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Abstract

We study a general social choice environment that has multiple agents, a finite set of

alternatives, and independent and diffuse information. We show that for any Bayesian

incentive compatible mechanism, there exists a deterministic mechanism that i) is

Bayesian incentive compatible; ii) delivers the same interim expected utilities/allocation

probabilities for all the agents; and iii) delivers the same ex ante expected welfare. Our

result holds in settings with a rich class of utility functions, multi-dimensional types,

interdependent valuations, and non-transferable utilities. More importantly, the result

recovers the optimality of deterministic mechanisms (whether in terms of revenue or

efficiency), which sharply contrasts with the existing results in the screening literature.

To prove our result, we develop a new methodology of “mutual purification”, and establish

its link with the literature of mechanism design.
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1 Introduction

Myerson (1981) provides the framework that has become the paradigm for the study of

optimal auction design. To recap briefly, he shows that under a “regularity” condition, the

optimal auction allocates the good to the bidder with the highest “virtual value”, provided

that this virtual value is above the seller’s opportunity cost. In other words, the optimal

auction in Myerson’s setting is deterministic.1 A natural conjecture is that the optimality

of deterministic mechanisms generalizes to multidimensional environments; see McAfee and

McMillan (1988, Section 4). However, this does not hold when there is a single agent. Several

papers have shown that a multiproduct monopolist may find it beneficial to include lotteries

as part of the selling mechanism; see for example, Thanassoulis (2004), Manelli and Vincent

(2006, 2007), Pycia (2006), Pavlov (2011) and more recently, Hart and Reny (2015) and

Rochet and Thanassoulis (2015).2 In this paper, we recover the optimality of deterministic

mechanisms in remarkably general environments with multiple agents.

We study a general social choice environment that has multiple agents, a finite set

of alternatives, and independent and diffuse information.3 Our main result is that for any

Bayesian incentive compatible mechanism, there exists a deterministic mechanism that i) is

Bayesian incentive compatible; ii) delivers the same interim expected allocation probabilities

and the same interim expected utilities for all agents; and iii) delivers the same ex ante

expected welfare. Aside from the standard social choice environments with linear utilities

and one-dimensional, private types, our result holds in settings with a rich class of utility

functions, multi-dimensional types, interdependent valuations, and non-transferable utilities.

Our result implies that any mechanism, including the optimal mechanisms (whether in

terms of revenue or efficiency), can be implemented using a deterministic mechanism and

nothing can be gained from designing more intricate mechanisms with possibly more complex

randomization. As pointed out in Hart and Reny (2015, page 912), Aumann commented that

it is surprising that randomization can not increase revenue when there is only one good.

1Riley and Zeckhauser (1983) consider a one good monopolist selling to a population of consumers with

unit demands and show that lotteries do not help the one good monopolist.
2Hart and Reny (2015) study important differences between the one-good and the multiple-good cases.

Besides the advantage of randomization in the multiple-good case, they also exhibit the surprising phenomenon

that the seller’s maximal revenue may well decrease when the buyer’s values for the goods increase. Rochet

and Thanassoulis (2015) show that the optimality of “stochastic bundling” is a robust phenomenon.
3Throughout this paper, we say that an agent has “diffuse information” if her type distribution is atomless.
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Indeed, aforementioned papers in the screening literature establish that randomization helps

when there are multiple goods. Nevertheless, we show that in general social choice environment

with multiple agents, the revenue maximizing mechanism can always be deterministically

implemented. This is in sharp contrast with the results in the screening literature.

In order to prove the existence of an equivalent deterministic mechanism, we develop

a new methodology of “mutual purification”, and establish its link with the literature of

mechanism design.4 The notion of mutual purification is different from the usual purification

principle in the literature related to Bayesian games. We shall clarify these two different

notions of purification in the next two paragraphs.

It follows from the general purification principle in Dvoretzky, Wald, and Wolfowitz

(1950) that any behavioral-strategy Nash equilibrium in a finite-action Bayesian game with

independent and diffuse information corresponds to some pure-strategy Bayesian Nash

equilibrium with the same payoff.5 In particular, independent and diffuse information

allows the agents to replace their behavioral strategies by some equivalent pure strategies

one-by-one.6 The point is that under the independent information assumption, any agent

who has diffuse information could purify her own behavioral strategy regardless whether

other agents have diffuse information. Example 2 illustrates this idea of “self purification”.

Given a behavioral-strategy Nash equilibrium in a 2-agent Bayesian game with independent

information, there is an equivalent pure strategy for the agent with diffuse information, while

the other agent with an atom in her type space could not purify her behavioral strategy.

In contrast, the purification result of this paper is based on the diffuse information

associated with the other agents. Example 3 partially illustrates this idea of “mutual

purification”. For a given randomized mechanism in a 2-agent setting with independent

information, the agent with an atom in her type space can achieve the same interim payoff

by some deterministic mechanism, while there does not exist such a deterministic mechanism

for the other agent with diffuse information. In other words, our result becomes possible

4Some of our technical results extend the corresponding mathematical results in Arkin and Levin (1972);

see Footnote 16 for more detailed discussion.
5See Radner and Rosenthal (1982), Milgrom and Weber (1985) and Khan, Rath, and Sun (2006).

Furthermore, by applying the purification idea to a sequence of Bayesian games, Harsanyi (1973) provided

an interpretation of mixed-strategy equilibrium in complete information games; see Govindan, Reny, and

Robson (2003) and Morris (2008) for more discussion.
6See the proof of Theorem 1 on page 99 of Khan, Rath, and Sun (2006).

4



because each agent relies on the diffuse information of the other agents rather than her own.

This also explains why a similar result does not hold in the one-agent setting since there

is no diffuse information from other agents for such a single agent to purify the relevant

randomized mechanism. In addition, we emphasize that in the multiple-agent setting, the

notion of “mutual purification” requires not only that each agent obtain the same interim

payoff under some deterministic mechanism, but also that a single deterministic mechanism

deliver the same interim payoffs for all the agents simultaneously.

As noted in Radner and Rosenthal (1982, page 401), randomization seems to have

limited appeal in many practical situations. Thus, it is desirable to work with deterministic

mechanisms. Our result implies that for any stochastic mechanism, there exists an equivalent

deterministic mechanism which resolves the randomness in a way that respects the underlying

incentive constraints. That is, for almost all type profiles, the outcome is deterministic and

can thereby be readily implemented without invoking a randomization device. Our paper

shares a common motivation with the problem of designing random allocation mechanisms in

the matching literature; see for example, Budish, Che, Kojima, and Milgrom (2013). The

literature seeks to deterministically implement a random allocation/assignment whereas in

our mechanism design setting, for almost all type profiles, the mechanism already specifies a

deterministic allocation rule.

This paper also joins a line of literature that studies mechanism equivalence. Though

motivations vary, these results show that it is without loss of generality to consider the various

subclasses of mechanisms. As in the case of dominant-strategy mechanisms (see Manelli and

Vincent (2010) and Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013)) and symmetric

auctions (see Deb and Pai (2015)), our findings imply that the requirement of deterministic

mechanisms is not restrictive in itself.7 In this sense, our result also provides a foundation for

the use of deterministic allocations in mechanism design settings such as auctions, bilateral

trades, and so on.

The rest of the paper is organized as follows. Section 2 introduces the basics. Section 3

7Manelli and Vincent (2010) show that for any Bayesian incentive compatible auction, there exists an

equivalent dominant-strategy incentive compatible auction that yields the same interim expected utilities for

all agents. Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) extend this equivalence result to social

choice environments with linear utilities and independent, one-dimensional, private types; also see Footnote

9 for related discussion. Deb and Pai (2015) show that restricting the seller to a using symmetric auction

imposes virtually no restriction on her ability to achieve discriminatory outcomes.
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illustrates our equivalence notion and the idea of “mutual purification” through examples.

Section 4 presents our equivalence result. Section 5 discusses more literature on the benefit

of randomness, in particular more contrasts of our result with the extent literature. We also

provide an implementation perspective of our result and discuss the various assumptions of

our result. Section 6 concludes. The appendix contains proofs omitted from the main body

of the paper.

2 Preliminaries

2.1 Notation

There is a finite set I = {1, 2, . . . , I} of risk neutral agents with I ≥ 2 and a finite set

K = {1, 2, ..., K} of social alternatives. The set of possible types Vi of agent i is a closed

subset of finite dimensional Euclidean space Rl with generic element vi. The set of possible

type profiles is V ≡ V1× V2× · · · × VI with generic element v = (v1, v2, . . . , vI). Write v−i for

a type profile of agent i’s opponents; that is, v−i ∈ V−i = Πj 6=iVj. Denote by λ the common

prior distribution on V . For each i ∈ I, λi is the marginal distribution of λ on Vi and is

assumed to be atomless. Throughout this paper, types are assumed to be independent.8 If

(Y,Y) is a measurable space, then ∆Y is the set of all probability measures on (Y,Y). If Y is

a metric space, then we treat it as a measurable space with its Borel σ-algebra.

2.2 Mechanism

The revelation principle applies, and we restrict attention to direct mechanisms characterized

by K + I functions, {qk(v)}k∈K and {ti(v)}i∈I , where v is the profile of reports, qk(v) ≥ 0

is the probability that alternative k is implemented with
∑

k∈K q
k(v) = 1, and ti(v) is the

monetary transfer that agent i makes to the mechanism designer. Agent i’s gross utility in

alternative k is uki (vi, v−i).

For simplicity of exposition, we denote

Qk
i (vi) =

∫
V−i

qk(vi, v−i)λ−i(dv−i)

8Note that we do not make any assumption regarding the correlation of the different coordinates of type

vi for any i ∈ I.
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for the interim expected allocation probability (from agent i’s perspective) that alternative k

is implemented. Also write

Ti(vi) =

∫
V−i

ti(vi, v−i)λ−i(dv−i)

for the interim expected transfer from agent i to the mechanism designer. Agent i’s interim

expected utility is

Ui(vi) =

∫
V−i

[ ∑
1≤k≤K

uki (vi, v−i)q
k(vi, v−i)− ti(vi, v−i)

]
λ−i(dv−i)

=

∫
V−i

[ ∑
1≤k≤K

uki (vi, v−i)q
k(vi, v−i)

]
λ−i(dv−i)− Ti(vi).

A mechanism is Bayesian incentive compatible (BIC) if for each agent i ∈ I and each

type vi ∈ Vi,

Ui(vi) ≥ 0, and

Ui(vi) ≥
∫
V−i

[ ∑
1≤k≤K

uki (vi, v−i)q
k(v′i, v−i)− ti(v′i, v−i)

]
λ−i(dv−i)

for any alternative type v′i ∈ Vi.
A mechanism (q, t) is said to be “deterministic” if for almost all type profiles, the

mechanism implements some alternative k for sure. That is, for λ-almost all v ∈ V, qk (v) = 1

for some 1 ≤ k ≤ K.

2.3 Mechanism equivalence

We shall employ the following notion of mechanism equivalence.

Definition 1. Two mechanisms (q, t) and (q̃, t̃) are equivalent if and only if they deliver the

same interim expected allocation probabilities and the same interim expected utilities for all

agents, and the same ex ante expected social surplus.

Remark 1. Our equivalence is stronger than the prevailing mechanism equivalence notion.

For example, Manelli and Vincent (2010) and Gershkov, Goeree, Kushnir, Moldovanu, and
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Shi (2013) define two mechanisms to be equivalent if they deliver the same interim expected

utilities for all agents and the same ex ante expected welfare.9

Remark 2. The equivalent deterministic mechanism also guarantees the same ex post

monetary transfers, and hence the same expected revenue; see Theorem 1.

3 Examples

3.1 An illustration of equivalent deterministic mechanism

In the first example, we illustrate our mechanism equivalence notion in a single-unit auction

environment.10 The example is kept deliberately simple and its only purpose is to illustrate

what we mean by equivalent deterministic mechanism. our main result is far more general

and the proof is much more complex.

Example 1. There are two bidders, whose valuations are uniformly distributed in [0, 1].

Consider the following mechanism. Types are divided into intervals of equal probability and

types in the same interval are treated equally. If agents’ types belong to the same interval, each

agent receives the object with probability 1
2
and if agents’ types belong to different intervals,

the agent whose type belongs to [1
2
, 1] gets the object. In each cell, the first number is the

probability that agent 1 gets the object and the second number is the probability that agent 2

gets the object.

[1
2
, 1] [0, 1

2
)

[1
2
, 1] 1

2
, 1

2
1, 0

[0, 1
2
) 0, 1 1

2
, 1

2

It is immediate that, the following deterministic mechanism is equivalent in terms of

interim expected allocation probabilities. Keeping the transfers unchanged, it is also easy to

9Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013, Section 4.1) show that the BIC-DIC equivalence

breaks down when requiring the same interim expected allocation probability. They also note that “this

notion (of interim expected allocation probabilities) becomes relevant when, for instance, the designer is not

utilitarian or when preferences of agents outside the mechanism play a role”.
10With slight adjustments, this example applies to the irregular case in Myerson’s setting where the agents’

ironed virtual values are the same in some interval.

8



see the deterministic mechanism is equivalent in terms of interim expected utilities and ex

ante social welfare.

[3
4
, 1] [2

4
, 3

4
) [1

4
, 2

4
) [0, 1

4
)

[3
4
, 1] 1, 0 0, 1 1, 0 1, 0

[2
4
, 3

4
) 0, 1 1, 0 1, 0 1, 0

[1
4
, 2

4
) 0, 1 0, 1 1, 0 0, 1

[0, 1
4
) 0, 1 0, 1 0, 1 1, 0

In Section 4, we show that for whatever randomized mechanism that the mechanism

designer may choose to use, however complicated, there exists an equivalent mechanism that

is deterministic. In other words, going from mechanisms that are deterministic to randomized

mechanisms in general does not increase the set of obtainable outcomes.

3.2 Self purification and mutual purification

In this section, we provide two examples to demonstrate the conceptual difference between

the existing approach of “self purification” and our approach of “mutual purification”.

The first example is motivated by the game of matching pennies, while the second

example is a single unit auction. Both games have two agents, and share the same information

structure as follows.

1. Agent 1’s type is uniformly distributed on (0, 1] with the total probability 1− λ1(0),

and has an atom at the point 0 with λ1(0) > 0.

2. Agent 2’s type is uniformly distributed on [0, 1].

3. Agents’ types are independently distributed.

Example 2 below illustrates the idea of “self purification”. The behavioral strategy

of agent 2 can be purified since the distribution of agent 2’s type is atomless, while the

behavioral strategy of agent 1 cannot be purified since agent 1’s type has an atom.

Example 2. Consider an m × m zero-sum generalized “matching pennies” game with

incomplete information, where the positive integer m is sufficiently large such that 1
m
< λ1(0).

The information structure is described in the beginning of this subsection. The action space
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for both agents is A1 = A2 = {a1, a2, . . . , am}. The payoff matrix for agent 1 is given below.

Notice that the payoffs of both agents do not depend on the type profile.

Agent 1

Agent 2

a1 a2 a3 · · · am

a1 1 −1 0 · · · 0

a2 0 1 −1 · · · 0

a3 0 0 1 · · · 0
...

...
...

...
...

...

am −1 0 · · · 0 1

Suppose that both agents adopt the behavioral strategy f1(v) = f2(v) = 1
m

∑
1≤s≤m δas,

where δas is the Dirac measure at the point as. It is easy to see that (f1, f2) is a Bayesian

Nash equilibrium and the expected payoffs of both agents are 0.

Claim 1. Agent 2 has a pure strategy f ′2 such that (f1, f
′
2) is still a behavioral-strategy

equilibrium and provides both agents the same expected payoffs, while agent 1 does not have

such a pure strategy.

Example 3 below shows how a purification for an agent relies on the diffuse information

of the other agent, which partially illustrates the idea of “mutual purification”. In particular,

for some given randomized mechanism in the 2-agent setting with independent information

as specified above, agent 1 who has an atom in her type space can achieve the same interim

expected payoff by some deterministic mechanism,11 while there does not exist such a

deterministic mechanism for agent 2 who has diffuse information.

Example 3. Consider a single unit auction with two agents. The information structure is

described as above. The payoff function of agent i is εvi + (1− vj)m for i, j = 1, 2 and i 6= j,

where m is sufficiently large and ε is sufficiently small such that

λ1(0)

2
> ε+

1

m+ 1
.

The allocation rule q is defined as follows. Let qi(v) be the probability that agent i gets

the object, and q1(v1, v2) = q2(v1, v2) = 1
2
for any (v1, v2). The interim expected payoff of

11For simplicity, we only consider such an equivalence in terms of interim expected payoffs.
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agent 1 with value v1 is∫
V2

(εv1 + (1− v2)m)q1(v1, v2)λ2(dv2) =
εv1

2
+

1

2(m+ 1)
.

The interim expected payoff of agent 2 with value v2 is∫
V1

(εv2 + (1− v1)m)q2(v1, v2)λ1(dv1) =
εv2

2
+
λ1(0)

2
+ (1− λ1(0))

1

2(m+ 1)
.

Claim 2. There exists a deterministic mechanism which gives agent 1 the same interim

expected payoff; but there does not exist such a deterministic mechanism for agent 2.

We hasten to emphasize the key difference between our approach and the purification

method used in the literature. With the classical purification method, each agent uses her

own diffuse information to purify her behavioral strategy, which we call “self purification”.

In contrast, the purification approach we adopt to achieve our main result is to purify

the randomized mechanism via other agents’ diffuse information while keeping each agent’s

interim expected allocation probability and interim expected payoff unchanged simultaneously,

which we call “mutual purification”.

4 Results

4.1 Equivalence

This section establishes the main result of this paper. We consider a general environment in

which agents could have nonlinear and interdependent payoffs. In particular, we assume that

all agents have “separable payoffs” in the following sense.

Definition 1. For each i ∈ I, agent i is said to have separable payoff if for any outcome

k ∈ K and type profile v = (v1, v2, . . . , vI) ∈ V , her payoff function can be written as follows:

uki (v1, . . . , vI) =
∑

1≤m≤M

wkim(vi)r
k
im(v−i),

where M is a positive integer, and wkim (resp. rkim) is λi-integrable (resp. λ−i-integrable) on

Vi (resp. on V−i) for 1 ≤ m ≤M .

That is, the payoff of each agent i is a summation of finite terms, where each term is a

product of two components: the first component only depends on agent i’s own type, while
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the second component depends on other agents’ types. This setup is sufficiently general to

cover most applications. In particular, it includes the interdependent payoff function as in

Jehiel and Moldovanu (2001), and obviously covers the widely adopted private value payoffs

as a special case.

Theorem 1. Suppose that for each agent i ∈ I, his payoff function is separable. Then for

any mechanism (q, t), there exists a deterministic allocation rule q̃ such that

1. q and q̃ induce the same interim expected allocation probability;

2. (q̃, t) delivers the same interim expected utility with (q, t) for each agent i ∈ I.

Thus, if (q, t) is BIC, then (q̃, t) is also BIC.

Remark 3. We prove a stronger result. Firstly, it will be clear from the proof of Theorem 1

that the equivalent deterministic mechanism (q̃, t) also guarantees the same ex post monetary

transfers. Therefore, our deterministic mechanism equivalence result does not require

transferable utility. Secondly, the equivalence result is immune against coalitions; that is,

when there is sharing of information between the coalition members (except for the grand

coalition).12 The second point is proved explicitly.

Let h be a function from V to RIKM+1
++ such that h0(v) ≡ 1, and hikm(v) = rkim(v−i)

13

for each i ∈ I, 1 ≤ k ≤ K and 1 ≤ m ≤ M .14 Let J be the set of all nonempty proper

subsets of I, and Υ be the set of all allocation rules. That is, given any q̃ ∈ Υ, q̃ is a

measurable function and
∑

k∈K q̃
k(v) = 1 for λ-almost all v ∈ V . For any coalition J ⊆ I,

denote λJ =
⊗

j∈J λj.

Fix a Bayesian incentive compatible mechanism (q, t). We consider the allocation rule

q̃ ∈ Υ such that for any J ∈ J and λJ -almost all vJ ∈ VJ ,

E (q̃hj|vJ) = E (qhj|vJ) (1)

12Jackson and Sonnenschein (2007) also consider the issue of coalitional incentive compatibility. They

show that the “linking mechanisms” are immune to manipulations by coalitions.
13Throughout this paper, IKM is the product of the integers I, K and M . However, the subscript ikm is

not the product of the numbers i, k and m, but refers to the vector (i, k,m) identifying the function rkim.
14Denote R++ as the strictly positive real line. We assume that h is strictly positive without loss of generality.

Indeed, we can work with the function h′ from V to R2IKM+1
+ such that h′0(v) ≡ 1, h′1ikm(v) = |rkim(v−i)|+ 1,

and h′2ikm(v) = rkim(v−i) + |rkim(v−i)| + 1 for each i ∈ I, 1 ≤ k ≤ K and 1 ≤ m ≤ M . The function h′ is

strictly positive and suffices for our purpose.
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for j = 0 or j = ikm, i ∈ I, 1 ≤ k ≤ K and 1 ≤ m ≤M .

Definition 2. We define the following set Υq:

Υq = {q̃ ∈ Υ: q̃ satisfies Equation (1)}.

In what follows, we first provide the following characterization result for the set Υq:

Υq is a nonempty, convex and weakly compact set in some Banach space. Therefore, the

classical Krein-Milman Theorem (see Royden and Fitzpatrick (2010, p. 296)) implies that

Υq admits extreme points. We proceed by showing that all extreme points of the set Υq are

deterministic mechanisms.15 The existence of a deterministic mechanism that is equivalent in

terms of interim expected allocation probabilities immediately follows. The equivalence in

terms of interim expected utilities and ex ante expected welfare follows from Equation (4) and

the separable payoff assumption. The incentive compatibility of the deterministic mechanism

follows from Equation (4) and the assumption that types are independent.

The following lemma characterizes the set Υq.

Lemma 1. Υq is a nonempty, convex and weakly compact subset.

Since Υq is a nonempty, convex and weakly compact set, Υq has extreme points. The

following result shows that all extreme points of Υq are deterministic allocations.

Proposition 1. All extreme points of Υq are deterministic allocations.

4.2 The proofs

In this section, we prove Lemma 1, Proposition 1, and finally Theorem 1.

Proof of Lemma 1. Clearly, the set Υq is nonempty and convex. We first show that Υq is

norm closed in Lλ1(V,RK), where Lλ1(V,RK) is the L1 space of all measurable mappings from

V to RK under the probability measure λ.

15Manelli and Vincent (2007) use a related technique in the screening literature. Manelli and Vincent

(2007) consider revenue maximizing multiproduct monopolist and study the extreme points of the set of

feasible mechanisms. They show that, with multiple goods, extreme points could be stochastic mechanisms.

In contrast, we work with the mechanism design setting, study a particular set of interest Υq and show that

all extreme points are deterministic. Apart from this general approach, the technical parts of the proofs are

dramatically different.
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Suppose that the sequence {qm} ⊆ Υq and qm → q0 in Lλ1(V,RK). Then by the Riesz-

Fischer Theorem (see Royden and Fitzpatrick (2010, p. 398)), there exists a subsequence

{qms} of {qm}, which converges to q0 λ-almost everywhere. Since
∑

k∈K q
k
ms

(v) = 1 for

λ-almost all v,
∑

k∈K q
k
0(v) = 1 for λ-almost all v. As a result, q0 ∈ Υ.

For any k ∈ K, J ∈ J , and B(VJ)⊗
(⊗

1≤j≤I,j /∈J{Vj, ∅}
)
-measurable bounded mapping

p : V → RK , ∫
V

(qk0hj)pλ(dv) = lim
s→∞

∫
V

(qkms
hj)pλ(dv) =

∫
V

(qkhj)pλ(dv)

for j = 0 or j = ikm. The first equality is due to the dominated convergence theorem, and

the second equality holds since {qms} ⊆ Υq. Thus, q0 ∈ Υq, which implies that Υq is norm

closed in Lλ1(V,RK).

Since Υq is convex, Υq is also weakly closed in Lλ1(V,RK) by Mazur’s Theorem (see

Royden and Fitzpatrick (2010, p. 292)). As Υ is weakly compact in Lλ1(V,RK), we have that

Υq is weakly compact in Lλ1(V,RK), and hence has extreme points.

Below, we give the proof of Proposition 1.

Proof of Proposition 1. Pick an allocation rule q̃ ∈ Υq which is not deterministic, we shall

show that q̃ is not an extreme point of Υq.

Since q̃ is not deterministic, there is a positive number 0 < δ < 1, a Borel measurable

set D ⊆ V such that λ(D) > 0, and indices j1, j2 such that δ ≤ q̃j1(v), q̃j2(v) ≤ 1− δ for any

v ∈ D. For any J ∈ J , let DJ be the projection of D on
∏

j∈J Vj. For any vJ ∈ DJ , let

D−J(vJ) = {v−J : (vJ , v−J) ∈ D} (abbreviated as DvJ ).

Consider the following problem on α ∈ Lλ∞(D,R): for any J ∈ J and vJ ∈ DJ ,∫
D−J (vJ )

α(vJ , v−J)h(vJ , v−J)λ−J(dv−J) = 0. (2)

Recall that h is a function taking values in RIKM+1. For simplicity, denote l0 = IKM+1.

Define the set E as

E = {h(v) ·
∑
J∈J

ψJ(vJ) : ψJ ∈ Lλ∞(DJ ,Rl0),∀J ∈ J }.

Then a bounded measurable function α in Lλ∞(D,R) is a solution to Problem (2) if and only

if
∫
D
αϕdλ = 0 for any ϕ ∈ E . Lemma 4 in the Appendix shows that E is not dense in
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Lλ1(D,R).16 By Corollary 5.108 in Aliprantis and Border (2006), Problem (2) has a nontrivial

bounded solution α.

Without loss of generality, we assume that |α| ≤ δ. We extend the domain of α to V

by letting α(v) = 0 when v /∈ D. For every v ∈ V , define

q̂(v) = q̃(v) + α(v) (ej1 − ej2) ;

q(v) = q̃(v) + α(v) (ej2 − ej1) .

Then
∑

k∈K q̂
k(v) =

∑
k∈K q

k(v) =
∑

k∈K q̃
k(v) = 1. If v ∈ D, then 0 ≤ q̂j1(v), qj2(v) ≤ 1

as δ ≤ q̃j1(v), q̃j2(v) ≤ 1 − δ, and q̂j(v) = qj(v) = q̃j(v) for j 6= j1, j2. If v /∈ D, then

q̂(v) = q(v) = q̃(v) as α(v) = 0. Thus, q̂, q ∈ Υ.

For any J ∈ J and B(VJ) ⊗
(⊗

1≤j≤I,j /∈J{Vj, ∅}
)
-bounded measurable mapping p ∈

Lλ∞(V,RK),∫
V

(q̂ · p)hλ(dv) =

∫
V

(q̃ · p)hλ(dv) +

∫
V

α(v) ((ej1 − ej2) · p(v))h(v)λ(dv).

Since ∫
V

α(v) ((ej1 − ej2) · p(v))h(v)λ(dv)

=

∫
VJ

∫
V−J

α(v) ((ej1 − ej2) · p(v))h(v)λ−J(dv−J)λJ(dvJ)

=

∫
VJ

(ej1 − ej2) · p(v)

∫
V−J

α(v)h(v)λ−J(dv−J)λJ(dvJ)

= 0,

we have that ∫
V

(q̂ · p)hλ(dv) =

∫
V

(q̃ · p)hλ(dv),

16Lemma 4 as well as its preparatory lemmas and their proofs are given in the Appendix. The result in

Lemma 4 provides the key for proving Proposition 1. Our technical lemmas in the Appendix extend the

corresponding mathematical results in Arkin and Levin (1972) from the special case with I = 2 and λ the

uniform distribution on [0, 1] × [0, 1] to the general setting in this paper. Those mathematical results in

Arkin and Levin (1972) were then used to show the following result (see Theorem 2.3 therein): “Suppose that

f1 ∈ Lη1(X×Y,Rl1), f2 ∈ Lη1(X×Y,Rl2) and f3 ∈ Lη1(X×Y,Rl3), where X = Y = [0, 1] and η is the uniform

distribution on [0, 1]× [0, 1]. Let A be the simplex {a = (a1, . . . , aK) :
∑

1≤k≤K ak = 1, ak ≥ 0}. Given any

measurable function α from X × Y to A, there exists another measurable function α from X × Y to the

vertices of the simplex A such that
∫
[0,1]

f1(x, y)α(x, y) dy =
∫
[0,1]

f1(x, y)α(x, y) dy,
∫
[0,1]

f2(x, y)α(x, y) dx =∫
[0,1]

f2(x, y)α(x, y) dx and
∫
[0,1]

∫
[0,1]

f3(x, y)α(x, y) dxdy =
∫
[0,1]

∫
[0,1]

f3(x, y).”
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which implies that q̂ ∈ Υq. Similarly, one can show that q ∈ Υq. Since q̂ and q are distinct

and q̃ = 1
2
(q̂ + q), q̃ is not an extreme point of Υq.

Now we are ready to prove our main result.

Proof of Theorem 1. Fix a mechanism (q, t). The proof is then divided into two steps. In

the first step, we obtain a deterministic allocation rule q̃ which has the same interim expected

allocation probability with q. In the second step, we verify that (q̃, t) and (q, t) deliver the

same interim expected utility for each agent.

By Proposition 1, every extreme point of Υq is a deterministic allocation rule. Therefore,

we can fix a measurable allocation rule q̃ such that

1. q̃k (v) = 0 or 1 for λ-almost all v ∈ V and 1 ≤ k ≤ K;

2. for any agent i and λi-almost all vi ∈ Vi,∫
V−i

q̃(vi, v−i)λ−i(dv−i) =

∫
V−i

q(vi, v−i)λ−i(dv−i), (3)

and ∫
V−i

q̃(vi, v−i)hjkm(vi, v−i)λ−i(dv−i) =

∫
V−i

q(vi, v−i)hjkm(vi, v−i)λ−i(dv−i) (4)

for any j ∈ I, 1 ≤ k ≤ K and 1 ≤ m ≤M .

Let Di be the subset of Vi such that Equation (3) or (4) does not hold. Then λi(Di) = 0.

Define a new allocation rule q̂ such that

q̂(v) =

q(v), if vi ∈ Di for some i ∈ I;

q̃(v), otherwise.

Then q̂k (v) = 0 or 1 for λ-almost all v ∈ V and 1 ≤ k ≤ K.

Fix agent i and vi ∈ Vi. If vi ∈ Di, then q̂(vi, v−i) = q(vi, v−i) and
∫
V−i

q̂(vi, v−i)λ−i(dv−i) =∫
V−i

q(vi, v−i)λ−i(dv−i). If vi /∈ Di, then∫
V−i

q̂(vi, v−i)λ−i(dv−i) =

∫
D−i

q̂(vi, v−i)λ−i(dv−i) +

∫
V−i\D−i

q̂(vi, v−i)λ−i(dv−i)

=

∫
D−i

q(vi, v−i)λ−i(dv−i) +

∫
V−i\D−i

q̃(vi, v−i)λ−i(dv−i)
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= 0 +

∫
V−i

q̃(vi, v−i)λ−i(dv−i)

=

∫
V−i

q(vi, v−i)λ−i(dv−i),

where D−i = ∪j∈I,j 6=i
(
Dj ×

∏
s∈I,s 6=i,j Vs

)
. The first equality holds by dividing V−i as D−i

and V−i \D−i. The second equality is due to the definition of q̂. The third equality holds

since λ−i(D−i) = 0. The last equality is due to the condition that vi /∈ Di. As a result,

Equation (3) holds for q̂ and every vi ∈ Vi. Similarly, one can check that Equation (4) also

holds for q̂ and every vi ∈ Vi.
Suppose that the mechanism (q̂, t) is adopted. By Equation (3), the allocation rules q

and q̂ induce the same interim expected allocation. We need to check that they induce the

same interim expected utility. If agent i observes the state vi but reports v′i, then his payoff is∫
V−i

[ ∑
1≤k≤K

uki (vi, v−i)q̂
k(v′i, v−i)− ti(v′i, v−i)

]
λ−i(dv−i)

=
∑

1≤k≤K

∑
1≤m≤M

∫
V−i

wkim(vi)r
k
im(v−i)q̂

k(v′i, v−i)λ−i(dv−i)− Ti(v′i)

=
∑

1≤k≤K

∑
1≤m≤M

wkim(vi)

∫
V−i

rkim(v−i)q̂
k(v′i, v−i)λ−i(dv−i)− Ti(v′i)

=
∑

1≤k≤K

∑
1≤m≤M

wkim(vi)

∫
V−i

hikm(v)q̂k(v′i, v−i)λ−i(dv−i)− Ti(v′i)

=
∑

1≤k≤K

∑
1≤m≤M

wkim(vi)

∫
V−i

hikm(v)qk(v′i, v−i)λ−i(dv−i)− Ti(v′i)

=
∑

1≤k≤K

∑
1≤m≤M

wkim(vi)

∫
V−i

rkim(v−i)q
k(v′i, v−i)λ−i(dv−i)− Ti(v′i)

=

∫
V−i

[ ∑
1≤k≤K

uki (vi, v−i)q
k(v′i, v−i)− ti(v′i, v−i)

]
λ−i(dv−i).

The first and second equalities follow from the separable payoff assumption. The fourth

equality follows from Equation (4) and also the assumption that types are independent. All

other equalities are simple algebras. Thus, these two mechanisms (q, t) and (q̂, t) deliver the

same interim expected utility for every agent. If (q, t) is Bayesian incentive compatible, then

(q̂, t) is clearly Bayesian incentive compatible. This completes the proof.
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5 Discussions

5.1 Benefit of randomness revisited

As is well known, it is not clear what optimal mechanisms for selling two goods look like,

even in the single agent case. The two-dimensional problem is notoriously difficult, and the

mechanisms that amount to solving one-dimensional problems - such as separate selling and

bundling - do not maximize the revenue in general. This motivates the following question:

how good are simple mechanisms for selling two goods? Hart and Nisan (2013, 2014) and

Briest, Chawla, Kleinberg, and Weinberg (2015) show the surprising result that in the general

case where the valuations may be correlated, simple mechanisms (separate selling, bundling,

and deterministic mechanisms) cannot guarantee any positive fraction of the optimal revenue.

Hart and Nisan (2013, 2014) then ask the same questions for more general auction

settings involving multiple agents. They observe that their result also applies to multiple-agent

settings, simply by considering a single “significant” agent together with multiple “negligible”

(in the extreme, 0-value for all items) agents. However, this result does not hold with a small

perturbation of the prior. The next paragraph elaborates this point.

We shall perturb the prior in Hart and Nisan (2013, 2014) a little bit such that the new

prior is atomless. In their paper, the prior λ1 of the significant buyer has countable support,

say {a1, a2, . . .} (see Hart and Nisan’s prior constructed for their Theorem A). For sufficiently

small ε > 0, we can construct a new prior Gε of two buyers such that i) its marginal on the

significant buyer has support ∪k≥1[ak − ε
2k
, ak + ε

2k
], and the probability λ1(ak) is uniformly

distributed on [ak− ε
2k
, ak + ε

2k
] for each k;17 ii) its marginal on the negligible buyer is uniform

on [0, ε]; and (iii) the prior of these two buyers are independent. Then, the prior Gε converges

to Hart and Nisan’s prior at least weakly and yet the prior satisfies our assumption of being

independent and atomless. Thus, our result implies that the multiple agents version of Hart

and Nisan’s result is a knife-edge case, since with a small perturbation, deterministic and

stochastic mechanisms generate the same revenue.

It is worth mentioning that while our result requires independence across agents, we do

not make any assumption regarding the correlation of the different coordinates of type vi for

any agent i ∈ I. In other words, while the correlation across valuations plays an important

17If some intervals have intersections, then the probability of the intersection is the corresponding

summation.
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role in determining the benefit of randomness in the screening context, this is no longer

the case with multiple agents. For arbitrary correlation among different dimensions of an

agent’s type, as long as we maintain the independence of types across agents, there exists an

equivalent deterministic mechanism for any stochastic mechanism.

Chawla, Malec, and Sivan (2015) consider multi-agent setting and focus on the case

where the agents’ values are independent both across different agents’ types and different

coordinates of an agent’s type. In particular, Chawla, Malec, and Sivan (2015, Theorem13)

establish a constant factor upper bound for the benefit of randomness when the agents’ values

are independent. In the special case of multi-unit multi-item auctions, they show that the

revenue of any Bayesian incentive compatible, individually rational randomized mechanism

is at most 33.75 times the revenue of the optimal deterministic mechanism. In this paper,

we push this result to the extreme and show that the revenue maximizing auction can be

deterministically implemented.18

5.2 An implementation perspective

We have motivated our result broadly, in terms of revenue, social surplus, interim expected

allocation probabilities, interim expected utilities and even ex post payments. Alternatively,

we may take an implementation perspective to formulate our result. Beyond the equivalence

notion discussed throughout the paper, the deterministic allocation rule can also be required to

pick some allocation in the support of the randomized allocation in the stochastic mechanism

for each type profile v. Therefore, when a stochastic mechanism implements some social goal

(i.e., at every type profile v, every realized allocation is consistent with the social goal), our

equivalent deterministic mechanism also has the same property. We shall explain this point

in the following paragraph.

Suppose that q is a random allocation rule. Given the K alternatives, the set of all

nonempty subsets of {1, . . . , K} can have at most 2K − 1 elements {Cj}1≤j≤2K−1. As a result,

the set of type profiles V can be divided into 2K − 1 disjoint subsets {Dj}1≤j≤2K−1 such that

1. the support of q(v) is Cj for all v ∈ Dj;

2. λ(∪1≤j≤2K−1Dj) = 1.

18Chawla, Malec, and Sivan (2015, page 316) remarked that "our bounds on the benefit of randomness are

in some cases quite large and we believe they can be improved".
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We define 2K − 1 functions {βj}1≤j≤2K−1 such that βj = 1 + 1Dj
for each j; that is,

βj is the summation of 1 and the indicator function of the set Dj. Instead of working with

the function h, we can work with the new function h′ = (h, β1, . . . , β2K−1). Lemma 1 and

Proposition 1 stills hold and we can obtain a deterministic mechanism q̃ such that∫
V

qβj dλ =

∫
V

q̃βj dλ

for each j, and ∫
V

q dλ =

∫
V

q̃ dλ.

That is,
∫
Dj
q dλ =

∫
Dj
q̃ dλ for each j. Since

∑
k∈Cj

qk(v) = 1 for λ-almost all v ∈ Dj,∫
Dj

∑
k∈Cj

qk(v)λ(dv) = λ(Dj), which implies that
∫
Dj

∑
k∈Cj

q̃k(v)λ(dv) = λ(Dj). As a

result, for λ-almost all v ∈ Dj, q̃k = 1 for some k ∈ Cj. This proves our claim that the

deterministic allocation rule lies in the support of the random allocation rule.

5.3 Assumptions

Our result relies on several assumptions. In this subsection, we briefly discuss these

assumptions. The requirement of multiple agents needs no further explanation. Atomless

distribution is an indispensable requirement for almost all purification results. See Example

3 where we cannot purify the allocation for agent 2 while keeping her interim expected

utility unchanged because agent 1’s type distribution has an atom, let alone the stronger

requirement that the deterministic mechanism requires such purification for all agents

simultaneously. While our result requires independence, it is worth mentioning that we

only require independence across agents and we do not make any assumption regarding the

correlation of the different coordinates of type vi for any agent i ∈ I; see Section 5.1 for a

fuller discussion. Though separable payoff is a restriction, this setup is sufficiently general to

cover most applications. In particular, it includes the interdependent payoff function as in

Jehiel and Moldovanu (2001), and obviously covers the widely adopted private value payoffs

as a special case; see Section 4.1 for details.

6 Conclusion

In this paper, we prove that in a general social choice environment with multiple agents, for

any stochastic mechanism, there exists an equivalent deterministic mechanism. Deterministic

20



mechanisms have important advantages. For example, in the case of allocating indivisible

objects, it is clearly desirable that the mechanism allocates the objects in a deterministic

way. Our result implies that the requirement of deterministic mechanisms is not restrictive in

itself. That is, even if one is constrained to employ only deterministic mechanisms, there is

no loss of revenue or social welfare. Therefore, our result provides a foundation for the use of

deterministic mechanisms in mechanism design settings, such as auctions, bilateral trades,

etc.

The contrast with the results in the screening literature is particularly interesting for

us. It is by now well known that, in the case of one-dimensional, private types, the optimal

mechanism is deterministic, whether there is a single agent or multiple agents. When types

are multidimensional, while the optimal mechanism might be stochastic in the single agent

context, we recover the optimality of deterministic mechanisms when there are multiple

agents. This reflection highlights the difference between settings with one agent and multiple

agents, and leaves us wondering whether there are other interesting distinctions. In this sense,

this paper takes one step in understanding such differences.

A Appendix

A.1 Proof of Claims 1 and 2

Proof of Claim 1. It is easy to see that the following pure strategy f ′2 gives agent 2 the same

expected payoff and (f1, f
′
2) is still a Bayesian Nash equilibrium, where

f ′2(v) =

as, v ∈ [ s−1
m
, s
m

), 1 ≤ s ≤ m− 1;

am, v ∈ [m−1
m
, 1].

We next show that there does not exist a pure strategy g1 of agent 1 such that g1

is a component of a Bayesian Nash equilibrium with each agent’s expected payoff being 0.

Suppose that (g1, g2) is a Bayesian Nash equilibrium such that g1 is a pure strategy of agent 1.

Let Ds = {v1 ∈ V1 : g1(v1) = as} for 1 ≤ s ≤ m. Without loss of generality, we assume that

0 ∈ D1. Let S = arg max1≤s≤m λ1(Ds). Since λ1(Ds) ≥ λ1(D1) ≥ λ1(0) > 1
m

for each s ∈ S,
S must be a strict subset of {1, . . . ,m}. Without loss of generality, we assume that s∗ ∈ S and

s∗ + 1 /∈ S. Given agent 1’s strategy g1, agent 2 can adopt the pure strategy g′2(v2) = as∗+1

for any v2 ∈ V2. Then the expected payoff of agent 2 is λ1(Ds∗) − λ1(Ds∗+1) > 0 with the
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strategy profile (g1, g
′
2). Since (g1, g2) is a Bayesian Nash equilibrium, the expected payoff

of agent 2 must be at least λ1(Ds∗)− λ1(Ds∗+1) with the strategy profile (g1, g2), which is

strictly positive. This is a contradiction.

Proof of Claim 2. We first construct a deterministic mechanism which gives agent 1 the same

interim expected payoff. Define a function G on V1 × V2 = [0, 1]2 by letting

G(v1, v2) =

∫ v2

0

[εv1 + (1− v′2)m]λ2(dv′2)−
[
εv1

2
+

1

2(m+ 1)

]
,

for any (v1, v2) ∈ V1 × V2. It is clear that for any v1 ∈ [0, 1], G(v1, 0) < 0 < G(v1, 1) =

εv1
2

+ 1
2(m+1)

. One can also check that ∂G
∂v2

= εv1 + (1 − v2)
m > 0 for any v1 ∈ [0, 1] and

v2 ∈ [0, 1). Hence, for each v1 ∈ [0, 1], there exists a unique number g(v1) ∈ (0, 1) such that

G (v1, g(v1)) = 0. By the usual implicit function theorem, g must be differentiable, and hence

measurable. Let q̂1(v1, v2) = 1 if 0 ≤ v2 ≤ g(v1) and 0 otherwise, and q̂2(v1, v2) = 1−q̂1(v1, v2).

Then the mechanism q̂ gives agent 1 the same interim expected payoff.

We next show that there does not exist any deterministic mechanism that gives agent 2

the same interim expected payoff. Suppose that there exists a deterministic mechanism q̃

that gives agent 2 the same interim expected payoff. Fix value v2 ∈ V2 = [0, 1].

Suppose that q̃2(0, v2) = 1. Then the interim expected payoff of agent 2 with value v2 is∫
V1

(εv2 + (1− v1)m)q̃2(v1, v2)λ1(dv1) ≥ (εv2 + 1)λ1(0).

Recall that λ1(0)
2

> ε+ 1
m+1

. Hence we have

(εv2 + 1)λ1(0) ≥ λ1(0) >
λ1(0)

2
+ ε+

1

m+ 1
>
εv2

2
+
λ1(0)

2
+ (1− λ1(0))

1

2(m+ 1)
.

Thus, the interim expected payoff of agent 2 under the mechanism q̃ is strictly greater than

the interim expected payoff of agent 2 under the mechanism q. This is a contradiction.

Therefore, we must have q̃2(0, v2) = 0 since q̃ is a deterministic mechanism.

Next, since q̃2(0, v2) = 0, the interim expected payoff of agent 2 is∫
V1

(εv2 + (1− v1)m)q̃2(v1, v2)λ1(dv1) =

∫
(0,1]

(εv2 + (1− v1)m)q̃2(v1, v2)λ1(dv1)

≤ (1− λ1(0))

∫ 1

0

(εv2 + (1− v1)m) dv1 = (1− λ1(0))εv2 +
1− λ1(0)

m+ 1

< ε+
1

m+ 1
<
λ1(0)

2
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<
εv2

2
+
λ1(0)

2
+ (1− λ1(0))

1

2(m+ 1)
.

That is, the interim expected payoff of agent 2 under the mechanism q̃ is strictly less than

the interim expected payoff of agent 2 under the mechanism q. This is also a contradiction.

Therefore, there does not exist any deterministic mechanism that gives agent 2 the same

interim expected payoff.

A.2 Technical lemmas

In the following, we present several lemmas as the technical preparations of Proposition 1.

If (X,X ) and (Y,Y) are measurable spaces, then a measurable rectangle is a subset

A×B of X × Y , where A ∈ X and B ∈ Y are measurable subsets of X and Y , respectively.

The “sides” A, B of the measurable rectangle A×B can be arbitrary measurable sets; they

are not required to be intervals. A discrete rectangle is a measurable rectangle such that each

of its sides is a finite set.

Lemma 2. Let D be a Borel measurable subset of V , and F ⊆ V a measurable rectangle with

sides Yi ⊆ Vi of measure li, i ∈ I. Assume that λ(D ∩ F ) ≥ (1− ε)λ(F ) for some 0 < ε < 1.

Then for any i,

λi{vi ∈ Vi : λ−i(Dvi ∩ Fvi) > (1−
√
ε)λ−i(Fvi)} ≥ (1−

√
ε)li.

Proof. Denote

Γi = {vi ∈ Vi : λ−i(Dvi ∩ Fvi) > (1−
√
ε)λ−i(Fvi)}.

Let ΓCi be the complement of Γi in Vi. Then

(1− ε)Π1≤j≤I lj = (1− ε)λ(F )

≤ λ(D ∩ F )

= (

∫
Γi

+

∫
ΓC
i

)λ−i(Dvi ∩ Fvi)λi(dvi)

=

∫
Γi

λ−i(Dvi ∩ Fvi)λi(dvi) +

∫
ΓC
i

λ−i(Dvi ∩ Fvi)λi(dvi)

≤
∫

Γi

λ−i(Fvi)λi(dvi) + (1−
√
ε)

∫
ΓC
i

λ−i(Fvi)λi(dvi)

=
√
ε

∫
Γi

λ−i(Fvi)λi(dvi) + (1−
√
ε)

∫
Yi

λ−i(Fvi)λi(dvi)
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=
√
ελi(Γi) · Πj 6=ilj + (1−

√
ε)Π1≤j≤I lj.

The first inequality holds due to the condition that λ(D ∩ F ) ≥ (1 − ε)λ(F ). The second

inequality is true since λ−i(Dvi ∩ Fvi) ≤ (1−
√
ε)λ−i(Fvi) for vi ∈ ΓCi . All the equalities are

just simple algebras. Rearranging the terms, we have

λi(Γi) ≥ (1−
√
ε)li.

This completes the proof.

Lemma 3. Let D be a Borel measurable subset of V with λ(D) > 0, ĩ1, . . . , ĩI be positive

natural numbers, and 0 < ε < 1 be sufficiently small such that ε′ = Π1≤j≤I ĩj · ε < 1 and

Π1≤j≤I ĩj · ε′
1

2I < 1.

Consider the system of measurable rectangles F i1,...,iI =
∏

1≤j≤I Y
ij
j , where 1 ≤ ij ≤ ĩj

and Y 1
j , . . . , Y

ĩj
j are pairwise disjoint subsets on Vj for 1 ≤ j ≤ I such that λ(F i1,...,iI ∩D) ≥

(1− ε)λ(F i1,...,iI ). Then there exists a discrete rectangle {vi11 , . . . , v
iI
I }{1≤ij≤ĩj ,1≤j≤I} such that

1. (vi11 , . . . , v
iI
I ) ∈ F i1,...,iI ∩D for 1 ≤ ij ≤ ĩj and 1 ≤ j ≤ I;

2. for each 1 ≤ j ≤ I, {vijj } are different points for 1 ≤ ij ≤ ĩj.

Proof. First, we consider the set

Γi1,...,iI1 = {v1 ∈ Y i1
1 : λ−1(Dv1 ∩ F i1,...,iI

v1
) > (1−

√
ε′)λ−1(F i1,...,iI

v1
)}.

Denote Γi11 = ∩1≤ik≤ĩk,2≤k≤IΓ
i1,...,iI
1 . We have

λ1(Γi11 ) = λ1(Y i1
1 )− λ1

(
∪1≤ik≤ĩk,2≤k≤I(Y

i1
1 \ Γi1,...,iI1 )

)
≥ λ1(Y i1

1 )−
∑

1≤ik≤ĩk,2≤k≤I

(
λ1(Y i1

1 )− λ1(Γi1,...,iI1 )
)

≥ λ1(Y i1
1 )−

∑
1≤ik≤ĩk,2≤k≤I

(
λ1(Y i1

1 )− (1−
√
ε′)λ1(Y i1

1 )
)

=
(

1− Π2≤k≤I ĩk ·
√
ε′
)
λ1(Y i1

1 )

> 0.

The second inequality holds due to Lemma 2. We fix points yi11 ∈ Γi11 arbitrarily, as long as

they are all distinct.
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Second, let

Γi1,...,iI2 = {v2 ∈ Y i2
2 : (

⊗
3≤k≤I

λk)(D(y
i1
1 ,v2)

∩ F i1,...,iI

(y
i1
1 ,v2)

) > (1− ε′
1
4 )(
⊗

3≤k≤I

λk)(F
i1,...,iI

(y
i1
1 ,v2)

)}.

Since yi11 ∈ Γi11 for any i1, we have yi11 ∈ Γi1,...,iI1 and

(
⊗

2≤k≤I

λk)(Dy
i1
1
∩ F i1,...,iI

y
i1
1

) > (1−
√
ε′)(

⊗
2≤k≤I

λk)(F
i1,...,iI

y
i1
1

).

By Lemma 2, we have

λ2(Γi1,...,iI2 ) ≥ (1− ε′
1
4 )λ2(Y i2

2 ).

Denote Γi22 = ∩1≤ij≤ĩj ,j 6=2Γi1,...,iI2 . We have

λ2(Γi22 ) = λ2(Y i2
2 )− λ2

(
∪1≤ik≤ĩk,k 6=2(Y i2

2 \ Γi1,...,iI2 )
)

≥ λ2(Y i2
2 )−

∑
1≤ik≤ĩk,k 6=2

(
λ2(Y i2

2 )− λ2(Γi1,...,iI2 )
)

≥ λ2(Y i2
2 )−

∑
1≤ik≤ĩk,k 6=2

(
λ2(Y i2

2 )− (1− ε′
1
4 )λ2(Y i2

2 )
)

=
(

1− Π1≤k≤I,k 6=2ĩk · ε′
1
4

)
λ2(Y i2

2 )

> 0.

We fix points yi22 ∈ Γi22 arbitrarily, as long as they are all distinct, and are also different from

{yi11 }.
Repeating this procedure until I − 1, we can find yikk ∈ Γikk for 1 ≤ ik ≤ ĩk and

1 ≤ k ≤ I − 1, where Γikk = ∩1≤ij≤ĩj ,j 6=kΓ
i1,...,iI
k and λk(Γikk ) > 0. In particular,

Γi1,...,iII−1 =
{
vI−1 ∈ Y iI−1

I−1 : λI(D(y
i1
1 ,...,y

iI−2
I−2 ,vI−1)

∩ F i1,...,iI

(y
i1
1 ,...,y

iI−2
I−2 ,vI−1)

)

> (1− ε′
1

2I−1 )λI(F
i1,...,iI

(y
i1
1 ,...,y

iI−2
I−2 ,vI−1)

)
}
.

Finally, consider the set

EiI = ∩1≤ik≤ĩk,1≤k≤I−1

(
D

(y
i1
1 ,...,y

iI−1
I−1 )
∩ Y iI

I

)
.

Notice that F i1,··· ,iI
(y

i1
1 ,...,y

iI−1
I−1 )

= Y iI
I for any i1, . . . , iI . Then

λI(E
iI ) = λI

(
∩1≤ik≤ĩk,1≤k≤I−1(D

(y
i1
1 ,...,y

iI−1
I−1 )
∩ Y iI

I )

)
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= λI(Y
iI
I )− λI

(
∪1≤ik≤ĩk,1≤k≤I−1(Y iI

I \D(y
i1
1 ,...,y

iI−1
I−1 )

)

)
≥ λI(Y

iI
I )−

∑
1≤ik≤ĩk,1≤k≤I−1

(
λI(Y

iI
I )− λI(D(y

i1
1 ,...,y

iI−1
I−1 )
∩ Y iI

I )

)

= λI(Y
iI
I )−

∑
1≤ik≤ĩk,1≤k≤I−1

(
λI(Y

iI
I )− λI(D(y

i1
1 ,...,y

iI−1
I−1 )
∩ F i1,··· ,iI

(y
i1
1 ,...,y

iI−1
I−1 )

)

)

> λI(Y
iI
I )−

∑
1≤ik≤ĩk,1≤k≤I−1

(
λI(Y

iI
I )− (1− ε′

1

2I−1 )λI(F
i1,··· ,iI
(y

i1
1 ,...,y

iI−1
I−1 )

)

)
= λI(Y

iI
I )−

∑
1≤ik≤ĩk,1≤k≤I−1

(
λI(Y

iI
I )− (1− ε′

1

2I−1 )λI(Y
iI
I )
)

=
(

1− Π1≤k≤I−1ĩk · ε′
1

2I−1

)
λI(Y

iI
I )

> 0.

The second inequality holds since yiI−1

I−1 ∈ Γ
iI−1

I−1 ⊆ Γi1,...,iII−1 , and hence

λI(D(y
i1
1 ,...,y

iI−1
I−1 )
∩ F i1,...,iI

(y
i1
1 ,...,y

iI−1
I−1 )

) > (1− ε′
1

2I−1 )λI(F
i1,...,iI

(y
i1
1 ,...,y

iI−1
I−1 )

).

Fix points yiII ∈ EiI arbitrarily, as long as they are all different, and are different from

{yijj }1≤j≤I−1,1≤ij≤ĩj . By the choice of EiI , (yi11 , . . . , y
iI
I ) ∈ F i1,...,iI ∩D for any 1 ≤ ij ≤ ĩj and

1 ≤ j ≤ I. This completes the proof.

Now we prove the last lemma.

Lemma 4. There is a measurable function d(v) with a finite set of values, which cannot be

approximated in measure on (D,B(D), λ) by functions in E (recall that E is defined in the

proof of Proposition 1).

Proof. Let g = 1D be the indicator function of the set D, and gδ(v) = 1
λ(B(v,δ))

∫
B(v,δ)

g dλ.

By Lemma 4.1.2 in Ledrappier and Young (1985), gδ → g for λ-almost all v ∈ RlI as δ → 0.

Without loss of generality, we assume that this convergence result holds for each point of D

and the function h is continuous on D.

Fix natural numbers ĩj satisfying the condition that l ·
∑

J∈J (Πj∈J ĩj) < Π1≤j≤I ĩj. For

any discrete rectangle L = {(vi11 , . . . , v
iI
I ) ∈ D : 1 ≤ ij ≤ ĩj, 1 ≤ j ≤ I}, we associate a linear

mapping TL from RΠ1≤j≤I ĩj to Rl0·
∑

J∈J (Πj∈J ĩj):

TL(w) = {
∑

j /∈J,1≤ij≤ĩj

h(vi11 , . . . , v
iI
I ) · wi1,...,iI}1≤ij≤ĩj ,j∈J,J∈J ,

26



where l0 = IKM +1, w is a vector with dimensions ĩ1, . . . , ĩI and wi1,...,iI is the corresponding

component.

Fix a discrete rectangle L ⊆ D such that

• L = {(vi11 , . . . , v
iI
I ) ∈ D : 1 ≤ ij ≤ ĩj, 1 ≤ j ≤ I};

• the rank of the mapping TL is maximal, say r.

Consider the system of
∑

J∈J (Πj∈J ĩj) homogeneous linear equations with Π1≤j≤I ĩj

unknowns:

TL(w) = 0.

We take r equations and r unknowns for which the corresponding determinant is

nonzero. Without loss of generality, we focus on this r × r matrix and denote it as Ls, then

det(Ls) 6= 0. For any discrete rectangle L, denote Ls as the restriction of the vector generated

by the operator TL onto the same matrix. Since h is continuous, det(Ls) 6= 0 for any discrete

rectangle L in a small open neighborhood of L.

Let wL be a nontrivial solution of the system corresponding to the discrete rectangle L

in the sense that TL(wL) = 0. For any discrete rectangle L ⊆ D such that det(Ls) 6= 0, we

provide a solution wL below such that TL(wL) = 0.

• Since det(Ls) 6= 0, the rank of the system corresponding to the operator TL is at least r.

Due to the choice of L, the rank of the system corresponding to the operator TL is at

most r, and hence is r. As a result, the equations that do not occur in the determinant

det(Ls) are linear combinations of the r equations that do.

• We focus on the r equations that occur in the determinant det(Ls), and let wi1,...,iIL =

wi1,...,iI
L

if the column corresponding to the unknown wi1,...,iIL does not occur in the

determinant det(Ls).

• The remaining r unknowns of wi1,...,iIL , corresponding to the columns that occur in the

determinant det(Ls), can be obtained by Cramer’s rule.

By the above construction, it is obvious that wL depends continuously on the r nodes

of the discrete rectangle L corresponding to the columns of det(Ls).
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Pick numbers di1,...,iI subject to
∑

1≤ij≤ĩj ,1≤j≤I d
i1,...,iI · wi1,...,iI

L
= 1. Consider the

measurable rectangles

Gi1,...,iI = {v = (v1, . . . , vI) ∈ RlI : |vj − v
ij
j | ≤ δ, 1 ≤ j ≤ I},

and

F i1,...,iI = {v = (v1, . . . , vI) ∈ V : |vj − v
ij
j | ≤ δ, 1 ≤ j ≤ I}.

Then for sufficiently small δ, {Gi1,...,iI} are pairwise disjoint, and {F i1,...,iI} are also pairwise

disjoint.

By the first paragraph of this proof, 1
λ(B(v,δ))

∫
B(v,δ)

1D dλ → 1D(v) for each v ∈ D.

Since (vi11 , . . . , v
iI
I ) ∈ D, λ(Gi1,...,iI ∩D) ≥ (1− ε)λ(Gi1,...,iI ) for sufficiently small δ, where ε is

given in the proof of Lemma 3. Since D is a subset of V , we have

λ(F i1,...,iI ∩D) = λ(Gi1,...,iI ∩D) ≥ (1− ε)λ(Gi1,...,iI ) ≥ (1− ε)λ(F i1,...,iI ).

In addition, since
∑

1≤ij≤ĩj ,1≤j≤I d
i1,...,iI · wi1,...,iIL is continuous in the discrete rectangle, for

sufficiently small δ,
∑

1≤ij≤ĩj ,1≤j≤I d
i1,...,iI · wi1,...,iIL ≥ 1

2
for

L = {(vi11 , . . . , v
iI
I ) ∈ F i1,...,iI ∩D : 1 ≤ ij ≤ ĩj, 1 ≤ j ≤ I}.

To summarize, we pick δ > 0 sufficiently small such that

1. λ(F i1,...,iI ∩D) ≥ (1− ε)λ(F i1,...,iI ); and

2.
∑

1≤ij≤ĩj ,1≤j≤I d
i1,...,iI · wi1,...,iIL ≥ 1

2
for any discrete rectangle

L = {(vi11 , . . . , v
iI
I ) ∈ F i1,...,iI ∩D : 1 ≤ ij ≤ ĩj, 1 ≤ j ≤ I}.

Let

d(v) =

d
i1,...,iI , if v ∈ F i1,...,iI ∩D;

0, otherwise.

If it could be approximated by functions in E on (D,B(D), λ) in measure, then there is a

sequence dn(v) = h(v) ·
∑

J∈J ψ
n
J (vJ) which converges to d on some Borel measurable subset

C such that λ(C) = λ(D).
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By condition (1) above and Lemma 3, there exists a discrete rectangle L =

{(vi11 , . . . , v
iI
I )}{1≤ij≤ĩj ,1≤j≤I} such that (vi11 , . . . , v

iI
I ) ∈ F i1,...,iI ∩ C for 1 ≤ ij ≤ ĩj and

1 ≤ j ≤ I. Since
∑

1≤ij≤ĩj ,j /∈J w
i1,...,iI
L h(vi11 , . . . , v

iI
I ) = 0 for any J ∈ J , we have∑

1≤ij≤ĩj ,1≤j≤I

di1,...,iI · wi1,...,iIL

= lim
n→∞

∑
1≤ij≤ĩj ,1≤j≤I

dn(vi11 , . . . , v
iI
I ) · wi1,...,iIL

= lim
n→∞

∑
1≤ij≤ĩj ,1≤j≤I

(
h(vi11 , . . . , v

iI
I ) ·

∑
J∈J

ψnJ (viJJ )

)
wi1,...,iIL

= lim
n→∞

∑
1≤ij≤ĩj ,1≤j≤I

{(
wi1,...,iIL h(vi11 , . . . , v

iI
I )
)
·
∑
J∈J

ψnJ (viJJ )

}

= lim
n→∞

∑
J∈J

∑
1≤ij≤ĩj ,1≤j≤I

{(
wi1,...,iIL h(vi11 , . . . , v

iI
I )
)
· ψnJ (viJJ )

}

= lim
n→∞

∑
J∈J

∑
1≤ij≤ĩj ,j∈J

 ∑
1≤ij≤ĩj ,j /∈J

wi1,...,iIL h(vi11 , . . . , v
iI
I )

 · ψnJ (viJJ )

= 0,

where viJJ denotes the vector (v
ij
j )j∈J . However,

∑
1≤ij≤ĩj ,1≤j≤I d

i1,...,iI · wi1,...,iIL ≥ 1
2
by

condition (2) above, which is a contradiction. As a result, the function d cannot be

approximated by functions in E on (D,B(D), λ) in measure. This completes the proof.
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