
Uncertainty-driven Cooperation∗

Doruk Cetemen† Ilwoo Hwang‡ Ayça Kaya§

April 16, 2016

(PRELIMINARY AND INCOMPLETE: COMMENTS WELCOME)

Abstract

We consider a finite-horizon repeated team production game where team members receive in-

terim feedback which is informative of effort choices as well as an uncertain state of the world. The

uncertain state effects the returns to effort. We show that the presence of uncertainty alleviates the in-

efficiencies due to productive free-ridership. In the unique sequential equilibrium, the agents increase

their efforts in order to influence the interim feedback signal, which in turn influences their partners’

beliefs about the uncertain state, consequently affecting their future effort choices. We show that the

resulting equilibrium effort level is higher than that in the complete information case, and may even

exceed its first best level. Our results extend to the continuous-time limit as well as the infinitely re-

peated version. Last, we study an asymmetric information model in which some of the agents know

the true state while the others are uninformed.
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1 Introduction

Team production is increasingly prevalent in the modern workplace1. Firms may opt to base compen-

sation on team performance measures even when individual measures are available.2 In other instances,

individual performance measures may simply be unavailable.3 The main disadvantage of using team

incentives—i.e. compensation based on team performance measures—is the inclination of team mem-

bers to free-ride on the efforts of others and thus reduce their own efforts. This disadvantage has been

recognized at least since Alchian and Demsetz (1972). Our paper identifies a novel effect that counter-

acts the effort-reduction impact of free-ridership in environments with uncertainty. We show that in such

environments, impact of free-ridership may be completely nullified. In fact, there may be instances of

over-provision of effort.

Our result pertains to environments that have the following characteristics: 1) a team of workers

engage in joint production over time; 2) team members’ individual effort choices are unobservable;

and 3) members receive interim feedback. We show that in such environments presence of uncertainty

about the returns to effort alleviates the free-ridership problem relative to cases where there is no such

uncertainty.

What is the mechanism underlying this result? In general, free-ridership arises because self-maximizing

team members fail to internalize the positive externalities of their effort, leading to its under-provision.

However, in the presence of uncertainty, and when the interaction is dynamic, there is an additional per-

sonal return for the effort which counter-acts the free-ridership effect. This benefit arises because higher

current effort increases the likelihood of receiving better interim feedback. A better feedback, in turn,

renders team members more optimistic and thus more willing to exert effort in the subsequent phases of

joint production. To put it in terms of established terminology, the extra incentives for effort stems from

the team members’ wish to jam the feedback signal; i.e. to engage in “signal-jamming”.

Our main model incorporates the above three crucial characteristics, yet is simple enough to be free

1Using survey data, Osterman (1994, 2000) estimates that among private, for-profit establishments that have at least 50
employees, approximately 40% has at least half of their employees organized in teams. Similarly, Lawler, Mohrman, and
Benson (2001) reports that 47% of Fortune1000 companies make use of self-managed teams.

2E.g. see Hamilton, Nickerson, and Owan (2003) for an empirical analysis of individual versus group incentives in
manufacturing and Knez and Simester (2001) for an empirical analysis of team incentives by Continental Airlines.

3E.g. see Boning, Ichniowski, and Shaw (2001) (p. 615) for a discussion of U.S. steel minimills where “unlike other
production processes where individual output can be accurately measured and individual incentives can be used to raise
worker productivity [...], it is only overall output for the entire line [...]that can be measured [...]. As a result, only group
incentives are used”.
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of confounding mechanisms. Specifying such a “minimal” model allows us to focus on the impact of

uncertainty on team incentives in a transparent manner. Specifically, in our model, N agents engage

in joint production over a finite number of periods. In each period, agents simultaneously choose their

effort levels and then receive feedback, which is a noisy signal of effort and the uncertain state of the

world. We assume that feedback is additively separable in the state and the total effort, garbled with

a Gaussian noise. We assume a quadratic cost function. At the end of the productive relationship, the

agents receive their share of the joint output, which is also linear in the total effort with an unknown

coefficient. The prior distribution of this unknown coefficient, which we take as the state of the world, is

assumed to be Gaussian. Our linear-quadratic-Gaussian specification has various advantages. First, our

model has a unique perfect Bayesian equilibrium, which takes a simple and easily interpretable form.

Second, it allows us to highlight the mechanism we analyze in this paper by eliminating other factors. In

particular, the additive separability of effort and noise implies that all effort levels are equally informative.

Therefore, the agents’ effort choices are affected only by production externalities among team members

and not by informational externalities. Also, it eliminates the “experimentation” motive—namely the

inclination to manipulate effort choices to increase the speed of own and others’ learning—from the

incentives of team members.

The unique equilibrium of our model has a very simple form: the equilibrium effort choice of each

agent is linear in his current expectation of the state. Moreover, the coefficient that multiplies the belief—

which we term the belief-sensitivity of effort—depends only on the calendar time. The larger the belief-

sensitivity of effort, the more exaggerates are the equilibrium effort choices. This equilibrium strategy is

the same on and off the path of play, which greatly simplifies our analysis. We then compare our result to

two benchmarks: the unique equilibrium under complete information; and the socially optimal outcome.

In our model, the equilibrium effort levels in both benchmarks are also linear in the expectation of the

state. Therefore, comparing our equilibrium outcome to these two benchmarks boils down to comparing

the belief-sensitivity of effort. We find that the belief-sensitivity of effort under uncertainty is always

larger than that under complete information, except in the last period when they are equal. Moreover, we

show that in some periods, the belief-sensitivity of effort may exceed its socially optimal level, implying

inefficient overproduction in such periods.

We conduct several comparative statics analysis. First, the belief sensitivity of effort decreases over

time. Second, the ex-ante expected total output decreases in the precision of the initial prior and increases

5



in the precision of the feedback technology. To understand these results, note that the agents’ incentives

to exaggerate their effort increases in the return to jamming the feedback. Then, the first result follows

because in earlier periods jamming the feedback will influence the effort choices of others for a longer

stretch of time. The second result follows because the belief updating of team members puts a larger

weight on the feedback—and therefore, their future efforts become more sensitive to feedback—if the

feedback is relatively more precise than the initial prior.

We also analyze an infinite-horizon version of our model. We show the existence of an equilibrium

with similar characteristics in the infinitely repeated game. It is well-known that there exists a multiplicity

of equilibria in infinitely repeated games. In such equilibria, the agents’ intertemporal incentives are

provided by “punishment” of the other agents based on the information of its past behavior (e.g. trigger

strategies). However, the literature has shown that as the agents’ action becomes frequent, the scope

of cooperative behavior may be limited (Abreu, Milgrom, and Pearce, 1991; Sannikov and Skrzypacz,

2007). In this paper, we conjecture that as the time between successive periods become arbitrarily small

(i.e. as the agents can adjust their effort choices increasingly frequently), our equilibrium gives the

maximum attainable equilibrium payoff. That is, even when the standard trigger mechanism is ineffective

for incentivizing effort, the presence of uncertainty may provide an incentive to alleviate free-ridership.

We also consider an asymmetric information version of our model in which some team members (ex-

perts) know the state of the world while the others (novices) are uninformed. We characterize the unique

symmetric Markov equilibrium that is linear in agents’ information. Last, we analyze various implica-

tions of our model, such as optimal team composition, optimal information disclosure by a principal and

role of the contracts.

1.1 Two-Period Example

In order to demonstrate the underlying mechanism of our main result, let us consider a simple two-

period example. Suppose that two agents engage in a team production over two periods. In each period,

each agent chooses effort ai ∈ {L,M,H}, which is interpreted as putting zero, one, and two units of

effort, respectively. Cost of effort is c(L) = 0,c(M) = c, and c(H) = 2c. We assume that the effort level

is unobservable to each other. A stochastic outcome, either Success or Fail, is revealed in each period.

If Success is revealed, each agent receives a payoff of one. In the case of Fail, zero payoff is given.

There are two possible states of the world: θ ∈ {Good,Bad}. Probability of Success outcome de-
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Figure 1: Success probability when θ = Bad (left) and Good (right)

pends on both the state and the stage action profile. Figure 1 depicts the probability of Success in each

state of the world. When the state is Bad, each unit of effort increases the success probability by p. When

the state is Good, the first and the second unit of effort increases the probability by pG > p and p. More-

over, we assume that p < c < 2p and pG > c. These assumptions guarantee that the free-riding effect

exists in both states, but to different degrees: if θ = Bad, L is the dominant strategy of the stage game

(since p < c) while H is the socially desirable action (since c < 2p). On the other hand, if θ = Good,

free-riding effect exists only in the second unit of effort: M is the dominant strategy while H is the

socially desirable action.

Now let us analyze the equilibrium in the two-period game. First note that in the complete informa-

tion case, standard backward induction implies that the agents play (M,M) if θ = G and (L,L) if θ = B

for all t = 1,2. Now consider incomplete information about θ : let µt be the common period-t belief that

θ = G. In the second period, the agents play a myopically optimal strategy. That is, the agents play

(M,M) if µ2 > µ∗ and (L,L) if µ2 < µ∗ where µ∗ = c−p
pG−p . In the first period, however, the agents also

need to consider the effect of the current action on the future belief updating.

The following proposition states that uncertainty about the state may enhance the production:

Proposition 1. Suppose that p+ δ pc > c. Then there exist µ < µ∗ < µ̄ such that there is a unique

sequential equilibrium for any µ1 ∈ (µ, µ̄). In the equilibrium, the agents play (H,H) in t = 1.4

The underlying reasoning is as follows. Success in period 1 indicates that the state is likely to be

Good, which leads the agents to play M in period 2. On the other hand, each agent wants the other to

exert more effort regardless of the state. Knowing this, each agent has an incentive to “signal-jam” the

other by increasing the success probability.

In the main body of the paper, we build a tractable finite-horizon model in which the same mechanism

would induce agents to exert higher effort in the presence of uncertainty. Moreover, tractability of our
4The proof of the proposition is in Appendix A.
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main model enables us to analyze various applications, such as comparative statics, dynamic information

design, and extensions to infinite-horizon and asymmetric information case.

The rest of the paper is organized as follows. The remainder of this section discusses related literature.

Section 2 formally describes the model. Section 3 characterizes equilibrium and undertakes comparative

statics exercises. Section 4 analyzes infinite-horizon version of the model. Section 5 analyzes a modified

model with asymmetric information. Section 6 is concerned with applications. The Appendix collects

omitted proofs.

1.2 Literature Review

This paper is related to the literature on agency models with symmetric uncertainty and learning.

Holmström (1999) seminal paper on “signal-jamming” shows that a manager who is concerned about

the market belief about his ability has an incentive to increase his effort. See also Cisternas (2015)

for a generalized continuous-time model.5 This paper finds the corresponding incentives in the context

of team production, and develops novel implications for the team organization such as team size and

information structure. Free-riding in teams and partnerships has been studied extensively (Alchian and

Demsetz, 1972; Holmström, 1982; Radner, Myerson, and Maskin, 1986). Main theme of these papers is,

due to the “free-riding” effect efficient effort can not be sustained as an equilibrium.

Our paper is also related to the literature on dynamic contribution to public-good project (Admati

and Perry, 1991; Marx and Matthews, 2000; Yildirim, 2006; Georgiadis, 2014). In these papers, projects

are completed when the contributions reach a pre-specified threshold. In similar setups, these papers

show that allowing dynamic contribution mitigates the free-riding problem. These models do not future

uncertainty about the quality of the project which is the driving force of our results.

The economic forces that operate within our setup has some similarities to the strategic experimen-

tation literature, but there are some crucial differences: that literature typically considers only infor-

mational externalities (Bolton and Harris, 1999; Keller, Rady, and Cripps, 2005). In these papers, each

player owns and operates his own production technology. However, the production technologies are iden-

tical and therefore, observing others’ outcomes (with or without observable effort) allows each player to

learn about his own technology. Whereas in our model, there is a common production technology that

5Dewatripont, Jewitt, and Tirole (1999) and Bonatti and Hörner (2013) also examines the signal jamming model with
different pay-off and information structures compared to Holmström (1999).
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is operated jointly by all team members, and the externalities we consider are productive, rather than

informational.

A notable exception, and perhaps the most closely related to our paper is Bonatti and Hörner (2011)

who also consider a joint production environment which entails both productive and informational exter-

nalities. 6 Recently Guo and Roesler (2015) extends the Bonatti and Hörner (2011) by allowing private

learning in addition to public learning. However, their specification of the model (Poisson bandit) has

no free-ridership problem when the state is known, and therefore that model is not suited to address the

question we raise in this paper.

Our paper is also related to the repeated games literature. Wiseman (2005, 2012) studies a perfect-

monitoring repeated game in which there is a common uncertainty about the underlying state of world

and agents learn the state over time. Wiseman (2005) proves a partial Folk theorem in a repeated game in

the case agents learn the state by public signals. In Wiseman (2012), in addition to public signal agents

receive a private signal. Fudenberg and Yamamoto (2011) allows imperfect monitoring and proves a Folk

Theorem under their new notion of perfect public ex-post equilibrium. In this paper, we do not conduct

a folk theorem analysis our model is either finite horizon, or infinite horizon with fixed discount factor.

There is a recent literature on how to design an information disclosure policy in economic environ-

ments. In that literature closest to our paper is Hörner and Lambert (2015). They study the design of

optimal rating system (which maximizes the agent’s effort) in the career-concerns framework with a sta-

tionary Gaussian environment. Pei (2015) also studies the effect of information disclosure by a third

party in the career concerns framework, however, Pei models uncertainty with Poisson-bandits instead

of Brownian motion. Smolin (2015) and Orlov (2014) examine how the choice of information disclosure

rule effects incentive provision in the principal agent setting. Ely (2014) also examines the information

disclosure in principle-agent setting but different then above papers, principal does not allow to use trans-

fers. All of the papers listed above are in the single agent setting. Similar to our paper in the multi-agent

settings, Halac, Kartik, and Liu (2014) and Bimpikis, Ehsani, and Mostagir (2014) answer the question

how to design a contest in order to maximize the effort of the contestants. Halac et al. (2014) use both

information disclosure and the reward structure as the design tool. Also in team problems Moroni (2015)

examines the question: How should a principal incentives a team of agents working on a risky project ?

6See also Bonatti and Horner (2015).
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2 Model

Time is discrete. A team of N agents are working on a project with a deadline, T. The payoffs accrue

once the complete project is submitted at the end of period T.

Each period, each agent chooses an action ait ∈ R. 7 The instantaneous cost of choosing effort ai for

agent i is 1
2a2

i . Effort choices are not publicly observable and therefore are not contractible.

The total output which is realized at the end of period T and shared equally among agents is given

by:

δ
−T [θ ×A+ν ] ,

where θ is the state of the world, A is given by

A =
T

∑
t=1

δ
t−1

N

∑
i=1

ait ,

with 0 < δ < 1, and ν ∼N (0,1/hν).

At the end of each period the agents publicly observe “feedback” yt . This can be the outcome of an

internal review done by the members, or a feedback from an employer, or some information about how

far the project has progressed. For tractability, we assume that the feedback signal is

yt = θ +At + εt ,

where At = ∑
N
i=1 ait , εt ∼N (0,1/hε), and εt’s are independent across t.

At the beginning of period 1, the state of the world is believed to be normally distributed with mean

µ0 and variance 1/h0, i.e., θ ∼N (µ0,1/h0).

Histories and strategies Let yt be a length-t public history of feedbacks and ϒ be the set of all histories

of all lengths t = 1, . . . ,T . Also let at
i be the private history of agent i′s effort choices in the first t periods,

and Ai be the set of all possible private histories. Then, a pure strategy for player i is a map from ϒ×Ai

into R.8

7Alternatively, we can assume noise comes from an eliptic distribution then we can choose action from a compact set. See
? which uses eliptic distributions

8Even though we allow mixed strategies, the unique equilibrium does not feature mixed strategies on or off the path of
equilibrium. Therefore, we omit introducing notation for mixed strategies.
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Equilibrium We focus on the sequential equilibria of our model. We conclude this section by estab-

lishing equilibria in two benchmark cases.

Static setting The effort in the unique equilibrium of the static setting is a∗static = E[θ ] = µ0
N , while the

socially optimal effort level is ā = µ0.

Complete information case (h0 = ∞): The unique equilibrium in the complete information case is

ait =
1
N θ , while the socially efficient effort is aiT = θ .

3 Equilibrium

Our model admits a unique sequential equilibrium. This unique equilibrium has a particularly simple

structure: after any history, whether it involves private deviations or not, the equilibrium strategy pre-

scribes an effort level that is linear in the current expected value of the state of the world, θ . The linear

coefficient depends only on the calendar time. We next construct this equilibrium. As a first step to

construction, we first discuss belief updating in Section 3.1. We state the uniqueness result and present

the equilibrium characterization in Section 3.2.

3.1 Belief Updating

We first remark that, since both the initial distribution of θ and the distribution of noise εt are Gaus-

sian, all posteriors are also Gaussian. Then, given equilibrium strategies a∗, a public history yt−1 and

a private history at−1
i of player i, his belief is fully determined by the mean µit(yt−1,at−1

i ,a∗) and the

precision hit(yt−1,at−1
i ,a∗) of the posterior distribution.

Next, we remark that all public histories yt are on the equilibrium path, and therefore all off-equilibrium

beliefs of a deviating player, as well as all equilibrium path beliefs are pinned down by Bayes rule.

We derive the belief updating rule recursively. At the end of period 0, player i updates his belief

based on the signal

z0 ≡ y0−ai0−∑
j 6=i

a∗j0 = θ + ε0.

11



Then, by Bayes rule

µ1i(y0,a0i,a∗) =
h0µ0 +hεz0

h0 +hε

, and h1i(y0,a0i,a∗) = h0 +hε .

Similarly, given µt−1,i,ht−1,i,yt−1,at−1,i,a∗,

µti(yt−1,at−1
i ,a∗) =

ht−1µt−1 +hεzt−1

ht−1 +hε

, and hti(yt−1,at−1,i,a∗) = ht−1 +hε .

Iterating the recursive formulation we get,

µti(yt−1,at−1
i ,a∗) = αt−1µt−1 +(1−αt)zt−1, and hti(yt−1,at−1,i,a∗) = h0 + thε , (1)

where αt = ht/(ht +hε).

Observe that the precision of the posterior belief evolves deterministically, independent of the real-

ization of the feedback yt and of the actions chosen by players, whether they are equilibrium actions

or deviations. Also observe that the mean of the posterior belief of player i also is independent of the

specific equilibrium actions or i’s own deviations, as when computing the posterior player i discounts

the feedback exactly by the total effort. In light of this , in what follows, we drop the arguments and

subscript i from the posterior precision, and simply let ht denote the precision of time t posterior belief.

When clear from the context we also drop the arguments for posterior mean and let µti denote the mean

of player i’s posterior belief.

Importantly, even though a deviation of player i leaves his own posterior belief unchanged, it impacts

the posterior beliefs of other players, as they would discount the observed feedback by the equilibrium

action of player i, rather than his unobserved deviation. This is precisely the channel via which player i

is incentivized to increase his effort, as becomes clear in the equilibrium construction of the next section.

For future reference, notice that the marginal impact of zt on belief µt is given by hε/ht . Let ρt stand for

this ratio; i.e. ρt = hε/ht .

3.2 Equilibrium

We first state our main result.

12



Proposition 2. There exists a unique sequential equilibrium. In this equilibrium, the agents’ actions

depend linearly on the mean of current belief with time varying coefficients. More specifically, for any

player i and any time-t mean belief µit ,

ait = ξt µit ,

where ξt is recursively defined by

ξt =
1
N
+

N−1
N

T

∑
s=t+1

δ
s−t

ρsξs, ξT =
1
N
, (2)

and ρs = hε/hs.9

Before presenting the proof, we comment on the equilibrium structure. Because of the quadratic

form of the effort cost, each player’s best response involves choosing effort equal to its marginal product.

This marginal product must account for not only the current increase in expected output due to increased

effort, but also the indirect effect of increased output on the beliefs and therefore future efforts of other

players. In the expression for ξit in (2), 1/N is precisely the expected increase in (player i’s share) of

output in period t. In the second additive term, ρs represents the sensitivity of the belief of each player

in period s+1 to an increase in zs, while ξs, by definition, represents the sensitivity of period s effort of

player i to an increase in his belief µis. Then, ξt collects the discounted sum of how future (i.e., from

period t +1 to T ) efforts of all players will be impacted by an increase in today’s effort by player i. The

scaling factor (N−1)/N accounts for the fact that there are (N−1) other players and player i’s share is

only 1/N of the total output. Finally, since the output is θ times the total effort, this marginal increase in

effort is multiplied by µit , the current expected value of θ , in order to convert it into marginal increase in

payoff.

Finally, notice that the coefficients ξt are independent of mean belief µit even though they do vary

with the precision of posterior belief ht .

Proof. The proof is by induction on the number of periods. It is straightforward to see that when T = 1

9Recently Iijima and Kasahara (2015) prove an equilibrium uniqueness result in a continuous-time noisy monitoring
game. However, our paper has major differences compared to Iijima and Kasahara (2015): i) in our model there is symmetric
uncertainty about the state and the agents gradually learn the true state, ii) agents have unbounded action space, iii) we focus
on the discrete-time limit as ∆→ 0. We prove equilibrium uniqueness for every given period length ∆ and then take the limit
as ∆→ 0. Our results does not imply that the continuous-time model has a unique equilibrium. However, we conjecture that
continuous-time game has a unique equilibrium. We do not have formal proof of this claim yet.
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Figure 2: Equilibrium belief-sensitivity ξt (N = 2,T = 10,δ = 0.95,h0 = hε = 1).

there exists a unique equilibrium with ξT = 1/N. Assume that for any initial belief specified by (µ ′0,h
′
0)

when T = T̃ −1 there is a unique equilibrium as described in the proposition. Fix (µ0,h0) and consider a

game with T = T̃ . We show that there is a unique equilibrium as described in the proposition. Take any

first period equilibrium effort profile (a01, . . . ,a0N) of the T̃ -period game. Given (µ0,h0), this effort pro-

file leads to a unique common belief (µ1,h1) by (1). By the induction hypothesis, the continuation game

starting in period 2 with initial belief (µ1,h1) has the unique equilibrium described in the proposition.

Also, by (1) is independent of (a11, . . . ,a1N). Then, letting ξ
T̃−1
t represent the equilibrium coefficients

in the (T̃ − 1)-period game, the marginal gain of player i from increasing his effort in period 0 of the

T̃ -period game is given by

ξ0 =
1
N
+δ

N−1
N

T̃−1

∑
s=0

δ
s
ρs+1ξ

T̃−1
s .

Letting ξt = ξ
T̃−1
t−1 , for t = 1, . . . , T̃ , establishes the claim.

3.3 Comparative Statics

The simple structure of the unique equilibrium enables us to conduct several comparative statics. The

following proposition states that the equilibrium effort tends to decrease over time.

Proposition 3. In the unique sequential equilibrium of the game, ξt decreases in t. Furthermore, ξt >

1/N for all t = 0, . . . ,T −1 and ξT = 1/N.

The proof of the Proposition 3 is straightforward from (2), hence is omitted. Figure 2 illustrates the
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(a) Total production as a function of h0 (b) Total production as a function of hε

Figure 3: The ex ante expected total production (N = 2,δ = 0.95,T = 10,µ0 = 2)

equilibrium belief-sensitivity of effort over time, which decreases over time and is equal to 1/N in the

last period. The underlying reasoning is clear: The benefit from inducing future effort of other agents

decreases as the game approaches to the final period. Note that depending on the signal realization, the

equilibrium effort level of the agent may increase.

The next proposition shows the comparative statics with respect to the precision of the information.

Proposition 4. In the unique sequential equilibrium of the game,

1. For any t = 0, . . . ,T − 1, ξt decreases in h0. Furthermore, the ex ante expected total production

decreases in h0.

2. For any t = 0, . . . ,T − 1, ξt increases in hε . Furthermore, the ex ante expected total production

increases in hε .

Proof. See Appendix A.

Figure 3 illustrates the ex ante total production as functions of h0 and hε . To understand these results

note that team members have a greater incentive to increase their effort (that is, higher ξt) if the return to

jamming the feedback is larger. Then, the result follows because the belief updating of team members

puts larger weight on the feedback if 1) the initial prior is less informative; or 2) the feedback is more

informative. In this case, their future efforts become more sensitive to feedback, and thus the returns to

jamming the feedback is larger.
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3.4 Continuous-time Limit

In this section we look at a continuous time limit of the equilibrium behavior. This can be considered a

robustness check to demonstrate that the “signal jamming” motivations still have an impact on outcomes

when actions can be adjusted more frequently.

Specifically, we fix the real time horizon τ > 0 and allow the players to switch their actions and get

feedback increasingly frequently. Formally, we let ∆ > 0 to be the length of a period so that the number

of periods is T = τ/∆. We consider the limit of equilibrium behavior as ∆→ 0.

To do this, define the “flow version” of the parameters of the model in the following sense:

• r > 0: discount factor⇒ δ = e−r∆

• η > 0: information disclosure rate⇒ hε = η∆

• per-period cost= a2

2 ∆

• per-period production= ∆θ ∑i ait

Also it is convenient to redefine ξt as the belief sensitivity in “real-time” t. Let χt = ξt − 1/N be the

sensitivity parameter net of the impact of the current period output share. Therefore, χt captures the

impact of the signal-jamming incentives on the sensitivity of effort to belief.

Re-writing (2) in terms of the flow parameters yields the following:

χt = δ

[(
1+

N−1
N

hε

ht

)
χt+∆ +

N−1
N2

hε

ht

]
.

If ∆ is small enough, we have

χt = (1− r∆)

[(
1+

N−1
N

η

h0 +ηt
∆

)
(χt + χ̇t∆)+

N−1
N2

η

h0 +ηt
∆

]
.

Cancel out ∆2 terms and rearranging, we have the differential equation

χ̇t =

(
r− N−1

N
η

h0 +ηt

)
χt−

N−1
N2

η

h0 +ηt

with the boundary condition χτ = 0. We demonstrate in the Appendix that the solution to this equation

involves χt > 0, for all t < τ and therefore, ξt > 1/N. This implies, in particular, that signal jamming
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Figure 4: Equilibrium belief-sensitivity ξ (t) (N = 10,τ = 4,η = 2,h0 = 3,r = 0.001).

incentives continue to have an impact on the equilibrium outcomes even in the continuous time limit.

Figure 4 illustrates the evolution of belief sensitivity of effort over time. Note that the belief sensitiv-

ity of effort (i) always exceeds 1/N, (ii) declines over time, and (iii) exceeds the value it would take in the

absence of free-ridership (the blue dashed line), at least in earlier periods. The first point demonstrates,

as discussed above, that the signal jamming incentives are still present and the third point illustrates that

they are strong relative to the impact of free-ridership. The behavior of belief sensitivity over time (point

(ii)) is intuitive: at earlier times since there is a longer future and therefore, it is possible to influence

beliefs and therefore actions of others along a longer horizon, the return on effort is larger. This is one

reason why, agents put higher effort in earlier periods, conditional on their belief. A second factor lead-

ing to this pattern is that in earlier periods there is larger uncertainty about the underlying state, which

implies that agents put a larger weight on the feedback when updating their beliefs. This in turn implies

that each agent can potentially have a larger impact on the beliefs of others by jamming the feedback.

That is, there is a higher return for effort in such earlier periods.

Point (iii) implies that that depending on the parameter value, the equilibrium production level can

even exceed the level without free-ridership, and thus the total production in the team can be larger than

one when the agents work individually. Recall that we do not assume any complementarity in the model.

3.4.1 Effect of Team Size

We are going to analyze effect of team-size in the continuous-time limit, which gives us analytical

tractability. Let βt = Nξt be defined as the sum of the ξt .
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(a) ξt as a function of N (b) βt as a function of N

Figure 5: Individual and Total Effort over time in small team sizes (r = 0.003,T = 2,h0 = 0.8,η = 1)

Proposition 5. Given the parameters (h0,hε ,T ) take two team with differet sizes m,n(m > n). Assume r

is sufficiently small.

1. Then ∃t∗ ∈ [0,T ] such that ∀t ∈ [t∗,T ] χn
t ≥ χm

t and ∀t ∈ [0, t∗] χm
t ≥ χn

t

2. ∀t ∈ [0,T ] β M
t ≥ β N

t

Proof. See Appendix A.

Figure 5b suggests that in smaller teams adding an extra member increases the total effort. For the

individual effort two opposing forces operates: signal jamming and free-riding. In the initial periods

signal jamming effect dominates the free-riding effect ,however, due to learning and the deadline signal

jamming effect diminishes over time. Therefore, free-riding effect dominates eventually. As a result, in

a smaller team individuals work harder near the deadline compared to a larger team.

If the team size is sufficiently big free-riding effect always dominates the signal jamming effect.

Similar to small teams, in the large teams increasing the number of member increase the the total-effort.

This results suggests, if one wants to maximize the total-effort it is optimal to have two smaller-sized

teams instead of one. We will analyze the effect of team decomposition and size in Section 6.

3.5 Role of Imperfect Public Monitoring

The following proposition shows that if the agent’s effort level is observable to others, then there is

no signal-jamming effect.
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(a) ξt as a function of N (b) βt as a function of N

Figure 6: Individual and Total Effort over time in large team sizes (r = 0.003,T = 2,h0 = 0.8,η = 1)

Proposition 6. In the perfect monitoring case, there exists a unique sequential equilibrium where for

any t = 0, . . . ,T ,

a∗it =
1
N

µt .

Proposition 6 implies that imperfect monitoring, in addition to the state uncertainty, is necessary for

the signal-jamming effect. In the literature on team production, the inability to monitor the individual

effort has been considered as a cost of team production. As Alchian and Demsetz (1972) write:

...In team production, marginal products of cooperative team members are not so directly

and separably (i.e., cheaply) observable. What a team offers to the market can be taken as

the marginal product of the team but not of the team members. The costs of metering or as-

certaining the marginal products of the team’s members is what calls forth new organizations

and procedures.

In this paper, we show the result that in the presence of uncertainty, imperfect monitoring is essential for

higher production.

4 The Infinite-horizon Game

4.1 Existence of MPE

The benchmark model of Section 2 can be extended to the infinite-horizon (t = 0, . . .). In this case,

we reinterpret δ as the probability of the project survival: Partnership ends with probability 1−δ in each
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period, and each agent receives their share of the output at the end of the partnership.

It is straightforward to show that the equilibrium in Proposition 2 also exists in the infinite-horizon

game. Recall that in the unique equilibrium of the finite-horizon case, a∗it = (χt +
1
N )µit , where

χt =
T

∑
s=t+1

δ
s−t N−1

N2
hε

hs

{
s−1

∏
k=t+1

(
1+

N−1
N

hε

hk

)}
and χT = 0. If we let T goes to infinity,

χ
∗
t =

∞

∑
s=t+1

δ
s−t N−1

N2
hε

hs

{
s−1

∏
k=t+1

(
1+

N−1
N

hε

hk

)}
.

Proposition 7. There exists an equilibrium of the infinite-horizon game where in period t, agent i plays

a∗it = (χ∗t +
1
N )µit .

Proof. Given that a∗it is finite, it is straightforward that each agent’s strategy is the best response to the

others’ strategy profile. To show that a∗it is finite, note that

s−1

∏
k=t+1

(
1+

N−1
N

hε

hk

)
<

s−1

∏
k=t+1

(
1+

hε

hk

)
=

s−1

∏
k=t+1

hk+1

hk
=

hs

ht+1
.

Therefore, we have

χ
∗
t <

∞

∑
s=t+1

δ
s−t N−1

N2
hε

ht+1
=

δ

1−δ

N−1
N2

hε

ht+1

so we have proved our desired result.

4.2 Stochastic State

In this subsection, we consider an infinite-horizon model in which the state of the world changes

stochastically over time. Let θt be the state of the world at period t. We assume that θt follows AR(1)

process:

θt+1 = c+ϕθt +σt ,

where ϕ < 1 and σt is i.i.d. with σt ∼N (0,1/hσ ).
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In this subsection, the signal structure is slightly generalized that it is a weighted sum of the state and

the effort. Specifically, the feedback at the end of each period is given by

yt = κθ θt +κa

N

∑
i=1

ait + εt ,

where κθ ,κa > 0 are constants, εt ∼N (0,1/hε) and εt’s are independent across t.

Same as the benchmark model, the posterior belief about the state in any period follows a normal

distribution. let µt and ht be the mean and the precision of belief about θt in the beginning of period t.

Given the equilibrium strategy a∗it , the agents use the signal zt = yt−κa ∑
N
i=1 a∗it to update the belief. Note

that similar to the benchmark model, zt ∼N (κθ θt +κaα,1/hε) when agent i plays ait = a∗it +α . Let µ̂t

and ĥt be the mean and the precision of belief about θt after the feedback yt is realized. Then we have

µ̂t =
ht µt +hεκθ zt

ht +hεκ2
θ

,

ĥt = ht +hεκ
2
θ .

Then µt+1 and ht+1 are given by

µt+1 = c+ϕµ̂t = c+ϕ
ht µt +hεκθ zt

ht +hεκ2
θ

(3)

1
ht+1

=
ϕ2

ĥt
+

1
hσ

=⇒ ht+1 =
(ht +hεκ2

θ
)hσ

ht +hεκ2
θ
+ϕ2hσ

(4)

We consider a case where the belief precision is stationary over time, that is, ht = h∗ for all t. Then by

(4), h∗ satisfies

h∗(h∗+hεκ
2
θ +ϕ

2hσ ) = (h∗+hεκ
2
θ )hσ .

The above equation has unique positive solution

h∗ =
hεκ2

θ
− (1−ϕ2)hσ

2

(
−1+

√
1+

4hσ hεκ2
θ

(hεκ2
θ
− (1−ϕ2)hσ )2

)
.

If ht = h∗ for all t, then the equilibrium sensitivity level is also stationary, that is, ξt = ξ ∗ for all t.

Define ρ∗k = ∂ µt+k/∂ zt as the rate at which the period-t signal affects the period-(t + k) belief (which is
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same for all t in the stationary case). Then from (3), we have

ρ
∗
k =

(
∂ µt+1

∂ µt

)k−1
∂ µt+1

∂ zt
= (ϕH∗)k hεκθ

h∗
,

where H∗ = h∗

h∗+hε κ2
θ

.

Then the equilibrium action in period t is given by

a∗it =
µit

N

(
1+(N−1)κa

∞

∑
s=t+1

δ
t−s(ϕH∗)t−s hεκθ

h∗
ξs

)
.

Therefore, if the equilibrium sensitivity of belief is stationary, its level is given by

ξ
∗ =

1
N− (N−1)X∗

, (5)

where

X∗ =
δϕ(1−H∗)
1−δϕH∗

κa

κθ

.

There are several observations: 1) the stationary effort level is increasing in δ and decreasing in

hσ/hε ; 2) for any parameter values δ ,hε , and hσ , there exists a value of κθ and κa such that the stationary

effort level is first-best efficient.

4.2.1 Dynamic Programming

In the case of stochastic state, the same MPE can be derived by solving a dynamic programming.

Assume that κa = κθ = 1, and consider a symmetric Markov perfect profile

ai(ht) = â(µit) for all i.

Let µ be the common posterior mean of the state (which is only a function of history of public signal).

Then agent i’s value function can be written as a function of µi and µ , and the dynamic programming

problem can be written as

V (µi,µ) = max
a

(1−δ )

{
µi

N
((N−1)â(µ)+a)− a2

2

}
+δE[V (µ ′i ,µ

′)|a]
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subject to

µ
′
i = c+ϕ

h∗µi +hεzi

h∗+hε

,

µ
′ = c+ϕ

h∗µ−i +hεz
h∗+hε

,

zi = y− (N−1)â(µ)−a = θt + εt ,

z = y−Nâ(µ) = θt +(a− â(µ−i))+ εt .

The first-order condition with respect to a is given by

(1−δ )
{

µi

N
−a∗(µi,µ)

}
+δϕ

hε

h∗+hε

E
[

∂V (µ ′i ,µ
′)

∂ µ ′
|a∗(µi,µ)

]
= 0. (6)

On the other hand, the envelope theorem gives

∂V (µi,µ)

∂ µ
= (1−δ )

µi

N
(N−1)â′(µ)+δϕ

h∗

h∗+hε

E
[

∂V (µ ′i ,µ
′)

∂ µ ′
|a∗(µi,µ)

]
. (7)

Combining (6) and (7), we have

∂V (µi,µ)

∂ µ
=(1−δ )

µi

N
(N−1)â′(µ)− (1−δ )

h∗

hε

{
µi

N
−a∗(µi,µ)

}
=

1−δ

N

{
µi(N−1)â′(µ)− h∗

hε

(µi−Na∗(µi,µ))

}
. (8)

Plugging (8) back into (6), we have

a∗(µi,µ) =
µi

N
+δϕ

hε

h∗+hε

1
N
E
[

µi(N−1)â′(µ)− h∗

hε

(µ ′i −Na∗(µ ′i ,µ
′))|a∗(µi,µ)

]
. (9)

On the equilibrium path, µi = µ . Assume that the optimal action is linear in the individual belief,

that is, a∗(µ) = â(µ) = ξ ∗µ for all i. Then we have

Nξ
∗
µ = µ +δϕ [(1−H∗)(N−1)ξ ∗−H∗(1−Nξ

∗)}E[µ ′],
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where H∗ = h∗
h∗+hε

. Since E[µ ′] = µ , we have

ξ
∗ =

1

N− (N−1)δϕ(1−H∗)
1−δϕH∗

,

which is the same as (5).

4.3 Comparison to Trigger Strategies

In the infinite-horizon game, there would be many other equilibria that relies on grim-trigger strategy.

Then we conjecture that when the length of a period vanishes—so that the agents can change their action

more frequently according to the feedback—such trigger equilibria would vanish while our equilibrium

survives. Formally, we conjecture that when the length of a period vanishes, the equilibrium payoff of

the game is bounded above by the payoff of our equilibrium. The underlying reasoning is similar to

Sannikov and Skrzypacz (2007): When the information becomes noisy, then the trigger strategy profile

must punish the agents based on the noisy information, which increases the probability of type I error.

Therefore, the cost of making type I error outweighs the benefit from future cooperation.

Note that our equilibrium does not rely on trigger strategies, yet the agents cooperate in the equilib-

rium. Our result shows that in the presence of uncertainty in partnership game, we are able to induce

cooperation without using the trigger mechanism. The comparison between our mechanism and trigger

mechanism under various settings, and analysis for the possible combination of the two would be topics

for future research.

5 Asymmetric Information

In this section, we look an alternative model in which agents are heterogeneous in their private

information about the state.

We consider a team production game played in continuous time (t ∈ [0,T ]).10 There are N agents in

the team. Each agent can be either an expert or a novice: The expert has perfect information about the

state θ , while the novice has the prior same as the benchmark model (θ ∼N (µ0,1/h0)). Denote Ne

10In this section instead of looking for the limit of discrete-time model, we conduct the analyses directly in continuous-time.
We argue that the limit of equilibrium of the discrete-time game (∆→ 0) and the continuous-time model would agree.
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and Nn as the number of the experts and the novices, respectively. We assume number of the experts in

the team is commonly known.11

At time t, agent i chooses the effort level ait . The signal {Yt} follows a stochastic process

dYt = (θ +At)dt +
1
√

η
dWt ,

where At = ∑
N
i=1 ait .

We focus on the linear symmetric equilibrium where the effort level of the expert and novice are

affine functions of the θ and µt , respectively. Let ae
t and an

t be the effort level of the expert and the

novice at time t. An equilibrium is called a symmetric linear Markov perfect equilibrium 12 if there

exist functions {γt ,ψt ,ξt} such that ae
t = γtθ +ψt and an

t = ξt µt . As a regularity condition, we require

strategies to be admissible. Strategy a is admissible if E
[∫ t

0(ait)
2]dt < ∞. Since we are focusing on

linear strategies necessary and sufficient condition of admissibility becomes(γt ,ψt ,ξt) being in L2.

5.1 Belief Updating

Given the strategy of the expert ae
t = γtθ +ψt and an

t = ξt µt , the novices use the following process

Zt to update their beliefs:

dZt = dYt− (Ne
ψt +Nn

ξt µt)dt

= (1+Ne
γt)θdt +

1
√

η
dWt .

On the other hand, If expert i deviates to play a, then the process becomes

dZt = (a+θ +(Ne−1)(γtθ +ψt)+Nn
ξt µt)dt− (Ne

ψt +Nn
ξt µt)dt

= (a−ψt +(1+(Ne−1)γt)θ)dt +
1
√

η
dWt .

11It is an interesting extension in which each team members has an prior about the other team members type. Another
possible extension is that each team member has partial information about the state. To be precise, assume aggreagate state
is defined as Θ = ∑i θi and θi is the private information of each agent. In this case each agent also cares about the private
information of the other agents.

12Linear strategies is well known for being tractable in the Gaussian setup of insider trading Kyle (1985), Back (1992). For
a recent application in a Duopoly game see Bonatti, Cisternas, and Toikka (2015)
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Then by Liptser and Shiryaev (2013) (Theorem 12.1), the novices’ belief µt follows

dµt =
η(1+Neγt)

ht
(dZt− (1+Ne

γt)µtdt),

where

ḣt = η(1+Ne
γt)

2.

5.2 Equilibrium

Proposition 8. There exists a symmetric linear Markov perfect equilibrium, in which the coefficients of

the strategies are obtained from the solution to following system of differential equations

γ̇t =
(1+Neγt)(γt− 1

N )rht−η(1+ γtNe)2 Nn

N ξt

ht(1+ Ne

N )

ξ̇t =

(
r− N−Ne−1

N
η

ht

)(
ξt−

1
N

)
− N−Ne−1

N2
η

ht

ḣt = η(1+Ne
γt)

2

with boundary conditions γT = ξT = 1/N.

Proof. See Appendix A.13

(a) when Ne = 1 and Nn = 9 (b) when Ne = 4 and Nn = 6

Figure 7: The equilibrium behavior of the experts and the novices (N = 10,T = 2)

13Sufficient conditions for existence of a solution to be added.
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In Figure 7 we plot the experts and novices equilibrium strategies given the team composition. In-

creasing the number of experts in the team has two effects. First, when the number of novices decreases

each novice has smaller incentive for “signal jamming”. Second, “signal jamming” incentives are in-

creased due to the fact that signals become more precise. In the above example first effect dominate the

second one.

5.3 Team Composition

In our main model, the agents are homogeneous. In the presence of heterogeneous agents, a relevant

question would be how to group these agents into teams to work on projects. A particularly interesting

dimension of heterogeneity is with respect to agents’ expertise in the project, as captured by the asym-

metric information model discussed in Section 5 above. In this section, we take up a much simplified

special case of that model and address within the context of examples, two related questions: (1) if a

principal has a fixed number of experts and a fixed number of novices that work for him, how would he

allocate these workers among fixed number of projects? (2) what is the optimal number of experts in a

fixed-sized team? We assume, in each application, that the principal wants to maximize the agent’s effort

levels. The simple model we adopt goes back to the discrete time and limits the number of periods to

two. The next proposition characterizes the equilibrium effort level in this model:

Proposition 9. Consider a discrete-time version of the asymmetric information model. Assume that

T = 2 and the team consists of NE experts and NN novices. Then, there exists an equilibrium in which

the first period effort level of an expert is given by

γθ ,

where γ solves

γ =
1
N
+δ

N−NI

N
hε(1+NIγ)

h0 +hε(1+NIγ)2 =
1
N
+δ

N−NI

N
1

h0
hε (1+NIγ)2 +1

× 1
1+NIγ

.
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The first period effort level of a novice is

µ0

 1
N
+δ

N−NI−1
N

1
h0

hε (1+NIγ)2 +1
× 1

1+NIγ
.

 .
The second period effort level of an expert is θ/N, while that of a novice is µ2/N.

5.3.1 Allocating experts among teams

Assume that a principal has two experts and two novices working for him. He has to form two teams,

each team consisting of two agents, to work on two separate projects. If the principal allocates two

novices in one team and two experts in another–i.e. if he forms “segregated teams”—, then in the team

of experts, the effort choices contain no signaling or signal jamming incentives. The team of novices

have the signal jamming incentives as in our main model. Therefore, in this configuration, there are two

agents whose efforts are augmented due to “signal jamming incentives”. If, conversely, the principal

allocates one expert and one novice to each team, then the novices have no incentive to signal jam, since

their partners are informed. On the other hand, each expert has an incentive to “signal” his information

to his partner. Therefore, in this configuration, two agents’ efforts are augmented due to the “signaling

incentives”. The following proposition establishes cases in which either configuration is optimal.

Proposition 10. There exists ρ̄ > ρ such that if h0/hε > ρ̄ then the principal optimally allocates one

expert and one novice in each team; and if ρ > h0/hε , then the principal optimally forms one team of

experts and one team of novices.

Proof. Proof is by simple algebra.

1
h0/hε

(1+γ)2 +1
× 1

1+ γ
vs

1
h0
hε
+1

(
h0/hε

(1+ γ)2 +1
)
× (1+ γ) vs

h0

hε

+1

h0/hε

(1+ γ)2 + γ

(
h0/hε

(1+ γ)2 +1
)
− h0

hε

=
h0

hε

(
1

1+ γ
−1
)
+ γ

Then argue γ remains bounded away from 0 and away from infinity as h0/hε varies.
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The proposition states that when h0/hε is fairly large, effort is maximized in the mixed teams config-

uration, and in the opposite case, effort is maximized in the segregated team configuration. Intuitively,

when the teams are mixed, the uninformed agents understand that the feedback signal they are receiving

is less noisy. For this reason, their second period effort tend to be more sensitive to the first period sig-

nal, which gives the experts a larger incentive to exert effort. To counter this effect, the novices in each

team also understand that the feedback signal is “exaggerated” by the increased effort of the experts, and

discount it accordingly. The result follows because the former effect is particularly strong if the initial

precision of the state distribution h0 is large relative to the precision of ε , since that is the case when the

feedback signal is relatively imprecise and an increase in this precision has a large impact. Consequently,

mixed teams are more desirable in this case.

5.3.2 Optimal number of experts in a team

Next, consider a principal who must decide how many experts to include in a team of fixed size N.

Again, the principal seeks to maximize total effort in the team. Figure 8 below represents numerical

calculations showing total effort as a function of number of experts in a team for three different values

of h0/hε .

The figure and the underlying numerical calculations suggest that optimal number of experts is zero

when h0/hε is small but is increasing as this ratio increases. The intuition is similar to above: When

there are more experts, the feedback signal is more precise, and therefore the effort choices of novices

are more sensitive to feedback. This incentivizes the experts (and novices) to increase their effort. On the

other hand, understanding the exaggeration in the feedback, the novices discount it more when there are

more experts. And once again, the former effect is strong when h0/hε is large. When there are multiple

novices, there is an additional factor that was absent in the previous application: when the number of

experts increases by one, the number of novices decreases by one. Therefore, there are fewer team-

mates whose effort will be impacted by feedback, and therefore less incentive to signal on the part of the

experts, and to signal-jam on the part of the novices. A combination of these three factors leads to the

non-monotonicity of total effort in the number of experts in a team.
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Figure 8: Total effort as a function of the number of experts in a team. (N = 50,T = 2).

5.3.3 Private Learning

In a ongoing work, we are studying the model in which each agent observes a private signal about

the true state. To be precise, look the following monitoring structure

dYit = (θ +At)dt +dWit

where Wi’s are independent Brownian Motions.14 In this model each agents cares not only about his

private belief, he cares also about the public belief. Similar to asymetric information case, we will be

focus on the linear strategies in which action at t is an affine function of public and the private belief.

6 Applications

Given the tractability of the model, we are able to explore several applications of the model. This part

is work in progress, so for some applications we have conjectures and for others we present the ideas in

14In the repeated game-literautre this monitoring is called as conditionally indepedent private monitoring. In general we
can assume any correlation structure among the shocks.
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simple examples.

6.1 Dynamic Information Disclosure Design

Consider the following information design problem: Suppose that there is a principal who hires a

group of agents who work together. The principal can control the provision of information, and he wants

to maximize the ex-ante total production (he doesn’t care about the cost).

Formally, given the uncertainty about the marginal productivity θ ∼N (µθ ,
1

hθ
), the principal can

choose the value of

• hη ≥ 0 : the precision of the additional prior information x0 = θ +η , where η ∼N (0, 1
hη
); and

• hε(t)≥ 0 : the precision of the feedback yt (so εt ∼N (0, 1
hε (t)

)).

Since the precision of each feedback can be heterogeneous, we need to slightly extend our result before

presenting the principal’s problem.

Belief Updating Let µt and ht (t = 0, . . .T ) be the mean and the precision of the posterior at the

beginning of period t. Then

ht = hθ +hη +
t−1

∑
s=0

hε(s), µt =
hθ µ0 +hηzη +∑

t−1
s=0 hε(s)zs

ht
,

where zη = x0−θ . Define ρs,t(s < t) be the rate at which increase in ais affects µt . Then from the above

equation, ρs,t =
hε (s)

ht
.
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Equilibrium and Ex Ante Production By the backward induction argument, we show that there exists

unique sequential equilibrium in which the players choose a∗it = ξt µt , where

ξT =
1
N

ξt =
1
N

(
1+(N−1)

T

∑
s=t+1

δ
s−t

ρt,sξs

)

=
1
N
+

δ

N

{
(N−1)ρt,t+1ξt+1 +(N−1)

T

∑
s=t+2

δ
s−t−1

ρt,sξs

}
,

=
1
N
+δ

{
A(t)ξt+1 +B(t)

(
ξt+1−

1
N

)}
,

where A(t) = N−1
N

hε (t)
ht+1

and B(t) = hε (t)
hε (t+1) . Note that δA(t)ξt+1 captures the effect of ait to a−i,t+1 and

δB(t)
(
ξt+1− 1

N

)
captures the effect of ait to a−i,s (s≥ t +2).

To calculate the ex ante expected payoff, we need to compute the distribution of posterior belief

(which is captured by µt) from the perspective of period 0. Since zt = θ + εt and εt are independent

across time,
t−1

∑
s=0

zs = tθ +
t−1

∑
s=0

εs ∼N

(
tµ0,

t2

h0
+

t
hε

)
.

Since µt =
h0
ht

µ0 +
hε

ht
∑

t−1
s=0 zs, the distribution of the posterior µt is

µt ∼N

(
µ0,

(
hε

ht

)2( t2

h0
+

t
hε

))
= N

(
µ0,

1
h0
− 1

ht

)
.

Since the period-t individual production when the posterior mean is µt is ξt µ
2
t , the ex-ante total produc-

tion is given by

NE0[P] = N
T

∑
t=0

δ
t
ξt

(
µ

2
0 +

(
1
h0
− 1

ht

))
.

Information Disclosure Design Problem Given the above analysis, we define the principal’s infor-

mation disclosure design problem as follows:

max
(hη ,{hε (t)}T

t=0)

T

∑
t=0

δ
t
ξt

(
µ

2
0 +

(
1
h0
− 1

ht

))
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subject to

ξT =
1
N

ξt =
1
N
+δ

{
A(t)ξt+1 +B(t)

(
ξt+1−

1
N

)}
hη ≥ 0,hε(t)≥ 0 for all t = 0, . . . ,T.

Conjecture 1. In the optimal information design scheme,

hε(t−1)< hε(t) for all t = 1, . . .T −1.

Conjecture 1 implies that the principal would like to “backload” information in the optimal design

scheme. The intuition is as follows. Naturally, higher precision of period-t signal induces higher in-

centive in period t and lower incentive for all other periods. At the same time, however, incentive is

accumulated in backward direction: Higher sensitivity in the future induces more incentive to effort now.

This second effect makes the back-loading information scheme more optimal.

6.2 Contracting

Let the game start with a share structure s which specifies what fraction of the output owned by each

agent. Share structure s is a vector in [0,1]N such that ∑i si = 1. We are looking for the share structure

which maximizes the total output given h0 and hε .

We can recursively define ξt as follows

ξi,t = si

[
1+

T

∑
l=t+1

δ
l−t

ρl ∑
j 6=i

ξl,t

]
ξi,T = si

Given the ξt expected equilibrium output becomes;

max
{si}n

i=1

T

∑
t=0

δ
t
∑

i
ξi,t

(
µ

2
0 +(

1
h0
− 1

ht
)

)

Conjecture 2. Total output of the team is maximized when s =
( 1

N , .....,
1
N

)
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Here is an argument for equal share structure. Each agent’s action at time t has two component: i)

myopic part (si) ii) signal jamming part (ξt). Given that we want to maximize the total sum of effort

the distribution of the shares does not matter for the myopic part. Therefore, it is enough to consider

maximizing the signal jamming part. For the signal jamming part notice that for each agent i, (ξ j,t)

consists of si and s j. Then to maximize sis j it is optimal to choose si = s j. To finish the argument

observe that this is true for every i, j pair.
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Appendices

A Omitted Proofs

A.1 Proof of Proposition 1

Stage Payoff Let πθ (a1a2) be the probability of Success when the state is θ and the agents play a1a2.

Those probabilities are described in Figure 16. Note that πθ (a1a2) = πθ
1 (a1)+πθ

2 (a2), where

π
G
i (ai) =


pG + p if ai = H

pG if ai = M

0 if ai = L,

π
B
i (ai) =


2p if ai = H

p if ai = M

0 if ai = L.

Let π(a1a2; µ) = µπG(a1a2) + (1− µ)πB(a1a2). Define p̂(µ) = p+ µ(pG− p) be the marginal

productivity of the first unit of effort given the belief µ . Then, for any i= 1,2, the stage payoff ui(aia j; µ)

can be written as ui(aia j; µ) = π(aia j; µ)− ci(ai) = πi(ai; µ)+π j(a j; µ)− ci(ai), where

πi(ai; µ) =


p̂(µ)+ p if ai = H

p̂(µ) if ai = M

0 if ai = L,

ci(ai) =


2c if ai = H

c if ai = M

0 if ai = L.

Note that πi(ai; µ) is the productivity contributed by agent i.

We can also rewrite the stage payoff as ui(aia j; µ)=αi(ai; µ)+π j(a j; µ), where αi(ai,µ)= πi(ai; µ)−
ci(ai) captures the self-contribution part of agent i’s stage payoff. Note that α1(H; µ) < α1(M; µ) for

any µ , and that α1(M; µ)> α1(L; µ) if and only if

µ ≥ µ
∗ ≡ c− p

pG− p
.

On the other hand, π j(H; µ)> π j(M; µ)> π j(L; µ) for any µ , while implies that inducing the other guy

to work is always better.
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Belief Updating Let µS(µ;a1a2) and µF(µ;a1a2) be the posterior belief when the prior is µ , the

agents play a1a2 and observe a signal of Success and Fail, respectively. Then for any a1a2 6= LL, we have

µS(µ;a1a2)

1−µS(µ;a1a2)
=

µ

1−µ
λ

S(a1a2),
µF(µ;a1a2)

1−µF(µ;a1a2)
=

µ

1−µ
λ

F(a1a2),

where λ S(a1a2) =
πG(a1a2)
πB(a1a2)

and λ F(a) = 1−πG(a1a2)
1−πB(a1a2)

are likelihood functions for the Success and Fail

signal, respectively.

If a1a2 = LL, Bayes’ rule does not apply when Success is observed. However, the belief consistency

condition implies that µS(µ;LL) > µ in any sequential equilibrium. In the case of Fail, Bayes’ rule

implies that µF(µ;LL) = µ .

For any a1a2 6= LL, define µ̄(a1a2) and µ(a1a2) be such that

µ̄(a1a2)

1− µ̄(a1a2)
=

µ∗

1−µ∗
· 1

λ S(a1a2)
,

µ(a1a2)

1−µ(a1a2)
=

µ∗

1−µ∗
· 1

λ F(a1a2)
,

Then if the agents play a1a2 in the first period, µS(µ;a1a2) > µ∗ if and only if µ > µ(a1a2) and

µF(µ;a1a2) > µ∗ if and only if µ > µ̄(a). It is easy to check that µ(a1a2) < µ∗ < µ̄(a1a2) for all

a1a2 6= LL.

Equilibrium Analysis Let µit be agent i’s belief in period t. Note that µ11 = µ21 ≡ µ1 by the common

prior assumption, and µ12 = µ22 on the equilibrium path.

In the second period, the agents chooses the action that maximizes his stage payoff. Since the payoff

is additively separable, regardless of the other agent’s action, the agent’s payoff difference between

playing H and M is p− c < 0 and difference between playing M and L is p̂(µ)− c. Therefore, agent i

plays M if µi2 > µ∗ and plays L if µi2 < µ∗.

Now let us analyze the behavior in the first period. Define µ∗ = maxa1a2 6=LL µ(a1a2) and µ̄∗ =

mina1a2 6=LL µ̄(a1a2). Then for any prior µ1 ∈ (µ∗, µ̄∗), unless the action profile is LL in the first period,

then µ2 > µ∗ in the case of Success and µ2 < µ∗ in the case of Fail.

36



Suppose the agents play a1a2 6= LL in the first period. Then agent 1’s expected payoff is

U1(a1a2; µ1) = [α1(a1; µ1)+β1(a2; µ1)]+δπ(a1a2; µ1)
[
2p̂(µS(µ1;a1a2))− c

]
= [α1(a1; µ1)+β1(a2; µ1)]+δπ(a1a2; µ1)

[
2{p+µ

S(µ1;a1a2)(pG− p)}− c
]

= [α1(a1; µ1)+β1(a2; µ1)]+δ

[
π(a1a2; µ1)(2p− c)+2µ1π

G(a1a2)(pG− p)
]
.

Note that the above payoff is same when a1a2 is on the equilibrium path and when a1a2 is off the

equilibrium path. Since µ1 ∈ (µ∗, µ̄∗), the agents’ action in period 2 is same regardless of the deviation

from the equilibrium profile.

Let a∗1a∗2 be the equilibrium strategy profile in the first period, and consider the incentive for agent 1

to deviate to play a′1. Then if a∗1a∗2 6= LL and a′1a∗2 6= LL , the diffence in agent 1’s expected payoff is

U1(a′1a∗2; µ1)−U1(a∗1a∗2; µ1) = α1(a′1; µ1)−α1(a∗1; µ1)︸ ︷︷ ︸
myopic benefit of deviation

+δ

[
(π1(a′1; µ1)−π1(a∗1; µ1))(2p− c)+2µ1(π

G
1 (a

′
1)−π

G
1 (a

∗
1))(pG− p)

]
︸ ︷︷ ︸

future cost of deviation

.

Note that agent 1’s expected payoff difference does not depend on agent 2’s action in the first period.

Now we are ready to prove the uniqueness of the sequential equilibrium. We devide into the analysis

into the following cases:

1. a∗1a∗2 = HH: We first show the existence of a sequential equilibrium with a∗1a∗2 = HH. Let us first

consider the deviation to M. The payoff difference when playing H and M is

U1(Ma∗2; µ1)−U1(Ha∗2; µ1) = (c− p)−δ p[2p− c+2µ1(pG− p)]. (10)

Note that the difference is decreasing in µ1, and is equal to c− p− δ pc when µ1 = µ∗ = c−p
pG−p .

Since we assume that c− p−δ pc< 0, there exists µ̃ ∈ [0,µ∗) such that U1(Ma∗2; µ1)−U1(Ha∗2; µ1)≤
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0 whenever µ1 ≥ µ̃ . Now consider the deviation to L. Observe that

U1(La∗2; µ1)−U1(Ma∗2; µ1) = (c− p̂(µ1))−δ [p̂(µ1)(2p− c)+2µ1 pG(pG− p)] (11)

<U1(Ma∗2; µ1)−U1(Ha∗2; µ1),

Thus U1(La∗2; µ1)−U1(Ha∗2; µ1)< 0 whenever µ1 ≥ µ̃ . Define µ̂ = max{µ∗, µ̃}, then above anal-

ysis implies that there exists a sequential equilibrium with a∗1a∗2 = HH if µ1 ∈ (µ̂, ¯µ∗).

2. a∗1a∗2 6= HH and a∗1a∗2 6= LL: Next, we show that there is no other sequential equilibrium. Equation

(16) implies that U1(Ha∗2; µ1)−U1(Ma∗2; µ1)> 0 whenever µ1 > µ̃ , and thus the strategy profiles in

which at least one agent plays M in t = 1(such as HM,MH,MM,ML,LM) are not an equilibrium.

Similarly, (17) implies that U1(Ma∗2; µ1)−U1(La∗2; µ1)> 0 whenever µ1 > µ̃ , and thus the strategy

profiles in which a∗1a∗2 = LH or HL are not an equilibrium.

3. a∗1a∗2 = LL: Last, it remains to show that there is no equilibrium with a∗1a∗2 = LL. Recall that

µF(µ1;LL) = µ1) and µS(µ1;LL)> µ1 in any sequential equilibrium.

Consider the case where µ1 < µ∗. Then each agent’s expected payoff is zero if they follow the

profile. Now suppose agent 1 deviates to play M in the first period. Consider the worst-case

scenario where µS(µ1;LL)< µ∗, then agent 1’s expected payoff by deviating to M is

(p̂(µ1)− c)+δ [p̂(µ1)(p− c)+µ1 pG(pG− p)].

Note that the expected payoff is strictly greater than zero when µ1 = µ∗. Therefore, there exists

µ† ∈ [0,µ∗) such that the profile with a∗1a∗2 = LL is not an equilibrium for µ1 ∈ (µ†,µ∗).

Finally, consider the case where µ1 ≥ µ∗. By following the prescribed action, agent 1 receives

δ (2p̂(µ1)− c).

Suppose agent 1 deviates to M. Since µS(µ1;LL)> µ1, agent 2 plays M after Success is observed.

Suppose that µ1 ∈ [µ∗, µ̄(ML)), then the agent 1 chooses different action depending on the signal,
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and thus will receive positive value of information. In this case, agent 1’s expected payoff is

(p̂(µ1)− c)+δ [π(ML; µ1)(p̂(µS(µ1;ML))− c)+ p̂(µ1)].

Note that p̂(µ1)− c ≥ 0 since µ1 ≥ µ∗, and π(ML; µ1)(p̂(µS(µ1;ML))− c) > p̂(µ1)− c since

value of information is positive. Therefore, such deviation is profitable.

Define µ = max{µ∗, µ̃,µ†} and µ̄ = µ̄∗. Then the above analysis proves Proposition 1.

A.2 Proof of Proposition 4

To calculate the ex ante expected total production, we need to compute the distribution of posterior

belief (which is captured by µt) from the perspective of period 0. Since zt = θ +εt , and εt are independent

across time, we have
t−1

∑
s=0

zs = tθ +
t−1

∑
s=0

εs ∼N

(
tµ0,

t2

h0
+

t
hε

)
.

Since µt =
h0
ht

µ0 +
hε

ht
∑

t−1
s=0 zs, the distribution of the posterior µt is15

µt ∼N

(
µ0,

(
hε

ht

)2( t2

h0
+

t
hε

))
= N

(
µ0,

1
h0
− 1

ht

)
.

Therefore, the ex ante total production is given by

E[T P] =
T

∑
t=0

δ
t
ξt

(
µ

2
0 +

(
1
h0
− 1

ht

))

subject to

ξt =
1
N
+

N−1
N

T

∑
s=t+1

δ
s−t hε

hs
ξs

15It is easy to check that the variance of posterior µt increases in t, starts from zero (when t = 0), and converges to 1/h0 as
t→ ∞.
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and ξT = 1
N . Note that

ξt =
1
N
+

δ

N

{
(N−1)ρt+1ξt+1 +(N−1)

T

∑
s=t+2

δ
s−t−1

ρsξs

}
,

=
1
N
+δ

{
N−1

N
ρt+1ξt+1 +

(
ξt+1−

1
N

)}
. (12)

Given this result, we conduct the following comparative statics:

1. Effect of h0: Taking a derivative of ξt with respect to h0 from (18), we get

∂ξt

∂h0
= δ

[
−N−1

N
hε

h2
t+1

ξt+1 +

(
1+

N−1
N

ρt+1

)
∂ξt+1

∂h0

]
. (13)

It is straightforward that ∂ξT/∂h0 = 0 and ∂ξT−1/∂h0 < 0. Since ξt > 0 for any t, it follows from

(19) that ∂ξt/∂h0 < 0 for all t = 0, . . . ,T −1. On the other hand, we have

∂

∂h0

(
1
h0
− 1

ht

)
=− 1

h2
0
+

1
h2

t
< 0,

thus ∂

∂h0
(E[T P])< 0.

2. Effect of hε : Taking a derivative of ξt with respect to h0 from (18), we get

∂ξt

∂hε

= δ

[
N−1

N
h0

h2
t+1

ξt+1 +

(
1+

N−1
N

ρt+1

)
∂ξt+1

∂hε

]
. (14)

It is straightforward that ∂ξT/∂hε = 0 and ∂ξT−1/∂hε > 0. Since ξt > 0 for any t, it follows from

(19) that ∂ξt/∂hε > 0 for all t = 0, . . . ,T −1. Moreover, since

∂

∂hε

(
1
h0
− 1

ht

)
=

t
h2

t
> 0,

we have ∂

∂hε
(E[T P])> 0.
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3. Effect of N: Taking a partial derivative with respect to N, we have

∂ξt

∂N
=−(1−δ )

1
N2 +δ

[
1

N2 ρt+1ξt+1 +

(
1+

N−1
N

ρt+1

)
∂ξt+1

∂N

]
.

A.3 Solution of the Differential Equation in Subsection 3.4

In Subsection 3.4, we derive the following ordinary differential equation

χ̇t =

(
r− N−1

N
η

h0 +ηt

)
χt−

N−1
N2

η

h0 +ηt
(15)

with the boundary condition χτ = 0, as describing the limit of equilibrium behavior in the continuous

time limit. In this section, we present and verify the solution to this equation.

Claim: The following is a solution to (21): 16

χt = e
r
η
(h0+ηt)

[
(h0 +ηt)−

N−1
N C1 +

N−1
N2 η

(
r
η

) 1
N

(h0 +ηt)−
N−1

N Γ(−N−1
N

,
r
η
(h0 +ηt))

]

= e
r
η
(h0+ηt)(h0 +ηt)−

N−1
N

[
C1 +

N−1
N2 η

(
r
η

) 1
N

Γ(−N−1
N

,
r
η
(h0 +ηt))

]

Proof: We verify that the above solution satisfies (21). First note that

∂Γ(s,x)
∂x

=−xs−1e−x,

and
∂

{
e

r
η
(h0+ηt)(h0 +ηt)−

N−1
N

}
∂ t

= e
r
η
(h0+ηt)(h0 +ηt)−

N−1
N

(
r−

N−1
N η

h0 +ηt

)
.

16Γ(·, ·) denotes the upper incomplete gamma function which has the following representation Γ(s,x) =
∫

∞

x ts−1e−tdt.
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we have

χ̇t = e
r
η
(h0+ηt)(h0 +ηt)−

N−1
N

(
r−

N−1
N η

h0 +ηt

)[
C1 +

N−1
N2 η

(
r
η

) 1
N

Γ(
N−1

N
,

r
η
(h0 +ηt))

]

− e
r
η
(h0+ηt)(h0 +ηt)−

N−1
N

N−1
N2 η

(
r
η

) 1
N
{

r
η
(h0 +ηt)

}− 1
N

e−
r
η
(h0+ηt)

= e
r
η
(h0+ηt)(h0 +ηt)−

N−1
N

(
r−

N−1
N η

h0 +ηt

)[
C1 +

N−1
N2 η

(
r
η

) 1
N

Γ(
N−1

N
,

r
η
(h0 +ηt))

]
−

N−1
N2 η

h0 +ηt
,

Comparing with (21) verifies that χt is indeed a solution of it, as claimed.

Finally, using the boundary condition χT = 0 to compute C1 and substituting in the solution, we get

χt =
N−1

N2 η

(
r
η

) 1
N

e
r
η
(h0+ηt)(h0 +ηt)−

N−1
N

[
Γ(−N−1

N
,

r
η
(h0 +ηt))−Γ(−N−1

N
,

r
η
(h0 +ηT ))

]
and ξt = χt +1/N.

Ex Ante Production The ex ante production is given by

∫ T

0
e−rt

(
ξt−

ξ 2
t
2

)(
µ

2
0 +

(
1
h0
− 1

h0 +ηt

))
dt.

Belief Updating Belief evolution in the continuous time limit also has similar characteristics to the dis-

crete time case. We re-write the equilibrium belief updating equation (1) in terms of the flow parameters,

and take the limit as ∆→ 0 to get:

dµt =
η(zt−µt)

ht
=

√
η

ht
dWt

where Wt is a Brownian motion. Finally, the conditional variance of zt follows

ḣt = η .
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A.4 Proof of Proposition 5

First, we will conduct comparative statics for individual effort, let’s look two teams one with size M

and other with size N. Wlog assume M > N. When r = 0

χ̇t =−
(N−1)

N
η

h0 +ηt
χt−

N−1
N2

η

h0 +ηt

Notice that χ̇t
N and χ̇t

M are convex function and both of them equal to 0 at time T . Given the form of

χ̇t there exists a open neighborhood (Bρ ) of T such that for all t ∈ Bρ , χ̇t
N > χ̇t

M. Also this implies

in that neighborhood χN
t > χM

t . Due to convexity of these function either they will cross at some point

(continuity guarantess existence of such point) or they will never cross. Suppose they cross and t∗ is

the point they cross. χ̇t
M approaches χ̇t

N from below. Therefore at t∗ χN
t∗ > χM

t∗ but notice that ∀t <
t∗, χ̇t

M > χ̇t
N then this implies ∃t∗∗ such that χM

t = χN
t and ∀t < t∗∗,χM

t > χN
t . The previous results

follows from definition χt and χ̇t . Then if such t∗∗ ∈ [0,T ] exists we know that ∀t ∈ [0, t∗∗] χM
t > χN

t

afterwards χN
t > χM

t if t ∈ (t∗∗,T ]. If such t∗∗ ∈ [0,T ] does not exist then ∀t ∈ [0,T ] χN
t > χM

t .

Let β N
t denotes the total effort by a team with N members at time t. By definition β N

t =Nξt =Nχt +1.

Therefore

β̇ N
t =−(N−1)

η

h0 +ηt
χ

N
t −

N−1
N

η

h0 +ηt

Given these functional form it is easy to see that in a open neighborhood around T, ˙
β M

t > β̇ N
t . Since both

β̇ N
t and ˙

β M
t are convex either they will cross or one will stay below of the other. [To be completed.]

A.5 Proof of Proposition 8

It is straightforward to check that the novices’ problem is identical to the benchmark model (Sub-

section 3.4). The pure signal-jamming part of the belief sensitivity, χt = ξt − 1
N , solves the following

differential equation

χ̇t =

(
r− N−Ne−1

N
η

h0 +h(t)

)
χt−

N−Ne−1
N2

η

h0 +h(t)
.
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Let F(µ, t) be the value function of the expert at time t when the (public) belief of the novice is µ . Then

we have a Hamilton-Jacobi-Bellman equation for F(µ, t), which is given by

rF(µ, t) = sup
a∈R

θ

N

(
a+(Ne−1)(γtθ +ψt)+Nn

ξt µ

)
− 1

2
a2

+
η(1+Neγt)

ht

(
a−ψt− γtθ +(1+Ne

γt)(θ −µ)

)
Fµ +Ft +

(
η(1+Neγt)

)2

2h2
t

Fµµ

Then the first-order condition yields

a(t) =
θ

N
+

η(1+Neγt)

ht
Fµ

Conjecture the value function has the following linear-quadratic form:

F(µ, t) = v0(t)+ v1(t)θ + v2(t)θ 2 + v3(t)µθ

Then by matching the coefficients, we have

ψt = 0,

γt =
1
N
+

η(1+Neγt)

ht
v3(t).

We solve for v3(t) to have

v3(t) =
(γt− 1

N )ht

η(1+Neγt)

v̇3(t) = (1+Ne
γt)(γt−

1
N
)+

1+ Ne

N
η(1+Neγt)2 ht γ̇t

On the other hand, applying the envelope theorem on HJB equation and using Fµµ = 0, we have

rv3(t)θ =
θ

N
Nn

ξt + v̇3(t)θ −
η(1+ γtNe)2

ht
v3(t)θ
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by plugging the values of (v3(t), v̇3(t)) and cancelling out θ ,

γ̇t =
(1+Neγt)(γt− 1

N )rht−η(1+ γtNe)2 Nn

N ξt

ht(1+ Ne

N )
.

Verification argument to be added.

A.6 Stationary ht

Now assume hσ has the precision l
∆

. Then we can write,

ht+∆ =

(
ht +η∆κ2

θ

) l
∆

ht +η∆κ2
θ
+ l

∆

then as ∆→ 0 after arrenging

ḣt = ηκ
2
θ −

h2
t
l

then it has the positive stationary solution which is ht =
√

lηκθ .

B Value of Uncertainty

Let us calculate the value of information by comparing the ex ante expected payoff of equilibrium

under incomplete information and one under complete information. Define ut and ût be the expected

period-t equilibrium payoff under incomplete information and under complete information, respectively.

Also define U and Û be the present-discounted ex ante payoff under imcomplete information and under

complete information.

Then the value of information V is defined by

V = Û−U.

Under the complete information, the players play a∗(θ) = θ/N in every period. Then the total payoff
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is

(total output)-(total cost) = θ ·N · θ
N
−N · 1

2

(
θ

N

)2

=

(
1− 1

2N

)
θ

2.

Since θ ∼N (µ0,1/h0), the expected total payoff is given by

ût =

(
1− 1

2N

)(
µ

2
0 +

1
h0

)
.

• Note that while the total payoff is increasing in N, per-player payoff decreases as N increases.

Using the formula of the distribution of the posterior belief (Subsection A.2), we write the present-

discounted ex ante payoff as

Û =
T

∑
t=0

δ
t
(

1− 1
2N

)(
µ

2
0 +

1
h0

)
=

1−δ T+1

1−δ

(
1− 1

2N

)(
µ

2
0 +

1
h0

)
.

Now let us look at the incomplete information case. Since in the equilibrium a∗it = ξt µt , we have

(total output)-(total cost) = θ ·N ·ξt µt−N · 1
2
(ξt µt)

2

Therefore, the expected total payoff is

ut = N
(

ξt−
ξ 2

t
2

)
µ

2
t .
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Therefore, the ex ante payoff under incomplete information is

U = E0

[
T

∑
t=0

δ
tut

]

=
T

∑
t=0

δ
tN
(

ξt−
ξ 2

t
2

)
E0[µ

2
t ]

=
T

∑
t=0

δ
tN
(

ξt−
ξ 2

t
2

)(
µ

2
0 +

(
1
h0
− 1

ht

))
.

Finally, the ex ante value of information is given by

V = Û−U

=
T

∑
t=0

δ
t
[(

1− 1
2N

)(
µ

2
0 +

1
h0

)
−N

(
ξt−

ξ 2
t
2

)(
µ

2
0 +

(
1
h0
− 1

ht

))]
.

C Information Disclosure Design: Comparative Statics

Let’s conduct some comparative statics with respect to the precisions hη and hε(t). The first-order

derivative of the ex-ante production P is given by

∂P
∂hη

=
T−1

∑
t=0

δ
t
(

µ
2
0 +

(
1
h0
− 1

ht

))
∂ξt

∂hη

+
T

∑
t=0

δ
t
ξt

(
1
h2

t
− 1

h2
0

)
∂P

∂hε(s)
=

T−1

∑
t=0

δ
t
(

µ
2
0 +

(
1
h0
− 1

ht

))
∂ξt

∂hε(s)
+

T

∑
t=s+1

δ
t
ξt

1
h2

t
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What is the derivative of ξt with respect to the precisions hη and hε(t)? Let hη = hε(−1) and ξ ′t,s =

∂ξt/∂hε(s) for ease of notation. And define

Xt =δ
∂A(t)
∂hε(s)

=−δ
N−1

N
hε(t)
h2

t+1
< 0

X̂t =δ
∂A(t)
∂hε(t)

= δ
N−1

N
ht

h2
t+1

> 0

Yt =δ
∂B(t)
∂hε(t)

= δ
1

hε(t +1)
> 0

Ŷt =δ
∂B(t)

∂hε(t +1)
=−δ

hε(t)
hε(t +1)2 < 0

Wt =δ (A(t)+B(t)) = δ

(
N−1

N
hε(t)
ht+1

+
hε(t)

hε(t +1)

)
> 0,

Then we have a recursive representation of ξ ′t,s :

∂ξt

∂hε(s)
= ξ

′
t,s =



0 if t = T

Wtξ
′
t+1,s +Xtξt+1︸ ︷︷ ︸

<0

if t ≥ s+1

Wtξ
′
t+1,s + X̂tξt+1 +Yt

(
ξt+1−

1
N

)
︸ ︷︷ ︸

>0

if t = s

Wtξ
′
t+1,s + Ŷt

(
ξt+1−

1
N

)
︸ ︷︷ ︸

≤0

if t = s−1

Wtξ
′
t+1,s if t ≤ s−2

For example, the following is the table for T = 3 (four-period) case:
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∂ξt
∂h ξ0 ξ1 ξ2 ξ3 =

1
N

hη W0ξ ′1,η +X0ξ1︸︷︷︸
<0

W1ξ ′2,η +X1ξ2︸︷︷︸
<0

X2ξ3︸︷︷︸
<0

0

hε(0) W0ξ ′1,0 + X̂0ξ1 +Y0

(
ξ1−

1
N

)
︸ ︷︷ ︸

>0

W1ξ ′2,0 +X1ξ2︸︷︷︸
<0

X2ξ3︸︷︷︸
<0

0

hε(1) W0ξ ′1,1 + Ŷ0

(
ξ1−

1
N

)
︸ ︷︷ ︸

<0

W1ξ ′2,1 + X̂1ξ2 +Y1

(
ξ2−

1
N

)
︸ ︷︷ ︸

>0

X2ξ3︸︷︷︸
<0

0

hε(2) W0ξ ′1,2 W1ξ ′2,2 + Ŷ1

(
ξ2−

1
N

)
︸ ︷︷ ︸

<0

X̂2ξ3 +Y2

(
ξ3−

1
N

)
︸ ︷︷ ︸

>0

0

hε(3) 0 0 Ŷ2
(
ξ3− 1

N

)
= 0 0

Observations:

• If we increase hε(t), then it will make the period-t signal zt more important, while making the

other signals zs(s 6= t) less important.

1. Xtξt+1 < 0: Effect of hε(s) on future response level (ξ ′t,s, t ≥ s+1)

2. X̂tξt+1 +Yt
(
ξt+1− 1

N

)
> 0: Effect of hε(s) on the present response level (ξ ′t,s, t = s)

3. Ŷt
(
ξt+1− 1

N

)
≤ 0: Effect of hε(s) on the past response (ξ ′t,s, t = s−1)

• But at the same time, the effect is accumulated backwards.

– Zt > 0: If the future effort level increases (decreases), then the marginal benefit of the current

effort increases (decreases).

Given these observations, we conjecture that the optimal information design backloads the information,

that is, the precision increases in t.

D Public Good Provision Case

Consider the case in which each agent receives the payoff

θ

N

∑
i=1

ait
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in each period. That is, compared to the benchmark model, we multiply the total payoff by N. Note

that in this setting, the equilibrium effort under perfect information is θ , while the socially optimal effort

level is Nθ .

• In period T : there is no future effect of my effort, so every player chooses the static optimal effort

level. Since the expected marginal benefit of effort is now µT , we have

a∗iT = µT .

Define ξt be the rate at which each player increase his effort when µt increases. Then above

equation shows that ξT = 1.

• In period T − 1: not only there is static marginal benefit µT−1, but also there is benefit from

changing µ̃T , thus affecting a−i,T . Therefore, the marginal benefit is given by

a∗i,T−1 = µT−1 +δ µT−1 · (N−1)ρT ξT︸ ︷︷ ︸
increase in future effort

= µT−1(1+δ (N−1)ρT ξT ).

Therefore, ξT−1 = 1+(N−1)δρT ξT .

• In period t: by continuing the backward induction, we can show that

a∗it = ξt µt ,

where ξt is recursively defined by

ξt = 1+(N−1)
T

∑
s=t+1

δ
s−t

ρsξs

= (1−δ )+δ (1+(N−1)ρt+1)ξt+1.

• From the last equation, we can also represent ξt as a function of exogenous variables:
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ξt = (1−δ )
T−1

∑
s=t

δ
s−t

(
s

∏
k=t+1

(1+(N−1)ρk)

)
+δ

T−t

(
T

∏
k=t+1

(1+(N−1)ρk)

)

• a∗it is socially efficient if and only if ξt = N.

D.1 Value of Information

Again we define ut and ût be the expected period-t equilibrium payoff under incomplete information

and under complete information, respectively.

Under the complete information, the players play a∗(θ) = θ in every period. Then the total payoff is

(total output)-(total cost) = N ·θ ·Nθ −N · 1
2

θ
2

=

(
N2− N

2

)
θ

2.

Since θ ∼N (µ0,1/h0), the expected total payoff is given by

ût =

(
N2− N

2

)(
µ

2
0 +

1
h0

)
.

Then the present-discounted ex ante payoff is given by

Û =
T

∑
t=0

δ
t
(

1− 1
2N

)(
µ

2
0 +

1
h0

)
=

1−δ T+1

1−δ

(
1− 1

2N

)(
µ

2
0 +

1
h0

)
.

Now let’s look at the incomplete information case. Since in the equilibrium a∗it = ξt µt , we have

(total output)-(total cost) = N ·θ ·N ·ξt µt−N · 1
2
(ξt µt)

2

Therefore, the expected total payoff is

ut =

(
N2

ξt−
N
2

ξ
2
t

)
µ

2
t .
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