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Abstract

We say that a social choice rule is implementable with (small) transfers if one can
design a mechanism whose set of equilibrium outcomes coincides with that speci�ed by
the rule but the mechanism allows for (small) ex post transfers among the players. We
show in private-value environments that any incentive compatible rule is implementable
with small transfers. We obtain this permissive implementation result by proposing
a natural extension of Abreu and Matsushima (1994) to incomplete information envi-
ronments. Furthermore, in order to showcase the applicability of our results, we relate
them to the recent developments in implementation theory. Next we revisit the con-
jecture by Abreu and Matsushima (1994), who claim that the extension of Abreu and
Matsushima (1994) may be possible by mimicking the argument of Abreu and Mat-
sushima (1992b). To the extent that our mechanism is a natural extension of that of
Abreu and Matsushima (1994), we show by example that their conjecture is not uncon-
ditionally warranted to cover fully interdependent-value environments. We therefore
identify a condition under which our results can be extended to interdependent-value
environments and tightly connect this identi�ed condition to the notion of strategic
distinguishability due to Bergemann and Morris (2009b).
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1 Introduction

The theory of implementation and mechanism design is mainly concerned with the following
question: what is the set of outcomes that can be achieved by institutions (or mechanisms)?
This institutional design problem is particularly relevant when a group of individuals with
con�icting interests has to make a collective decision. The key question then becomes:
when can individuals, acting in their own self-interest, arrive at the outcomes consistent
with a given welfare criterion (or social choice rule)? To characterize the set of Pareto
e¢ cient allocations, for instance, we must know the preferences of those individuals, which
is dispersed among the individuals involved. If Pareto e¢ ciency is to be guaranteed, we
must elicit this information from the individuals. In what follows, an individual�s private
information relevant to implementing some welfare criterion is referred to as the individual�s
type. Obviously, the di¢ culty of eliciting types lies in the fact that individuals need not tell
the truth.

For this elicitation, we start our discussion from the notion of partial implementation.
We say that a social choice rule is partially implementable if there exists (i) a mechanism, and
(ii) an equilibrium whose outcome coincides with that speci�ed by the rule. To understand
the class of partially implementable rules, we often appeal to the revelation principle, which
says that whenever partial implementation is possible, one can always duplicate the same
equilibrium outcome by using the truthful equilibrium in the direct revelation mechanism.
Thus, a necessary condition for the implementation of any welfare criterion is its incentive
compatibility, which is simply the property that the best thing for each individual to do in
the direct revelation mechanism is to report his true type as long as all other individuals
truthfully announce their types.

Although the revelation principle can be adopted in many applications, it is important
to realize that the direct revelation mechanism may possess other untruthful equilibria whose
outcomes are not consistent with the welfare criterion. This problem of multiple equilibria is
not merely hypothetical; rather, it has been found by researchers in numerous contexts to be
a severe problem.1 In order to take seriously the problems resulting from the multiplicity of
equilibria, some researchers have turned to the question of full implementation, and explored
the conditions under which the set of equilibrium outcomes coincides with a given welfare
criterion. The literature of full implementation proposes a variety of mechanisms with the
additional property that undesirable outcomes do not arise as equilibria.

The main objective of this paper is to advance the literature of (full) implementation
theory in several dimensions. Before going into the detail of our results, we shall start by
articulating the domain of problems to which our results apply. First, we consider envi-
ronments in which monetary transfers among the players are available and all players have

1See Bassetto and Phelan (2008) in optimal income taxation, Demski and Sappington (1984) in incentive
contracts, Postlewaite and Schmeidler (1986) and Palfrey and Srivastava (1987) in Bayesian implementation
in exchange economies, and Repullo (1985) in dominant-strategy equilibrium implementation in social choice
environments.
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quasilinear utilities. We can justify this class of environments because most of the settings
in the applications of mechanism design are in economies with money. Second, we employ
the stochastic mechanisms in which lotteries are explicitly used. Therefore, we assume that
each player has a von Neumann-Morgenstern expected utility. Third, we adopt the iterative
deletion of weakly dominated strategies as our solution concept. We say that an action ai is
weakly dominated by another action a0i if, no matter how other players play the game, a

0
i

cannot be worse than ai and sometimes it can be strictly better. Fourth, we consider the
case in which players�signals are correlated. Although this excludes the case of independent
signals, we argue by example that this exclusion is indispensable in our construction. Note
also that we can easily restore the correlation by slightly perturbing these signals. Finally,
we adopt an approximate version of full implementation, which aims at achieving the socially
optimal outcome together with some small ex post transfers. We say that a social choice rule
is implementable with arbitrarily small transfers if one can design a mechanism whose set of
equilibrium outcomes coincides with that speci�ed by the rule, which allows for arbitrarily
small ex post transfers among the players.

Given the quali�cation we have made clear above, we are ready to state one of our main
results in private-value environments: a social choice rule is implementable with arbitrarily
small transfers if and only if it is incentive compatible (Theorem 1). We also show in Section
A.1 that the order of deletion of strategies does not matter. As we regard our mechanism
as a natural extension of that of Abreu and Matsushima (1994) to incomplete information
environments, we must stress that our mechanism is �nite and uses no devices like �integer
games�in which each player announces an integer and the player who announces the highest
integer gets to be a dictator. This exhibits a clear contrast with Palfrey and Srivastava
(1989), who employ an integer game-like device to establish a very similar result to ours.
The �niteness of our mechanism is not only a nice property, as we need not employ integer
games, but also an important instrument that enables us to derive all of our applications we
discuss below. Although our mechanism exploits the power of ex post transfers, we can make
these transfers arbitrarily small. Since small ex post transfers result in only an arbitrarily
small cost for full implementation, we believe that all individuals would be willing to accept
this small cost as a negligible entry fee to participate in the mechanism.

We now discuss how our results are closely related to the recent developments in imple-
mentation theory (Sections 1.1, 1.2, 1.3, and 1.4). Section 1.5 discusses how we can extend
our result to interdependent-value environments. Finally, we provide the plan of the paper
in Section 1.6.

1.1 No Transfers

While the use of small ex post transfers strikes us as being innocuous, it would still be
interesting to know when we can avoid any ex post transfers �on the equilibrium.�If there are
no ex post transfers �on the equilibrium,�a social choice rule is said to be implementable with
no transfers. We propose two classes of environments in which we can achieve implementation
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with no transfers. The �rst class of environments is the case of nonexclusive-information
(NEI) structures (Theorem 2). NEI captures the situation in which any unilateral deception
from the truth-telling in the direct revelation mechanism can be detected. The second
class of environments is the case in which there are no consumption externalities among the
players and each player only cares about his own consumption (Theorem 3). We can think of
exchange economies as an example of this situation. In this environment, however, we need
to strengthen the requirement of incentive compatibility into �strict�incentive compatibility.

1.2 Continuous Implementation

Oury and Tercieux (2012) recently shed light on the connection between partial and full
implementation. They consider the following situation: The planner wants not only one
equilibrium of his mechanism to yield a desired outcome in his initial model (i.e., partial
implementation) but it to continue to do so in all models �close�to his initial model. This is
what they call continuous (partial) implementation. They show that Bayesian monotonic-
ity, which is a necessary condition for full implementation, becomes necessary for (strict)
continuous implementation. Hence, continuous implementation can be a strong argument
for full implementation.

As Bayesian monotonicity sometimes becomes a stringent constraint, we establish a
very permissive continuous implementation result. That is, incentive compatibility is the only
constraint we need to take into account so that our �nite mechanism also achieves continuous
implementation as long as the planner can allow for small ex post transfers (Theorem 4). We
regard this as a signi�cant �nding because few positive continuous implementation results
had been o¤ered in the literature.2

1.3 UNE-Implementation

If the planner wants all equilibria of his mechanism to yield a desired outcome under complete
information, and entertains the possibility that players may have even the slightest uncer-
tainty about payo¤s, then the planner should insist on a solution concept hat has a closed
graph in the limit of complete information. Chung and Ely (2003) add this closed-graph
property to full implementation in undominated Nash equilibrium (i.e., Nash equilibrium
where no players use weakly dominated actions) and call the corresponding concept �UNE-
implementation�. They show that Maskin monotonicity, a necessary condition for Nash
implementation, becomes a necessary condition for UNE-implementation. For their proof,
Chung and Ely need to construct a nearby interdependent-value environment around com-
plete information, in which some players have superior information about the preferences of
other players. Since we focus only on private-value environments, their result does not apply

2One notable exception is de Clippel, Saran, and Serrano (2014), who show that strict incentive com-
patibility is a su¢ cient condition for continuous implementation when the players are constrained by their
reasoning ability.
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to us. In complete information environments, we instead show that any social choice rule is
UNE-implementable with no transfers when there are at least three players.

1.4 Full Surplus Extraction

In a seminar paper, Crémer and McLean (1988) show that in a single object auction with
generic correlated types, it is possible to design a mechanism that extracts all the surplus
from the agents.3 Although this is a surprisingly positive result, Brusco (1998) points out
that the mechanism of Crémer and McLean (1988) might possess undesirable equilibria.
We can resolve this multiplicity of equilibrium problem so that the full surplus extraction
outcome is fully implementable with arbitrarily small transfers, as long as players do not use
weakly dominated strategies (Corollary 4).

1.5 Interdependent-Value Environments

We consider our mechanism as a natural extension of the one proposed by Abreu and Mat-
sushima (1994) to incomplete information environments. In fact, Abreu and Matsushima
(1994) conjecture that their result under complete information can be extended in a similar
manner of Abreu and Matsushima (1992b), who extend the result of virtual (as opposed
to exact) implementation of Abreu and Matsushima (1992a) to incomplete information en-
vironments. By virtual implementation we mean a notion in which the planner contents
himself with implementing the social choice rule with arbitrarily high probability. To the
extent that our mechanism is a natural extension of that of Abreu and Matsushima (1994),
we argue by example in Section 4.1 that one needs more conditions than those in Abreu and
Matsushima (1992b) to extend the result to interdependent-value environments. Moreover,
we identify a condition (called Assumption 2) under which our Theorem 1 can be extended to
interdependent-value environments (Theorem 5). This exhibits a stark contrast with Palfrey
and Srivastava (1989), who only provide an example (their Example 3) that illustrates the
limitation of their result in interdependent-value environments.

We elaborate more on the issue of how to extend our result to interdependent-value
environments by introducing the concept of strategic (in)distinguishability due to Bergemann
and Morris (2009b): two payo¤ types are said to be strategically distinguishable if and only
if there is a �nite mechanism for which the two types do not share the intersection in terms of
actions that survive iterated elimination of ex post (not interim) strictly dominated strate-
gies.4 We argue that the extension of our implementation result to interdependent-value
environments is tightly connected to the notion of strategic distinguishability. First, in the
example of Section 4.1, all the payo¤ types turn out to be strategically indistinguishable.
Second, our Assumption 2 holds generically as long as each player has at least two distinct
payo¤ types that are strategically distinguishable. Strategic distinguishability was originally

3See Section 3.4 and footnote 15 for the properties of the mechanism.
4See Bergemann and Morris (2009b) for more on this solution concept.
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proposed in the context of robust (virtual) implementation whose results are made belief-free,
whereas our paper is concerned with interim implementation that takes the players�interim
beliefs as the primitive of the model. To the best of our knowledge, we are the �rst who
�nd it essential to use the notion of robust implementation to obtain the results for interim
implementation. In Section 5.2, we also detail exactly how Abreu and Matsushima (1992b)
obtain permissive �virtual� implementation results in fully interdependent-value environ-
ments. We regard the di¤erence between the permissive result of virtual implementation
and our substantial restriction on the admissible class of interdependent-value environments
as a revealing feature that was completely absent under complete information.

1.6 Plan of the Paper

The rest of the paper is organized as follows: In Section 2, we focus on private-value envi-
ronments. More speci�cally, in Section 2.1, we introduce the preliminary notation and de�-
nitions. In Section 2.2, we discuss our solution concept and the concept of implementation.
In Section 2.3, we introduce an assumption (Assumption 1) that we maintain throughout
Sections 2 and 3 as well as provide some preliminary results. In Section 2.4, we establish
our result in private-value environments (Theorem 1). Section 3 discusses four applications
of our Theorem 1: we propose two classes of environments within which we can achieve im-
plementation with �no�transfers (Section 3.1). We investigate the connection to continuous
implementation (Section 3.2), to UNE-implementation (Section 3.3), and to the full surplus
extraction (Section 3.4). In Section 4, we extend Theorem 1 to interdependent-value envi-
ronments. Speci�cally, in Section 4.1, we show by example that the most optimistic version
of the extension to interdependent-value environments is not possible. In Section 4.2, we
replace Assumption 1 with a new assumption (Assumption 2) under which our Theorem 1
can be extended to interdependent-value environments (Theorem 5). In Section 5, we dis-
cuss the role of honesty, with which we can strengthen our results to that of rationalizable
implementation (Section 5.1); and we compare our results with virtual implementation re-
sults of Abreu and Matsushima (1992b) (Section 5.2). In the Appendix, we show that in
private-value environments, the order of removal of strategies is irrelevant (Section A.1). In
the rest of the Appendix, we provide all the proofs omitted from the main body of the paper
(Sections A.2 through A.5).

2 Private-Value Environments

In this section, we �rst focus on the implementation problem in private-value environments.
The implementation results in general interdependent-value environments will be provided
in Section 4.
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2.1 The Environment

Let I denote a �nite set of players and with abuse of notation, we also denote by I the
cardinality of I. The set of pure social alternatives is denoted by A, and �(A) denotes the
set of all probability distributions over A with countable supports: In this context, a 2 A

denotes a pure social alternative and x 2 �(A) denotes a lottery on A:
The utility index of player i over the set A is denoted by ui : A��i ! R, where �i is

the countable set of payo¤ types and ui(a; �i) speci�es the bounded utility of player i from
the social alternative a under �i 2 �i: Throughout the paper, we make the following mild
assumptions on �i and ui(�): (i) every payo¤ type corresponds to a distinct preference, i.e.,
for any i 2 I and �i; �

0
i 2 �i with �i 6= �0i, ui(�; �i) is not a positive a¢ ne transformation of

ui(�; �0i); and (ii) every payo¤ type is never indi¤erent over outcomes, i.e., for every i 2 I

and �i 2 �i, ui(�; �i) is not a constant function on A. Denote � = �1 � � � � � �I and
��i = �1 � � � � � �i�1 � �i+1 � � � � � �I .5 We abuse notation to use ui(x; �i) as player i�s
expected utility from a lottery x 2 �(A) under �i. We also assume that player i�s utility is
quasilinear in transfers, denoted by ui(x; �i) + � i where � i 2 R:

A model T is a triplet (Ti; �̂i; �i)i2I ; where T is a countable type space6; �̂i : Ti ! �i;
and �i(ti) 2 �(T�i) denotes the associated interim belief for each ti 2 Ti: We assume that
each player of type ti always knows his own type ti. For each type pro�le t = (ti)i2I , let
�̂(t) denote the payo¤ type pro�le at t, i.e., �̂(t) � (�̂i(ti))i2I . If Ti is a �nite set for every
player i, then we say (Ti; �̂i; �i)i2I is a �nite model. Let �i (ti) [E] denote the probability
that �i (ti) assigns to any set E � T�i:

Given a model (Ti; �̂i; �i)i2I and a type ti 2 Ti; the �rst-order belief of ti on � is
computed as follows: for any � 2 �,

h1i (ti)[�] = �i (ti) [ft�i 2 T�i : �̂(ti; t�i) = �g]:

The second-order belief of ti is his belief about t1�i; set as follows: for any measurable set
F � ���(�)I�1,

h2i (ti)[F ] = �i(ti)
h
ft�i : (�̂(ti; t�i); h1�i(t�i)) 2 Fg

i
:

An entire hierarchy of beliefs can be computed similarly.
�
h1i (ti); h

2
i (ti); :::; h

`
i(ti); :::

�
is an

in�nite hierarchy of beliefs induced by type ti of player i. We assume the belief hierarchy is
coherent, that is, for any l; any X =supp

�
hli (ti)

�
\ supp

�
hl�1i (ti)

�
;

margXh
l
i (ti) = margXh

l�1
i (ti) :

Therefore, we assume it is common knowledge that each player of type ti always knows his

5Similar notation will be used for other product sets.
6We distinguish payo¤ type space from type space for the discussion of the robustness property of our

main results (see Section 3):
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own payo¤ type and holds coherent belief hierarchy. We denote by T �i the set of player i�s
hierarchies of beliefs in this space and write T � =

Q
i2I T

�
i : T

�
i is endowed with the product

topology so that we say a sequence of types fti [n]g1n=0 converges to a type ti (denoted as
ti [n]!p ti), if for every ` 2 N; h`i(ti[n])! h`i(ti) as n!1. We write t[n]!p t if ti [n]!p ti
for all i:

Throughout the paper, we consider a �xed environment E which is a triplet
�
A; (ui)i2I ;

�T
�

with a �nite model �T =
�
�Ti; ��i; ��i

�
i2I and a planner who aims to implement a social choice

function (henceforth, SCF) f : �T ! �(A).7

2.2 Mechanisms, Solution Concepts, and Implementation

We assume that the planner can �ne or reward any player by side payments. A mechanism
M is a triplet ((Mi); g; (� i))i2I where Mi is the nonempty ��nite�message space for player
i; g : M ! �(A) is an outcome function; and � i : M ! R is a transfer rule from player
i 2 I to the designer. For any �i 2 �(Mi) and ��i 2 �(M�i), we abuse the notation to
denote by g (�i; ��i) the induced lottery in �(A) and by � i (�i; ��i) the induced expected
transfer. We say that a mechanismM has �nes and rewards bounded by �� if j� i (m)j � ��

for every i 2 I and every m 2 M . Note that there is a class of such mechanisms given �� :
We denote one of the mechanisms by (M; ��).

Given a mechanismM, let U(M; T ) denote an incomplete information game associated
with a model T . Fix a game U(M; T ), player i 2 I and type ti 2 Ti. We say that
mi 2 S0Wi (tijM; T ) if and only if there does not exist m0

i 2Mi such thatX
t�i

h
ui(g(m

0
i; ��i(t�i)); �̂i(ti)) + � i (m

0
i; ��i(t�i))

i
�i(ti)[t�i]

�
X
t�i

h
ui(g(mi; ��i(t�i)); �̂i(ti)) + � i (mi; ��i(t�i))

i
�i(ti)[t�i]

for all ��i : T�i ! M�i and a strict inequality holds for some ��i : T�i ! M�i.8 For any
l � 1, we say that mi 2 Sl+1Wi (tijM; T ) if and only if there does not exist m0

i 2 Mi such
that X

t�i

h
ui(g(m

0
i; ��i(t�i)); �̂i(ti)) + � i (m

0
i; ��i(t�i))

i
�i(ti)[t�i]

>
X
t�i

h
ui(g(mi; ��i(t�i)); �̂i(ti)) + � i (mi; ��i(t�i))

i
�i(ti)[t�i]

for all ��i : T�i ! M�i and for all t�i and m�i such that ��i(t�i) 2 SlW�i (t�ijM; T ) =Q
j 6=i S

lWj (tjjM; T ). Let S1W denote the set of strategy pro�les which survive one round

7We will consider a countable model when we de�ne and study continuous implementation in Section 5.1.
8Our solution concept is equivalent to the one which allows for mixed strategy conjectures � : T�i !

�(M�i).
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of removal of weakly dominated strategies followed by iterative removal of strictly dominated
strategies, i.e.,

S1Wi (tijM; T ) =
1\
l=1

SlWi (tijM; T ) ,

S1W (tjM; T ) =
Y

i2I
S1Wi (tijM; T ) :

In de�ning the solution, we require that the dominating strategies be pure strategies
instead of mixed strategies. This makes the solution concept weaker and thus the imple-
mentation result stronger. We refer the reader to Börgers (1994) and Dekel and Fudenberg
(1990) for the foundations of S1W in complete information games, and to Frick and Romm
(2014) for its foundation in incomplete information games. The order of elimination of
strategies in S1W generally matters, as WS1 (the set of strategy pro�les which survive
iterative removal of strictly dominated strategies followed by one round of removal of weakly
dominated strategies) may well be di¤erent from S1W . In the appendix, we show that
the iterative removal of weakly dominated strategy pro�les in any order generates the same
outcome as S1W in our mechanism. We can also de�ne S1 as the set of strategy pro�les
that survive the iterative removal of strictly dominated strategies. It is already well known
that S1 is order-independent and equivalent to the set of all rationalizable strategies in �nite
mechanisms. In Section 5.1, we will discuss the role of S1 in our mechanism.

We now formally state the de�nition of implementability in S1W: First, we allow the
size of transfers to be arbitrarily small so that we propose the concept of implementation
with arbitrarily small transfers.

De�nition 1 (Implementation with Arbitrarily Small Transfers) An SCF f is im-
plementable in S1W with arbitrarily small transfers if for all �� > 0, there is a mechanism
(M; ��) such that for any t 2 �T , and m 2 S1W

�
tjM; �T

�
, we have g (m) = f (t).

2.3 An Assumption

We �rst follow Abreu and Matsushima (1992a), who show the following important result: it
guarantees the existence of a function that can elicit each player�s preference.

Lemma 1 (Abreu and Matsushima (1992a)) For each i 2 I, there exists a function xi :
�Ti ! �(A) such that for any ti; t0i 2 �Ti, whenever �̂i(ti) 6= �̂i(t

0
i),

ui(xi(ti); �̂i(ti)) > ui(xi(t
0
i); �̂i(ti)) (1)

Throughout until the end of Section 3, we make a single assumption on the environ-
ments.

Assumption 1 An environment E satis�es Assumption 1 if, for all i 2 I and ti; t0i 2 �Ti
with ti 6= t0i, it follows that h

1
i (ti) 6= h1i (t

0
i).
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Remark 1 Assumption 1 states that two distinct types hold di¤erent beliefs over other play-
ers�preferences. Since �T is �nite, if there are at least two players and each player has at least
two distinct preferences, Assumption 1 generically holds in the space of the probability dis-
tributions over �T . Note, however, that Assumption 1 fails to hold in the case of independent
probability distributions.

Remark 2 Suppose that for any i 2 I; and ti; t0i 2 �Ti, whenever ti 6= t0i, we have �̂i(ti) 6=
�̂i(t

0
i): In this case, Assumption 1 is equivalent to assuming any pair of distinct types hold

distinct beliefs over the opponents� types. That is, the environment satis�es the beliefs-
determine-preferences property on which Heifetz and Neeman (2006) has a detailed discussion
(see also footnote 16).

By Assumption 1, we can construct the following transfer rule d0i : Ti ���i ! R:

Lemma 2 Suppose that an environment E satis�es Assumption 1. For all i 2 I with ti and
��i such that there exists t�i 2 T�i such �̂�i(t�i) = ��i, de�ne

d0i (ti; ��i) = 2h
1
i (ti)[(�̂i(ti); ��i)]� h1i (ti) � h1i (ti);

where h1i (ti) �h1i (ti) denotes its inner (or dot) product. Then, for all i 2 I and ti; t0i 2 �Ti with
ti 6= t0i, X

��i

�
d0i (ti; ��i)� d0i (t

0
i; ��i)

�
h1i (ti)

h
(�̂i(ti); ��i)

i
> 0: (2)

Remark 3 Lemma 2 guarantees the existence of a transfer rule in which each player will
strictly prefer to tell the truth whenever he believes that every other one tells the truth.
That is, such a transfer rule is strictly Bayesian incentive compatible. When there are more
than two players, we can construct d0i under a stronger (and yet still generic) version of
Assumption 1, following d�Aspremont, Crémer, and Gérard-Varet (2003). Then, we can
achieve budget balance for d0i by allocating all the other transfers only across agents, we can
achieve budget balance everywhere (both on and o¤ the solution outcome). Assumption 1 is a
condition which holds generically (see discussions in Johnson, Pratt, and Zeckhauser (1990)
and d�Aspremont, Crémer, and Gérard-Varet (2003)).

Proof. The construction of d0i (ti; ��i) makes itself a proper scoring rule: By Assumption 1,
the strict inequality of (2) always holds.

2.4 The Results

Here we provide the main result of the section which characterizes implementation with
arbitrarily small transfers. We shall show that an SCF f is implementable in S1W with
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arbitrarily small transfers if and only if it is incentive compatible. First, we introduce the
notation. For every i 2 I; every ti; t0i 2 �Ti; letX

t�i2 �T�i

ui(f(t�i; t
0
i); �̂i(ti))��i(ti)[t�i]

denote the expected utility generated by the direct revelation mechanism for player i of type
ti when he announces t0i and the other players all make truthful announcements.

De�nition 2 An SCF f : �T ! �(A) is incentive compatible if, for all i 2 I and all
ti; t

0
i 2 �Ti, X

t�i2 �T�i

ui(f(t�i; ti); �̂i(ti))��i(ti)[t�i] �
X

t�i2 �T�i

ui(f(t�i; t
0
i); �̂i(ti))��i(ti)[t�i]:

The theorem below shows that incentive compatibility is a necessary and su¢ cient
condition for implementation with arbitrarily small transfers.

Theorem 1 Suppose that I � 2 and the environment E satis�es Assumption 1. Then, an
SCF f is implementable in S1W with arbitrarily small transfers if and only if it is incentive
compatible.

2.4.1 The Mechanism

We propose a natural extension of the mechanism proposed by Abreu and Matsushima
(1994) from complete information to incomplete information environments. We de�ne the
mechanism as follows.

1. The message space:

Each player i makes (K + 3) simultaneous announcements of his own type. We index
each announcement by �2;�1; 0; 1; : : : ; K: That is, player i�s message space is

Mi =M�2
i �M�1

i �M0
i � � � � �MK

i = �Ti � � � � � �Ti| {z }
K+3 times

;

where K is an integer to be speci�ed later. Denote

mi =
�
m�2
i ; :::;mK

i

�
2Mi; m

k
i 2Mk

i ; k 2 f�2;�1; 0; :::; Kg ;

and
m =

�
m�2; :::;mK

�
2M; mk =

�
mk
i

�
i2I 2M

k = �i2IM
k
i :

We use mk= ~mi denote the message pro�le
�
mk
1; :::;m

k
i�1; ~m

k
i ;m

k
i+1; :::;m

k
I

�
.

11



2. The outcome function:

Let � 2 (0; 1) be a small positive number.
De�ne e :M�1 �M0 ! R by

e(m�1;m0) =

�
� if m�1

i 6= m0
i for some i 2 I;

0 otherwise.

The outcome function g :M ! �(A) is de�ned as follows: for each m 2M ,

g (m) = e(m�1;m0)
1

I

X
i2I

xi
�
m�2
i

�
+
�
1� e(m�1;m0)

	 1
K

KX
k=1

f
�
mk
�
; (3)

The outcome function contains a �random dictator�component (recall the function xi
de�ned in (1)) which is triggered in the event that some player�s �1th announcement
does not equal his 0th announcement. When this event does not happen, only the
nondictatorial component is triggered, which consists of K equally weighted lotteries
the kth of which depends only on the I-tuple of kth announcements.

3. The transfer rule:

Let �; � and � be positive numbers. Player i is to pay:

� ��d0i (m�1
i ; �̂�i(m

�2
�i ));

� ��d0i (m0
i ; �̂�i

�
m�1
�i
�
);9

� � if he is the �rst player whose kth announcement (k � 1) di¤ers from his own
0th announcement (All players who are the �rst to deviate are �ned).

di
�
m0; :::;mK

�
=

8<:
� if there exists k 2 f1; :::; Kg s.t. mk

i 6= m0
i ;

and mk0
j = m0

j for all k
0 2 f1; :::; k � 1g for all j;

0 otherwise.
(4)

� � if his kth announcement (k � 1) di¤ers from his own 0th announcement.

dki
�
m0
i ;m

k
i

�
=

�
� if mk

i 6= m0
i ;

0 otherwise.
(5)

9The design of the two scoring rules is needed for establishing the order independence result in the
appendix. The other results in this paper still go through with only one scoring rule.

12



In total,

� i (m) = ��d0i (�̂�i(m�2
�i );m

�1
i )��d0i (�̂�i(m�1

�i );m
0
i )+di(m

0; :::;mK)+
KX
k=1

dki
�
m0
i ;m

k
i

�
:

(6)

4. De�ne ��i = f�i 2 �ij �̂i(�ti) = �i for some �ti 2 �Tig. We provide the summary of
conditions on transfers:

Let

E = max
m�2
i 2M�2

i ;mk2Mk;��i2��i;i2I

�����1IX
j2I

ui
�
xj(m

�2
j );

��i
�
� ui

�
f
�
mk
�
; ��i
������ ; (7)

D = max
�mk
i 2Mk

i ;m
k2Mk;��i2��i;i2I

�
ui
�
f
�
mk
�
; ��i
�
� ui(f(m

k
�i; �m

k
i );
��i)
	
, (8)

where E multiplied by � is the upper bound of the gain for any player i; of triggering
or not triggering the random dictatorial component; D is the maximum gain for player
i from altering the kth announcement, where k � 1:
We choose positive numbers �; 
; K, �; �; and � such that for every i 2 I and every
ti; t

0
i 2 �Ti with ti 6= t0i;

�� > 2� �d0i + � +K�; (9)

�
X
��i

�
d0i (ti; ��i)� d0i (t

0
i; ��i)

�
h1i (ti)

h
(�̂i(ti); ��i)

i
> 
; (10)

� > �E; (11)

� >
1

K
D; (12)


 > �E + � +K�; (13)

where �d0i denotes an upper bound of d
0
i (�):10

2.4.2 The Proof

We use the following claims to prove the �if�part of Theorem 1.

Claim 1 In the game U
�
M; �T

�
, for every i 2 I; �ti; ti 2 �Ti, and mi 2 Mi, if mi 2

S0Wi

�
�tijM; �T

�
, then m�2

i = ti such that �̂i(ti) = �̂i(�ti).

10Given any �� > 0 exogenously; we �rst choose � small enough so that � �d0i <
1
4�� : Second, by (2), we can

choose 
 small enough so that (10) holds. Third, we choose K large enough so that 1
KD < min

�
1
4�� ;

1
3

	
:

Fourth, we choose " small enough so that K�E < min
�
1
4�� ;

1
3

	
: Therefore, we have �� > 2� �d0i +

1
KD+K�E

and 
 > �E + 1
KD+K�E: From these two inequalities, we can thus choose � and � such that (9), (11), (12)

and (13) hold.
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Proof. We show that for any i 2 I; �ti; ti 2 �Ti, and mi 2 Mi, if m�2
i = ti and �̂i(ti) = �̂i(�ti),

then mi 62 S0Wi

�
�tijM; �T

�
; i.e., mi is weakly dominated by some m0

i, which is constructed
as follows:

m0
i =

�
�ti;m

�1
i ; :::;mK

i

�
:

We let �̂i(�ti) = ��i: and �x any conjecture ��i : �T�i ! M�i and we write �k�i (t�i) for
the kth round report of other player with type t�i: The di¤erence of the expected utilities
between m0

i and mi for player i of type �ti is shown as follows:X
t�i

�
ui
�
g (m0

i; ��i(t�i)) ;
��i
�
+ � i (m

0
i; ��i(t�i))

	
�i(�ti)[t�i]

�
X
t�i

�
ui
�
g (mi; ��i(t�i)) ; ��i

�
+ � i (mi; ��i(t�i))

	
�i(�ti)[t�i]

=
X
t�i

e
��
m�1
i ; ��1�i (t�i)

�
;m0

�
I

�
ui
�
xi (�ti) ; ��i

�
� ui

�
xi
�
m�2
i

�
; ��i
�	
�i(�ti)[t�i] (14)

=

8<:X
t�i

e
��
m�1
i ; ��1�i (t�i)

�
;m0

�
I

�i(�ti)[t�i]

9=;�ui �xi (�ti) ; ��i�� ui
�
xi
�
m�2
i

�
; ��i
�	

� 0;

where the �rst equality follows because the only di¤erence lies in the function xi when
m0
i di¤ers from mi only in round �2 announcement, (see the de�nition of g in (3) and the

de�nition of � in (6)); by (1) the last inequality is strict whenever e
��
m�1
i ; ��1�i (t�i)

�
;m0

�
= �

for some t�i:
The next claim says that telling a lie in round �1 is strictly dominated by telling the

truth, given the hypothesis that no players choose weakly dominated messages.

Claim 2 In the game U
�
M; �T

�
, for every i 2 I; �ti 2 �Ti, if mi 2 S1Wi

�
�tijM; �T

�
; then

m�1
i = �ti:

Proof. We show that for any i 2 I; �ti 2 �Ti with �̂i(�ti) = ��i, and mi 2 S0Wi(�tijM; �T ), if
m�1
i 6= �ti, then mi =2 S1Wi

�
�tijM; �T

�
. We construct �mi as follows:

�mi =
�
m�2
i ; �ti;m

0
i ; :::;m

K
i

�
:

For any conjecture ��i : �T�i !M�i; we have that, for any t�i;

��i(t�i) 2 S0W�i
�
t�ijM; �T

�
:

By Claim 1, we know that m�i 2 W
�l+1
�i
�
t�ijM; �T

�
implies �̂�i

�
m�2
�i
�
= �̂�i (t�i).
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The di¤erence of the expected values under �mi from mi for player i of type �ti is shown
as follows: X

t�i

�
ui(g( �mi; ��i(t�i)); ��i) + � i ( �mi; ��i(t�i))

	
�i(�ti)[t�i]

�
X
t�i

�
ui(g(mi; ��i(t�i)); ��i) + � i (mi; ��i(t�i))

	
�i(�ti)[t�i]

=
X
t�i

�
e
��
�ti; �

�1
�i (t�i)

�
;m0

�
� e

��
m�1
i ; ��1�i (t�i)

�
;m0

�	
�
(
1

I

X
j2I

ui(xj(�tj); ��i)�
1

K

KX
k=1

ui(f((m
k
i ; �

k
�i(t�i)));

��i)

)
�i(�ti)[t�i]

+
X
t�i

n
�d0i (�̂�i(t�i); ti)� �d0i (�̂�i(t�i);m

�1
i )
o
�i(�ti)[t�i]

Observe that when �mi di¤ers from mi only in the �1th announcement, the di¤erence
in terms of g(�) (see the outcome function in (3)) lies in function e(�) and the di¤erence in
terms of transfer is summarized in functions d0i (see the transfer rule in (6)). We observe the
following points:

(i) In terms of outcomes, the possible expected gain of player i of type �ti by choosing mi

rather than �mi isX
t�i

�
e
��
�ti; �

�1
�i (t�i)

�
;m0

�
� e

��
m�1
i ; ��1�i (t�i)

�
;m0

�	
�
(
1

I

X
j2I

ui(xj(�tj); ��i)�
1

K

KX
k=1

ui(f((m
k
i ; �

k
�i(t�i)));

��i)

)
�i(�ti)[t�i]

From (7), when playing mi rather than �mi, this possible gain is bounded above by �E:

(ii) In terms of payments, the expected loss by choosing mi rather than �mi isX
t�i

n
�d0i (�̂�i(t�i); �ti)� �d0i (�̂�i(t�i);m

�1
i )
o
�i(�ti)[t�i]

=
X
��i

�
�d0i (��i; �ti)� �d0i

�
��i;m

�1
i

��
h1i (�ti)

h�
�̂i(�ti); ��i

�i

Therefore, by (10), the loss is bounded below by 
: Note that 
 > �E by (13).

Therefore, mi is strictly dominated by �mi:
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Claim 3 In the game U
�
M; �T

�
, for every i 2 I; �ti 2 �Ti, if mi 2 S2Wi

�
�tijM; �T

�
; then

m0
i = �ti:

Proof. We show that for any i 2 I; �ti 2 �Ti with �̂i(�ti) = ��i, if m0
i 6= �ti, then mi =2

S2Wi

�
�tijM; �T

�
. We construct �mi as follows:

�mi =
�
m�2
i ;m�1

i ; �ti;m
1
i ; : : : ;m

K
i

�
:

For any conjecture ��i : �T�i !M�i; we have that,

��i(t�i) 2 S1W�i
�
t�ijM; �T

�
:

From Claim 2, we know that for any j 2 I; if mj 2 S1Wj

�
�tjjM; �T

�
; then m�1

j = �tj:

The di¤erence of the expected values under �mi from mi for player i of type �ti is shown
as follows:X

t�i

�
ui(g( �mi; ��i(t�i)); ��i) + � i ( �mi; ��i(t�i))

	
�i(�ti)[t�i]

�
X
t�i

�
ui(g(mi; ��i(t�i)); ��i) + � i (mi; ��i(t�i))

	
�i(�ti)[t�i]

=
X
t�i

�
e
�
(t�i; �ti) ;

�
�0�i(t�i); �ti

��
� e

�
(t�i; �ti) ;

�
�0�i(t�i);m

0
i

��	
�
(
1

I

X
j2I

ui(xj(�tj); ��i)�
1

K

KX
k=1

ui(f((m
k
i ; �

k
�i(t�i)));

��i)

)
�i(�ti)[t�i]

+
X
t�i

n
�d0i

�
�̂�i (t�i) ; �ti

�
� �d0i

�
�̂�i (t�i) ;m

0
i

�o
�i(�ti)[t�i]

+
X
t�i

�
di
��
�0�i(t�i); �ti

�
;
�
�1�i(t�i);m

1
i

�
; : : :

�
� di

��
�0�i(t�i);m

0
i

�
;
�
�1�i(t�i);m

1
i

�
; :::
�	
�i(�ti)[t�i]

+
X
t�i

KX
k=1

fdki
�
�ti;m

k
i

�
� dki

�
m0
i ;m

k
i

�
g�i(�ti)[t�i]

� ��E + 
 � � �K�

> 0

Observe that when �mi di¤ers from mi only in the 0th announcement, the di¤erence
in terms of g(�) (see the outcome function in (3)) lies in function e(�) and the di¤erence in
terms of transfer is summarized in functions d0i ; di; and fdki gk=1;:::;K (see the transfer rule in
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(6)). In particular, X
t�i

n
�d0i

�
�̂�i (t�i) ; �ti

�
� �d0i

�
�̂�i (t�i) ;m

0
i

�o
�i(�ti)[t�i]

=
X
�

�
�d0i (��i; ti)� �d0i

�
��i;m

�1
i

��
h1i (ti)

h�
�̂i(ti); ��i

�i
> 


Therefore, mi is strictly dominated by �mi:

Claim 4 Suppose that an SCF f is incentive compatible. Given �� > 0; let M be a mech-
anism associated with f as de�ned in Section 2.4.1. For each k � 2; i 2 I, and �ti 2 �Ti; if
mi 2 SkWi(�tijM; �T ), then mk�2

i = �ti:

Proof. Consider type �ti 2 �Ti with �̂i(�ti) = ��i: When k = 2; the result follows from Claim 3.
Fix k � 2. The induction hypothesis is that for every i 2 I; �ti 2 �Ti, if mi 2 SkWi

�
�tijM; �T

�
,

then mk0
i = �ti for all k

0 � k � 2:
Then, we show that ifmi 2 Sk+1Wi(�tijM; �T ), thenmk0

i = �ti for all k
0 � k�1: It su¢ ces

to prove mk�1
i = �ti. Suppose not, let ~mi be the dominating strategy de�ned as follows,

~mi �
�
m�2
i ; :::;mk�2

i ; �ti;m
k
i ; :::;m

K
i

�
:

We let cM�i =
�
m�i 2M�i : m

k�1
�i = m0

�i
	
: Fix a conjecture ��i : �T�i ! M�i: Note

that, for each t�i,
��i(t�i) 2 SkW�i

�
t�ijM; �T

�
:

Thus, for any t; we obtain e (m�1;m0) = 0 for any m 2 SkW
�
tjM; �T

�
:

We will show thatX
t�i

�
ui(g( ~mi; ��i(t�i)); ��i) + � i( ~mi; ��i(t�i))

	
�i(�ti)[t�i]

�
X
t�i

�
ui(g(mi; ��i(t�i)); ��i) + � i(mi; ��i(t�i))

	
�i(�ti)[t�i] (15)

> 0:

Note the left hand side of inequality is equal to

X
t�i;��i(t�i) 62cM�i

� �
ui(g( ~mi; ��i(t�i)); ��i) + � i( ~mi; ��i(t�i))

	
��

ui(g(mi; ��i(t�i)); ��i) + � i(mi; ��i(t�i))
	 �

�i(�ti)[t�i] (16)

+
X

t�i;��i(t�i)2cM�i

� �
ui(g( ~mi; ��i(t�i)); ��i) + � i( ~mi; ��i(t�i))

	
��

ui(g(mi; ��i(t�i)); ��i) + � i(mi; ��i(t�i))
	 �

�i(�ti)[t�i]:
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Step 1:

X
t�i;��i(t�i) 62cM�i

� �
ui(g( ~mi; ��i(t�i)); ��i) + � i( ~mi; ��i(t�i))

	
��

ui(g(mi; ��i(t�i)); ��i) + � i(mi; ��i(t�i))
	 �

�i(�ti)[t�i] > 0:

From the induction hypothesis, for every i 2 I and �ti 2 �Ti, if mi 2 SkWi(�tijM; �T ),
then mk0

i = �ti for all k
0 � k � 2: When m�i 62 cM�i, there exists some j 2 Infig such that

mk�1
j 6= m0

j :We compute the expected loss in terms of payments for player i of type �ti when
playing mi rather than ~mi:X

t�i;��i(t�i) 62cM�i

f� i ( ~mi; ��i(t�i))� � i (mi; ��i(t�i))g �i(�ti)[t�i]

By choosing ~mi rather than mi; player i will avoid the �ne, � according to rule dk�1i (see (5)
in Section 2.4.1) and � according to rule di (see (4)), that is,

� i ( ~mi; ��i(t�i))� � i (mi; ��i(t�i)) = � + �:

In terms of g(�) (see the outcome function in (3)), we haveX
t�i;��i(t�i) 62cM�i

1

K

�
ui(f(m

k�1
i ; �k�1�i (t�i));

��i)� ui(f( ~m
k�1
i ; �k�1�i (t�i));

��i)
	
�i(�ti)[t�i] �

1

K
D:

(17)
This means that the possible gain from playing mi rather than ~mi is bounded by D=K.

Since we have that � > D=K (see (12) in Section 2.4.1), we have

� + � >
1

K
D: (18)

This completes Step 1.
Step 2:

X
t�i;��i(t�i)2cM�i

� �
ui(g( ~mi; �

k�1
�i (t�i));

��i) + � i( ~mi; �
k�1
�i (t�i))

	
��

ui(g(mi; �
k�1
�i (t�i));

��i) + � i(mi; �
k�1
�i (t�i))

	 �
�i(�ti)[t�i] > 0

When m�i 2 cM�i, for any j 2 Infig; we have mk�1
j = m0

j : From the induction hypothesis,
for every i 2 I; �ti 2 �Ti, if mi 2 Ski

�
tijM; �T

�
, then mk0

i = �ti; for all k
0 � k � 2: We compute

the expected loss in terms of payments for player i of type �ti when playing mi rather than
~mi: X

t�i;��i(t�i)2cM�i

f� i ( ~mi; ��i(t�i))� � i (mi; ��i(t�i))g �i(�ti)[t�i]
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For any t�i; consider ��i(t�i) = m�i:By choosing ~mi rather than mi; player i will avoid
the �ne, � according to rule dk�1i (see (5) in Section 2.4.1), the expected loss in terms of
payments from choosing mi rather than ~mi in terms of �(�) (see (6) in Section 2.4.1) is

� i ( ~mi;m�i)� � i (mi;m�i)

= � + � � di
�
m0; :::;mk�1;mk�2= ~mi:::;m

K
�

� �;

Therefore, when playing mi rather than ~mi, the expected loss in terms of payments is
bounded below by �:

In terms of g(�) (see the outcome function in (3)), the possible gain for player i to
report mi rather than ~mi is

1

K

X
t�i;��i(t�i)2cM�i

�
ui(f(m

k�1
i ; �k�1�i (t�i));

��i)� ui(f( ~m
k�1
i ; �k�1�i (t�i));

��i)
	
�i(�ti)[t�i];

Since ~mi di¤ers from mi only in the (k � 1)th announcement.
That is, when playing mi rather than ~mi, the possible gain for player i of type �ti is

which is bounded above by 0 from incentive compatibility of f: This completes Step 2.

The �only if�part of Theorem 1 is proved as follows.
Proof. Fix �� > 0 arbitrarily small. LetM =((Mi); g; (� i))i2I be a mechanism which imple-
ments f in S1W with transfers bounded �� . It is well known that a trembling-hand perfect
equilibrium11 is always contained in S1W . Let � be a trembling-hand perfect equilibrium
in U

�
M; �� ; �T

�
such that �i : Ti ! �(Mi) :

Since f is implementable in S1W by (M; ��) andm 2 S1W
�
tjM; �T

�
for everym 2M

with � (mjt) > 0, it follows that for any (ti; t�i) 2 �T ,

f(ti; t�i) = g(�i (ti) ; ��i (t�i)): (19)

We construct ( �T ; f) as a direct revelation mechanism with the transfer rule

� i(ti; t�i) = � i (�i (ti) ; ��i (t�i)) :

11Following Osborne and Rubinstein (1994), a strategy pro�le � in a normal-form game is a trembling-hand
perfect equilibrium if there exists a sequence

�
�k
�1
k=0

of completely mixed strategy pro�les that converges
to � such that �i is a best response against �k�i for every k. Here we consider the agent normal form of the
incomplete information game U(M; T ) where each type ti has the set of pure strategies Mi; moreover, for
each pure strategy pro�le, ti gets the expected payo¤ according to her belief. Note that a strategy is weakly
dominated in mechanism U(M; T ) if and only if it is weakly dominated in its agent normal form. Also of
course an NE in the agent form is an NE in U(M; T ).
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Since � is an equilibrium in U
�
M; �� ; �T

�
; we have that for any ti 2 �Ti and m0

i 2Mi,X
t�i

�i(ti)[t�i] fui (g(�i (ti) ; ��i (t�i))) + � i (g(�i (ti) ; ��i (t�i)))g

�
X
t�i

�i(ti)[t�i] fui (g(m0
i; ��i (t�i))) + � i (m

0
i; ��i (t�i))g : (20)

Then, by (19) and (20), the truth-telling is a Bayes Nash equilibrium in the incomplete
information game induced by ( �T ; f). That is, for any ti; t0i 2 �Ti;X

t�i

�i(ti)[t�i]
n
ui(f(ti; t�i); �̂i(ti)) + � i(ti; t�i)

o
�

X
t�i

�i(ti)[t�i]
n
ui(f(t

0
i; t�i); �̂i(ti)) + � i(t

0
i; t�i)

o
: (21)

Since f is implementable in S1W with arbitrarily small transfers, �� can be arbitrarily small.
Thus, we haveX

t�i

�i(ti)[t�i]ui(f(ti; t�i); �̂i(ti)) �
X
t�i

�i(ti)[t�i]ui(f(t
0
i; t�i); �̂i(ti)): (22)

That is, f is incentive compatible.

If we impose no conditions on the size of transfers, any SCF is implementable with
transfers. In this case, a very large size of transfers might be needed. We can get the
following corollary by letting K = 1:

Corollary 1 Suppose that I � 2 and the environment E satis�es Assumption 1. Any SCF
is implementable in S1W with transfers.

3 Applications

We now discuss the applications of our results in the previous section. First, in Section 3.1,
we propose two classes of environments within which one can achieve implementation with
no transfers, i.e., implementation with small transfers with the property that no transfers
are required on the equilibrium. Next, in Section 3.2, we connect our results to continuous
implementation, a concept proposed by Oury and Tercieux (2012). Speci�cally, we show that
any incentive-compatible SCF is continuously implementable with arbitrarily small transfers.
In Section 3.3, we discuss robust undominated Nash implementation, which Chung and Ely
(2003) call UNE-implementation. When there are at least three players, we then show
that any SCF is UNE-implementable with no transfers. In Section 3.4, with ex post small
transfers, we obtain a full implementation result of the full surplus extraction in auction
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environments.

3.1 Implementation with No Transfer

In Theorem 1, we use arbitrarily small transfers to achieve implementation of any incentive
compatible SCF. In the mechanism, the ex post payment, although we can make it very
small, is still necessary on the equilibrium. The concept of implementation with arbitrarily
small transfers strikes us being rather innocuous. Still, it is sometimes impossible to assume
that the planner can impose any transfers on the players in the equilibrium. Therefore, we
propose the concept of implementation with no transfers.

De�nition 3 (Implementation with No Transfers) An SCF f is implementable in S1W
with no transfers if for all �� > 0, it is implementable in S1W a mechanism (M; ��) and
moreover, for any t 2 �T , and m 2 S1W

�
tjM; �T

�
, we have � i(m) = 0 for each i 2 I.

Remark 4 The concept of implementation with no transfers does not exclude a possibility
that arbitrarily small transfers are made ex post out of the equilibrium. This concept of
implementation is used by Abreu and Matsushima (1994) under complete information. We
extend this to incomplete-information environments with private values.

3.1.1 Non-Exclusive Information (NEI)

To discuss the result with no transfers, we need some extra assumptions. We �rst use non-
exclusive information structure (NEI) for implementation with no transfers. To the best of
our knowledge, NEI was �rst proposed by Postlewaite and Schmeidler (1986). We restate a
version of its de�nition in Vohra (1999):

De�nition 4 The environment E satis�es the non-exclusive information structure
(NEI) if, for each t 2 �T , i 2 I; and t0i 2 �Ti,

��i(t
0
i)[t�i] =

�
1 if t0i = ti;

0 otherwise.

When I = 2, NEI is equivalent to complete information. NEI captures the idea that
each agent is informationally negligible in the sense that any unilateral deception from the
truth-telling in the direct revelation mechanism can be detected. Under NEI, we obtain the
following result:

Theorem 2 Suppose that I � 2 and the environment E satis�es NEI. Then, any incentive
compatible SCF is implementable in S1W with no transfers.
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Proof. The mechanism is identical to the mechanism in Section 2.4.1 except that we replace
�d0i

�
m�2
�i ;m

�1
i

�
and �d0i

�
m�1
�i ;m

0
i

�
with new transfer rules as follows:

d̂0i (m
�2
�i ;m

�1
i ) =

�

 if �i(m�1

i )[m
�2
�i ] = 0;

0 otherwise.

d̂0i (m
�1
�i ;m

0
i ) =

�

 if �i(m0

i )[m
�1
�i ] = 0;

0 otherwise.

The proof then follows verbatim the proof of Theorem 1.

3.1.2 Strict Incentive Compatibility and Separability

Following Sjöström (1994), we introduce the following class of environments. We assume
the outcome space has the product structure: A = A1 � A2 � � � � � AI ; and each player
i�s utility is de�ned as ui : Ai � �i ! R: For each SCF f and type t 2 �T , we denote
f(t) = (f1(t); : : : ; fI(t)) where fi(t) denotes the marginal distribution of f(t) on Ai where
A = A1�A2�� � ��AI . The reader is referred to Sjöström (1994) to see when this separable
environment is valid. For example, we can consider an exchange economy where each player
i has a consumption set Ai and cares only about his own consumption. We �rst introduce a
stronger version of incentive compatibility.

De�nition 5 An SCF f : �T ! �(A) is strictly incentive compatible if, for all i 2 I

and all ti; t0i 2 �Ti with ti 6= t0i,X
t�i2 �T�i

ui(f(ti; t�i); �̂i(ti))��i(ti)[t�i] >
X

t�i2 �T�i

ui(f(t
0
i; t�i); �̂i(ti))��i(ti)[t�i]:

In the theorem below, we can drop Assumption 1 but instead, we need to strengthen
incentive compatibility into strict incentive compatibility.

Theorem 3 Let E be a separable environment with I � 2. Any strictly incentive compatible
SCF is implementable in S1W with no transfers.

The corresponding mechanism is provided as follows. Basically, in a separable envi-
ronment, the strictly incentive compatible SCF replaces the role of scoring rule (d0i ) in the
previous discussion. Hence, we can handle any information structure. In particular, players�
types can be independently distributed.

1. The message space:

Each player i makes 4 simultaneous announcements of his own type. We index each
announcement by �2;�1; 0; 1: That is, player i�s message space is given as

Mi =M�2
i �M�1

i �M0
i �M1

i =
�Ti � �Ti � �Ti � �Ti:
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Denote

mi =
�
m�2
i ;m�1

i ;m0
i ;m

1
i

�
2Mi; m

k
i 2Mk

i ; k 2 f�2;�1; 0; 1g ;

and
m =

�
m�2;m�1;m0;m1

�
2M; mk =

�
mk
i

�
i2I 2M

k = �i2IM
k
i :

We use mk= ~mi to denote the strategy pro�le
�
mk
1; :::;m

k
i�1; ~m

k
i ;m

k
i+1; :::;m

k
I

�
:

2. The outcome function:

Let � be a small positive number.

De�ne e :M�1 �M0 ! R by

e(m�1;m0) =

�
� if m�1

i 6= m0
i for some i 2 I;

0 otherwise.

The outcome function g :M ! �(A) is de�ned as follows: for each m 2M ,

g (m) = e
�
m�1;m0

� 1
I

X
i2I

xi
�
m�2
i

�
+

�
1� e

�
m�1;m0

�	n
~�1 ~f(m

�1;m�2) + ~�2 ~f(m
0;m�1) + (1� ~�1 � ~�2)f(m1)

o
;

where ~f(mk;mk�1) � �i2Ifi
�
mk
i ;m

k�1
�i
�
and fi(mk

i ;m
k�1
�i ) denotes the marginal distri-

bution of f(mk
i ;m

k�1
�i ) on Ai for k 2 f�1; 0g.

3. The transfer rule:

Let � be positive numbers. Player i is to pay � if his 1st round announcement di¤ers
from his own 0th round announcement.

� i
�
m0
i ;m

1
i

�
=

�
� if m1

i 6= m0
i ;

0 otherwise.
(23)

The de�nitions of E and D are the same as in the previous section.

We choose positive numbers ~�1, ~�2, �, and � such that for every ti,t0i 2 �Ti and every
i 2 I,

�� i > �; (24)

min
n
~�1; ~�2

o X
t�i2 �T�i

h
ui(fi(ti; t�i); �̂i(ti))� ui(fi(t

0
i; t�i); �̂i(ti))

i
��i(ti) [t�i] > 
; (25)

� > �E + (1� ~�1 � ~�2)D; (26)
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and

 > �E + (1� ~�1 � ~�2)D + �: (27)

Since f is strictly incentive compatible, the existence of 
 is guaranteed in (25).

Remark 5 In a separable environment, a proper adjustment of the weight between the 0th
round report and the 1st round report can decrease the payment in a way that di¤ers from
that used in Abreu and Matsushima (1994). Speci�cally, given �� ; the mechanism in Section
2.4.1 increases the number of rounds of reports to some large enough K to make sure each
round report�s e¤ect on allocation is small enough (happens with probability 1=K); instead,
we can choose (1� ~�1� ~�2) small enough to make the weight of the 1st round announcement
small enough. Therefore, � can be chosen small enough to prevent the deviation in the 1st
round.

Remark 6 We omit the proof of Theorem 3 and rather provide a heuristic argument of
how the proof works. The �rst round deletion of weakly dominated strategies is the same
as the procedure in the proof of Claim 1. Second, to elicit the true type pro�le in the �1th
and 0th rounds, the constructed SCF ~f works in a similar way as the scoring rule (d0i ) did
in the proofs of Claims 2 and 3. Speci�cally, the function ~f is constructed such that each
player i�s payo¤ from ~f is a¤ected only by his own �1th (resp. 0th) round report and the
other players��2th (resp. �1th) round report. By the strict incentive compatibility, each
player will announce truthfully in the �1th (resp. 0th) round(given the truth telling in the
�2th (resp. �1th) reports for everyone). When all players tell the truth in every round, the
constructed function ~f coincides with the SCF f: This enables the mechanism to implement
f without any ex post transfers. Finally, the last round of elimination of strictly dominated
strategies works in a way that is parallel to the proof of Claim 4.

3.2 Continuous Implementation

The mechanism design literature often deals with environments in which monetary payments
are available, and the analyses are limited to partial implementation. Partial implementation
is a notion that requires the planner to design a game in which only some equilibrium�but
not necessarily all equilibria�yields the desired outcome. Then, appealing to the revelation
principle, its analysis reduces to the characterization of incentive-compatible direct revelation
mechanisms. This means that the mechanism design literature discounts the possibility
that undesirable equilibria exist in the game. Full�as opposed to partial�implementation
is a notion that requires that all equilibria deliver the desired outcome. Although it is
unfortunate that the literature has thus far largely ignored the need to compare partial and
full implementation, Oury and Tercieux (2012) have recently built a bridge between these
two notions. They consider the following situation: The planner wants not only that the
SCF be partially implementable, but also that it continue to be partially implementable
in all the models close to his initial model. That is, the SCF is continuously (partial)
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implemented. Oury and Tercieux (2012) show that Bayesian monotonicity (See de�nition on
p. 1617 in Oury and Tercieux (2012)), which is a necessary condition for full implementation,
becomes necessary even for continuous implementation; in light of this result, they argue that
continuous implementation is tightly connected to full implementation.

We shall show that as long as the planner is willing to allow for small ex post transfers,
any incentive-compatible SCF is continuously implementable in private-value environments.
This stands in sharp contrast with Oury and Tercieux (2012) because our continuous im-
plementation result does not need Bayesian monotonicity but only incentive compatibility,
which is a necessary condition for partial implementation. Our result is consistent with
Matsushima (1993), which shows that in Bayesian environments with side payments un-
der strict incentive compatibility, Bayesian monotonicity holds generically. Therefore any
incentive compatible SCF is fully implementable. Note that if one is willing to settle for
allowing small ex post transfers, one can always transform any incentive-compatible SCF
into a strict incentive-compatible one. However, the mechanism which can fully implement
any incentive-compatible SCF employs either large transfers ( See Matsushima (1991)) or
in�nite strategy spaces (See Jackson (1991)). We show that with arbitrarily small transfers,
any incentive-compatible SCF is fully implementable by a �nite mechanism, not only in the
benchmark model but also in the nearby environment.

Given a mechanism (M; ��) and a type space T , we write U (M; �� ; T ) for the induced
incomplete information game. In the game U (M; �� ; T ) ; a behavior strategy of a player
i is �i : Ti ! �(Mi) : We follow Oury and Tercieux (2012) to write down the following
de�nitions. We de�ne

Vi((mi; ��i); ti) =
X
t�i

�i(ti)[t�i] fui(g(mi; ��i(t�i)); �i(ti)) + � i(mi; ��i(t�i)))g :

De�nition 6 A pro�le of strategies � = (�1; :::; �I) is a Bayes Nash equilibrium in
U(M; �� ; T ) if, for each i 2 I and each ti 2 Ti;

mi 2 supp (�i (ti))) mi 2 argmaxm0
i2Mi

Vi ((m
0
i; ��i) ; ti) :

We write �j �T for the strategy pro�le � restricted to �T : For any T = (Ti; �̂i; �i)i2I ; we
will write T � �T if T � �T and for every ti 2 �Ti, we have �i (ti) [E] = ��i (ti)

�
�T�i \ E

�
for

any measurable E � T�i:

De�nition 7 Fix a mechanism (M; ��) and a model T such that �T � T :We say that a Bayes
Nash equilibrium � in U (M; �� ; T ) (strictly) continuously implements f : �T ! �(A) if
the following two conditions hold: (i) �j �T is a (strict) Bayes Nash equilibrium in U

�
M; �� ; �T

�
;

(ii) for any �t 2 �T and any sequence t[n] !p
�t; whenever t[n] 2 T for each n, we have

(g � �)(t[n])! f(�t):

We introduce two variants of continuous implementation:
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De�nition 8 An SCF f : �T ! �(A) is continuously implementable with transfers if there
exists a mechanism (M; ��) such that for each model T with �T � T ; there is a Bayes Nash
equilibrium � in U(M; �� ; T ) that continuously implements f .

De�nition 9 An SCF f : �T ! �(A) is continuously implementable with arbitrarily small
transfers if for any �� > 0; there exists a mechanism (M; ��) such that for each model T with
�T � T , there is a Bayes Nash equilibrium � in U (M; �� ; T ) that continuously implements f .

Theorem 4 Suppose that I � 2 and the environment E satis�es Assumption 1. Then,
an SCF f is continuously implementable with arbitrarily small transfers if and only if it is
incentive compatible.

To prove Theorem 4, we establish the following important lemma.

Lemma 3 Fix any model T such that �T � T and a �nite mechanismM. Suppose that for
each ti; t0i 2 Ti, Wi (tijM; T ) = Wi (t

0
ijM; T ) whenever �̂i (ti) = �̂i(t

0
i). Then, for any �t 2 �T

and any sequence ft [n]g1n=0 such that t [n]!p
�t; we have S1W (t[n]jM; T ) � S1W (�tjM; T )

for any large enough n.

Proof. See Appendix A.2.

Now we prove Theorem 4.

Proof. We�rst prove �if�part. For any �� > 0; we employ the mechanism (M; ��) constructed
in Section 2.4.1. We employ the mechanism (M; ��) constructed in Section 2.4.1: Therefore,
for all �t 2 �T ; m 2 S1W

�
�tjM; �T

�
) g (m) = f (�t) : Note that S1W

�
�tjM; �T

�
= f(�t; :::; �t)g :

We write �� such that ��i (�ti) = (�ti; :::; �ti) for all �ti 2 �Ti: Now pick any T such that �T � T .
It is well known that a trembling hand perfect equilibrium is always contained in S1W .
Therefore, �� is a trembling hand perfect equilibrium in U

�
M; �� ; �T

�
: We show that there

exists an equilibrium that continuously implements f on �T : For each player i and each type
�ti 2 �Ti; restrict the space of strategies of player i by assuming that �i (�ti) = ��i (�ti) for
each �ti 2 �Ti: Because M is �nite and T is countable, standard arguments12 show that there
exists a trembling hand perfect equilibrium in U(M; �� ; T ); which is denoted by �: Thus, �
is a trembling hand perfect equilibrium in U(M; �� ; T ) and �j �T is a trembling hand perfect
equilibrium in U

�
M; �� ; �T

�
: Now, pick any sequence ft [n]g1n=0 such that t [n]!p

�t: It is clear
that, for each n : supp(� (t [n])) � S1W (t [n] jM; T ) : Since Wi (tijM; T ) = Wi (t

0
ijM; T )

whenever �̂i (ti) = �̂i(t
0
i), for n large enough, we know by Lemma 3 that S

1W (t [n] jM; T ) �
S1W

�
�tjM; �T

�
. Thus, (g � �)(t[n]) = f(�t) as claimed.

12The existence of a trembling hand perfect equilibrium can be proved using Kakutani�Fan�Glicksberg�s
�xed point theorem. The space of strategy pro�les is compact in the product topology. Using the fact that
ui : A � �i ! R is bounded, all the desired properties of the best-response correspondence (in particular
upper hemicontinuity) can be established.
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The �only if�part is proved as follows: Given f is continuously implementable with
arbitrarily small transfers. Then, for any � > 0; there is a Bayes Nash equilibrium � in
U(M; �T ) such that (g � �)(�t) = f(�t) for any �t 2 �T and �(�(�t)) < �� : By a similar argument
in the proof of the �only if�part of Theorem 1, we conclude that f is incentive compatible.

If we do not impose any conditions on the size of ex post transfers, we obtain the
following very permissive result.

Corollary 2 Suppose that I � 2 and the environment E satis�es Assumption 1. Then, any
SCF f is continuously implementable with transfers.

The next result is one of the main results of Oury and Tercieux (2012).

Proposition 1 (Theorem 2 of Oury and Tercieux (2012)) If an SCF f is strictly
continuously implementable, it satis�es strict Bayesian monotonicity.

Oury and Tercieux show that the condition for full implementation (i.e., Bayesian
monotonicity) is necessary for �strict�continuous partial implementation. However, as long
as we allow for ex post small transfers and consider private-value environments, we obtain yet
another result that permits continuous implementation and our result is as permissive as it
can be. The reader is referred to the discussion at the end of Section 3.3 where our Theorem
4 can accommodate slightly more general perturbations. We consider this as a signi�cant
�nding because our Theorem 4 is one of few positive continuous implementation results in
the literature and to the best of our knowledge, de Clippel, Saran, and Serrano (2014) is
the only exception, which shows that any strict incentive compatible SCF is continuously
implementable when the players are constrained by their reasoning ability in the spirit of
level-k model and level-0 players are assumed to tell the truth in the direct mechanism.

To drop this �strictness,�Oury and Tercieux assume instead that sending messages in
the mechanism is slightly costly. To dispense with the assumption of costly messages, Oury
(2015) rather proposes a stronger concept of continuous implementation that accommodates
the local robustness with respect to payo¤uncertainty. Recall that we assume that no players
use weakly dominated actions. In fact, this weak dominance will be highly sensitive to payo¤
perturbations that can be induced by the cost of sending messages or local robustness of Oury
(2015).

3.3 UNE Implementation

Chung and Ely (2003) contemplate the following situation: if a planner wants all equilibria
of his mechanism yield a desired outcome under complete information, and if he entertains
the possibility that players may have even the slightest uncertainty about payo¤s, then the
planner should insist on a solution concept that has a closed graph in the limit of complete
information. Chung and Ely then adopt undominated Nash equilibrium (UNE) as a solution
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concept and call the corresponding implementation concept �UNE implementation�. In par-
ticular, Theorem 1 of Chung and Ely (2003) shows that Maskin monotonicity is a necessary
condition for UNE implementation. For this proof, one needs to construct a near-complete
information structure in which some players have superior information about the state, and
consequently, about the preferences of other players. In their Section 6.2, Chung and Ely
restrict their attention to private-value perturbations in which each type may be uncertain
about the preferences of other players but always knows his own preferences.13 Under such
perturbations, they show that dominated strategies under complete information continue to
be dominated.

In their footnote 7 Chung and Ely (2003) observe that the continuity of dominated
strategies under private-value perturbations does not necessarily guarantee that UNE imple-
mentation su¢ ces for UNE-implementation. This leaves open the question as to whether
UNE-implementation can be achieved under private-value perturbation. Here we provide an
a¢ rmative answer. That is, our robustness argument can be adapted to prove that the mech-
anism provided in Abreu and Matsushima (1994) actually achieves UNE implementation.
Following Chung and Ely (2003), we now rephrase their de�nition of UNE-implementation.14

De�nition 10 (UNE Implementation) Fix a complete-information model �T . We say
that an SCF f is UNE-implementable with no transfer if for any �� > 0; there exists a
mechanism (M; ��) such that the following three conditions hold: (i) there exists a strategy
pro�le � such that �j �T is an undominated Nash equilibrium in U

�
M; �� ; �T

�
; (ii) for any

�t 2 �T , any sequence t[n]!p
�t; any model T with �T � T , and any sequence of undominated

Bayes Nash equilibria f�ng1n=0 of the game U(M; �� ; T ), whenever t[n] 2 T for each n, we
have g(�n(t[n]))! f(�t); (iii) � i (� (t)) = 0 for any t, and any player i:

Note that any complete-information model is a special case of an incomplete-information
model. We therefore obtain the following permissive result:

Corollary 3 Suppose that I � 2 and the model �T is a complete-information model. Then,
any incentive-compatible SCF f is UNE-implementable with no transfers.

Proof. Note that complete-information environments trivially satisfy NEI (non-exclusive
information) assumption. So, we modify the scoring rule d0i as we did for Theorem 1. This
allows us to dispense with Assumption 1. The rest of the proof is completed by Theorem 4.

Remark 7 Assume that there are at least three players. In this case, under complete infor-
mation, the planner can always detect any unilateral deviation from a truthful announcement.

13The perturbation in Chung and Ely (2003) can be considered a special case of the perturbation de�ned
in a universal type space that we formulate here.
14Our notion of UNE-implementation is stronger than the one de�ned in Chung and Ely (2003) as we

allow for a boarder class of perturbations. As a consequence, our positive result is stronger.

28



Therefore, we simply construct a new SCF that is the same as the original SCF, except that
we simply ignore any such unilateral deviation and assign the same lottery as if there were no
deviations. This new SCF is equivalent to the original SCF under the hypothesis of complete
information so that we can make any SCF be incentive-compatible. So, when I � 3, we can
drop incentive compatibility completely from Corollary 3. In fact, this is the main result of
Abreu and Matsushima (1994). The novel contribution here is to observe that the result of
Abreu and Matsushima (1994) can be adapted to establish UNE-implementation.

Our result is consistent with Chung and Ely (2003). Theorem 1 of Chung and Ely
(2003) shows that Maskin monotonicity is a necessary condition for UNE-implementation.
Speci�cally, for the proof of this theorem, one needs to exploit the interdependent values. It
is also easy to show that Maskin monotonicity is still necessary for UNE-implementation if
the players are not very sure about their own payo¤ type, which is not the case of private
values. In Section 4, we extend our implementation results to general interdependent-value
environments. However, we no longer know that this extension exhibits the same robustness
property as in Corollary 3.

In the following lines, we introduce a slightly more general class of perturbations than
that we thus far considered. Speci�cally, each player holds a small uncertainty about his own
payo¤ type, that is, each player almost knows his own payo¤ type. In addition, whether or
not some player knows other players�type will not change his conjecture over his own payo¤
type. We write � (ti) [�i] =marg�i� (ti) [�i] for the belief on his own payo¤ type for player i
with ti and � (ti) [�ijt�i] =

�
marg�i�T�i� (ti)

�
[�ijt�i] for the belief conditional on some t�i:

Formally, it is captured by the following de�nition.

De�nition 11 (convergence in private values) Fix a model T . We say a sequence of
types fti [k]g1k=0 converges to a type ti 2 Ti in private values if ti [k] 2 Ti for each k
and for any t�i 2 T�i, whenever � (ti [k]) [t�i] > 0;

� (ti [k]) [�ijt�i]! � (ti) [�i] as k !1.

We write ti [k] !pp ti for the class of convergent sequences which converge both in product
topology and in private values.

Our robustness results in Sections 3.2 and 3.3 hold even when the nearby perturbation
admits convergence in private values. No essential changes are needed in the proof.

3.4 Full Surplus Extraction

In a seminal paper, Crémer and McLean (1988) show that in a single object auction with
generic correlated types, it is possible to design a mechanism (which we call a CM mecha-
nism) in such a way that (i) each bidder earns an expected surplus of zero in a Bayes Nash
equilibrium and (ii) the object is allocated to the agent with the highest valuation. This
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outcome is referred to as the full surplus extraction (henceforth, FSE) outcome. Although
this is a surprisingly positive result, an FSE outcome is rarely observed in reality. Many
explanations have been proposed to resolve this discrepancy between theory and reality,
including risk neutrality, unlimited liability, the absence of collusion among agents, a lack
of competition among sellers, and the restrictiveness of a �xed �nite type space. Although
these are important issues, we rather follow Brusco (1998) who points out another weakness
of the FSE result. In particular, Brusco provides an example in which every mechanism that
has the FSE property as a Bayes Nash equilibrium must have another Bayes Nash equilib-
rium which is weakly Pareto superior for the agents. This implies that the multiplicity of
equilibria might be a reason why the FSE outcome is not observed in reality, despite the
fact that the FSE outcome is an equilibrium in dominant strategies. Brusco shows that
one can devise a two-stage sequential mechanism that implements the FSE outcome in all
perfect Bayesian equilibria. Chen and Xiong (2013) show that the FSE outcome is virtually
Bayesian fully implemented.

We can establish a similar result, by adopting a static mechanism to achieve full im-
plementation, as long as players do not use weakly dominated strategies. First, we include
the range of payment schemes of the CM mechanism as part of A (the set of pure outcomes).
Second, following Crémer and McLean (1988), we observe that the social choice function that
achieves the FSE outcome is Bayesian incentive compatible, i.e., incentive compatible.15 So,
by Theorem 1, we obtain the following:

Corollary 4 Suppose that I � 2 and the environment E satis�es Assumption 1. The FSE
outcome is implementable in S1W with arbitrarily small transfers.

Therefore, we still obtain the FSE property even when we insist on full implementation
with small transfers. Note that we achieve full implementation in a �nite mechanism, whereas
the mechanisms in Brusco (1998) and Chen and Xiong (2013) are in�nite and involve either
integer games or an �open set trick.�One crucial assumption that we adopt for this result
is that no players use weakly dominated actions.16

4 Interdependent-Value Environments

We now deal with the case of interdependent-value environments where each player i�s utility
function is de�ned as ui : A��! R with � = �1 � � � � ��I . In Section 4.1, we construct
15Crémer and McLean (1988) show two main results: their Theorem 1 achieves FSE in dominant-strategy

incentive-compatibility when agents�beliefs satisfy a full-rank condition, whereas their Theorem 2 achieves
FSE in Bayesian incentive-compatibility when agents�beliefs satisfy a weaker spanning condition. Corollary
4 therefore strengthens only their Theorem 2, while the results in Brusco (1998) and Chen and Xiong (2013)
apply to their Theorem 1 as well.
16The FSE outcome hinges on the assumption that players�beliefs satisfy BDP property. A prior satis�es

the BDP property if it assigns probability 1 to a set of type pro�les in which no distinct types have the same
belief. (see discussions of the genericity of BDP in Heifetz and Neeman (2006), Chen and Xiong (2011) and
Chen and Xiong (2013))
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two examples to demonstrate an essential di¤erence between virtual implementation and
implementation with transfers in the incomplete information setups. Despite the di¤erence
and the interim perspective that we take throughout, we show in Section 4.2 that we can
employ the maximally revealing mechanism due to Bergemann and Morris (2009b) to extend
our result to interdependent-value environments.

4.1 The Di¢ culty of Extending Abreu and Matsushima (1994) to
Incomplete Information Environments

In this section, we will �rst recall the notion of measurability (henceforth, AM-measurability)
due to Abreu and Matsushima (1992b), who extend their result of Abreu and Matsushima
(1992a) to incomplete information environments. Speci�cally, they show that any incen-
tive compatible and AM-measurable SCF is virtually implementable in S1. As conjectured
in Abreu and Matsushima (1994), one may speculate that by suitably adapting the argu-
ment of Abreu and Matsushima (1992b) to the result in Abreu and Matsushima (1994),
any incentive compatible and AM-measurable SCF is implementable with arbitrarily small
transfers. We show by two examples that the conjecture is not unconditionally warranted.
In Example 1, we show that our mechanism does not implement an incentive compatible
and AM-measurable social choice function in a private-value environment which violates As-
sumption 1. In Example 2, we show that even when Assumption 1 holds, a natural extension
of our previous mechanism to interdependent-value environments still does not implement
an incentive compatible and AM-measurable social choice function.

We �rst de�ne AM-measurability. Let��i be a partition of �T�i. Say that ti is equivalent
to t0i with respect to ��i if player i�s interim expected payo¤ under type ti is exactly the
same as under type t0i when evaluating any allocation function y : �T ! �(A)�RI which is
measurable with respect to �Ti ���i: Let �i (ti;��i) be the set of all elements of �Ti that are
equivalent to ti with respect to ��i; and let

Ri (��i) =
�
�i (ti;��i) � �Tijti 2 �Ti

	
:

We de�ne an in�nite sequence of I-tuples of partitions, f�hg in the following way:
�0i = f �Tig; and recursively, for every i and h � 1; �hi = Ri

�
�h�1�i

�
: Note that for every

h � 0; �h+1i is the same as, or �ner than, �hi : Since T i is �nite, there is some h and partition
��i such that �

h
i = �

�
i for every h � h.

De�nition 12 An SCF f satis�es AM-measurability if it is measurable with respect to
��:

In Example 1 below, we will construct an environment in which (1) players�values are
private; and (2) Assumption 1 is violated. We show that there is an incentive compatible
and AM-measurable social choice function that cannot be implemented by our mechanism.
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Example 1 A = fa1; a2g; I = f1; 2; 3g; �Ti = ft1i ; t2i g for all i 2 I: De�ne a1 � (1; 0); a2 �
(0; 1); t1i � (1; 0); and t2i � (0; 1): Let 3 + 1 � 1: Let �i : �Ti ! �

�
�T�i
�
be player i�s interim

belief map from �Ti ! �( �T�i) :

�i(t
1
i )[t�i] = �i(t

2
i )[t�i] =

8<:
1=2

1=2

0

if ti+1 = ti+2 = a1
if ti+1 = ti+2 = a2
otherwise.

That is, in player i�s view, player (i+1)�s type and player (i+2)�s type are perfectly correlated
but they are independent of player i�s type. Each player i has the following preferences: for
any a 2 A and t 2 �T ;

ui(a; t) = a � ti;

where a � ti denotes the dot (or, inner) product of the two vectors a and ti.
Consider the following incentive-compatible social choice function f � : �T ! A: for any

t 2 �T , f �(t) = a if and only if #fi 2 I : ti = ag � 2: We can interpret this f � as the
majority rule.

We construct a set of allocation rules
�
xi : �Ti ! A

	
i2I such that xi (ti) = ti for each

i 2 I and ti 2 �Ti: It is easy to see that for all ti; t0i 2 �Ti with ti 6= t0i;

ui(xi(ti); ti) > ui(xi(t
0
i); ti): (28)

Thus, for each i 2 I, we obtain ��i = fft1i g; ft2i gg, the �nest possible partition over �Ti.
Therefore, every social choice function is AM-measurable in the environment. Therefore, by
Abreu and Matsushima (1992b), f � is virtually implementable in S1: However, one cannot
obtain exact implementation only by replacing � in the mechanism in Abreu and Matsushima
(1992b) with the indicator function e(�) which takes either � or 0.17 That is why we turn to
the mechanism we constructed in Section 2.4.1.

Consider player i of type ti and a strategy �i : �Ti !Mi such that �i (ti) = (ti; t
0
i; : : : ; t

0
i)

where t
0
i 6= ti. That is, player i tells the truth in the �rst round but consistently misrepresent

his type in the rest of rounds. By inequality (28), every player will tells the truth in the �rst
round report. However, whatever his type is, each player holds the same belief over others�
payo¤ types. Therefore, under the scoring rule, any report in the second round can be
rationalized. Due to the property of the majority rule f �; �i(ti) survives S1W but induces
an outcome which is �not� consistent with the one speci�ed by the SCF f �: Thus, to the
extent that our mechanism is a natural extension of that of Abreu and Matsushima (1994),
the conjecture in Abreu and Matsushima (1994) fails in private-value environments. This

17To see this, consider a complete information setup. Suppose that for some �xed t�i and two types ti and
t0i, ti regards f (t

0
i; t�i) as the best outcome among all. Then, for type ti, reporting t

0
i all the way is strictly

better than reporting ti in the �rst round and t0i in all subsequent rounds. This is because (1) the former
avoids the penalty for being inconsistent; (2) the former entails no loss in changing the epsilon portion of
the allocation no matter how we choose the dictator lotteries for the �rst round.
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justi�es our use of Assumption 1.
In Example 2 below, we will construct an interdependent-value environment in which

(1) Assumption 1 is satis�ed; and (2) some message pro�le in S1W induces an outcome
di¤erent from the one speci�ed by an incentive compatible and AM-measurable social choice
function. Thus, even with Assumption 1, interdependent value environments present new
challenges for extending our result.

Example 2 We build upon Example 1. The new elements we add to Example 1 are summa-
rized as follows: Let �i : �Ti ! �

�
�T�i
�
be player i�s interim belief map from �Ti ! �( �T�i) :

�i(ti)[t�i] =

�
p if ti+1 = ti+2 = ti;

1� p if ti+1 = ti+2 6= ti.

where 1
2
< p < 1. That is, in player i�s view, player (i + 1)�s type and player (i + 2)�s type

are perfectly correlated but they are only partially correlated with player i�s type. Each player
i has the following preferences: for any a 2 A and t 2 �T ;

ui(a; t) = a � ti+1:

That is, player i�s preference is determined by player (i+ 1)�s type.

Consider a set of allocation rules
�
xi : �Ti ! A

	
i2I where xi such that xi (ti) = ti for

each ti: It is easy to see that for all ti; t0i 2 �Ti with ti 6= t0i;X
t�i

ui(xi(ti); t�i)�i(ti)[t�i] >
X
t�i

ui(xi(t
0
i); t�i)�i(ti)[t�i]:

Thus, we obtain ��i = fft1i g; ft2i gg, the �nest possible partition, for each player i:
Therefore, every social choice function is AM-measurable in the environment.18

For any �� > 0; we can adopt the corresponding mechanism (M; ��) de�ned in Section
2.4.1. We claim that the mechanism generates a strategy pro�le which survives S1W but
induces an outcome which is not consistent with the one speci�ed by the SCF f �. We
formally state this result in the following claim:

Claim 5 Consider Example 2: Fix any mechanism (M; ��) de�ned in Section 2.4.1: For any
i 2 I and any ti 2 �Ti; we have that (t0i; : : : ; t

0
i) 2 S1i Wi(tijM; �T ) for some t0i 6= ti:

Proof. See Appendix A.3.

Remark 8 Note that the SCF f � in Example 2 also satis�es the notion of strict (Maskin)
monotonicity de�ned in Chung and Ely (2003). In particular, Chung and Ely (2003) show

18In fact, this environment satis�es no-total-indi¤erence and type diversity, under which AM-measurability
is automatically satis�ed. See Serrano and Vohra (2005) for a detailed discussion about these notions.
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that under strict monotonicity and a no-veto power condition, there exists an in�nite mech-
anism that achieves UNE-implementation. In Section 3.3, we show that the mechanism in
Abreu and Matsushima (1994) can also achieve UNE-implementation in private-value envi-
ronments. However, we argue by Claim 5 (which holds for any p close to 1) that the mech-
anism fails to achieve UNE-implementation when the information structure di¤ers slightly
from complete information. This shows that our �nite mechanism cannot UNE-implement
some strictly monotone SCF. This shows that if we are to achieve UNE-implementation in
general interdependent-value environments, we need to either appeal to in�nite mechanisms
as in Chung and Ely (2003) or construct a �nite mechanism di¤erent from that of Abreu
and Matsushima.

4.2 Mechanisms, Solution Concepts, and Implementation

We formulate the extension of our results to interdependent-value environments. First, we
strengthen the solution concept from S1W to the iterative elimination of weakly dominated
strategies, W1 de�ned as follows. Set W 0

i (tijM; T ) = Mi. For any l � 1, we say that
mi 2 W l+1

i (tijM; T ) if and only if there does not exist �i 2 �(Mi) such that19X
t�i

h
ui(g(�i; ��i(t�i)); �̂(t)) + � i (�i; ��i(t�i))

i
�i(ti)[t�i]

�
X
t�i

h
ui(g(mi; ��i(t�i)); �̂(t)) + � i (mi; ��i(t�i))

i
�i(ti)[t�i]

for all ��i : T�i !M�i such that ��i(t�i) 2 W l
�i (t�ijM; T ) and a strict inequality holds for

some ��i : T�i ! M�i. Let W1 denote the set of strategy pro�les which survive iterative
removal of weakly dominated strategies, i.e.,

W1
i (tijM; T ) =

1\
l=1

W l
i (tijM; T ) ,

W1 (tjM; T ) =
Y

i2I
W1
i (tijM; T ) :

De�nition 13 An SCF f is implementable in W1 with arbitrarily small transfers if, for
all �� > 0, there is a mechanism (M; ��) such that for any t 2 �T , and m 2 W1 �tjM; �T

�
, we

have g (m) = f (t).

Example 2 shows that in order to extend our result to interdependent-value environ-
ments, we need to strengthen Assumption 1. To do so, we introduce the concept of strate-
gic distinguishability of players�payo¤ types, which is proposed by Bergemann and Morris
(2009b).
19Here we instead allow for a mixed strategy to be a dominator because later we would like to employ a

result in Bergemann and Morris (2009b) where they adopt ex post rationalizability as their solution concept.
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Given a mechanism M =(M; g) ; we �rst de�ne the process of iterative elimination
of ex post never best responses, which makes no assumptions on each player�s belief about
other players�payo¤ types. We set S0i (�ijM) = Mi and for each k = 0; : : :, we inductively
de�ne

Sk+1i (�ijM)

=

8><>: mi 2 Ski (�ijM)

�������
9�i 2 (��i �M�i) s.t.
(1) �i (��i;m�i) > 0) m�i 2 Sk�i (��ijM)

(2) mi 2 argmaxm0
i

P
��i;m�i

�i (��i;m�i)ui (g (m
0
i;m�i) ; (�i; ��i))

9>=>; :

Finally, we let S1i (�ijM) =
T
k�0 S

k
i (�ijM) and call it the set of ex post (as opposed to

interim) rationalizable strategies for payo¤ type �i.

De�nition 14 Payo¤ types �i and �0i are strategically indistinguishable
20 (we denote it

by �i � �0i) then S
1
i (�ijM)\ S1i (�

0
ijM) 6= ? in any mechanismM.

In their Proposition 2, Bergemann and Morris (2009b) construct a (�nite) mechanism
M� = (M�; g�) with the property that if �i 6� �0i; then S1i (�ijM�)\ S1i (�

0
ijM�) = ?:

Following Bergemann and Morris (2009b), we refer toM� as the maximally revealing mech-
anism. SinceM� is �nite, there exists some positive number �l such that, for any l � �l, i 2 I,
and �i 2 �i, Sli (�ijM�) = S1i (�ijM�).

Let �� be the transitive closure of the binary relation �. For each player i of type �i;
we de�ne  �i (�i) = f�0i 2 �ij�0i �� �ig. Since �� is transitive, it follows that f �i (�i)g�i2�i
forms a partition over �i; which we denote by ��i . For each  i 2 ��i ; we write

M�
i ( i) =

[
�i2 i

fmi 2M�
i jmi 2 S1i (�ijM�)g :

In words, M�
i ( i) describes the set of ex post rationalizable strategies for any payo¤

type that belongs to  i. For each  �i 2 ���i, we also de�ne

M�
�i
�
 �i

�
= �j 6=iM

�
j

�
 j
�
:

For any �i; �
0

i 2 �i, whenever �i 6� �0i; we have that S
1
i (�ijM�)\ S1i (�

0
ijM�) = ?. Thus,

the maximally revealing mechanismM� can elicit the true payo¤ type of player i modulo
the binary relation ��. Speci�cally, for any �i 2 �i and mi 2 S1i (�ijM�), we are able to
identify a unique  i 2 ��i such that mi 2M�

i ( i) :

We de�ne type ti�s belief over the partition of his opponents�payo¤ types by �ti 2
�(���i). We de�ne type ti�s belief over the payo¤ types of other players modulo  �i as

20(Bergemann and Morris, 2009b, Theorem 1) show that strategic indistinguishability is equivalent to a
primitive notion called pairwise inseparability.
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follows: for any  �i 2 ���i;

�ti
�
 �i

�
=

X
t�i:�̂�i(t�i)2 �i

�i (ti) [t�i] :

To deal with interdependent-value environments, we introduce the following condition
on environments.

Assumption 2 An environment E satis�es Assumption 2 if, if, for all i 2 I and ti; t0i 2 �Ti
with ti 6= t0i, it follows that �ti 6= �t0i.

Remark 9 Note that in Example 2, ��i is trivial, i.e., it constitutes the coarsest possible
partition over �i and hence it is ruled out by Assumption 2. Provided that ��i is nontrivial,
Assumption 2 generically holds over the space of probability distributions over �T . In partic-
ular, Bergemann and Morris (2009a) show that each ��i becomes the �nest possible partition
ff�ig j�i 2 �ig in a class of interdependent-value environments satisfying three conditions:
(1) there is a strictly ex post incentive compatible SCF; (2) agents have single-crossing pref-
erences; (3) the agents preferences satisfy a condition called the contraction property, which
demands that value interdependence is not too large. In this case, Assumption 2 is equivalent
to Assumption 1.

Given the maximally revealing mechanismM�, we can construct a new scoring rule in
this environment: for any ti 2 �Ti,  �i 2 ���i, and m�i 2M�

�i,

~d0i (ti;m�i) =

(
2�ti

�
 �i

�
�
P

 0�i2���i
f�ti

�
 0�i

�
g2 if m�i 2M�

�i( �i)

arbitrary if m�i =2M�
�i( �i).

(29)

The next lemma shows that the scoring rule ~d0i gives each agent i a strict incentive to
announce the true type, provided that all other agents choose ex post rationalizable strategies
in the maximally revealing mechanism.

Lemma 4 Suppose that an environment E satis�es Assumption 2. For all i 2 I, any ti; t0i 2
�Ti with ti 6= t0i, and �i : �T�i !M�

�i, whenever �i(t�i) 2 S1�i (��i (t�i) jM�) ; we haveX
t�i2 �T�i

h
~d0i (ti; �i(t�i))� ~d0i (t

0
i; �i(t�i))

i
�i(ti)[t�i] > 0:

Proof. See Appendix A.4.

Given this scoring rule and the hypothesis that player i�s opponents choose their ex
post rationalizable strategy in the maximally revealing mechanism, we can elicit each player
i�s interim beliefs, which further enables us to identify each player�s true (not payo¤) type
by Assumption 2 (see the proof of Theorem 5 for details). We are now ready to state the
main result of this section.
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Theorem 5 Suppose that I � 2 and the environment E satis�es Assumption 2. Then, an
SCF f is implementable in W1 with arbitrarily small transfers if and only if it is incentive
compatible.

Remark 10 Although we adopt W1 as our solution concept, we only perform �l rounds of it-
erative deletion of weakly dominated strategies to induce the truth-telling (recall Sli (�ijM�) =

S1i (�ijM�) for any l � �l). Hence, when �l = 1 (e.g., the case of private values); we can re-
place W1 by S1W .

Proof of the �if�part of Theorem 5: We modify the mechanism in Section 2.4.1 in the
following ways: (i) we adopt the maximally revealing mechanism constructed in Bergemann
and Morris (2009b) for the �rst round report; (ii) we increase the number of each player�s
reports from K + 3 to K + 3 + �l; (iii) we increase the number of scoring rules from 2 (one
between round �2 and �1; and the other between round �1 and 0) to �l+1 (each scoring rule
is de�ned between round l and l+1 where l runs from �(�l+2) to 0). While the mechanism
appears to be a natural generalization from the mechanism proposed in the previous section,
the argument requires several subtle steps summarized in the proof of Claim 6 in Appendix
A.5.

We detail the modi�cation of the mechanism below:

1. The message space:

Each player i simultaneously makes an announcement in the maximally revealing mech-
anismM� = (M�; g�) and (K +�l+2) announcements of his own type. We index each
announcement by �(�l+2);�(�l+1); :::; 0; 1; : : : ; K. That is, player i�s message space is

Mi =M
�(�l+2)
i � � � � �M0

i � � � � �MK
i =M�

i � �Ti � � � � � �Ti| {z }
K+�l+2 times

;

where K is an integer to be speci�ed later.

2. The outcome function:

Let � 2 (0; 1) be a small positive number. De�ne e :M�(�l+1) � � � � �M0 ! R by

e((m�l)
�l+1
l=0) =

�
� if m�l

i 6= m0
i for some i 2 I and some l 2 f1; : : : ; �l + 1g;

0 otherwise.

Based on the outcome function g� in the maximally revealing mechanism21, our out-
come function g :M ! �(A) is de�ned as follows: for each m 2M ,

g (m) = e((m�l)
�l+1
l=0)g

�(m�(�l+2)) +
n
1� e(

�
m�l��l+1

l=0
)
o 1

K

KX
k=1

f
�
mk
�
: (30)

21Here g� needs to be generic in the sense de�ned in Claim 11 in the appendix.

37



3. The transfer rule:

We abuse notation to use E and D as

E = max
m
�(�l+2)
i 2M�

i ;m
k2Mk;�2�;i2I

���ui �g�(m�(�l+2)); �
�
� ui

�
f
�
mk
�
; �
���� ; (31)

D = max
�mk
i 2Mk

i ;m
k2Mk;�2�;i2I

�
ui
�
f
�
mk
�
; �
�
� ui(f(m

k
�i; �m

k
i ); �)

	
, (32)

Now, in addition to the transfers de�ned in Section 2.4.1, player i is to pay�� ~d0i (m
�(�l+1)
i ;m

�(�l+2)
�i );

and pay ��d0i (m�l
i ; �̂�i(m

�(l+1)
�i )) for any l 2 f0; : : : ; �lg:

In total,

� i(m) = � ~d0i (m
�(�l+1)
i ;m

�(�l+2)
�i )+�

�lX
l=0

d0i (m
�l
i ; �̂�i(m

�(l+1)
�i ))+di(m

0; :::;mK)+
KX
k=1

dki (m
0
i ;m

k
i ):

We choose positive numbers �; 
; K, �; �; and � such that (9), (10), (11), (12), and
(13) hold; moreover, by Lemma 4, for every i 2 I, every ti; t0i 2 �Ti with ti 6= t0i; and
�i : �T�i !M�

�i such that �i(t�i) 2 S1�i (��i (t�i) jM�) for any t�i;

�
X

t�i2 �T�i

h
~d0i (ti; �i(t�i))� ~d0i (t

0
i; �i(t�i))

i
�i(ti)[t�i] > 
. (33)

The rest of the mechanism is the same as the one in Section 2.4.1. We shall establish the
following claim to prove the theorem. Claim 6 says that any message that survives iterated
weak dominance in our mechanism must entail a message that was ex post rationalizable in
the maximally revealing mechanism.

Claim 6 For every mi 2 W1
i (tijM; �T ), m�(�l+2)

i 2 S1i (�̂i(ti)jM�):

We relegate the proof of Claim 6 to Appendix A.5. By inequality (33), we can show
that any message that survives the iterated weak dominance in our mechanism must entail
the truth-telling in round �(�l+1) of announcement. Then, the rest of the proof then follows
verbatim the �if�part of proof of Theorem 1.�

Proof of the �only-if�part of Theorem 5: Fix an arbitrary �� > 0. LetM =((Mi); g; (� i))i2I
be a mechanism which implements f in W1 with transfers bounded by �� . We exploit the
concept of stable set introduced by Kohlberg and Mertens (1986).22 Speci�cally, by Corollary

22Following Kohlberg and Mertens (1986) and (van Damme, 1987, p. 265), a set E of Nash equilibria of a
normal-form game � is stable if it is a minimal set with the following property: E is a closed set of equilibria
and for every " > 0 there exists some �̂ > 0 such that, if � 2 (0; �̂), every �-perturbed game associated with
the reduced normal form of � has an equilibrium that is "-close to E. To apply the result, we consider the
agent normal form of the incomplete information game U(M; �T ) as in footnote 11.
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10.3.2 in van Damme (1987), every �nite game has a stable set which is contained in the set
of Nash equilibria; by Theorem 10.3.3 in van Damme (1987), a stable set contains a stable
set of any game obtained by eliminating a weakly dominated strategy. Therefore, a stable
set contains a nonempty subset in W1: In other words, there is a Bayes Nash equilibrium
� of U(M; �T ) such that for any t 2 �T and m 2 M , m 2 W1 �tjM; �T

�
implies �(mjt) > 0.

The rest of the proof follows verbatim the proof of the �only if" part of Theorem 1.�

Remark 11 We do not know whether the order of deletion of weakly dominated strategies
matters for Theorem 5.

5 Discussion

In Section 5.1, we introduce the concept of partial honesty and propose a way of making the
dominance �strict.�This allows us to connect our results to rationalizable implementation.
Section 5.2 discusses the di¤erence between implementation with small transfers and virtual
implementation.

5.1 The Role of Honesty and Rationalizable Implementation

Following Matsushima (2008) and Dutta and Sen (2012), we depart from the assumption
that all players are motivated solely by their self-interest and instead assume that they all
have a small intrinsic preference for honesty. This implies that such players have preferences
not just on outcomes but also directly on the messages that they are required to send to the
planner.

Fix the mechanism � = (M; ��) that we constructed in Section 4. First, recall that each
player i�s preferences are given by ui : �(A) � � ! R. Following the setup of Dutta and
Sen (2012), we extend this ui(�) to vi : M � �! R satisfying the following two properties:
for all i 2 I; t = (ti; t�i) 2 �T , mi; ~mi;2Mi, and m�i 2M�i:

1. If ui(g(mi;m�i); �̂(ti; t�i)) � ui(g( ~mi;m�i); �̂(ti; t�i)), mk
i = ti, and ~mk

i 6= ti for some
k = ��l � 2; : : : ; 0 (or, we have �l = 0 in the case of private values), then

vi((mi;m�i); �̂(ti; t�i)) > vi(( ~mi;m�i); �̂(ti; t�i)):

2. In all other cases, vi((mi;m�i); �̂(ti; t�i)) � vi(( ~mi;m�i); �̂(ti; t�i)) if and only if

ui(g(mi;m�i); �̂(ti; t�i)) � ui(g( ~mi;m�i); �̂(ti; t�i)):

The �rst part of the de�nition captures an individual�s preference for partial hon-
esty. That is, he strictly prefers (mi;m�i) to ( ~mi;m�i) only if he thinks g(mi;m�i) is
at least as good as g( ~mi;m�i). We consider this to be a very weak assumption, and this
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weakness makes the concept of partial honesty particularly compelling. If all players are
partially honest in this sense, we can conclude that in private-value environments, for any
k = �2;�1; 0, any message containing truth-telling in round k announcement strictly domi-
nates the same message except that round k announcement involves non-truth telling. Sim-
ilarly, in interdependent-value environments, for each k 2 f��l � 2; : : : ; 0g, any message
containing truth-telling in round k announcement strictly dominates the same message ex-
cept that round k announcement involves non-truth telling. Hence, given partial honesty,
every dominance becomes strict in our mechanism. This means that we can improve upon
our previous results by replacing both S1W (for private-value environments) and W1 (for
interdependent-value environments) with S1, which is the (interim correlated) rationalizabil-
ity correspondence, which maps each type pro�le to the set of message pro�les that survive
the iterated deletion of never best responses.23 By Dekel, Fudenberg, and Morris (2006), we
know that this rationalizability correspondence is upper hemi-continuous. Hence, we obtain
the following result:

Proposition 2 Suppose that I � 2 and that all agents are partially honest. Then,

1. (Private-Value) If the environment E satis�es Assumption 1, any incentive-compatible
SCF is implementable in S1 with arbitrarily small transfers. Moreover, any incentive-
compatible SCF is �strictly continuously� implementable with arbitrarily small trans-
fers.

2. (Interdependent-Value) If the environment E satis�es Assumption 2, any incentive-
compatible SCF f is implementable in S1 with arbitrarily small transfers and it is
strictly continuously implementable with arbitrarily small transfers.

Proof. We simply combine all the arguments we made above with Theorem 1 for pri-
vate value environments and Theorem 6 for interdependent-value environments, respectively
together with the fact that the interim correlated rationalizable correspondence is upper-
hemicontinuous in �nite mechanisms. This completes the proof.

Assuming that sending messages is slightly costly, Oury and Tercieux (2012) show in
their Theorem 4 that an SCF f is continuously implementable by a �nite mechanism if and
only if it is implementable in rationalizable strategies by a �nite mechanism. Although they
do not need ex post payments or partial honesty, without either of these we know of no exact
rationalizable implementation result with �nite mechanisms.

Matsushima (2008) imposes more stringent structures on the players�cost function of
sending messages than our partial honesty so that he can take care of fully interdependent
values without imposing any conditions. We believe that one of the strongest assumptions he
made was that the cost of sending messages depends on the proportion of a player�s dishonest

23In �nite games, it is well known that an action is strictly dominated if and only if it is never a best
response.
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announcements. This assumption is very speci�c to the construction of our mechanism and
that in Matsushima (2008) (and thus, to basically any mechanism that resembles the Abreu-
Matsushima type of construction) in the sense that each player is required to make a number
of announcements of his type in the mechanism. In other words, Matsushima�s assumption
no longer makes sense once we adopt a di¤erent construction of the mechanism, according to
which all players are not necessarily required to report their types many times. Nevertheless,
the concept of partial honesty can still be valid as long as the messages in the mechanism
contain the players�types. The lesson we draw here is that there seems to be a clear trade-o¤
between the permissiveness of implementation results and more structures in regard to the
cost function of sending messages.

5.2 Implementation with Arbitrarily Small Transfers and Virtual
Implementation

Virtual implementation means that the planner contents himself with implementing a so-
cial choice function with arbitrarily high probability. In complete information environments
with at least three players, Abreu and Sen (1991), Abreu and Matsushima (1992a), and Mat-
sushima (1988) all show that essentially any SCF is virtually implementable. In incomplete
information environments with side-payments, Abreu and Matsushima (1992b) show that
an SCF is virtually implementable in S1 by a �nite mechanism if and only if it satis�es
incentive compatibility and AM measurability. Example 2 we discussed in Section 4 satis�es
type diversity. Under type diversity, we know that every social choice function satis�es AM
measurability (see Serrano and Vohra (2005)). This means that the di¢ culty we encounter
in Example 2 has nothing to do with AM measurability. In this section, we elaborate on the
comparison between Abreu and Matsushima (1992b) and our mechanism. To accommodate
the case of interdependent values, we introduce the following condition:

Condition (S) : We say that an environment E satis�es Condition (S) if, for each i 2 I,
there exist a function xi : �Ti ! �(A) and � > 0 such that for all ti; t0i 2 �Ti with ti 6= t0i and
t�i 2 �T�i,

ui(xi(ti); (�̂i(ti); t�i))� ui(xi(t
0
i); (�̂i(ti); t�i)) > �: (34)

Condition (S) is admittedly a strong requirement but, for the sake of our argument, we
assume that Condition (S) holds. Under this condition, we can dispense with the maximally
revealing mechanism that we employed for our construction in Section 4 so that we rewrite
the payo¤ di¤erence between m0

i and mi for type �ti in (14) in the proof of Claim 1: for any
(m�1;m0) 2M�1 �M0,X

t�i

e(m�1;m0)
n
ui(xi(�ti); �̂(�ti; t�i))� ui(xi(m

�2
i ); �̂(�ti; t�i))

o
�i(�ti)[t�i] � 0:

In the case of virtual implementation, we are allowed to achieve the wrong outcome
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with small probability so that we can set e(m�1;m0) = � for any (m�1;m0) 2 M�1 �M0.
In this case, under Condition (S), we reduce the above payo¤ di¤erence for type �ti to the
following:

�
X
t�i

n
ui(xi(�ti); �̂(�ti; t�i))� ui(xi(m

�2
i ); �̂(�ti; t�i))

o
�i(�ti)[t�i] > 0:

This speci�cation of e(�) allows us to dispense with all the announcements between round
�1 and 0. This further implies that we need neither Assumption 1 nor Assumption 2.
Therefore, in the case of virtual implementation, we can handle �independent� beliefs as
well as correlated beliefs and the associated mechanism works in fully interdependent-value
environments. Furthermore, by this speci�cation of e(�), we always put positive probability
to the outcome,

P
i2I xi(m

�2
i )=I, determined by the announcement in round �2. Therefore,

the strategies deleted in the �rst round of the iterative process change from weakly dominated
strategies into �strictly dominated�one. That is, we obtain virtual implementation in S1

(under iterated strict dominance).
Even without Condition (S), Abreu and Matsushima (1992b) constructed an SCF

x : �T ! �(A) such that modulo AM-measurability, only the true type pro�le survives S1 in
the direct revelation mechanism associated with x. Indeed, Abreu and Matsushima (1992b)
show that AM-measurability is a necessary condition for virtual implementation in S1. This
explains why virtual implementation can handle fully interdependent-value environments, as
long as the SCF to be implemented satis�es incentive compatibility and AM-measurability.

While virtual implementation provides for an impressive conclusion, it comes at the
expense of some assumptions. In virtual implementation, the planner is willing to settle for
implementing something that is �-close to the SCF. This implies that the planner is consid-
ered capable of committing to any mechanism, which might assign a very bad outcome with
probability �. In order for this argument to work, players must take these small probabilities
seriously and base decisions on them, with the rational expectation that these outcomes will
be enforced if they happen to be selected by the mechanism.

We propose the concept of implementation with arbitrarily small transfers; this is an-
other concept of approximate implementation, very much like virtual implementation. The
key feature of our mechanism, however, is that undesirable outcomes never occur with posi-
tive probability. Indeed, we need ex post transfers but we can make them arbitrarily small.
We therefore believe that implementation with small transfers becomes a more appropri-
ate candidate than virtual implementation when the planner�s commitment power to the
mechanism is in question.

A Appendix

There are �ve subsections in the appendix. In Section A.1, we show that in private-value
environments, our mechanism also works under iterative deletion of weakly dominated strate-
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gies, i.e., W1 and moreover, the order of removal of strategies in W1 is irrelevant in our
mechanism. Section A.2 provides the proof of Lemma 3. Section A.3 provides the proof
of Claim 5 for Example 2 we discussed in Section 4.1. We provide the proof of Claim 4 in
Section A.4 and the proof of Claim 6 in Section A.5, respectively. These claims are needed
for proving Theorem 5.

A.1 Order Independence

We now de�ne the process of iterative removal of weakly dominated strategies. We seek to
de�ne mechanisms for which the order of removal of weakly dominated strategies is irrelevant,
that is, given an arbitrary type pro�le, any message pro�le in the set of iteratively weakly
undominated strategies can implement the socially desired outcome at that type pro�le.
Given a mechanism M, let U(M; �T ) denote an incomplete information game associated
with a model �T . Fix a game U(M; �T ), player i 2 I and type �ti 2 �Ti. Let H be a pro�le
of correspondences (Hi)i2I where Hi is a mapping from �Ti to a subset of Mi: A message
mi 2 Hi (�ti) is weakly dominated with respect to H for player i of type �ti 2 �Ti if there exists
m0
i 2Mi such thatX

t�i

h
ui(g(m

0
i; ��i (t�i)); �̂i(ti)) + � i (m

0
i; ��i (t�i))

i
�i (ti) [t�i]

�
X
t�i

h
ui(g(mi; ��i (t�i)); �̂i(ti)) + � i (mi; ��i (t�i))

i
�i (ti) [t�i]

for all ��i : �T�i !M�i such that ��i (t�i) 2 H�i (t�i) for all t�i 2 �T�i and a strict inequality
holds for some ��i.24

Let
�
W k
	1
k=0

be a sequence of pro�les of correspondences with the following three
properties: for each i 2 I; �ti 2 �Ti, and mi 2 Mi, (i) W 0

i

�
�tijM; �T

�
= Mi; (ii) if mi 2

W k+1
i

�
�tijM; �T

�
nW k

i

�
�tijM; �T

�
, it is weakly dominated with respect to W k for player i of

type �ti; and (iii) if mi 2 W1
i

�
�tijM; �T

�
, it is weakly undominated with respect to W1 for

player i of type �ti where W1
i (�tijM; �T ) �

T1
l=1W

l
i (�tijM; �T ).

For any �t 2 �T , we letW1 ��tjM; �T
�
=
Q

i2IW
1
i

�
�tjM; �T

�
. SinceM is �nite,W k

i

�
�tijM; �T

�
is nonempty for any k: Thus, W1 is nonempty-valued. Note that W1 ��tjM; �T

�
depends on

the sequence
�
W k
	1
k=0

: However, we will show that for any t 2 �T and m 2 W1 �tjM; �T
�
,

we have g(m) = f(t): That is, the socially desired outcome achieved in W1 is obtained by
any elimination order. We �rst establish the following claim.

Claim 7 Assume that the environment E satis�es Assumption 1. For any 
0 > 0, there
exist � > 0 and a proper scoring rule d0i such that for any ti; t

0
i; t

00
i 2 �Ti with t0i 6= t00i and any

24We consider player i�s belief over other players�pure strategies. However, this formulation is equivalent
to taking player i�s belief as a conjecture over other players�(correlated) mixed strategies, i.e., �i : �T�i !
�(M�i) such that �i (t�i) [H�i (t�i)] = 1:
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��i : �T�i ! �T�i; we have that

�

������
X

t�i2 �T�i

�
d0i (��i (t�i) ; t

0
i)� d0i (��i (t�i) ; t

00
i )
�
�i (ti) [t�i]

������ > 
0: (35)

Proof. Fix any i: Let

Ci =

8<:d0i 2 R �T :
X

t�i2 �T�i

�
d0i (t�i; ti)� d0i (t�i; t

0
i)
�
��i (ti) [t�i] > 0;8ti 6= t0i

9=; :

Ci is the set of proper scoring rules in R
�T : By Lemma 2, Ci is a nonempty open set. Let

C 0i =

8<:d0i 2 R �T :
X

t�i2 �T�i

�
d0i (��i (t�i) ; t

0
i)� d0i (��i (t�i) ; t

00
i )
�
��i (ti) [t�i] 6= 0;8ti; t0i; t00i : t0i 6= t00i ;8��i

9=; :

Since �T is �nite, the complement of C 0i has measure zero in R
�T . Therefore, Ci \ C 0i has

a positive measure in R �T : Thus we can �nd a proper scoring rule d0i such that for any
��i : �T�i ! �T�i and ti; t0i; t

00
i 2 �Ti with t0i 6= t00i ;X

t�i2 �T�i

�
d0i (��i (t�i) ; t

0
i)� d0i (��i (t�i) ; t

00
i )
�
�i (ti) [t�i] 6= 0:

Finally, since �T is �nite, for any 
0 > 0; we can �nd some � > 0 such that inequality
(35) holds for any ��i : �T�i ! �T�i and ti; t0i; t

00
i 2 �Ti with t0i 6= t00i .

We introduce one mild condition on the type space.

Condition 1 A type space �T satis�es Condition 1 if �i (ti) [t�i] > 0 for some (tj)j 6=i =
t�i 2 �T�i, then �j (tj) [ti] > 0 for any j 6= i, where �j(tj)[ti] =

P
(ti;~t�i�j)2 �T�j �j(tj)[ti;

~t�i�j].

For instance, Condition 1 is adopted in Vohra (1999) and Jackson (1991). It automati-
cally holds when �T admits the common support for all players�priors. We are ready to state
our main result in this section.

Proposition 3 Suppose that I � 2, the environment E satis�es Assumption 1, and �T sat-
is�es Condition 1. Then, for any incentive compatible SCF f and any �� > 0; there exists a
mechanism (M; ��) such that for any t 2 �T and m 2 W1 �tjM; �T

�
, we have g(m) = f(t).

Proof of Proposition 3: Fix �� > 0: Choose the mechanism (M; ��) de�ned in Section
2.4.1, with the proper scoring rule d0i given in Claim 7, and � under 


0 = 
 (which is de�ned
in Section 2.4.1). Note how we can choose � arbitrarily small by choosing 
 small enough.
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To prove Proposition 3, we need to show that for any i 2 I; �ti 2 �Ti, and mi 2 Mi, if
mi 2 W1

i

�
�tijM; �T

�
; then m�1

i = �ti. This will be established in the three claims (Claims 9,
10, and 11) below.

The claim below says that if a message mi survives the iterated weak dominance, the
message that keeps the same announcement of round �2 as mi but replaces everywhere else
with truth-telling also survives the iterated weak dominance.

Claim 8 For any i 2 I, �ti 2 �Ti, andmi 2Mi, if mi 2 W1
i

�
�tijM; �T

�
; then

�
m�2
i ; �ti; :::; �ti

�
2

W1
i

�
�tijM; �T

�
.

Proof. For any player i 2 I, let �i be i�s strategy such that �i (�ti) = (�ti; :::; �ti) for every
type �ti 2 �Ti. Note that we use this notation throughout Section A.1. We prove this claim in
two steps.

Step 1: �i(�ti) 2 W1
i (�tijM; �T ) for any i 2 I and �ti 2 �Ti:

We prove this by induction. Note �rst that for all �t 2 �T , we have �(�t) 2 W 0(�tjM; �T )
trivially. For any n � 0, assume by our induction hypothesis that �(�t) 2 W n(�tjM; �T ).
Then, we shall show that �(�t) 2 W n+1(�tjM; �T ) for all �t 2 �T . This is equivalent to showing
the following: for any i 2 I; �ti 2 �Ti and ~mi 2 W n

i (�tijM; �T ), either �i(�ti) is always at
least as good as ~mi or there exists ��i : �T�i ! M�i such that ��i(�t�i) 2 W n

�i(�t�ijM; T )
for all �t�i 2 �T�i and �i(�ti) is a strictly better reply to ��i than ~mi. Fix i 2 I; �ti 2 �Ti,
and ~mi 2 W n

i (�tijM; �T ). We verify this by considering the following two cases of ~mi: (i)
~m�2
i 6= ��2i (�ti) and ~m

k
i = �ki (�ti) for all k � �1; and (ii) ~mk

i 6= �ki (�ti) for some k � �1: In
Case (i), due to the construction of the mechanism, �i(�ti) is at least as good as ~mi for any
��i : �T�i ! M�i by inequality (14). In Case (ii), against the conjecture ��i (�) = ��i (�) ;
�i(�ti) is a strictly better message than ~mi by the argument in Claims 2, 3 and 4. Therefore,
there is no ~mi that weakly dominates �i(�ti). Thus, �(�t) 2 W k+1(�tjM; �T ). This completes
the proof of Step 1.
Step 2: for any i 2 I; �ti 2 �Ti, and mi 2Mi, if mi 2 W1

i

�
�tijM; �T

�
; then

�
m�2
i ; �ti; :::; �ti

�
2

W1
i

�
�tijM; �T

�
:

By Step 1, it su¢ ces to show (m�2
i ; �ti; :::; �ti) 2 W1

i

�
�tijM; �T

�
even when m�2

i 6= �ti:

We shall show that no ~mi can weakly dominate (m�2
i ; �ti; :::; �ti). Speci�cally, we do so by

considering the following two cases of ~mi: (i) ~m�2
i 6= ��2i (�ti) and ~m

k
i = �ki (�ti) for all k � �1;

(ii) ~mk
i 6= �ki (�ti) for some k � �1: In Case (i), due to the construction of the mechanism,

(m�2
i ; �ti; : : : ; �ti) is at least as good as ~mi for any ��i : �T�i !M�i by inequality (14). In Case

(ii),
�
m�2
i ; �ti; :::; �ti

�
is a strictly better message than ~mi against conjecture ��i (�) = ��i (�)

by the argument in Case (ii) of Step 1. Thus, no ~mi can weakly dominate (m�2
i ; �ti; :::; �ti).

This completes the proof.

The next claim says that if a message mi survives the iterated weak dominance, the
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message that keeps the same announcement of round �1 as mi but replaces everywhere else
with truth-telling also survives the iterated weak dominance.

Claim 9 For any i 2 I, �ti 2 �Ti, andmi 2Mi, ifmi 2 W1
i (�tijM; �T ), then (�ti;m�1

i ; �ti; :::; �ti) 2
W1
i (�tijM; �T ).

Proof. By Step 1 in the proof of Claim 8, it su¢ ces to consider the case that m�1
i 6= �ti.

By considering the following two cases, we shall show that no ~mi can weakly dominate
(�ti;m

�1
i ; �ti; :::; �ti): (i) ~m�1

i 6= m�1
i and ~mk

i = �ti for all k 6= �1; (ii) ~mk
i 6= �ti for some k 6= �1:

In Case (i), we proceed in two steps.
Step 1: for any ~mi, if ~m�1

i 6= m�1
i and ~mk

i = mk
i for all k 6= �1; mi is strictly better than

~mi against some conjecture ��i such that ��i (�t�i) 2 W1
�i
�
�t�ijM; �T

�
for all �t�i 2 �T�i.

Since mi 2 W1
i (�tijM; �T ), one of the following two cases must hold: (1) player i of

type �ti is indi¤erent between ~mi and mi against any conjecture ��i such that ��i(�t�i) 2
W1
�i(�t�ijM; �T ) for all �t�i; or (2) mi is strictly better than ~mi for player i of type �ti against

some conjecture ��i such that ��i(�t�i) 2 W1
�i(�t�ijM; �T ) for all �t�i 2 �T�i.

By Claim 7, Case (1) is impossible. Thus, we must have Case (2). Since mi and ~mi

only di¤er in round �1, the utility gain for player i of type �ti by using mi rather than ~mi

is concentrated in the payment rule �d0i , which is larger than 
 by inequality (35). Next,
the utility loss comes from the random dictator component of the outcome function, which
is bounded above from �E. By inequality (13), we know 
 � �E > 0. Thus, mi is strictly
better than ~mi.
Step 2: for any ~mi, if ~m�1

i 6= m�1
i and ~mk

i = �ti for all k 6= �1, then (�ti;m�1
i ; �ti; :::; �ti) is

strictly better than ~mi against some conjecture ��i such that ��i(�t�i) 2 W1
�i(�t�ijM; �T ) for

all �t�i 2 �T�i.
Sincem�1

i 6= �ti andmi 2 W1
i (�tijM; �T ); by Claim 7, there exist a nonempty set of play-

ers J � Infig, f�tjgj2J , and a collection of strategies f�̂jgj2J such that �̂j(�tj) 2 W1
j (�tjjM; �T )

and �̂�2j (�tj) 6= �tj for all j 2 J . FromClaim 8, we know that (�̂�2j (�tj); �tj; :::; �tj) 2 W1
j (�tjjM; �T )

for all j 2 J: Let ~��i be de�ned such that ~��2�i (�t�i) = �̂�2�i (�t�i) and ~�
k
�i(�t�i) = ��i(�t�i) for

all �t�i 2 �T�i and k � �1: Thus, ~��i(�t�i) 2 W1
�i(�t�ijM; �T ) for all �t�i 2 �T�i.

Fix such conjecture ��i (�) = ~��i (�) : Since (�ti;m�1
i ; �ti; :::; �ti) and ~mi only di¤er in

round �1, the utility gain for player i of type �ti by using (�ti;m�1
i ; �ti; :::; �ti) rather than ~mi is

concentrated in the payment rule �d0i , which is larger than 
. Next, the utility loss through
the random dictator component of the outcome function, which is bounded above from �E.
Since we know that 
 � �E > 0 from the proof of Step 1, (�ti;m�1

i ; �ti; :::; �ti) is strictly better
than ~mi against conjecture ~��i.

In Case (ii), (�ti;m�1
i ; �ti; :::; �ti) is strictly better than ~mi against some conjecture, as we

can make an argument parallel to Step 2 in the proof of Claim 8. Thus, no ~mi can weakly
dominate (�ti;m�1

i ; �ti; :::; �ti). This completes the proof.

The next claim says that if a message survives the iterated weak dominance, it must
contain the truth telling in the announcement of round �1.
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Claim 10 For any i 2 I; �ti 2 �Ti, and mi 2Mi, if mi 2 W1
i (�tijM; �T ), then m�1

i = �ti:

Proof. Suppose not, that is, there exists some mi 2 W1
i (�tijM; �T ) with m�1

i 6= �ti. Then by
Claim 9, (�ti;m�1

i ; �ti; :::; �ti) 2 W1
i (�tijM; �T ). Since the indicator function e(�) has a positive

weight in this case, by inequality (14), we conclude that for any j 2 Infig and �tj 2 �Tj,
if mj 2 W1

j (�tjjM; �T ), then m�2
j = �tj. Since mi 2 W1

i (�tijM; �T ), by Claim 2, whenever
m�1
i 6= �ti, mi is weakly dominated by (m�2

i ; �ti;m
0
i ; : : : ;m

K
i ). This is a contradiction.

The rest of the proof of Proposition 3 is completed by adapting the proof of Theorem
1.�

A.2 Proof of Lemma 3

Proof. Since M is �nite, there is k such that SkW (�tjM; T ) = S1W (�tjM; T ) for every
�t 2 T . Thus, it su¢ ces to show that for each k, each �t 2 �T , and sequence ft [n]g1n=0 in T
such that t[n] !p

�t as n ! 1, there exists a natural number Nk 2 N such that, for any
n � Nk; we have SkW (t [n] jM; T ) � SkW (�tjM; T ). We prove this by induction. Since
S0Wi (tijM; T ) = S0Wi (t

0
ijM; T ) whenever �̂i (ti) = �̂i(t

0
i) and �̂i (ti [n]) = �̂i(�ti) for some

su¢ ciently large n. The claim is true for k = 0. Now suppose that the claim holds for k � 0
and we show that the claim is also valid for k + 1:

Fix mi 2 Sk+1Wi (ti[n]jM; T ). Recall the notation in Section 2.2. Then, for any m0
i,

there exists some � [n]�i : T�i ! SkW�i(t�ijM; T ) such thatX
t�i

h
ui(g(mi; �

[n]
�i(t�i));

��i) + � i

�
mi; �

[n]
�i(t�i)

�i
�i(ti[n])[t�i] (36)

�
X
t�i

h
ui(g(m

0
i; �

[n]
�i(t�i));

��i) + � i

�
m0
i; �

[n]
�i(t�i)

�i
�i(ti[n])[t�i]:

Let
Vi

�
mi; �

[n]
�i

�
�
X
t�i

h
ui(g(mi; �

[n]
�i(t�i));

��i) + � i

�
mi; �

[n]
�i(t�i)

�i
�i(ti[n])[t�i]:

For any mi and m0
i, we de�ne �

mi;m
0
i : T�i !M�i such that, for any t�i,

�mi;m
0
i (t�i) = arg max

�
[n]
�i(t�i)2Sk�i(t�ijM;T )

n
Vi

�
mi; �

[n]
�i(t�i)

�
� Vi

�
m0
i; �

[n]
�i(t�i)

�o
:

We can interpret �mi;m
0
i as player i�s belief about the best possible scenario for the choice of

mi against m
0
i where other players use k-times iteratively undominated strategies. Thus, we
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have X
m�i

�
ui(g(mi;m�i); ��i) + � i (mi;m�i)

�
�i (ti [n])

h
ft�i 2 T�i : �mi;m

0
i (t�i) = m�ig

i
�

X
m�i

�
ui(g(m

0
i;m�i); ��i) + � i (m

0
i;m�i)

�
�i (ti [n])

h
ft�i 2 T�i : �mi;m

0
i (t�i) = m�ig

i
:

Note that this is where the assumption of private values becomes crucial. Since t [n] !p
�t;

for any n > 0; there exists "n > 0 such that

�i (ti [n]) [(�t�i)
"n ]! �i (�ti) [�t�i] ; as n!1;

where (�t�i)"n denotes an open ball consisting of the set of types t�i whose (k � 1)-order
beliefs are "n-close to those of types �t�i.25 It follows that the following probability is well
de�ned.

For any �t�i 2 �T�i such that �i (�ti) [�t�i] > 0; and m�i, we de�ne the following:

��i (�t�i) [m�i] � lim
n!1

�i (ti [n])
hn
t�i 2 (�t�i)"n : �mi;m

0
i (t�i) = m�i

oi
�i (�ti) [�t�i]

:

Now we construct a conjecture ��i : �T�i ! �(M�i) for type �ti: For any (�t�i;m�i) ; we
set ��i(m�ij�t�i) = ��i (�t�i) [m�i]. From the inequality above we haveX

m�i

�
ui(g(mi;m�i); ��i) + � i (mi;m�i)

� X
�t�i2T

��i (�t�i) [m�i] �i (�ti) [�t�i]

�
X
m�i

�
ui(g(m

0
i;m�i); ��i) + � i (m

0
i;m�i)

� X
�t�i2T

��i (�t�i) [m�i] �i (�ti) [�t�i] :

Therefore, X
�t�i

�
ui(g(mi; ��i(�t�i)); ��i) + � i (mi; ��i(�t�i))

�
�i(�ti)[�t�i]

�
X
�t�i

�
ui(g(m

0
i; ��i(�t�i));

��i) + � i (mi; ��i(�t�i))
�
�i(�ti)[�t�i]

By construction, ��i(m�ij�t�i)�i(�ti)[�t�i] > 0 implies that m�i 2 SkW�i(t�i [n] jM; T ). By
our induction hypothesis, SkW�i(t�i [n] jM; T ) � SkW�i(�t�ijM; T ): Thus, we have m�i 2
SkW�i(�t�ijM; T ). Since the choice of m0

i is arbitrary, so this completes the proof.

25This follows from the fact that the Prohorov distance between ti [n] and �ti converges to 0 due to the
�niteness of �T�i. See Dudley (2002, pp. 398 and 411).
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A.3 Proof of Claim 5

Recall that �Ti = ft1i ; t2i g = f(1; 0); (0; 1)g for each i 2 I and A = f(1; 0); (0; 1)g. Recall also
that player i�s preferences only depend on player i + 1�s type. To simplify the notation, we
write player i�s preferences as follows: ui(a; t) � ui(a; t�i) = a � ti+1; for any a 2 A and t 2 �T .

Let �0 be a strategy pro�le such that for each i 2 I and ti 2 �Ti, �0i(ti) = (t0i; :::; t
0
i)

where t0i 2 �Tinftig. Then we show that �0i(ti) 2 S1i Wi(tijM; �T ) by the following lemmas.
For each i 2 I, we de�ne �i : �Ti ! �Ti such that �i(ti) 6= ti for all ti 2 �Ti.

We show that a non-truthful announcement by all players constitutes a Bayes Nash
equilibrium in the direct-revelation mechanism ( �T ; f�) in Lemma 5.

Lemma 5 For any player i of type ti;X
t�i2 �T�i

ui(f
�(t0i; ��i(t�i)); t�i)�i(ti)[t�i] �

X
t�i2 �T�i

ui(f
�(ti; ��i(t�i)); t�i)�i(ti)[t�i]: (37)

Proof. In player i�s view, other players� types are perfectly correlated. Besides, f � is a
majority rule. Therefore, in player i�s view, player i cannot change the outcome by his
unilateral deviation when the other players are making a consistent (false) announcement.
Thus, we complete the proof.

The next lemma says that if player i�s type is di¤erent from that of player i+1, he has
a better outcome by matching his announcement to his neighbors�than that by telling the
true type.

Lemma 6 For any player i of type ti; ui(xi(t0i); t
0
i+1)� ui(xi(ti); t

0
i+1) > 0 if ti 6= t0i = t0i+1:

Proof. Fix any outcome a 2 A: Player i of type ti�s interim utility is given as follows:X
t�i2 �T�i

ui(a; t�i)�i(ti)[t�i] = pa � ti + (1� p) a � t0i;

where ti 6= t0i. Therefore, player i of type ti strictly prefers a to the other outcome if and
only if a = ti: Since ui (a; t�i) = a � ti+1; ui(xi(t0i); t0i+1)� ui(xi(ti); t

0
i+1) > 0 if ti 6= t0i = t0i+1:

The lemma below says that the message that has the consistent misrepresentation of
types survives S1W .

Lemma 7 For every i 2 I and ti 2 �Ti, we have �0i(ti) 2 S1i Wi(tijM; �T ):

Proof. We prove Lemma 7 in the following three steps.
Step 1: For every i 2 I and ti 2 �Ti; against conjecture �0�i; �

0
i (ti) is a strictly better message

than ~mi if ~mk
i = t0i for any k � �1.
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Fix any ~mi. First, consider the case that ~mk
i 6= t0i for some k 2 f�1; 0g. The utility

gain in payment rule �d0i from using �0i(ti) rather than ~mi is

�
X

t�i2 �T�i

�
d0i (�

0�1
�i (t�i); t

0
i)� d0i (�

0�1
�i (t�i); ti)

�
�i(ti)[t�i]

= �
X

t0�i2 �T�i

�
d0i
�
t0�i; t

0
i

�
� d0i

�
t0�i; ti

��
�i (t

0
i)
�
t0�i
�

> 
;

where ti+1 = ti+2 = ti 6= t0i = t0i+1 = t0i+2 and the �rst equality follows from that �i(ti)[t�i] =
�i(t

0
i)[t

0
�i] in this example; the last inequality follows from inequality (10). All the possible

loss (from using �0i(ti) rather than ~mi) consists of (i) the utility loss in the random dictatorial
component of the outcome function weighted by e(�) function, which is bounded above from
�E; (ii) the utility loss in di; which is bounded above from �; (iii) the utility loss in dki for all
k � 1: The total loss is bounded above from �E + � +K�:

For any outcome that depends on kth message pro�le, if ~mk
i 6= t0i; �

0
i(ti) is at least as

good as ~mi by inequality (37).
By inequality (13), we know 
 > �E + � + K�: Therefore, �0i(ti) is a strictly better

reply to �0�i than any such ~mi.
Finally, consider the case that ~m�1

i = ~m0
i = t0i and ~m

k
i 6= t0i for some k � 1: For any

k � 1, in terms of the outcome that depends on the kth message pro�le, if ~mk
i 6= t0i; �

0
i(ti) is

at least as good as ~mi by inequality (37). In terms of payments, since �0i(ti) = (t
0
i; :::; t

0
i) is a

consistent message, the utility gain (from using �0i(ti) rather than ~mi) in the payment rules
di and dki for all k � 1 is bounded below by � + �: Therefore, �0i(ti) is a strictly better reply
to �0�i than any such ~mi. This completes the proof of Step 1.
Step 2: For every i 2 I and ti 2 �Ti; �

0
i(ti) 2 W 1

i (tijM; �T ).
Fix any player i of type ti and ~mi 6= �0i(ti). Then, it su¢ ces to show that no ~mi can

weakly dominate �0i(ti). More speci�cally, Taking the previous step into account, we can
decompose our argument into the following two cases of ~mi:

Case (i) ~m�2
i 6= t0i and ~m

k
i = t0i for all k � �1.

Let �m�i 2 M�i be de�ned such that �m�1
j = �m0

j for all j 6= i. Therefore, we have
e((m�1

i ; �m�1
�i ); (m

0
i ; �m

0
�i)) = 0 when m�1

i = m0
i . Let ~m�i 2 M�i be de�ned such that

~m�1
j 6= ~m0

j for some j 6= i. Then, we have e((m�1
i ; ~m�1

�i ); (m
0
i ; ~m

0
�i)) = � for all mi. Let

��i be a conjecture of type ti such that ��i( �m�ijt�i) = 1 and ��i( ~m�ijt0�i) = 1 where
ti+1 = ti+2 = ti 6= t0i = t0i+1 = t0i+2. Then, the utility net gain for player i of type ti from
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choosing �0i(ti) rather than ~mi is given:�
0� ui(xi(t

0
i); t�i)�i(ti)[t�i] + �� ui(xi(t

0
i); t

0
�i)�i(ti)[t

0
�i]
	

�
�
0� ui(xi(ti); t�i)�i(ti)[t�i] + �� ui(xi(ti); t

0
�i)�i(ti)[t

0
�i]
	

= �
�
ui(xi(t

0
i); t

0
�i)� ui(xi(ti); t

0
�i)
	
�i(ti)[t

0
�i]

> 0;

where the last inequality follows from Lemma 6: Therefore, �0i(ti) is a strictly better reply
to ��i than any such ~mi.

Case (ii) ~mk
i 6= t0i for some k � �1.

By Step 1, we conclude that �0i(ti) is a strictly better message to conjecture �
0
�i than

any such ~mi. Thus, no ~mi can weakly dominate �0i(ti) so that �
0
i(ti) 2 W 1

i (tijM; �T ). This
completes the proof of Step 2.
Step 3: For every i 2 I and ti 2 �Ti, we have �0i(ti) 2 S1i Wi(tijM; �T ):

Fix conjecture �0�i and any ~mi: We �rst show that for each player i of type ti; �0i(ti)
is a best response to �0�i by considering the following two cases: (i) ~m

�2
i 6= t0i and ~m

k
i = t0i

for all k � �1; (ii) ~mk
i 6= t0i for some k � �1. In Case (i), player i of type ti is indi¤erent

between ~mi and �0i(ti) since the indicator function e(�) has a value of 0: In Case (ii), it follows
immediately from Step 1. Thus, for every i 2 I and ti 2 �Ti, we have �0i(ti) 2 S2i (tijM; �T ).
Fix i 2 I and ti 2 �Ti. For each k � 2, we assume by our inductive hypothesis that
�0i(ti) 2 Ski (tijM; �T ). Then, we can conclude that �0i(ti) 2 Sk+1i (tijM; �T ), since we can
always �x �0�i as a conjecture of player i of type ti. This completes the proof of Step 3.

A.4 Proof of Lemma 4

Proof. Fix i 2 I and ti; t
0
i 2 �Ti with ti 6= t

0
i. Let ��i : �T�i ! M�

�i be type ti�s conjecture in
the maximally revealing mechanism such that ��i(t�i) 2 S1�i(�̂�i(t�i)jM�) for each t�i 2 �T�i.
Thus, for any t�i 2 �T�i and  �i 2 ���i, we have ��i(t�i) 2 M�

�i
�
 �i

�
if and only if

�̂�i(t�i) 2  �i. Consider any  �i 2 ���i such that ��i(t�i) 2 M�
�i
�
 �i

�
for each t�i 2 �T�i.

The expected payo¤ of player i of type ti over  �i in ~d
0
i from announcing t0i is computed as
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follows: X
t�i2 �T�i:�̂�i(t�i)2 �i

� ~d0i (t
0
i; ��i(t�i))�i(ti)[t�i]

=
X

t�i2 �T�i:�̂�i(t�i)2 �i

�

0@2�t0i � �i�� X
 0�i2���i

�2t0i

�
 0�i

�1A �i(ti)[t�i]

= �

0@2�t0i � �i�� X
 0�i2���i

�2t0i

�
 0�i

�1A X
t�i2 �T�i:�̂�i(t�i)2 �i

�i(ti)[t�i]

= �

0@2�t0i � �i�� X
 0�i2���i

�2t0i

�
 0�i

�1A�ti( �i); (38)

where the �rst equality follows from the de�nition of ~d0i (see (29)) and the fact that ��i(t�i) 2
M�
�i
�
 �i

�
if and only if �̂�i(t�i) 2  �i. By Assumption 2, we obtain

ftig = argmax
t0i2 �Ti

X
 �i2���i

�

0@2�t0i � �i�� X
 0�i2���i

�2t0i

�
 0�i

�1A�ti( �i):

This implies that given the construction of the scoring rule ~d0i and the hypothesis that all
other players choose their ex post rationalizable strategies in the maximally revealing mech-
anism, telling the true type is strictly better than telling any other types. This completes
the proof.

A.5 Proof of Claim 6

The proof of Claim 6 is reduced to establishing Lemma 8: if a message mi in the game
U
�
M; �T

�
entails a message m�

i that is not ex post rationalizable in the maximally revealing
mechanism, then mi is weakly dominated in the game U

�
M; �T

�
. Claims 11, 12 and 13 all

constitute the building blocks for proving Lemma 8. First, we prove Claims 11, 12 and 13
and thereafter, we prove Lemma 8.

Claim 11 below shows that we can have a maximally revealing mechanism with the
property that any two distinct messages of every type result in two di¤erent payo¤s against
any pure strategy pro�le of the other players. We call such a mechanism a �generic�maxi-
mally revealing mechanism.

Claim 11 We can construct a maximally revealing mechanism M� = (M�; g�) with the
following property: for any ti 2 �Ti, ���i : T�i ! M�

�i, and mi;m
0
i 2 M�

i with mi 6= m0
i, we
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have X
t�i2 �T�i

ui(g
�(mi; �

�
�i(t�i)); �̂i(ti); �̂�i (t�i))�i(ti)[t�i]

6=
X

t�i2 �T�i

ui(g
�(m0

i; �
�
�i (t�i)); �̂i(ti); �̂�i (t�i))�i (ti) [t�i] :

Proof. LetM = (M�; g) be a �nite maximally revealing mechanism proposed in Bergemann
and Morris (2009b). We de�ne M� = (M�; g; �) as the mechanism which augments M =

(M�; g) with a transfer rule � = (� i)i2I such that � i :M
� ! R for each i 2 I. Fix any i: Let

Ci =
n
� i 2 R

�T : S1 (�ijM� ) \ S1 (�0ijM� ) = ?;8�i; �0i with �i 6� �0i

o
:

Note that Ci is a nonempty open set. Let

C 0i =

8>><>>:� i 2 R �T :

P
t�i2 �T�i

n
ui(g

�(mi; �
�
�i(t�i)); �̂i(ti); �̂�i (t�i)) + � i(mi; ��i(t�i))

o
�i(ti)[t�i]

6=
P

t�i2 �T�i

n
ui(g

�(m0
i; �

�
�i (t�i)); �̂i(ti); �̂�i (t�i)) + � i(m

0
i; ��i(t�i))

o
�i (ti) [t�i] ;

8ti 2 �Ti; 8���i : T�i !M�i; and 8mi;m
0
i 2M�

i with mi 6= m0
i

9>>=>>; :

Since �T is �nite, the complement of C 0i has measure zero in R
�T . Therefore, Ci \ C 0i has

a positive measure in R �T : Thus we can �nd a transfer rule � �i 2 Ci \ C 0i. Thus, we set
M� = (M�; g�) = (M�; g; � �) as a maximally revealing mechanism as we desire.

In what follows, we assume without loss of generality that the maximally revealing
mechanism we use in the proof of Lemma 8 is generic. Claims 12 shows that the scoring rule
is also generic in the sense that two distinct announcements result in two di¤erent payo¤s,
as we show in Claim 7 of Section A.1.

Claim 12 Assume that the environment E satis�es Assumption 2. For any i 2 I; ti 2 �Ti,
and 
0 > 0, there exist � > 0 and a proper scoring rule ~d0i such that for any t

0
i; t

00
i 2 �Ti with

t0i 6= t00i and any �̂�i : �T�i !M�
�i; we have that

�

������
X

t�i2 �T�i

h
~d0i (�̂�i (t�i) ; t

0
i)� ~d0i (�̂�i (t�i) ; t

00
i )
i
�i (ti) [t�i]

������ > 
0: (39)

Proof. Fix any i: Let ��i =
�
��i : T�i !M�

�ij��i(t�i) 2 S1�i (��i (t�i) jM�) ;8t�i
	
. For

each ��i 2 ��i, let

C
��i
i =

8<: ~d0i 2 R �T :
X

t�i2 �T�i

h
~d0i (��i(t�i); ti)� ~d0i (��i(t�i); t

0
i)
i
��i (ti) [t�i] > 0;8t0i 6= ti

9=; :
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By Lemma 4, Ci �
T
��i2��i C

��i
i is a nonempty open set. The rest of the proof is identical

to the argument in the proof of Claim 7.

It immediately follows from Claim 12 that inequality (39) holds if we choose 
0 = 


chosen in (10) and (13) in Section 2.4.1.
We introduce the following claim to show that under the scoring rule, whenever player

i of type ti misrepresents his type ti as t0i, there always exists a conjecture that rationalizes
this misrepresentation. This constitutes a key result to show that for any l 2 f1; : : : ; �lg,
there always exists a message pro�le m that survives W l (i.e., l-times iterative deletion of
weakly dominated strategies) such that e((m�l)

�l+1
l=0) = �.

Claim 13 For any ti; t0i 2 �Ti with ti 6= t
0
i, there exists ��i : �T�i ! �

�
�T�i
�
; such that

ft0ig = argmax
~ti2 �Ti

X
t�i2 �T�i

�i (ti) [t�i]
X

~t�i2 �T�i

d0i
�
~t�i; ~ti

�
��i

�
~t�ijt�i

�
;

where we denote by ��i
�
~t�ijt�i

�
the probability that ~t�i is realized given that ��i(t�i) is

played.

Proof. First note that

ft0ig = argmax
~ti2 �Ti

X
~t�i2 �T�i

d0i
�
~t�i; ~ti

�
�i (t

0
i)
�
~t�i
�
;

since the scoring rule is strictly incentive compatible. We construct type ti�s conjecture
denoted by ��i : �T�i ! �

�
�T�i
�
such that for any t�i; ~t�i 2 �T�i,

��i
�
~t�ijt�i

�
= �i (t

0
i)
�
~t�i
�
: (40)

We consider player i of type ti and compute type ti�s expected utility from d0i :X
t�i2 �T�i

�i (ti) [t�i]
X

~t�i2 �T�i

d0i
�
~t�i; ~ti

�
��i

�
~t�ijt�i

�
=

X
t�i2 �T�i

�i (ti) [t�i]
X

~t�i2 �T�i

d0i
�
~t�i; ~ti

�
�i (t

0
i)
�
~t�i
�

=
X

~t�i2 �T�i

d0i
�
~t�i; ~ti

�
�i (t

0
i)
�
~t�i
�
;

where the �rst equality follows from (40), and the second equality follows from the fact that
d0i
�
~t�i; ~ti

�
�i (t

0
i)
�
~t�i
�
does not depend on t�i: Thus, we complete the proof.

Note that Claim 6 immediately follows from Lemma 8, which shows that for any ti and
mi 2 W1

i (tijM; �T ), we have m��l�2
i 2 S1i (�̂i(ti)jM�):
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Lemma 8 For any ti 2 �Ti and l = 0; 1; :::; �l; the following two statements, each of which is
denoted by P 1(l) and P 2(l), respectively, hold:
P 1(l): for any m̂i 2Mi, whenever m̂��l�2

i 62 Sli(�̂i(ti)jM�), then m̂i 62 W l
i (tijM; �T );

P 2(l): there is some
�
m��l�2
i ; :::;m��l+l�1

i

�
2 ���l+l�2

k=��l�2M
k
i such that for every t

0
i 2 �Ti,�

m��l�2
i ; :::;m��l+l�2

i ; t0i; ti; :::; ti

�
2 W l

i

�
tijM; �T

�
. (41)

Proof. We prove Lemma 8 by induction. We observe that P 1(0) and P 2(0) hold trivially.
Next, for each l 2 f0; : : : ; �l � 1g, we assume that P 1(l) and P 2(l) hold and prove P 1(l + 1)
and P 2(l + 1).

We �rst prove P 1(l + 1). Consider player i of type ti. Assume that there is m�
i 2 M�

i

such that m�
i 2 Sli(�̂i(ti)jM�) and m�

i 62 Sl+1i (�̂i(ti)jM�).26 This implies that there exists
some ��i 2 �(M�

i ) such that

ui(g
�(��i ;m

�
�i); (�̂i(ti); ��i)) > ui(g

�(m�
i ;m

�
�i); (�̂i(ti); ��i)); (42)

for all ��i 2 ��i and m�
�i 2 Sl�i (��ijM�).

For any t�i 2supp �i (ti), m̂�i 2 M�i, and j 6= i, if m̂j 2 W l
j

�
tjjM; �T

�
, then m̂��l�2

j 2
Slj(�̂j(tj)jM�) by P 1 (l) : Fix mi 2 Mi such that m��l�2

i = m�
i . Let �i 2 �(Mi) such that

��
�l�2

i = ��i and �
k
i

�
mk
i

�
= 1 for any k 6= ��l � 2: Thus, for any ��i : �T�i ! M�i; whenever

��i(t�i) 2 W l
�i(t�ijM; �T ) for each t�i 2 �T�i,X
t�i

n
ui(g(�i; ��i(t�i)); �̂(ti; t�i)) + � i ( ~mi; ��i(t�i))

o
�i(ti)[t�i]

�
X
t�i

n
ui(g(mi; ��i(t�i)); �̂(ti; t�i)) + � i(mi; ��i(t�i))

o
�i(ti)[t�i] (43)

=
X
t�i

e(
�
m�l
i ; �

�l
�i(t�i)

��l+1
l=0
)�i(ti)[t�i]

�
n
ui(g

�(�i; �
��l�2
�i (t�i)); �̂(ti; t�i))� ui(g

�(m�
i ; �

��l�2
�i (t�i)); �̂(ti; t�i))

o
� 0

where the equality follows from the fact that the only di¤erence lies in the function g� when
�i di¤ers from mi only in round �(�l + 2) announcement; the inequality follows from (42).

In addition, by P 2 (l) ; for any t�i 2 �T�i, there exists some ~m�i 2 W l
�i (t�ijM; T ) such

that ~m��l+l�1
�i 6= ~m0

�i: Thus, e(
�
m�l��l+1

l=0
) = � when m�i = ~m�i: Let ��i be a conjecture such

that ��i(t�i) = ~m�i for some t�i: Against such conjecture ��i; the inequality in (43) becomes
strict. Thus, mi is weakly dominated by �i so that mi =2 W l+1

i (tijM; T ). So, P 1(l+1) holds.
Second, we shall prove P 2 (l + 1). In the proof, for any conjecture ��i : �T�i ! �(M�i),

26Throughout this section, we use m�
i to denote a generic element in M

�
i .
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we write �k�i (t�i) as the marginal distribution of ��i on Mk
�i. Moreover, we write the

�coordinate-wise�best replies as follows:

b�i (�
��l�2
�i ) 2 arg max

m�
i2M�

i

X
t�i2 �T�i

X
~t�i2 �T�i

ui(g
� �m�

i ; ~t�i
�
; �̂ (ti; t�i))�

��l�2
�i

�
~t�ijt�i

�
�i (ti) [t�i] ;

bi(�
��l�2
�i ) 2 argmax

t0i2 �Ti

X
t�i2 �T�i

X
~t�i2 �T�i

~d0i
�
~t�i; t

0
i

�
��

�l�2
�i

�
~t�ijt�i

�
�i (ti) [t�i] ; (44)

bi
�
�k�i
�
2 argmax

t0i2 �Ti

X
t�i2 �T�i

X
~t�i2 �T�i

d0i
�
~t�i; t

0
i

�
�k�i

�
~t�ijt�i

�
�i (ti) [t�i] (45)

for all k = ��l � 1; : : : ; K. Observe that by Claims 11, 12 and 7, the best reply is unique if
�k�i (t�i) is a point mass for every t�i. By P

2 (l), there is a mapping e��i : �T�i ! ���l+l�2
k=��l�2M

k
�i

such that for every t�i; t0�i 2 �T�i,

�̂�i(t�i; t
0
�i) � (e���l�2�i (t�i); :::;e���l+l�2�i (t�i); t

0
�i; t�i; :::; t�i) 2 W l

�i
�
t�ijM; �T

�
.

We now prove P 2 (l + 1) in the following two steps.
Step 1. If t0i 6= ti, then �mi � (b�i (e���l�2�i ); bi(e���l�2�i ); bi(e���l�1�i ); : : : ; bi(e���l+l�2�i ); t0i; ti; :::; ti) 2
W l+1
i

�
tijM; �T

�
.

By Claim 13, there exists a mapping ~��i : �T�i ! �
�
�T�i
�
such that

ft0ig = argmax
~ti2 �Ti

X
t�i2 �T�i

X
~t�i2 �T�i

d0i
�
~t�i; ~ti

�
~��i

�
~t�ijt�i

�
�i (ti) [t�i] ;

Let ��i : �T�i ! �(M�i) be type ti�s conjecture such that

��i
�
�̂�i(t�i; t

0
�i)jt�i

�
= ~��i

�
t0�ijt�i

�
;8t�i; t0�i 2 �T�i.

Note that bi(��
�l+l�1

�i ) = t0i and by construction, ��i is a valid conjecture. We show that
�mi is a strict better reply than any other ~mi against ��i: Fix ~mi 6= �mi. This is proved by
considering the following two cases: (A) ~m��l�2

i 6= �m��l�2
i and ~mk

i = �mk
i for any k 6= ��l � 2;

(B) ~mk
i 6= �mk

i for some k 6= ��l � 2.
Case A: ~m��l�2

i 6= �m��l�2
i and ~mk

i = �mk
i for any k 6= ��l � 2

Note that e(
�
�m�l
i ; �

�l
�i (t�i)

��l+1
l=0
) = � for any t�i 2 �T�i since �m��l+l

i = t0i 6= ti = �m0
i .

Then, the payo¤ di¤erence from changing ~mi into �mi is

�
X
t�i

ui(g
�( �m��l�2

i ; ��
�l�2

�i (t�i)); �̂ (ti; t�i))�i(ti)[t�i]

� �
X
t�i

ui(g
�( ~m��l�2

i ; ��
�l�2

�i (t�i)) ; �̂ (ti; t�i))�i(ti)[t�i]

> 0 (46)
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where the inequality follows because �m��l�2
i = b�i (�

��l�2
�i ) which is the unique best reply against

��
�l�2

�i .
Case B: ~mk

i 6= �mk
i for some k 6= ��l � 2:

We prove Case B by considering the following subcases.
B1: ~mk

i 6= �mk
i = bi

�
�k�1�i

�
for some k = ��l � 1; :::;��l + l

By (39) and (44), we have

�
X

t�i2 �T�i

�
d0i
�
�k�1�i (t�i); bi

�
�k�1�i

��
� d0i

�
�k�1�i (t�i) ; ~m

k
i

��
�i (ti) [t�i] > 
:

Given the conjecture ��i; the gain from changing ~mk
i to �m

k
i is at least 
; while the potential

loss is at most �E. Since 
 > "E+ �+K� by (13), �mi is strictly better than ~mi against ��i:
B2: ~mk

i 6= �mk
i = ti for some k = ��l + l + 1; :::; 0:

Note that by (39), given the conjecture �i, the gain from changing ~mk
i to �m

k
i is at

least 
; while the potential loss from changing ~mi into �mi is at most �E + � + K�: Since

 > "E + � +K� by (13), �mi is strictly better than ~mi against ��i:
B3: ~mk

i 6= �mk
i = ti for some k = 1:::; K:

By B1 and B2, it su¢ ces to show �mi is strictly better than ~mi when ~mk
i = ti for any

k = ��l� 1; :::; 0: Against the belief ��i, the gain from changing ~mk
i to m

k
i is at least �; while

there is no loss incurred. Therefore, �mi is strictly better than ~mi against ��i:
This completes the proof for Case B. Thus, �mi 2 W l+1

i

�
tijM; �T

�
:

Step 2. If t0i = ti, then �mi � (b�i (e���l�2�i ); bi(e���l�2�i ); bi(e���l�1�i ); : : : ; bi(e���l+l�2�i ); t0i; ti; :::; ti) 2
W l+1
i

�
tijM; �T

�
:

Consider ���i : �T�i ! �
�
�T�i
�
such that for any t�i we have ���i (t�ijt�i) = 1 � & and

���i
�
t0�ijt�i

�
= & for some t0�i 6= t�i. Since d0i is a proper scoring rule, we can choose & > 0

su¢ ciently small such that

ftig = argmax
~ti2 �Ti

X
t�i2 �T�i

X
~t�i2 �T�i

d0i
�
~t�i; ~ti

�
���i

�
~t�ijt�i

�
�i (ti) [t�i]

and meanwhile by Claim 7, given 
 > 0 satisfying inequality (13), we can choose � > 0 such
that

�
X

t�i2 �T�i

X
~t�i2 �T�i

�
d0i
�
~t�i; ti

�
� d0i

�
~t�i; t

0
i

��
���i

�
~t�ijt�i

�
�i (ti) [t�i] > 
: (47)

Let ��i : �T�i ! �(M�i) be type ti�s conjecture such that 8t�i; t0�i 2 �T�i

��i
�
�̂�i(t�i; t

0
�i)jt�i

�
= ���i

�
t0�ijt�i

�
;

Note that bi(��
�l+l�1

�i ) = ti and by construction, ��i is a valid conjecture. We will show that
�mi is a strict better reply than any other ~mi against ��i: Fix ~mi 6= �mi. This is proved in the
following two cases: (A�) ~m��l�2

i 6= �m��l�2
i and ~mk

i = �mk
i for any k 6= ��l � 2; (B�) ~mk

i 6= �mk
i
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for some k 6= ��l � 2:
Case A�: ~m��l�2

i 6= �m��l�2
i and ~mk

i = �mk
i for any k 6= ��l � 2

The payo¤ di¤erence from changing ~mi into �mi is

e(
�
�m�l
i ; �

�l
�i (t�i)

��l+1
l=0
)�i(ti)[t�i]

�
X
t�i

n
ui(g

�
�
�m��l�2
i ; ��

�l�2
�i (t�i)

�
; �̂ (ti; t�i))� ui(g

�
�
~m��l�2
i ; ��

�l�2
�i (t�i)

�
; �̂ (ti; t�i))

o
� 0; (48)

where the inequality follows because �m��l�2
i = b�i

�
��

�l�2
�i

�
which is the unique best reply

against ��
�l�2

�i . Inequality (48) is strict since for any t�i we have that ��
�l+l�1

�i
�
t0�ijt�i

�
=

���i
�
t0�ijt�i

�
and ���i

�
t0�ijt�i

�
> 0 for some t0�i 6= t�i:

Case B�: ~mk
i 6= �mk

i for some k 6= ��l � 2:
The proof of Case B�is identical to that of Case B in Step 1 (where in Case B�1 we

use (47)). Thus, �mi 2 W l+1
i

�
tijM; �T

�
. This completes the proof of Lemma 8.
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