ . Notice that by Step

5, if Pt(∆S∗t′ > 0, ut′ = Wt, D
∗
t′ = D∗t , t

′ ≥ t) = 0, then TWt
t =∞, and the claim is true.

Therefore, we assume in what follows that Pt(∆S∗t′ > 0, ut′ = Wt, D
∗
t′ = D∗t , t

′ ≥ t) > 0.

Fix time t and history ut, and let T = sup{t′ ≥ t : ut′ = Wt = Wt′ , T
Wt

t′ ≥ t′}. It

is without loss of generality for optimal payoffs to assume that T < ∞. To see this,

consider the alternative supply process Ŝ, identical to S∗ except that T̂Wt
t = T̂ and

T̂Wt

t′ = min{TWt

t′ , T̂} at all superhistories of ut with ut′ = Wt = Wt′ and D∗t′ > D∗t . We

have that ÛA,t ≥ U∗A,t if T̂ = t, and limT̂→∞ ÛA,t′′ < U∗A,t because Pt(∆S∗t′ > 0, ut′ =

Wt, D
∗
t′ = D∗t , t

′ ≥ t) > 0. By continuity, there exists T̃ < ∞ such that ŨA,t = U∗A,t,

as well as ŨP,t = U∗P,t. To verify that the pair (D∗, S̃) is agent-feasible, first note that

ŨA,r = U∗A,r ≥ 0 if either (i) r ≤ t or (ii) r > t and either Wr 6= Wt or ur 6= Wr = Wt.

Second, if r ≥ T̃ and ur = Wr = Wt, then because κ̃ruA,r ≥ κ∗ruA,r, it follows that

ŨA,r ≥ U∗A,r ≥ 0. Third, if t < r < T̃ , ur = Wr = Wt and D∗r > D∗t , then by the
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previous point it follows recursively that ŨA,r ≥ U∗A,r ≥ 0. Fourth, if t < r < T̃ and

D∗r = D∗t , then by the previous points and because κ̃ruA,r ≥ 0, it follows recursively

that

ŨA,r ≥ δErŨA,r+1

≥ 0.

Now consider the alternative relationship process Sα, identical to S∗ except that

(i) Tα,Wt
t = (1 − α)T + αt and (ii) Tα,Wt

t′ = (1 − α)TWt

t′ + αt for all t′ > t with

ut′ = Wt′ = Wt. This process is well-defined because T <∞. Notice that Uα=0
A,t ≤ U∗A,t

and that Uα=1
A,t ≥ U∗A,t. By continuity, there exists α̃ ∈ [0, 1] such that U α̃

A,t = U∗A,t, as

well as U α̃
P,t = U∗P,t. Note that, by construction, Sα̃ is such that T α̃,Wt

t ≥ T α̃,Wt

t′ whenever

t′ > t and ut′ = Wt′ = Wt. The proof that the pair (D∗, Sα̃) is agent-feasible is almost

identical to that of the previous paragraph for the process S̃, and is omitted.

Step 7. We show that it is without loss of generality for optimal payoffs to restrict

attention to supply processes S∗ such that, given any time t, if either (i) Wt � Wt−1 or

(ii) Wt = Wt−1 and TWt
t < T

Wt−1

t−1 , then U∗A,t = 0. To see part (i) of this claim, suppose

that there exist project history ut−1 and its superhistory ut such that Wt � Wt−1 and

U∗A,t > 0. By Step 3, there cannot exists any project w ∈ S such that Wt � w � Wt−1.

Also because Wt � Wt−1, Step 3 implies that

Pt−1

(
∆S∗t′ < 1, ut′ = Wt−1, D

∗
t′ = D∗t−1, t

′ ≥ t
)

= 0, and

Pt
(
∆S∗t′ > 0, ut′ = Wt, D

∗
t′ = D∗t , t

′ ≥ t
)
> 0.

Now consider the alternative supply process Sα,β, identical to S∗ except that (i) Tα,β,Wt
t =

β ≥ t following ut and (ii) T
α,β,Wt−1

t′ = α ≥ t for all superhistories ut
′ 6= ut of ut−1 with

ut′ = Wt and D∗t′ = D∗t−1. We have that U t,t
A,r ≥ U∗A,r and limα,β→∞ U

α,β
A,r ≤ U∗A,r for

r = t − 1, t. By continuity, there exist β̃ ≤ α̃ < ∞ such that V α̃,β̃
A,t−1 = U∗A,t−1 and

U α̃,β̃
P,t−1 = U∗P,t−1, and either (a) U α̃,β̃

A,t = 0 and α̃ ≥ β̃ or (b) U α̃,β̃
A,t > 0 and α̃ = β̃. In

particular, the pair (D∗, Sα̃,β̃) is agent-feasible at all times r ≤ t. The proof that the

pair (D∗, Sα̃,β̃) is agent-feasible at all times r > t is similar to those of Steps 5 and 6,

and is omitted. Finally, the proof of part (ii) of the claim is similar, and is omitted.

Step 8. The payoff-equivalent modifications operated on some optimal supply process S∗

described in Steps 5-7 were constructed history by history. Note that any relationship
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process can be identified with a point in [0, 1]∞, a compact set in the product topology.

Therefore, given some optimal relationship process κ∗,1, we can construct a sequence

{κ∗,n}n≥1 in [0, 1]∞ such that (i) for each n, κ∗,n+1 is obtained from κ∗,n by some

operation from Steps 5-7 at some history and (ii) given any time t, there exists N

such that, for all n ≥ N , κ∗,nt′ = κ∗,Nt′ for all t′ ≤ t. This sequence must then have

a subsequence converging to κ∗, some optimal relationship process satisfying all the

properties of Steps 5-7.

Step 9. Given any time t and associated threshold project Wt as defined in Step 5, we

have defined in Steps 5-7 a time threshold process TWt that respects the conditions of

Proposition 1. Now given any w � Wt, define Twt =∞, and given any Wt � w, define

Twt = min{t′ ≤ t : wt = w and ∆S∗t′ = 0}. Note that because, by Step 4, W is non-

decreasing (with respect to �), and because, by Steps 6 and 8, TWt is non-increasing,

our construction ensures that, for each w ∈ S, the process Tw is non-increasing.

Step 10. Let w = min� S. We show that given an optimal processes (D∗, S∗), we have

that if and only if D∗t = 0. To see this, first suppose that there exists history ut with

D∗t = 0 and, towards a contradiction, Twt <∞. Consider an alternative supply process

S̃, identical to S∗ except that ∆S̃t′ = 0 at all histories ut
′

with Dt′ = 0. To see that the

pair (D∗, S̃) is agent-feasible, first note that if D∗r > 0, then ŨA,t = U∗A,t ≥ 0. Second,

if D∗r = 0, then because κ̃ruA,r ≥ 0, it follows recursively by the previous point that

we have ŨA,t ≥ δEt′U∗A,t+1 ≥ 0. Finally, we have that ŨP,1 > U∗P,1, yielding the desired

contradiction. Second, suppose that there exists history ut with ∆D∗t > 0 and Twt =∞.

Then for any t′ ≥ t at which Twt <∞ for the first time, we have that U∗A,t′ = 0 by Step

3. Because, by Steps 1 and 2, we have that ∆St′ = 0 for all t′ ≥ t with Twt′ = ∞, It

follows that U∗A,t = ∆D∗twA,t + EtU∗A,t+1 < 0, yielding the desired contradiction.

Proof of Proposition 2. We proceed in a number of steps.

Step 1. Fix optimal processes (D∗, S∗), project history ut, its superhistory ut
′
, and

projects v � v. Suppose that (i) ut = u at ut and that (ii) ut′ = u at ut
′
. We show that

if ∆D∗t < 1, then ∆D∗t′ = 0.

To see this suppose, towards a contradiction, that ∆D∗t < 1 at ut and that ∆D∗t′ > 0

at ut
′
. Now consider an alternative demand process D̃, identical to D∗ except that (i)

26



∆D∗t < ∆D̃t ≤ 1 at ut, that (ii) 0 ≤ D̃t′ < D∗t′ at ut
′
, and that (iii)

ŨA,t − U∗A,t = −
[
∆D̃t −∆D∗t

]
|vA|+ δt

′−tPt(ut
′
)
[
∆D∗t′ −∆D̃t′

]
|vA| = 0. (8)

Note that the pair (D̃, S∗) is agent-feasible for all times r ≤ t. To show that the pair

(D̃, S∗) is agent-feasible for times r > t, we proceed recursively. First note that, for all

r > t′, we have that ŨA,r = U∗A,r ≥ 0. Second, if r = t′, we have that κ̃t′uA,t′ ≥ κ∗t′uA,t′ ,

so that, by the previous point, ŨA,r ≥ U∗A,r ≥ 0. Third, if t < r < t′, then the previous

points ensure that ŨA,r ≥ 0. Finally, an argument as in Step 1 of Proposition 1 shows

that (8) and the fact that v � v imply that ŨP,t − U∗P,t > 0, yielding the desired

contradiction.

Step 2. Step 1 does not restrict optimal relationship processes at history ut and its

superhistory ut
′

if vt = vt′ . We now show that, without loss of generality for optimal

payoffs, we can restrict attention to relationship processes with the property that, for

such histories, if ∆D∗t′ > 0, then ∆D∗t = 1. To see this, fix optimal processes (D∗, S∗),

along with history ut, and suppose that ∆D∗t < 1. Now consider an alternative demand

process D̃, identical to D∗ except that

∆D̃t =

1 if 1−∆D∗t ≤ Et
[∑

t′≥t δ
t′−tIvt′=vt∆D

∗
t′

]
,

∆D∗t + Et
[∑

t′≥t δ
t′−tIvt′=vt∆D

∗
t′

]
otherwise,

and that, for all t′ > t with vt′ = vt,

∆D̃t′ =


0 if 1−∆D∗t ≥ Et

[∑
t′≥t δ

t′−tIvt′=vt∆D
∗
t′

]
,

Et

[∑
t′≥t δ

t′−tIvt′=vt∆D∗
t′

]
−[1−∆D∗t ]

Et[
∑

t′≥t δ
t′−tIvt′=vt ]

otherwise,

Note that such a process always exists, and that, by construction,

ŨA,t − U∗A,t = |vA,t|

[
−
[
∆D̃t −D∗t

]
+ Et

[∑
t′≥t

δt
′−tIvt′=vt

[
∆D∗t′ −∆D̃t′

]]]
= 0

= ŨP,t − U∗P,t.

Furthermore, we have that either (i) D̃t = 1 and D̃t′ ≥ 0 for all t′ ≥ t with vt′ = vt, or

that (ii) D̃t < 1 and D̃t′ = 0 for all t′ ≥ t with vt′ = vt. Note that the pair (D̃, S∗) is
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agent-feasible for all r ≤ t. To see that the pair (D̃, S∗) is agent-feasible for all r > t,

note that κ̃ruA,r ≥ κ∗ruA,r, so that ṼA,r ≥ V ∗A,r ≥ 0.

Step 3. The procedure from Step 2, which modifies demand process D∗ at a single

history in a payoff-invariant way, can extended simultaneously to all histories as in Step

8 of the proof of Proposition 1.

Step 4. Given optimal processes (D∗, S∗) along with any v ∈ D and any history ut,

define

t = sup{t′ ≤ t : vt′ = v and ∆D∗t′ > 0},

t = sup{t′ ≥ t : vt′ = v and ∆D∗t′ > 0},

as well as

T vt =


t+ ∆D∗t if t < t,

t+ ∆D∗
t

if t ≤ t <∞,

∞ otherwise.

By construction, the resulting threshold processes {T v}v∈D are non-increasing. Fur-

thermore, by the results of Steps 1-3, it follows that, for all t,

∆D∗t =


1 if T vtt ≥ t+ 1,

T vtt − t if t < T vtt < t+ 1,

0 if T vtt ≤ t.

Step 5. Fix optimal processes (D∗, S∗) and project history ut such that vt � W t−1.

We show that ∆D∗t > 0. Suppose, towards a contradiction, that ∆D∗t = 0. Recall that,

by Part 2 of Proposition 1, it follows that T
W t−1

t+1 = T
W t−1

t−1 > t+ 1, so that ∆S∗t+1 < 1 if

wt+1 = W t−1. Now consider alternative processes (D̃, S̃), identical to (D∗, S∗) except

that (i) ∆D̃t > 0, (ii) ∆S∗t+1 < ∆S̃t+1 ≤ 1 if wt+1 = W t−1, and (iii) ŨA,t = U∗A,t. Such

a pair (D̃, S̃) always exists, and that it is agent-feasible follows by arguments similar to

those of Step 1 in the proof of Proposition 1. By (iii), we have that

ŨA,t − U∗A,t = −∆D̃t|vA,t|+ δWA,t−1Et
[
Iwt+1=W t−1

[
∆S̃t+1 −∆S∗t+1

]]
= 0. (9)
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But then, it follows that

ŨP,t − U∗P,t = ∆D̃tvP,t − δ
∣∣W P,t−1

∣∣Et [Iwt+1=W t−1

[
∆S̃t+1 −∆S∗t+1

]]
= ∆D̃t|vA,t|

[
vP,t
|vA,t|

−
∣∣W P,t−1

∣∣
WA,t−1

]
> 0,

yielding the desired contradiction. The second equality follows from substituting (9)

and the inequality follow because vt � W t−1.

Step 6. Fix optimal processes (D∗, S∗) and project history ut such that W t−1 � vt.

We show that ∆D∗t = 0. Suppose, towards a contradiction, that ∆D∗t > 0. Recall

that, by Part 2 of Proposition 1, it follows that T
W t−1

t+1 ≤ T
W t−1

t−1 < t + 2, to that

∆S∗t+1 > 0 if wt+1 = W t−1. Now consider alternative processes (D̃, S̃), identical to

(D∗, S∗) except that (i) 0 ≤ ∆D̃t < ∆D∗t , (ii) 0 ≤ ∆S̃t+1 < ∆S∗t+1 if wt+1 = W t−1, and

(iii) ŨA,t = U∗A,t. Such a pair (D̃, S̃) always exists, and that it is agent-feasible follows

by arguments similar to those of Step 1 in the proof of Proposition 1. By (iii), we have

that

ŨA,t − U∗A,t =
[
∆D∗t −∆D̃t

]
|vA,t| − δWA,t−1Et

[
Iwt+1=W t−1

[
∆S∗t+1 −∆S̃t+1

]]
= 0. (10)

But then, it follows that

ŨP,t − U∗P,t = −
[
∆D∗t −∆D̃t

]
vP,t + δ

∣∣W P,t−1

∣∣Et [Iwt+1=W t−1

[
∆S∗t+1 −∆S̃t+1

]]
=
[
∆D∗t −∆D̃t

]
|vA,t|

[∣∣W P,t−1

∣∣
WA,t−1

− vP,t
|vA,t|

]
> 0,

yielding the desired contradiction. The second equality follows from substituting (10)

and the inequality follow because W t−1 � vt.

Proof of Proposition 3. We proceed in a number of steps.
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Step 1. Fix project v ∈ D and suppose that u1 = v. We define the reduced problem

max
κ∈K

UP,1 subject to UA,1 ≥ 0. (11)

First, note that a standard argument establishes that UA,1 = 0 at any solution to (11).

Second, note that problem (11) only requires agent-feasibility at t = 1. Therefore, if

the solution to (11) is also agent-feasible at all times t > 1, then it must be part of an

optimal relationship process conditional on u1 = v.

Step 2. We show that there exists a solution to (11) with demand and supply processes

(D∗, S∗) of the following threshold type: for each v ∈ D, there exists T v ≥ 0 such that,

given any t ≥ 1,

∆D∗t =


1 if T vt ≥ t+ 1,

T vt − t if t < T vt < t+ 1,

0 if T vt ≤ t,

and for each w ∈ S, there exists Tw ≥ 0 such that, given any t ≥ 1,

∆S∗t =


1 if Twt ≤ t,

t+ 1− Twt if t < Twt < t+ 1,

0 if Twt ≥ t+ 1,

The critical difference with the corresponding expressions with a general process u

from Propositions 1 and 2 is that the time thresholds ({T v}v∈D, {Tw}w∈S) are fixed

and independent of histories. The proof of this claim follows from arguments closely

mirroring those of Steps 5-7 of Proposition 1 and Step 2 of Proposition 2, and is omitted.

In fact, these arguments are simplified in this case because the only agent-feasibility

constraint for the agent in problem (11) is for the initial history.

Finally, we normalise these time thresholds so that (i) T v = 0 if and only if ∆D∗t = 0

for all t ≥ 1 with ut = v, that is, if and only if the principal never demands favour v

under D∗, and that (ii) Tw = 0 if and only if ∆St = 1 for all t ≥ 1 with ut = w, that

is, if the principal always supplies favour w under S∗.

Step 3. We show that there exists a solution to (11) with the following properties:

there exist v∗ ∈ D and w∗ ∈ S with v∗ � w∗ such that
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1. T v
∗ 6= 0, and furthermore T v = 0 if v∗ � v and T v =∞ if v � v∗.

2. Tw
∗ 6=∞, and furthermore Tw = 0 if w∗ � w and Tw =∞ if w � w∗.

3. Given any v ∈ D, if T v < ∞, then Tw = 0 for all v � w. Also, if T v > 0 then

Tw =∞ for all w � v.

Project v∗ is the lowest project in the order � at which the principal ever demands

a favour, and project w∗ is the highest project in that order in which the principal

ever supplies a favour. Note that Item 3 implies that if T v
∗
< ∞, then Tw

∗
= 0,

and that if Tw
∗
> 0, then T v

∗
= ∞. The proof of this claim follows from arguments

closely mirroring those of Steps 1-3 of Proposition 1 and Step 1 of Proposition 2, and

is omitted. Again, these arguments are simplified in this case because the only agent-

feasibility constraint for the agent in problem (11) is for the initial history.

Step 4. Given v, v ∈ D, consider the associated solutions (D
∗
, S
∗
) and (D∗, S∗) to the

problem (11) with u1 = v and u1 = v, respectively. We show that if either

(i) v∗ � v∗ or (ii) v∗ = v∗ and T
v∗

< T v
∗
,

then either

(i) w∗ � w∗ or (ii) w∗ = w∗ and T
w∗ ≤ Tw

∗
.

To see this, suppose that either (i) v∗ � v∗ or (ii) v∗ = v∗ and T
v∗

< T v
∗
. Note that,

by Item 1 in Step 3, we have in both cases (i) and (ii) that T
v ≤ T v for all v ∈ D, with

at least one inequality strict, so that, in words, the demand process D
∗

is strictly more

generous to the agent then D∗. Now suppose, towards a contradiction, that either (i)

w∗ � w∗ or (ii) w∗ = w∗ and Tw
∗
< T

w∗

. Note that, by Item 2 in Step 3, we have that

T
w ≥ Tw for all w ∈ S, with at least one inequality strict, so that, in words, the supply

process S
∗

is strictly more generous to the agent then S∗. First, let ṽ be such that

T
ṽ
< T ṽ, which by assumption must exist. Second, because it must be that T

ṽ
< ∞,

Item 3 of of Step 3 implies that T
w

= 0 for all ṽ � w. Third, fix w̃ such that T
w̃
> w̃,

which by (our contradiction) assumption must exist. Fourth, because this implies that

T
w̃
> 0, Item 3 of Step 3 implies that T

v
= ∞ for all v � w̃. Fifth, along with the

fact that T
ṽ
< ∞ the last point implies that w̃ � ṽ. Sixth, because T ṽ > 0, the last
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point along with Item 3 of Step 3 implies that T w̃ =∞, which contradicts the fact that

T
w̃
> w̃, as desired.

Step 5. The previous point allows us to rank the solutions to (11) for various v ∈ D for

which u1 = v in terms of how generous they are to the agent. Specifically, fix v, v ∈ D
and consider the associated solutions (D

∗
, S
∗
) and (D∗, S∗) to the problem (11) with

u1 = v and u1 = v, respectively. If either (i) v∗ � v∗ or (ii) v∗ = v∗ and T
v∗

< T v
∗
, then

we say that processes (D
∗
, S
∗
) are more generous to the agent than processes (D∗, S∗).

In words, Step 4 says that when these conditions are met, then D
∗

demands less of

every project than D∗, and S
∗

supplies more of every project than S∗. Fix any project

u such that u1 = u, and let U i,1 denote the payoff to i from processes (D
∗
, S
∗
), and U i,1

denote the payoff to i from processes (D∗, S∗). It follows that if processes (D
∗
, S
∗
) are

more generous to the agent than processes (D∗, S∗), then we have that UA,1 ≥ UA,1.

An implication is that the pair (D
∗
, S
∗
) is agent-feasible if u1 = v, but that the pair

(D∗, S∗) is not agent-feasible if u1 = v.

Step 6. Let v1 ∈ D be the project for which the solution (D1∗, S1∗) to problem (11)

with u1 = v1 is the most generous among all solutions to (11) with u1 = v for some

v ∈ D.

First, we show that we cannot have v∗ � v1. In words, it must be that, conditional

on u1 = v, the principal demands a favour with positive intensity at t = 1 under

(D1∗, S1∗). To see this suppose, towards a contradiction, that v∗ � v1. For any history

ut, let U∗A,t be the payoff to the agent, conditional on ut, to (D1∗, S1∗), and let U1
A,t be

the payoff to the agent if this solution was implemented starting from t. If v∗ � v1,

then κ1
1 = 0 and therefore

U∗A,1 = δE1U
∗
A,2

> E1U
1
A,2

≥ 0,

contradicting the fact that U1
A,1, as desired. The first inequality follows by the fact that

u is a Markov process and because the pair (D1∗, S1∗) becomes more generous between

times t = 1 and t = 2. The second inequality follows, again, by the fact that u is

a Markov process and because the pair (D1∗, S1∗) is more generous than any solution

with u1 = v for some v, and therefore, by Step 5, it is agent-feasible for all u2 = v.

32



Second, we show that following any history at which ut = v1, the pair (D1∗, S1∗) is

agent-feasible, and furthermore no agent-feasible relationship process delivers a higher

payoff to the principal. To see this, for any t′ ≥ t let U∗A,t′ denote the agent’s payoff

from this solution, and first note that because u is a Markov process, we have that given

ut = v1,

U∗A,t = U1
A,t

≥ 0.

Also, for any t′ > t, we have that

U∗A,t′ > U1
A,t′

≥ 0,

where the inequalities follow for the same reasons as the corresponding inequalities in

the previous paragraph. That no agent-feasible relationship process delivers a higher

payoff to the principal following ut follows by the construction of problem (11).

Step 7. Define the set of projects V 1 = {v1} with associated set of processes

R1 = {(D1∗, S1∗)}. Now, inductively, fix a set of projects V n−1 = {v1, ..., vn−1} and as-

sociated set of processes Rn−1 = {(D1∗, S1∗), ..., (Dn−1∗, Sn−1∗)}. Assume that (Di∗, Si∗)

is such that, following any history with ut = vi, the pair (Di∗, Si∗) is agent-feasible, and

furthermore no agent-feasible relationship process delivers a higher payoff to the prin-

cipal than (Di∗, Si∗). Assume further that, following any history with ut ∈ D \ V n−1,

the pair (Di∗, Si∗) is agent-feasible. Fix any project v ∈ D \ V n−1 and suppose that

u1 = v. We define the reduced problem

max
κ∈K

U1,t subject to UA,1 ≥ 0,

UA,t ≥ 0 at each t > 1 at which ut ∈ V n−1, (12)

(D,S) = (Di∗, Si∗) at each t > 1 with ut = vi and UA,t = 0.

This problem corresponds closely to the problem (11): the goal is to find an optimal

relationship process while ignoring all agent-feasibility constraints other than (i) the

constraint at time t = 1 but also (ii) all feasibility constraints associated with the first

arrival of an opportunity to demand favour vi ∈ V n−1. In the latter case, the problem
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(12) prescribes that processes (Di∗, Si∗) be adopted at this history if the agent-feasibility

constraint binds.

Step 8. As in Step 2 for problem (11), we show that there exists a solution to problem

(12) with demand and supply processes (D∗, S∗) of the following threshold type: for

each v ∈ D \ V n−1, there exists T v ≥ 0 such that, given any t ≥ 1 with UA,t′ > 0 for all

1 ≤ t′ ≤ t for which ut′ ∈ V n−1,

∆D∗t =


1 if T vt ≥ t+ 1,

T vt − t if t < T vt < t+ 1,

0 if T vt ≤ t,

and for each w ∈ S, there exists Tw ≥ 0 such that, given any t ≥ 1 with UA,t′ > 0 for

all 1 ≤ t′ ≤ t for which ut′ ∈ V n−1,

∆S∗t =


1 if Twt ≤ t,

t+ 1− Twt if t < Twt < t+ 1,

0 if Twt ≥ t+ 1,

In words, the thresholds above are valid until the relationship process transitions to

(Di∗, Si∗) for some i = 1, ..., n − 1. As for Step 2, the proof of this claim follows from

arguments closely mirroring those of Steps 5-7 of Proposition 1 and Step 2 of Proposition

2, and is omitted. Also as in Step 2, we normalise these time thresholds so that (i)

T v = 0 if and only if ∆D∗t = 0 for all t ≥ 1 with ut = v, and that (ii) Tw = 0 if and

only if ∆St = 1 for all t ≥ 1 with ut = w.

Step 9. As in Steps 3-5 for problem 11, we show that solutions to (12) can be ranked

according to how generous they are to the agent. TO BE COMPLETED.

Proof of Corollary 2.

TO BE COMPLETED
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