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Abstract

We introduce the notion of type-symmetric randomized equilibrium (TSRE)

by requiring those agents with the same type of characteristics to choose the

same randomized choice. Such a notion provides a generic micro-foundation

for the macro notion of equilibrium distribution, as used in the literature on

games and economies with many agents. In particular, we show that if the

space of agents is modeled by the classical Lebesgue unit interval, any Nash

(resp. Walrasian) equilibrium distribution in a large game (resp. economy)

is uniquely determined by one TSRE. Furthermore, we provide examples to

demonstrate that this uniqueness characterization does not necessarily hold

when a non-Lebesgue agent space is used.
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1 Introduction

An atomless probability space, in particular the Lebesgue unit interval, has been

commonly used for modeling many agents1 in economics. There are two approaches

to deal with equilibrium concepts associated with a continuum of agents: one is

the individualized microeconomic notion that specifies a choice for each agent,

and the other is the distributional macroeconomic notion that is formulated as a

distribution on the joint space of characteristics and choices without individualistic

features. In the particular settings as considered in this paper, a Nash equilibrium2

in a large game (resp. a Walrasian allocation in a large economy) is defined as

a measurable mapping—from the agent space to the action (resp. consumption)

1Milnor and Shapley (1961) and Aumann (1964) used the Lebesgue unit interval as an agent
space that captures the negligible influence of an individual in a large society. A game/economy
with a continuum of agents is also considered to be a good approximation for games/economies
with large but finitely many agents; see, for example, Debreu and Scarf (1963), Hildenbrand
(1974), Hammond (1979), Green (1984), Mas-Colell and Vives (1993), Khan and Sun (2002),
and McLean and Postlewaite (2002, 2004).

2Throughout the paper, Nash equilibrium refers to pure strategy Nash equilibrium. We shall
always say randomized (resp. mixed) strategy Nash equilibrium when randomized (resp. mixed)
strategies are used. In the sequel, we shall also use “agent” interchangeably with “player” in the
informal discussion of large games.
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space—that focuses on the micro level, while a Nash equilibrium distribution in

a large game (resp. a Walrasian equilibrium distribution in a large economy) is

defined as a distribution—on the joint space of payoffs and actions (resp. the joint

space of preferences, endowments and consumptions)—that focuses on the macro

level. Both approaches have been extensively studied and applied in many areas.3

The distributional approach has been regarded as a reformulation of the indi-

vidualized approach. An individualized equilibrium always induces an equilibrium

distribution. However, a given equilibrium distribution may not be induced by

any individualized equilibrium. For instance, in the large game in Example 1, the

Nash equilibrium distribution τ̂ does not correspond to any Nash equilibrium;4 in

the large economy in Example 3, there exists a Walrasian equilibrium distribution

that cannot be induced by any Walrasian allocation.5 Hence, in general, the no-

tion of equilibrium distribution is not merely an equivalent reformulation of the

notion of individualized equilibrium. To understand the distributional approach

and its advantage, one needs to find its generic microeconomic counterpart. After

all, without a justifiable micro-foundation, a macro-aggregate solution concept can

hardly be satisfactory.

In this paper, we introduce another notion of equilibrium via the individualized

approach—a type-symmetric randomized equilibrium. In a large game/economy, it

is defined as an equilibrium where those agents with the same characteristics choose

the same randomized choice. We show that in a large game/economy, an equilib-

rium distribution corresponds to a type-symmetric randomized equilibrium. The

3See Hildenbrand (1974) and Khan and Sun (2002) for various references; also see Rauh (2007),
Anderson and Raimondo (2008), Yannelis (2009), Acemoglu and Wolitzky (2011), Guesnerie
and Jara-Moroni (2011), Duffie and Strulovici (2012) and Hammond (2015) for some recent
applications.

4Note that the large game in Example 1 does have Nash equilibria f1 and f2. Rath et al.
(1995) presented a rather involved example of a large game with the action space [−1, 1] that has
a Nash equilibrium distribution but no Nash equilibrium; see also Khan et al. (2013a) and Qiao
and Yu (2014) for some recent examples of this kind. In consideration of the existence issue,
Keisler and Sun (2009) and Khan et al. (2013a) showed that the saturation of the agent space
is necessary and sufficient for the existence of a Nash equilibrium; see also Barelli and Duggan
(2015) for a product structure on the agent space.

5This example is based on the example in Kannai (1970, Section 7). In contrast to the
possible nonexistence of Nash equilibrium for a large game with a one-dimensional action space as
mentioned in Footnote 4, a Walrasian allocation always exists in a finite-dimensional commodity
space. On the other hand, when one works with an infinite-dimensional commodity space, a
Walrasian allocation may not exist; see Tourky and Yannelis (2001) for example.
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classical Lebesgue unit interval plays an interesting role in this characterization. If

the agent space is modeled by the Lebesgue unit interval, one equilibrium distribu-

tion corresponds uniquely to one type-symmetric randomized equilibrium. As the

latter is an equilibrium that focuses on the individual level, it indeed provides a

generic micro-foundation of the macro notion of equilibrium distribution. All this

reveals the fact that an equilibrium distribution is in general a reformulation of

a randomized equilibrium rather than a deterministic individualized equilibrium.

We may point out that several properties of the analytic sets in the descriptive set

theory play the key role for the uniqueness characterization.

The rest of the paper is organized as follows. Section 2 considers large games.

First, we present the set-up of a large game and two canonical solution concepts—

Nash equilibrium and Nash equilibrium distribution, and provide an example show-

ing the non-equivalence of the two concepts. Then, we introduce the notion of type-

symmetric randomized equilibrium in a large game, and establish its relationship

with the concept of Nash equilibrium distribution in Theorem 1. Example 2 shows

that the uniqueness characterization in Theorem 1 (iii) may fail for a large game

if the underlying agent space is not the Lebesgue unit interval. Section 3 presents

the analogous results in the context of large economies. Section 4 provides further

discussion on the notion of type-symmetric randomized equilibrium. Under the

framework of a rich Fubini extension, we can then obtain a complete delineation

of all the equilibrium concepts in large games, including the notion of mixed strat-

egy equilibrium that involves a continuum of independent random variables.6 All

the proofs are given in Section 5.

2 Large Games

Unless otherwise specified, a topological space—say X—as discussed in this paper

is understood to be equipped with its Borel σ-algebra B(X), and the measurability

is defined in terms of that. For a Polish (complete separable metrizable topological)

space X, M (X) denotes the set of (Borel) probability measures on X endowed

6The issues of measurability and exact law of large numbers for processes with a continuum
of independent random variables are resolved in Sun (2006) by working with an extension of the
usual product probability space that retains the Fubini property.
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with the topology of weak convergence, χ
E

denotes the indicator function of a

subset E of X, and δx denotes the Dirac measure at the point x ∈ X. For a

probability measure τ ∈ M (X × Y ) on the product of two Polish spaces X and

Y , τ
X

and τ
Y

denote the marginals of τ on X and Y respectively.

We next introduce some specific notation and terminology for a large game con-

sidered in this paper. Note that we work within the recent generalized framework

of a large game by Khan et al. (2013a) that take players’ traits into consideration.

In this framework, a player’s characteristics consist of both payoffs and traits, and a

societal summary is formulated as a joint distribution on the space of traits and the

action set.7 Formally, let (I,I , λ) be an atomless probability space representing

the player space, A a compact metric space representing the set of actions, and T

another compact metric space representing the space of players’ traits. Let U(A,T )

be the space of real-valued continuous functions on A ×M (T × A), representing

the space of payoff functions, metrized by the supremum norm. The characteristics

of an individual player consist of a trait and a payoff function, and thus the space

of characteristics is T ×U(A,T ). A large game is a measurable function G from the

player space (I,I , λ) to the space of characteristics T ×U(A,T ).
8

2.1 Nash Equilibrium and Nash Equilibrium Distribution

We are now ready to present two standard notions of equilibria that are commonly

used in the literature of large games. The first one involves the player space.

Definition 1 (NE). A pure strategy profile f of a large game G : I → T ×U(A,T )

is a measurable function from (I,I , λ) to the action set A, and is said to be a

(pure strategy) Nash equilibrium (NE) if for λ-almost all i ∈ I,

ui
(
f(i), λ(α, f)−1

)
≥ ui

(
a, λ(α, f)−1

)
for all a ∈ A,

with ui abbreviated for G2(i), and α abbreviated for G1, where Gk is the projection

7See Khan et al. (2013b) for its corresponding distributional approach. It is straightforward
to see that when the space of traits is reduced to a singleton, a large game with traits reduces
to a conventional large game (without traits) as surveyed in Khan and Sun (2002).

8When the trait space is a singleton, a large game can be reduced to a measurable function
from the player space to to the set UA, where UA is the space of real-valued continuous functions
on A×M (A).
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of G on its k-th coordinate, k = 1, 2.

Given a large game G : I → T ×U(A,T ), one can consider its distributional form

λG −1. This is a Borel probability measure on T ×U(A,T ), and the corresponding

solution notion can be defined as below by ignoring the player space.

Definition 2 (NED). A Borel probability measure τ on T×U(A,T )×A is said to be

a Nash equilibrium distribution (NED) of a large game λG −1 in its distributional

form if τ
T×U(A,T )

= λG −1 and τ
(
Br(τ)

)
= 1 where

Br(τ) =
{

(t, v, a) ∈ T ×U(A,T ) × A | v(a, τ
T×A

) ≥ v(x, τ
T×A

) for all x ∈ A
}
.

It is now well-understood that in a large game G : I → T × U(A,T ), if f is an

NE of G , then λ(G , f)−1 is an NED of λG −1. Hence, given any NE as a solution

at the individual microeconomic level, its macroeconomics counterpart automati-

cally becomes an NED of the same game in its distributional form. However, the

converse often fails. This is to say, in a large game G : I → T ×U(A,T ), given an

NED τ of λG −1, it is possible that there does not exist any NE f of G such that

τ = λ(G , f)−1. Below is a simple example.9

Example 1. Let the player space be the Lebesgue unit interval ([0, 1],B([0, 1]), `),

the space of traits be a compact metric space T̂ , and the common action set be

Â = [0, 1]. Take an element t̂ in T̂ . Let Ĝ : [0, 1] → T̂ × U(Â,T̂ ) be such that for

each player i ∈ [0, 1], each action a ∈ Â and each societal trait-action distribution

ν ∈M (T̂ × Â),

Ĝ (i)(a, ν) =
(
t̂,−a2 · (a− i)2

)
.

It is clear that Ĝ is a well-defined large game.

Let f1 and f2 be two strategy profiles of Ĝ such that f1(i) = 0 and f2(i) = i

for each i ∈ [0, 1]. Both f1 and f2 are NE of the game Ĝ since actions 0 and i are

the best choices for player i. Let τ̂ = 1
2
`(Ĝ , f1)−1 + 1

2
`(Ĝ , f2)−1. One can easily

check that τ̂ is an NED of `(Ĝ )−1.

However, there does not exist any NE f such that `(Ĝ , f)−1 = τ̂ . Suppose not,

then by the construction of τ̂ , we must have `f−1 = 1
2
δ0 + 1

2
`. Furthermore, since

9In this example, both NE and NED exist. Note that while NED always exists, there are
examples where NE does not exist at all; see Footnote 5.

6



f is an NE, f(i) should be 0 or i for `-almost all i ∈ [0, 1]. Suppose that f(i) = i

holds on some set C ∈ B([0, 1]). Then we must have

`(C) = `f−1(C) =
(

1
2
δ0 + 1

2
`
)
(C),

and hence `(C) is 0 or 1. This contradicts the fact that `f−1 = 1
2
δ0 + 1

2
`.

2.2 Type-Symmetric Randomized Equilibrium in a Large

Game

Instead of an individualized notion of equilibrium in pure strategies in a large

game, we now consider one in randomized strategies, and a novel refinement of it.

Definition 3 (TSRE). A randomized strategy10 profile h of a large game G : I →
T ×U(A,T ) is a measurable function from (I,I , λ) to M (A), and is said to be a

randomized strategy equilibrium (RSE) if for λ-almost all i ∈ I,∫
A

ui

(
a,

∫
I

δα(j) ⊗ h(j) dλ(j)

)
h(i; da) ≥

∫
A

ui

(
a,

∫
I

δα(j) ⊗ h(j) dλ(j)

)
dη(a)

for all η ∈M (A). An RSE h of a large game G : I → T×U(A,T ) is said to be a type-

symmetric randomized equilibrium (TSRE) if h(i) = h(j) whenever G (i) = G (j).

Note that for any given randomized strategy profile h of a large game G : I →
T × U(A,T ), the corresponding type-action distribution

∫
I
δG (j) ⊗ h(j) dλ(j) is a

well-defined macro aggregate.

In a TSRE, intuitively, all players with the same characteristics are required

to play the same randomized action. We next show that this new notion of equi-

librium does not only provide a generic micro-foundation of NED in general, but

also provide a uniqueness characterization of an NED when the player space is the

Lebesgue unit interval ([0, 1],B([0, 1]), `).

Theorem 1. In a large game G : I → T×U(A,T ), we have the following statements:

10Note that we avoid using mixed strategy here due to the measurability issue associated with
a continuum of independent random variables; see Sun (2006) for a detailed discussion of the
issue, and Definition 7 below for a proper definition of a mixed strategy equilibrium in a large
game.
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(i) For any TSRE of G , the induced type-action distribution is an NED of λG −1.

(ii) For any NED of λG −1, there is a TSRE of G that induces it.

(iii) If (I,I , λ) is the Lebesgue unit interval, then for any NED of λG −1, there

is a unique TSRE of G that induces it.

Statement (i) basically suggests that the type-action distribution associated with

any TSRE is an NED, and statement (ii) says that every NED can be lifted to

some TSRE at the individual level so that the TSRE induces the same aggregate

as given. These characterizations themselves are new in the literature. What is

surprising is statement (iii). It says that any NED τ is uniquely determined by

a particular TSRE h when the player space is the Lebesgue unit interval. That

is to say, for large games with the Lebesgue agent space, we have a one-to-one

characterization between an equilibrium distribution at the aggregate level and an

equilibrium at the individual level.

In Example 1, let ĥ : [0, 1]→M (Â) be a randomized strategy profile of Ĝ such

that for each i ∈ [0, 1],

ĥ(i) =
1

2
δ0 +

1

2
δi. (1)

It is clear that ĥ is a TSRE that induces the NED τ̂ . Furthermore, since an NE is

a degenerated RSE and every player in Ĝ in Example 1 has a payoff different from

others, any NE of Ĝ is a degenerated TSRE. Statement (iii) in Theorem 1 implies

that ĥ is the unique TSRE that induces τ̂ . Thus, this is to show directly that

there is no NE of Ĝ that can induce τ̂ , and to reemphasize that whereas NE is not

suitable as a micro-foundation for NED, our new notion of equilibrium, TSRE, is

indeed a generic and sharp micro counterpart of NED.

We next offer three observations related to TSRE in large games.

First, note that in the discussion above, we have used the type-symmetric

idea directly to NE since an NE can be always trivially viewed as an RSE. We

next make this refinement of NE explicit, and say that an NE f s of a large game

G : I → T ×U(A,T ) is type-symmetric if f s(i) = f s(j) whenever G (i) = G (j).

In the literature of large games, a symmetric NED is often discussed as a

macro solution concept that implicitly requires that all players with the same
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characteristics play the same action.11 The type-symmetric NE defined above

connects explicitly the individual behavior and the societal outcome, and allows

us to characterize a symmetric NED. Recall that in a large game G : I → T ×
U(A,T ), an NED τ of λG −1 is symmetric if there exists a measurable function

s : T × U(A,T ) → A such that τ(graph of s) = 1. Below is a direct corollary of

Theorem 1.

Corollary 1. In a large game G with the Lebesgue agent space ([0, 1],B([0, 1]), `),

if τ is a symmetric NED, then there exists a unique type-symmetric NE f such

that `(G , f)−1 = τ .

Second, the next observation allows us to connect an RSE to a TSRE in a large

game. We say that an RSE h can be symmetrized if there exists a TSRE hs such

that h and hs induce the same type-action distribution. The result below shows

that at the aggregate level, there is no essential difference between an RSE and a

TSRE.

Corollary 2. Every RSE in a large game can be symmetrized.

Finally, we conclude this section by using the example below to point out that

Theorem 1 (iii) may fail to hold if a probability space other than the Lebesgue

unit interval is used as the player space.

Example 2. Consider a game Ḡ which differs from the game Ĝ defined in Exam-

ple 1 only in terms of the player space: let that of Ḡ be ([0, 1], B̄, ¯̀)—an extension

of the Lebesgue unit interval ([0, 1],B([0, 1]), `) such that there is a B̄-measurable

subset B of measure half and independent with B([0, 1]) under ¯̀.12 It is obvious

that τ̂ defined in Example 1 is still an NED of ¯̀(Ḡ )−1, and that ĥ defined as in

Equation (1) is a TSRE such that (Ḡ , ĥ) induces the NED τ̂ .

11For symmetric NED, see Mas-Colell (1984) and Khan and Sun (2002, Section 4). Such an
idea is used in a large economy as “the equal treatment” as well; see the references of equal
treatment and the discussion of symmetric mechanism in Hammond (1979).

12It is well-known that there is a nonmeasurable (in the Lebesgue sense) subset B in [0, 1]
with the inner measure zero and the outer measure one; see the construction in Section 3.4 in
Royden (1988). Let B̄ = {(B1∩B)∪ (B2 \B) | B1, B2 ∈ B([0, 1])} and ¯̀

(
(B1∩B)∪ (B2 \B)

)
=

1
2

(
`(B1) + `(B2)

)
. It is easy to check that ([0, 1], B̄, ¯̀) is a probability space and the set B is of

measure 1
2 and independent with B([0, 1]) under ¯̀.
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Let h̄ : [0, 1]→M (Â) be defined as follows:

h̄(i) =

δi, if i ∈ B,

δ0, if i ∈ [0, 1] \B.

It is clear that h̄ is a TSRE of the game Ḡ and induces the NED τ̂ . Thus, the

uniqueness characterization in Theorem 1 (iii) does not work for the game Ḡ .

3 Large Economies

Let (I,I , λ) be an atomless probability space representing the space of agents, Rn
+

representing the commodity space, and Pmo representing the space of monotonic

preference relations on Rn
+. We endow the space Pmo with the metric of closed-

convergence.13 The characteristics of an agent consist of a preference as well as an

endowment, and thus the space of characteristics of agents is Pmo × Rn
+. A large

economy is a measurable function E from the agent space (I,I , λ) to the space

of characteristics Pmo × Rn
+ such that for each i ∈ I, E (i) = (%i, e(i)), and the

mean endowment
∫
I
e dλ is finite and strictly positive.

3.1 Walrasian Allocation and Walrasian Equilibrium Dis-

tribution

Let D(p,%, e) be the demand correspondence when the price vector, preference

and endowment are p, % and e respectively. That is to say, D(p,%, e) is the set

of all maximal elements for % in the budget set {x ∈ Rn
+ : p · x ≤ p · e}. We are

now ready to state two standard notions of equilibria that are commonly used in

the literature of large economies. Similar to large games, we have both individual

and distributional approaches to define an equilibrium in a large economy. The

individualized approach, as in Aumann (1964), involves the agent space.

13The lemma on Hildenbrand (1974, p. 98) shows that the space Pmo with the metric of
closed-convergence is a Gδ set in a compact metric space. By the classical Alexandroff’s Lemma
(see Aliprantis and Border (2006, p. 88)), Pmo is a Polish space.
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Definition 4 (WE). An allocation f of a large economy E : (I,I , λ)→Pmo×Rn
+

is an integrable function from (I,I , λ) to Rn
+, and is said to be a Walrasian

allocation under a nonzero price vector p ∈ Rn
+ if

1. for λ-almost all i ∈ I, f(i) ∈ D
(
p,%i, e(i)

)
;

2.
∫
I
f(i) dλ(i) =

∫
I
e(i) dλ(i).

The pair (f ,p) above is also said to be a Walrasian equilibrium (WE) of the

economy E .

Given a large economy E : (I,I , λ) → Pmo × Rn
+, we can also consider its

distributional form λE −1. As in Hildenbrand (1974), we can also apply the distri-

butional approach to model a macro notion of solution as below:

Definition 5 (WED). A Borel probability measure τ on (Pmo × Rn
+) × Rn

+ is

said to be a Walrasian equilibrium distribution (WED) under a nonzero price

vector p ∈ Rn
+ of a large economy λE −1 in its distributional form if the marginal

distribution of τ on the space of characteristics Pmo × Rn
+ is λE −1, and

1. τ(Ep) = 1, where Ep =
{

(�, e,x) ∈Pmo × Rn
+ × Rn

+ | x ∈ D(p,�, e)
}

;

2.
∫

Pmo×Rn
+
e dλE −1 =

∫
Rn
+
x dν, where ν is the marginal distribution of τ on

the space of commodity space (i.e., the second Rn
+ in (Pmo × Rn

+)× Rn
+).

Note that given any large economy E , if (f ,p) is a WE of E , then the joint

(type-allocation) distribution of the economy E and the Walrasian allocation f

is a WED under p of λE −1. However, the converse may not hold: given a large

economy E and a WED τ under p of λE −1, there may not exist any Walrasian

allocation f under p such that λ(E ,f)−1 = τ . And thus, we also need to provide

an alternative notion of equilibrium as the micro-foundation of the notion of equi-

librium distribution of a large economy as well. In fact, we can directly exploit

the same idea as in Section 2.2 to define a refinement of a randomized Walrasian

allocation as below.
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3.2 Type-Symmetric Randomized Equilibrium in a Large

Economy

Definition 6 (TSRE). A randomized allocation h of a large economy E is an

integrable function from (I,I , λ) to M (Rn
+), and is said to be a randomized

Walrasian allocation under a nonzero price vector p ∈ Rn
+ if

1. for λ-almost all i ∈ I, h(i) ∈M (Rn
+) with support in D

(
p,%i, e(i)

)
;

2.
∫
I
h dλ is the Dirac measure at

∫
I
e dλ.

The pair (h,p) above is said to be a type-symmetric randomized equilibrium

(TSRE) if h is a type-symmetric randomized Walrasian allocation (i.e. h(i) = h(j)

whenever E (i) = E (j)).

Every randomized allocation h of a large economy E naturally induces a type-

allocation distribution
∫
I
δG (j)⊗h(j) dλ(j) as the corresponding macro aggregate.

Analogous to the proof of Theorem 1 in the last section, we can show the following

theorem:

Theorem 2. In a large economy E : (I,I , λ)→Pmo×Rn
+, we have the following

statements:

(i) For any TSRE (h,p) of E , the type-allocation distribution induced by h is a

WED of λE −1 under p.

(ii) For any WED τ of λE −1 under p, there is a TSRE (h,p) of E such that h

induces it.

(iii) If (I,I , λ) is the Lebesgue unit interval, then for any WED τ of λE −1 under

p, there is a unique TSRE allocation h under p such that h induces it.

The large economy Ê in the next example is taken from Kannai (1970). In such

an economy, we construct a WED τ̂ of λ(Ê )−1 and show that τ̂ is corresponding to a

unique (non-degenerated) TSRE of Ê under the same price vector p̂. Similar to the

discussion below Equation (1) for a large game, this uniqueness also implies that

there does not exist any Walrasian allocation f under p̂ such that λ(Ê ,f)−1 = τ̂ .
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Example 3. Consider the following economy Ê with two goods. Let the space

of agents be the Lebesgue unit interval ([0, 1],B([0, 1]), `). Let all agents have

the same preference where the corresponding indifference curves are parallel as

shown in Figure 1 below. For each k = 1, 2, the line segment Dk is represented

D1

D2

W

Bl(p
∗)

Bh(p
∗)

θ

θ

θ

θ

Indifference curve

Indifference curve

L

H

A1

A′
1

A2

A′
2

x

y

Figure 1: Indifference curves and budget lines

by y = x + 3
2
− k for x ∈ [2k+1

4
, 2k+5

4
] with the end points Ak = (2k+1

4
, 7−2k

4
) and

A′k = (2k+5
4
, 11−2k

4
). The angle θ is chosen to be sufficiently small (e.g., θ < 45

degrees) so that the preference is monotonic. Let the endowment for every agent

i ∈ [0, 1] be e(i) = (1 + i, 1 + i). In Figure 1, the set of all endowments is just

the line segment W : y = x for x ∈ [1, 2] with the end points L = (1, 1) and

H = (2, 2). The economy Ê specified by the preference and the endowment is

clearly a well-defined large economy.

Let p̂ = (1, 1). The parallel dashed lines Bl(p̂) and Bh(p̂) are perpendicular

to the parallel line segments D1 and D2. Let f1 and f2 be two allocations of Ê

such that f1(i) = (i + 3
4
, i + 5

4
) and f2(i) = (i + 5

4
, i + 3

4
) for all i ∈ [0, 1]. Both

(f1, p̂) and (f2, p̂) are WE of Ê since allocations (i + 3
4
, i + 5

4
) and (i + 5

4
, i + 3

4
)

are the best choices for each agent i ∈ [0, 1]. Let τ1 = `(Ê ,f1)−1, τ2 = `(Ê ,f2)−1

and τ̂ = 1
2
τ1 + 1

2
τ2. One can check that τ̂ is a WED of `(Ê )−1 under p̂.
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Let ĥ : [0, 1]→M (R2
+) be a randomized allocation of Ê such that for i ∈ [0, 1],

ĥ(i) =
1

2
δ(i+ 3

4
,i+ 5

4
) +

1

2
δ(i+ 5

4
,i+ 3

4
).

It is clear that (ĥ, p̂) is a TSRE where ĥ induces the WED τ̂ . By Theorem 2 (iii),

ĥ is also the unique type-symmetric Walrasian allocation that induces τ̂ under

p̂.

We have concluded the last section with three observations for a large game.

Here we simply point out that one easily does the same for a large economy: one

can define a type-symmetric (pure) Walrasian allocation, show the symmetrization

of any randomized Walrasian allocation, and also demonstrate the failure of the

uniqueness in Theorem 2 (iii) if a non-Lebesgue agent space is used.

4 Discussion

We have demonstrated that in a large game/economy, an equilibrium distribution

corresponds to a type-symmetric randomized equilibrium, and such a correspon-

dence is unique when the agent space is the Lebesgue unit interval. On the one

hand, the uniqueness characterization explains that the robustness of the exis-

tence of an equilibrium distribution simply lies in that it is essentially a notion of

randomized equilibrium. On the other hand, the type-symmetric characterization

might be useful in applications to explain the similar behaviors of agents with the

similar type of characteristics in the macro notion of equilibrium distribution.

One more notion of equilibrium with randomization is the so-called mixed

strategy equilibrium. Such an notion requires the randomization to be independent

across agents. In the setting of a continuum of agents, this leads to a process with a

continuum of independent random variables. In order to resolve the measurability

issue of such processes and to guarantee the existence of such processes with a

variety of distributions, we adopt the framework of a rich Fubini extension as in

Sun (2006). Recall that a Fubini extension (I ×Ω,I �F , λ�P ) is a probability

space that extends the usual product space of the agent space (I,I , λ) and a

sample space (Ω,F , P ), and retains the Fubini property. A Fubini extension is

14



rich if it has a measurable process with independent random variables of uniform

distribution on [0, 1].14

For simplicity, we shall consider mixed strategy equilibrium only for large

games.

Definition 7 (MSE). A mixed strategy profile of a large game G is a I �F -

measurable function g : I × Ω → A where g is essentially pairwise independent,15

and is said to be a mixed strategy equilibrium (MSE) of G if for λ-almost all i,∫
Ω

ui
(
gi(ω), λ(α, gω)−1

)
dP ≥

∫
Ω

ui
(
η(ω), λ(α, gω)−1

)
dP (2)

for all random variables η : Ω → A. Furthermore, we say that a mixed strategy

profile g of G : I → T × U(A,T ) has the ex-post Nash property if for P -almost all

ω ∈ Ω, gω is an NE for the same game.

Note that NE, RSE and MSE are equilibrium notions under the individualized

approach. The next result16 addresses the relationship of these three equilibrium

notions.

Proposition 1. In a large game G : I → T ×U(A,T ), we have the following state-

ments:

(i) For every MSE g, if h is such that h(i) = P (gi)
−1 for all i ∈ I, then h is an

RSE. For every RSE h, there exists an MSE g such that h(i) = P (gi)
−1 for

all i ∈ I;

14A rich Fubini extension is also called a rich product probability space in Sun (2006).
15This is to say, for λ-almost all i ∈ I, g(i, ·) and g(j, ·) are independent for λ-almost all j ∈ I;

see Definition 2.7 of Sun (2006). Given that (I,I , λ) is an atomless (complete) probability space,
a single point (and thus up to countably many points) has measure zero, and thus essential
pairwise independence is more general than the usual pairwise and mutual independence.

16The result appeared in an earlier unpublished version of Khan et al. (2015). We state it
here for the sake of completeness. The key idea for proving the result is to apply the exact
law of large numbers in Corollary 2.9 of Sun (2006) to claim that for P -almost all ω ∈ Ω,
λ(α, gω)−1 = λ � P (α, g)−1. Thus Equation (2) is equivalent to the fact that for P -almost
all ω ∈ Ω, gi(ω) ∈ arg maxa∈A ui

(
a, λ� P (α, g)−1

)
= arg maxa∈A ui

(
a, λ(α, gω)−1

)
, which is

also equivalent to the ex-post Nash property. To represent a given RSE h by an MSE g, one
can directly apply Proposition 5.3 of Sun (2006) on the universality property of a rich Fubini
extension, which says that one can construct processes on a rich Fubini extension with essentially
pairwise independent random variables that take any given variety of distributions. The exact
law of large numbers and the optimality condition of an RSE then imply Equation (2).
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(ii) A mixed strategy profile is an MSE if and only if it has the ex-post Nash

property.

Together with Theorem 1 and Corollary 2, we are now ready to delineate the

relations of all the equilibrium notions in large games in Figure 2.17

NE

NED MSE

TSRE RSE
Corollary 2

Theorem 1 Proposition 1 (i)

Trivial
Saturation Property

Trivial
Proposition 1 (ii)

Figure 2: Classification of all equilibrium notions in large games

Sun and Zhang (2009) constructed a rich Fubini extension whose agent space

extends the usual Lebesgue unit interval. Based on such a framework, Propo-

sition 1 (i) guarantees that a mixed strategy equilibrium ĝ for the game Ĝ in

Example 1 can be constructed from the TSRE ĥ in Equation (1). It then follows

from Proposition 1 (ii) that the realized pure strategy profile ĝω is a pure strategy

Nash equilibrium of the game Ĝ for almost all sample realization ω ∈ Ω, where

exactly half of the agents play action 0 and the other half play action according

to their names.

5 Proof of Results

The proof of Theorem 1 uses the following properties of analytic sets.18

17It follows from Theorem 4.2 in Sun (2006) that the agent space in the framework of a rich
Fubini extension will automatically have the saturation property. For the details of the saturation
property and its equivalent versions, see Keisler and Sun (2009).

18For the definition of analytic sets and Lemma 1 (i), see Aliprantis and Border (2006, p. 446)
and for Lemma 1 (ii), see Aliprantis and Border (2006, Theorem 12.28).
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Lemma 1. (i) The continuous image in a Polish space of an analytic set is ana-

lytic. (ii) A function between Polish spaces is Borel measurable if and only if its

graph is analytic.

The following lemma is also used in the proof of Theorem 1.

Lemma 2. If h be a randomized strategy profile of a large game G : I → T×U(A,T ),

then h is an RSE of G if and only if the type-action distribution induced by h is

an NED of λG −1.

Proof. Let τ =
∫
I
δG (j) ⊗ h(j) dλ(j), the type-action distribution induced by h. It

is clear that ∫
I

δα(j) ⊗ h(j) dλ(j) = τ
T×A

and λG −1 = τ
T×U(A,T )

.

By definition, if h is an RSE of G , then for λ-almost all i ∈ I, we have∫
A

ui

(
a,

∫
I

δα(j) ⊗ h(j) dλ(j)

)
h(i; da) ≥

∫
A

ui

(
a,

∫
I

δα(j) ⊗ h(j) dλ(j)

)
η(da)

for all η ∈M (A). This is equivalent to that for λ-almost all i ∈ I, we have∫
A

ui
(
a, τ

T×A

)
h(i; da) ≥

∫
A

ui
(
a, τ

T×A

)
η(da)

for all η ∈M (A). The above inequality holds if and only if for τA-almost all a ∈ A,

ui(a, τT×A
) = max

a∈A
ui(a, τT×A

),

i.e., τ
(
Br(τ)

)
= 1. The proof is now complete.

Proof of Theorem 1. It is implied by Lemma 2 directly that (i) each TSRE of a

large game induces an NED of the distributional form of the large game since any

TSRE is automatically an RSE of the same game. We next show that (ii) every

NED of λG −1 can be “lifted” to some TSRE in G . Let τ be an NED of λG −1

and k : T × U(A,T ) → M (A) the disintegration of τ with respect to λG −1.19 Let

19The disintegration of a probability measure τ on two polish spaces with respect to a given
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h = k ◦ G : I → M (A). By the change of variable theorem and the property of

the disintegration, we have that∫
I

δG (j) ⊗ h(j) dλ(j) =

∫
T×U(A,T )

δ(t,v) ⊗ k(t, v) dλG −1 = τ.

By Lemma 2 and the construction of h, it is clear that h is a TSRE of G .

We only need to prove statement (iii). Let G l be a large game with the Lebesgue

name space ([0, 1],B[0, 1], `). Let τ be an NED of `(G l)−1 and let kl : T×U(A,T ) →
M (A) be the disintegration of τ with respect to `(G l)−1. From the proof of

statement (ii) above, we know that hl := kl ◦ G l is a TSRE of G l. We next show

that it is also the unique TSRE.

Towards this end, let h′ be another TSRE of G l that induces τ . It is enough

to show that for `-almost all i ∈ I, h′(i) = hl(i). Consider the mapping

(G l, h′) : [0, 1]→ T ×U(A,T ) ×M (A).

Since both G l and h′ are Borel measurable, so is (G l, h′). Thus, Lemma 1 (ii)

implies that Graph(G l, h′) is analytic.

Next, fix a0 ∈ A and let H : T ×U(A,T ) →M (A) be a mapping such that

H(t, v) =

h′(i), if (t, v) = G l(i);

δa0 , otherwise.

Let H|range(G l) : range(G l) → M (A) be the restriction of H on the range of G l.

From the construction, the graph of H|range(G l),

Graph
(
H|range(G l)

)
= ProjT×U(A,T )×M (A) Graph(G l, h′),

the projection of the graph of (G l, h′) on T × U(A,T ) ×M (A). Since the pro-

jection mapping is continuous and Graph(G l, h′) is analytic, we can now appeal

marginal λG−1 on one polish space always exist and is unique (λG−1-almost everywhere); see
Crauel (2002, Proposition 3.6) for example. In fact, such an observation of existence has been
pointed out in Khan (1989) even for a large game with a non-metrizable action set; see Khan
(1989) for more details. Note that a disintegration is also known as a regular conditional distri-
bution in probability theory; see Dudley (2002, p. 342–345) for related discussion.
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to Lemma 1 (i) to assert that Graph
(
H|range(G l)

)
is also analytic. Thus, by

Lemma 1 (ii) again, we can say that H|range(G l) is Borel measurable. As the Borel

sets of range(G l) are the restrictions of the Borel sets of T ×U(A,T ) to range(G l)

(see Aliprantis and Border (2006, Corollary 4.20) for example), there exists a Borel

measurable mapping H ′ : T ×U(A,T ) →M (A) such that H|range(G l) is also the re-

striction of H ′ on the range of G l; see, for example, Dudley (2002, Theorem 4.2.5)

and the discussion below it. Furthermore, from the construction, it is clear that

h′ = H ◦ G l = H|range(G l) ◦ G l = H ′ ◦ G l. Since h′ is a TSRE that induces τ , we

now have

τ =

∫
I

δG l(j) ⊗ h′(j) d`(j) =

∫
T×U(A,T )

δ(t,v) ⊗H ′(t, v) d`(G l)−1.

This is to say, H ′ is also a disintegration of τ with respect to `(G l)−1. By

the (`(G l)−1-almost everywhere) uniqueness of the disintegration, H ′ and kl are

`(G l)−1-almost everywhere the same. So, h′(= H ′ ◦G l) and hl(= kl ◦G l) must also

be `-almost everywhere the same. This completes the proof.

Proof of Corollary 1. Let G be a large game with the Lebesgue unit interval as its

name space, and τ s be a symmetric NED of it. Then there exists a measurable

function s : T × U(A,T ) → A such that τ s(graph of s) = 1. We can construct a

measurable function f : [0, 1]→ A so that f = s◦G . It is easy to check that f is a

symmetric NE (hence a TSRE) of G such that τ s = `(G , f)−1. As τ s is an NED,

Theorem 1 (iii) implies that there is a unique TSRE that induces τ s. Hence f is

the unique symmetric NE that induces τ s.

Proof of Corollary 2. Lemma 2 implies that the type-action distribution induced

by an RSE is an NED. Then by Theorem 1 (ii), we can find an TSRE that induces

the same NED.
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