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Abstract

Ranking the pro�tability of the �rst-price auction (FPA) and the second-

price auction (SPA) is of fundamental importance to auction theory. However,

the theoretical literature on bidder asymmetry has primarily focused on auc-

tions with two bidders. Here, I consider auctions with several asymmetric

bidders. As in the empirical literature, it is assumed that any bidder is either

weak or strong. There is no unambiguous revenue ranking in this environment.

Indeed, I show that the ranking may depend on both the size of the reserve

price and the number of bidders. However, there always exists a range of reserve

prices for which the FPA strictly dominates the SPA. Moreover, if the asym-

metry is not too large, there exists seller own-use valuations for which the FPA

with an optimal reserve price is strictly more pro�table than the SPA with an

optimal reserve price. The FPA may in fact be both more pro�table and more

e¢ cient than the SPA when the reserve price is endogenous. These results are

founded on the methodological insight that the combination of reserve prices

and several bidders may allow the use of mechanism design arguments that are

simpler than those required when just two bidders are present.
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1 Introduction

Starting with Vickrey�s (1961) seminal work, a central preoccupation of auction theory

has been to rank the pro�tability of di¤erent types of auctions. Vickrey (1961) himself

was �rst to identify asymmetry among bidders as a critical factor. Although auction

theory since then has evolved and expanded in many directions, the impact of bidder

asymmetry is still less than perfectly understood.

In Vickrey�s (1961) model, the �rst-price auction (FPA) and the second-price

auction (SPA) are revenue equivalent when bidders are symmetric. However, by

examining a specialized auction setting with two bidders, Vickrey also demonstrated

that no arbitrary ranking can be obtained when bidders are asymmetric. In a well-

known paper, Maskin and Riley (2000) developed a few general principles for when

the FPA dominates the SPA, and vice versa. However, they also concentrate on

settings with two bidders, one of which is ex ante perceived as �strong�and the other

as �weak�. Kirkegaard (2012a) generalized Maskin and Riley�s (2000) insights using

a mechanism design approach. Indeed, his results carry through with more weak

bidders, yet the proof strategy breaks down when more strong bidders are present.

The current paper is the �rst to systematically challenge the two-bidder assumption.1

The empirical literature on asymmetric auctions is larger and is growing more

rapidly. This literature permits a larger number of bidders but generally lumps them

into two groups. Campo, Perrigne, and Vuong (2003) divide bidders into solo bidders

and joint bidders. In De Silva, Dunne, and Kosmopoulou (2003) bidders are either

entrants or incumbents. The bidders in Flambard and Perrigne�s (2006) study are

located in one of two areas. Brendstrup and Paarsch (2006) consider an application

with major and minor bidders. Likewise, in Marion (2007) and Krasnokutskaya and

Seim (2011) bidders are classi�ed as either large or small. Finally, Athey, Levin, and

Seira (2011) put loggers and sawmills in separate groups. These examples demon-

strate the empirical relevance of asymmetric auctions in a wide variety of settings. At

the same time, they illustrate a growing interest in the topic among economists more

1Bidding behavior with an arbitrary number of bidders has been studied in detail by e.g. Lebrun
(1999, 2006) and Kirkegaard (2009). However, this literature does not compare expected revenue
across auctions. A number of papers rank the two auctions under more specialized conditions.
Lebrun�s (1996) and Cheng�s (2006) results come from analytically studying environments with
power distributions. Gavious and Minchuk (2014) use perturbation analysis to rank auctions with
small asymmetries. Several papers use numerical methods to obtain a ranking; see e.g. Marshall et
al (1994) and Li and Riley (2007). See Kirkegaard (2012a) for more references.
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broadly. Given the sparsity of theoretical results, the empirical literature is forced

to resort to numerical analysis when comparing expected revenue from the observed

auction format to expected revenue from some counterfactual auction format. How-

ever, such analysis is not designed to uncover economic principles that yield deeper

insights into what determines the relative pro�tability of di¤erent auctions. Thus,

there remains a need for theory to help generate economic insights.

Consistent with practice in the aforementioned literature, the main simplifying

assumption of this paper is that bidders can be divided into a strong and a weak

group. As alluded to earlier, the analysis changes in qualitatively important ways as

soon as there is more than one strong bidder. In particular, it is no longer necessarily

true that both groups of bidders tender bids in the same range; there may exist a

range of high bids which only strong bidders would consider submitting in equilibrium.

This phenomenon is henceforth referred to as bid-separation.

The model used here is general enough to �t all of Maskin and Riley�s (2000)

examples as limiting cases. Therefore, an unambiguous revenue ranking does not

exist in the model. Contrary to Maskin and Riley (2000) and Kirkegaard (2012a),

the objective of the paper is not to isolate more re�ned conditions under which one

auction is always better than the other. Instead, a primary contribution of the paper

is to show that all environments consistent with the general and sparsely structured

model share a common property; the FPA is strictly more pro�table than the SPA for

a range of reserve prices. This observation serves as a starting point for examining

auctions with endogenous reserve prices. It is important to note that the optimal

reserve price typically depends on the auction format. This has implications for

e¢ ciency since the magnitude of the reserve price determines how often a gain from

trade is realized. A key result is that once the reserve price is endogenized, the FPA

may be both more pro�table and more e¢ cient than the SPA.

The paper is founded on a new methodological insight that can be broken into two

parts. First, as explained momentarily, elementary mechanism design arguments can

be used to rank the two auctions if equilibrium in the FPA features �enough�bid-

separation. However, it is endogenous whether bid-separation occurs, and if so to what

extent. Nevertheless, recall that bid-separation never occurs in auctions with just one

strong bidder. Hence, the addition of more strong bidders perhaps counterintuitively

opens the door for simpler mechanism design arguments to be utilized. The second

observation is that the equilibrium properties of the FPA �including the incidence of
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bid-separation �are in�uenced by the size of the reserve price. Stated di¤erently, the

reserve price provides a lever that can be used to manipulate equilibrium behavior.

Thus, it is possible to �trigger� the right amount of bid-separation and invoke the

simpler arguments.2 Reserve prices are thus central to the approach.

To illustrate the method, begin by considering the extreme case where the reserve

price is so high that weak bidders are de facto excluded. Only strong bidders com-

pete. Thus, a form of bid-separation is taking place. The FPA and SPA are revenue

equivalent since they allocate the good the same way. Next, lower the reserve price

marginally to a¤ord weak bidders with high valuations a small chance of winning.

It is well-known that participating weak bidders bid more aggressively than strong

bidders with comparable types. Nevertheless, by continuity, the allocation in the

FPA is still �close to�e¢ cient. Thus, weak bidders win slightly more often than is

e¢ cient. Standard mechanism design arguments then imply that the FPA dominates

the SPA. This is in contrast to two-bidder auctions where Maskin and Riley (2000)

argue that the weak bidder at times wins excessively often in a FPA from a design

perspective. Kirkegaard (2012a) uses more re�ned mechanism design arguments to

establish a revenue ranking, but those arguments break down if there is more than

one strong bidder. His results also rely on stronger assumptions on type distributions

than in the current paper. In summary, leveraging reserve prices allows the use of

design arguments that are much simpler than in the case with a single strong bidder.

This revenue ranking relies on a relatively high reserve price. In fact, the SPA

may outperform the FPA at small reserve prices. In other words, the ranking of the

two auctions may �ip when the reserve price changes. For a �xed reserve price, the

ranking may likewise change as more bidders join the auction. An example exhibiting

these reversal properties is provided. To my knowledge, this is the �rst example that

demonstrates these properties. The reason that this is the �rst such example is that

the existing literature has more or less deliberately avoided comparative statics of this

nature. First, focus has been on auctions with two bidders. Second, the additional

assumptions imposed in e.g. Maskin and Riley (2000) and Kirkegaard (2012a) are

so strong that the revenue ranking then turns out to be the same regardless of the

reserve prices. In the setting in the current paper, the FPA dominates the SPA for a

2Kirkegaard (2012b) provides two examples in which the FPA can be shown to dominate the SPA
with an arbitrary number of weak and strong bidders. These examples require that the asymmetry
between the two groups is exogenously large enough to trigger bid-separation. The point of the
current paper is that a reserve price in e¤ect allows one to endogenize the size of the asymmetry.
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wider and wider range of reserve prices as more bidders participate in the auction.3

However, the optimal reserve price is endogenous. It depends on the auction for-

mat, the number of bidders, and the seller�s own-use valuation. Unless the asymmetry

is very large, there exists own-use valuations for which the FPA with an optimal re-

serve price is strictly more pro�table than the SPA with an optimal reserve price when

there are su¢ ciently many bidders.4 Indeed, there are own-use valuations for which

the same strict pro�t ranking obtains if the asymmetry is small enough, regardless of

the number of bidders. Both results can be interpreted as �impossibility result�since

they imply that the SPA cannot be weakly better than the FPA for all own-use val-

uations and all combinations of bidders. Hence, any �nding that the SPA is superior

to the FPA in some speci�c setting is fragile to changes along these dimensions. In

contrast, there are settings where the FPA weakly dominates the SPA for all own-use

valuations and any combination of bidders. In general, however, the pro�t ranking of

the two auctions may �ip as the own-use valuation changes. Empirical implications

of these result are discussed further in Section 7.

Ignoring reserve prices, the received wisdom is that the SPA is more e¢ cient

than the FPA when bidders are risk neutral but asymmetric; see e.g. Krishna (2002).

Speci�cally, total surplus is higher in the SPA than in the FPA when the reserve price

is the same in both auctions. However, the SPA does not Pareto dominate the FPA

since weak bidders prefer the latter auction format. Now, the optimal reserve price is

lower in the FPA than in the SPA when the seller�s own-use valuation is high. Thus,

the good is sold more often in the FPA. On the other hand, the allocation contingent

on a sale need not be e¢ cient in the FPA. A priori then, it is not obvious which auction

is more e¢ cient once the reserve price is endogenized. I give an example in which the

FPA with an optimal reserve price is more e¢ cient than the SPA with an optimal

reserve price. In fact, in the example the FPA is Pareto superior to the SPA. That is,

both the seller and the buyers prefer the former. Again, this is the �rst such example

that I am aware of.5 Thus, it must be recognized that it is generally an empirical

question which auction is more e¢ cient once the reserve price is endogenized.

3Kirkegaard (2012a) allows the number of weak bidders to vary. Again, however, his assumptions
imply that the FPA dominates the SPA for any reserve price and any number of weak bidders.

4If the asymmetry is large, the optimal reserve price in either auction may be so high that it
excludes the weak bidders. Then, the seller is indi¤erent between the two auctions.

5It is known that optimal reserve prices may di¤er across auction formats if bidders are symmetric
but risk averse. The implications for e¢ ciency are examined in Hu, Matthews, and Zou (2010).

4



2 Model

Two groups of risk neutral bidders participate in a FPA or SPA. Bidders in the strong

group independently draw a valuation from the twice continuously di¤erentiable dis-

tribution function Fs(v), with support [vs; vs]. The density, fs(v), is assumed to be

strictly positive for all v 2 (vs; vs]. Note that mass points are ruled out. There are
a total of ms � 2 strong bidders. There are also mw � 1 weak bidders. These bid-
ders independently draw a valuation from another twice continuously di¤erentiable

distribution function Fw(v), v 2 [vw; vw]. Again, it is assumed that the density fw(v)
is strictly positive for all v 2 (vw; vw]. Assume that vs > vw > vs � vw. Thus, the

supports overlap. Finally, it is assumed that Fs dominates Fw in terms of the reverse

hazard rate, Fw �rh Fs, or

fs(v)

Fs(v)
� fw(v)

Fw(v)
for all v 2 (vs; vw]: (1)

In other words, Fs(v)
Fw(v)

is non-decreasing on (vs; vw]. Hence, a strict version of �rst

order stochastic dominance applies since Fs(v) < Fw(v) for all v 2 (vs; vw]. A generic
member of the strong (weak) group is for simplicity referred to as bidder s (w). The

number and composition of bidders, i.e. ms and mw, are exogenous.

In much of the paper a non-trivial �and possibly endogenous �reserve price, r,

is imposed. Speci�cally, the reserve price r is non-trivial when r > vs, in which case

the good will not be sold with positive probability. Since there are at least two strong

bidders, the reserve price has no e¤ect on equilibrium if it is no greater than vs, or

r � vs. Thus, assume without loss of generality that r � vs, where the special case
r = vs is equivalent to the absence of a reserve price. Any bidder with type strictly

below r do not submit a bid in the FPA or SPA.

3 Equilibrium and comparative statics of the FPA

Lebrun (2006) characterizes equilibrium in the FPA under more general assumptions

than those stated above. He proves equilibrium is unique whenever r > vs. For any

r 2 [vs; vw], bidder i with type v � r submits a bid in the interval [r; bi], i = s; w.

Naturally, bs and bw are endogenously determined, with bs � bw. Thus, all bidders

submit bids in the same range if (and only if) bs = bw. This is the case in Maskin
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and Riley (2000) and Kirkegaard (2012a), where ms = mw = 1. If bs > bw in such

a setting, the lone strong bidder who is supposed to bid bs would pro�t by slightly

lowering his bid since it would not a¤ect his chances of winning. That argument breaks

down as soon as ms � 2, as in the current paper. In fact, the central arguments of
the paper rely on the possibility that bs > bw. The term bid-separation is henceforth

used to refer to any equilibrium in which bs > bw.

In equilibrium, there exists a unique threshold type, bv, such that bidder s with typebv bids bw in the FPA. Higher types separate away from weak bidders by bidding above
bw. In contrast, types below bv engage with weak bidders and may thus potentially lose
to a weak bidder. Note that bid-separation takes place if and only if bv < vs. While
bid-separation is implicit in Lebrun�s (2006) equilibrium characterization, Hubbard

and Kirkegaard (2015) examine this equilibrium feature more closely. They also

assume bidders belong to one of two groups, but they do not assume reverse hazard

rate dominance. Likewise, although they present several comparative statics results,

they do not consider changes in the reserve price. However, they prove that

bv = min�vs; ms

ms � 1
vw �

1

ms � 1
bw

�
: (2)

Now, since bw is bounded between r and vw, the above relationship proves formally

that bv converges to vw as r converges to vw. In other words, bid-separation must
occur when the reserve price is high enough and ms � 2. Note also that bv > vw for
any r < vw. Thus, a weak bidder with type vw outbids strong bidders with higher

types. In other words, he wins more often than is e¢ cient.

Lebrun (2006) and Hubbard and Kirkegaard (2015) characterize equilibrium of

the FPA by describing inverse bidding strategies. Let 'i(b) denote bidder i�s inverse

bidding strategy, b 2
�
r; bi
�
, i = s; w. On the range of bids where both groups of

bidders are active,
�
r; bw

�
, 'w(b) and 's(b) solve the system of di¤erential equations

described by

d

db
lnFi('i(b)) =

1

ms +mw � 1

�
mj

'j(b)� b
� mj � 1
'i(b)� b

�
; (3)

i; j = s; w, i 6= j, with boundary conditions 'w(bw) = vw and 's(bw) = bv. Note that
if bv < vs, then '0w(bw) = 0, by (2). Lebrun (2006) proves that '0i(b) > 0 for all interior
bids, however. The solution must also agree with a set of initial conditions. These
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are discussed later.

While this formulation of the problem focuses directly on equilibrium bidding

behavior, from a mechanism design perspective it is often more fruitful to examine

the equilibrium allocation instead. Thus, as in Kirkegaard (2012a), the problem

is reformulated. Consider a weak bidder with type v � r. Let bw(v) denote his

equilibrium bid. In equilibrium, this bid equals the bid submitted by a strong bidder

with some type k(v). In other words, the weak bidder wins if and only if all the other

weak bidders have type below v and all the strong bidders have type below k(v). The

weak bidder�s problem can be thought of as deciding which type, x, to mimic. His

problem is thus to maximize

(v � bw(x))Fs(k(x))msFw(x)
mw�1:

Similarly, a strong bidder with type k(v) who bids in the common range maximizes

(k(v)� bw(x))Fs(k(x))ms�1Fw(x)
mw :

By de�nition of equilibrium, bidders� payo¤s are maximized when x = v. When

v 2 (r; vw), the �rst order conditions yield the system of di¤erential equations

k0(v) =
Fs(k(v))

fs(k(v))

fw(v)

Fw(v)
T (k(v); bw(v); v)

b0w(v) =
fw(v)

Fw(v)
(k(v)� bw(v)) [(ms � 1)T (k(v); bw(v); v) +mw] ; (4)

where

T (k; bw; v) =
mw

k�bw
v�bw � (mw � 1)

ms � (ms � 1)k�bwv�bw

To compare this formulation of the problem with the previous one, the boundary

conditions are that k(vw) = bv and bw(vw) = bw.6,7 Naturally, the solution depends

on the parameters of the problem, (r;ms;mw). However, that dependence is sup-

pressed whenever no confusion arises as a result. Otherwise, I write k(vjr;ms;mw)

6In equilibrium, k0(v) > 0 and b0w(v) > 0. Note, however, that if bv < vs then T (k(v); bw(v); v)
goes to in�nity as v approaches vs, by (2).

7As T (k; bw; v) plays a role in several of the proofs, it is useful to note that T (k; bw; v) R 1 if and
only if k R v. Likewise, holding bw and v �xed, T (k; bw; v) is strictly increasing in k. It also holds
that @T (k;bw;v)@bw

R 0 if and only if k R v.
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and bw(vjr;ms;mw), respectively. In that case, k0(vjr;ms;mw) and b0w(vjr;ms;mw)

again denote the partial derivative with respect to v.

Note that a weak bidder with type v bids more aggressively than a strong bidder

with type v if and only if k(v) > v. Recall that k(vw) = bv > vw when r < vw. Indeed,
it is a standard result that reverse hazard rate dominance implies k(v) > v globally;

see e.g. Lebrun (1999) and Maskin and Riley (2000) for proofs of this result in various

settings. The following lemma proves that the property holds in the present setting.

Lemma 1 Assume r 2 [vs; vw). Then, k(v) > v for all v 2 (r; vw].

Proof. See Appendix A.
Several results rely on how the allocation changes with the reserve price. The eas-

iest way to see that the allocation must change is to note that the �initial conditions�

to the system of di¤erential equations change. In particular, it follows from Lebrun�s

(2006) analysis that bw(r) = r and k(r) = r.8 The �rst comparative statics result is

a monotonicity result. Speci�cally, k(v) is decreasing in r as illustrated in the left

panel of Figure 1.

Proposition 1 Assume ms � 2, mw � 1. If vw > r0 > r � vs then

k(vjr0;ms;mw) < k(vjr;ms;mw) for all v 2 [r0; vw):

Proof. See Appendix A.
Consider a weak bidder with some type v 2 [r0; vw). When the reserve price

increases from r to r0, this bidder becomes less likely (Proposition 1) to outbid the

strong bidders and win the FPA. However, it is still the case that he wins more often

than is e¢ cient (Lemma 1). This combination of features turns out to make it easier

to rank the FPA and the SPA when the reserve price is r0 than when it is r. However,

the number of bidders participating in the auction will also play a role.

8Lebrun (2006) shows that in general 'i(r) = r for all but at most one bidder, i = 1; 2. Stated
di¤erently, it is possible that 'i(r) > r for exactly one bidder, such that bidder i has a mass of types
that bids r. However, since strategies within any given group is symmetric and ms � 2, no strong
bidder can bid r for a mass of types. The same holds for weak bidders if mw � 2. This leaves the
case where mw = 1. Compared to Lebrun (2006), however, here it is assumed that reverse hazard
rate dominance applies. By Lemma 1, the weak bidder is more aggressive than the strong bidders,
for comparable types. Thus, the weak bidder cannot, in equilibrium, be bidding r for a mass of
types. In short, it must hold that 'i(r) = r for all bidders in the current model. Equivalently, the
initial conditions to the system in (4) are that k(r) = r and bw(r) = r.
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Proposition 2 Assume m0
s > ms � 2, m0

w > mw � 1, r > vs, and vs > bv =
k(vwjr;ms;mw). Then,

k(vjr;m0
s;mw) < k(vjr;ms;mw) and k(vjr;m;m0

w) < k(vjr;ms;mw) for all v 2 (r; vw):

Proof. See Appendix A.
The right panel of Figure 1 illustrates Proposition 2. As with Proposition 1,

Proposition 2 can also be thought of as a monotonicity result. In particular, the

auction becomes closer and closer to e¢ cient the more bidders are participating in

the auction. Thus, this result complements Swinkels (1999, 2001) �nding that the

�rst-price auction is asymptotically e¢ cient. In other words, k(vjr;ms;mw) converges

to v as the number of bidders goes to in�nity. The implication that k(vjr;ms;mw)

is not bounded away from v in the limit is useful. For completeness, the next result

states and proves this fact.

Proposition 3 Assumems � 2, mw � 1. Then k(vjr;ms;mw)! v for all v 2 (r; vw]
as ms !1 or mw !1.

Proof. See Appendix A.
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Figure 1: (a) The left panel depicts how k(vjr;ms;mw) changes with r, given (ms;mw);

(b) The right panel shows how k(vjr;ms;mw) changes with (ms;mw).
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4 Ranking auctions with large reserve prices

Myerson (1981) shows that expected revenue in any auction equals the expected value

of the winner�s virtual valuation.9 Bidder i�s virtual valuation is

Ji(v) = v �
1� Fi(v)
fi(v)

:

The comparative statics in the previous section are useful because they reveal how the

allocation in the FPA depends on the reserve price and the composition of bidders.

Let ERFPA(r;ms;mw) denote the expected revenue in the FPA given (r;ms;mw).

However, even under the assumption that the seller is risk neutral, he may care about

more than expected revenue. Let z denote the seller�s own-use valuation. Then, his

expected payo¤ in the FPA is

�FPA(z; r;ms;mw) = zFs(r)
msFw(r)

mw + ERFPA(r;ms;mw):

The literature often assumes implicitly or explicitly that z = 0. Of course, this is an

innocent normalization if the reserve price is exogenous. However, when the reserve

price is endogenous, its optimal value typically depends on z. Optimal reserve prices

are examined Section 7. For now, the reserve price is thought of as exogenous.

Although there are multiple equilibria in the SPA, I focus on the equilibrium in

which bidders use the weakly dominant strategy of bidding truthfully. When it is sold,

the good is thus allocated to the bidder with the highest type. Let ERSPA(r;ms;mw)

and �SPA(z; r;ms;mw) denote the expected revenue and the expected payo¤ to the

seller in the SPA, respectively. Recall that the weak bidder with the highest valuation

wins more often in the FPA than in the SPA, since k(v) > v for v > r. Hence, as noted

by Kirkegaard (2012a), for a �xed reserve price, r 2 [vs; vw], the revenue di¤erence
between the two auctions is

�(r;ms;mw) = ERFPA(r;ms;mw)� ERSPA(r;ms;mw)

= �FPA(z; r;ms;mw)� �SPA(z; r;ms;mw)

=

Z vw

r

 Z k(vjr;ms;mw)

v

(Jw(v)� Js(x)) dFs(x)ms

!
dFw(v)

mw : (5)

9This statement is true whenever any bidder earns zero payo¤ when he has the lowest possible
type in his type support. That property holds here due to the assumptions thatms � 2 and vs � vw.
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Intuitively, the inner integral in (5) captures the fact that when the most competitive

of the weak bidders wins in the FPA but not in the SPA it is because the most

competitive bidder in the strong group has a type above v but below k(v). If the

reserve price is so high that weak bidders are excluded, or r � vw, then�(r;ms;mw) =

0. In this case both auctions are e¢ cient and thus revenue equivalent.

It is pertinent to note that

Js(vs) > Jw(vw) > Js(vw) (6)

since vs > vw. Hence, from a revenue perspective it is desirable that the weak bidder

with type vw wins more often than is e¢ cient. However, he wins too often if he

outbids strong bidders with types close to vs. Note that this must necessarily occur

if there is no bid-separation, as is the case in any two-bidder model or if ms = 1.

Thus, Maskin and Riley (2000) conclude that �mechanism design considerations do

not settle the matter of which auction generates more revenue.�The innovation in

Kirkegaard (2012a) is based on the observation that what is important is not whether

the winner�s virtual valuation is no lower in the FPA than in the SPA with probability

one, but rather whether this is the case in expectation. Hence, he identi�es conditions

under which the inner integral in (5) is positive. These conditions are satis�ed in

Maskin and Riley�s (2000) two examples where the FPA dominates the SPA.

Kirkegaard (2012a) notes that his method extends to auctions with an arbitrary

number of weak bidders as long as there is just one strong bidder. However, he also

explicitly makes the point that it may fail if there is more than one strong bidder. He

demonstrates this by showing that when v is close to vw the inner integral in (5) is

negative when (i) ms � 2 and (ii) there is no bid-separation.10 However, it is evident
from the previous section that bid-separation arises if either the reserve price is high

enough or the number of bidders is high enough.

Indeed, using bid-separation as the lever to prove a revenue ranking enables more

basic mechanism design arguments to be utilized. In particular, the following results

work by establishing that with probability one the winner�s virtual valuation in the

FPA is no smaller than in the SPA. This is precisely the simple proof strategy that

Maskin and Riley (2000) note cannot work in two-bidder auctions. Thus, contrary to

10However, his assumptions also imply that the inner integral is positive when v is close to r.
Thus, it is no longer trivial to obtain a revenue ranking.
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what common intuition may suggest, auctions with several bidders may be method-

ologically and conceptually simpler to handle than auctions with just two bidders.

To be more precise, the proof strategy relies on verifying whether the parameters

(r;ms;mw) belongs to the set

P = f(r;ms;mw)jJw(v)�Js(x) > 0 for all x 2 [v; k(vjr;ms;mw)] and all v 2 (r; vw]g;

in which case the inner integrals in (5) are strictly positive. That is, when the allo-

cation in the FPA di¤ers from the allocation in the SPA it is because the item has

been awarded to a bidder with a strictly higher virtual valuation. The FPA is then

strictly better than the SPA for the seller. Naturally, (r;ms;mw) 2 P is su¢ cient but
not necessary for such a ranking. Likewise, by (6), (r;ms;mw) 2 P necessitates that
bid-separation is occurring.11

Recall that bv = k(vw) converges to vw from above as r converges to vw from below.
In other words, for any v 2 (r; vw], k(vjr;ms;mw) can be made arbitrarily close to v

by gradually increasing r. At the same time, (6) implies that Jw(v) > Js(x) when v

and x are close to vw. Thus, as r increases towards vw, (r;ms;mw) 2 P. Hence, the
FPA dominates the SPA for su¢ ciently large r.

Proposition 4 Given ms � 2 and mw � 1, there exists an br 2 [vs; vw) such that
�(r;ms;mw) > 0 for all r 2 [br; vw).
Proposition 4 is a �local� result that requires minimal assumptions; it has been

assumed only that vs > vw and that reverse hazard rate dominance applies. Indeed,

it would be su¢ cient to assume that reverse hazard rate dominance applies �locally�

around vw, or, by continuity, that
fs(vw)
Fs(vw)

> fw(vw). Note that not even �rst order

stochastic dominance is required to hold. An important implication is that under

these minimal assumptions there is no auction environment where the SPA dominates

the FPA for all reserve prices. Thus, there is no hope of �nding more re�ned conditions

where the SPA dominates the FPA regardless of the reserve price. Note that Maskin

and Riley�s (2000) example in which the SPA is more pro�table than the FPA assumes

vw = vs; see Section 5.

Appendix C extends Proposition 4 to the case with a single strong bidder, ms = 1.

Since bid-separation never arises in that case, arguments that are closer in spirit to
11This is not to say that the FPA cannot dominate the SPA if there is no bid-separation. Rather,

bid-separation enables a proof that the FPA is at least sometimes more pro�table than the SPA.
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Kirkegaard (2012a) must be used. Appendix C also describes conditions that are

weaker than (r;ms;mw) 2 P, but which are still su¢ cient for �(r;ms;mw) > 0.

Recall that Proposition 1 implies that if (r;ms;mw) 2 P then (r0;ms;mw) 2 P
for all r0 2 (r; vw). Thus, holding �xed the other primitives of the model, the FPA
is superior to the SPA for an interval of reserve prices. The next section examines

comparative statics.

5 Comparative statics

Two types of comparative statics are pursued here. I �rst analyze the e¤ects of

changing the composition of bidders. Second, I consider the consequences of increasing

the degree of asymmetry between the two groups of bidders. The common conclusion

is that the FPA dominates the SPA for more reserve prices as more bidders participate

in the auction or as the asymmetry becomes more pronounced.

5.1 Varying the number of bidders

Propositions 1 and 2 imply that (r;ms;mw) is more likely to belong to P the higher r,
ms, or mw are. The reason is that k(v) decreases, meaning that the strict inequality

in the de�nition of P must hold for fewer values of x (and fewer values of v if r

increases too). Hence, if the su¢ cient conditions for ranking the FPA above the SPA

are satis�ed for some (r;ms;mw) triplet, then they are also satis�ed when r increases

or when the number of bidders increases.

Proposition 5 Assume vw > r0 � r > vs, m0
s � ms � 2, and m0

w � mw � 1. Then,
(r0;m0

s;m
0
w) 2 P if (r;ms;mw) 2 P.

Proposition 5 implies that as the number of bidders increases, the set of reserve

prices for which the FPA can be proven to be preferable to the SPA weakly expands.

A stronger version can be obtained under the additional assumption that Fs strictly

dominates Fw in terms of the hazard rate, Fw <hr Fs, or

fs(v)

1� Fs(v)
<

fw(v)

1� Fw(v)
for all v 2 (vs; vw):

Note that Jw(v) > Js(v) for all v 2 (vs; vw]. Thus, it follows that (r;ms;mw) 2 P if
k(v) is su¢ ciently close to v for all v 2 (r; vw]. Invoking Propositions 2 and 3 then
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imply that for any r 2 [vs; vw), the FPA is strictly more pro�table than the SPA

when su¢ ciently many bidders are participating in the auction.

Proposition 6 Assume Fw <hr Fs. Then, for any r 2 [vs; vw), (r;ms;mw) 2 P
when ms and/or mw are su¢ ciently large.

5.2 Growing asymmetry: Stretching Fs

There are several ways of formalizing the idea that the degree of asymmetry between

the two groups of bidders changes. The modelling choice made here relies on the

observation that vs 6= vw is instrumental to the proof strategy. Holding Fw(v) and

vw �xed, the idea is thus to describe changes in the strong groups�distribution that

allows for increases in vs in such a way that the di¤erence between vs and vw can be

used as a meaningful measure of the degree of asymmetry.

Consider some twice continuously di¤erentiable function, G(v), de�ned for all

v � vs. Assume that G(vs) = 0 and that the derivative, g(v), is strictly positive for
any v > vs. For any vs � vw, let

Fs(vjvs) =
G(v)

G(vs)
, for all v 2 [vs; vs] (7)

and assume that

fs(vjvs)
Fs(vjvs)

=
g(v)

G(v)
� fw(v)

Fw(v)
, for all v 2 (vs; vw]: (8)

Hence, Fs dominates Fw in terms of the reverse hazard rate for any vs > vw. Note

that the two distributions may coincide in the limit where vs ! vw.12

Adapting Maskin and Riley�s (2000) terminology, increases in vs amounts to

�stretching�their distribution. Note that the strong groups�virtual valuation,

Js(vjvs) = v �
1� Fs(vjvs)
fs(vjvs)

= v � G(vs)�G(v)
g(v)

is strictly decreasing in vs. When needed, let P(vs) denote the set P for some �xed vs.
Compare two values of vs, v0s and v

00
s , with v

00
s > v

0
s. Assume that (r;ms;mw) 2 P(v0s).

12Note that the above formulation is without loss of generality. That is, for any �xed Fw and vs,
any Fs that satis�es the assumptions in Section 2 can be written as (7) and must satisfy (8).
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Thus, bid-separation is occurring when vs = v0s. Now, note that for bids in the range�
r; bw

�
, the system in (4) does not change at all when vs increases to v00s . The reason is

that the reverse hazard rates are independent of vs; see (8). Thus, the unique solution

to the system does not change when vs increases. In other words, k(vjr;ms;mw) is

unchanged. Then, since Js(vjv00s) < Js(vjv0s), it now follows that (r;ms;mw) 2 P(v00s).

Proposition 7 If (r;ms;mw) 2 P(v0s) then (r;ms;mw) 2 P(v00s) for all v00s > v0s.

Proposition 7 implies that as the degree of asymmetry increases, the FPA can

be proven to be superior to the SPA for more and more reserve prices. For a con-

verse, consider values of vs for which bid-separation arises.13 Then, k(vjr;ms;mw)

is unchanged as vs increases further, while Js(vjvs) strictly decreases. Thus, for any
r 2 (vs; vw), the FPA dominates the SPA when the asymmetry is large enough.14

Assuming away any reserve price, Kirkegaard (2012b) made a similar observation in

more specialized settings.

6 Reversals of the revenue ranking

Compared to much other work on ranking asymmetric auctions, the structure imposed

here is rather sparse. The model has been endowed only with the following properties:

(i) Di¤erent maximal types; vw < vs.

(ii) Reverse hazard rate dominance; fs(v)
Fs(v)

� fw(v)
Fw(v)

for all v 2 (vs; vw].

Proposition 6 additionally assumes:

(iii) Strict hazard rate dominance; fs(v)
1�Fs(v) <

fw(v)
1�Fw(v) for all v 2 (vs; vw).

In Kirkegaard (2012a) and two of Maskin and Riley�s (2000) examples, (i) and

(ii) are imposed together with a stronger version of (iii). As explained in Kirkegaard

(2012a), their assumptions are strong enough to guarantee that the FPA dominates

the SPA for all reserve prices in the two-bidder case or when ms = 1. Maskin and

Riley (2000) present a third example in which the SPA dominates the FPA. They

13It is implied by (2) that bid-separation must occur if vs is su¢ ciently high, regardless of r.
14On the other hand, reserve prices above vw become more pro�table too. This is one of the

reasons that endogenizing the reserve price is more challenging. See Section 7.
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assume there are two bidders and no reserve price. However, their logic extends to

any reserve price and any number of bidders. In that example, the inequalities in

(i) and (iii) are replaced by equalities. Since this is a limiting case of the current

model, it follows that a general revenue ranking does not exist in the present set-

up. It is worth reiterating that Kirkegaard�s (2012a) model and Maskin and Riley�s

(2000) various examples all yield the very strong result that a reserve price cannot

in�uence the revenue ranking. In comparison, the following example illustrates some

key properties of the model in this paper.

Example 1 (Ranking Reversals): Let Fs(v) be obtained by truncating Fw on

the left, such that

Fs(v) =
Fw(v)� Fw(vs)
1� Fw(vs)

, v 2 [vs; vw]

for some truncation point vs, vs 2 (vw; vw). It is easy to see that
Fs(v)
Fw(v)

is strictly

increasing on v 2 (vs; vw]. That is, reverse hazard rate dominance applies. However,
vw = vs and Jw(v) = Js(v) for all v 2 [vs; vw]. The example thus violates two of the
assumptions of the model described above. Assume moreover that Jw(v) and Js(v)

are strictly increasing in v. Then, the e¢ cient SPA allocates the good optimally

whenever it is sold. In the FPA, bid-separation does not arise in equilibrium since

vw = vs. However, due to reverse hazard rate dominance it must hold that k(v) > v

for all v 2 (r; vw), for any r 2 [vs; vw). Thus, weak bidders wins more often than
is e¢ cient. Hence, the SPA strictly dominates the FPA. Maskin and Riley�s (2000)

example that demonstrates the SPA may be more pro�table than the FPA is based

on the same logic.

Now perturb the model. Speci�cally, �stretch� Fs from the support [vs; vw] to

the support [vs; vw + "], where " > 0 is small. The new, perturbed, distribution Hs
satis�es Hs(v) = �Fs(v) for all v 2 [vs; vw] for some non-negative � that is strictly
smaller than one but very close to one. As in Section 5.2, the reverse hazard rate

is una¤ected on [vs; vw] and so it still holds that Hs strictly reverse hazard rate

dominates Fw. However, it is now the case that vw < vw + " = vs and Jw(v) > Js(v)

for all v 2 [vs; vw]. Hence, the perturbed model satis�es all the assumptions required
for the previous analysis. Fix some r 2 [vs; vw) and some ms � 2, mw � 1. By

continuity (see Lebrun (2002)), if " is close enough to zero and � close enough to one

then it must still hold that the SPA dominates the FPA. Now increase the reserve

price. As the reserve price approaches vw, Proposition 4 comes into e¤ect.
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In conclusion, the SPA dominates the FPA when the reserve price is low enough,

whereas the FPA dominates the SPA when the reserve price is high enough. Similarly,

holding r �xed, the SPA dominates the FPA with the original set of bidders. However,

by Proposition 6, the FPA will eventually come to dominate the SPA as the number

of bidders increases. I am aware of no other work that has demonstrated either of

these ranking reversal properties before. N

Example 1 demonstrates that the current model has richer features than existing

models as the revenue ranking may depend on both the size of the reserve price and

the composition of bidders. On the other hand, the model yields the robust prediction

that the FPA dominates the SPA for high reserve prices or many bidders.

7 Optimal reserve prices

7.1 Comparing reserve prices across auctions

Recall that when (r;ms;mw) 2 P, it necessarily holds that Jw(v)� Js(k(v)) > 0 for
all v 2 (r; vw]. By continuity, it then holds that Jw(v)� Js(x) > 0 for x close to, but
above, k(v). Thus, expected revenue in the FPA would be even higher if k(v) was

marginally higher. However, a drawback of increasing r in the FPA is that k(v) in

fact declines further, as stated in Proposition 1. This disadvantage is absent in the

SPA. For this reason, there is less of an incentive to marginally increase r in the FPA

than in the SPA.

Proposition 8 Fix r0 2 (vs; vw) and assume (r0;ms;mw) 2 P. Then,

@�(r;ms;mw)

@r
< 0 for all r 2 [r0; vw).

Proof. See Appendix A.
Let rSPA(z;ms;mw) denote the optimal reserve price in the SPA. If the optimal

reserve price is not unique, then rSPA(z;ms;mw) denotes the smallest optimal reserve

price. Let rFPA(z;ms;mw) denote any optimal reserve price in the FPA. With some

abuse of notation, I write rSPA(z) and rFPA(z) whenever the number of bidders is

understood to be �xed.

Assume that rSPA(z) 2 (vs; vw). The two auctions are revenue equivalent for any
r � vw. Hence, the assumption that rSPA(z) < vw together with Proposition 4 means
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that rFPA(z) < vw as well. Proposition 8 now makes it possible to determine in which

auction the optimal reserve price is larger, at least when assuming that rSPA(z) is

large enough to satisfy (rSPA(z);ms;mw) 2 P.

Corollary 1 Assume rSPA(z) 2 (vs; vw) and (rSPA(z);ms;mw) 2 P. Then,

rFPA(z) < rSPA(z)

and

�FPA(z; rFPA(z);ms;mw) > �
SPA(z; rSPA(z);ms;mw):

Proof. See Appendix A.
Since rSPA(z) > rFPA(z) > z, the FPA is more likely to realize a gain from trade.

On the other hand, it is clearly the case that the SPA is more e¢ cient than the FPA

contingent on a trade. This trade-o¤ implies that it is not a priori obvious which

auction is the most e¢ cient overall. This point is pursued further Section 9.

Proposition 8 also implies that �(r;ms;mw) is maximized to the right of any r

for which (r;ms;mw) 2 P. That is, the di¤erence between the expected revenue of
the FPA and the SPA is maximized at a �small�reserve price.

Note that in the example at the beginning of Section 5 �where vw = vs and

Jw(v) = Js(v) � it can never hold that (rSPA(z);ms;mw) 2 P. Indeed, in that

example, there is an incentive to lower k(v) in the FPA by increasing r beyond

rSPA(z). Hence, it is also possible that rSPA(z) � rFPA(z).

7.2 Ranking auctions with many bidders

Recall that Jw(vw) = vw > 0. Assume in this subsection that Js(v) � 0 for all v 2
[vw; vs]. One interpretation of the assumption is that the asymmetry between bidders

is not too large. Assume moreover that z is small enough that 0 � z � Js(v) for all
v 2 [vw; vs]. These assumptions are easily veri�ed to imply that �SPA(z; r;ms;mw)

and �FPA(z; r;ms;mw) are non-increasing in r for r � vw (recall that the auctions

are revenue equivalent for r � vw). In fact, the optimal reserve price in either auction
is strictly below vw.

As before, the distributions Fs and Fw are taken to be primitives of the problem.

The optimal reserve price in either auction is determined by z and (ms;mw). Assume

now that Fw <hr Fs, so that Proposition 6 can be invoked. Thus, there exists (ms;mw)
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for which the FPA is strictly better than the SPA for all non-prohibitive reserve prices.

It follows that the FPA must also be strictly better than the SPA when the reserve

price is endogenous and allowed to vary with the auction format.

Proposition 9 Assume Fw <hr Fs and that 0 � z � Js(v) for all v 2 [vw; vs]. Then,
there exists (ms;mw) such that

�FPA(z; rFPA(z;ms;mw);ms;mw) > �
SPA(z; rSPA(z;ms;mw);ms;mw):

In other words, the SPA is not weakly more pro�table than the FPA for all (ms;mw).

Proof. See Appendix A.
The logic behind Proposition 9 is that the FPA is �almost�e¢ cient when there

are many bidders and so (r;ms;mw) 2 P for any r that is a candidate for an optimal
reserve price in the SPA, given Fw <hr Fs. Thus, any claim that the SPA dominates

the FPA is sensitive to the seller�s own-use valuation and the composition of bidders.

In contrast, the example in Section 8 proves that there are (Fs; Fw) for which the

FPA is weakly better than the SPA for all (z;ms;mw).15

In summary, the message is not that the FPA always dominates the SPA, although

that is sometimes the case. Instead, the message is that the SPA cannot always

dominate the FPA; any claim to the contrary is more fragile.

7.3 Small asymmetries

Proposition 9 implies that there is a whole range of own-use valuations for which the

FPA strictly dominates the SPA for some (ms;mw). A partial converse is pursued

in this subsection. Thus, the aim is to establish whether for any (ms;mw) � (2; 1),
there exists some z such that the FPA strictly dominates the SPA with endogenous

reserve prices. Stated di¤erently, a counterpart to Proposition 4 that now allows for

endogenous reserve prices is sought.

Unfortunately, a non-trivial issue arises when the reserve price is endogenized.

First, to ensure that (rSPA(z);ms;mw) 2 P it is necessary that rSPA(z) is �high

15See Proposition 11, below. The example assumes (ms;mw) � (2; 1). However, the example also
satis�es Kirkegaard�s (2012a) assumptions and thus the ranking extends to the (ms;mw) � (1; 1)
case as well. The auctions are revenue equivalent if ms = 0 or mw = 0. Thus, the FPA is weakly
better than the SPA regardless of (ms;mw).
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enough�, which generally requires z to be large. However, if z is too large, then it

is no longer the case that rSPA(z) < vw. Intuitively, rSPA(z) is typically increasing

in z because higher z implies that the seller is happier to retain the object. The

problem, however, is that as z increases, rSPA may discontinuously jump from some

value strictly below vw to some value strictly above vw. The reason for the discon-

tinuity is that the seller is either attempting to pro�t from both groups of bidders

by accommodating weak bidders with a reserve price below vw, or focusing on ex-

tracting as much rent as possible from strong bidders by using a reserve price that is

prohibitive for weak bidders. As z increases, the seller switches from the former to

the latter approach. Consequently, there are reserve prices close to vw that can never

be rationalized in a SPA, regardless of z. Thus, it is hard in general to establish the

existence of a z for which (rSPA(z);ms;mw) 2 P.
To overcome this technical di¢ culty I return to the formulation of the model

presented in Section 5.2. Starting from vs = vw, it is then possible to consider auctions

with �small asymmetries�, or, more formally, auctions in which vs is marginally above

vw. Recall that the example in Section 6 �ts this model. In this setting, it can be

proven that there are own-use valuations for which the FPA strictly dominates the

SPA with endogenous reserve prices.

Proposition 10 Assume that Fs(�jvs) and Fw(�) satisfy (7)�(8). Then, there is some
v0s > vw such that for any vs 2 (vw; v0s) there exists an own-use valuation z for which

�FPA(z; rFPA(z;ms;mw);ms;mw) > �
SPA(z; rSPA(z;ms;mw);ms;mw)

for all ms � 2, mw � 1.

Proof. See Appendix A.
The results in Propositions 9 and 10 identify a challenge for the applied literature.

Speci�cally, if the seller�s own-use valuation is not known it becomes harder �and

perhaps impossible �to determine which auction is preferable. Likewise, it is worth

remembering that the composition of bidders may determine which auction is better.

7.4 Reversals of the pro�tability ranking

Section 5 assumes that the reserve price is exogenous and the same across auction

formats. In this case, whichever auction yields higher expected revenue then also
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yields higher expected pro�t. Section 6 establishes that the ranking of the two auc-

tions may change as the reserve price changes. However, Section 7.1 reveals that

the optimal (endogenous) reserve price generally di¤ers across auctions. The next

example strengthens the conclusion of Section 6 by showing that the pro�t ranking,

even when allowing for endogenous reserve prices, may also �ip as the seller�s own-use

valuation changes.

Example 2 (Sensitivity to the seller�s own-use valuation): Consider the

following concrete example of the type of model described at the beginning of Section

6. Speci�cally, assume Fw(v) = v
2
, v 2 [0; 2], and Fs(v) = v�1

vs�1 , v 2 [1; vs], with
vs � 2. Virtual valuations are Jw(v) = 2v � 2 and Js(v) = 2v � vs, respectively.
Virtual valuations are strictly increasing and, when vs = 2, strictly positive for any

v > vs = 1. It is then easy to see that the optimal reserve price in the SPA is

rSPA(0) = 1 when the seller�s own-use valuation is zero, or z = 0. That is, the good

is sold with probability one. In fact, the SPA implements the optimal auction since

Jw and Js coincide. Thus,

�SPA(0; rSPA(0;ms;mw);ms;mw) > �
FPA(0; rFPA(0;ms;mw);ms;mw):

By continuity, a small perturbation of Fs, obtained by marginally increasing vs, cannot

change this ranking when z is held �xed at z = 0. However, Proposition 10 proves

that there must be some other z for which the FPA is strictly more pro�table than

the SPA with endogenous reserve prices. N

Example 2 establishes that the seller�s own-use valuation may be crucial even

when selecting among simple auction formats like the SPA and the FPA. This fact

represents a challenge to the applied literature where the seller�s own-use valuation

need not be known. It can perhaps be argued that z can be inferred from the observed

reserve price that the seller is using in the real world.16 Given this premise, however, it

may be impossible for the econometrician to determine whether the auction currently

in use should be replaced with the alternative auction format. The reason is that the

optimal reserve price in the counterfactual auction may be below that used in the real

16This is a heroic assumption especially in applications where there is no history of experimen-
tation with the reserve price. After all, determining the optimal reserve price requires knowledge of
not only z but also of Fs(v) and Fw(v). Recall also that the optimal reserve price generally depends
on ms and mw.
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auction. In that case, the econometrician does not access to data that would allow

him to calculate optimal pro�t in the counterfactual auction.

8 Illustration: The uniform model

Assume in this section that both groups of bidders draw types from uniform distri-

butions, or Fi(v) = v
vi
, v 2 [0; vi], i = s; w. Maskin and Riley (2000) use this model

to illustrate one of their results by utilizing the fact that a closed-form equilibrium

solution can be characterized in the two-bidder case.

A closed-form solution seems unattainable when ms > 1. Nevertheless, Hubbard

and Kirkegaard (2015) show that bv can be characterized in the absence of a reserve
price. Appendix B explains how their arguments can be extended to allow for reserve

prices. Thus, it is possible to characterize bv = k(vwjr;ms;mw) for all r 2 [0; vw].
Moreover, in the uniform model it also turns out that (r;ms;mw) 2 P if and only if
Jw(vw) > Js(bv). Combining these two observations makes it possible to characterize
precisely when (r;ms;mw) 2 P.
To illustrate, �x vw = 1. Figure 2 depicts the set of reserve prices and values

of vs for which (r;ms;mw) 2 P, for three possible pairs of (ms;mw). In particular,

(r;ms;mw) 2 P at any (vs; r) point above the relevant curve. The fact that the

curves shift inwards as ms and mw increase re�ects Proposition 5. It also follows

from Proposition 5 that (r;ms;mw) 2 P for all (r;ms;mw) if (0; 2; 1) 2 P.

Corollary 2 In the uniform model, �(r;ms;mw) > 0 for all r 2 [0; vw) and all

ms � 2 and mw � 1 if vsvs >
p
20� 3 � 1:472.

Proof. The Corollary is implied by Proposition 13 in Appendix B.
The uniform model can also be used to illustrate and strengthen Propositions 9

and 10. Since the uniform model satis�es Kirkegaard�s (2012a) assumptions, the case

with a single strong bidder can also be analyzed.

Proposition 11 Consider the uniform model and assume that 1 < vs
vw
< 2. There

exists some z for which 0 < rFPA(z) < rSPA(z) < vw and

�FPA(z; rFPA(z);ms;mw) > �
SPA(z; rSPA(z);ms;mw):

for any ms � 1, mw � 1.
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Proof. See Appendix B.
The role of the assumption that vs

vw
< 2 is to ensure that Js(vw) > 0 as in

Proposition 9. Corollary 2 implies that the SPA cannot be strictly better than the

FPA for any z if vs
vw
> 1:472.
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Figure 2: Depicting P. The three curves from right to left describe the cases where

(ms;mw) equals (2; 1), (3; 2); and (6; 5), respectively, with s = vs.

9 E¢ ciency

Corollary 1 implies that from an e¢ ciency standpoint a trade-o¤ between the two

auctions may exist. In particular, the SPA is e¢ cient contingent on a sale, yet it

leads to a sale less often than the FPA when rSPA is large but close to vw. However,

it is hard to determine which e¤ect dominates without a closed-form solution of

equilibrium bidding in the FPA. The following example uses related arguments to

prove that the FPA may be more e¢ cient than the SPA.

Example 3 (Efficiency): Assume that z = 0. As in Section 8, assume the uni-

form model applies and that vw = 1 and vs > 2. Then, Js(vw) < z = 0. Hence,

�SPA(0; r;ms;mw) attains a local maximum at some r0 > vw. A reserve price of this

magnitude excludes the weak bidders. Standard arguments then lead to the conclu-

sion that r0 satis�es Js(r0) = 0 or r0 = 1
2
vs. However, if vs is not too large, then
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�SPA(0; r;ms;mw) also attains a local maximum at some r00 2 (0; vw). If ms = 2 and

mw = 3 then the seller is indi¤erent between r0 and r00 if and only if vs = v0s = 2:522;

see Figure 3. Assume for now that the parameters (vs;ms;mw) take these values.

Then, r0 = 1:261 and r00 = 0:804.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
1.025
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1.035
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Figure 3: Expected payo¤ in the SPA.

Now consider the FPA. The FPA is revenue equivalent to the SPA if the seller

uses a reserve price above vw. Hence, the only candidate for an optimal reserve price

in this range is r0. For reserve prices below vw, Corollary 2 implies that

max
r2(0;vw)

�FPA(0; r; 2; 3) > �SPA(0; r00; 2; 3) = �SPA(0; r0; 2; 3) = �FPA(0; r0; 2; 3):

Hence, the seller is strictly better o¤using a FPA with an optimal reserve price below

vw than a SPA with reserve price r0 or r00.

Next, increase vs marginally above v0s. The SPA is now uniquely maximized at a

reserve price, rSPA, slightly above r0. If the increase in vs is small enough, however, it

cannot change the fact that the optimal reserve price in the FPA, rFPA, remains below

vw. By continuity, it remains the case that the seller prefers the FPA with the optimal

reserve price to the SPA with the optimal reserve price. Moreover, rFPA < vw < rSPA.

The characterization of the uniform model detailed in Appendix B reveals thatbv = 1:155 in the FPA when r = 0. Proposition 1 then implies that even though rFPA
is unknown, bv cannot exceed 1:155. Hence, bv < rSPA � 1:261.
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It is now possible to compare the e¢ ciency properties of the two auctions. In the

SPA with reserve price rSPA, the object is allocated to the bidder with the highest

value, provided this value exceeds rSPA. The allocation in the FPA with reserve rFPA

is e¢ cient if the winner�s type is above bv. Consequently, if the object is sold in the
SPA with reserve rSPA > bv then it is sold to the exact same bidder in the FPA with
reserve rFPA. However, the latter realizes more gains from trade as the object is sold

more often.

Bidders with type below rFPA are indi¤erent between the two auctions since they

never win either. Weak bidders with higher types are excluded from the SPA but

have a chance of winning the FPA. Hence, they strictly prefer the FPA to the SPA.

Moreover, Myerson�s (1981) mechanism design arguments reveals that any strong

bidder with type above rFPA strictly prefers the FPA to the SPA.17 It has already

been argued that the FPA is more pro�table than the SPA. Hence, the seller ex ante

strictly prefers the FPA. Thus, the optimal FPA is an ante Pareto improvement over

the SPA (and even an interim improvement for bidders). N

The following proposition records the conclusion of Example 3.

Proposition 12 The FPA may be ex ante Pareto superior to the SPA when the

reserve price is endogenous.

It is possible that the optimal reserve price equals vs in both auctions. This

occurs if Ji(v) � z for all v 2 [vs; vi] and both i = s; w. Since the reserve price is the
same in both auctions, the SPA is more e¢ cient than the FPA in this case. Thus,

a general and unambiguous ranking of the two auctions in terms of e¢ ciency cannot

be obtained in the presence of endogenous reserve prices.

10 Conclusion

Progress on ranking di¤erent auctions in the presence of asymmetries has been slow.

This paper represents a �rst step towards understanding the problem when there are

17The expected utility of a strong bidder with type v � rFPA in a FPA is
R v
rFPA

qFPAs (x)dx,
where qFPAs (x) is his winning probability had his type been x. Expected utility in the SPA isR v
rSPA

qSPAs (x)dx for v � rSPA. The payo¤ ranking follows from the fact that qFPAs (x) > 0 =

qSPAs (x) for all x 2
�
rFPA; rSPA

�
and qFPAs (x) = qSPAs (x) for all x � rSPA.
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more than two bidders. A main simplifying assumption is that any bidder belongs to

one of two groups. This assumption is standard in the empirical literature.

The model is otherwise sparsely structured. A key assumption is that the highest

possible type is di¤erent across bidders. Given that the premise is that bidders are

asymmetric, identical supports would seem to be a knife-edge.18 The central result is

that in any environment consistent with these minimal assumptions, a reserve price

exists for which the FPA is strictly more pro�table than the SPA. However, the

revenue ranking may �ip as the reserve price changes. Since the optimal reserve price

is endogenous, this last observation puts a renewed emphasis on the seller�s own-use

valuation. It may play a more central role in selecting the best auction format than

suggested by existing theory.

Similarly, which auction is better may depend on the composition of bidders.

Unless the asymmetry is large, there always exists an own-use valuation and a bidder

composition for which the FPA is strictly more pro�table than the SPA. Thus, an

impossibility result emerges; the SPA cannot weakly dominate the FPA for all own-

use valuations and all combinations of bidders. Likewise, and perhaps contrary to

the received wisdom, endogenizing the reserve price may cause the FPA to Pareto

dominate the SPA.

These results suggest some caution is prudent when interpreting various �ndings

in the empirical literature. When conducting the counterfactual analysis described

in the introduction, it is rare that changes in the reserve price are examined as well.

Since the revenue ranking may be sensitive to the reserve price, it may be worthwhile

to augment counterfactual studies with a robustness check along this dimension of

auction design. More problematically, the best design may depend on the seller�s

own-use valuation, which is less likely to be known.

The model assumes participation is exogenous, yet it is not without implications

for the issue of entry. The value of attracting more participation is well-recognized;

see e.g. Bulow and Klemperer (1996). As the revenue ranking may also depend on

the composition of bidders, any steps taken to encourage entry should at the very

18A common maximal type should thus be assessed based on its economic content. There are
situations where it is sensible. Assume bidders are initially symmetric. Then, a subset form a cartel.
The cartel�s valuation is represented by the maximum of the cartel members�types. Alternatively,
imagine that the two groups di¤er only in the cost of entry. Given an asymmetric threshold for
entry, beliefs are updated in di¤erent ways depending on the identity of the entrant. In either case,
the model reduces to one with asymmetric bidders, but with a common maximum type.
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least be accompanied by an examination of whether a change in auction design at the

same time is called for.

In the two-bidder case, Maskin and Riley (2000) and Kirkegaard (2012a) present

stronger conditions under which the FPA is more pro�table than the SPA regard-

less of the reserve price. An interesting direction for future research is to examine

whether these conditions are su¢ cient with more bidders as well. The current paper

establishes that the same ranking at the very least obtains when the number of bid-

ders is su¢ ciently large. Thus, the FPA is preferable to the SPA at �corners�of the

parameters space, i.e. when the number of bidders is either two or very large.
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Appendix A: Omitted proofs

Proof of Lemma 1. Recall that k(vw) > vw. To illustrate the proof idea, assume

�rst that the inequality in (1) is strict. Assume there exists some v0 2 (r; vw] for
which k(v0) = v0. Since T = 1 at such a point,

k0(v0) =
Fs(v0)

fs(v0)

fw(v0)

Fw(v0)
< 1:

Thus, increasing v beyond v0 leads to the conclusion that k(v) � v. However, this

contradicts the equilibrium feature that k(vw) > vw. The idea is the same when the

inequality in (1) is weak. More formally, assume once again that there exists some

v0 2 (r; vw) for which k(v0) = v0. Based on this �initial condition�, the next step is to
obtain the solution to the system of di¤erential equations as v increases beyond v0 (the

solution to this initial value problem is unique given the di¤erentiability assumptions

imposed on the primitives). To begin, the guess is made that the solution satis�es

k(v) � v for all v � v0. Then, T � 1, and it follows that

d

dv
lnFs(k(v)) =

fs(k(v))

Fs(k(v))
k0(v) � fw(v)

Fw(v)
=
d

dv
lnFw(v);

independently of bw(v). By Gronwall�s inequality, the solution is then bounded above

by the solution that would be obtained if the inequality had been replaced by an

equality, or

ln
Fs(k(v))

Fw(v)
� ln Fs(v0)

Fw(v0)
:

Now, if k(v) > v then, by reverse hazard rate dominance,

Fs(k(v))

Fw(v)
>
Fs(v)

Fw(v)
� Fs(v0)

Fw(v0)
;

which contradicts the previous inequality. Thus, k(v) � v, thereby verifying the guess
made initially. In particular, k(vw) � vw, but this violates the equilibrium property

stated at the beginning of the proof. Hence, there can be no v0 2 (r; vw) for which
k(v0) = v0. By continuity, it then follows that k(v) > v for all v 2 (r; vw].

Proof of Proposition 1. Let bv denote the strong bidders�cut-o¤ type and bw the
weak bidders�maximum bid when the reserve price is r. Let bv0 and b0w denote their
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counterparts when the reserve price increases to r0. Note �rst that if bw = b
0
w thenbv = bv0, by (2). The system of di¤erential equations are then characterized by the same

boundary conditions regardless of whether the reserve price is r or r0. The unique

solution in case the reserve is r0 must thus coincide with the unique solution when the

reserve is r. However, this implies that bw(r0jr0) = bw(r0jr) > r0, which violates the
initial conditions of the system when the reserve is r0. Thus, in equilibrium, bw 6= b

0
w.

Consider next the possibility that bw > b
0
w, implying that bv0 � bv. Assume �rst

that bv0 > bv. Hence, for v close to vw, k(vjr0) is strictly above k(vjr) while bw(vjr0)
is strictly below bw(vjr), or k(vwjr0) = bv0 > bv = k(vwjr) and bw(vwjr0) = b0w < bw =
bw(vwjr). Reducing v from vw, �nd the nearest value, v0, (if one exists) where one of

the new endogenous functions crosses its old counterpart. The argument in the �rst

paragraph rules out that k(v0jr0) = k(v0jr) and bw(v0jr0) = bw(v0jr) at the same time.
There are two remaining cases. Assume bw(v0jr0) = bw(v

0jr) but k(v0jr0) > k(v0jr).
Then, b0w(v

0jr0) > b0w(v0jr), contradicting that bw(vjr0) < bw(vjr) for v > v0. Assume
instead that k(v0jr0) = k(v0jr) but bw(v0jr0) < bw(v

0jr). Then, k0(v0jr0) < k0(v0jr) if
k(v0jr0) = k(v0jr) > v0. However, this contradicts that k(vjr0) > k(vjr) for v > v0.
Next, assume that bw > b

0
w but that bv0 = bv. This necessitates bv0 = bv = vs. It can

now be seen that k(vjr) is steeper than k(vjr0) near vw. Hence, k(vjr0) > k(vjr) for v
close to, but strictly below, vw. By continuity, it is also the case that bw(vjr0) < bw(vjr)
in such a neighborhood. The previous arguments can then be repeated to obtain a

contradiction.

Hence, it has now been shown that bw < b
0
w, thereby implying that bv0 � bv. Stated

di¤erently, bw(vwjr) < bw(vwjr0) and k(vwjr) � k(vwjr0). Moreover, either k(vwjr) >
k(vwjr0) or k(vjr) is �atter than k(vjr0) near vw. In either case, bw(vjr) < bw(vjr0)
and k(vjr) > k(vjr0) when v is close to vw. Arguments like those above can then be
used to prove that these inequalities are unchanged as v is reduced from vw to r0.

Proof of Proposition 2. Consider changes in mw �rst. Let bv and bv0 denote the
cut-o¤ types when the composition of bidders is (ms;mw) and (ms;m

0
w), respectively.

Let bw and b
0
w denote weak bidders�maximum bid in the two environments. Hubbard

and Kirkegaard (2015, Proposition 2) have shown that if bv < vs, as assumed, thenbv0 < bv.19 Thus, k(vwjr;m0
s;mw) < k(vwjr;ms;mw). Starting at vw, reduce v until the

19The statement of Hubbard and Kirkegaard�s (2015) result assumes that mw � 2. However, as
explained earlier, this assumption can be weakened to mw � 1 once reverse hazard rate dominance
is assumed.
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�rst point is reached (if one exists) where k(v0jr;m0
s;mw) = k(v

0jr;ms;mw) > v
0, with

v0 > r. Assume �rst that bw(v0jr;m0
s;mw) � bw(v0jr;ms;mw). Then,

k(vwjr;m0
s;mw)� bw(v0jr;m0

s;mw)

v0 � bw(v0jr;m0
s;mw)

� k(vwjr;ms;mw)� bw(v0jr;ms;mw)

v0 � bw(v0jr;ms;mw)
> 1:

Combined withm0
w > mw these inequalities ensure that k0(v0jr;m0

s;mw) > k
0(v0jr;ms;mw).

However, this contradicts the fact that k(vjr;m0
s;mw); k(vjr;ms;mw) at v > v0. As-

sume next that bw(v0jr;m0
s;mw) < bw(v

0jr;ms;mw). Since k(v0jr;m0
s;mw) = k(v

0jr;ms;mw),

it must also hold that

bs(k(v
0jr;m0

s;mw)jr;m0
s;mw) = bw(v

0jr;m0
s;mw) < bw(v

0jr;ms;mw)

= bs(k(v
0jr;ms;mw)jr;ms;mw);

where the subscript s refers to strong bidder�s strategies. Letting 'i(bjr;ms;mw)

and 'i(bjr;m0
s;mw) denote the inverse bidding strategy of a bidder in group i, i =

s; w, there must now exist some b for which 's(bjr;m0
s;mw) > 's(bjr;ms;mw) and

'w(bjr;m0
s;mw) > 'w(bjr;ms;mw). However, this is impossible as established in the

proof of Hubbard and Kirkegaard�s (2015) Proposition 2. Hence, there can be no

v0 2 (r; vw) for which k(v0jr;m0
s;mw) = k(v0jr;ms;mw). Since k(vwjr;m0

s;mw) <

k(vwjr;ms;mw), continuity then implies that k(vjr;m0
s;mw) < k(vjr;ms;mw) for all

v 2 (r; vw]. The proof of the result for changes in ms is analogous.

Proof of Proposition 3. Lemma 1 establishes the lower bound that k(v) > v for

all v 2 (r; vw]. An upper bound on k(v) is derived next. The proof then concludes
by showing that the upper bound converges to v as the number of bidders goes to

in�nity.

Using (3) and the condition that '0w(b) � 0 yield the conclusion that

ms

k(v)� bw(v)
� ms � 1
v � bw(v)

� 0

or

k(v) � ms

ms � 1
v � 1

ms � 1
bw(v) (9)

for all v 2 (r; vw]. Since bw(v) is bounded above by v, the last term in (9) goes to

zero as ms !1. Since the �rst term converges to v, it now follows that k(v)! v as
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ms !1.
Next, consider changes in mw instead. In equilibrium, bw(v) � v. At the same

time, it follows from Myerson (1981) that for any v 2 (r; vw],

(v � bw(v))Fw(v)mw�1Fs(k(v))
ms =

Z v

r

Fw(x)
mw�1Fs(k(x))

msdx

or

bw(v) = v �
Z v

r

�
Fw(x)

Fw(v)

�mw�1�Fs(k(x))
Fs(k(v))

�ms

dx

� v �
Z v

r

�
Fw(x)

Fw(v)

�mw�1

dx! v as mw !1:

Thus, bw(v) ! v as mw ! 1. Once again, (9) now implies that k(v) ! v as

mw !1.

Proof of Proposition 8. Since

�(r;ms;mw) =

Z vw

r

 Z k(vjr)

v

(Jw(v)� Js(x)) dFs(x)ms

!
dFw(v)

mw ;

the derivative with respect to r is

@�(r;ms;mw)

@r
= �

 Z k(rjr)

r

(Jw(r)� Js(x)) dFs(x)ms

!
mwFw(r)

mw�1fw(r)

+

Z vw

r

�
(Jw(v)� Js(k(vjr)))msFs(k(vjr))ms�1fs(k(vjr))

@k(vjr)
@r

�
dFw(v)

mw

=

Z vw

r

�
(Jw(v)� Js(k(vjr)))msFs(k(vjr))ms�1fs(k(vjr))

@k(vjr)
@r

�
dFw(v)

mw ;

as k(rjr) = r. By Proposition 1, @k(vjr)
@r

< 0. Next, since (r0;ms;mw) 2 P it holds

that (r;ms;mw) 2 P for all r 2 [r0; vw), by Proposition 5. Hence, for any r 2 [r0; vw),
Jw(v)� Js(k(vjr)) > 0 for all v 2 (r; vw]. Thus,

@�(r;ms;mw)

@r
< 0 for all r 2 [r0; vw),

which completes the proof.
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Proof of Corollary 1. By de�nition,

ERFPA(r;ms;mw) = ER
SPA(r;ms;mw) + �(r;ms;mw):

Likewise, by de�nition ERSPA(rSPA(z);ms;mw) � ERSPA(r;ms;mw) for any r.

Since (rSPA(z);ms;mw) 2 P, �(rSPA(z);ms;mw) > �(r;ms;mw) for all r > rSPA(z),

by Proposition 8. Hence, ERFPA(rSPA(z);ms;mw) > ERFPA(r;ms;mw) for all

r > rSPA(z). Since

@ERFPA(r;ms;mw)

@r jr=rSPA(z)
=
@�(r;ms;mw)

@r jr=rSPA(z)
< 0;

it immediately follows that rFPA(z) < rSPA(z). The last part of the proposition

follows directly from Proposition 8 and the fact that �(vw;ms;mw) = 0.

Proof of Proposition 9. Assume that 0 � z � Js(v) for all v 2 [vw; vs]. Then,
regardless of (ms;mw), the optimal reserve price in either auction is strictly below vw.

Proposition 6 implies that there exists (ms;mw) pairs for which (r;ms;mw) 2 P for

all r 2 (vs; vw). Hence, �FPA(z; r;ms;mw) > �
SPA(z; r;ms;mw) for all r 2 (vs; vw).

Likewise, by continuity, �FPA(z; r;ms;mw) > �
SPA(z; vs;ms;mw) for some r close to

vs. Thus, regardless of what the optimal reserve price is in the SPA, the FPA is even

more pro�table.

Proof of Proposition 10. The proof proceeds in several steps.

Step 1: Note �rst that

@Js(vjvs)
@v

= 2 +
g0(v)

g(v)

G(vs)�G(v)
g(v)

:

Thus, Js(vjvs) is strictly increasing in v when v is close to vs. Similarly, Jw(v) is
strictly increasing in v when v is close to vw. By continuity, when vs is close to vw
there thus exists some v0 < vw such that Jw(v) and Js(vjvs) are both strictly increasing
for all v between v0 and vw and vs, respectively. Next, recall that Js(vwjvs) < Jw(vw)
whenever vs > vw. Thus, there also exists some v00 < vw such that Js(vjvs) < Jw(v)
for all v 2 (v00; vw]. To clarify, both v0 and v00 depend on vs. For any vs close to
vw, consider now the set of types between maxfv0; v00g and vw. For any type, v, in
this set, there exists a unique � > v that solves Jw(v) = Js(� jvs). Let �(vjvs) denote
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the resulting function. Since Jw(v) and Js(vjvs) are strictly increasing, �(vjvs) is also
strictly increasing and di¤erentiable.

Next, note that
@�(vjvs)
@v

= J 0w(v)

�
@Js(� jvs)
@�

��1
:

Recall that �(vwjvs) = vw in the limit where vs = vw. Hence, when vs = vw

@�(vjvw)
@v jv=vw

= 1 <
ms

ms � 1
.

Thus, for any (ms;mw), there is a set of (v; vs), with v < vw < vs, close to (vw; vw)

for which @�(vjvs)
@v

< ms

ms�1 . On this set, �(vjvs) is thus bounded below by

�(vjvs) = �(vwjvs) +
ms

ms � 1
(v � vw) ; (10)

where �(vwjvs) = �(vwjvs).
Together, (3) and the equilibrium property that '0w(b) � 0 imply that

ms

k(v)� bw(v)
� ms � 1
v � bw(v)

� 0

or, consistent with (2),

k(v) � ms

ms � 1
v � 1

ms � 1
bw(v):

Since bw(v) � r, k(v) is bounded above by

k(v) =
ms

ms � 1
v � 1

ms � 1
r:

Now, since �(vjvs) and k(v) have the same slope, it follows that if �(vwjvs) > k(vw)
then �(vjvs) > k(v) for all v � r. In this case,

�(vjvs) � �(vjvs) > k(vjr) � k(vjr)

and the monotonicity of Js(vjvs) then implies that (r;ms;mw) 2 P.
Step 2: For any vs close to vw, de�ne z(vs) = Js(vwjvs) > 0. For a �xed vs,

assume the seller�s own-use valuation is z(vs). Note that z(vw) = vw. Thus, the
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optimal reserve price in either auction is exactly vw when vs = vw. Note also that

z0(vs) < 0. Hence, z(vs) < vs whenever vs > vw.

Since Js(vjvs) is strictly increasing in v when v and vs are close to vw, it holds
that z(vs)� Js(vjvs) < 0 for all v > vw. The implication is that the optimal reserve
price in the SPA is strictly below vw whenever vs is above vw. Thus, any optimal

reserve price in the SPA, denoted r(vs), must satisfy the �rst order condition

ms [z � Js(rjvs)]
g(r)

G(r)
+mw [z � Jw(r)]

fw(r)

Fw(r)
= 0:20 (10)

When vs = vw, the �rst order condition is satis�ed at r(vw) = vw. By continuity,

when vs is marginally above vw, r(vs) must remain close to vw. Thus, Js(vjvs) and
Jw(v) are strictly increasing in v for all v � r. Hence, z(vs) � Js(rjvs) > z(vs) �
Js(vwjvs) = 0. To satisfy the �rst order condition it is then necessary that z(vs) �
Jw(r) < 0. Consequently, Jw(r) > z(vs) > Js(rjvs) or Jw(r) > Js(vwjvs) > Js(rjvs).
Monotonicity then implies that Jw(v) > Js(vjvs) for all v 2 [r; vw]. Thus, the analysis
in Step 1 is valid. Thus, the last step of the proof is to prove that �(vwjvs) > k(vw)
when vs is marginally above vw.

Step 3: Given z(vs) = Js(vwjvs), it is straightforward to show that when vs = vw,

r0(vw) = �
mw

2

1

ms
g(vw)
G(vw)

Fw(vw)
fw(vw)

+mw

� �1
2

mw

ms +mw

> �ms � 1
2

; (11)

where the �rst inequality comes from reverse hazard rate dominance and the second

inequality from the fact that ms � 2. Given the optimal reserve price in the SPA,

write the bound on k(v) as

k(vjr(vs)) =
ms

ms � 1
v � 1

ms � 1
r(vs);

20This �rst order condition can be derived from the fact that

�SPA(z; r;ms;mw) = zFs(r)
msFw(r)

mw +mw

Z vw

r

Jw(v)Fw(v)
mw�1Fs(v)

msfw(v)dv

+ms

Z vw

r

Js(v)Fs(v)
ms�1Fw(v)

mwfs(v)dv +ms

Z vs

vw

Js(v)Fs(v)
ms�1fs(v)dv:
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with
@k(vwjr(vs))

@vs jvs=vw
= � 1

ms � 1
r0(vs) <

1

2
;

by (11).

In contrast,
@�(vjvs)
@vs

=
g(vs)

g(v)

�
@Js(� jvs)
@�

��1
:

Evaluated at �(vwjvs), the term in the parenthesis reduces to 2 when vs = vw. Hence,
by (10)

@�(vwjvs)
@vs jvs=vw

=
@�(vwjvs)
@vs jvs=vw

=
1

2
:

Since �(vwjvw) = vw = k(vwjr(vw)), it follows that �(vwjvs) > k(vwjr(vs)) when
vs is marginally above vw. By the argument in the Step 1 (which is valid by Step 2),

(r (vs) ;ms;mw) 2 P when vs is marginally above vw. The Proposition now follows

by invoking Corollary 1.

Appendix B: Details of the uniform model

In general, two practical issues arise when checking whether (r;ms;mw) 2 P. First,
there is the issue of characterizing equilibrium in the FPA, as summarized by the

function k(v). Second, a continuum of inequalities must then be checked to verify

that (r;ms;mw) 2 P. The second problem is much reduced in the uniform model,

however.

Lemma 2 In the uniform model, (r;ms;mw) 2 P if and only if Jw(vw) > Js(bv) or,
equivalently, if bv < 1

2
(vs + vw).

Proof. In this uniform model, virtual valuations take the simple form Ji(v) = 2v�vi.
Note that virtual valuations are strictly increasing in v. Let �(v) denote the unique

solution to Js(�) = Jw(v), or �(v) = v + 1
2
(vs � vw). Thus, (r;ms;mw) 2 P if

k(v) < �(v) for all v 2 (r; vw]. Note that � 0(v) = 1. If it is ever the case that

k(v) = �(v), then

k0(v) >
Fs(�(v))

fs(�(v))

fw(v)

Fw(v)
=
�(v)

v
> 1:

Hence, k(v) and �(v) can cross at most once. Therefore, (r;ms;mw) 2 P if and only
if k(vw) < �(vw), or, stated di¤erently, if and only if bv < 1

2
(vs + vw).
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Lemma 2 implies that it is not necessary to characterize the function k(v) in its

entirety. Knowing k(vw) (i.e., bv) is su¢ cient to establish whether (r;ms;mw) 2 P.
Now, assuming the reserve price is zero, Hubbard and Kirkegaard (2015) characterizes

the equilibrium values of bv and bw. The latter can be written as
bv = min fvs; �(ms;mw)vwg ;

where, when m = ms +mw,

�(ms;mw) =
2msmw � (ms + 1) (m� 1) +

q
(ms + 1)

2 (m� 1)2 � 4mwms (m� 1)
2mw (ms � 1)

:

Hence, bid-separation occurs if and only if vs
vw
> �(ms;mw). If (ms;mw) = (2; 1), bid-

separation occurs if and only if vs is at least 23.61% larger than vw. If (ms;mw) =

(3; 2), the corresponding number is 8.11%. This provides an illustration of how much

more likely bid-separation becomes when the number of bidders increases. Example

3 in Section 9 relies on the fact that �(2; 3) = 1:155.

If the reserve price is set to zero, the condition in Lemma 2 is occurs if and only if

vs
vw
> 2�(ms;mw)� 1:

Thus, if (ms;mw) = (2; 1) and vs
vs
> 1:472 �or vs is at least 47.2% larger than vw �

then bid-separation is automatically so severe that (r;ms;mw) 2 P for all r 2 (0; vw)
and all ms � 2 and mw � 1. In this case, then, the FPA is strictly more pro�table
than the SPA for any r 2 (0; vw). Indeed, since �(r;ms;mw) is decreasing in r on

this interval, it also holds that the FPA is strictly more pro�table than the SPA at

r = 0. Corollary 2 in Section 8 simply restates the last part of Proposition 13.

Proposition 13 In the uniform model, �(r;ms;mw) > 0 for all r 2 [0; vw) if vs
vw
>

2�(ms;mw) � 1. This condition is satis�ed for any ms � 2 and mw � 1 if vs
vs
>p

20� 3 � 1:472.

A main point of the paper is that a reserve price allows one to manipulate equi-

librium to trigger bid-separation. That is, it is possible to engineer k to satisfybv = k(vw) � �(vw) even if the asymmetry is smaller than assumed in Proposition

13. From (2), it is possible to infer which bw is required to obtain a target value of
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bv. The next step is then to manipulate r until this is achieved. As mentioned above,
Hubbard and Kirkegaard (2015) characterize the equilibrium value of (bv; bw) in the
uniform model when r is �xed at zero. Their logic extends to r > 0. Given a reserve

price of r, the probability that the good is sold is (1� Fs(r)msFw(r)
mw). Hubbard

and Kirkegaard (2015) derive another expression of the probability of sale in the FPA.

This expression, which also holds for any r 2 [0; vw), can be reduced to

1�
� bv
vs

�ms�1�
ms
bw
vs
� bv
vs

�
ms +mw � 1�mw

bw
vw

��
:

Setting the two expressions equal to each other yields

Fs(r)
msFw(r)

mw =

� bv
vs

�ms�1�
ms
bw
vs
� bv
vs

�
ms +mw � 1�mw

bw
vw

��
or

r =

�
vmw
w bvms�1

�
msbw � bv �ms +mw � 1�mw

bw
vw

��� 1
ms+mw

(12)

Given a target for bv, bw = msvw � (ms � 1) bv is as mentioned determined from (2).

Then, (12) uniquely identi�es the value of r that is required to obtain bv. Note that
this is independent of vs for a �xed value of bv, at least as long as vs > bv. The reason
is that the system of di¤erential equations describing behavior at bids below bw is

una¤ected by vs; the reverse hazard rate,
fs(v)
Fs(v)

, is independent of vs.

The optimal reserve price generally varies with the auction format. An exception

arises when the optimal reserve price is above vw, such that weak bidders are excluded.

Then, regardless of the auction format, expected pro�t is

zFs(r)
ms +

Z vs

r

Js(v)dFs(v)
ms : (13)

The derivative with respect to r is proportional to z � Js(r). Since Js(v) is strictly
increasing, the expression in (13) is single-peaked in r on r 2 [vw; vs]. At r = vw, the
derivative equals z � Js(vw) = z + vs � 2vw. To continue, assume z � Js(vw) < 0,

or z + vs � 2vw. Then, the optimal reserve price in either auction must be strictly

below vw. It can now easily be veri�ed that the optimal reserve price in the SPA is

rSPA(z) =
mw +msvs
2(mw +ms)

+
z

2
:
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Figure 4 assumes (ms;mw) = (2; 1) and superimposes rSPA(12) and r
SPA(0) on top of

the relevant curve from Figure 2. The �gure thus reveals that Corollary 1 applies if

z = 0 whenever vs > 1:3788. If z = 1
2
then it applies whenever vs > 1:238. In fact, as

stated in Proposition 11 in Section 8, it can be shown that there always exists some

z for which Corollary 1 applies when vs < 2.

A sketch of the proof of Proposition 11 follows. As above, normalize vw = 1.

Thus, vs 2 (1; 2). Assume �rst that ms � 2. Next, �x z = Js(vw) = 2 � vs 2 (0; 1).
By design, z � Js(vw) = 0, which implies that the optimal reserve price in either

auction is strictly below vw = 1. Note that rSPA(z) = rSPA(2 � vs) is linear in
vs, with derivative � mw

2(mw+ms)
. Moreover, at the corner where vs = 1, rSPA(1) = 1

(since in this case the seller values the object more highly than the buyers do). Thus,

at the corner, rSPA(2 � vs) coincides with the downwards sloping curve Figure 2.
The latter can be shown to be concave in vs. Moreover, at vs = 1, the concave

curve decreases faster than the linear function rSPA(2� vs); its slope at that point is
�ms�1

2
< � mw

2(mw+ms)
. Hence, rSPA(2� vs) is strictly above the concave curve for any

vs > 1. Thus, by construction, there exists some z for which (rSPA(z);ms;mw) 2 P.
The proposition now follows by invoking Corollary 1. If ms = 1, the proposition

follows from Kirkegaard (2012a).
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Figure 4: The highest (lowest) upwards sloping cuve depicts rSPA(1
2
) (rSPA(0)) as a

function of vs.
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Appendix C: Extensions

C.1 Auctions with one strong bidder

Kirkegaard�s (2012a) approach accommodates any mw � 1. However, it necessitates
that ms = 1. Moreover, he imposes stronger assumptions on the relationship between

Fs and Fw. This subsection establishes that these additional assumptions are not

required in order to extend Proposition 4 to the ms = 1 case. Thus, I will assume

only that (i) vs > vw, (ii) Fs dominates Fw in terms of the reverse hazard rate, and,

for expositional simplicity, that (iii) Js(v) is strictly increasing.

Bid-separation never arises when there is just one strong bidder. Thus, k(vw) =bv = vs is the same regardless of the reserve price. However, it is easy to see from

the system in (4) that bw is strictly increasing in r. This in turn means that k0(vw)

becomes larger and larger as r increases. Since bw > r, it also holds that bw converges

to vw as r converges to vw. Thus, from (4), k0(vw) can be made arbitrarily large

simply by selecting a reserve price that is su¢ ciently close to vw.

When the weak bidders�type, v, is su¢ ciently high �such that Jw(v) > Js(v) �

there must exist some � > v for whichZ �(v)

v

(Jw(v)� Js(x)) dFs(x) = 0:

The assumption that Js(v) is strictly increasing implies that �(v) is unique and thatZ k(vjr;ms;mw)

v

(Jw(v)� Js(x)) dFs(x) > 0

as long as k(v) 2 (v; �(v)). It can be veri�ed that �(vw) = vs. Now, �(v) is indepen-
dent of r, whereas k(v) depends on r. Moreover, k(vw) = �(vw). Since k0(vw) can

be made arbitrarily large by letting r converge to vw, it now follows that there exists

large r for which

k(vjr;ms;mw) 2 (v; �(v)) for all v 2 (r; vw) .

By (5), the FPA dominates the SPA at such a reserve price. Note that the example

where the revenue ranking is reversed as r increases can then also be made to work

in a model with just two bidders.
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C.2 Weaker su¢ cient conditions

As emphasized earlier, the condition that (r;ms;mw) 2 P is su¢ cient but not nec-

essary to conclude that �(r;ms;mw) > 0. For instance, the weaker condition that

(r;ms;mw) belongs to

bP = ((r;ms;mw)

�����
Z k(vjr;ms;mw)

v

(Jw(v)� Js(x)) dFs(x)ms > 0 for all v 2 (r; vw]
)

is su¢ cient to obtain the same ranking, as can be seen from (5). Replacing P by bP is
analogous to how Kirkegaard (2012a) re�nes Maskin and Riley�s (2000) mechanism

design argument.

It is common to assume that Js(v) is monotonic. Combining this assumption with

strict hazard rate dominance yields the conclusion thatZ k

v

(Jw(v)� Js(x)) dFs(x)ms (14)

is �rst increasing and then decreasing in k, for k � v. Thus, the lower k is the more
likely it is that (r;ms;mw) 2 bP. Consequently, a counterpart to Proposition 4 exists
in which P is replaced by bP.
However, the results on optimal reserve prices �like Proposition 8 �are harder

to extend. Proposition 8 is valid because a decrease in k is unambiguously desirable

when (r;ms;mw) 2 P. However, this may not be the case when (r;ms;mw) 2 bP.
In particular, imagine that k is so high that it is to the right of where (14) peaks.

Decreasing k locally would then be undesirable.

The uniform model can be used to illustrate the gain in moving from P to bP.
Recall that Js(v) is monotonic in this model. Moreover,

k0(v) >
Fs(k(v))

fs(k(v))

fw(v)

Fw(v)
=
k(v)

v
;

or
d

dv
ln
k(v)

v
> 0:

Given k(v)
v
= bv

vw
at v = vw, the above bound on the slope of

k(v)
v
now yields the
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conclusion that
k(v)

v
<
bv
vw

for all v 2 [r; vw).

In other words, an upper bound on k(v) has been obtained, with k(v) � bv
vw
v for all

v 2 [r; vw]. Thus, for any v 2 [r; vw), (14) is strictly positive ifZ bv
vw
v

v

(Jw(v)� Js(x)) dFs(x)ms � 0: (15)

It is not hard to verify that the derivative of the expression on the left with respect to

v is either positive for all v or �rst positive and then negative. Hence, if the condition

in (15) is satis�ed at the endpoints, v 2 f0; vwg, then the condition is also satis�ed in
the interior. Since the condition is trivially satis�ed at v = 0, the conclusion emerges

that (15) is satis�ed for all v if and only if it is satis�ed at v = vw, where it of course

reduces to Z bv
vw

(Jw(vw)� Js(x)) dFs(x)ms � 0:

It is now straightforward to check if this condition is satis�ed for any given bv. Note
that if the condition is satis�ed for some value of bv then it is also satis�ed for all lower
values, keeping in mind that bv � vw.
To illustrate, normalize vw = 1 and assume for concreteness that ms = 2, mw = 1.

Then, (r;ms;mw) 2 bP if and only if
bv < bvc(vs) = 1

8

�
(3vs � 1) +

p
3 (3vs � 1) (vs + 5)

�
:

This critical value of bv is extremely close to vs. For instance, bvc(1:5) = 1:47. The im-
plication is that minimal bid-separation is required for (r;ms;mw) 2 bP. If vs > 1:244
then bv can be shown to exceed bvc(vs) regardless of the reserve price. In comparison,
from Section 8, bid-separation becomes an equilibrium feature as soon as vs > 1:236,

even without a reserve price.

Following the same steps as in Section 8, it is possible to derive the reserve price

that ensures bv < bvc(vs) and thus (r;ms;mw) 2 bP. This is depicted in Figure 5
along with the curve from Section 8 that de�nes when (r;ms;mw) 2 P. Speci�cally,
(r;ms;mw) 2 bP in the area above the lowest curve, while (r;ms;mw) 2 P in the area
above the highest curve. The area between the curves thus represents how much is

gained by replacing P with bP.
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The inner integral in (5) is positive for all v if and only if (r;ms;mw) 2 bP. This
property is also su¢ cient but not necessary for the FPA to outperform the SPA.

Weakening the su¢ cient conditions would thus require one to handle cases where the

inner integral in (5) changes sign. This is left for future research.

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

s

r

Figure 5: Comparing P and bP for ms = 2, mw = 1.
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