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Abstract

Dual Random Utility Maximisation (dRUM) is Random Utility Maximisation

when utility depends on only two states. This class has many relevant behavioural

interpretations and practical applications. We show that dRUM is (generically) the

only stochastic choice rule that satisfies Regularity and two new properties: Con-

stant Expansion (if the choice probability of an alternative is the same across two

menus, then it is the same in the merged menu), and Negative Expansion (if the

choice probability of an alternative is less than one and differs across two menus,

then it vanishes in the merged menu). We extend the theory to menu-dependent

state probabilities. This accommodates prominent violations of Regularity such as

the attraction, similarity and compromise effects.
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1 Introduction

In Random Utility Maximisation (RUM) choices result from the maximisation of a util-

ity that depends on random states, where the probabilities of the states are indepen-

dent of the menu the decision maker is facing. In this paper we fully characterise and

extend RUM for the case in which the states are exactly two (the dual RUM or dRUM

in short) and the number of alternatives is finite. We give a simple picture of the choice

behaviour of a dual random utility maximiser, and we also extend the theory to ac-

count for the state probabilities to depend on the menu, a feature that -we argue- is

compelling in many circumstances.

Dual RUM has many interesting applications, both when stochastic choices em-

anate from an individual and when they describe instead random draws from a popu-

lation. We list a few:

• Dual-self. For individual behaviour, a leading interpretation is in terms of a ‘dual-

self’ process: one state is a ‘cool’ state, in which a long-run utility is maximised,

while the other is a ‘hot’ state, in which a myopic self, subject to short-run im-

pulses (such as temptation), takes control. Indeed, the menu-dependent version

of dRUM describes the second-stage choices of the dual-self model characterised

by Chatterjee and Krishna [5], and the menu-independent version is the one used

earlier by Eliaz and Spiegler [10]. Correspondingly, our results can be seen as a

direct characterisation of this model in terms of choice from menus rather than in

terms of preferences over menus as in [5].1

• Hidden conditions of choice. In general, the states may correspond to other choice-

relevant conditions that are hidden to the observer. For example, the effect of

time pressure on decision making has recently attracted attention.2 The manager

1Eliaz and Spiegler [10] do not focus on characterisation but rather explore the rich implications

of this probabilistic notion of naivete in a contract-theoretic framework, where a principal chooses the

optimal menu of contracs to offer to partially naive agents.
2See e.g. Reutskaya et al. [21] for a recent study of this effect on search behaviour in a shoppping

environment.
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of a store may wonder whether the variability in buying patterns fits a ‘dual’ form

behaviour due to presence or absence of time pressure at the time of purchase. It

is likely that scanner data on the repeated purchases of consumers are available

to the manager. The same applies for which products were available at the time

of each purchase, so that a stochastic choice function can be constructed. It is,

however, unlikely that the manager can learn whether or not the consumer was

in a hurry at the time of purchase. Our results allow a direct test of the dual

behaviour hypothesis.

• Hidden population heterogeneity. The dRUM may represent the variability of choice

due to a binary form of hidden population heterogeneity. The states correspond

to two types of individuals in the population. Interesting examples of this kind

of heterogeneity are when the population is split, in unknown proportions, into

high and low cognitive ability, strategic and non-strategic, ‘fast and slow’ or ‘in-

stinctive and contemplative’ types as suggested by Rubinstein ([22],[23]). Such

binary classifications are natural and widespread.3 Our results clarify what type

of consistency the choices of a population split in this way will exhibit.

• Household decisions. Another main application to a multi-person situation con-

cerns decisions units composed of two agents, notably a household, for which

there is uncertainty about the exact identity of the decision maker. Household

purchases can be observed through standard consumption data, but typically it

is not known which of the two partners made the actual purchase decision on

any given occasion. Dual RUM constitutes the basis for a ‘random dictatorship’

model of household decisions that could complement the ‘collective’ model (Chi-

appori [7]; Cherchye, De Rock and Vermeulen [6]).4

• Normativity vs selfishness. Many situations of choice present a naturally binary

3See also Caplin and Martin [4], who consider agents who can choose whether to make automatic

(fast) or considered (slow) choices, depending on an attentional cost.
4de Clippel and Eliaz [8] propose a dual-self model that can be thought of as a model of intra-

household bargaining. Interestingly, this model exhibits the attraction and compromise effects that we

study later in the paper.
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conflict between a ‘normative’ mode and a ‘selfish’ mode of decision. This con-

flict is both introspectively clear and is observed experimentally, for example,

in dictator games (Frolich, Oppenheimer and Moore [15]). This dichotomy can

pertain both to a typology of individuals and to a single confllicted individual.

The models we study, in which only two alternatives receive positive probability,

are of course a theoretical idealisation. In practice, an empirical distribution roughly

conforming to the theory will be bimodal, expressing broadly polarised preferences in

society or within an individual. Evidence of bimodal distributions in individual and

collective choice is found in disparate contexts.5

We now discuss the key analytical facts in the ‘base case’ of the theory. Suppose

that choices are compatible with dRUM, but let us exclude for simplicity the special

case in which the two states have exactly the same probabilities, which presents some

peculiarities. Suppose you observe that a is chosen with the same probability α when

the menu is A and when the menu is B. Then, while you do not know in which state

the choices were made, you do know that a was chosen (had the highest utility) in

the same state, say s, in A and B. So, when the menu is A ∪ B, a continues to have

the highest utility in state s, while in the other state some alternative in A or B has a

higher utility than a. Therefore a must be chosen with probability α also in A ∪ B. This

Constant Expansion property is a first necessary property of dRUM.

Suppose instead that a is chosen with different probabilities from A and B, and that

these probabilities are less than one. Then it must be the case that a has the highest

utility in different states in A and B (this would not be the case if a was chosen with

probability one from A or B, for then a would have the highest utility in both states in

one or both of the two menus). As a consequence, in each state there is some alternative

5E.g. Frolich, Oppenheimer and Moore [15] and Dufwenberg and Muren [9] (choices in a dicta-

tor games concentrated on giving nothing or 50/50), Sura, Shmuelib, Bosec and Dubeyc [24] (bimodal

distributions in ratings, such as Amazon), Plerou, Gopikrishnan, and Stanley [20] (phase transition to

bimodal demand -”bulls and bears”- in financial markets), Engelmann and Normann [12] (bimodality

on maximum and minimum effort levels in minimum effort games), McClelland, Schulze and Coursey

[19] (bimodal beliefs for unlikely events and willingness to insure).
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that has a higher utility than a in A∪ B, and therefore a must be chosen with probability

zero from A ∪ B. This Negative Expansion property is a second necessary property of

dRUM.

Theorem 1 says that, in the presence of the standard axiom of Regularity (adding

new alternatives to a menu cannot increase the choice probability of an existing alter-

native), Constant and Negative Expansion are in fact all the behavioural implications

of dRUM: the three axioms completely characterise dRUM when state probabilities are

asymmetric.

The case which also allows for symmetric state probabilities is more complex and

requires a separate treatment. The Constant Expansion axiom no longer holds, since

now it could happen that a is chosen in different states from A and from B. However,

a weakening that maintains the same flavour continues to apply: the proviso that a is

chosen with positive probability from A∪ B must be added. Furthermore, a contraction

consistency property, which is implied by the other axioms in the generic case, must be

assumed explicitly here. It says that the impact of an alternative a on another alternative

b (removing a affects the probability of b) is preserved when moving from larger to

smaller menus. Theorem 2 shows that Regularity, the modified expansion axioms, and

contraction consistency characterise general dRUMs.

The identification properties of the preferences are very different in the two cases:

there is uniqueness only in the asymmetric one, and otherwise uniqueness holds only

up to a certain class of ordinal transformation of the rankings.

While the symmetric state case is non generic, it is not only of technical interest,

because it serves as a basis to analyse the extension of the model that we describe

below.

dRUM is a restriction of the classical RUM. In the final part of the paper we explore

a new type of random utility maximisation that explains behaviours outside the RUM

family, by allowing state probabilities to depend on the menu. This is an extremely

natural feature in many contexts: for example, it is so in the dual self interpretations

(Chatterjee and Krishna [5]). This extended model is also interesting because it can

-unlike dRUM- represent as random utility maximisation some prominent violations
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of Regularity, such as the attraction, similarity and compromise effects. At first sight,

allowing total freedom in the way probabilities can depend on menus seems to spell a

total lack of structure, but we show in Theorem 3 that in fact the menu-dependent prob-

ability model, too, can be neatly characterised by consistency properties, which mir-

ror those characterising the fixed-probability model (while obviously being weaker).

These properties are ‘modal’ in the sense that they make assertions on the relationship

between the certainty, impossibility and possibility, rather than the numerical probability,

of selection across menus.

The behaviour corresponding to a general RUM is not very well-understood: RUM

is characterised by a fairly complex set of conditions whose behavioural interpreta-

tion is not transparent.6 For this reason other scholars have examined interesting

special cases where additional structure is added, obtaining transparent behavioural

characterisations of RUM. We recall in particular Gul and Pesendorfer [13], who as-

sume alternatives to be lotteries and preferences to be von Neumann Morgenstern;

and Apesteguia and Ballester [1], who examine, in an abstract context, a family of util-

ity functions that satisfies a single-crossing condition. The two state case of RUM of

this paper is another restriction that is useful in this sense.

2 Preliminaries

Let X be a set of n ≥ 2 alternatives. The nonempty subsets of X are called menus. Let

D be the set of all nonempty menus.

A stochastic choice rule is a map p : D → [0, 1] such that: ∑a∈A p (a, A) = 1 for

all A ∈ D; p (a, A) = 0 for all a /∈ A; and p (a, A) ∈ [0, 1] for all a ∈ A, for all

A ∈ D. The value p (a, A)may be interpreted as expressing the probability with which

an individual agent, on whose behaviour we focus, chooses a from the menu A, or as

6The RUM is classically characterised by the Block-Marschak-Falmagne conditions (Block and

Marschak [3]; Falmagne [14]; Barbera and Pattanaik [2]). These conditions constitute a very useful

algorithm, but they are complex and can be interpreted only in terms of the representation (i.e. as indi-

cating certain features of the probabilities of rankings). Thus they offer little insight on the behavioural

restrictions imposed by the model which is the main theme of the present paper.
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the fraction of a population choosing a from A.

In Random Utility Maximisation (RUM) a stochastic choice rule is constructed by

assuming that there is probabilistic state space and a state dependent utility which is

maximised. But provided that the event that two alternatives have the same realised

utility has probability zero, RUM can be conveniently described in terms of random

rankings (see e.g. Block and Marschak [3]), which we henceforth do. A ranking of X

is a bijection r : {1, ..., n} → X. Let R be the set of all rankings. We interpret a r ∈ R
as describing alternatives in decreasing order of preference: r (1) is the most preferred

alternative, r (2) the second most preferred, and so on.

Let R (a, A) denote the set of rankings for which a is the top alternative in A, that

is,

R (a, A) =
{

r ∈ R : r−1 (b) < r−1 (a)⇒ b /∈ A
}

.

Let µ be a probability distribution on R. A RUM is a Stochastic choice rule p such

that

p (a, A) = ∑
r∈R(a,A)

µ (r)

A dual RUM (dRUM) is a RUM that uses only two rankings, that is one for which

the following condition holds: µ (r) µ (r′) > 0, r 6= r′ ⇒ µ (r′′) = 0 for all rankings

r′′ 6= r, r′. A dRUM p is thus identified by a triple (r1, r2, α) of two rankings and a

number α ∈ [0, 1]. We say that (r1, r2, α) generates p.

To ease the notation for ranking relations, from now on given rankings ri, i = 1, 2,

we shall write a �i b instead of r−1
i (a) < r−1

i (b).

A dRUM is a RUM and thus satisfies, for all menus A, B:

Regularity: If A ⊂ B then p (a, A) ≥ p (a, B).

The two key additional properties are the following, for all menus A, B:

Constant Expansion: If p (a, A) = p (a, B) = α then p (a, A ∪ B) = α.

Negative Expansion: If p (a, A) < p (a, B) < 1 then p (a, A ∪ B) = 0.

Constant Expansion extends to stochastic choice the classical expansion property

of rational deterministic choice: if an alternative is chosen (resp., rejected) from two
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menus, then it is chosen (resp., rejected) from the union of the menus. In the stochastic

setting the axiom remains a menu-independence condition. For example, in the pop-

ulation interpretation with instinctive and contemplative agents, the same frequencies

of choice for a in two menus reveal that a got support either from the instinctive group

in both menus or from the contemplative group in both menus. Therefore, if support

is menu-independent it will persist when the menus are merged.

Negative Expansion is peculiar to stochastic choice since the antecedent of the ax-

iom is impossible in deterministic choice, and is a ‘dual’ form of menu-independence

condition. For example, in the population interpretation, different frequencies of choice

for a in two menus reveal (given that they are less than unity) that in one menu a was

not supported by one group, and in the other menu a was not supported by the other

group. Therefore, if support is menu-independent no group will support a when the

menus are merged.

Remark 1 We note in passing that Regularity and Negative Expansion imply almost imme-

diately a well-known property satisfied by any RUM, Weak Stochastic Transitivity, defined as

follows: if p (a, {a, b}) ≥ 1
2 and p (b, {b, c}) ≥ 1

2 then p (a, {a, c}) ≥ 1
2 . To see this, sup-

pose that the premise of Weak Stochastic Transitivity holds but that p (a, {a, c}) < 1
2 . Then

(noting that it must be p (c, {b, c}) ≤ 1
2 and p (c, {a, c}) > 1

2 ) Negative Expansion implies

p (a, {a, b, c}) = 0 = p (c, {a, b, c}), and hence p (b, {a, b, c}) = 1, contradicting Regularity

and p (a, {a, b}) > 0.

Since dRUMs satisfy Regularity and Negative Expansion, they satisfy Weak Stochastic

Transitivity, whereas any RUM with more than two states may violate it.

3 Asymmetric dRUMs

The case in which all non-degenerate choice probabilities are exactly equal to 1
2 requires

a separate method of proof and a different axiomatisation from all other cases α ∈
(0, 1). Thus we begin our analysis by excluding for the moment this special case. The

characterisation of the general case will be based on the results in this section.

A stochastic choice rule is asymmetric if p (a, A) = α 6= 1
2 for some A and a ∈ A. It is
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symmetric if p (a, A) ∈ (0, 1) for some A and a ∈ A and p (a, A) = 1
2 for all A and a ∈ A

for which this is the case.

Our main result in this section is:

Theorem 1 An asymmetric stochastic choice rule p is a dRUM if and only if it satisfies Reg-

ularity, Constant Expansion and Negative Expansion.

In order to prove the theorem we establish two key preliminary results. The first

lemma shows that in any menu there are at most two alternatives receiving positive

choice probability

Lemma 1 Let p be a stochastic choice rule that satisfies Regularity, Constant Expansion and

Negative Expansion. Then for any menu A, if p (a, A) ∈ (0, 1) for some a ∈ A there exists

b ∈ A for which p (b, A) = 1− p (a, A).

Proof: Suppose by contradiction that for some menu A there exist b1, ..., bn ∈ A such

that n > 2, p (bi, A) > 0 for all i and ∑n
i=1 p (bi) = 1. Since n > 2, we have p (bi, A) +

p
(
bj, A

)
< 1 for all distinct i, j, and therefore (up to relabeling) p

(
bi,
{

bi, bj
})

>

p (bi, A). Fixing i, j, if it were p
(
bi,
{

bi, bj
})
= p (bi, {bi, bk}) for all k 6= i, j, then by

Constant Expansion p
(
bi,
{

bi, bj
})

= p (bi, {b1, ..., bn}) = p (bi, A) (the last equality

holding by Regularity), a contradiction. Therefore p
(
bi,
{

bi, bj
})
6= p (bi, {bi, bk}) for

some k. But then by Negative Expansion p
(
bi,
{

bi, bj, bk
})
= 0, contradicting Regular-

ity and p (bi, A) > 0. �

The next lemma shows that the two alternatives receiving positive probability do

not change across menus.

Lemma 2 Let p be a stochastic choice rule that satisfies Regularity, Constant Expansion and

Negative Expansion. Then there exists α ∈ [0, 1] such that, for any menu A and all a ∈ A,

p (a, A) ∈ {0, α, 1− α, 1}.

Proof: If for all A we have p (a, A) = 1 for some a there is nothing to prove. Then

take A for which p (a, A) = α ∈ (0, 1) for some a. By Lemma 1 there exists exactly one

alternative b ∈ A for which p (b, A) = 1− α. Note that by Regularity p (a, {a, c}) ≥ α

for all c ∈ A\ {a} and p (b, {b, c}) ≥ 1− α for all c ∈ A\ {b}.
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Now suppose by contradiction that there exists a menu B with c ∈ B for which

p (c, B) = β /∈ {0, α, 1− α, 1}. By

Lemma 1 there exists exactly one alternative d ∈ B for which p (d, B) = 1− β.

Consider the menu A∪B. By Regularity p (e, A ∪ B) = 0 for all e ∈ (A ∪ B) \ {a, b, c, d}.
Moreover, by Lemma 1 p (e, A ∪ B) = 0 for some e ∈ {a, b, c, d}, and w.l.o.g., let

p (a, A ∪ B) = 0.

If p (b, A ∪ B) > 0 then by Regularity and Negative Expansion p (b, A ∪ B) = 1−
α (if it were p (b, A ∪ B) < 1 − α, then we would have p (b, A ∪ B) 6= p (b, A) with

p (b, A ∪ B) , p (b, A) < 1 so that Negative Expansion would imply the contradiction

p (b, A ∪ B) = 0). It follows from Lemma 1 that either p (c, A ∪ B) = α or p (d, A ∪ B) =

α. In the former case, since α > 0 a reasoning analogous to the one followed so far

implies that p (c, A ∪ B) = p (c, B) = β, contradicting α 6= β; and in the latter case we

obtain the contradiction p (d, A ∪ B) = p (d, B) = 1− β.

The proof is concluded by arriving at mirror contradictions starting from p (c, A ∪ B) >

0 or p (b, A ∪ B) > 0. �

Proof of Theorem 1: Necessity, described informally in the introduction, is easily

checked. For sufficiency, we proceed by induction on the cardinality of X. As a prelim-

inary observation, note that if p satisfies the axioms on X, then its restriction to X\ {a}
also satisfies the axioms on X\ {a}.7

Moving to the inductive argument, if |X| = 2 the result is easily shown. For |X| =
n > 2, we consider two cases.

CASE A: p (a, X) = 1 for some a ∈ X.

Denote p′ the restriction of p to X\ {a}. By the preliminary observation and the

inductive hypothesis there exist two rankings r′1 and r′2 on X\ {a} and α ∈ [0, 1] such

that (r′1, r′2, α) generates p′ on X\ {a}. Extend r′1 and r′2 to r1 and r2 on X by letting

r1 (1) = r2 (1) = a and letting ri agree with r′i, i = 1, 2, for all the other alternatives,

7If A ⊂ B ⊆ X\ {a} then by Regularity (defined on the entire X) p (b, A) ≥ p (b, B). If A, B ⊆ X\ {a}
and p (b, A) = p (b, B) = α then A ∪ B ⊆ X\ {a} and by Constant Expansion (on X) p (b, A ∪ B) = α.

If A, B ⊆ X\ {a}, p (b, A) 6= p (b, B) and p (b, A) , p (b, B) < 1 then A ∪ B ⊆ X\ {a} and by Negative

Expansion (on X) p (b, A ∪ B) = 0.
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that is c �i d ⇔ c �′i d for all c, d 6= a (where for all x, y we write x �′i y to denote(
r′i
)−1

(x) <
(
r′i
)−1

(y)). Let p̃ be the dRUM generated by (r1, r2, α). Take any menu A

such that a ∈ A. Then p̃ (a, A) = 1. Since by Regularity p (a, A) = 1, we have p = p̃ as

desired.

CASE B: p (a, X) = α 6= 1
2 and p (b, X) = 1− α for distinct a, b ∈ X and α ∈ (0, 1).

Note that by Lemma 1 and 2 this is the only remaining possibility (in particular, if

it were p (a, X) = 1
2 then p (c, A) ∈

{
0, 1

2 , 1
}

for all menus A and c ∈ A, in violation

of p being asymmetric). Assume w.l.o.g. that α > 1
2 . As in Case A, by the inductive

step there are two rankings r′1 and r′2 on X\ {a} and β ∈ [0, 1] such that (r′1, r′2, β)

generates the restriction p′ of p to X\ {a}. If for all A ⊆ X\ {a} there is some cA ∈ A

such that p (cA, A) = 1, then the two rankings must agree on X\ {a}. In this case,

for any γ ∈ [0, 1], (r′1, r′2, γ) also generates p′ on X\ {a}, and in particular we are free

to choose γ = α. If instead there exists A ⊆ X\ {a} for which p (c, A) 6= 1 for all

c ∈ A, we know from Lemmas 1 and 2 that then there exist exactly two alternatives

c, d ∈ A such that p (d, A) = α and p (c, A) = 1− α. Therefore in this case it must be

β = α (otherwise (r′1, r′2, β)would not generate the choice probabilities p (d, A) = α and

p (c, A) = 1− α). Note that we must have r′2 (1) = b since by Regularity and Lemma 2

either p (b, X\ {a}) = 1 (in which case also r′1 (1) = b) or p (b, X\ {a}) = 1− α.

Now extend r′1 to r1 on X by setting r1 (1) = a and letting the rest of r1 agree with

r′1 on X\ {a}; and extend r′2 to r2 on X by setting

a � 2c for all c such that p (a, {a, c}) = 1

c � 2a for all c such that p (a, {a, c}) = α.

and letting the rest of r2 agree with r′2 on X\ {a}. Note that by Regularity and Lemma

2 the two possibilities in the display are exhaustive (recall the assumption α > 1
2 ).

We need to check that this extension is consistent, that is that r2 does not rank a

above some c but below some d that is itself below c. Suppose to the contrary that

there existed c and d for which c �2 d but a �2 c and d �2 a. These three inequalities

imply, respectively, that p (c, {c, d}) ≥ 1− α (since r′1 and r′2 generate p′ on X\ {a}),
p (a, {a, c}) = 1 and p (a, {a, d}) = α (by the construction of r2).
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If c �′1 d then p (d, {c, d}) = 0, hence p (d, {a, c, d}) = 0 by Regularity. Since

p (c, {a, c}) = 0 it is also p (c, {a, c, d}) = 0 by Regularity, and thus p (a, {a, c, d}) = 1

contradicting Regularity and p (a, {a, d}) = α < 1.

If instead c �′1 d then p (d, {c, d}) = α. Since p (d, {a, d}) = 1− α, by Negative

Expansion p (d, {a, c, d}) = 0 and we can argue as above. This shows that the extension

r2 is consistent.

Denote p̃ the choice probabilities associated with the dRUM (r1, r2, α). We now

show that p = p̃.

Take any menu A for which a ∈ A. By Regularity (recalling the assumption α > 1
2 )

either (1) p (a, A) = 1 or (2) p (a, A) = α and p (c, A) = 1− α for some c ∈ A\ {a}. In

case (1), p (a, {a, d}) = 1 for all d ∈ A\ {a} by Regularity. Thus a �1 d and a �2 d for

all d ∈ A\ {a}, and therefore p̃ (a, A) = 1 = p (a, A) as desired.

Consider then case (2). Since p (c, A) = 1 − α we have p (c, {a, c}) ≥ 1 − α by

Regularity. Then by Regularity again we have p (a, {a, c}) = α and therefore c �2 a, so

that p̃ (a, A) = α as desired. It remains to be checked that p̃ (c, A) = 1− α. This means

showing that c �2 d also for all d ∈ A\ {a, c}, which is equivalent to showing that

c �′2 d for all d ∈ A\ {a}. If p (c, A\ {a}) = 1, this is certainly the case since (r′1, r′2, α)

generates the restriction of p to A\ {a}. If instead p (c, A\ {a}) = 1− α (the only other

possibility by Regularity and Lemmas 1 and 2), noting that α 6= 1− α, again this must

be the case given that (r′1, r′2, α) generates the restriction of p to A\ {a} (observe in

passing that this conclusion might not hold in the case α = 1
2 ), and this concludes that

proof.

We derived from primitive properties the fact that in an asymmetric dRUM there

can be only two fixed non-degenerate choice probabilities α 6= 1
2 and 1 − α in any

menu. Since this fact, if it occurs, should be easily detectable from the data, one may

wonder if a characterisation can be obtained by simply postulating it directly as an

axiom together with Regularity:

Range: There exists α ∈ (0, 1), α 6= 1
2 , such that for all A ⊆ X and a ∈ A, p (a, A) ∈

{0, α, 1− α, 1}.
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But it turns out that the Range and Regularity assumptions are not sufficient to

ensure that the data are generated by a dRUM: they must still be disciplined by further

across-menu consistency properties. Here is a stochastic choice rule p that satisfies

Range and Regularity (and even Constant Expansion) but is not a dRUM:

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b} {a, c} {a, d} {b, c} {b, d} {c, d}
a 0 2

3
1
3 0 − 2

3
2
3

1
3 − − −

b 0 0 0 − 0 1
2 − − 2

3
1
3 −

c 1
3

1
3 − 1

3
1
3 − 1

3 − 1
3 − 1

3

d 2
3 − 2

3
2
3

2
3 − − 2

3 − 2
3

2
3

Table 1: A Stochastic Choice Function that fails Negative Expansion

That p is not a dRUM follows by Theorem 1 and the fact that p fails Negative Ex-

pansion (e.g. p (a, {a, b}) = 2
3 6=

1
3 = p (a, {a, d}) while p (a, {a, b, d}) > 0).

4 General dRUMs

The easy inductive method we used in the proof of Theorem 1 breaks down for gen-

eral dRUMs. We have to engage more directly with reconstructing the rankings from

choice probabilities. The difficulty here is that, while it is clear that an alternative a

being ranked above another alternative b in some ranking is revealed by the fact that

removing a from a menu increases the choice probability of b, it is not self-evident

in which ranking a is above b (whereas in the asymmetric case the two rankings are

distinguished by the distinct probabilities α and 1− α).

If the probabilities are allowed to take on the value 1
2 , then Constant Expansion is

no longer a necessary property. In fact, if p (a, A) = p (a, B) = 1
2 it could happen that a

is top in A according to the ranking r1 (but not according to r2) and top in B according

to r2 (but not according to r1). Then in A ∪ B there will be alternatives that are above a

in both rankings, so that p (a, A ∪ B) = 0.

The following weakening of Constant Expansion is an expansion property that cir-

cumvents the above situation and is necessary:
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Weak Constant Expansion: If p (a, A) = p (a, B) = α and p (a, A ∪ B) > 0 then

p (a, A ∪ B) = α.

It is easy to check that Weak Constant Expansion is necessary for a dRUM. In ad-

dition, general dRUMs are also easily checked to satisfy Negative Expansion. The

following example indicates however that Regularity, Weak Constant Expansion and

Negative Expansion are not tight enough to characterise general dRUMs:

{a, b, c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} {a, b} {a, c} {a, d} {b, c} {b, d} {c, d}
a 0 1

2
1
2 0 − 1

2
1
2

1
2 − − −

b 0 0 0 − 0 1
2 − − 1

2
1
2 −

c 1
2

1
2 − 1

2
1
2 − 1

2 − 1
2 − 1

2

d 1
2 − 1

2
1
2

1
2 − − 1

2 − 1
2

1
2

Table 2: A Stochastic Choice Function that fails Contraction Consistency

To see why the example above is not a dRUM, suppose it were. Then p (a, {a, b, c, d}) =
0 and p (a, {a, b, c}) = 1

2 imply that d is an immediate predecessor of a in one of the two

rankings on {a, b, c, d}. This must remain the case when the orderings are restricted to

{a, b, d}, yet p (a, {a, b, d}) = 1
2 = p (a, {a, b}) imply that d is not an immediate prede-

cessor of a on {a, b, d} in either ranking.

The final new property used in the characterisation below is interesting and uses

the concept of impact (Manzini and Mariotti [18]): b impacts a in A whenever p (a, A) >

p (a, A ∪ {b}).

Contraction Consistency: If b impacts a in A and a ∈ B ⊂ A then b impacts a in

B. Formally: For all a ∈ B ⊆ A and b ∈ X: p (a, A) > p (a, A ∪ {b}) ⇒ p (a, B) >

p (a, B ∪ {b}).

Contraction Consistency simply says that impact is inherited from menus to sub-

menus. This property is implied by the other properties in the statement of Theorem 1

when the dRUM is asymmetric, but it needs to be assumed explicitly otherwise. Let’s

check the implication first:
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Proposition 1 Let p be an asymmetric dRUM that satisfies Constant Expansion, Regularity

and Negative Expansion. Then it satisfies Contraction Consistency.

Proof. Let p satisfy Constant Expansion, Regularity and Negative Expansion, let a ∈
B ⊆ A and b ∈ X and suppose by contradiction that p (a, A) > p (a, A ∪ {b}) but

p (a, B) ≤ p (a, B ∪ {b}). Since by Regularity p (a, B) ≥ p (a, B ∪ {b}), it can only be

p (a, B) = p (a, B ∪ {b}). Also, by Regularity it must be p (a, B) ≥ p (a, A). How-

ever it cannot be p (a, B) = p (a, A), for in that case p (a, B ∪ {b}) = p (a, A) and Con-

stant Expansion would imply the contradiction p (a, A ∪ {b}) = p (a, (B ∪ {b}) ∪ A) =

p (a, A) > p (a, A ∪ {b}). So it must be p (a, B) > p (a, A), and the only possible config-

uration of choice probabilities is p (a, B) = p (a, B ∪ {b}) > p (a, A) > p (a, A ∪ {b}).
Now w.l.o.g. let α > 1 − α. It cannot be that p (a, B ∪ {b}) = α and p (a, A) =

1 − α, since then Negative Expansion and p (a, B) 6= p (a, A) imply the contradic-

tion p (a, A ∪ B) = p (a, A) = 0 > p (a, A ∪ {b}). Similarly, it cannot be p (a, A) =

α > p (a, A ∪ {b}) = 1− α, for again Negative Expansion implies the contradiction

p (a, A ∪ {b}) = p (a, A ∪ (A ∪ {b})) = 0 6= 1− α = p (a, A ∪ {b}). The only remain-

ing possibility is p (a, B ∪ {b}) = p (a, B) = 1, p (a, A) ∈ {α, 1− α} and p (a, A ∪ {b}) =
0. By Regularity, p (a, B ∪ {b}) = 1 implies p (a, {a, b}) = 1. Moreover if p (a, A) >

p (a, A ∪ {b}) it must be p (b, A ∪ {b}) > 0 (if not, then there exist x, y ∈ A such

that p (x, A ∪ {b}) , p (y, A ∪ {b}) > 0 and p (x, A ∪ {b}) + p (y, A ∪ {b}) = 1, where

possibly x = y while a 6= x, y since p (a, A ∪ {b}) = 0. But then by Regularity

p (x, A) ≥ p (x, A ∪ {b}) and p (y, A) ≥ p (y, A ∪ {b}), implying the contradiction

p (a, A) = 0). But if p (b, A ∪ {b}) > 0 the contradiction p (b, {a, b}) > 0 follows. We

conclude that Contraction Consistency holds. �

Theorem 2 A stochastic choice rule is a dRUM if and only if it satisfies Regularity, Weak

Constant Expansion, Negative Expansion and Contraction Consistency.

Proof. Necessity is straightforward, so we show sufficiency.

Preliminaries and outline Let p satisfy Regularity, Weak Constant Expansion, Nega-

tive Expansion and Contraction Consistency. The proof consists of three blocks: first

we define an algorithm to construct two rankings r1 and r2 explicitly (block 1), then we
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show that the algorithm is well defined (block 2), and finally we show that r1 and r2 so

constructed retrieve p (block 3).

Observe that Lemma 1 and Lemma 2 continue to hold when Constant Expansion

is replaced by Weak Constant Expansion.8 In the proof of Theorem 1 we did not use

Constant Expansion explicitly. So in view of Theorem 1 we only need to consider the

case p (a, A) ∈
{

0, 1
2 , 1
}

for all A and a ∈ A, and at most two alternatives are chosen

with positive probability in any menu A.

1. The algorithm to construct the two rankings.

Let a, b ∈ X be such that p (a, X) , p (b, X) > 0. Enumerate the elements of the

rankings r1 and r2 to be constructed by r1 (i) = xi and r2 (i) = yi for i = 1, ...n. Set

x1 = a and y1 = b (were possibly x1 = a = b = y1).

The rest of the rankings r1 and r2 for i ≥ 2 are defined recursively. Let

L1
i = X \

i−1⋃
j=1

xj

Next, define the set Si of alternatives that are impacted by xi−1 in L1
i ∪ {xi−1}:

Si =
{

s ∈ L1
i : p

(
s, L1

i

)
> p

(
s, L1

i ∪ {xi−1}
)}

where observe that by lemmas 1 and 2 we have 0 < |Si| ≤ 2.

If Si = {c} for some c ∈ X, then let xi = c.

If |Si| = 2, then let Si = {c, d} with c 6= d and consider two cases:

(1.i) p
(
c, L1

i
)
> p

(
c, L1

i ∪
{

xj
})

(resp., p
(
d, L1

i
)
> p

(
d, L1

i ∪
{

xj
})

) for all j = 1, ...i −
1 and p

(
d, L1

i
)
= p

(
d, L1

i ∪
{

xj
})

(resp., p
(
c, L1

i
)
= p

(
c, L1

i ∪
{

xj
})

) for some j ∈
{1, ..., i− 2} (that is, one alternative is impacted by all predecessors xj in L1

i while the

other alternative is not).

In this case let xi = c (resp., xi = d).

(1.ii) p
(
c, L1

i
)
> p

(
c, L1

i ∪
{

xj
})

and p
(
d, L1

i
)
> p

(
d, L1

i ∪
{

xj
})

for all j = 1, ...i − 1

(both alternatives are impacted by all predecessors xj in L1
i ).

8To check, note that Constant Expansion is invoked only in the proof of Lemma 1, and only once, in

a step where the additional clause of Weak Constant Expansion is satisfied by hypothesis.
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In this case, let xi = c.

Proceed in an analogous way for the construction of r1, starting from y1, that is for

all i = 2, ...n define recursively

L2
i = X \

i−1⋃
j=1

yj

Ti =
{

t ∈ L2
i : p

(
t, L2

i

)
> p

(
t, L2

i ∪ {yi−1}
)}

and as before 0 < |Si| ≤ 2.

If |Ti| = {t}, then let yi = t, while if |Ti| = 2 , then letting Ti = {e, f }:

(2.i). p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

(resp. p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

) for all j = 1, ...i− 1,

and p
(

f , L2
i
)
= p

(
f , L2

i ∪
{

yj
})

(resp. p
(
e, L2

i
)
= p

(
e, L2

i ∪
{

yi−g
})

) for some j ∈
{1, ..., i− 2}.

In this case let yi = e (resp., f ).

(2.ii). p
(
e, L2

i
)
> p

(
e, L2

i ∪
{

yj
})

and p
(

f , L2
i
)
> p

(
f , L2

i ∪
{

yj
})

for all j = 1, ...i− 1.

In this case let yi = f (resp., yi = e) whenever eP (r1) f (resp., f P (r1) e) (i.e. we

require consistency with the construction of the first order).

2. Showing that the algorithm is well-defined

We show that cases (1.i) and (1.ii) are exhaustive, which means showing that if

|Si| = 2 at least one alternative in Si is impacted by all its predecessors according

to r1. We proceed by induction on the index i. If i = 2 there is nothing to prove.

Now consider the step i = k + 1. If |Sk+1| = 1 again there is nothing to prove, so let

|Sk+1| = 2, with Sk+1 = {c, d}. By construction p
(
c, L1

k+1

)
> p

(
c, L1

k+1 ∪ {xk}
)

and

p
(
d, L1

k+1

)
> p

(
d, L1

k+1 ∪ {xk}
)
, so that by Lemma 1 and Lemma 2 it must be

p
(

c, L1
k+1

)
=

1
2
= p

(
d, L1

k+1

)
(1)

By contradiction, suppose that there exist u, v∈{x1, ...xk−1} for which u does not

impact c in L1
k+1 and v does not impact d in L1

k+1, i.e.

p
(

c, L1
k+1 ∪ {u}

)
= p

(
c, L1

k+1

)
=

1
2

(2)
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and

p
(

d, L1
k+1 ∪ {v}

)
= p

(
d, L1

k+1

)
=

1
2

(3)

(note that by construction we have u, v 6= xk). We can rule out the case u = v. For sup-

pose u = v = xj for some j. Then, recalling (1), p
(
d, L1

k+1 ∪
{

xj
})
= p

(
d, L1

k+1

)
= 1

2 =

p
(
c, L1

k+1

)
= p

(
c, L1

k+1 ∪
{

xj
})

and thus p
(
xj, L1

k+1 ∪
{

xj
})

= 0, which contradicts

Regularity and p
(

xj, L1
j ∪
{

xj
})
> 0 with L1

k+1 ⊂ L1
j .

Since by construction and Regularity p
(
v, L1

k+1 ∪ {v}
)
> 0, Lemma 1, Lemma 2

and (3) imply

p
(

c, L1
k+1 ∪ {v}

)
= 0 (4)

Similarly, p
(
v, L1

k+1 ∪ {v}
)
> 0 (by construction and Regularity), Lemma 1, Lemma 2

and (2) imply

p
(

d, L1
k+1 ∪ {u}

)
= 0 (5)

(i.e. u impacts d in L1
k+1 ∪ {u} and v impacts c in L1

k+1). Now consider the menu

L1
k+1 ∪ {u, v}. By (4), (5) and Regularity it must be:

p
(

c, L1
k+1 ∪ {u, v}

)
= 0 = p

(
d, L1

k+1 ∪ {u, v}
)

(6)

It cannot be that p
(
u, L1

k+1 ∪ {u, v}
)
= 1, for otherwise Regularity would imply p

(
u, L1

k+1 ∪ {u}
)
=

1, contradicting p
(
c, L1

k+1 ∪ {u}
)
= p

(
c, L1

k+1

)
= 1

2 . Similarly, it cannot be that p
(
v, {u, v} ∪ L1

k+1

)
=

1. Finally, if either p
(
v,∪L1

k+1 ∪ {u, v}
)
= 0 or p

(
u, L1

k+1 ∪ {u, v}
)
= 0, then in view of

(6) it would have to be p
(
w, L1

k+1 ∪ {u, v}
)
> 0 for some w ∈ L1

k+1. But this is impos-

sible since c 6= w 6= d by (6), and then by Regularity the contradiction p
(
w, L1

k+1

)
> 0

would follow. Therefore it must be

p
(

u, L1
k+1 ∪ {u, v}

)
=

1
2
= p

(
v, L1

k+1 ∪ {u, v}
)

It follows that both

p
(

u, L1
k+1 ∪ {u}

)
= p

(
u, L1

k+1 ∪ {u, v}
)

(7)

and

p
(

v, L1
k+1 ∪ {v}

)
= p

(
v, L1

k+1 ∪ {u, v}
)

(8)
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i.e. neither does u impact v in L1
k+1 ∪ {v}, nor does v impact u in L1

k+1 ∪ {u}. Suppose

w.l.o.g. that v is a predecessor of u, and let u = xj. By the inductive hypothesis v

impacts u in L1
j , so that by Contraction Consistency it also impacts u in L1

k+1 ∪ {u} ⊂
L1

j , i.e.

p
(

u, L1
k+1 ∪ {u}

)
> p

(
u, L1

k+1 ∪ {u, v}
)

a contradiction with (7). A symmetric argument applies if u is a predecessor of v using

(8).

A straightforward adaptation of the argument above shows that cases (2.i) and (2.ii)

are exhaustive.

3. Showing that the algorithm retrieves the observed choice.

Let p 1
2

be the dRUM generated by
(

r1, r2, 1
2

)
. For any alternative x denote Li

x its

(weak) lower contour set in ranking ri, that is

Li
x = {x} ∪ {s ∈ X : x �i s}

and note that by construction p
(
x, Li

x
)
> 0. We examine the possible cases of failures

of the algorithm in succession.

3.1: p (a, A) = 0 and p 1
2
(a, A) > 0.

Then a �i a′ for some i, for all a′ ∈ A \ {a}, hence A ⊆ Li
a, and thus by Regularity

and p
(
a, Li

a
)
> 0 we have p (a, A) > 0, a contradiction.

3.2: p (a, A) = 1 and p 1
2
(a, A) < 1.

Then there exists b ∈ B such that b �i a′ for some i, for all a′ ∈ A \ {b}, hence

A ⊆ Li
b, and thus by Regularity and p

(
b, Li

a
)
> 0 we have p (b, A) > 0, a contradiction.

3.3: p (a, A) = 1
2 and p 1

2
(a, A) = 1.

Let I
(

p 1
2

)
be the set of all pairs (a, A) satisfying the conditions of this case. Fix an

(a, A) ∈ I
(

p 1
2

)
that is maximal in I

(
p 1

2

)
in the sense that (b, B) ∈ I

(
p 1

2

)
⇒ a �i b

for some i.

Because p 1
2
(a, A) = 1 we have A ⊆ L1

a ∩ L2
a. If p

(
a, L1

a ∩ L2
a
)
= 1 we have an imme-

diate contradiction, since by Regularity p (a, A) = 1. So it must be p
(
a, L1

a ∩ L2
a
)
= 1

2 .

We show that this also leads to a contradiction.
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Suppose first that L1
a \ L2

a 6= ∅, and take z ∈ L1
a \ L2

a such that a �1 z and z �2 a. By

construction this implies p
(
a, L2

a
)
> p

(
a, {z} ∪ L2

a
)
, so that by Contraction Consistency

p
(
a, L1

a ∩ L2
a
)
> p

(
a, {z} ∪

(
L1

a ∩ L2
a
))

. Since by Regularity p
(
a, {z} ∪

(
L1

a ∩ L2
a
))
≥

p
(
a, L2

a
)
= 1

2 (where recall z ∈ L1
a, so that z ∪ L1

a = L1
a), we have p

(
a, L1

a ∩ L2
a
)
= 1, a

contradiction. A symmetric argument applies if L2
a \ L1

a 6= ∅.

Finally, consider the case L1
a = L2

a = La for some La ⊂ X. Then X \ L1
a = X \ L2

a = Ua

for some Ua ⊂ X (where observe that u ∈ Ua ⇒ u �i a, i = 1, 2). Since we assumed

that p
(
a, L1

a ∩ L2
a
)
= 1

2 , there exists a w ∈
(

L1
a ∩ L2

a
)

for which p
(
w, L1

a ∩ L2
a
)
= 1

2 .

Let x1, ..., xn be the predecessors of a in the ranking r1 and let y1, ..., yn be the pre-

decessors of a in the ranking r2 (where obviously {x1, ..., xn} = Ua = {y1, ..., yn}). So

a = xn+1 = yn+1 (note that since L1
a = L2

a, a must have the same position in both

rankings).

By the construction of the algorithm xn and yn impact a in La, that is p (a, La) >

p (a, La ∪ {xn}) and p (a, La) > p (a, La ∪ {yn}).
We claim that there exists a z ∈ Ua that does not impact w in La, that is p (w, La) =

p (w, La ∪ {z}). To see this, if p (w, La) = p (w, La ∪ {xn}) (resp. p (w, La) = p (w, La ∪ {yn}))
simply set z = xn (resp. z = yn). If instead p (w, La) > p (w, La ∪ {xn}) and p (w, La) >

p (w, La ∪ {yn}) then, since a = xn+1 = yn+1, p (w, La) = p (w, La ∪ {z}) for some

z ∈ Ua by the construction of the algorithm (otherwise, given that xn and yn impact w

in La, it should be w = xn+1 or w = yn+1). Fix such a z.

Regularity and the construction imply that p (z, La ∪ {z}) = 1
2 . But since z ∈ Ua

we have z �i a′, i = 1, 2, for all a′ ∈ La, so that p 1
2
(z, La ∪ {z}) = 1 and therefore

z ∈ I
(

p 1
2

)
. And since in particular z �i a, i = 1, 2, the initial hypothesis that (a, A) is

maximal in I
(

p 1
2

)
is contradicted.

3.4: p (a, A) = 1
2 and p 1

2
(a, A) = 0.

By construction there exist alternatives b and c (where possibly b = c) such that

b �1 a′ for all a′ ∈ A \ {b} and c �2 a′ for all a′ ∈ A \ {c}, so that A ⊆ L1
b and

A ⊆ L2
c . If b 6= c, then by Regularity the contradiction p (b, A) = 1

2 = p (c, A) follows.

Thus let b = c, so that b �i a′ for all a′ ∈ A \ {b} for i = 1, 2, and by construction

p
(
b, L1

b ∩ L2
b
)
> 0. If p

(
b, L1

b ∩ L2
b
)
= 1 then by Regularity we have a contradiction,
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since A ⊆ L1
b ∩ L2

b, so that p
(
b, L1

b ∩ L2
b
)
= p (b, A) = 1

2 , and otherwise we are back in

case 3.3.

We note that a subtle relation for the case p (a, A) ∈
{

0, 1
2 , 1
}

exists with the ”top-

and-the-top” (tat) model studied in Eliaz, Richter and Rubinstein [11] (ERR). A tat de-

scribes a deterministic choice procedure, in which the agent uses two ordering and picks

all the alternatives in a menu that are top in at least one of the two orderings. While

we are dealing with stochastic orderings, when these orderings have the same prob-

abilities the resulting probabilities of choice are uninformative in distinguishing the

orderings: the only information they give concerns their support (whereas in the asym-

metric case the orderings can be told apart as the α -ordering and the (1− α)-ordering).

So, the stochastic choice function contains in fact the same information on the rankings

as a tat. Note, however, that of course our axioms characterise simultaneously both

the symmetric and the asymmetric case, and the latter has no correspondence with the

deterministic procedure.9

5 Menu-dependent state probability and violations of Reg-

ularity

So far we have assumed that the probabilities with which the two orders are applied

are fixed across menus. This is quite natural, for example, in the population interpreta-

tion. Yet in several other situations it makes sense to allow the probabilities of the two

rankings in a dRUM to depend on the menu. We highlight some leading such cases.

• In the dual-self interpretation, if the duality of the self is due to temptation, then

the presence of tempting alternatives may increase the probability that the short-

term self is in control, and possibly the more so the more numerous the tempting

alternatives are.
9The key property used by ERR to characterise tat says that if an x is chosen from two menus A and

B and also from A ∩ B, and if the choice from A ∩ B consists of two elements, then x is chosen from

A ∪ B.
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• In the household interpretation, husband and wife may have different ‘spheres

of control’, so that menus containing certain items are more likely to be under the

control of one of the two partners.

• If choices are subject to unobserved time pressure, the effect of time pressure is

likely to be different in large and small menus. Since the latter are arguably easier

to analyse, time pressure may be activated with a lower probability in simple

menus.

• The logic of Luce and Raiffa’s [17] well-known ‘frog legs example’ is that the

presence of a specific item a∗ (frog legs in the example) in a menu triggers the

maximisation of a different preference order because a∗ conveys information on

the nature of the available alternatives, so that the choice is ‘dual’: in all menus

containing a∗ one preference order is maximised while in all those not containing

a∗ a different order is maximised. Making the probabilities in a dRUM menu-

dependent further generalises this idea to a probabilistic context, to allow for ex-

ample: p (steak, {steak, chicken, frog legs})> p (steak, {steak, chicken, frog legs})
without making the extreme assumption that steak is chosen for sure when frog

legs are also available.

• The ‘similarity’ and the ‘attraction’ effects are very prominent in the psychology

and behavioural economics literature. According to these effects, the probability

of choice of two alternatives that are chosen approximately with equal frequency

in a binary context can be shifted in favour of one or the other through the addi-

tion of an appropriate ‘decoy’ alternative that is in a relation of similarity or dom-

inance (in a space of characteristics) with one of the alternatives. Such effects can

be also described as dual RUM by making the probabilities of the two rankings

dependent on the presence and nature of the decoy alternative. Analogous con-

siderations apply for the ‘compromise effect’, according to which the probability

of choosing an alternative increases when it is located at an intermediate position

in the space of characteristics compared to other more extreme alternatives.
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A Menu-dependent dRUM (mdRUM) is a stochastic choice rule p for which the fol-

lowing is true: there exists a triple (r1, r2, α̃) where r1 and r2 are rankings and α̃ :

2X\∅ → (0, 1) is a function that for each menu A assigns a probability α̃ (A) to r1

(and 1− α̃ (A) to r2), such that, for all A, p (a, A) = p′ (a, A) where p′ is the dRUM

generated by (r1, r2, α̃ (A)).

An mdRUM obviously loses, compared to a dRUM, all the properties that pertain

to the specific magnitudes of choice probabilities, which depend on the menu in an

unrestricted way. Hence in particular an mdRUM fails Regularity. But it is precisely

this feature that gives the model its descriptive power.

It is easy to check, however, that discarding alternatives from a menu still preserves

the possibility and the certainty of the event in which an alternative is chosen, when

moving to sub-menus: in this sense it preserves the ‘mode’ of choice:10

Modal Regularity: Let a ∈ B ⊂ A. (i) If p (a, A) > 0 then p (a, B) > 0. (ii) If p (a, A) = 1

then p (a, B) = 1.

For the second key property we consider a notion of impact related to modality.

Let’s say that b modally impacts a in A if

p (a, A) > 0 and p (a, A ∪ {b}) = 0

or p (a, A) = 1 and p (a, A ∪ {b}) ∈ (0, 1)

That is, b modally impacts a if adding b transforms the choice of a from possible (in-

cluding certain) to impossible or from certain to merely possible.

Modal Impact Consistency: Let b /∈ A. If b does not modally impact a for all a ∈ A

then p (b, A ∪ {b}) = 0.

Modal Impact Consistency is the modal version of a property that is implied auto-

matically in the menu-independent model, and is in fact satisfied by any RUM (if b is

chosen with positive probability in a menu, then it obviously impacts some alternative

in any sub-menu).

10‘Mode’ and ‘modal’ are meant here and elsewhere in ther logical and not statistical meaning.
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To prove that the properties are sufficient as well as necessary we exploit a relation-

ship that exists between mdRUMs and dRUMs. The idea is to associate with each p an-

other stochastic choice rule p̂ that is a symmetric dRUM if and only if p is an mdRUM.

This trick allows us to rely on the previous results, as we then just need to ‘translate’

the properties that make p̂ an mdRUM into properties of p, which is an easier task.

As a preliminary, we prove a lemma analogous to Lemma 1. Say that a stochastic

choice rule p is binary whenever it assigns positive probability to at most two elements

in any menu (i.e. for any menu A, if p (a, A) ∈ (0, 1) for some a ∈ A then there exists a

b ∈ A for which p (b, A) = 1− p (a, A)).

Lemma 3 Let p be a stochastic choice rule that satisfies Modal Regularity and Modal Impact

Consistency. Then p is binary.

Proof: Suppose by contradiction that for some menu A there exist b1, ..., bn ∈ A such

that n > 2, p (bi, A) > 0 for all i = 1, ...n and ∑n
i=1 p (bi) = 1. By Modal Regularity both

p (bi, {b1, ..., bn−1}) > 0 for all i = 1, ..., n− 1 and p (bi, {b1, ..., bn}) > 0 for all i = 1, ..., n.

Then bn does not modally impact any alternative in {b1, ..., bn−1}, contradicting Modal

Impact Consistency. �

Second, we prove an auxiliary result that is of interest in itself, that is, a modal

form of Contraction Consistency is implied by Modal Regularity and Modal Impact

Consistency.

Lemma 4 Let p be a stochastic choice rule that satisfies Modal Regularity and Modal Impact

Consistency. Suppose that b modally impacts a in A. Then b modally impacts a in any B ⊂ A.

Proof:

Step 1. For all a, b and A, if b modally impacts a in A, then it must be that p (b, A ∪ {b}) >
0. To see this, suppose by contradiction that p (b, A ∪ {b}) = 0. Then by Lemma 3 there

are c, d 6= b for which p (c, A ∪ {b}) > 0 and p (d, A ∪ {b}) > 0. If p (c, A ∪ {b}) = 1

(i.e. c = d) then by Modal Regularity p (c, A) = 1, so that p (a, A) = 0 and we

contradict the hypothesis that b modally impacts a in A. Otherwise c 6= d, 0 <

p (c, A ∪ {b}) < 1 and 0 < p (d, A ∪ {b}) < 1, so that by Modal Regularity p (c, A) > 0
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and p (d, A) > 0 (recall that c, d 6= b). If a = c or a = d, then since b modally impacts a

in A it must be p(a, A) = 1, a contradiction with p (c, A) > 0. Therefore p (a, A) = 0,

which is impossible if b modally impacts a in A.

Step 2. Let a ∈ B ⊂ A, and suppose that b modally impacts a in A in the sense that

p (a, A) > 0 and p (a, A ∪ {b}) = 0. We show the statement to be true in this case.

By Modal Regularity p (a, B) > 0. By step 1 p (b, A ∪ {b}) > 0, and then by Modal

Regularity p (b, B ∪ {b}) > 0, so that p (a, B ∪ {b}) < 1. Therefore if p (a, B) = 1 we

conclude immediately that b impacts a in B as desired, and likewise if p (a, B) < 1

and p (a, B ∪ {b}) = 0. Suppose finally that p (a, B) < 1 and p (a, B ∪ {b}) > 0. It

cannot be p (b, A ∪ {b}) = 1, for then Modal Regularity would imply the contradiction

p (b, B ∪ {b}) = 1, so there must exist some c ∈ A such that p (c, A ∪ {b}) = 1 −
p (b, A ∪ {b}) > 0 (where c 6= a by the assumption p (a, A ∪ {b}) = 0). But this cannot

be the case, since then by Modal Regularity p (c, B ∪ {b}) > 0, contradicting Lemma 3.

Step 3. Let a ∈ B ⊂ A, and suppose that b modally impacts a in A in the sense

that p (a, A) = 1 and p (a, A ∪ {b}) ∈ (0, 1). By Modal Regularity p (a, B) = 1. By

step 1 p (b, A ∪ {b}) > 0 and then by Modal Regularity p (b, B ∪ {b}) > 0, so that

p (a, B ∪ {b}) < 1 and we conclude that b modally impacts a in B in this final case too.

Theorem 3 A stochastic choice rule is an mdRUM if and only if it satisfies Modal Regularity

and Modal Impact Consistency.

Proof. Necessity is obvious. For sufficiency, given a stochastic choice rule p, let us say

that p̂ is the conjugate of p if for all menus A and a ∈ A:

p̂ (a, A) = 1⇔ p (a, A) = 1

p̂ (a, A) =
1
2
⇔ 1 > p (a, A) > 0

If p satisfies Modal Regularity and Modal Impact Consistency, by Lemma 3 it is binary

and so the conjugate of a p always exists and is defined uniquely, but it is not necessar-

ily a dRUM. When it is a dRUM, it is a symmetric dRUM. We now investigate when this

is the case. Suppose that p is an mdRUM generated by (r1, r2, α̃). Then, in view of the

relationship p (a, A) = p′ (a, A) where p′ is the dRUM generated by (r1, r2, α̃ (A)), its
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conjugate p̂ is a dRUM generated by
(

r1, r2, 1
2

)
, and therefore by Theorem 2 p̂ satisfies

Regularity, Weak Constant Expansion, Negative Expansion and Contraction Consis-

tency. Conversely, if the conjugate p̂ of a p satisfies these axioms then p̂ is a dRUM

generated by some
(

r1, r2, 1
2

)
and therefore p is an mdRUM generated by (r1, r2, α̃)

where α̃ is defined so that for any A such that p (a, A) > 0 and p (b, A) > 0 for dis-

tinct a and b, α̃ (A) = p (a, A) and 1− α̃ (A) = p (b, B) (or vice-versa). This reasoning

shows that p is an mdRUM if and only if it is binary and its conjugate satisfies Reg-

ularity, Weak Constant Expansion, Negative Expansion and Contraction Consistency.

Therefore we just need to verify that p̂ satisfies these axioms if p satisfies the axioms in

the statement.

Step 1. p̂ satisfies Regularity. In fact, let A ⊂ B. If p̂ (a, B) = 0 then Regularity cannot

be violated. If 0 < p̂ (a, B) < 1 then it must be p̂ (a, B) = 1
2 , which implies p (a, B) > 0

and hence by Modal Regularity part (i) p (a, A) > 0. Then p̂ (a, A) ∈
{

1
2 , 1
}

, satisfy-

ing Regularity. Finally if p̂ (a, B) = 1 then p (a, B) = 1, so that by part (ii) of Modal

Regularity p (a, A) = 1, and then p̂ (a, A) = 1 as desired.

Step 2. p̂ satisfies Weak Constant Expansion. In fact, if p̂ (a, A) = p̂ (a, B) = 1 then it

must be p (a, A) = 1 = p (a, B). Suppose p (a, A ∪ B) < 1. Then there exists a b ∈ A∪ B

for which p (b, A ∪ B) > 0 and either p (b, A) = 0 or p (b, A) = 0, contradicting Modal

Regularity part (i). Therefore p (a, A ∪ B) = 1 and then p̂ (a, A ∪ B) = 1. If instead

p̂ (a, A) = 1
2 = p̂ (a, B) and p̂ (a, A ∪ B) > 0 it must be p (a, A) < 1, p (a, B) < 1

and p (a, A ∪ B) > 0 so that by Modal Regularity part (ii) p (a, A ∪ B) < 1. Therefore

0 < p (a, A ∪ B) < 1 and so p̂ (a, A ∪ B) = 1
2 as desired.

Step 3. p̂ satisfies Negative Expansion. In fact, if p̂ (a, A) < p̂ (a, B) < 1 it must be

p̂ (a, A) = 0 and p̂ (a, B) = 1
2 , and therefore p (a, A) = 0. If p (a, A ∪ B) > 0 then Modal

Regularity part (i) is violated. Therefore p (a, A ∪ B) = 0 and thus p̂ (a, A ∪ B) = 0 as

desired.

Step 4. p̂ satisfies Contraction Consistency. In fact, suppose that b impacts a in A, that

is p̂ (a, A) > p̂ (a, A ∪ {b}). This means that either p̂ (a, A) ∈
{

1
2 , 1
}

and p̂ (a, A ∪ {b}) =
0, or p̂ (a, A) = 1 and p̂ (a, A ∪ {b}) = 1

2 . Therefore either p (a, A) ∈ (0, 1] and

p (a, A ∪ {b}) = 0, or p (a, A) = 1 and p (a, A ∪ {b}) ∈ (0, 1). Let B ⊂ A. Then by
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Lemma 4 either p (a, B) > 0 and p (a, B ∪ {b}) = 0, or p (a, B) = 1 and p (a, B ∪ {b}) ∈
(0, 1). This means that either p̂ (a, B) ∈

{
1
2 , 1
}

and p̂ (a, B ∪ {b}) = 0, or p̂ (a, B) = 1

and p̂ (a, B ∪ {b}) = 1
2 , so that in either case b impacts a in B.

Observe that the only role performed by Modal Impact Consistency in the proof is

that it ensures, together with Modal Regularity, that p is binary. So, we have immedi-

ately:

Corollary 1 A stochastic choice rule is an mdRUM if and only if it is binary and satisfies

Modal Regularity.

It should be easy to check whether a p is binary, and in this sense being binary

can serve as a good property for testing the model. However, Modal Impact Consis-

tency is behaviourally a more interesting property because it offers indications on the

‘comparative statics’ of the model across menus.

We conclude this section with a few remarks.

Remark 2 mdRUMs can accommodate violations of Weak Stochastic Transitivity as

well as of Regularity. For example consider p given by p (a, {a, b}) = p (a, {a, b, c}) =
p (b, {b, c}) = 2

3 , p (a, {a, c}) = 1
3 = p (b, {a, b, c}). Then p violates Weak Stochastic

Transitivity but it is an mdRUM generated by the rankings r1 = acb and r2 = bca with

α̃ ({a, b}) = α̃ ({a, b, c}) = 2
3 and α̃ ({b, c}) = α̃ ({a, c}) = 1

3 .

Remark 3 The ordinal preference information contained in an mdRUM is entirely de-

termined by which choice of alternative, in each menu, is possible, impossible or cer-

tain, not by the exact values of the choice probabilities. More precisely suppose that p

is an mdRUM generated by (r1, r2, α̃) and that p′ is an mdRUM generated by (r′1, r′2, α̃′).

If for all menus A, p (a, A) > 0 ⇔ p′ (a, A) > 0, then it must be the case that r1 = r′1
and r2 = r′2 or r2 = r′1 and r1 = r′2: that is, the rankings coincide up to a relabelling.

The exact probabilities of choice in each menu then serve to determine the probabilities

with which each ranking is maximised, but not to determine what those rankings look

like.
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Remark 4 In an mdRUM, while the rankings can have arbitrarily small probability,

they always have positive probability. This is crucial to tell apart the case in which

the choice probability of an alternative a is zero because it is dominated by another

alternative in both rankings, from the case in which a is dominated say in r1 and top in

r2, but r2 occurs with zero probability in a given menu.

6 Identification

The algorithm we provided in the proof of theorem 3 to construct the rankings would

also work for the asymmetric case, but in that case the identification is easier: in fact

if p is a dRUM generated by some (r1, r2, α), it is easily checked that r1 and r2 must

satisfy:

r1 (a) < r1 (b)⇔ p (a, {a, b}) ∈ {α, 1}

r2 (a) < r2 (b)⇔ p (a, {a, b}) ∈ {1− α, 1}

Thus if α 6= 1− α, the rankings can be uniquely (up to a relabelling of the rankings) in-

ferred from any dRUM (this definition can be used to provide an alternative, construc-

tive proof of Theorem 1 - such a proof is available from the authors). The uniqueness

feature is lost when we drop the requirement of asymmetry. For example consider the

dRUM p generated by
1
2

1
2

a b

b a

c d

d c

The same p could be alternatively generated by the two different rankings
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1
2

1
2

a b

b a

d c

c d

On the other hand, if these rankings had probabilities α and 1− α with α 6= 1
2 , one could

tell the two possibilities apart by observing whether p (d, {d, c}) = α or p (d, {d, c}) =
1− α.

More in general, the source of non-uniqueness when rankings have symmetric

probabilities is the following. Suppose that, given the rankings r1and r2, the set of

alternatives can be partitioned as X = A1 ∪ ... ∪ An such that if a ∈ Ak, b ∈ Al and

k < l, then a �i b for i = 1, 2. Now construct two new rankings r′1 and r′2 in the follow-

ing manner. Fix Ak, and for all a, b ∈ Ak set a �i b if and only if a �j b, i 6= j, while

for all other cases r′1 and r′2 coincide with r1 and r2 (i.e. r′1 and r′2 swap the subrankings

within Ak). Then it is clear that the probabilities generated by
(

r′1, r′2,
1
2

)
are the same as

those generated by
(

r1, r2,
1
2

)
. Apart from these “swaps”, the identification is unique.

7 Concluding remarks

We have argued that the dual RUM constitutes a parsimonious framework to represent

the variability of choice in many contexts of interest, both in the fixed state probability

version and in the new menu-dependent probability version.

The properties at the core of our analysis are simple and informative about how

choices react to the merging, expansion and contraction of menus and thus may pro-

vide the theoretical basis for comparative statics analysis and for inferring behaviour

in larger menus from behaviour in smaller ones, or vice-versa.

The menu-dependent version of the model, while still quite restrictive (as demon-

strated by our characterisation), significantly extends the range of phenomena that the

model can encompass, because it does not need to satisfy the full Regularity property

but only a ‘modal’ version of it. As a consequence, for example the attraction and
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the compromise effects and Luce and Raiffa’s ‘frog legs’ types of anomalies can be de-

scribed as manu-dependent dual random utility maximisation even if though they are

incompatible with any RUM.
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Appendices

A Independence of the axioms - Theorem 1

None of the stochastic choice functions below is a dRUM since there are more than two

values in the support.

A.1: Regularity and Constant Expansion, but not Negative Expansion

{a, b, c} {a, b} {a, c} {b, c}
a 1

3
1
2

1
3 −

b 0 1
2 − 1

3

c 2
3 − 2

3
2
3

Table 3:

A.2: Regularity and Negative Expansion, but not Constant Expansion

{a, b, c} {a, b} {a, c} {b, c}
a 1

3
1
2

1
2 −

b 1
3

1
2 − 1

2

c 1
3 − 1

2
1
2

Table 4:

A.3: Constant Expansion and Negative Expansion, but not Regularity

{a, b, c} {a, b} {a, c} {b, c}
a 0 0 1

2 −
b 1 1 − 2

3

c 0 − 1
2

1
3

Table 5:
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B Independence of the axioms - Theorem 2

B.1: Regularity, Weak Constant Expansion, Negative Expansion, but not Contraction

Consistency

See example in Table 2.

B.2: Regularity, Negative Expansion, Contraction Consistency, but not Weak Con-

stant Expansion

See example in Table 4.

B.3: Regularity, Weak Constant Expansion, Contraction Consistency, but not Nega-

tive Expansion

{a, b, c} {a, b} {a, c} {b, c}
a 1

3 0 1
2 −

b 1
3

1
3 − 2

3

c 1
3 − 1

2
1
3

Table 6:

B.4: Negative Expansion, Contraction Consistency, Weak Constant Expansion, but

not Regularity

{a, b, c} {a, b} {a, c} {b, c}
a 1 0 1

2 −
b 0 1

3 − 2
3

c 0 − 1
2

1
3

Table 7:

C Independence of the axioms - Theorem 3

C.1: Modal Regularity (i), Modal Regularity (ii), but not Impact Consistency
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{a, b, c} {a, b} {a, c} {b, c}
a 1

3
1
2

1
2 −

b 1
3

1
2 − 1

2

c 1
3 − 1

2
1
2

Table 8:

This stochastic choice function cannot be a mdRUM since in the set {a, b, c} there

are three alternatives, which cannot be all at the top of two linear orders.

C.2: Modal Regularity (i), Impact Consistency, but not Modal Regularity (ii)

{a, b, c} {a, b} {a, c} {b, c}
a 1 1

2 1 −
b 0 1

2 − 1
2

c 0 − 0 1
2

Table 9:

This stochastic choice function cannot be a mdRUM since on the one hand p (a, {a, b, c}) =
1 implies that a is the highest ranked alternative in both linear orders, while on the

other p (b, {a, b}) > 0 would require b to rank above a in at least one ranking.

C.3: Modal Regularity (ii), Impact Consistency, but not Modal Regularity (i)

{a, b, c} {a, b} {a, c} {b, c}
a 1

2 0 1 −
b 1

2 1 − 1
2

c 0 − 0 1
2

Table 10:

This stochastic choice function cannot be a mdRUM since p (b, {a, b}) = 1 requires

b to be ranked before a in both rankings, while p (a, {a, b, c}) > 0 would require a to

rank above b in at least one ranking.
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