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Abstract

Consider a person who must complete a task, and is given a set of options for completing

the task at different times. The person cannot commit her future behaviour except by complet-

ing the task. This paper shows that comparing the person’s completion time across different

sets of completion opportunities can reveal her sophistication or naïveté about her dynamic

inconsistency. I show that adding an extra opportunity to complete the task can lead a naïve

(but not a sophisticated) person to complete it even later, and can lead a sophisticated (but not

a naïve) person to complete the task even earlier, even if the extra opportunity is not used.

This result can be obtained with or without parametric assumptions about utility. Additional

results completely characterize models of naïve and sophisticated individuals in this environ-

ment. These results provide the framework for revealing the preference and sophistication

types studied in O’Donoghue and Rabin (1999) from behaviour in a generalization of their

environment.
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1 Introduction

Behavioural economic models of intertemporal choice following Strotz (1955) incorporate two as-
sumptions. First, a person may be dynamically inconsistent, that is, her current preferences over
future actions may differ from the future preferences she will use to when she chooses. Second, a
person may not be perfectly self-aware of her own dynamic inconsistency when she forms expec-
tations of her own future behaviour. Strotz proposed two ways a dynamically inconsistent person
might form expectations. She can be naïve and expect her future selves to behave according to
her current preferences, or she can be sophisticated and hold correct expectations about her future
behaviour. However, a person’s self-awareness is not directly observed. This makes it difficult
to understand which assumption is more descriptively appropriate for applications. This paper
asks how economic choices can reveal an individual’s sophistication or naïveté about her dynamic
inconsistency.

Imagine a professor extending the deadline for a major assignment from the start of an exam
period to the end of that exam period. A naïve student might (falsely) expect herself to use the extra
time wisely and start the assignment later. On the other hand, a more sophisticated student might
recognize her own tendency to procrastinate, realize that delaying would lead her to do the work
before important exam (when she has a higher opportunity cost) and might finish the assignment
sooner than she would have without the extension. This study demonstrates that decisions like this
can reveal an individual’s sophistication or naïveté.

This paper studies a individual’s choice of when to complete a task that must be done exactly
once, as in O’Donoghue and Rabin (1999). I suppose that we observe when the individual would
complete the task given the set of completion opportunities (actions) available to her. I show
that how she responds to adding additional actions can reveal her sophistication or naïveté, even
if we do not observe the person’s preferences directly. I show that sophistication and naïveté
have sufficient force, even in choice problems in which a person’s higher-order beliefs about her
future behaviour are relevant, to give directly testable and economically intuitive predictions in the
domain of task completion.

The main results of this paper show that choice reversals with a “doing-it-earlier” flavour are
a hallmark of sophistication, while choice reversals with a “doing-it-later” flavour are a hallmark
of naïveté. That is, adding an unused completion opportunity can lead to delay for a naïf but
not a sophisticate, while adding an unused completion opportunity can lead to earlier completion
for a sophisticate but not a naïf. The intuition is that adding an additional action makes waiting
appear weakly more attractive at earlier periods for a naïf who does not appreciate her dynamic
inconsistency. Because a sophisticate anticipates her future inconsistency, she may respond to an
added action by doing the task earlier than the added action when she forsees that the added action
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will affect her future behaviour against an earlier self’s wishes. However, since a sophisticate
correctly anticipates her future behaviour, she would not delay her completion to a time after
newly added action unless the added action does not affect the action she completes.

The paper proceeds as follows. Section 2 introduces the task completion environment con-
sidered, O’Donoghue and Rabin’s perception perfect equilibrium concept for sophisticated, naïve,
and partially naïve Strotzian models of behaviour, and how they relate to decision-theoretic notions
of sophistication and naïveté (Proposition 1). Section 3 introduces “doing-it-later” and “doing-it-
earlier” reversals and shows that a naif commits only the former while a sophisticate commits only
the latter (Propositions 2 and 3). Section 4 (Proposition 4) shows that, when looking at choice
sets with at most three actions, doing-it-earlier and doing-it-later reversals provide a basis for
comparing the sophistication of two people with the same preferences but possibly different be-
liefs. Section 5 establishes the implications of these results for revealing partial sophistication and
naïveté in the partially naïve quasi-hyperbolic discounting model from doing-it-earlier and doing-
it-later reversals and dominance violations. Section 6 shows that the results on sophistication in
Proposition 3 extend to the case where a person experiences intrinsic self-control costs (as in Gul
and Pesendorfer (2001)).

1.1 Preview of results

To motivate the analysis that follows, consider a quasi-hyperbolic discounter who chooses when to
complete a task. Each action has the same benefits that are realized at the same time in the distant
future, but actions may differ in when they are available and their immediate costs or benefits.
Represent each action as a pair (x, t) ∈ R+×N, where x is the cost of doing the task and t is the
time at which that task can be completed. At time τ , our person evaluates an action (x, t) with t ≥ τ

according to

Uτ ((x, t)) =

u(x) if τ = t

βδ τ−tu(x) if τ > t

where u is a continuous and strictly decreasing utility function. Thus given the options
{(x, t) ,(y, t +1)}, she does (x, t) if and only if u(x) ≥ βδu(y) (assuming that she does the ear-
lier action when indifferent).

If β < 1, the person is more willing to have herself incur a higher cost to do the action later
when the earlier action involves a cost in the immediate present than if she were to compare the
same two options before either action could actually be taken. Because of this, there will exist
situations in which the person would like herself to take a particular action in a future period
that she will not actually take when that future period becomes the present. For example, if
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there are x,y,z for which δu(z) > βδ 2u(y) > u(x) > βδu(z), then (x, t) = c({(x, t) ,(z, t +1)}),
(z, t +1) = c({(z, t +1) ,(y, t +2)}), (y, t +2) = c({(x, t) ,(y, t +2)}). This apparent choice cycle
arises from the individual’s changing preferences over actions. If the person faces the action set
c({(x, t) ,(z, t +1) ,(y, t +2)}), the resolution of this conflict will be determined by how the person
forecasts her future behaviour. If she is sophisticated and correctly anticipates her future behaviour,
she would take the earliest action (x, t) since she knows that her t+1 self would do (z, t +1); notice
that she acts earlier than when facing {(x, t) ,(y, t +2)} even though the added option relative to
that set isn’t used. If she is naïve and incorrectly thinks that her t + 1 self will share her current
ranking of actions, then she will wait at time t but then do (z, t +1); notice that she acts later than
in {(x, t) ,(z, t +1)} even though the added option relative to that set isn’t used.

When a person has more than three different opportunities to complete a task that are available
at more than three different times, a current self’s decision will depend on not just how on she
forecasts her future selves’ preferences. It will also depend on how she forecasts future selves will
forecast their future selves’ preferences (and so on for higher orders). The definitions of doing-it-
later and doing-it-earlier reversals and results linking them to naïveté and sophistication show how
the intuition from this example extends generally, both within the quasi-hyperbolic discounting
model and without parametric assumptions on utility.

1.2 Related literature

The behavioural economics literature has extensively applied models of time inconsistency fol-
lowing Strotz (1955), in particular to capture present-bias (Laibson 1997, O’Donoghue and Rabin
1999, 2001). A person’s degree of sophistication is an important variable in many applications
of present-biased preferences (e.g. DellaVigna and Malmendier (2004); Heidhues and Kőszegi
(2010)). This paper follows O’Donoghue and Rabin (1999; 2001) in its choice of a doing-it-once
environment. The analysis of sophistication and naïveté offered here extend O’Donoghue and
Rabin’s “smoking guns” for dynamic inconsistency in the quasi-hyperbolic discounting model to
provide separate hallmarks for sophistication versus naïveté without assuming quasi-hyperbolic
discounting. O’Donoghue and Rabin (2001) propose that we learn little when we observe a person
who faces one menu of tasks – their “Weak” and “Strong” Axioms of Revealed Procrastination.
This paper shows that we can draw meaningful inferences about her naïveté/sophistication under
weak assumptions if we can observe an individual in two different but appropriately comparable
environments; I show this is the case even when preferences and the individual’s sophistication
or naïveté must both be elicited from choices, and when preferences are not restricted to quasi-
hyperbolic discounting.1

1In related work on wide class of stopping problems, Quah and Strulovici (2013, Proposition 10) extend
O’Donoghue and Rabin’s (1999) Proposition 2 to show that, in a particular class of problems, a more sophisticated
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Existing work has shown how discount and utility functions of dynamically inconsistent models
can be characterized and measured from preferences over consumption streams (Hayashi, 2003;
Olea and Strzalecki, 2014), dated outcomes (Ok and Masatlioglu, 2007; Attema et al., 2010),
dated outcome streams (Attema et al., 2016), and convex budget sets of pairs of dated outcomes
(Echenique et al., 2015). Other work has studied the commitment preferences of sophisticated
decision-makers and have provided axiomatic characterizations of sophistication (Gul and Pe-
sendorfer, 2005; Noor, 2011). With the recent exception of Ahn et al. (2015), this literature
has not explored the analogous characterizations for naïveté. Lab and field experiments studying
such commitment preferences typically find that only a minority of the study population demands
commitment devices when they are free (e.g. 28% in Ashraf et al. (2006), 35% in Kaur et al.
(2010)); attempts to estimate a degree of sophistication have been limited and require strong as-
sumptions (Fang and Wang, 2015; Augenblick and Rabin, 2015).2 Moreover, Blow et al. (2015)
show that present-bias with naïveté cannot be distinguished from time consistent preferences us-
ing consumption-savings behaviour. In my view, this past work leaves open the question of what
restricted domain can be used to tests, and do there exist equally-intuitive tests for naïve as for so-
phisticated present-bias? Past experiments have studied task completion (Ariely and Wertenbroch,
2002; Burger et al., 2011; Bisin and Hyndman, 2014), but have not used task completion data to
distinguish naïveté from sophistication.

2 Modelling sophistication and naïveté

2.1 Environment

I consider an environment in which a person faces a set of actions, A, and must do exactly one
action a in A. Each action a ∈ A is associated with a time, ta. At any given time τ , the person can
take a action available at time τ - that is, an a ∈ A which satisfies ta = τ - or she can decide not to
take an action and let herself act in the future. The person cannot commit the actions of her future
selves except by completing an action now and thereby preventing her future selves from acting.
However, the person is constrained to take an action in any given action set, thus if no actions are
available in future periods, the person always takes one of the currently available actions.

agent will stop before a less sophisticated agent with the same preferences.
2Specifically, the exclusion restriction in Fang and Wang (2015) requires that a host of demographic variables that

affect the likelihood of future health states are uncorrelated with preferences and degree of sophistication. Experiments
that elicit beliefs about future behaviour at the individual level provide provide one way around this issue, and Augen-
blick and Rabin (2015) pursue this direction. But because beliefs are about one’s own later behaviour, such studies are
subject to possibility that belief elicitation might affect one’s own subsequent behaviour either due to its incentives or
a psychological taste for consistency. Such a limitation is above and beyond methodological issues standard to belief
elicitation, which are reviewed in Schotter and Trevino (2014).
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I use the following notation in the analysis that follows. Let Ā be a set of actions, and let A

denote the set of all non-empty and finite subsets of Ā. Refer to any A∈A as a action set or a choice
problem. For each action a ∈ Ā let ta ∈ N specify the time when each action a is available. Given
a set A ∈A , let A=τ = {a ∈ A : ta = τ} and let A≥τ = {a ∈ A : ta ≥ τ}; similarly let A≥τ denote
the set of non-empty finite subsets of Ā≥τ . Given any A ∈ A , let TA = {τ : ∃a ∈ A s.th. ta = τ}
and assume 1 = min [τ ∈TĀ]< max [τ ∈TĀ]< ∞.

Let c : A → Ā denote a choice function. The analysis that follows assumes that c is observed
for a single person. This assumption is reasonable if the same person’s actions are observed from
directly comparable but different action sets. Alternatively, it may possible to observe many people
who face different choice sets.

Given a choice function c, we can summarize behaviour in a given action set A at a given point
in time by a set of functions {cτ}τ∈TĀ

where cτ : A≥τ → Ā=τ ∪A≥τ gives either the person’s
chosen action if she does it at τ or a continuation menu if she doesn’t. Here, a = cτ(A) denotes
that the person does a at time τ when she facing set A, and A>τ = cτ(A) denotes that the person
takes no action at τ either because she chooses to wait, no action is currently available, or she has
already done the task.

Below, I provide examples of types of actions that can fit into this framework.

Example 1. A statistics assignment must be done in a computer lab which is only open on a set
number of week days, announced in advanced. The student completes a version of the assignment
that is specific to the day on which she completes it, and the assignment version can be easy (e),
medium (m), or hard (h) in difficulty and this is observed by students in advance. Our grand space
of set of possible completion opportunities for this example is given by Ā = {M,Tu,W,T h,F}×
{e,m,h}. With abuse of notation, let TĀ = {M,Tu,W,T h,F} when I refer back to this example.

Example 2. Let S ⊂RT for 1≤ T ≤∞ denote a subsets of (possibly infinite dimensional) streams,
let TĀ ⊆ N, and let Ā ⊆ S ×TĀ. For a given (x, t), xτ denotes the real-valued number (e.g. a
consumption level or effort requirement) at time τ− t. 3

2.2 Preferences

Consider the following model of Strotzian preferences. Each person has a set of time-dependent
utility functions. For each τ ∈ TĀ, let Uτ : Ā≥τ → R denote her time-τ utility function, that is, the
utility function she uses at time-τ when she evaluates actions. Let U denote a collection of time-τ
utility functions with one Uτ for each τ ∈TĀ.

3Note I work with a choice function c, and my analysis will assume that a person always breaks ties the same way.
This tie-breaking is only relevant if C is sufficiently rich that a person is sometimes indifferent.
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Note that the structure of the action space and preferences in the general Strotzian model are
minimally restricted. This allows for arbitrary attitudes to timing, as well as arbitrarily time-variant
preferences that are fully subjective, due to, say, the presence of opening night for a Johnny Dep
movie on Wednesday night, or a Stanley Cup finals game on Tuesday night.

Quasi-hyperbolic model. The quasi-hyperbolic model is a special case of Strotzian preferences.
In the setting of Example 2, the quasi-hyperbolic discounting model readily applies under the
assumption that not doing an action in a given period yields an instantaneous utility of zero. The
quasi-hyperbolic utility function is given by:

Uτ((x, t)) =


u(x0)+β

T
∑

k=1
δ ku(xk) if t = τ

βδ t−τ
∞

∑
k=0

δ ku(xk) if t > τ

(1)

In this model (with 1≤ T ≤∞), at time τ a reward or cost in a future period time t > τ is discounted
by βδ t−τ . The parameter β < 1 captures a person’s present bias and implies that the person
discounts more steeply between the current and next period than between any two future periods.
The parameter δ ∈ (0,1] captures standard discounting, and gives the discount factor that applies
between any two periods that lie strictly in the future. The period-utility function is given by u,
which I assume is monotonically increasing, and this formulation implicitly normalizes the utility
of not doing any action at a point in time to zero. O’Donoghue and Rabin’s (1999) analysis is
based on this formulation, but with each X restricted to acts that only allow u(xk) 6= 0 at k = 0
and one other point in time..

2.3 Time consistency

I adopt the following definitions of time consistency and inconsistency for a collection U as a
restriction that all utility functions in U assign the same ranking to future actions. This maps
directly to time consistency as a property of choice function.

Definition. The collection U is time consistent if, for any τ,τ ′ ∈ TĀ , Uτ and Uτ ′ are ordinally
equivalent on A≥max[τ,τ ′]. Otherwise, the collection U is time inconsistent.

In the simple task completion environment I consider, time consistency of U requires that
preferences at each time never disagree ordinally – which is behaviourally equivalent to rational-
izability by a single utility function. The Independence of Irrelevant Alternatives (IIA) property of
a choice function characterizes the rational choice model on a finite domain.
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IIA. If a = c(A) and a ∈ A′ ⊂ A, then a = c(A′).
In the enriched choice domain considered here, IIA has additional bite since we interpret the

person as unable to commit to her future actions except by doing a current action. In particular,
time consistent choices satisfy IIA, and the IIA property completely characterizes choice functions
with a time consistent representation under the technical assumption that Ā is finite.

Lemma 1. If the choice function c has a time consistent representation then it satisfies IIA. If Ā is

finite and c satisfies IIA, then c has a time consistent representation.

It is well known that the above version of IIA is a necessary and sufficient condition for a
choice function on a finite domain to be rationalizable by a single utility function, and the proof in
the appendix translates a standard proof to the problem here.

This gives us a basis for viewing time inconsistency as a property of a choice function in our
setting. Whether a person is naïve or sophisticated is not directly observable. I will ask whether the
time inconsistent behaviour of naïve and sophisticated people are qualitatively different in ways
that can reveal a person’s naïveté or sophistication by relating each model to properties that restrict
the scope of how IIA can be violated.

2.4 Beliefs and behaviour under time inconsistency

The behaviour of a time-inconsistent person will depend both on her preferences (U ) and also
on her expectations about her future behaviour. The term “sophisticated” refers to a person who
correctly forecasts her future behaviour, and and term “naïve” refers to a person who incorrectly
believes her future behaviour will align with her current tastes. In the sophisticated and naïve cases,
a Strotzian’s behaviour in any action set can be derived from her preferences.

Beliefs and behaviour under sophistication and naïveté The perception perfect equilibrium
concept from O’Donoghue and Rabin provide how a person would behave in task completion
environment given her preferences and expectations. Their sophisticated perception perfect equi-
librium concept captures how a person with sophisticated expectations about her future behaviour
would behave in each period given an action set A.

Definition. A sophisticated perception perfect equilibrium for the choice problem A given the
collection of utility functions U consists of a strategy sU ,s

τ : A → Ā∪A for each τ such that
(i) A>τ = /0 implies sU ,s

τ (A) = argmax
a∈A=τ

Uτ(a),

(ii) sU ,s
τ =


argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a)≥Uτ(s
U ,s
τ ′ (A≥τ ′))

A>τ otherwise
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for τ ′ = min
[
τ̌ > τ : sU ,s

τ̌
(A≥τ̌) 6= A>τ̌

]
.

The naïve perception perfect equilibrium concept provides an analogous way of solving for
behaviour under naïveté.

Definition. A naïve perception perfect equilibrium for the choice problem A given the collection
of utility functions U consists of a strategy sU ,s

τ : A → Ā∪A for each τ such that
(i) A>τ = /0 implies sU ,s

τ (A) = argmax
a∈A=τ

Uτ(a),

(ii) sU ,s
τ =


argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a)≥ max
a∈A>τ

Uτ(a)

A>τ otherwise

Notice that to avoid the possibility of anomalous behaviour that arises from tie-breaking, I
assume that for a given individual, if there are two actions a and a′ with ta = ta′ and Ûta|τ(a) =

Ûta|τ(a
′), the individual at τ always perceives her time ta self as breaking ties in the same way

when forming an expectation about a′τ . Similarly, I assume that for any two such actions with
ta = ta′ and Uta(a) = Uta(a

′), the individual breaks the tie the same way at ta regardless of her
choice set.

Beliefs and behaviour in the partially-naïve Strotz model I introduce the partially naïve Strotz
model, which generalizes the partially naïve quasi-hyperbolic model of O’Donoghue and Rabin
(2001), to capture the possibility of a dynamically inconsistent person who is aware of but does
not correctly forecast her dynamic inconsistency. In this model, a person at time τ to perceives
that her time-τ ′ self will use the utility function Ûτ ′|τ , which need not represent the same ranking
of actions as either Uτ or Uτ ′ . Let Û denote a set of perceived utility functions, with one function
Ûτ ′|τ : Ā≥τ ′→R for each pair τ,τ ′ ∈TĀ with τ ′ > τ , and let Û·|τ denote the set of utility functions
Ûτ ′|τ in Û . O’Donoghue and Rabin’s (1999; 2001) perception perfect equilibrium concept applies
in this case as well, and is defined below.

Definition. A partially naïve perception perfect equilibrium for the choice problem A given the
collection of utility functions U and the collection of perceived utility functions Û consists of a
strategy sU ,Û

τ : A → Ā∪A for each τ such that
(i) A>τ = /0 implies sU ,Û

τ (A) = argmax
a∈A=τ

Uτ(a),

(ii) sU ,Û
τ =


argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a)≥Uτ(s
Û·|τ ,S
τ ′ (A≥τ ′))

A>τ otherwise

for τ ′ = min
[

τ̌ > τ : s
Û·|τ ,s
τ̌

(A≥τ̌) 6= A>τ̌

]
.
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In a perception perfect equilibrium, the person believes at time τ that her future selves will use
utility functions from Û·|τ , and forecasts her future actions by computing the sophisticated strategy
that corresponds to Û·|τ . She then uses Uτ to decide whether to wait or act, if to select a time τ

available action in the latter case. The partially naïve Strotz model captures all naïveté by “first-
order” beliefs, since it does allows a time τ self to be naïve about her future utility functions, but
it allows a time τ self to be naïve in forecasting future behaviour, but assumes that she (naïvely)
forecast all future selves will behave as sophisticated relative to these forecasts. This rules out the
possibility of a person who, at time τ , correctly forecasts her future preferences, but underestimates
her own future naïveté.

Given these definitions, we can give a definitions of sophisticated, partially naïve Strotzian,
and fully naïve choice.

Definition. The choice function c is a sophisticated choice function if there exists a U such that
for each A ∈ A , sU ,S

τ (A) = cτ(A≥τ). A choice function c is called a naïve choice function if
c is a partially naïve choice function corresponding to {sU ,Û

τ }τ in which each Ûτ ′|τ ∈ Û·|τ is
ordinally equivalent to Uτ on Ā>τ for each τ and each τ ′ > τ . The choice function c is a partially
naïve Strotzian choice function if there exist U and Û such that for each A ∈ A and each τ ,
sU ,Û

τ (A) = cτ(A≥τ).

Observation. For any partially naïve choice function c, beliefs about future behaviour (Û ) are
irrelevant in choice sets with two options. In such sets, choosing a = c({a,a′}) directly reveals
that Uτ(a)≥Uτ(a′) for τ = min[ta, ta′].

Partially naïve quasi-hyperbolic discounting model. Consider a quasi-hyperbolic discounter
facing the domain of Example 2. Their U is given by (1), and changes in her ranking of actions due
to the passage of time arise only due to the role of β < 1. A parsimonious model of partial naïvete
about one’s present bias has the person underestimate the extent of present bias she will exhibit in
the future while correctly forecasting u and δ . In O’Donoghue and Rabin’s (2001) partially naïve
quasi-hyperbolic discounting model, a person perceives that the present bias parameter that will
apply in her future decisions is given by β̂ ∈ [β ,1]. This gives a convenient specification for Û :

Ûτ ′|τ((x, t)) =


u(x0)+ β̂

T
∑

k=1
δ ku(xk) if t = τ ′

β̂ δ t−τ
∞

∑
k=0

δ ku(xk) if t > τ ′
(2)

The special case with β̂ = 1 corresponds to a naïve representation, while the case with β̂ = β

corresponds to a sophisticated representation.
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2.5 Comparison with decision-theoretic definitions of sophistication

The notions of sophistication and naïveté I use are based on a person’s perception of her future
utility functions in a Strotzian model, following O’Donoghue and Rabin. An alternative approach,
used in the decision theory literature on multi-period choice problems, would be to define sophis-
tication in terms of behaviour directly as in Gul and Pesendorfer (2005) and Noor (2011). In these
papers, each period a person chooses a pair that specifies a current level of consumption and a con-
tinuation choice set. The domain of task completion naturally fits within this framework with the
restriction that choice in each period τ , as given by cτ , is restricted to either choose a current task
and a continuation menu that gives a singleton menu in all subsequent periods, or to choose to not
act ( /0) which is associated with a single continuation menu. Since I place limited restrictions on Ā

and on U , this framework is still rich enough to capture actions that specify a stream of payoffs in
future periods.

Given any binary relation� and set A, let m be the function that picks�- undominated elements
of A, defined by m(A,�) = {a ∈ A : @a′ ∈ A s.th. a′ � a but not a� a′}.

First, let %τ denote the binary relation on Ā=τ ∪A>τ that captures how a person ranks the
desirability of actions available at time τ against each other and against possible continuation
menus; let �τ its asymmetric subrelation. Below, I impose that %τ is “standard” in the sense that
it is consistent with pairwise choices, and that it is complete and transitive on its full domain.

S. (i) a = cτ(A=τ ∪A>τ) implies a %τ A>τ and a �τ a′ for all a′ ∈ A=τ , A>τ = cτ(A=τ ∪A>τ)

implies A>τ �τ a for all a ∈ A=τ . (ii) %τ is complete and transitive on Ā≥τ ∪A>τ .
Notice that S(i) imposes how %τ is determined by cτ . Given the relationship between %τ and

cτ from S(i), axiom S(ii) restricts that each cτ is determined by maximizing%τ (with S(i) imposing
that ties are broken in favour of acting in the present).

Gul and Pesendorfer (2005) define sophisticated choices by an axiom, Independence of Re-
dundant Alternatives, on the pair {cτ}τ and {%τ}τ that extends the logic of IIA by restricting that
adding a completion opportunity to an action set only affects earlier behaviour if this opportunity
if it would be used were it to be reached. My adaptation of their axiom is below.

IRA. Given τ and τ ′ > τ , A≥τ ′ ∼τ cτ ′(A≥τ ′).
While the decision theory literature has not done so, it is possible to give a completely analo-

gous definition of naïveté based on the idea that a naïve person thinks that her next decision will be
consistent with her current tastes. I call this axiom Independence of Worse Alternatives (IWA). For
notational convenience, I use mτ ′(·,%τ) as an analogous object to cτ that instead makes the%τ - pre-
ferred “act or wait” decision available in any set A≥τ ′ , that is, mτ ′(A≥τ ′,%τ)= m(A=τ ′∪{A>τ ′},%τ

).
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IWA. Given τ and τ ′ > τ , A≥τ ′ ∼τ mτ ′(A≥τ ′,%τ).
While the axiomatic approach to defining sophistication and naïveté appears very different from

the definitions of sophisticated and naïve choice functions based on PPE, they are observationally
identical, as summarized in Proposition 1, which builds on results for sophistication in Gul and
Pesendorfer (2005).

Proposition 1. Suppose Ā is finite.

(i) If c and {%τ}τ satisfy S and IRA, then c is a sophisticated choice function. Conversely, if

c is a sophisticated choice function, then there exists {%τ}τ such that c and {%τ}τ satisfy S and

IRA.

(ii) If c and {%τ}τ satisfy S and IWA, then c is a naïve choice function. Conversely, if c is a

naïve choice function, then there exists {%τ}τ such that c and {%τ}τ satisfy S and IWA.

Notice that IRA only implies “first-order” sophistication – that is, that a person is sophisticated
about the next decision she makes. It does not impose anything directly about higher-order beliefs.
Nonetheless, a folding back argument establishes that S and IRA imply higher-order sophistication
as well. Similarly, IWA only implies “first-order” naïveté, but an analogous folding-back argument
using S and IWA establishes higher-order naïveté. This is a key step in each proof.

In the reverse direction, it remains to construct each %τ to extend the order consistent with
Uτ . A similar folding back through the PPE argument in each case verifies that, for the appopriate
choice of {%τ}τ , we have that {%τ}τ and c satisfy S and IRA under sophistication and IWA under
naïveté. I leave the detailed proof for the appendix.

3 Choice reverals under naïveté and sophistication

Subsection 1.1 shows that reversals that violate IIA are possible under quasi-hyperbolic discount-
ing, either under sophistication or naïveté. We classify two types of reversals a person might
exhibit.

Definition. Say that c exhibits a reversal if there exists an A⊆ Ā and an a′ ∈ Ā such that a = c(A),
and a,a′ 6= a′′ = c(A∪{a′}). We call a given reversal a doing-it-later reversal if ta < ta′ , ta′′ . We
call a given reversal a doing-it-earlier reversal if ta′′ < ta.

Below, I show that naïveté, as captured by the IWA axiom and as satisfied by the naïve PPE
model, allows for doing-it-later reversals but not doing it earlier reversals. In contrast, sophistica-
tion allows doing-it-earlier but not doing-it-later reversals.

Intuitively, a naïve person can be induced to delay when she fails to anticipate that her future
self will take an action that differs from the action she would currently prefer. Adding new options

12



to a time inconsistent person’s action set might tempt her at some point, but a naïve person will not
anticipate any inconsistency with her current tastes when deciding whether or not to take a currently
available action. Putting these pieces of intuition together, it seems possible that adding an action
to an action set might lead a naïve person to delay when her earlier selves do not anticipate that
her later selves will be tempted to delay by the added action, even if the added action is not itself
taken. This type of doing-it-later behaviour cannot be accommodated under time consistency since
it violates IIA. The “Irrelevant Alternatives Delay” property allows for doing-it-later reversals, but
rules out doing-it-earlier reversals (in a way that the statement of the property makes precise).

Irrelevant Alternatives Delay. a = c(A) and a′′ = c(A∪{a′}) 6= a, a′ implies that ta′, ta′′ > ta.
The Irrelevant Alternatives Delay property can be tested by observing only two choices. Ex-

ample 3 gives an example of a choice function that violates IIA but is consistent with the Irrelevant
Alternatives Delay property.

Example 3. Revisit Example 1. Suppose we observe that (M,e) = c({(M,e),(F,h)}) and
(F,h) = c({(M,e),(W,m),(F,h)}). These choices are jointly inconsistent with IIA, and hence
imply that preferences are time inconsistent. However, these choices are consistent with the Irrel-
evant Alternatives Delay property, since adding the irrelevant option (W,m), which is available on
Wednesday (which is later than Monday) leads the person to delay until Friday (which is later than
Monday and Wednesday).

Example 4 gives an example of a choice function that violates both IIA and the Irrelevant
Alternatives Delay property.

Example 4. Revisit Example 1. Suppose we observe that (W,m) = c({(M,e),(W,m)}) and
(M,e) = c({(M,e),(W,m),(F,h)}). These choices are jointly inconsistent with IIA, and hence
with time consistent preferences. But they are also inconsistent with the Irrelevant Alternatives
Delay property, since adding the unused alternative (F,h) leads the person to complete the assign-
ment earlier than Wednesday.

Example 3 shows that there exist choices that are consistent with the Irrelevant Alternatives
Delay property but inconsistent with IIA, while Example 4 establishes that Irrelevant Alternatives
Delay places a testable restriction on behaviour.

Proposition 2 shows that not only is it possible that an added unused alternative leads to delay
for a naïf, but that this is a general property of behaviour satisfied by any naïve person. An impli-
cation of this result is that the choices in Example 4 are inconsistent with naïve decision-making,
while those in Example 3 violate time consistency but are consistent with naïve decision-making.

Proposition 2. If c is a naïve choice function, then c satisfies the Independent Alternatives Delay

property.
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Proof. If c is a naïve choice function, then by Proposition 1, there is a {%τ}τ for which {%τ}τ

and c satisfy S and IWA. But then, by the proof of Proposition 1, A>τ ∼τ m(A>τ ,%τ) for each A,τ

with A>τ 6= /0.
Then, for any τ,A, and a′ with A>τ 6= /0 and ta′ ≥ τ ′, we have by S(i) that cτ(A≥τ) = A>τ holds

if and only if A>τ �τ a ∀a ∈ A=τ . But since A>τ ∪{a′} ∼τ m(A>τ ∪{a′},%τ)%τ m(A>τ ,%τ)∼τ

A>τ , this implies by S(ii) that A>τ ∪ {a′} �τ a ∀a ∈ A=τ , which implies by S(i) that cτ(A≥τ ∪
{a′}) = A>τ ∪ {a′}. Thus cτ(A≥τ) = A>τ and ta′ > τ implies cτ(A≥τ ∪ {a′}) = A>τ ∪ {a′}. It
follows that tc(A) ≤ tc(A∪{a′}).

Let a = c(A). If tc(A∪{a′}) = ta, then since (by S) %τ is transitive, either a = c(A∪{a′}) or
ta′ = ta and a′ = c(A∪{a′}). Thus c(A∪{a′}) 6= a,a′ implies tc(A∪{a′}) > ta.

If ta′ ≤ ta, then since a%τ A>τ , we must have cτ(A≥τ ∪{a′}) = a or = a′. Thus tc(A∪{a′}) ≤ ta
and either c(A∪{a′}) = a or = a′, a contradiction. It follows that ta′ > ta.

Intuitively, sophisticates act earlier because they anticipate their future self-control problems.
Thus, they might do an earlier action to avoid the temptation that they anticipate their future selves
will succumb to against her current preferences, exercising only type of commitment they have
access to in this choice environment. The type of “doing it earlier” behaviour that cannot be ac-
commodated under time consistency is when adding a new action leads to an earlier but previously
available action being chosen. This is allowed for under sophistication. The “Irrelevant Alterna-
tives Expedite” property gives a precise restriction that allows doing-it-earlier reversals, but rules
out doing-it-later reversals.

Irrelevant Alternatives Expedite. If a= c(A) and a′′= c(A∪{a′}) with a′′ 6= a,a′, then ta′′ < ta′ .
To see how Irrelevant Alternatives Expedite accommodates behaviour that violates Indepen-

dence of Irrelevant Alternatives while placing a meaningful restriction on behaviour, revisit Exam-
ples 3 and 4. Choices in Example 3 are consistent with the Irrelevant Alternatives Delay property,
but inconsistent with the Irrelevant Alternatives Expedite property, since adding the option to do
the task on Wednesday leads her to do instead on Friday (later than Wednesday). The choices
in Example 4 are consistent with Irrelevant Alternatives Expedite but inconsistent with Irrelevant
Alternatives Delay, since adding the option to do the task on Friday leads her to do it on Monday
(earlier than Friday).

Proposition 3 states any sophisticated choice function satisfies the Irrelevant Alternatives Ex-
pedite property.

Proposition 3. If c is a sophisticated choice function, then c satisfies the Independent Alternatives

Expedite property.
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Proof. If c is a sophisticated choice function, then by Proposition 1, there is a {%τ}τ for which
{%τ}τ and c satisfy S and IRA. But then, by the proof of Proposition 1, A>τ ∼τ c(A>τ) for each
A,τ with A>τ 6= /0.

First, suppose a′ = cta′ (A≥ta′ ∪{a
′}). Then, either c(A∪{a′}) = a′ or tc(A∪{a′}) < ta′ .

Second, suppose a′ 6= cta′ (A≥ta′ ∪{a
′}). Then by S, cta′ (A≥ta′ ∪{a

′}) = cta′ (A≥ta′ ). Thus by ap-
plying IRA sequentially backwards from ta′−1, ta′−2, . . . it follows that cτ(A≥τ ∪{a′}) = cτ(A≥τ)

for each τ < ta′ . Since A≥τ = (A∪{a′})≥τ whenever τ > ta′ , we have cτ((A∪{a′})≥τ) = cτ(A≥τ)

in this case as well. Thus c(A) = c(A∪{a′}) in this case.
It follows that if c(A∪{a′}) 6= c(A),a′ then tc(A∪{a′}) < ta′ .

4 Comparing sophistication and naïveté with task completion
data

This next result shows that in the partially naïve Strotz model, all naïveté in time-τ beliefs can
be revealed from DiL and DiE reversals, up to limitations arising from coarseness of the space of
actions available at time τ . This in turn provides a natural notion of comparative naïveté for this
model. Consider two partially naïve Strotz model, each with collection of utility functions U but
with different forecasts of future utility functions at each period, captured by Û and Û ′. Intu-
itively, we can define Û is more sophisticated than Û ′ if, whenever the perceived utility function
in Û ′ makes a correct forecast about future behaviour, so does the corresponding perceived utility
function in Û .

Definition. Given two partially naïve Strotz choice functions, c and c′ with the same U and with
Û and Û ′ respectively, c is more sophisticated than c′ if Uτ ′(a)>Uτ ′(a′) and Û ′

τ ′|τ(a)> Û ′
τ ′|τ(a

′)

imply Ûτ ′|τ(a)> Ûτ ′|τ(a′).

One might ask whether doing-it-earlier and doing-it-later reversals can be used to compare the
naïveté of two choice functions. Example 5 shows that a partially sophisticated person can exhibit
a doing-it-earlier reversal not exhibited by a fully sophisticated person with the same preferences.
This intuition being more optimistic about future behaviour can sometimes work counterintuitively,
since in the partially naïve Strotz model if you’re currently more optimistic about your behaviour
in the more distant future, you also expect your less-distant-future-selves to share that optimism,
which can make you expect them to delay against your current wishes.

Example 5. Consider four actions a0,a1,a2,a3 with taτ
= τ , and U such that Uτ(aτ)<Uτ(aτ+1)

for τ = 0,1,2 and Uτ(aτ) > Uτ(aτ ′) for τ = 0,1 and each τ ′ > τ + 1. A sophisticate has a1 =

c({a0,a1,a3}) = c({a0,a1,a2,a3}). However, a partially naïve person who, at τ = 0 incorrectly
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projects that Û2|0(a2)> Û2|0(a3) but make the correct prediction of Û1|0(a1)< Û1|0(a2) will expect
herself to do it at τ = 2 and delay at τ = 1, and would do it at τ = 0, leading to a doing-it-earlier
reversal since a1 = c({a0,a1,a3}) but a0 = c({a0,a1,a2,a3}). Thus {a0,a1,a3} and a2 generate a
doing-it-earlier reversal for the partially sophisticated person, but not the fully sophisticated one.
This example also illustrates that a more sophisticated person need not complete an action earlier
than a less sophisticated person with the same preferences.

However, if we restrict attention to reversals involving only three actions, then there is no
“beliefs-about-beliefs” channel by which a change in a sophistication might affect behaviour. To
show that more doing-it-earlier reversals are equivalent to more sophistication we need to introduce
a restriction on Ā to ensure that beliefs about future behaviour can actually be revealed from choice.

Definition. Ā is rich if, for each τ ∈ TĀ and each a′,a′′ ∈ Ā>τ with Uτ(a′′) >Uτ(a′), there exists
a ∈ Āτ such that Uτ(a′′)>Uτ(a)>Uτ(a′).

Richness need not imply that Ā is infinite - but it does require that Ā has a sufficiently “large”
number of alternatives at each period relative to later periods.

Proposition 4. Then for two partially naïve Strotz choice functions, c and c′, with the same U , if c

is more sophisticated than c′, then for any three actions a,a′,a′′ with ta < ta′, ta′′ and a = c({a,a′}),
a′′ = c({a,a′′}) and a′ = c({a′,a′′}), a = c′({a,a′,a′′}) implies a = c({a,a′,a′′}). If Ā is rich and

c and c′ make the same choices when two options are available, then the converse also holds.

Proposition 4 says that in the partially naïve Strotz model, when restricting to the three ac-
tion case, a more sophisticated choice function exhibits more doing-it-earlier reversals. This is
equivalent to the (analogously-phrased) statement that, when restricting to the three action case, a
more sophisticated choice function exhibits fewer doing-it-later reversals; this equivalence comes
from the fact that when three actions involve a choice cycle, behaviour when all three are available
necessarily involves either a doing-it-earlier or a doing-it-later reversal, but not both.

Comparison with Ahn et al. (2015). In a two-period setting, Ahn et al. provide a definition for
a comparative of when person 1 is more naïve than person 2. Their two-period setting is unable to
capture naïveté about future behaviour when choices are made at more than two periods, since they
do not provide any restrictions on continuation menus are evaluated in such a setting. However, in
the case where a person only faces actions in at most three periods t1 < t2≤ t3, the person only faces
at most two choices so long as there is at most one action available at t3. Since my comparative
notion of sophistication here makes this restriction, it aligns with Ahn et al.’s, although (unlike
Ahn et al.) I restrict such comparisons to individuals with the same preferences over actions (i.e.
same U ).
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5 Revealing sophistication and naïveté under quasi-hyperbolic
discounting

5.1 Doing-it-earlier and doing-it-later reversals and dominance violations

As in Example 2, let S ⊆RT for 1≤ T ≤∞, TĀ ⊆ Z+, and Ā⊆S ×TĀ. Restrict attention to the
partially naïve quasi-hyperbolic discounting model given by (1) and (2). In this model, a person’s
decision-making is captured by a quadruple,

(
u,δ ,β , β̂

)
.

In the partially naïve quasi-hyperbolic discounting model, the condition that β = 1 is a suf-
ficient condition for a person’s collection of utility functions to be time consistent; this condition
will also evidently be a necessary condition for time consistency under mild technical assumptions.
Lemma 1 then implies that choices induced by this model will violate IIA if and only if β < 1.
This implication extends O’Donoghue and Rabin’s (1999) Proposition 5.2, which covers only the
cases of full sophistication (β̂ = β ) and full naïveté (β̂ = 1). However, such a result about the link
between the existence of reversals and time inconsistency of a person tells us nothing about the
person’s self-awareness.

Proposition 5 shows that IIA violations can provide hallmarks of naïveté and sophistication. It
shows that doing-it-later reversals generically indicate some degree of naïvete (i.e. β̂ > β ), while
doing-it-earlier reversals indicate some degree of sophistication (i.e. β̂ < 1) in the partially naïve
quasi-hyperbolic discounting model.

Proposition 5. If c has a partially naïve quasi-hyperbolic representation, [m,m]×{0}∞ ⊆ S ,

{0,1,2} ⊆ TĀ, and u(m) < βδ 2u(m), then: (i) β̂ > β if and only if c exhibits a doing-it-later

reversal, and (ii) 1 > β̂ if and only if c exhibits a doing-it-earlier reversal.

The ’only if’ direction of the proof of Proposition 5 uses the model to directly construct such
a reversal in a three-period case. Because of the structure imposed by the partially naïve quasi-
hyperbolic representation, the ’if’ direction of the proof emerges as the contapositive of Proposi-
tions 2 and 3, which establish (without restriction to the partially naïve quasi-hyperbolic represen-
tation) that naïveté rules out doing-it-earlier reversals while sophistication rules out doing-it-later
reversals.4

An (arguably) more basic axiom of choice than IIA is that a person never chooses a “domi-
nated” action. I give a behavioural definition of dominance below adapted to the choice environ-

4The notion that it is possible to add unused tasks that induce delay when β̂ > β lies behind O’Donoghue and
Rabin’s (2001) Propositions 2 and 5, though they only allow environments in which the set of tasks in each period is
the exact same in terms of payoff structure as in preceding periods, and they only on the extreme case of failing to do
any task.
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ment of this section under the assumption that u is increasing and u(0) = 0.5

Definition. A choice function c satisfies dominance if for any two actions ((x0,x1, . . .) , t) and((
x′0,x

′
1, . . .

)
, t ′
)

in Ā:
(i) if t ′ > t, xτ ≤ 0 for each τ < t ′− t, xτ ≤ x′

τ+t−t ′ for all τ ≥ t ′− t, and either xτ < 0 for some
τ < t ′− t or xτ < x′

τ+t−t ′ for some τ ≥ t ′− t, then c never chooses (x, t) from an action set that
includes (x′, t ′), and

(ii) if t ′ < t, x′τ ≥ 0 for all τ < t− t ′, xτ ≤ x′
τ+t ′−t for all τ > t− t ′, and either x′τ > 0 for some

τ < t − t ′ or xτ < x′
τ−t ′+t for some τ ≥ t − t ′, then c never chooses (x, t) from an action set that

includes (x′, t ′).
If c violates requirement (i), then say that it exhibits a doing-it-later dominance violation, and

if it violates requirement (ii), then say it exhibits a doing-it-earlier dominance violation.

In the “only if” proof of Proposition 5 used actions for which there is only one non-zero (utility)
payoff. However, actions that generate with non-zero utilities at more than one point in time can be
used to show that when β < 1, subjects violate dominance (as shown in O’Donoghue and Rabin’s
(1999) Proposition 5.1). The nature of dominance violations will depend crucially on a person’s
self-awareness of her present bias (β̂ ), as Proposition 5 suggests. In particular, a person who is
partially naïve (β̂ > β ) will exhibit behaviour that violates dominance by failing to do an earlier
dominating action, while an a person who is partially sophisticated (β̂ < 1) will exhibit behaviour
that violates dominance by doing an earlier dominated action.

Proposition 6. If c has a partially naïve quasi-hyperbolic representation, T ≥ 3, any [m,m]×
[m,m]× [m,m]×{0}T−3 ⊆ S , {0,1,2} ⊆ TĀ, m < 0 < m, and u(m) < βδ 2u(m), then: (i) if

β̂ > β , then c exhibits doing-it-later dominance violations and (ii) if 1 > β̂ then c exhibits doing-

it-earlier dominance violations.

A related conjecture is that, when comparing two partially naïve people with the same prefer-
ences u,β ,δ but with β ≤ β̂1 < β̂2 ≤ 1, that person 1 will act earlier, in any action set, than person
2. O’Donoghue and Rabin (1999), Proposition 2, prove this conjecture holds true when only con-
sidering pure sophistication (β̂1 = β ) and naïveté (β̂2 = 1). The conjecture that this extends to
cases that involve partial naïveté is incorrect, as shown in the example below.

Example 6. Consider two people who have the same preferences: a linear u(x) = x, δ = 1, and
β = 1, but person 1 is sophisticated while person 2 is partially naïve with β̂2 = .8. Suppose T = 1
and each must do a task that entails immediate costs and no benefits at one of τ = 0,1,2,3; the set
of available tasks is given by {(−40,0) ,(−60,1) ,(−70,2) ,(−100,3)}. Facing this set, person 1
will do the task at τ = 1 while person 2 will do the task at τ = 0.

5The definition below ignores dominance violations in choosing between actions available at the same date. Such
violations will never occur in the partially naïve quasi-hyperbolic discounting model.
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5.2 Measuring and comparing self-awareness

Behaviour when two completion opportunities are available can reveal time preference parameters
β ,δ , and the utility function u. Conditional on time preferences, behaviour when facing three
completion opportunities can reveal an individual’s perception of her future behaviour, captured
by the parameter β̂ . Below, I illustrate how conditional on β ,δ , and u, the bounds on the parameter
β̂ can be revealed from behaviour in simple 3-period, 3-task examples.

Suppose that we know β ,δ , and u.6 Consider the three actions that involve only an immediate
cost, ((x,0,0, . . .) ,0) , ((y,0,0, . . .) ,1) , and ((z,0,0, . . .) ,2) with x,y,z < 0. Pick x,y,z such that
βδ 2u(z)< u(x)< βδu(y)< β 2δ 2u(z); behaviourally, this is revealed by:

((y,0,0, . . .) ,1) = c({((x,0,0, . . .) ,0) ,((y,0,0, . . .) ,1)}) ,

((x,0,0, . . .) ,0) = c({((x,0,0, . . .) ,0) ,((z,0, . . .) ,2)}) ,

((z,0,0, . . .) ,2) = c({((y,0,0, . . .) ,1) ,((z,0, . . .) ,2)}) .

Now consider how this person would behave when she has the three actions available,
((x,0,0, . . .) ,0) ,((y,0,0, . . .) ,1) , and ((z,0, . . .) ,2). Her choices imply that, if she expects that
she would delay at t = 1, then she would want to do ((x,0,0, . . .) ,0) at t = 0. In partially naïve
quasi-hyperbolic discounting model, this occurs when:

u(y)< β̂ δu(z)

which occurs if and only if β̂ < u(y)
δu(z) . If instead at t = 0 she thinks that she would do

((y,0,0, . . .) ,1) at t = 1, then she would want to wait at t = 0. In the model, this occurs when:

u(y)≥ β̂ δu(z)

which occurs if and only if β̂ ≥ u(y)
δu(z) . This example illustrates how simple experiments can be

used to measure an individual’s β̂ from task completion behaviour.

6Existing papers have shown how the parameters of the quasi-hyperbolic model can be measured from a person’s
t = 0 ranking of consumption streams, e.g. Attema et al. (2010); Olea and Strzalecki (2014).
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6 Extension to models with intrinsic self-control costs

Intrinsic self-control costs model. Gul and Pesendorfer (2001; 2004) introduce a model in
which an individual demands commitment due to her desire to avoid tempting options. Adapt-
ing their dynamic model to the setting here, a person’s decision-making at period τ maximizes a
recursively-defined value function, Wτ , derived from her set of normative utility functions {uτ ′}τ ′ ,
temptation utility functions {vτ ′}τ ′ , and discount factor δ , given by:

Wτ(A≥τ) = max
x∈A=τ∪{A>τ}

[uτ(x)+ vτ(x)+δWτ+1(x)]− max
x∈A=τ∪{A>τ}

vτ(x) (3)

We normalize that vτ(x) = 0∀x /∈ Ā=τ (the temptation utility of waiting is zero), in line with the
assumption in Gul and Pesendorfer (2004) that temptation utility derives only from current actions.

Since Wτ dislikes tempting options even if they are not chosen, the%τ and c consistent with this
model may not satisfy IRA. I introduce below a weaker notion of sophistication for models that
incorporate instrinsic cost of resisting temptation, DRA (dislike of redundant alternatives), which
weakens IRA; this is an adaptation of Lipman and Pesendorfer’s (2013) axiomatic definition of
sophistication for this model.

DRA. If ta > τ , A≥ta ∪{a} �τ A≥ta implies a = cta(A≥ta ∪{a}).
The Gul and Pesendorfer model satisfies DRA.

Proposition 7. If there exists a δ and sets {uτ}τ ,{vτ}τ ,{Wτ}τ related by (3), then the binary

relation %τ on Ā≥τ ∪A>τ represented by Wτ is complete and transitive for each τ and if each

Wτ strictly ranks Ā=τ , then {%τ}τ induces a unique choice function c that satisfies S. This pair

{%τ}τ , c satisfies DRA.

The Gul-Pesendorfer model allows for a preference for commitment without dynamic inconsis-
tency. Intuitively, this intrinsic preference for commitment due to the desire to avoid future costly
temptation gives an additional motive to do it sooner. Proposition 8 shows that whenever the
pair {%τ}τ and c satisfies S and DRA, then c also satisfies the Independent Alternatives Expedite
property.

Proposition 8. If c satisfies S and DRA, then c satisfies the Independent Alternatives Expedite

property.

The proof of Proposition 8 closely follows 3, and is provided in the Appendix.
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7 Discussion

This paper makes precise how adding unused options can lead to delay but cannot expedite task
completion for a naïve but not a sophisticated person, establishing this behaviour as a hallmark of
naïveté. Similarly, adding unused options can expedite but not delay for a sophisticated person.
These results establish intuitive empirical tests for sophistication and naïveté. Each model has
additional content, and the examples here show how content of these models that are not implied by
the Independent Alternatives Delay or Irrelevant Alternatives Expedite properties suggest intuitive
tests. The examples and results here suggests how empirical work on task completion can be used
to measure naïveté versus sophistication from behaviour, and how related but model-specific results
can be obtained for models of partial naïveté. The results of such tests would provide a means
of evaluating the appropriateness of alternative assumptions about sophsitication and naïveté in
applications of models of time inconsistent preferences.

One implication of the analysis here is that firms that have data on task completion can learn
the sophistication or naïveté of their clients or employees, especially if they can experiment. For
example, a financial institution that observes when a client pays her bills can use this information
to target her with financial products that exploit her degree of naïveté, without having to offer her
a menu of contracts that screen for this subject to an incentive compatibility constraint. Similarly,
a manager who observes when an employee completes work assignments can use this information
to infer the degree of sophistication of her employee, and can use this to better tailor his work
responsibilities and deadlines.

Appendix: Proofs.

Proof of Lemma 1

Proof. Suppose c has a time consistent representation, a = c(A), and a ∈ A′ ⊂ A. Then U1(a) >

U1(a′)∀a ∈ A, thus U1(a)>U1(a′)∀a ∈ A′. It follows that a = c(A′), and thus IIA holds.
Now suppose c satisfies IIA and Ā is finite. Let a1 = c(Ā), a2 = c(Ā\{a1}), ..., ak =

c(Ā\{a1, . . . ,ak−1}), stop when{a1, . . . ,ak−1} = Ā. By IIA, c(A) = amin[k: ak∈A]. Define V (ak) =

|Ā|−k. Now define Uτ(ak) =V (ak)∀ak ∈ Ā≥τ . By construction, U = {Uτ}τ∈TĀ
is time consistent,

and c(A) = argmax
a∈A

U1(a).

Proof of Proposition 1. The proof for part (ii) has four steps. Lemma 2 shows that naïveté has
an equivalent, simpler representation which I then make use of in subsequent Lemmas. Lemma 3
shows that given S, IWA holds if and only if %τ is indifferent between any continuation menu and
its favourite item on that menu, i.e. A≥τ ′ ∼τ m(A≥τ ′ ,%τ). Lemma 4. Thus Lemmas 3 and 4 imply
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sufficiency of the axioms. Lemma 5 shows us that given any naïve representation we can construct
%τ ’s to satisfy S; then applying Lemmas 4 and 3 implies that IWA holds as well, establishing
necessity of the axioms.
�

Lemma 2. c is a naïve choice function represented by U , if and only if cτ(A≥τ) =
argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a) = max
a∈A≥τ

Uτ(a)

A>τ otherwise
.

Proof. Notice that c is a naïve choice function if and only if cτ(A≥τ) = sU ,Û
τ (A) for all

A. Constructing the PPE given U and Û , we obtain sU ,Û
τ (A=τ) = argmax

a∈A=τ

Uτ(a) =

cτ(A=τ) for each A,τ follows by our construction of Uτ . Then, noting that

min
[

τ̌ > τ : s
Û·|τ ,s
τ̌

(A≥τ̌) 6= A>τ̌

]
= min

[
τ̌ > τ : max

a∈A=τ̌

Uτ(a)≥ max
a′∈A>τ̌

Uτ(a′)
]

, we can equiv-

alently write: sU ,Û
τ (A) =


argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a)≥ max
a′∈A>τ

Uτ(a′)

A>τ otherwise
. Thus, cτ(A≥τ) = a if

and only if sU ,Û
τ (A) = a if and only if Uτ(a) ≥Uτ(a′) for all a′ ∈ A≥τ and with strict inequality

for all a′ ∈ A=τ .

Lemma 3. If c and {%τ}τ satisfy S, then they also satisfy IWA if and only if A≥τ ′ ∼τ m(A≥τ ′,%τ)

for any τ,τ ′ > τ , and A.

Proof. With notational sloppiness, I will sometimes view a′ and {a′} as interchangable from the
perspective of%τ for τ < ta′ , using the statement that a%τ a′ to denote that a%τ {a′} when ta′ > τ

and m(A≥τ ,%τ) to denote the %τ -maximal action in A≥τ .
Suppose c and {%τ}τ satisfy S.
Consider the following relaxation of IWA, I call k-IWA, where k is an integer. IWA holds if

k-IWA holds for arbitrary k.
k-IWA. For any τ and τ ′ > τ , A≥τ ′ ∼τ mτ(A≥τ ′ ,%τ) so long as A≥τ ′ has actions available in at

most k periods.
Since mτ ′(A=τ ′,%τ) = m(A=τ ′,%τ), 1-IWA holds if and only if A=τ ′ ∼τ m(A=τ ′,%τ) for any

τ , τ ′ > τ , and A=τ .
Now we proceed by induction to show that A≥τ ′ ∼τ m(A≥τ ′,%τ). Suppose that k-IWA holds,

and that whenever A≥τ ′ has actions that are available at most at k distinct times, that we have
A≥τ ′ ∼τ m(A≥τ ′,%τ). Now consider an A≥τ ′ with actions available at k + 1 distinct times, and
the earliest action available at τ ′. Then, A>τ ′ ∼τ m(A>τ ′,%τ). Then k+ 1-IWA holds if and only
if A≥τ ′ ∼τ mτ ′(A≥τ ′,%τ). If for some a ∈ A=τ ′ we have a %τ A>τ ′ , then A≥τ ′ ∼τ mτ ′(A≥τ ′,%τ
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) = m(A=τ ′,%τ) % m(A>τ ′,%τ) (by k-IWA) and thus mτ ′(A≥τ ′,%τ) = m(A≥τ ′,%τ). Otherwise,
A≥τ ′ ∼τ mτ ′(A≥τ ′,%τ) = A>τ ′ ∼τ m(A>τ ′,%τ) and A>τ ′ �τ a for all a ∈ A=τ ′ , thus m(A>τ ′,%τ) =

m(A≥τ ′,%τ). Thus, k+ 1-IWA holds if and only A≥τ ′ ∼τ m(A≥τ ′,%τ) for each A≥τ ′ with actions
available at k+1 or fewer periods.

By induction, it follows that A≥τ ′ ∼τ m(A≥τ ′,%τ) for any A≥τ ′with τ ′ > τ holds if and only if
k-IWA holds for all k, or equivalently, IWA holds.

Lemma 4. Let each Uτ represent %τ restricted to Ā≥τ . Then if S is satisfied, then A≥τ ′ ∼τ

m(A≥τ ′,%τ) for any τ,τ ′ > τ , and A if and only c has a naïve representation.

Proof. Since S implies that each%τ is complete and transitive, if Ā is finite, then each%τ restricted
to Ā≥τ has a utility representation, Uτ , with Uτ(a)≥Uτ(a′) if and only if a%τ a′ (or the analogous
ranking with one or both being singleton continuation menus). Then, m(A≥τ ′ ,%τ)= argmax

a∈A≥τ ′
Uτ(a).

Then applying the representation of %τ , if S(i) holds, this is equivalent to choice being given by

cτ(A≥τ) =


argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a) = max
a∈A≥τ

Uτ(a)

A>τ otherwise
. By Lemma 2, this is equivalent to c

having a naïve representation.

Lemma 5. 4. If c is a naïve choice function, we can construct %τ from U by a �τ a′ iff Uτ(a)>

Uτ(a′), and A≥τ ′ ∼τ m(A≥τ ′,%τ) for each A,τ,τ ′ > τ . This {%τ}τ and c will satisfy S.

Proof. Let c be a naïve choice function. Construct such a %τ ; by construction %τ is complete and
transitive.

If a = cτ(A=τ ∪A>τ) then, by the equivalent naïve representation in Lemma 2, Uτ(a)≥Uτ(a′)

for all a′ ∈ A>τ and also strictly for all a′ ∈ A=τ . Thus, a%τ a′ for all a′ ∈ A>τ and a�τ a′ for all
a′ ∈ A=τ . Since we picked %τ to satisfy A≥τ ′ ∼τ m(A≥τ ′,%τ), it follows that a%τ A>τ .

If A>τ = cτ(A=τ ∪A>τ), then by the equivalent naïve representation in Lemma 2, there exists
an a′ ∈ A>τ for which Uτ(a′)>Uτ(a) for all a∈ A=τ . By our choice of%τ , a′ �τ a for all a∈ A=τ .
Then, since A>τ ∼τ m(A>τ ,%τ)∼τ a′ by construction, transitivity of%τ implies that A>τ �τ a for
all a ∈ A=τ .

Thus S holds for this choice of {%τ}τ .

The proof for the sophisticated case follows an analogous outline.

Lemma 6. c is a sophisticated choice function represented by U , if and only if cτ(A≥τ) =
argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a)≥Uτ(c(A>τ))

A>τ otherwise
.
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Proof. Notice that c is a sophisticated choice function if and only if cτ(A≥τ) = sU ,s
τ (A)

for all A. Constructing the PPE given U , we obtain sU ,s
τ (A=τ) = argmax

a∈A=τ

Uτ(a) =

cτ(A=τ) for each A,τ follows by our construction of Uτ . Then, noting that
min

[
τ̌ > τ : sU ,s

τ̌
(A≥τ̌) 6= A>τ̌

]
= min [τ̌ > τ : cτ̌(A≥τ̌) 6= A>τ̌ ], we can equivalently write:

cτ(A≥τ) =


argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a)≥Uτ(c(A>τ))

A>τ otherwise
.

Lemma 7. If c and {%τ}τ satisfy S, then they also satisfy IRA if and only if A≥τ ′ ∼τ c(A≥τ ′) for

any τ,τ ′ > τ , and A.

Proof. Suppose c and {%τ}τ satisfy S.
Consider the following relaxation of IRA, I call k-IRA, where k is an integer. IRA holds if and

only if k-IRA holds for arbitrary k.
k-IRA. For any τ and τ ′ > τ , A≥τ ′ ∼τ cτ ′(A≥τ ′) so long as A≥τ ′ has actions available in at most

k periods.
Since cτ ′(A=τ ′) = c(A=τ ′) for any A=τ ′ , 1-IRA holds if and only if A=τ ′ ∼τ c(A=τ ′) for any τ ,

τ ′ > τ , and A=τ .
Now we proceed by induction to show that A≥τ ′ ∼τ c(A≥τ ′). Suppose that k-IRA holds, and

that whenever A≥τ ′ has actions that are available at most at k distinct times, that we have A≥τ ′ ∼τ

c(A≥τ ′). Now consider an A≥τ ′ with actions available at k+1 distinct times, and the earliest action
available at τ ′. Then, A>τ ′ ∼τ c(A>τ ′). Then k+ 1-IRA holds if and only if A≥τ ′ ∼τ cτ ′(A≥τ ′),
I now show this is equivalent to the condition that A≥τ ′ ∼τ c(A≥τ ′). If for some a ∈ A=τ ′ we
have a%τ ′ A>τ ′ , then (by S), A≥τ ′ ∼τ cτ ′(A≥τ ′,%τ) = c(A≥τ ′). Otherwise (by S and then k-IRA),
A≥τ ′ ∼τ cτ ′(A≥τ ′) =A>τ ′ ∼τ c(A>τ ′) = c(A≥τ). Thus, k+1-IRA holds if and only A≥τ ′ ∼τ c(A≥τ ′)

for each A≥τ ′ with actions available at k+1 or fewer periods.
By induction, it follows that A≥τ ′ ∼τ c(A≥τ ′) for any A≥τ ′with τ ′> τ holds if and only if k-IRA

holds for all k, or equivalently, IRA holds.

Lemma 8. Let each Uτ represent %τ restricted to Ā≥τ . Then if S is satisfied, then A≥τ ′ ∼τ

c(A≥τ ′,%τ) for any τ,τ ′ > τ , and A if and only c has a sophisticated representation.a =

c′({a,a′,a′′})

Proof. Since S implies that each %τ is complete and transitive, if Ā is finite, then each %τ re-
stricted to Ā≥τ has a utility representation, Uτ , with Uτ(a) ≥ Uτ(a′) if and only if a %τ a′ (or
the analogous ranking with one or both being singleton continuation menus). Then applying
the representation of %τ , if S(i) holds, this is equivalent to choice being given by cτ(A≥τ) =
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
argmax

a∈A=τ

Uτ(a) if max
a∈A=τ

Uτ(a)≥Uτ(c(A>τ))

A>τ otherwise
. By Lemma 6, this is equivalent to c having a so-

phisticated representation.

Lemma 9. 4. If c is a sophisticated choice function, we can construct %τ from U by a �τ a′ iff

Uτ(a)>Uτ(a′), and A≥τ ′ ∼τ c(A≥τ ′) for each A,τ,τ ′ > τ . This {%τ}τ and c will satisfy S.

Proof. Let c be a sophisticated choice function. Construct such a %τ , and extend it to rank A %τ

A′ whenever there exist a,a′ such that A ∼τ a %τ a′ ∼τ A′; by construction %τ is complete and
transitive.

If a = cτ(A=τ ∪A>τ) then, by the equivalent sophisticated representation in Lemma 6, Uτ(a)≥
Uτ(c(A>τ)) and also Uτ(a)>Uτ(a′) for all a′ ∈ A=τ . Thus, by our choice of %τ , a%τ c(A>τ)∼τ

A>τ thus a%τ A>τ , and a�τ a′ for all a′ ∈ A=τ .
If A>τ = cτ(A=τ ∪ A>τ), then by the equivalent sophisticated representation in Lemma 6,

Uτ(c(A>τ)) > Uτ(a) for all a ∈ A=τ . By our choice of %τ , A>τ ∼τ c(A>τ) �τ a for all a ∈ A=τ .
Then, transitivity of %τ implies that A>τ �τ a for all a ∈ A=τ .

Thus S holds for this choice of {%τ}τ .

Proof of Proposition 4.

Proof. WLOG, I assume that each Uτ and Ûτ ′|τ is strict in order to avoid the caveats when dealing
with how choice reveals each.

Suppose c is more sophisticated than c′. Then if we take actions a,a′,a′′ with ta < ta′, ta′′ and
a = c({a,a′}), a′′ = c({a,a′′}) and a′ = c({a′,a′′}), by the definition of “more sophisticated than”,
c′ makes the same pairwise choices. By the representation, we must have Uta(a

′′) > Uta(a) >

Uta(a
′) but Umin[ta′ ,ta′′ ](a

′) > Umin[ta′ ,ta′′ ](a
′′) , and by the partially naïve PPE, a = c′({a,a′,a′′})

holds iff we have Û ′min[ta′ ,ta′′ ]|ta
(a′) > Û ′min[ta′ ,ta′′ ]|ta

(a′′). By the definition of more sophisticated
than, Ûmin[ta′ ,ta′′ ]|ta(a

′)> Ûmin[ta′ ,ta′′ ]|ta(a
′′) as well.

Now suppose Ā is rich, c and c′ make the same pairwise choices, and for any three actions
a,a′,a′′ with ta < ta′, ta′′ and a = c({a,a′}), a′′ = c({a,a′′}) and a′ = c({a′,a′′}), a = c′({a,a′,a′′})
implies a = c({a,a′,a′′}).

Consider any a′,a′′ and τ < min[ta′, ta′′ ] for which Uτ(a′′) > Uτ(a′). Since Ā is rich, there
exists an a ∈ Ā=τ with Uτ(a′′) > Uτ(a) > Uτ(a′). Thus, both c and c′ will have a = c({a,a′}),
a′′ = c({a,a′′}), and a′ = c({a′,a′′}). By the definition of PPE, a = c′({a,a′,a′′}) holds if and
only if Û ′min[ta′ ,ta′′ ]|τ

(a′) > Û ′min[ta′ ,ta′′ ]|τ
(a′′). By our assumption, a = c′({a,a′,a′′}) also implies

a = c({a,a′,a′′}), which implies Ûmin[ta′ ,ta′′ ]|τ(a
′)> Ûmin[ta′ ,ta′′ ]|τ(a

′′). Thus, c is more sophisticated
than c′.
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Proof of Proposition 5.

Proof. “Only if” part.
Without loss of generality, assume m≤ 0 < m and u(0) = 0.
(i)
Suppose β̂ > β . Then since u is continuous, by the intermediate value theorem we can take

x,y,z ∈ [m,m] such that β̂ δ 2u(z)> δu(y)> βδ 2u(z)> u(x)> βδu(y). Then

((x,0,0, . . .) ,0) = c({((x,0,0, . . .) ,0) ,((y,0,0, . . .) ,1)})

but

((y,0,0, . . .) ,1) = c({((x,0,0, . . .) ,0) ,((y,0,0, . . .) ,1) ,((z,0,0, . . .) ,2)}) .

(ii)
Suppose β̂ < 1. Then since u is continuous, by the intermediate value theorem we can take

x,y,z ∈ X such that ββ̂δ 2u(z)< βδu(y)< u(x)< βδ 2u(z). Since u(x)< βδ 2u(z), we have

((z,0,0, . . .) ,2) = c({((x,0,0, . . .) ,0) ,((z,0,0, . . .) ,2)})

but
((x,0,0, . . .) ,0) = c({((x,0,0, . . .) ,0) ,((y,0,0, . . .) ,1) ,((z,0,0, . . .) ,2)}) .

“If” part.
(i).
It is equivalent to prove contrapositive, i.e. show that if β̂ = β , then there are no reversals of

the doing-it-later variety. This result will follow from Proposition 3.
(ii).
As in the proof of (i), it is equivalent to prove the contrapositive, i.e .show that if β̂ = 1, then

there are no reversals of the doing-it-earlier variety. Then the result will follow from Proposition
2.

Proof of Proposition 6.

Proof. (i) Suppose β̂ > β . Take z ∈ int(m,m). Since 0 and z are both in (m,m) and u is con-
tinuous, there exist strictly positive ε1 and ε2 such that u(−ε1) + β̂ δu(z + ε2) > β̂ δu(z) but
βδu(z) > u(−ε1) + βδu(z + ε2). Then at t = 0, this person would expect herself to choose
((−ε1,z+ ε2,0,0, . . .) ,1) over ((z,0,0, . . .) ,2) if at t = 1 she were to have only these two actions
available, even though she would actually delay at t = 1 and end up doing ((z,0,0, . . .) ,2).
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Since u(−ε1)+ β̂ δu(z+ ε2) > β̂ δu(z), we have u(−ε1)+ δu(z+ ε2) > δu(z). Thus by con-
tinuity of u and since 0 ∈ int[m,m], there exists an ε0 > 0 such that βδu(−ε1)+ δ 2u(z+ ε2) >

u(ε0)+βδ 2u(z). By construction,

((z,0,0, . . .) ,2) = c({((ε0,0,z,0,0, . . .) ,0) ,((−ε1,z+ ε2,0,0, . . .) ,1) ,((z,0,0, . . .) ,2)})

which violates dominance.
(ii) Suppose β̂ < 1. Take z ∈ (m,m). Since 0 and z are both in (m,m) and u is continuous, there

exist strictly positive ε1 and ε2 such that β̂ δu(z) > u(−ε1)+ β̂ δu(z+ ε2) but u(−ε1)+ δu(z+

ε2) > δu(z). Then at t = 0, this person would (correctly, since β ≤ β̂ ) expect herself to pass on
((−ε1,z+ ε2,0,0, . . .) ,1) to wait to do ((z,0,0, . . .) ,2) if at t = 1 she were to have only these two
actions available.

Then at t = 0, since u is continuous and u(−ε1)+ δu(z+ ε2) > δu(z), there exists a ε0 > 0
such that u(−ε0)+βδu(−ε1)+βδ 2u(z+ ε2)> β 2δu(z). Thus, this person would choose

((−ε0,−ε1,z+ ε2,0,0, . . .) ,0)

= c({((−ε0,−ε1,z+ ε2,0,0, . . .) ,0) ,((−ε1,z+ ε2,0,0, . . .) ,1) ,((z,0,0, . . .) ,2)})

which violates dominance.

Proof of Proposition 7.

Proof. Since each Wτ is a utility function on A=τ ∪A>τ , it represents a complete and transitive
binary relation and when it strictly ranks all elements in Ā=τ , then S gives the choice function cτ

at each τ that maximizes %τ with ties broken in favour of the earlier action.
To see that this pair must satsify DRA, consider any A,a, and τ < ta for which A≥ta ∪

{a} �τ A≥ta . By the representation, this is equivalent to Wτ(A≥ta ∪ {a}) > Wτ(A≥ta).
Since A=τ ′ = /0 for each τ ′ ∈ {τ, . . . , ta}, (3) implies that Wτ ′(A≥ta ∪ {a}) > Wτ ′(A≥ta)).
Since A≥ta ⊂ A≥ta ∪ {a}, max

x∈A=ta∪{A>ta}
vta(x) ≤ max

x∈A=ta∪{a}∪{A>ta}
vta(x), and thus for each x ∈

A=τ ∪ {A>τ}, [uta(x)+ vta(x)+δWta+1(x)]− max
x∈A=ta∪{A>ta}

vta(x) ≤ [uta(x)+ vta(x)+δWta+1(x)]−

max
x∈A=ta∪{a}∪{A>ta}

vta(x). Thus by the representation in (3), Wta(A≥ta ∪{a})>Wta(A≥ta) implies that

a = argmax
x∈A=ta∪{a}∪{A>ta}

[uta(x)+ vta(x)+δWta+1(x)], thus a = cta(A≥ta ∪{a}) by S.
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Proof of Proposition 8.

Proof. Take {%τ}τ and c that satisfy S and DRA.
First, suppose a′ = cta′ (A≥ta′ ∪{a

′}). Then, either c(A∪{a′}) = a′ or tc(A∪{a′}) < ta′ .
Second, suppose a′ 6= cta′ (A≥ta′ ∪{a

′}). Then by S, cta′ (A≥ta′ ∪{a
′}) = cta′ (A≥ta′ ). Thus by

applying DRA sequentially backwards from ta′ − 1, ta′ − 2, . . . , since A≥τ %τ A≥τ ∪{a′} for each
τ < ta′ , thus, by S, we have that a′′ = cτ(A≥τ) =⇒ a′′ = cτ((A∪a)′≥τ) for such τ . Thus tc(A) < ta′

implies tc(A∪{a′}) < ta′ . Since A≥τ = (A∪{a′})≥τ whenever τ > ta′ , if /0 = cτ(A≥τ ∪{a′}) for all
τ ≤ ta′ , then we have cτ((A∪ {a′})≥τ) = cτ(A≥τ) for all τ > ta′ in this case, and thus c(A) =

c(A∪{a′}).
It follows that if c(A∪{a′}) 6= c(A),a′ then tc(A∪{a′}) < ta′ .
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