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Abstract

We consider a general model of allocating discrete resources when agents have
unit demand. Our main result is that every individually rational and non-wasteful
rule is (weakly) Pareto-dominated by at most one strategy-proof rule. An immediate
implication is that if a strategy-proof rule is individually rational and non-wasteful,
then it is strategy-proofness-constrained Pareto-efficient.

By specializing our model, we show that it applies to a broad class of economic
problems from auctions to object allocation to matching with contracts.
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1 Introduction

We study a model that encompasses most of the commonly studied models with dis-
crete goods where agents have unit demand. Notable examples are object allocation,
priority augmented object allocation, matching with contracts, and auctions. To be spe-
cific, our model consists of a set of agents, a set of objects, and the terms under which an
agent may consume an object. Each object comes with a collection of ways in which it can
be feasibly allocated: sets of agent-term pairs. These constitute within-object constraints.
Our model also allows the specification of across-object constraints. Feasibility requires
that an allocation satisfy both within and across-object constraints. Agents have weak
preferences over object-term pairs and being unmatched.

*We thank Lars Ehlers, Patrick Harless, Sean Horan, Thayer Morrill, Tayfun Sönmez, William Thomson,
Guoqiang Tian, Utku Ünver, Rodrigo Velez, Bumin Yenmez, and participants at the Texas Theory Camp at
UT Austin and the Workshop on Matching and Choice Theory at ITAM for helpful comments and discus-
sions.
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The main question that we answer is this: Suppose that a mechanism designer is
tasked with selecting a strategy-proof rule, but is constrained to select a rule that ev-
ery agent finds to be at least as good as some fixed benchmark—perhaps a status quo rule
or a rule that reflects some normative considerations. Is there more than one solution to
his problem?

Our main result (Theorem 1) is that an individually rational and non-wasteful1 bench-
mark rule can be (weakly) Pareto-dominated by at most one strategy-proof rule. An immediate
implication is that if the benchmark is strategy-proof itself, then no other strategy-proof
rule Pareto-dominates it. Thus, every individually rational and non-wasteful strategy-
proof rule is strategy-proofness-constrained (or “second best”) Pareto-efficient.

We shed more light on the structure of the set of strategy-proof rules with regards to
the Pareto-relation. If one strategy-proof rule Pareto-dominates another strategy-proof
rule, then the dominating rule is “less wasteful” than the other (Theorem 2). In other
words, the Pareto-improvement cannot come from better allocation of the same discrete
resources, but from allocation ofmore of these discrete resources. This is because a waste-
ful strategy-proof rule is not Pareto-dominated by an equally wasteful strategy-proof rule
(Lemma 3). Thus, by allocating more and more of the available resources, it is possible to
achieve strategy-proof Pareto-improvements. However, once the resources are used max-
imally, even if not Pareto-efficiently, Theorem 1 implies that no further strategy-proof
Pareto-improvements are possible. That is, individual rationality and non-wastefulness
are sufficient conditions for a strategy-proof rule to be strategy-proofness-constrained
Pareto-efficient. However, we show that these are not necessary conditions: there may
be strategy-proof, but wasteful, rules that cannot be Pareto-improved upon in a strategy-
proof way (Proposition 3).

Key to proving our results is what we call the Structure Lemma: for every profile of
preferences, the set of individually rational and non-wasteful allocations can be parti-
tioned so that a) for each pair of allocations in the same component, the set of agents
who are assigned an object is the same and b) two allocations in separate components
cannot be Pareto-compared.

In Section 5, we specialize our model in two ways to demonstrate the implications of
our results for “market design.” First, we assume that agents have strict preferences. Sec-
ond, we augment the model by prioritizing the feasible sets of each object through choice
correspondences.2 Given a set of agents and terms under which they wish to consume
a particular object, the object’s choice correspondence says which of the feasible subsets
of these agent-term pairs have the highest priority. For such matching with contracts
(Hatfield and Milgrom, 2005) settings, stability has been the main normative considera-
tion. We show that under certain conditions—size monotonicity3 and a mild consistency

1We extend the definition of non-wastefulness from the object allocation problem (Balinski and Sönmez,
1999) to our more general setting.

2 To better accommodate ties in priorities of feasible sets (as in the school choice model), we have chosen
to model them as choice correspondences rather than choice functions. To our knowledge Erdil and Kumano
(2014) is the first and only other analysis in the literature on matching that considers choice correspon-
dences as a model primitive.

3We use the naming convention of Alkan and Gale (2003). Alkan (2002) calls this “cardinal monotonic-
ity” and Hatfield and Milgrom (2005) refers to it as the “law of aggregate demand.”
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property that we call idempotence4—every stable allocation is non-wasteful (Proposition
4). Thus, Theorem 1 says that a stable rule is Pareto-dominated by at most one strategy-
proof rule. So if a stable rule is strategy-proof, it is strategy-proofness-constrained Pareto-
efficient.5

Without further conditions on choice correspondences, the existence of the agent-
optimal stable rule is not guaranteed.6 However, when such a rule does exist, our main
result implies that it is the unique stable and strategy-proof rule. Moreover, the Structure
Lemma implies that, in such cases, every stable allocation is in the same component of
the above mentioned partition of the individually rational and non-wasteful allocations.
Consequently, we have an equivalence of the existence of the agent-optimal stable rule
on one hand and the “Rural Hospitals Theorem” of Roth (1986) alongside the existence
of a stable and strategy-proof rule on the other (Propositions 5 and 6).

The priority augmented object allocation model7 involves a particular kind of choice
correspondence: Each object is associated with a “capacity” and a priority order over the
agents that may consume it. If the agents in one set have higher priority than the agents
in another, then the former set is prioritized over the latter. Respecting priorities is an
important normative consideration as a form of fairness (Balinski and Sönmez, 1999): an
agent has the right to protest an allocation if he would rather have an object that is as-
signed to someone of lower priority. However, individual rationality, non-wastefulness
and respect for priorities are together equivalent to stability, which often implies involves
efficiency losses. What if, instead of demanding that priorities be respected, we are will-
ing to consider allocations that are not necessarily stable themselves but Pareto-dominate
some stable allocation? After all, if an agent were to protest the chosen allocation on the
grounds that it is not stable, we can point to the stable allocation that it Pareto-dominates
as justification: no agent would desire a move to that stable allocation. Thus, we con-
sider “stable-dominating” allocations. While stability is at odds with Pareto-efficiency
(except for particular kinds of priorities (Ergin, 2002; Ehlers and Erdil, 2010)), the re-
quirement that an allocation be stable-dominating is not. If the priorities are strict, the
agent-optimal stable rule is well defined and our results say that this is the unique stable-
dominating strategy-proof rule. On the other hand, under weak priorities there may not
be an agent-optimal stable rule. In such cases, our results still say that no stable and
strategy-proof rule can be Pareto-improved upon in a strategy-proof way. While there
may be many stable-dominating strategy-proof rules, we show that none of them are
group strategy-proof. This answers, in the negative, the question of whether any of the
many group strategy-proof rules for this model (variants of “Top Trading Cycles” rules,
such as those defined by Pycia and Ünver (2015)) are stable-dominating.

4This is a weaker consistency condition than “irrelevance of rejected contracts” (Aygün and Sönmez,
2013).

5Versions of this result have appeared previously in the literature, the broadest of these being due to
Hirata and Kasuya (2015), which we discuss further, along with Erdil (2014), in Section 1.1. Among ear-
lier such results are those by Abdulkadiroğlu et al. (2009) and Kesten and Kurino (2015) who show that
“deferred acceptance” is not Pareto-dominated by any strategy-proof rule.

6See Hatfield and Kojima (2010) for sufficient conditions.
7This is also known as the “school choice” model (Balinski and Sönmez, 1999;

Abdulkadiroğlu and Sönmez, 2003).
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The remainder of the paper is organized as follows. In Section 1.1 we discuss the
work most closely related to ours. We introduce our model and give key definitions in
Section 2. In Section 3 we state and prove the Structure Lemma. Our main results are in
Section 4. We demonstrate the implications of these results for matching with contracts
by specializing our model in Section 5 and augmenting it with choice correspondences.
We further specialize choice correspondences to model priority augmented object allo-
cation in Section 6. Finally, in Section 7 we discuss the implications of our results for
auctions, reallocation of objects from an endowment, and market design.

1.1 Related Literature

We defer to Section 7 the discussion of what our results imply for many of the specific
models subsumed by ours. In this section, we focus on two related recent works.

The first is Erdil (2014). He specifically considers the object allocation problem with
strict preferences where each object has a certain capacity and analyzes stochastic alloca-
tion. He shows a version of the Structure Lemma for his model. Further, he shows what
is an implication of Theorem 1 in our setting: non-wastefulness and individual rational-
ity are sufficient conditions for a strategy-proof rule to be strategy-proofness-constrained
Pareto-efficient. His last result that is related to our results is an analog of Theorem 2,
which says that if a strategy-proof rule dominates another, then the dominating rule al-
locates more resources.

On one hand, our model is significantly more general than his as it allows complex
within-object and across-object feasibility constraints, indifferences, and multiple terms
under which an object may be consumed. On the other hand, his analysis is of stochastic
allocation. Consequently, our results do not imply one another’s.

The second is Hirata and Kasuya (2015). They study the matching with contracts
model with choice functions that satisfy the “irrelevance of rejected contracts” condi-
tion of Aygün and Sönmez (2013). Since their analysis is in the matching with contracts
framework, their results are related to results in Sections 5 and 6 where we demonstrate
the implications of our results for this framework. In this context, they show that there
is at most one strategy-proof and stable rule. In Section 5, we show that this result does
not hold under the assumptions that we make on choice correspondences, even if these
correspondences are single-valued. They also show that whenever the agent-optimal sta-
ble rule is well defined, it is the only candidate for a stable and strategy-proof rule. Their
proof does not rely on the Rural Hospitals Theorem, which fails in their setting even if the
doctor-optimal stable rule is well defined. In contrast, the existence of a doctor-optimal
stable rule and the Rural Hospitals Theorem are intimately tied together under our con-
ditions. Finally, they show that individual rationality and non-wastefulness are sufficient
for a strategy-proof rule to be strategy-proofness-constrained Pareto-efficient, which is
for our model an implication of Theorem 1, as discussed above. Their assumption of the
irrelevance of rejected contracts condition, while quite mild, is technically stronger than
our assumption of idempotence. However, we require size-monotonicity of choice corre-
spondence to show that stability implies non-wastefulness. So our results in Sections 5
and 6 do not imply theirs, nor do their results imply ours.
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2 The Model

Let N be a finite and nonempty set of agents and let O be a finite and nonempty set
of objects. Let T be the nonempty set of all possible terms under which an agent may be
assigned an object. A triple (i,o, t) ∈ N ×O × T represents the assignment of o to i under
the terms t. Let X ⊆N ×O ×T denote the set of permissible triples of this sort.

Given x ∈ X, we denote the agent associated with x by xN . Similarly, xO is the object
associated with x and xT are the terms associated with it. For each Y ⊆ X, the elements of
Y associated with i ∈ N are Y(i), and elements of Y associated with o ∈ O are Y(o). For
each Y ⊆ X, the set of agents involved in elements of Y are YN ≡ {yN : y ∈ Y }. When T is
a singleton, each x ∈ X is fully identified by the involved agent and object. In such cases,
for each i ∈N , each element of X(i) is identified by an element of O while for each o ∈O,
each element of X(o) is identified by an element of N .

Agents have unit demand, so each i ∈ N is either assigned a singleton consisting of
an element of X(i) or assigned nothing, ∅. His preferences are a complete, reflexive, and
transitive binary relation on singletons and the empty set. We denote it by Ri . We write,
for each x,y ∈ X(i), x Ri y to mean that i finds {x} to be at least as good as {y}. Similarly,
if he finds {x} to be at least as good as the empty set, we write x Ri ∅ and vice versa.
We use Pi to denote strict preference and Ii to denote indifference, the asymmetric and
symmetric components of Ri , respectively. Let Ri be a set of preference relations for i
that satisfy the following two conditions. For each Ri ∈ Ri :

• No indifference with ∅: there is no x ∈ X(i) such that x Ii ∅.
8

• Richness: for each distinct pair x,y ∈ X(i), if x Pi y Pi ∅, then there is R′i ∈ Ri such
that a) x R′i ∅ R′i y, and b) for each z ∈ X(i), if z P ′i ∅ then z Pi y.

The preference domain isR ≡ ×i∈NRi .
Let Pi⊆ Ri be the subset of strict (antisymmetric) preferences. For each Ri ∈ Pi , the

symmetric component Ii is trivial, so the asymmetric component Pi completely identifies
Ri . When working in this strict preference setting (Sections 5 and 6), we refer to Pi ∈ Pi .
The strict subdomain of R is P ≡ ×i∈NPi .

Within-object Constraints Each object can only be allocated in certain ways. For each
o ∈ O, the feasible sets for o are a collection of subsets of X(o). We denote them by Fo.
We assume that it is always possible to leave an object unallocated. That is, ∅ ∈ Fo.

As an example, consider the school choice model of Abdulkadiroğlu and Sönmez (2003),
where each object is a school with capacity q ∈ Z+. In this model, there is only one term
under which a student can be assigned to a school. For each o ∈ O, Fo consists of all
subsets of X(o) of no more than q elements.9

The feasible sets, however, may be more complex than that. Suppose o is a flight and
the terms T consist of “assigned aisle seat” (α), “assigned window seat” (ω), or “unas-
signed seat” (υ). Physically, suppose that a flight has two seats: an aisle seat and a window

8 See Sönmez (1999) and Erdil and Ergin (2015) for other instances where this assumption is made.
9In these environments T is a singleton, so, as previously discussed, feasible sets for each o ∈ O are

identified by subsets of N while preferences are identified by orderings of O∪ {∅}.

5



seat. Financially, suppose that a flight is canceled unless both seats are filled. Given three
agents i1, i2, and i3, which subsets of {(i1,o,υ), (i2,o,υ), (i3,o,ω), (i3,o,α)} can be allocated?
If the flight is canceled, then we can allocate ∅. The constraint of having only one aisle
and one window seat, together with the financially-motivated lower bound, requires that
the feasible set for o comprise the following subsets: {(i1,o,υ), (i2,o,υ)}, {(i1,o,υ), (i3,o,ω)},
{(i1,o,υ), (i3,o,α)}, {(i2,o,υ), (i3,o,ω)}, {(i2,o,υ), (i3,o,α)}, and {(i3,o,ω), (i3,o,α)}. Note that
feasibility for an object need not imply feasibility for an agent—i3 can occupy just one
seat so, while {(i3,o,ω), (i3,o,α)} maybe feasible for this object, it is not feasible from the
agent’s perspective.10

Feasibility and Allocations An allocation µ is a feasible subset of X. The feasible sets
for each object allow us to model within-object constraints on how it may be allocated.
So µ ⊆ X can only be feasible if it contains a feasible set for each object. Since agents
have unit demand, for µ to be feasible it must contain no more than one element for each
agent. Since we allow across-object constraints as well, not all such µ are feasible. The set
of allocations is F ⊆ 2X such that for each µ ∈ F , a) for each i ∈ N , |µ(i)| ≤ 1, and b) for
each o ∈O, µ(o) ∈ Fo. We say that F is Cartesian if there are no across-object constraints:
if µ ⊆ X satisfies Condition (a) and Condition (b) above, then µ ∈ F .11

As an example, the across-object constraints allow us to model problems like the dis-
tribution of a social endowment of objects and money (Alkan et al., 1991). Suppose that
there are Ω units of money to be distributed among the agents along with O. This could,
for instance, be compensation for the tasks that the objects represents. Then, we set T ≡ R

so that the terms under which an agent is assigned an object is the amount of money that
he gets along with his object. For each o ∈ O, we set Fo ≡ {{(i,o, t)} : (i, t) ∈ N × T } so that
each object can be assigned with any amount of money. Since any amount of money is
permissible, X ≡ N ×O × T . Finally, the across-object constraints ensure that no more
than Ω units of money are allocated: given µ ⊆ X, µ ∈ F if and only if a) for each i ∈ N ,
|µ(i)| ≤ 1, so that each agent consumes at most one object, b) for each o ∈ O, |µ(o)| ≤ 1, so
that each object is consumed by at most one agent, and c)

∑

x∈µ xT ≤ Ω, so that no more
than Ω units of money are distributed.

Our analysis is for fixed N , O, X, and F . Thus, an economy is entirely described by
R ∈ R. A rule, ϕ : R → F , associates each economy with an allocation. For each R ∈ R
and each i ∈ N , i’s assignment at R is ϕi(R). We denote by ϕN (R) the set of agents who
are assigned an object at R. That is, ϕN (R) = {i ∈N : ϕi(R) ∈ X(i)}.

10This flexibility in defining Fo turns out to be useful when we consider the implication of our results
for the matching with contracts setting, in particular when we consider Hatfield and Kominers (2014b) in
Section 7.3.2.

11Since we permit an object to be consumed under different terms, instead of having multiple objects we
could have instead had a single object and treated the actual objects as terms under which this single object
is consumed. However, we find it convenient to separate the within-object and across-object feasibility
constraints when relating our results to more structured models in the later part of this paper.
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2.1 Properties of Allocations and Rules

Individual rationality An allocation is individually rational if every agent finds his
assignment to be at least as good as being assigned nothing. That is, for each R ∈ R and
each µ ∈ F , we say that µ is individually rational at R if for each i ∈N , µ(i) Ri ∅.

A rule ϕ is individually rational if, for each R ∈ R, ϕ(R) is individually rational at R.

Non-wastefulness In environments where each object is associated with a “capacity”
(Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003), an object can typically
be allocated to any set of agents no bigger than its capacity. A natural requirement is that
an agent ought not to prefer an object that has remaining capacity to his assignment. If
he were to, we could allow him to consume this available resource at no expense to the
other agents.

These environments are described by feasible sets where for each o ∈ O, there is qo ∈
Z+ such that for each M ⊆ N,M ∈ Fo if and only if M contains no more than qo agents.
We say that such F is “capacity-based.” We say that F is capacity-based if it is Cartesian
and each Fo is capacity-based.

For capacity-based F and strict preferences, Balinski and Sönmez (1999) say that µ ∈
F is non-wasteful at P ∈ P if there is no object with remaining capacity that some agent
finds preferable to his assignment at µ. That is, µ is Balinski-Sönmez-non-wasteful at P
if there is no o ∈O such that |µ(o)| < qo and i ∈N such that o Pi µ(i).

Before we extend this concept beyond just capacity-based settings with strict prefer-
ences, we present three examples that illustrate some challenges.

Example 1. Without capacity-based feasible sets, there is no fixed capacity.
Let O ≡ {o}, N ≡ {i1, i2, i3} and Fo ≡ {∅, {i1}, {i2}, {i3}, {i2, i3}}. Consider R ∈ R as follows:

Ri1 Ri2 Ri3
o o o
∅ ∅ ∅

What is the “capacity” of o? The largest set of agents that may consume o contains two el-
ements while the smallest non-trivial set contains only one. If we naïvely extend Balinski-
Sönmez-non-wastefulness by setting the capacity of o to be two, then allocating it to i1
would be wasteful, even though this is the only allocation where i1 receives his top choice.
On the other hand if we set the capacity of o to be one, then allocating it to i2 alone would
not be wasteful even though o could be assigned to i3 as well. Neither of these is sensible.
This demonstrates the difficulty in extending non-wastefulness in a way that specifies a
fixed capacity for each object.

Example 2. Ignoring indifference can be wasteful.
Let O ≡ {o1,o2}, N ≡ {i1, i2}, Fo1 ≡ {∅, {i1}, {i2}}, Fo2 ≡ {∅, {i1}, {i2}}, and F be Cartesian.

Consider R ∈ R as follows:
Ri1 Ri2
o1,o2 o1
∅ ∅
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There are two allocations of interest here. The first is where i1 is assigned o1 and i2 is
assigned ∅. The second is where i1 is assigned o2 and i2 is assigned ∅. The second allo-
cation is clearly wasteful, since i2 could be assigned o1. Is the first allocation wasteful?
Since i1 is indifferent between o1 and o2, -non-wastefulness would not say that it is waste-
ful to assign him o2. So, a naïve extension of Balinski-Sönmez-non-wastefulness to our
setting would not perceive waste in the first allocation though it would in the second.
However, the first allocation is welfare-equivalent to the unambiguously wasteful second
allocation. A sensible version of non-wastefulness for our general setting should rule out
the first allocation as well.

Example 3. Complementarities in feasibility.
Let O ≡ {o1,o2}, N ≡ {i1, i2}, Fo1 ≡ {∅, {i1, i2}}, Fo2 ≡ {∅, {i1}, {i2}}, and F be Cartesian.
Consider R ∈ R as follows:

Ri1 Ri2
o1 o2
o2 o1
∅ ∅

There are two allocations of interest for this economy. The first is where both agents
are assigned o1. This is the only allocation where i1 receives his top choice. The second is
where i1 is assigned ∅ and i2 is assigned o2. This is the only allocation where i2 receives
his top choice. At either of these allocations there is an agent who prefers the unallocated
object to what he receives. However, the only way he can be assigned this unallocated
object is by making the other agent worse off. A sensible version of non-wastefulness in
our general setting should not rule out either of these allocations.

Though there is no fixed notion of capacity, as demonstrated by Example 1, and be-
cause there can be welfare-equivalent allocations, as demonstrated by Example 2, non-
wastefulness should seek to ensure that each object is utilized to the greatest extent pos-
sible. Yet, as demonstrated by Example 3, it should take care to ensure that increasing the
utilization of an object by allocating it to agents who prefer it does not harm other agents.

Summarizing the discussion above, given R ∈ R, we say that µ ∈ F is wasteful if there
are o ∈ O, i ∈ N , and ν ∈ F , such that a) |ν(o)| > |µ(o)|, so that ν allocates o more than
µ does, b) ν(i) Pi µ(i), so that i prefers his assignment at ν to that at µ, and c) for each
j ∈ N \ {i}, ν(j) Ri µ(j), so that no agent is made worse off. If it is not wasteful, then µ
non-wasteful.

We show that for the domain of problems where BS-non-wastefulness is defined, non-
wastefulness is an equivalent to it. The proof is in Appendix A.1.

Proposition 1. Suppose that T is a singleton, F is capacity-based, and preferences are strict.
Then µ is Balinski-Sönmez-non-wasteful if and only if it is non-wasteful.

Our results do not rely on the full strength of non-wastefulness. Non-wastefulness
of an allocation rules out the existence of allocations that beneficially increase utilization
of some resources. We define a weaker version that only rules out the existence of allo-
cations for which we can beneficially increase utilization of the aggregate resources, or
from another point of view, allocations for which we can assign more agents to objects.
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Given R ∈ R, we say that µ ∈ F is strongly wasteful if there exists an unassigned agent
who prefers to be assigned some object under some terms and there is ν ∈ F that achieves
this without harming any other agent. That is, there are i ∈ N , x ∈ X(i), and ν ∈ F such
that a) x = ν(i) Pi µ(i) =∅, and b) for each j ∈N , ν(j) Rj µ(j). If it is not strongly wasteful,
then µ weakly non-wasteful.12

A rule ϕ is non-wasteful if, for each R ∈ R, ϕ(R) is non-wasteful. We define weak
non-wastefulness of ϕ similarly.

Pareto-domination One allocation (weakly) Pareto-dominates another if each agent
finds the first to be at least as desirable as the second. That is, for each R ∈ R, and
each pair µ,ν ∈ F , we say that µ Pareto-dominates ν at R if for each i ∈ N , µ(i) Ri ν(i).

13

The Pareto-domination relation is reflexive and transitive but not complete. We say that a
pair of allocations is Pareto-comparable if they can be compared according to the Pareto-
relation.

A pair of allocations is Pareto-connected (within the individually rational and non-
wasteful set) if there is a sequence of individually rational and weakly non-wasteful allo-
cations starting at one and ending at the other such that successive allocations are Pareto-
comparable. That is, for each pair µ,µ′ ∈ F , µ and µ′ are Pareto-connected if there exists
a sequence of individually rational and weakly non-wasteful allocations, (µk)

K
k=0, with

µ0 ≡ µ and µK ≡ µ′, such that for every k ∈ {1, . . . ,K}, µk and µk−1 are Pareto-comparable.
For each R ∈ R and each pair ν,µ ∈ F we say that µ strictly Pareto-dominates ν at R

if it Pareto-dominates ν and there is i ∈N such that µ(i) Pi ν(i). If µ ∈ F is such that there
is no allocation that strictly Pareto-dominates it at R, we say that µ is Pareto-efficient at
R.

For each pair of rules ϕ and ϕ′, ϕ (weakly) Pareto-dominates ϕ′ if, for each R ∈ R,
ϕ(R) Pareto-dominates ϕ′(R) at R. If ϕ′ Pareto-dominates ϕ and for some R ∈ R, ϕ(R)
strictly Pareto-dominates ϕ(R) at R, then ϕ strictly Pareto-dominates ϕ. They are Pareto-
connected if for each R ∈ R, ϕ(R) and ϕ′(R) are Pareto-connected at R. We say that ϕ is
Pareto-efficient if for each R ∈ R, ϕ(R) is Pareto-efficient at R. A pair of rules ϕ and ϕ′ are
welfare-equivalent if, for each R ∈ R and for each i ∈ N , ϕi(R) Ii ϕ

′
i(R). If they are not

welfare-equivalent, we say that they are welfare-distinct.

Strategy-proofness A rule is strategy-proof if no agent can benefit by misreporting his
preferences, no matter what other agents do. That is, ϕ is strategy-proof if for each R ∈ R,
each i ∈N , and each R′i ∈ Ri , ϕi(R) Ri ϕi(R

′
i ,R−i).

Extending this concept to groups of agents, a rule is group strategy-proof if no group
of agents can benefit by misreporting their preferences. That is, ϕ is group strategy-proof
if for each R ∈ R and each S ⊆ N , there is no R′S ∈ ×i∈SRi , such that for each i ∈ S,

12Just as non-wastefulness reduces to Balinski-Sönmez-non-wastefulness for strict preferences and
capacity based feasibility, weak non-wastefulness reduces to the corresponding notion defined by
Ehlers and Klaus (2014).

13In this case, Some authors say that µ weakly Pareto-dominates ν. However, since this is the main form
of Pareto-dominance that we consider, we drop the qualifier.
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ϕi(R
′
S ,R−S ) Ri ϕi(R) and for some i ∈ S, ϕi(R

′
S ,R−S ) Pi ϕi(R). If we only rule out R′S such

that for each i ∈ S, ϕi(R
′
S ,R−S ) Pi ϕi(R), then ϕ is weakly group strategy-proof.

3 The Individually Rational and Non-wasteful Set

The set of individually rational and weakly non-wasteful allocations turns out to have
a nice structure. Note that the Pareto-connectedness relation is reflexive and symmet-
ric. Moreover, restricted to the set of individually rational and weakly non-wasteful
allocations, it is an equivalence relation as it is also transitive. Therefore, the Pareto-
connectedness relation partitions the set of individually rational andweakly non-wasteful
allocations, where each component of the partition consists of allocations that are Pareto-
connected to one another.

Ourmain result about allocations of a given economy is the following Structure Lemma,
which states that the set of agents who are assigned an object is the same for every allo-
cation in a given component of this partition.

Lemma 1 (Structure Lemma). For each R ∈ R and each pair µ,ν ∈ F that are individually
rational, weakly non-wasteful, and Pareto-connected, the set of assigned agents is the same at
each of µ and ν. That is, νN = µN .

Proof. We begin with the following claim.
Claim: For each pair µ,ν ∈ F , if µ is individually rational and weakly non-wasteful

and ν Pareto dominates µ, then the conclusion of the Lemma holds and ν is individually
rational and weakly non-wasteful itself.

Proof of claim: Since ν Pareto-dominates µ, which is individually rational, for each
i ∈N , ν(i) Ri µ(i) Ri ∅. Thus ν is individually rational.

For each i ∈ N , if µ(i) , ∅, then by the “no indifference with ∅” assumption on Ri ,
µ(i) Pi ∅. Since ν(i) Ri µ(i), ν(i) , ∅. Thus, µN ⊆ νN .

If µN ( νN then there is i ∈ νN \ µN . So µ(i) = ∅ and ν(i) , ∅. Since ν(i) Ri µ(i) = ∅,
by the “no indifference with ∅” assumption on Ri , ν(i) Pi µ(i) = ∅. This contradicts the
assumption that µ is weakly non-wasteful. Therefore, νN = µN .

Next, we show that ν is weakly non-wasteful. If ν is strongly wasteful, then there
exists i ∈ N and γ ∈ F such that ν(i) = ∅, γ(i) Pi ν(i), |γ | > |ν |, and for each j ∈ N ,
γ(j) Rj ν(j). Since µN = νN , µ(i) = ∅ and since ν Pareto-dominates µ, γ(i) Pi µ(i) and
for every j ∈ N , γ(j) Rj µ(j). Also, since |µ| = |ν |, |γ | > |µ|. This contradicts the weak
non-wastefulness of µ. Thus, ν is weakly non-wasteful. This completes the proof of the
claim.

To complete the proof of the Lemma, suppose µ,ν ∈ F are individually rational,
weakly non-wasteful, and Pareto-connected allocations. Then, there exists a sequence

of individually rational and weakly non-wasteful allocations,
(

µk
)K

k=0
, with µ0 = µ and

µK = ν, such that for every k ∈ {1, . . . ,K}, µk and µk−1 are Pareto-comparable. That is,
either µk Pareto-dominates µk−1 or vice versa. In either case, the claim establishes that
µkN = µk−1N . Thus, the Lemma is proved.
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If we restrict attention to non-wasteful allocations, we can say more about their re-
lation. The following lemma strengthens the hypothesis of the claim in the proof of
the Structure Lemma from weak non-wastefulness to non-wastefulness and draws the
stronger conclusion that the Pareto-dominating allocation assigns each object to the same
number of agents. The proof is in Appendix A.2.

Lemma 2. For each R ∈ R and each pair µ,ν ∈ F if µ is individually rational and non-wasteful
and ν Pareto-dominates µ, then the same set of agents is assigned an object at ν as at µ and
each object is assigned to the same number of agents. That is, νN = µN and for each o ∈ O,
|ν(o)| = |µ(o)|.

Lemma 2 is reminiscent of the Rural Hospitals Theorem, which concludes that at each
stable allocation the same agents are matched and each object is matched to the same
number of agents. In environments where the feasible sets are augmented with choice
functions such that an “agent-optimal stable allocation” is guaranteed to exist, Lemma 2
implies the Rural Hospitals Theorem. We discuss this connection in Section 5, where we
consider stability.

4 Strategy-proof Pareto-improvement

We now present our main result. Given an individually rational and weakly non-
wasteful benchmark rule, we are interested in strategy-proof rules that Pareto-improve
upon it. When a mechanism designer is constrained this way in his choice of a strategy-
proof rule, Theorem 1 says that his problem has a unique solution (in terms of welfare) if
it has one at all.

Theorem 1. For each individually rational and weakly non-wasteful benchmark rule ϕ, there

is at most one strategy-proof rule, in welfare terms, that Pareto-dominates it.

In order to prove Theorem 1, we prove two more results that are of independent in-
terest. These results, along with some additional results that we show later in this section
shed light on the structure of the set of strategy-proof rules.

Lemma 3 states that two welfare-distinct individually rational rules for which, at ev-
ery preference profile, the set of assigned agents coincide cannot both be strategy-proof.

Lemma 3. Let ϕ and ϕ′ be individually rational rules for which there is i ∈ N such that they
are not welfare-equivalent for i. Suppose, further, that for each R ∈ R, ϕi(R) = ∅ if and only if
ϕ′i(R) =∅. At most one of ϕ and ϕ′ is strategy-proof.

Proof. Since ϕ and ϕ′ are not welfare-equivalent for i, there is R ∈ R such that ¬(ϕi(R) Ii
ϕ′i(R)). Without loss of generality, suppose that ϕi(R) Pi ϕ

′
i(R). We prove the lemma by

assuming that ϕ is strategy-proof and concluding from this that ϕ′ is not strategy-proof.
Let x ≡ ϕi(R) and y ≡ ϕ′i(R). By individual rationality of ϕ′, y Ri ∅. Since x Pi y, we

have x Pi ∅. Thus x , ∅. By the hypothesis of the Lemma, y , ∅ so by the “no indifference
with ∅” assumption, y Pi ∅.

Since x Pi y, by richness of Ri , there is R
′
i ∈ Ri such that a) x R′i ∅ R′i y, and b) for each

z ∈ X(i), if z P ′i ∅, then z Pi y.
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Let z ≡ ϕi(R
′
i ,R−i). Since ϕ is strategy-proof, z R′i x. By definition of R′i , x R′i ∅. By the

“no indifference with ∅” assumption, x P ′i ∅, so z , ∅.
Let z′ ≡ ϕ′i(R

′
i ,R−i). By individual rationality of ϕ′, z′ R′i ∅. By definition of R′i , we

have ∅ R′i y. By the “no indifference with ∅” assumption, ∅ P ′i y. Thus, z′ P ′i y. By the
hypothesis of the lemma, since z , ∅, we have z′ , ∅. Thus, by definition of R′i , z

′ Pi y.
Then ϕ′i(R

′
i ,R−i) = z′ Pi y = ϕ′i(R), so ϕ′ is not strategy-proof.

Theorem 1 follows from the next result, which states that among a set of Pareto-
connected, individually rational, and weakly non-wasteful rules, at most one of them
can be strategy-proof. It is a consequence of the Structure Lemma and Lemma 3.

Proposition 2. If a pair of distinct strategy-proof, weakly non-wasteful, and individually ra-
tional rules are Pareto-connected, then they are welfare-equivalent.

Proof. Consider a pair ϕ and ϕ′ of weakly non-wasteful and individually rational rules.
If they are Pareto-connected, then by the Structure Lemma, for each R ∈ R and each i ∈N ,
ϕi(R) = ∅ if and only if ϕ′i(R) = ∅. If they are distinct, then by Lemma 3, either they are
welfare-equivalent or at most one of them is strategy-proof. Since both are strategy-proof,
they must be welfare-equivalent.

An immediate implication of Proposition 2 is that no strategy-proof, individually ra-
tional, andweakly non-wasteful rule is strictly Pareto-dominated by a strategy-proof rule.

4.1 Pareto-improvements over a wasteful rule

It is clear that Theorem 1 does not generally hold for strongly wasteful benchmark
rules. If, for instance, the constant rule that assigns ∅ to every agent is the bench-
mark, then every individually rational rule dominates it. There may be, however, many
strategy-proof and individually rational rules: every serial dictatorship meets these re-
quirements.14

We can still say something about strategy-proof rules that Pareto-dominate one an-
other. An implication of Lemma 3 is that among individually rational and strategy-proof
rules, a strict Pareto-improvement involves leaving fewer agents unassigned. Theorem 1
says that it is not possible to strictly Pareto-improve, in a strategy-proof way, on a rule
that is allocating an adequate amount of the available resources, even if that is done in
an Pareto-inefficient way. On the other hand, the following result says that if a strategy-
proof rule is ever to be strictly Pareto-improved upon by another strategy-proof rule, the
Pareto-improvement comes from allocating resources to more agents and not (by Lemma
3) from better allocation to the same agents.

Theorem 2. Let ϕ and ϕ′ be a pair of strategy-proof rules. If ϕ is individually rational and
ϕ′ strictly Pareto-dominates ϕ, then at each R ∈ R, ϕ(R)N ⊆ ϕ′(R)N , and at some R̃ ∈ R,
ϕ(R̃)N ( ϕ′(R̃)N .

14In settings where there are complementarities in feasibility, however, a serial dictatorship rule may not
be individually rational.
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Proof. Since ϕ′ Pareto-dominates ϕ, which is individually rational, ϕ′ is also individually
rational. Furthermore, for each R ∈ R and each i ∈N , ifϕi(R) , ∅, thenϕ′i(R) Ri ϕi(R) Pi ∅
so ϕ′i(R) , ∅. Thus, ϕ

′(R)N ⊇ ϕ(R)N .
If for each R ∈ R, ϕ′(R)N = ϕ(R)N , then, by Lemma 3, this contradicts the assumption

that both ϕ and ϕ′ are strategy-proof. Thus, there is some R̃ ∈ R such that ϕ′(R)N )

ϕ(R)N .

Restricting attention to strategy-proof rules, the strategy-proofness-constrained Pareto-
frontier consists of strategy-proof rules that are not Pareto-dominated by another strategy-
proof rule. Theorem 1 tells us that every individually rational and weakly non-wasteful
strategy-proof rule is on this frontier. Theorem 2 says that every rule below this frontier
leaves more agents unassigned than any point towards the frontier above it. We might ask
whether every point on the frontier is weakly non-wasteful. Proposition 3 says that this
is not the case. That is, the strategy-proofness-constrained Pareto-frontier may contain
strongly wasteful rules. While a full description of such a rule is not straightforward, we
prove that one exists.

Proposition 3. There exists a strategy-proof and strongly wasteful rule that is not Pareto-
dominated by any welfare-distinct strategy-proof rule.

In proving prove Proposition 3 (Appendix A.3) we actually show more: there ex-
ists a strongly wasteful and group strategy-proof rule that is not Pareto-dominated by a
strategy-proof rule. Thus, even among group strategy-proof rules, weak non-wastefulness
is not a necessary condition for a rule to be strategy-proofness-constrained Pareto-efficient.

5 Choice and Stability

The purpose of this section is to demonstrate the implications of our results for mar-
ket design applications based on the matching with contracts model. In such applica-
tions, there is more information available about each object than just the feasible sets.
The constraints imposed by this information is what, in many applications, keeps the
benchmark rule below the Pareto-frontier. These might be priorities over agents as in the
school choice model of Abdulkadiroğlu and Sönmez (2003), objectives of the army as in
Sönmez and Switzer (2013), and so on.

Since the goal of this section (and of Section 6) is demonstrative, we assume that each
agent has strict preferences.15 That is, we restrict attention to economies in P .

We model the extra information about how feasible sets are prioritized by associating
each o ∈ O with a choice correspondence, Co : 2X(o) ⇒ 2X(o), such that a) for each
Y ⊆ X(o),Co(Y ) ⊆ 2Y , and b) range(Co) = Fo. Condition (a) says that from any set Co must
select only subsets of it, while Condition (b) says that the feasible sets are exactly those
that are chosen from some set. To satisfy Condition (b), it would suffice, for instance, to
select every feasible set from itself.16

15 See Bogomolnaia et al. (2005) and Erdil and Ergin (2015) for more on the problems that arise when
modeling indifference in such settings.

16An alternative approach is to start with Co as the primitive and define Fo to be its range.
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Our model is very close to the matching with contracts model (Hatfield and Milgrom,
2005) except that we associate each object with a choice correspondence rather than a
choice function. We are back in the matching with contracts framework if we require
that, for each o ∈ O, Co is single-valued, or is a choice function. Since applications like
school choice (Abdulkadiroğlu et al., 2009) which involve “weak priorities” are better
modeled with choice correspondences, we adopt this more general approach.17

We place two restrictions on choice correspondences. The first says that the choices
from every set should be at least as large as every choice from a subset. We say that C is
size monotonic if, for each o ∈O and each pair of finite Y,Y ′ ⊆ X(o) such that Y ⊆ Y ′, for
each Z ∈ Co(Y ) and each Z ′ ∈ Co(Y

′), |Z | ≤ |Z ′|.18 19

The second restriction is that if a set is among those chosen from a larger set, it ought
to be among what is chosen from itself. We say that C is idempotent if, for each o ∈ O,
and each Y ∈ range(Co), Y ∈ Co(Y ).

Unlike the rest of the literature on matching with contracts, we do not assume that ob-
jects’ choice satisfy the irrelevance of rejected contracts (IRC) condition of Aygün and Sönmez
(2013), which is equivalent to the weak axiom of revealed preference as observed by Alva
(2016). Idempotence is weaker than IRC.

Stability An allocation is stable if no set of agents can drop their assignments in favor
of being assigned to a new object under some terms that the object would “choose.” That
is µ ∈ F is stable if it is individually rational20 and there are no o ∈ O and Y ⊆ X(o) \µ(o)
such that a) for each i ∈ N, |Y (i)| ≤ 1, b) for each y ∈ Y,y PyN µ(yN ), c) µ(o) < Co(µ(o)∪
Y ), and d) there is Z ∈ Co(µ(o) ∪ Y ) such that Y ⊆ Z . Condition (a) says that the set Y
contains at most one element associated with each agent. Condition (b) says that the
agent involved in each element of Y finds it preferable to his assignment at µ. These
are familiar conditions from the definition of stability for choice functions. Since we
are concerned with choice correspondences, the remainder of the definition needs to be
broken into two parts. The first, Condition (c), says that µ(o) is not among what is chosen
when Y is available. The second, Condition (d), says that there is some chosen set that
contains Y .21 The standard definition of stability typically does not include Condition (c)
since it is implied by Condition (d) when choice correspondences satisfy IRC.

Stability is relevant if the choice correspondences represent more than feasibility con-
straints: they may represent the rights of agents with regards to the objects or partic-
ular design goals of the policy maker. A stable rule is thus a natural candidate for a
benchmark rule that the mechanism designer may need to Pareto-improve upon. Since
Theorem 1 only applies to weakly non-wasteful benchmarks, such a rule would have
to be weakly non-wasteful to invoke it. In many applications, like school choice where

17To our knowledge, the analysis of the school choice model by Erdil and Kumano (2014) is the first
instance where choice correspondences have been used in a matching framework.

18The only role that size monotonicity plays in our analysis is in showing that every stable allocation is
also non-wasteful.

19Setting Y = Y ′, size monotonicity implies that for each pair Z,Z ′ ∈ Co(Y ), |Z | = |Z
′ |.

20Individual rationality as defined in Section 2.1 accounts for agents’ preferences while feasibility as
defined in Section 2 accounts for objects’ choice correspondences.

21If, for each o ∈O, Co is single-valued, this definition is equivalent to the standard definition of stability.
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there is more structure on the choice correspondences, it is obvious that stability implies
non-wastefulness, which in turn implies weak non-wastefulness. However, without any
restrictions on choice correspondences, this may not be the case.22 Our assumption that
choice correspondences are size monotonic and idempotent ensure that this implication
holds. The complexity of proving this implication is due to the fact that we have not
assumed IRC.

Before showing that stability implies non-wastefulness, we start with a definition and
a lemma. For each P ∈ P , each µ ∈ F and each o ∈ O, let Y

µ
o (P) be the elements of X(o)

such that the involved agent prefers it to what he is assigned at µ. That is, Y
µ
o (P) ≡ {x ∈

X(o) : x PxN µ(xN )}.

Lemma 4. Suppose that C is size monotonic and idempotent. For each P ∈ P , each µ ∈ F such

that µ is stable at P, each o ∈O, each finite Y ⊆ Y
µ
o (P), and each Z ∈ Co(µ(o)∪Y ), |Z | = |µ(o)|.

Proof. We proceed by induction over subsets of Y
µ
o (P). Let Y ⊆ Y

µ
o (P).

For the base case, where Y = ∅, since µ(o) ∈ range(Co), by idempotence of C, µ(o) ∈
C0(µ(o)∪Y ) and by size monotonicity of C, for each Z ∈ Co(µ(o)), |Z | = |µ(o)|.

As an induction hypothesis, assume that for each Y ′ ( Y and each Z ∈ Co(µ(o)∪ Y ′),
|Z | = |µ(o)|. Equivalently, for each T ⊆ µ(o)∪Y such that Y * T , for each Z ∈ Co(µ(o)∪ T ),
|Z | = |µ(o)|.

The induction step is to show that for each Z ∈ Co(µ(o) ∪ Y ), |Z | = |µ(o)|. Let Z ∈
Co(µ(o)∪ Y ). 1) By idempotence of C, Z ∈ Co(Z). 2) Since Z ⊆ µ(o)∪ Z , by size mono-
tonicity of C and item (1) above, for each Z ′ ∈ Co(µ(o)∪ Z), |Z | ≤ |Z ′ |. 3) By stability of
µ, either Y * Z or µ(o) ∈ Co(µ(o)∪Y ). If µ(o) ∈ Co(µ(o)∪Y ), then by size monotonicity of
C, for each Z ∈ Co(µ(o)∪Y ), |Z | = |µ(o)|, concluding the proof. Thus, we consider the case
where Y * Z . 4) By the induction hypothesis and item (3) above, for each Z ′ ∈ Co(µ(o)∪Z),
|Z ′| = |µ(o)|. 5) By items (2) and (4) above, |Z | ≤ |µ(o)|. 6) Since µ ∈ F , by idempotence of
C, µ(o) ∈ Co(µ(o)). 7) By size monotonicity of C and item (6) above, since Z ∈ Co(µ(o)∪Y ),
|µ(o)| ≤ |Z |. By items (5) and (7) above, |Z | = |µ(o)|.

We now show that every stable allocation is non-wasteful.

Proposition 4. Suppose that C is size monotonic and idempotent. For each P ∈ P and each
µ ∈ F , if µ is stable at P, then µ is non-wasteful at P.

Proof. Suppose that µ is wasteful. Then there are o ∈ O and ν ∈ F such that |ν(o)| > |µ(o)|
and for each y ∈ ν(o)\µ(o), y PyN µ(yN ). Let Y ≡ ν(o)\µ(o). Since Y ⊆ Y

µ
o (P) and Y is finite,

by Lemma 4, for each Z ′ ∈ Co(µ(o)∪Y ), |Z
′ | = |µ(o)|. However, ν(o) ⊆ µ(o)∪Y . So, by size

monotonicity of C, for each Z ∈ Co(ν(o)) and each Z ′ ∈ Co(µ(o)∪Y ), |Z | ≤ |Z
′| = |µ(o)|. Since

ν ∈ F , ν ∈ Fo = range(Co). So by idempotence of C, ν(o) ∈ Co(ν(o)). Thus, |ν(o)| ≤ |µ(o)|.
This contradicts the definition of ν.

22Let N ≡ {i1, i2}, T ≡ {t1, t2}, and O ≡ {o}. Since O is a singleton, we suppress it in the tuples that make
up X(o) ≡ {(i1, t1), (i1, t2), (i2, t1)}. Let Co be such that for each Y ⊆ X(o), if (i1, t1) ∈ Y then Co(Y ) = {(i1, t1)}
and otherwise Co(Y ) = {Y }. Clearly, Co is not size monotonic. Let P ∈ P be such that (i1, t2) Pi1 (i1, t1) Pi1 ∅
while (i2, t1) Pi2 ∅. At these preferences, µ ∈ F such that µi1 = (i1, t1) and µ(i2) = ∅ is stable. However, it
is strongly wasteful as there is ν ∈ F such that ν(i1) = (i1, t2) and ν(i2) = (i2, t1), which makes both agents
better off and |ν | > |µ|.
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Now that we have established that stability implies non-wastefulness, we have the
following corollary which follows from Theorem 1 and Proposition 4.

Corollary 1. If C is size monotonic and idempotent, then a stable rule is Pareto-dominated by
at most one strategy-proof rule.

An implication of Corollary 1 is that if a rule is stable and itself strategy-proof, then it
is not Pareto-dominated by any other stable and strategy-proof rule. Hirata and Kasuya
(2015) show that this result holds for single valued choice functions that satisfy the IRC
condition. In fact, they show that for such choice functions, there is at most one strategy-
proof and stable rule. This latter result, unfortunately does not hold in our setting as
demonstrated by the following example.

Example 4. There may be more than one strategy-proof and stable rule.
Hatfield and Kominers (2014b) show that in a “slot-specific priorities” setting, if the

order of precedence in which slots are filled depends on the set of agents that are being
considered, then the choice function may violate the IRC condition. Here, we provide
an example where the ranking according to which agents are chosen depends upon the
agents being compared.

Consider a situation where there are two positions for teachers at one school o. There
are four candidates N ≡ {m1,m2,p1,p2}. There is only one term each teacher can be hired
under, so T is a singleton. Let Co be a single-valued choice correspondence described by
the following process.

Two of the teachers, m1 and m2, specialize in math and the other two, p1 and p2,
specialize in physics. The math teachers are able to teach physics but not as well as the
physics teachers, and vice versa. As overall teachers, m2 is the best, followed by p1, m1,
and p2 in that order.

If more math specialists are being considered than physics specialists, then the math
faculty are more likely to weigh in, so the positions are filled according to how good a
math teacher the candidates are. Vice versa if there are more physics specialists. If there
are equal numbers of math and physics specialists, the candidates are compared based
on their overall teaching ability.

Below, the boxed elements show the choices from each set of candidates.

{m1, m2,p1 ,p2}

{ m1,m2 ,p1} { m1,m2 ,p2} {m1, p1,p2 } {m2, p1,p2 }

{ m1,m2 } { m1,p1 } { m2,p1 } { m1,p2 } { m2,p2 } { p1,p2 }

{ m1 } { m2 } { p1 } { p2 }

For each pair π ⊆ N such that |π| ≤ 2, let µπ ∈ F be such that it assigns agents in π to o
and leaves the others unassigned. That is, µπ(o) = π and for each i ∈N \π,µπ(i) =∅.

For each P ∈ P , let G(P) ≡ {i ∈N : o Pi ∅}.
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Consider the rule ϕ defined by setting, for each P ∈ P ,

ϕ(P) ≡



















µ{m1,m2} if {m1,m2} ⊆ G(P),
µ{p1,p2} if {p1,p2} ⊆ G(P) and {m1,m2} * G(P),
µG(P) otherwise.

We show, in Appendix A.4 that ϕ is stable and strategy-proof.
Now, consider the rule ϕ′ defined by setting, for each P ∈ P ,

ϕ′(P) ≡



















µ{p1,p2} if {p1,p2} ⊆ G(P),
µ{m1,m2} if {m1,m2} ⊆ G(P) and {p1,p2} * G(P),
µG(P) otherwise.

Since it is symmetric to ϕ, ϕ′ is also stable and strategy-proof. In fact, both of these rules
are group strategy-proof.

Notice that C satisfies our assumptions of size monotonicity and idempotence, but
violates IRC. Furthermore, neither of the above rules can be generated by a “cumulative
offer” algorithm as the cumulative offer algorithm, regardless of the order, outputs the
unstable allocation µ{m2,p1} at this preference profile.

Since the choice of “tie breaker” is endogenous, C violates the IRC condition. While
this may appear strange, for the school choicemodel with “weak priorities”, Ehlers and Erdil
(2010) provide an example where fixed tie breaking implies a loss of efficiency. Thus, it
may be worthwhile to consider such choice functions.

5.1 The Agent-Optimal Stable Rule and the Rural Hospitals Theorem

Since we do not make assumptions about choice correspondences beyond idempo-
tence and size monotonicity, the existence of a stable allocation is not guaranteed, let
alone the lattice structure of the stable set. Nonetheless, suppose that C = (Co)o∈O is such
that for every P ∈ P , there exists a stable allocation that Pareto-dominates every other
stable allocation. That is, C is such that the agent-optimal stable allocation always exists.
Then the agent-optimal stable rule, ϕAOS , is well defined.

Another property of the set of stable allocations that our assumptions do not guaran-
tee is the so-called “Rural Hospitals Theorem.” It states that the conclusion of Lemma 2
holds for every pair of stable allocations. By Lemma 2, if ϕAOS is well defined, then at
every P ∈ P , the entire stable set is Pareto-comparable to ϕAOS .

It turns out that a) ϕAOS being well defined, b) the Rural Hospitals Theorem, and
c) the existence of a stable and strategy-proof rule are intimately connected. Hatfield and Kojima
(2010) provide conditions on C that guarantee each of the above when, for each o ∈O, Co

is single-valued.23 We show below that the first statement is equivalent to the combina-
tion of the second and third. The proofs of the following propositions are in Appendix
A.4.

23They show, given IRC, that “unilateral substitutes” is sufficient for the first and, with the addition of
size monotonicity, is sufficient for the second and third.
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Proposition 5. Suppose that C is size monotonic and idempotent. If ϕAOS is well defined,
then a) ϕAOS is the unique stable and strategy-proof rule, and b) the Rural Hospitals Theorem
holds.

Our results shed more light on what drives the Rural Hospitals Theorem. The first is
non-wastefulness. The Lemma 2 says, regardless of stability, that at any pair of Pareto-
connected allocations the conclusion of the Rural Hospital Theorem holds. The only ad-
ditional thing required is that the stable set be Pareto-connected, which the existence of
the agent-optimal stable matching guarantees.

Proposition 6. Suppose that C is size monotonic and idempotent. If a) the Rural Hospitals
Theorem holds and b) there exists a stable and strategy-proof rule ϕ, then ϕ = ϕAOS and it is
the unique stable and strategy-proof rule.

When C is such that, for each o ∈ O, Co is single valued, Hatfield and Kojima (2009)
use the Rural Hospitals Theorem to establish that ϕAOS is weakly group strategy-proof.
An implication of Proposition 5 is that whenever ϕAOS is well defined, and our conditions
on choice correspondences hold, it is weakly group strategy-proof. Since the proof of
Proposition 7 is a straightforward adaptation of the proof in Hatfield and Kojima (2009),
we omit it.

Proposition 7. Suppose that C is size monotonic and idempotent. If ϕAOS is well-defined,
then it is weakly group strategy- proof.

A consequence of weak group strategy-proofness is thatϕAOS is weakly Pareto-efficient
over its range.24 Since it has full range, this means that it is weakly Pareto-efficient.

Corollary 2. Suppose that C is size monotonic and idempotent. If ϕAOS is well-defined, then
for each P ∈ P , there is no allocation that every finds better than ϕAOS (P).

6 Priority-augmented Allocation

In this section, we specialize our model to study the “priority-augmented” object allo-
cation problem, which is identical to the school choice model of Abdulkadiroğlu and Sönmez
(2003). In this specialized model, T is a singleton and for each o ∈O, Fo is capacity based.
Let qo be the capacity for o. Additionally, o is associated with a “priority” order over N ,
denoted by %o, which is complete, transitive, and reflexive.25 The priority structure is
%≡ (%o)o∈O.

The priority structure specifies certain “rights” that agents have with regards to the
objects. Suppose that an agent prefers a particular object o to the one that he is assigned.
If o is assigned to someone else who has strictly lower priority, then he has the right to
protest this allocation. For each µ ∈ M we say that µ respects priorities if no agent can
protest on such grounds. That is, there is no pair i, j ∈ N and o ∈ O such that µ(i) = o,
o Pj µ(j), and j ≻o i.

24We say that µ ∈ F is weakly Pareto-efficient if there is no ν ∈ F such that for each i ∈N,ν(i) Pi µ(i).
25That is, %o is a weak order.
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Respecting priorities and stability Interpreting respect for the priorities as a “fairness”
constraint (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al.,
2009), we are interested in rules that are individually rational, fair and non-wasteful.
Here we define a choice correspondence for every object and show that respect for prior-
ities alongside individual rationality and non-wastefulness is equivalent to stability with
respect to these correspondences.

Given a priority structure, %, for each o ∈O, we define a choice correspondence, Co as
follows. For each Y ⊆N ,

Co(Y ) ≡

{

{Y } if Y ∈ Fo,
{Z ⊆ Y : |Z | = qo and for each i ∈ Z and each j ∈ Y \Z,i %o j} otherwise.

That is, for each subset of agents, if it is feasible (that is, it contains no more than qo
elements), then the entire set is the only one that is chosen. If it is not, then all subsets
that contain exactly qo elements are chosen, except for ones that include agents of strictly
lower priority than an excluded agent. Obviously, C is size monotonic and idempotent.

Proposition 8. For each P ∈ P , each µ ∈ F is stable with respect to C if and only if it is
individually rational, non-wasteful and respects the priorities %.

We prove this Proposition in Appendix A.5. It says that, among individually rational
and non-wasteful rules, the requirement that a rule or allocation respect priorities is
equivalent to the requirement that it be stable. Since they are equivalent, we speak of an
allocation being stable rather than saying that it being individually rational, non-wasteful
and respecting priorities.

When priorities are strict (that is, they contain no ties between agents), the set of stable
allocations forms a lattice and the agent-optimal stable rule is well defined. However,
when priorities contain ties, there may not exist a single stable allocation that Pareto-
dominates every other stable allocation. Consequently, there may be several allocations
that are not Pareto-dominated by any other stable allocation. Since ϕAOS is not well
defined, a common approach to handling weak priorities in the literature on school choice
is to use a “tie breaker” to form strict priorities from weak ones. Let τ ≡ (τo)o∈O be a
profile of linear orders overN , one for each object. For each such τ, let%τ be the priorities
tie broken by τ. That is, for each pair i, j ∈ N such that i , j, i ≻τo j if either a) i ≻o j or
b) i ∼o j and i τo j. Let T be the set of all such profiles of tie breakers.

The following proposition says that the set of stable allocations for a given profile
of priorities is the union of the stable sets for every tie broken version of the priorities.
Thus, the following proposition gives us a third way of identifying the same set, alongside
a) non-wastefulness and respect of priorities and b) stability with regards to the priorities.
The proof is in Appendix A.5.

Proposition 9. For each P ∈ P , and each µ ∈ F , µ is stable with respect to % if and only if
there is τ ∈ T such that µ is stable with respect to %τ.

Proposition 9 shows that the stable set with weak priorities is the union of lattices:
the stable sets for the tie broken priorities, which are strict. The rural hospitals theorem
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applies to each of these lattices. If two of them intersect, then, by Lemma 2, it applies to
their union.

Since the agent-optimal stable rule is well defined for strict priorities, given % and
τ ∈ T , we define the agent-optimal stable rule for the priorities tie broken by τ as ϕAOSτ .
These are the rules studied by Abdulkadiroğlu et al. (2009).26

Ergin (2002) shows that, for strict priorities, unless they satisfy a restrictive condition
that he calls “acyclicity”, stability and efficiency are at odds. That is, unless priorities are
acyclic, the agent-optimal stable rule is not Pareto-efficient. When priorities are weak,
it is therefore clear that arbitrarily breaking ties could cause Pareto-inefficiency. In fact,
Erdil and Ergin (2008) show that, no matter how ties are broken, the agent-optimal stable
rule with tie broken priorities may not always select an allocation that is undominated
by a stable allocation. Ehlers and Erdil (2010) further provide an example where there
exists a stable, group strategy-proof, and Pareto-efficient rule while for no τ ∈ T is ϕAOSτ

Pareto-efficient.

6.1 Pareto-improving over a stable benchmark

Since ϕAOSτ may not be Pareto-efficient, Abdulkadiroğlu et al. (2009) considered the
following question: For each τ ∈ T , is it possible to find a strategy-proof rule that Pareto-
dominates ϕAOSτ? They showed that this is impossible.27 However, even if the answer
were positive, the allocations chosen by the Pareto-dominating rule would not be stable
themselves. The reason such a rule would pass muster in a setting with priorities is that
it Pareto-dominates a stable rule: ϕAOSτ . As we have explained above, there is nothing
special about these rules, other than strategy-proofness, when priorities are weak. In fact,
they may even select allocations that are Pareto-dominated by other stable allocations.
The exercise is then to justify the choice of a rule on the grounds that it Pareto-dominates
some stable allocation at every profile of preferences. If an agent were to protest the
violation of his priority at some object, we may point to the Pareto-dominated stable
allocation where this protest would be moot: every agent, including the protesting one, is
at least as well off as at that stable allocation. If a rule Pareto-dominates some stable rule,
we call it a stable-dominating rule.

Since ϕAOS is well defined for strict priorities, Theorem 1 implies the following, which
is stronger than the known result that ϕAOS is the only stable and strategy-proof rule
(Alcalde and Barberà, 1994).

Corollary 3. If % consists of strict priorities, then ϕAOS is the unique strategy-proof stable-
dominating rule.

On the other hand, for weak priorities, it says less about stable-dominating rules. It
only implies the following result.

26Ehlers and Klaus (forthcoming) show, for this specialized model, that even when there are no priorities
if a rule is strategy-proof, satisfies some additional basic properties, and has desirable comparative statics—
in the form of either “population monotonicity” or “resource monotonicity”—it would have to be ϕAOS for
some priorities or choice functions.

27While Abdulkadiroğlu et al. (2009) show this result in a setting similar to ours where agents may rank
∅ anywhere in their preference relation, Kesten and Kurino (2015) have shown that this holds even when
we restrict attention to the subdomain of preferences where ∅ is worse than every object.

20



Corollary 4. No stable and strategy-proof rule, including for each τ ∈ T , ϕAOSτ , is Pareto-
dominated by any other strategy-proof rule. Further no pair of stable and strategy-proof rules
is Pareto-comparable.

Abdulkadiroğlu et al. (2009) have previously shown that for each τ ∈ T , ϕAOSτ is
strategy-proofness-constrained Pareto-efficient. As Ehlers and Erdil (2010) have shown,
ϕAOSτs are not the only stable and strategy-proof rules. Corollary 4 extends the result to
all of these rules.

In what follows we say more about stable-dominating rules. When priorities are so
weak as to be degenerate (in the sense of every agent having equal priority at each object),
stability reduces to non-wastefulness, thus every Pareto-efficient allocation is also stable.
On the other hand, if priorities are strict and every object has the same priority over
agents, then there is a unique stable allocation and it is itself Pareto-efficient. The tension
between stability and efficiency is thus dependent on the priority structure.

Ehlers and Erdil (2010) define a property of the priority structure that guarantees that
every constrained efficient stable allocation is actually Pareto-efficient, where constrained
efficiency of a stable allocation means that no other stable allocation Pareto-dominates
it.28 They say that % contains a weak cycle if is a distinct triple i, j,k ∈ N and a distinct
pair x,y ∈O such that a) (loop) i %x j ≻x k and k %y i, and b) (scarcity) there exist disjoint
Nx ⊆ N \ {i, j,k} and Ny ⊆ N \ {i, j,k} such that for each l ∈ Nx, l %x j and for each l ∈ Ny ,
l %y i, |Nx| = qx−1, and |Ny | = qy−1. They say that % is strongly acyclic if it does not contain
any weak cycles.

While Ehlers and Erdil (2010) show that this condition makes guarantees about the set
of constrained efficient stable allocations, under a slightly stronger condition, we can say
more about all stable allocations. We define a weak∗ cycle exactly as a weak cycle except
that we only require Ny ⊆ N \ {i,k} rather than Ny ⊆ N \ {i, j,k} in the scarcity condition.
We say that % is strongly∗ acyclic if it does not contain an weak∗ cycle.

Proposition 10. If % is strongly∗ acyclic and µ ∈ F is stable, then every µ′ ∈ F that Pareto-
dominates µ is also stable.

In Appendix A.5 where we prove Proposition 10, we provide an example that shows
that it does not hold under the slightly weaker condition of Ehlers and Erdil (2010).

An implication of Proposition 10 is that, if priorities are strongly∗ acyclic, then a rule
that is stable-dominating is itself stable.

Corollary 5. If % is strongly∗ acyclic then ϕ is stable-dominating if and only if ϕ is stable.

While we cannot pin down all stable-dominating rules for general priority structures,
we are able to say more if they are also group strategy-proof. For the following result
we assume a stronger richness condition on the domain of preferences than the one in
Section 2. We say that P is rich* if for each i ∈N and each o ∈ o, there is Pi ∈ Pi such that
for each o′ ∈O \ {o}, o Pi ∅ Pi o

′.

28Ehlers and Westkamp (2011) provide conditions on priorities that guarantee the existence of a strategy-
proof rule that selects a constrained efficient stable allocation for every profile of preferences.
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Proposition 11. If P is rich* and ϕ is group strategy-proof and stable-dominating, then ϕ is
itself stable.

We prove Proposition 11 in Appendix A.5.
The broad class of group strategy-proof and Pareto-efficient rules defined by Pycia and Ünver

(2015) for the subdomain of P where agents rank ∅ below every o ∈ O are readily ex-
tended to P .29 An implication of Proposition 11 is the following: Unless the priority
structure is such that there exists a stable, group strategy-proof, and Pareto-efficient
rule,30 none of these rules (including the “top trading cycles” rules of Abdulkadiroğlu and Sönmez
(2003)) can be justified on the basis being stable-dominating.

7 Applications

7.1 Auctions

To demonstrate the implications of our results in the auctions setting, we specialize
our model. We let T ⊆ R+ be the possible payments by an agent so that (i,o, t) ∈ X repre-
sents i receiving o while making a payment of t. Thus, agents have preferences over O×T
and are monotone decreasing in the payment. For each o ∈ O, Fo ≡ {{(i,o, t)} : i ∈ N,t ∈ T }
so that each object may be consumed by at most one agent and any payment is possible.
Thus, a feasible allocation is one where each agent consumes either o ∈ O while paying
t ∈ T or ∅. Like Milgrom and Segal (2015) we consider situations where an agent who is
not assigned an object does not make (or receive) a payment.31

As a simple example, we start with the case of a single object. The first price auction,
interpreted as a direct mechanism, is a non-wasteful rule: the agent with the highest val-
uation receives o and pays his valuation while other agents receive ∅. It is well known to
fail strategy-proofness. The second price auction, where the agent with the highest valu-
ation receives o while paying the second highest valuation, is strategy-proof and Pareto-
dominates the first price auction. Theorem 1 says that the second price auction is the unique
strategy-proof rule that Pareto-dominates the first price auction.

For an arbitrary number of objects, the first price auction generalizes to the maximum
price Walrasian rule.32 Similarly, the second price auction generalizes to the minimum
price Walrasian rule.33 Since the minimum price Walrasian rule Pareto-dominates the
maximum price Walrasian rule, which is in turn non-wasteful, we have the following
corollary to Theorem 1.

29See Svensson (1999), Pápai (2000), Pycia and Ünver (2014) and Bade (2014) for more on group strategy-
proof rules for such economies.

30 Han (2015) provides necessary and sufficient conditions on priorities for this.
31Morimoto and Serizawa (2015) impose this as a requirement on rules instead and call it “no subsidy

for losers.”
32 Demange and Gale (1985) define Walrasian equilibria for such economies and show that there is a

“maximum” price Walrasian equilibrium.
33For quasi-linear settings, this is equivalent to the Vickery-Clarke-Groves (Vickrey, 1961; Clarke, 1971;

Groves, 1973) mechanism (Leonard, 1983), which we know to be strategy-proof.
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Corollary 6. The minimum price Walrasian rule is the only strategy-proof rule to Pareto-
dominate the maximum price Walrasian rule.

Leonard (1983) shows that the minimum price Walrasian rule is the only strategy-
proof Walrasian rule. Corollary 6 says more: it is the only strategy-proof rule that Pareto-
dominates the maximum price Walrasian rule.

7.2 Reallocating objects from an endowment

Consider the model of Shapley and Scarf (1974). Their model relates to our general
model in the following way. For each o ∈ O, Fo is capacity based with unit capacity,
|O| = |N |, and T is a singleton. There is a reference allocation ω ∈ F where, for each i ∈N ,
ωi is “i’s endowment.” Finally, each agent finds ∅ to be their worst possible assignment.
That is, every o ∈O is ranked above∅. Denote by P ⊆ P the subdomain of such preference
profiles.

Due to the restriction that ∅ is ranked at the bottom of each preference relation and
since |O| = |N |, it is reasonable to only consider allocations where no agent is ever assigned
∅. “Individual rationality” in the literature following Shapley and Scarf (1974) is defined
to mean that each agent receives an object that he finds at least as desirable as his endow-
ment. That is, the endowment places a lower bound on each agent’s welfare. Translating
this to the language that we use, this requires a rule to Pareto-dominate a benchmark rule
that selects ω at every profile of preferences.

We consider the broader preference domain where each agent may rank ∅ anywhere
in his preference relation. Consequently, the benchmark of each agent consuming his
endowment may not be individually rational in our sense, since there may be an agent
who finds his endowment to be worse than ∅. A better benchmark, then would allow
such an agent to discard his endowment if he finds it to be worse than ∅. Of course, this
could be wasteful: i’s trash may be j’s treasure. Often, in such situations, there are insti-
tutional rules that determine how these discarded resources are distributed among other
agents. For instance, fantasy sports leagues have “waivers systems”34 where a waiver
order over the “fantasy owners” is fixed beforehand and any players that the owners dis-
card (or “waive”) can be picked up by other owners in this order. Another such example
is the allocation of offices: if an employee empties his office, most workplaces allow other
employees to take the option to take it in order of seniority.

Suppose, then, that we have such an order, ≻, along with an endowment, ω. The
process described above is formalized as Algorithm 1 in Appendix B. This procedure
takes the endowment, preference profile, and order as arguments and returns a non-
wasteful and individually rational allocation the Pareto-dominates the endowment. If
the status quo is to use such a procedure, then any change to a new rule would have to
Pareto-dominate it. Thus, we have a benchmark rule ϕω,≻.

It turns out that there is, in fact, a strategy-proof rule that Pareto-dominates this
benchmark. We define it as follows. For each o ∈ O, let ≻̃o be an ordering of N that
agrees with ≻ on all agents but ω(o) and ranks ω(o) above all other agents. For each

34See, for instance, https://fantasybowl.com/rtfm/?topic=waiver-wire.
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P ∈ PN , the pair (P, ≻̃) forms a priority-augmented object allocation problem. Let ϕ(P) be
the agent-optimal stable allocation at (P, ≻̃). It is easy to see that ϕ Pareto-dominates ϕω,≻.
Since ϕω,≻ is individually rational and non-wasteful, Theorem 1 says that ϕ is actually
the only strategy-proof rule that Pareto-dominates ϕω,≻.

Notice that ≻̃ contains “Ergin-cycles” (Ergin, 2002), so ϕ(R) is not Pareto-efficient.
From this and Theorem 1, we have the following corollary.

Corollary 7. There is no Pareto-efficient and strategy-proof rule that Pareto-dominates ϕω,≻.

On the subdomain P , for eachω, there is a unique core allocation (Roth and Postlewaite,
1977). A very well known result is that the rule that selects the core allocation at every
preference profile in P is actually the only strategy-proof and Pareto-efficient rule that
Pareto-dominates ω (Ma, 1994). This is in stark contrast with Corollary 7. For each
P ∈ P , ϕω,≻(P) = ω. So, on the subdomain P , the requirement that a rule Pareto-dominate
ϕω,≻ reduces to the requirement that it Pareto-dominate ω.

7.3 Market design

In this subsection, we explore the implications of our results for the several branches
of the literature on market design: 1. school choice with diversity constraints; 2. matching
with slot-specific priorities; and 3. matching with distributional goals.

7.3.1 School choice with diversity constraints

Public school districts are often concerned not only about parental preferences but
also about the composition of the student body at each school when seeking an assign-
ment of students to school seats, usually in terms of the diversity of the student body
along dimensions such as race or socioeconomic background. This problem of controlled
school choice (Abdulkadiroğlu and Sönmez, 2003) has been studied in a matching frame-
work, where diversity objectives are modeled in the choice functions of schools by impos-
ing type-specific quotas, reserves, or floors.

Weighing quotas versus reserves with two types of students, Hafalir et al. (2013) ad-
vocate that minority students should be prioritized over majority students (minority
reserves or soft bounds) rather than setting an upper bound on the number of major-
ity students (majority quotas or hard bounds), showing that the student-proposing de-
ferred acceptance rule with minority reserves Pareto-dominates the student-proposing
deferred acceptance rule with majority quotas. In effect, majority quotas can be waste-
ful if a school has empty seats but has reached its quota of majority students. Their
result does not contradict our main result, however. If these quotas are treated as a
feasibility requirement for an allocation, then our result applies, stating that there is
no strategy-proof rule that Pareto-improves upon the student-proposing deferred accep-
tance rule with quotas and respects these quotas. However, interpreting the distribu-
tional goal as reserve requirements removes the “artificial” constraints of quotas, mak-
ing the student-proposing deferred acceptance rule with quotas wasteful and allowing
strategy-proof Pareto-improvements. Pareto-improvement and individual rationality of
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the student-proposing deferred acceptance rule with quotas implies that every student
that is matched under the student-proposing deferred acceptance rule with quotas is
matched under deferred acceptance with minority reserves. By Theorem 2, we can also
conclude that at some preference profiles strictly more students must be matched.

Ehlers et al. (2014) studies controlled school choice with more than two types, and
with lower-bound, as well as upper-bound, constraints. They define a notion of fairness
and non-wastefulness that accounts for the diversity constraints as soft bounds, construct
school choice functions that use lower and upper bounds on types as soft bounds, and
show that these choice functions are “substitutable” and size monotonic.35 Then the
student-proposing deferred acceptance rule defines the agent-optimal stable rule, where
stability is defined with respect to the constructed choice functions and is equivalent to
fairness and non-wastefulness. Our results in Section 5 immediately apply, when feasible
sets for the objects are defined as the range of the choice functions.36

An assignment that is stable under these choice functions with soft bounds can vio-
late the diversity constraints when viewed as hard bounds even when there exists another
stable assignment that satisfies the constraints. In fact, as both Ehlers et al. (2014) and Bo
(forthcoming) point out, the student-proposing deferred acceptance rule with these con-
structed choice functions may pick a stable matching that violates constraints even when
there is a stable matching that does not. They show that the college-proposing deferred
acceptance rule with these constructed choice functions always picks the stable matching
that is closest to satisfying the constraints amongst all stable matchings. However, it is
not strategy-proof. One might then seek an answer to the following question: Is there a
strategy-proof allocation rule that provides at least the same level of welfare to students
as the college-proposing deferred acceptance rule, where the rule can violate stability
with the aim of getting fewer violations of the diversity constraints? By Theorem 1, the
answer is no, because the only candidate for such a rule is the student-proposing deferred
acceptance rule since it is strategy-proof and dominates the school-proposing deferred ac-
ceptance rule. The conclusion, then, is that an attempt tomaintain the welfare of students
while reducing diversity constraint violations requires a redesign of the choice functions
themselves. However, Ehlers et al. (2014) also show that there is no other “acceptant”
choice function that is closer to the diversity constraints than their constructed choice
function. Therefore, one can argue that the student-proposing deferred acceptance rule
is the only strategy-proof rule that balances student welfare with diversity constraints.

7.3.2 Slot-specific priorities

In some real-world allocation problems, there are multiple policy objectives that have
to be reconciled. For example, the US Army has one policy objective of prioritizing the
assignment of military cadets to military specialities (called branches) on the basis of an

35 They also study what can be achieved if the constraints are interpreted as hard bounds, and include
lower-bound constraints at each object. Such hard constraints can be accommodated in our model, by
appropriate definition of the feasible set for each object.

36 Our results require the existence of an “outside option” for students, which Ehlers et al. (2014) do not
assume. Nevertheless, their results for the soft-bounds would still apply if an outside option exists for each
student.
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“order-of-merit” list, which accounts for academic, physical, and military performance.
Singular objectives such as these are straightforwardly accommodated in the model of
Balinski and Sönmez (1999). However, the US Army also has an objective to increase
retention of its military cadets past their initial term of service. Towards this objective,
the US Army seeks to prioritize cadets willing to serve longer terms. These two objectives
have to be traded off in some manner. The slot-specific priorities framework is one way
to handle these multi-objective matching problems.

Sönmez and Switzer (2013) and Sönmez (2013) study this problem of matching of
military cadets to US Army branches, using the matching with contracts model based
on Hatfield and Milgrom (2005) and Hatfield and Kojima (2010). Each cadet is matched
to a branch with a term specifying years of service. The rule that each of these papers
proposes is based on the “cadet-proposing cumulative offer process.” The twin objectives
of prioritizing on the basis of the order-of-merit list and on the basis of terms of ser-
vice is achieved by dividing the capacity of a branch into two, the first portion of which
goes towards the order-of-merit list objective, and the second goes towards the reten-
tion objective. They show that this approach to handling two priority rankings allows a
strategy-proof allocation rule, the cadet-optimal stable rule, that satisfies a desirable fair-
ness requirement with respect to the two priority rankings (stability) and always picks
the best such fair allocation in terms of welfare of the cadets (cadet-optimal). Because
the designed choice functions satisfy unilateral substitutes and size monotonicity, by
Hatfield and Kojima (2010) the cumulative offer allocation rule is the cadet-optimal sta-
ble rule. Our results in Section 5 produce the corollary that the cadet-optimal stable rule
is the only strategy-proof rule that Pareto-improves upon a stable rule in a strategy-proof
manner. Thus, strategy-proof Pareto-improvements in this setting can only be achieved
by modifying the choice functions of branches themselves.

Corollary 8. The cadet-optimal stable rule is the only strategy-proof stable-dominating rule.

Kominers and Sönmez (2015) go further by allowing for any number of distinct object-
specific priority rankings. Their matching model with general slot- specific priorities
nests the cadet-branch matching model and the two-type controlled school choice prob-
lem of Hafalir et al. (2013). The capacity of an object is divided into individual slots,
and each slot has its own priority ranking over contracts involving that object. The
choice function of an object is defined using these slot-specific priorities together with
a parameter, the precedence order of slots. However, slot-generated choice functions
need not satisfy size monotonicity or unilateral substitutes, though they do satisfy IRC
and “bilateral substitutes.” Kominers and Sönmez study the cumulative offer process of
Hatfield and Milgrom (2005) and show that it defines a strategy-proof allocation rule in
their slot-specific priorities model.

Without size monotonicity, Corollary 1 that stable and strategy-proof rules admit no
strategy-proof and strict Pareto-improvements does not immediately apply, because non-
wastefulness of stable allocations cannot be guaranteed. However, the proof technique in
Kominers and Sönmez (2015) can be adapted to obtain the desired result.

Kominers and Sönmez associate every slot-specific model with a representative matching-
with-contracts model satisfying substitutability and size monotonicity. They show that
each stable allocation in the representation is associated to a unique stable allocation in
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the original model, and so the agent-optimal stable rule in the representation defines a
stable rule in the original model. Moreover, they show that the strategy-proofness of the
agent-optimal stable rule in the representation implies strategy-proofness of the asso-
ciated stable rule in the original model. Finally, they show that this strategy-proof and
stable rule is actually equivalent to the rule defined by using the cumulative offer process.

The representation retains the same set of feasible allocations as the original model in
the sense that every feasible allocation in the original model has a unique representative
feasible allocation. As a consequence, the cumulative offer rule is non-wasteful, since it
is represented by the agent-optimal stable rule, which is non-wasteful. By Corollary 2
and the strategy-proofness of the cumulative offer rule, it is not Pareto-dominated by any
other strategy-proof rule. Example 4 of Kominers and Sönmez (2015) shows it is possible
that a stable allocation Pareto-dominates the cumulative offer allocation. Our result for
this slot-specific model states that no such improvements can be made without giving up
strategy-proofness. We summarize this result in the following corollary.

Corollary 9. The cumulative offer rule of Kominers and Sönmez (2015) is a non-wasteful rule
and is not Pareto-dominated by another strategy-proof rule.

Unlike in models where the agent-optimal stable rule is well-defined, a slot-specific
model might have stable allocations that match different numbers of agents for some pref-
erence profiles, since the choice functions may not be size monotonic.37 However, there
is a particular subset of stable allocations, the set that is associated to stable allocations in
the representation, for which the structure results of Section 3 apply. Thus, this subset of
stable allocations is non-wasteful, and the only strategy-proof rule that always dominates
some stable allocation from this subset is the cumulative offer rule.

Hatfield and Kominers (2014b) propose the notion of “substitutably completable” choice
functions, and show that the agent-proposing cumulative offer rule is strategy-proof if
choice functions are completable to substitutable and size monotonic choice functions.
As an application, they show that the slot-specific priorities model defines choice func-
tions that are substitutably completable.

A choice function can be “completed” by altering the choice function only at sets
where some agent is associated with more than one element, and to do so only by adding
elements involving agents who are already associated with an element in the chosen set.
Thus, a completion of a choice function always agrees with the original choice function
on sets that have no more than one element per agent.

The proof technique of Hatfield and Kominers is similar in spirit to that of Kominers and Sönmez
(2015). They define a representation of the original model with a many-to-many match-
ing with contracts model38 that satisfies substitutes and size monotonicity. If the choice
functions can be completed so that substitutability and size monotonicity is satisfied,
then such a representation exists, and the agent-proposing deferred acceptance in the
representative model is strategy-proof and stable in the original model. Any allocation
that is feasible in the original economy is feasible in the associated economy, so anything
that is non-wasteful in the associated economy is non-wasteful in the original. Thus,

37See Example 2 in Kominers and Sönmez (2015).
38See Hatfield and Kominers (2014a), and also Klaus and Walzl (2009).
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the agent-proposing cumulative offer rule in Hatfield and Kominers (2014b) is on the
strategy-proofness-constrained Pareto-frontier.

7.3.3 Distributional goals and dynamic reserves

Policy makers sometimes seek to balance the welfare of agents while also achieving a
particular distribution of resources. School choice with “diversity constraints” is an ex-
ample of this type of real-world problem, and one modeling approach is to have ceilings,
floors, or reserves for each type of agent, while using an object-specific master priority
list. An alternative approach is to model these types of policy concerns through the tar-
geting of a specified distribution, while specifying how to reallocate unused reserves of
capacity when available.

Westkamp (2013) proposes a model of matching with “complex constraints” that al-
lows capacity to be redistributed between different priorities at an object, with an initial
target distribution specified exogenously. At each object there is a finite sequence of
priority rankings over agents, as in the model of Kominers and Sönmez (2015), and an
associated sequence of capacity redistribution functions, which dictate how many slots
are available at a particular priority ranking as a function of the vector of unused capacity
at earlier priority rankings.

This model is a generalization of the two-type controlled school choice model in
Abdulkadiroğlu and Sönmez (2003), and also captures themodel of Hafalir et al. (2013).39

In one way, the complex constraints model is more general than Kominers and Sönmez
(2015), because it allows different priority rankings at each slot but also allows the ca-
pacity of the slot to be affected by the choice at slots earlier in the precedence order.
On the other hand, Kominers and Sönmez (2015) allow many possible contractual terms
between an agent and object.

Westkamp (2013) shows that, with some conditions on how capacity is redistributed,
the object choice functions satisfy substitutability and size monotonicity. Therefore,
the rule he proposes is the agent-optimal stable allocation rule, which is strategy-proof.
Our results in Section 5 then imply that this rule is the unique strategy-proof stable-
dominating rule.

Aygün and Turhan (2016) propose a model of matching with dynamic reserves, which
combines the slot-specific model of Kominers and Sönmez (2015) with the complex con-
straints model of Westkamp (2013), by allowing capacity transfers across slots while al-
lowing multiple contractual terms per agent-object pair. When each slot has a target ca-
pacity and has “responsive” priorities over sets of contracts, and capacity redistribution
satisfies conditions similar to those of Westkamp (2013), Aygün and Turhan (2016) show
that the cumulative offer process defines a strategy-proof and stable rule. They show that
the choice functions of objects in their setting have substitutable completions that satisfy
size monotonicity, and so strategy-proofness of the cumulative offer rule follows from
the results of Hatfield and Kominers (2014b). Consequently, by our previous discussion
of Hatfield and Kominers (2014b), the cumulative offer rule in the model of dynamic re-
serves is non-wasteful and on the strategy-proofness-constrained Pareto-frontier.

39 When there are more than two types of agents, neither the controlled school choice model with quotas
nor the complex constraints model generalize each other.
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Appendices

A Proofs omitted from the body

A.1 Equivalence of non-wastefulness definitions

Proof of Proposition 1. Suppose that µ is Balinski-Sönmez-wasteful. Then there are o ∈ O
and i ∈N such that o Pi µ(i) and |µ(i)| < qo. Let ν ≡ (µ∪{(i,o)})\µ(i). Then |ν(o)| = |µ(o)|+1 ≤
qo and for each o′ ∈ O \ {o}, |ν(o′)| ∈ {|µ(o′)| − 1, |µ(o′)|} ≤ qo′ . Thus, ν ∈ F and |ν(o)| > |µ(o)|.
Furthermore, ν(i) Pi µ(i) while for each j ∈N \ {i},ν(i) = µ(i). Thus, µ is wasteful.

Suppose that µ is Balinski-Sönmez-non-wasteful. Consider ν ∈ F such that for each
i ∈ N , ν(i) Ri µ(i) and for some i ∈ N , ν(i) Pi µ(i). Let o ∈ O. If |µ(o)| < qo, by Balinski-
Sönmez-non-wastefulness, there is no i ∈N such that o Pi µ(i). So |ν(o)| ≤ |µ(o)|. If |µ(o)| =
qo, by feasibility of ν, |ν(o)| ≤ qo = |µ(o)|. Thus, µ is non-wasteful.
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A.2 Pareto-dominating an individually rational and non-wasteful al-
location

Proof of Lemma 2. Since µ is non-wasteful, it is weakly non-wasteful as well. So by the
Structure Lemma, µN = νN , so |µ| = |ν |.

Since µ is non-wasteful, for each o ∈ O, |µ(o)| ≥ |ν(o)|. Since for each pair o,o′ ∈ O,
µ(o) and µ(o′) are disjoint,

∑

o∈O |µ(o)| = |µ|. Similarly,
∑

o∈O |ν(o)| = |ν |. Thus,
∑

o∈O |µ(o)| =
∑

o∈O |ν(o)|. So for each o ∈O, |µ(o)| ≥ |ν(o)|.

A.3 Existence of strategy-proof, constrained efficient andwasteful rule

Proof of Proposition 3. Let {i1, i2, i3, . . . } be a labeling of theN and {a,b,c, . . . } be a labeling of
O. Suppose that T is a singleton, |N | ≥ 3, |O| ≥ 3, for each o ∈O, Fo = {{i} : i ∈N }∪{∅}, F is
Cartesian, and for each i ∈N , the preference domain Ri is the set of all strict preferences
over O∪ {∅}.40 Then R = P , and satisfies our assumptions from Section 2.

Consider the benchmark rule, ϕ, defined by setting, for each P ∈ P ,

ϕ
i1
(P) = Pi1-max(O \ {a}).41

ϕ
i2
(P) =















Pi2-max(O \ϕ
i1
(P)) if ϕ

i1
(P) , c or

Pi2-max(O \ (ϕ
i1
(P)∪ϕ

i3
(P)) otherwise

ϕ
i3
(P) =















Pi3-max(O \ (ϕ
i1
(P)∪ϕ

i2
(P)) if ϕ

i1
(P) = c or

Pi3-max(O \ϕ
i1
(P)) otherwise

and for k > 3,
ϕ
ik
(P) = Pik-max(O \ (ϕ

i1
(P)∪ · · · ∪ϕ

ik−1
(P)))

In words, this rule assigns to i1 his most preferred object except for a. The remaining
objects are distributed among the remaining agents sequentially in the order i2, i3, i4, . . .
if i1 is not assigned c. The places of i2 and i3 are swapped if i1 is assigned c. Since i1 is
barred from receiving a, this rule is strongly wasteful: at each P ∈ P such that for each
i ∈ N \ {i1},∅ Pi a and for each o ∈ O \ {a}, a Pi1 ∅ Pi1 o, ϕi1

(P) = ∅ and a is not assigned,

rendering ϕ strongly wasteful.
While it may be possible to find a strategy-proof rule that Pareto-dominates ϕ, we

show that every such rule is, itself, strongly wasteful. Thus, there exists a strongly waste-
ful strategy-proof rule that cannot be Pareto-dominated by another strategy-proof rule.

To prove this claim, suppose that ϕ is weakly non-wasteful and Pareto-dominates ϕ,

40 The requirement of at least as many objects as agents is not needed. An example with three agents and
two objects is available upon request.

41Given Pi ∈ Pi and A ⊆O, we denote the best element of A according to Pi by Pi-max(A).
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and consider P ∈ P as follows:

Pi1 Pi2 Pi3 and for k > 3, Pik
a b b ∅

∅ a ∅
...

By definition of ϕ, we have ϕ
i1
(P) = ∅, ϕ

i2
(P) = b, and for each i ∈ N \ {i1, i2}, ϕi(P) = ∅.

Since ϕ Pareto-dominates ϕ and ϕ is weakly non-wasteful, ϕi1(P) = a, ϕi2 = b and for
each i ∈N \ {i1, i2}, ϕi(P) =∅.

Now consider Pi1 ∈ Pi1 as follows:
P ′i1
a
c
...

By definition of ϕ, we have ϕ
i1
(P ′i1 ,P−i1) = c, ϕ

i2
(P ′i1 ,P−i1) = a, ϕ

i3
(P ′i1 ,P−i1) = b, and for each

i ∈ N \ {i1, i2, i3}, ϕi
(P ′i1 ,P−i1)) = ∅. Since this allocation is Pareto-efficient at (P ′i1 ,P−i1) and

ϕ Pareto-dominates ϕ, ϕ(P ′i1 ,P−i1) = ϕ(P ′i1 ,P−i1). But then

ϕ(Pi1 ,P−i1) = a P ′i1 c = ϕ(P ′i1 ,P−i1),

so ϕ is not strategy-proof.
We conclude that every strategy-proof rule that Pareto-dominates ϕ is, itself, strongly

wasteful.

Notice that ϕ is actually group strategy-proof. Since no weakly non-wasteful strategy-
proof rule Pareto-dominates it, it follows then, that there exists a strongly wasteful and
group strategy-proof rule that is not Pareto-dominated by a strategy-proof rule.

A.4 Proofs of Propositions in Section 5

Proof that ϕ in Example 4 is stable and strategy-proof. We first establish that ϕ is stable by
considering four cases.
Case 1: m1,m2 ∈ G(P). Then ϕ(P) = µ{m1,m2}. Regardless of whether p1,p2 ∈ G(P), there is
no Y ⊆ G(P) \ {m1,m2} such that Y ⊆ C(µ{m1,m2} ∪Y ). Thus, ϕ(P) is stable.
Case 2: m1 < G(P) butm2 ∈ G(P). If p1,p2 ∈ G(P), thenϕ(P) = µ{p1,p2}. SinceC({m2,p1,p2}) =
{p1,p2}, ϕ(P) is stable. Otherwise, ϕ(P) = µG(P) and each agent receives his top choice.
Thus ϕ(P) is stable.
Case 3: m1 ∈ G(P) but m2 < G(P). This is symmetric to Case 2.
Case 4: m1,m2 < G(P). Since, ϕ(P) = µG(P) and each agent receives his top choice, ϕ(P) is
stable.

To show that ϕ is strategy-proof, we again consider the same four cases.
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Case 1: m1,m2 ∈ G(P). Then ϕ(P) = µ{m1,m2} and neither m1 nor m2 can benefit by mis-
reporting his preferences. Regardless P{p1,p2}, ϕ selects µ{m1,m2} so neither of p1 or p2 can
benefit by misreporting his preference either.
Case 2: m1 < G(P) but m2 ∈ G(P). If p1,p2 ∈ G(P), then ϕ(P) = µ{p1,p2}, so neither p1 nor
p2 benefits by misreporting and since ϕ selects µ{p1,p2} regardless of m2’s preference, he
has no incentive to misreport either. Otherwise, ϕ(P) = µG(P) and no agent can benefit by
misreporting since he receives his top choice.
Case 3: m1 ∈ G(P) but m2 < G(P). This is symmetric to Case 2.
Case 4: m1,m2 < G(P). Since ϕ(P) = µG(P), no agent can benefit by misreporting since he
receives his top choice.

Proof of Proposition 5. By definition, for each P ∈ P , ϕAOS(P) Pareto-dominates every sta-
ble allocation at P. By Lemma 2 the Rural Hospitals Theorem holds.

The proofs of Theorems 10 and 11 of Hatfield and Milgrom (2005) use only the con-
clusion of the Rural Hospitals Theorem to show that ϕAOS is strategy-proof, so their proof
applies unchanged in our setting.

Now we show that it is the unique stable and strategy-proof rule. If any other rule ϕ
is stable, then it is Pareto-dominated by ϕAOS . By Theorem 1, if ϕ , ϕAOS , then it is not
strategy-proof. Thus ϕAOS is the only stable and strategy-proof rule.

Proof of Proposition 6. If ϕ is not the agent-optimal stable rule, then there are P ∈ P and
ν ∈ F such that ν is stable at P and ϕ(P) does not Pareto-dominate ν. So there is i ∈ N
such that ν(i) Pi ϕi(P).

Let x ≡ ν(i) and y ≡ ϕi(P). Since ϕ is stable, it is individually rational. Thus, x Pi y Ri

∅. Since x , ∅, by the Rural Hospitals Theorem, y , ∅.
Let P ′i ∈ Pi be such that a) for each z ∈ X(i) if z P ′i x then z Pi x and if z P ′i y then z Pi y

and b) x P ′i ∅ P ′i y. Let P
′ ≡ (P ′i ,P−i).

We first show that ν is stable at P ′. If not, there are o ∈ O and Y ⊆ X(o) such that for
each z ∈ Y , z P ′zN ν(zN ), ν(o) < Co(ν(o)∪Y ) and there is Z ∈ Co(ν(o)∪Y ) such that Y ⊆ Z .
Since, for each j ∈ N \ {i}, P ′j = Pj and ν is stable at P, there is z ∈ Y such that zN = i.

However, since z P ′i ν(i) = x we have z Pi x. This contradicts the stability of ν at P. Thus ν
is stable at P ′.

By the Rural Hospitals Theorem, since ν(i) , ∅ and since both ν and ϕ(P ′) are stable at
P ′, ϕi(P

′) , ∅. Since ϕ is individually rational, ϕ′i(P
′) P ′i ∅. By definition of P ′i , ϕ

′
i(P
′) P ′i y.

Thus, we have ϕ′i(P
′) Pi y. However, this contradicts the strategy-proofness of ϕ since

x = ϕ(P ′i ,P−i) Pi ϕi(Pi ,P−i) = y.

A.5 Proofs of Propositions in Section 6

Proof of Proposition 8. Let µ be stable with respect to C. By definition of stability it is
individually rational. Since C is size monotonic and idempotent, by Proposition 4, µ is
non-wasteful. If it violates priorities, there are a pair i, j ∈N and o ∈O such that µ(i) = o,
o Pj µ(j), and j ≻o i. Since µ is non-wasteful, |µ(o)| = qo. Since j ≻o i, Co(µ(o) ∪ {j}) =
{(µ(o) \ {i})∪ {j}}. This contradicts the stability of µ.
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Suppose that µ is individually rational, non-wasteful and respects priorities. If it is
not stable, then there are o ∈ O and Y ⊆ N \ µ(o) such that for each i ∈ Y , o Pi µ(i) and
a) Y ⊆ Z for some Z ∈ Co(µ(o) ∪ Y ) and b) µ(o) < Co(µ(o) ∪ Y ). Since, for each i ∈ Y ,
o Pi µ(i), and µ is non-wasteful, |µ(o)| = qo. Thus, for each Z ∈ Co(µ(o) ∪ Y ), |Z | = |µ(o)|.
Since µ(o) < Co(µ(o)∪Y ), there are i ∈ Y and j ∈ µ(o) such that i ≻o j. This contradicts the
assumption that µ respects priorities.

Proof of Proposition 9. Let µ be stable with respect to %. Let τ ∈ T be such that for each
o ∈O and each pair i, j ∈N such that i ∈ µ(o) but j < µ(o), i τo j.

If µ is not stable with respect to %τ there are a pair i, j ∈N and o ∈O such that µ(j) = o,
i ≻τ j, and o Pi µ(i). Since µ is stable, j %o i. Since i ≻τ j, i %o j. Thus, i ∼o j so i τo j.
However, i < µ(o) while j ∈ µ(o). This contradicts the definition of τ.

Let µ be stable with respect to %τ. Then, for each j ∈ N such that o Pj µ(j) and each
i ∈ µ(o), i ≻τo j. Thus, i %o j. Thus, µ is stable with respect to %.

Proof of Proposition 10. By Lemma 2, every allocation that Pareto-improves on µ reallo-
cates objects among agents in (possibly several) cycles so that each agent obtains the ob-
ject assigned by µ to the next agent in the cycle. If the same object appears twice in the
same cycle, we can divide the cycle into two separate cycles. Thus it suffices to show that
for every cycle C ≡ {i1, . . . , ik} such that for each pair i, j ∈ C, oi , oj , µ(i1) Pik µ(ik), and for
each l ∈ {1, . . . ,k − 1}, µ(il+1) Pil µ(il ), the allocation µ′ defined below is stable. For each
i ∈N ,

µ′(i) =



















µ(i) if i < C,
µ(il+1) if i = il where l ∈ {1, . . . ,k − 1},
µ(i1) if i = ik .

For each l ∈ {1, . . . ,k}, let ol ≡ µ(il ). Since µ is stable and ol Pil−1 µ(il−1), for each l ∈ {2, . . . ,k},
il %ol il−1 and |µ(ol)| = qol . Let Nol ≡ µ(ol ) \ {il}. Since |µ(ol)| = qol , |Nol | = qol − 1. Since
µ(il−1) , ol , il−1 < Nol . Since µ is stable, for each k ∈ Nol , k %ol il−1. Similarly, i1 %o1 ik and
letting No1 ≡ µ(o1) \ {i1}, |No1 | = qol −1 and ik <No1 . Thus, for each l ∈ {2, . . . ,k}, il , il−1 <Nol
and i1, ik <No1, and for each k ∈No1, k %o1 ik .

Suppose that µ′ violates priorities. Without loss of generality, there is j such that j ≻o2
i1 and o2 Pj µ

′(j). However, since µ′(j) Pj µ(j) and µ is stable, i2 %o2 j. Thus, i2 %o2 j ≻o2 i1.
Since µ is stable, for each k ∈ No2 , k %o2 j. Since % is strongly∗ acyclic, either i2 ≻o3 i1 or
i1 ∈ No3. If i ∈ No3 then k = 2, and since i1, i2 < No1 and i1, j, i2 < No2 , and % is strongly∗

acyclic, i2 ≻o1 i1, contradicting i1 %o1 i2. Thus i2 ≻o3 i1 so that i3 %o3 i2 ≻o3 i1. Again, since
% is strongly∗ acyclic, either i3 ≻o4 i1 or i1 ∈No4 . If i ∈No4 then k = 3, and since i1, i3 <No1
and i1, i2, i3 <No3 , and % is strongly∗ acyclic, i3 ≻o1 i1, contradicting i1 %o1 i3. Thus i3 ≻o4 i1
so that i4 %o4 i3 ≻o4 i1. Repeating the argument, we have ik %ok ik−1 ≻ok i1. However, since
i1 %o1 ik , i1, ik , ik−1 <Nok and i1, ik <No1 , this contradicts the assumption that % is strongly∗

acyclic. Thus, µ′ is stable.

The following example shows that Proposition 10 does not hold under the slightly
weaker condition of Ehlers and Erdil (2010). In the proof of the proposition, we see that
every “improving cycle” is a “stable improving cycle” (Erdil and Ergin, 2008) under the
stronger condition. Under the weaker condition, one can only show that whenever there
is an improving cycle, there is at least one stable improving cycle.
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Example 5. Proposition 10 does not hold if % is only strongly acyclic.
Let O ≡ {o1,o2} and N ≡ {i1, i2, i3}. Let qo1 = 2 and qo1 = 1. Define % as follows:

%o1 %o2
i1, i2, i3 i2, i3

i1

Since there are only three agents, the scarcity condition is never met. Thus, % is strongly
acyclic despite the loop condition being satisfied.

Consider P ∈ P as follows:
Pi1 Pi2 Pi3
o2 o1 o2
o1 o2 o1

Let µ ∈ F be such that µ(i1) = o1, µ(i2) = o2, and µ(i3) = o1. Though µ is stable, it is not
Pareto-efficient. There are two Pareto-improving cycles: i1 and i2 trade their assignments
or i2 and i3 trade their assignments. The former leads to an unstable allocation.

Proof of Proposition 11. If ϕ is not stable, there is P ∈ P such that ϕ(P) is not stable. Let
µ ≡ ϕ(P). Since ϕ is stable-dominating, there exists µ ∈ F such that µ is stable and µ

Pareto-dominates it. By Proposition 4, µ is non-wasteful. So by the Structure Lemma, µ
is non-wasteful. Since µ is not stable, it does not respect priorities. So there are a pair
i, j ∈ N and o ∈ O such that µ(i) = o, j ≻o i, and o Pj µ(j) and |µ(o)| = qo. Since j ≻i i,
|{k ∈N \ {j} : µ(k) = o and k %o j}| ≤ qo − 1.

Let S ≡N \{j} and consider PS ∈ ×k∈SPk such that for each k ∈ S and each o ∈O\{µ(k)},
µ(k) Pk ∅ Pk o, which is admissible given the rich* assumption on the preference domain.
Then |{k ∈ N \ {j} : o Pk ∅ and k %o j}| ≤ qo − 1. So for each ν ∈ F such that ν is stable at
(PS ,Pj ), ν(j) Rj o.

Let µ = ϕ(PS ,Pj ). By definition of PS , for each k ∈ S, µ(k) Rk µ(k). If there is k ∈ S

such that µ(k) , µ(k), then µ(k) P i µ(k). This contradicts the group strategy-proofness of
ϕ as S may beneficially report PS when the true preferences are PS . Thus, for each k ∈ S,
µ(k) = µ(k). Since µ Pareto-dominates a stable allocation, µ(j) Rj o Pj µ(j). Thus, µ Pareto-
dominates µ. This contradicts the group strategy-proofness of ϕ since N may beneficially
report (PS ,Pj ) when the true preferences are P .

B Waiver Algorithm

The procedure “WaiverOrder” takes as input an initial allocation, ω, a preference
profile, P, and a waiver order over the agents, ≻. The output is a non-wasteful allocation
where agents drop and pick up available objects in the order of ≻, starting from the initial
allocation ω.
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Algorithm 1 Procedure to waive and pick up objects on waivers

1: procedure WaiverOrder(ω,P,≻)
2: y = ∅

3: for i ∈N do

4: yi =

{

ωi if ωi Pi ∅
∅ otherwise

5: A = {o ∈O : y(o) =∅} ⊲ Set of unassigned objects.
6: while x is wasteful at P do
7: for i = first in ≻ to i = last in ≻ do
8: for a ∈ A do
9: if a Pi yi then

10: A = (A \ a)∪ yi ⊲ Remove a from and add yi to A.
11: yi = a ⊲ Assign a to i.
12: go to 7

13: return y
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