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Abstract

We analyze a binary-action sequential game with a tipping point in the presence
of imperfect information. An information structure summarizes what each agent
can observe before making her decision. Focusing on information structures where
only �aggregate information�from past history can be observed, we fully character-
ize information structures that can lead to various (e¢ cient and ine¢ cient) Nash
equilibria. When individual decision making can be rationalized using a process
of iterative dominance (Moulin (1979)), we derive a necessary and su¢ cient condi-
tion on the information structure under which one obtains a unique and e¢ cient
Nash equilibrium outcome. Our results suggest that if su¢ cient (and not necessar-
ily perfect) information is available, coordination failure can be overcome without
centralized intervention.

Keywords: Threshold, Tipping Point, E¢ ciency, Coordination Failure, Domi-
nance Solvability, Imperfect Information, Weak Dominance.
JEL Classi�cation: C72, C73, D80.

1 Introduction

A threshold or tipping point is generally de�ned as a boundary which if crossed leads to an
�irrevocable�change of state.1 Strategic complementarities in games in which the net re-
turn from one�s actions depends positively on how many others have taken the same action
often lead to payo¤ structures characterized by a threshold. Sequential binary threshold
games, models with a tipping point in which agents move in a predetermined sequence and

�We are grateful for helpful comments from Herve Moulin, Matt Jackson, and members of the audience
at various seminars and conferences. Remaining errors are ours.

yDepartment of Economics, Southern Methodist University, 3300 Dyer Street, 301 Umphrey Lee Cen-
ter, Dallas, TX 75275. Email: bochen@smu.edu, rdeb@smu.edu.

1The idea seems to have come from the notion of �critical mass�in physics.
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each agent has two possible moves, have been found useful in many disciplines.2 Herd-
ing behavior, agglomeration and cascading, evolution of social norms, network formation,
formation of clubs and customs unions as well as studies of insurance and of di¤usion
of technology, represent some examples of problems that can be fruitfully modeled using
sequential binary games exhibiting threshold phenomena.
In economics, tipping point models have generally been associated with coordina-

tion games. Examples abound of coordination problems with positive externalities: the
consumption of a product with a network-externality e¤ect (e.g., fax machines, mobile
phones), the adoption of an innovation or standard where compatibility is valuable (e.g.,
ISO international standards on safety and quality of goods, standardization of screw
threads), and market-based externalities where more consumers of a good induce a lower
price of the provision of the good or complementary goods (e.g., natural monopolies, in-
surance markets). Strategic complementarities in these coordination games result in the
existence of a �bad�ine¢ cient equilibrium where complete lack of participation leads to
ine¢ ciency and a �good�e¢ cient equilibrium with maximal participation.
Cooper and John (1988) have argued that in the presence strategic complementarities,

where the marginal return from �increasing�one�s strategy is an increasing function of
the strategy of others, lies at the heart of the multiplicity of equilibria in coordination
games. The classic result in this area is by Milgrom and Roberts (1990) showing that for
submodular games the set of serially undominated strategy pro�les has a maximal and
a minimal elements (pure-strategy Nash equilibria) and are identi�ed as the �bad�and
the �good� equilibria referred to above.3 Milgrom and Roberts argue that since major
approaches to non-cooperative games accept that the solution needs to lie in this serially
undominated set, these maximal and minimal elements provide upper and lower bounds
on the joint behavior of players. For games with strategic complementarities, previous
research has explored various approaches that can be used to avoid or reduce the likelihood
of coordination failure (i.e., the occurrence of the bad equilibrium). This includes a strand
of literature analyzing the e¤ect of �nancial inducement schemes to overcome coordination
failure,4 and a line of research studying games with strategic complementarities in dynamic
environments.5 Two characteristics distinguish our study from this earlier work. Firstly,

2One of the earlier applications in social sciences of a tipping point is Grodzins (1957) in sociology
studying white �ight from inner cities to the suburbs. This analysis was elaborated and expanded on by
Schelling (1969, 1971). This is also a key concept used by Granovetter (1978) to study collective behavior.
Evidence of recognition of the tipping point phenomenon can also be found in everyday phrases such as
�the straw that broke the camel�s back�and �domino e¤ect.�

3Submodular games are games where the strategy sets have a lattice structure and where there are
strategic complementarities. Serially weakly undominated strategies are strategies that remain after
serialy crossing out strongly dominated strategies.

4See, for example, Dybvig and Spatt (1983) and Park (2004) on the e¤ects of insurance schemes
against low adoptions, and Bagnoli and Lipman (1989) on the e¤ects of refund mechanisms.

5Examples include dynamic coordination with positive spillovers and irreversible actions (Admati and
Perry (1991)), dynamic common interest games with asynchronicity and a �nite horizon (Dutta (2012)),
and dynamic coordination games with incomplete information (Farrell and Saloner (1985)).
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our focus is not on strategic complementarities and positive externalities per se but rather
on the theoretical implications of a tipping point and with the possibility of a coordination
failure. In particular, we allow for negative spillovers (�congestion�) in our model by not
insisting on strategic complementarities holding everywhere. Secondly, a key aspect of our
paper is the analysis and the modeling of information and its role in the determination of
di¤erent kinds of pure-strategy Nash equilibria.
We model information in our sequential game as a signal received by each player before

she moves. The information received is anonymous in that it is about how many people
rather than who has participated. The message received is (possibly) an imperfect signal
about the aggregate participation level. We identify key properties of the information
structure and their relationship to the occurrence of various types of Nash equilibria, as
well as to our game being dominance solvable using a process of iterative elimination of
dominated strategies.6

We add to the literature in three di¤erent ways: Firstly, we fully investigate the
relationship between the existence of �intermediate�pure-strategy Nash equilibria (those
that lie strictly between the maximal and the minimal equilibrium outcomes referred to
above) and the information structure of the game. Secondly, recognizing that for our
game, subgame perfection fails to screen out non-credible equilibria we use dominance
solvability as the appropriate re�nement of Nash equilibrium to explore the relationship
between e¢ ciency and the information structure of the game.7 Thirdly, our results apply
to all binary tipping point games in which the agents have a common threshold not just to
games with positive spillovers. In particular, our results also apply to games which may
only have local strategic complementarities and thus games allowing for the interesting
possibility of some levels of congestion mixed in with the positive spillovers.8

Our main results are as follows. Our �rst theorem analyzes the relationship between
information structures and pure-strategy Nash equilibria. While the existence of the max-
imal and the minimal Nash equilibrium outcomes, featuring respectively full participation
and no participation in equilibrium, is independent of the information structure, the ex-
istence of other (possibly e¢ cient and ine¢ cient) Nash equilibria, intermediate between
the maximal and the minimal Nash equilibria, is shown to depend critically on the in-

6Kohlberg and Mertens (1986) has argued strongly in favor of iterated dominance: �One might argue
that, since dominated strategies are never actually chosen and since all players know this, then the
deletion of such strategies can have no impact on strategic stability. This would lead to requiring that
a strategically stable equilibrium remain so when a dominated strategy is deleted (and hence when the
deletion is done iteratively).�

7Our dominance solvability is de�ned using iterative elimination of weakly dominated strategies. It
is known that for generic �nite extensive form games with perfect information, the solution of subgame
perfect equilibrium and the procedure of iterative elimination of weakly dominated strategies are closely
related (see Moulin (1986) and Osborne and Rubinstein (1994, Section 6.6)). Notice however that our
sequential game is (typically) one with imperfect information.

8For games with only local strategic complementarity, consider an adoption game where too many peo-
ple adopting may lead to increased competition and consequently we may have strategic substitutibility
locally at some point rather than global complementarity.
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formation structure. We provide a necessary and su¢ cient condition for the existence
of every possible type of �intermediate�pure-strategy Nash equilibria lying strictly be-
tween no participation and full participation. We �nd that a de�ning feature of such an
intermediate participation equilibrium is an information structure with the existence of
at least a pair of agents who get information signals that are una¤ected by each other�s
act of participation.
Our second result characterizes the relationship between information structures and

dominance solvability. We follow Gale (1953), Moulin (1979) and others by iteratively
deleting (weakly) dominated strategies in the normal form representation of our game to
obtain a set of iteratively undominated (admissible) strategies.9 We de�ne the game to
be dominance solvable when every such iteratively undominated strategy pro�le leads to
the same (unique) outcome. This unique outcome turns out to be the e¢ cient maximal
outcome where all agents participate. While the concept of dominance solvability has
frequently been used in the literature, our contribution lies in identifying the necessary
and su¢ cient condition on the information structure of the game for it to be dominance
solvable.
We de�ne an information chain of lengthm as a set ofm agents who are informationally

linked in that the �rst agent�s participation impacts the information signal the second
agent receives, and the second agent�s participation impacts the information signal the
third agent receives, and so on. The tipping point � represents the degree of participation
that is needed for an improvement in the payo¤s of the participating agents over the
status quo to occur. We show that dominance solvability obtains and coordination failure
is avoided if and only if there exists an information chain of length more than �. Here,
the length of the information chain can be interpreted as the degree of transparency of
the information structure, i.e., the degree to which the information about the aggregate
action of earlier players �lters through to agents moving later in the sequence. This
result implies that greater the need for coordination (larger the �) greater the need for
informational transparency that is necessary to eliminate coordination failure. Hence, our
analysis suggests that a non-coersive decentralized policy tool for preventing coordination
failure would be to increase the �ow of information between agents and to allow them to
act in their rational self interest.
The rest of the paper is organized as follows: Section 2 introduces the model. Section

3 presents our results on the existence of maximal and intermediate pure strategy Nash
equilibria, while Section 4 provides a detailed analysis of dominance solvability. All formal
proofs of our main results are collected in an appendix.

9Also see Gretlein (1982) for a discussion of this procedure in voting games. The procedure of itera-
tive elimination of weakly dominated strategies has also been applied to chess-like games and two-player
strictly competitive perfect-information games (Ewerhart (2000,2002)), signaling future actions by burn-
ing money (Ben-Porath and Dekel (1992)), dynamic bargaining games with a �nite horizon (Tyson
(2010)), and auctions (Azrieli and Levin (2011)).
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2 The Model

Consider a set of agents N = f1; : : : ; ng with n � 3 who move sequentially. We assume
that for all j 2 f1; : : : ; n � 1g agent j moves before agent (j + 1) according to the ex-
ogenously given order (1; : : : ; n): For j 2 N , agent j�s move bj 2 f1; 0g represents the
choice between participating (�joining�), bj = 1, and not participating (�not joining�),
bj = 0.10 This gives us an action pro�le or an outcome b = (bj; b�j) = (b1; : : : ; bn). Fol-
lowing Schelling (1973) we assume that all agents have identical preference orderings on
the set of outcomes that depend on the agent�s decision (whether or not to participate)
and on the number of other participants.11 This is a reasonable assumption when either
the individual characteristics of the other agents are unimportant for a problem (such
as with equal cost sharing for a public project) or when the information about relevant
characteristics of the other agents is just not available (such as with purchasing health
insurance when privacy concerns dictate that personal information not be available even
though how many other people have joined may be public information). As in Schelling
(1973), this allows us to construe the preferences as being represented by a utility function
g : f1; 0g � f0; : : : ; n � 1g ! R. Hence, for � 2 f0; : : : ; n � 1g, g(1; �) (resp., g (0; �))
represents the value of participating (resp., not participating) when � other individuals
participate. Positive and negative spillovers from the decisions of others can then be
represented by these functions being increasing and decreasing in �.12

In this paper we will analyze a special case of this model that leads to a coordina-
tion problem. To do so we will make a simplifying assumption that the payo¤ from
non-participation is constant that can be normalized to zero together with a critical
�threshold�assumption on preferences representing the minimum number of participants
required for participation to be an improvement over the status quo.

2.1 Threshold

Assumption 1 (Tipping Point) Let f be a function f : f1; : : : ; ng �! R given by
f(x) = g(1; x � 1): There exists � 2 f2; : : : ; ng such that f(x) > 0 for all x � � and
f(x) < 0 for all x < � and the payo¤ for individual j from an action pro�le b = (bj; b�j) =
(b1; : : : ; bn) is given by

10Possible interpretations of bj = 1 include buying an excludable public good or a club good, buying
health insurance sold by the state, adopting a product standard for �rms, and adopting a social norm.
11This type of anonymous dependence on the number of other participants di¤ers from preferences

depending on the entire action pro�le. The latter more general formulation can capture the di¤erential
impact on the bene�t to participants from di¤erent sets of individual participants of the same size. Some
problems are such that by their very nature the agents� payo¤s depend on information that is non-
anonymous. For instance, in the study of white �ight from the inner cities to the suburbs, the ethnicity
of those who are migrating has an impact on the payo¤ of the agents. Our model is not suitable for
analysis of such problems.
12For instance, the value (in terms of personal safety in the case of an accident) of driving a large car

(�joining�) may positively depend on how many others are driving a large car while the value of driving
a small car (�not joining) would depend negatively on how many others drive a large car.
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uj (b) = bjf
�X

i2N
bi

�
(1)

The condition � � 2 in Assumption 1 implies that some minimal (but feasible) degree
of coordinated participation is necessary for an improvement over the status quo. Geo-
metrically, the assumption implies that the f function has a single crossing property, i.e.,
f is negative when x = 1, is never zero, and crosses the horizontal axis only once on the
domain f1; :::; ng. Note that f is otherwise completely arbitrary permitting both posi-
tive and negative slopes which may be used to represent positive and negative spillovers.
While these externalities are permitted, it is the implication of having the threshold (�tip-
ping point�) and the possibility of a coordination failure, rather than the presence of any
externalities, that is of primary interest to us.
Depending on the speci�c context other additional restrictions may well be appro-

priate. The standard �convexity� assumption made in economics on technology and
preferences, which entails quasi-concavity of utility functions and convexity of cost func-
tions, gives rise to f being quasiconcave and even strictly concave in some representative
agent models. Example 1 shows how Assumption 1 and strict concavity of f can arise
from economies of scale in production or from positive spillovers in consumption (network
externalities) or through some combination of these two e¤ects.

Example 1 (i) (Network Externalities) Suppose the per capita cost of servicing a
communication network is a constant c > 0 and the bene�t received by everyone in the
network is given by v(

P
N bi) where v is an increasing function. Thus, the net bene�t

for a typical agent joining the network is f (
P

N bi) = v(
P

N bi) � c. Furthermore, if
v(1) < c and v(n) > c then it is easy to check that Assumption 1 and quasiconcavity
(resp., strict quasiconcavity) of f will (generically) be satis�ed if v is increasing (resp.,
strictly increasing) function.

-

6

P
N bi

f(
P

N bi)

1 2 � � � (�� 1) � (�+ 1) � � � n

Figure 1. The valuation function f (
P

N bi) for Example 1 ((i) and (ii)).
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(ii) (Economies of Scale) Consider a health insurance service provided to the agents
at average cost where the technology of the industry providing the service is characterized
by economies of scale with the average cost, C(

P
N bi)=(

P
N bi), (strictly) declining as

more individuals enroll for the service (i.e., it is a �natural monopoly�). If the �gross�
value of the service to each agent is a constant v > 0 and is independent of how many
others are getting the service, then the net bene�t is f (

P
N bi) = v � C(

P
N bi)=(

P
N bi)

and the net valuation function f will be strictly increasing, capturing the positive spillovers
associated with the economies of scale. If further more C(1) > v and v > C(n)=n, then
Assumption 1 will (generically) be satis�ed and f will be strictly quasiconcave.

In Example 1 (i), if congestion arises when
P

N bi is large so as to lead to declining
bene�ts, or in (ii) if after declining for a while, average cost increases as diseconomies of
scale set in for large values of

P
N bi, then the function f will decline monotonically for

large values of
P

N bi. In both these cases, if the e¤ects of such congestion are not too
strong, Assumption 1 would still be satis�ed in the above examples.
Example 2 illustrates a �bang-bang�type valuation function where positive spillovers

occurring immediately around a single value in the domain of f result in a tipping point:

Example 2 (Voting) A group of agents decide whether to join a political party. Agents
who join receive bene�ts from supporting the party if and only if the party wins. If the party
loses the supporters of the party are penalized. The party wins if it receives the support of
at least � 2 f2; : : : ; ng agents, otherwise it loses. Letting bi = 1 represent support for the
party, the following function f satis�es Assumption 1 and is quasiconcave:

f
�X

N
bi

�
=

�
1 if

P
N bi � �;

�1, otherwise.

This voting game can be modi�ed so that the valuation function f declines over part
of its domain. For instance, if in Example 2 the aggregate constant (unit) bene�t of
winning that accrues to the supporters of the party is shared among its members, then
each individual member�s bene�t declines as the membership of the party increases beyond
�.13 Now the function f , which takes value -1 before it reaches the total participation
level of �, reaches a maximum of 1=� at the participation level of �, and is monotonically
declining at participation levels greater than �.

2.2 Information Structure and Information Chain

2.2.1 Information Structure

Before making a move every agent receives a piece of information which depends on the
information structure of the model. Let �(�) be an operator that associates with each
13In other words, if the aggregate bene�t is shared among its members, then f (

P
N bi) =

1P
N bi

ifP
N bi � �, and f (

P
N bi) = �1 otherwise.
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j 2 N a unique number �(j) 2 f0; : : : ; j � 1g. The information structure I is de�ned
as an n-vector of non-negative integers I = (�(1); : : : ; �(n)). If �(j) = 0 then j receives no
information before making her decision. If �(j) > 0, then �(j) represents a speci�c agent
moving before j and the report that j receives is an integer from the set f0; : : : ; �(j)g
indicating exactly how many (though not which) of the agents from the set of agents
f1; : : : ; �(j)g have chosen to participate.14 Agent j before making her move only observes
the aggregate number of participations from the �rst � (j) agents. Whenever �(j) � j0,
any alteration in j0�s action, ceteris paribus, is re�ected in the aggregate report that j
receives. So, for agents j; j0 2 N , if �(j) � j0 then j�s information covers j0�s action. We
will abbreviate this and say that j covers j0.
We will assume that the information structure described above is monotone:

Assumption 2 (I-Monotonicity) For all j; j0 2 N , j � j0 implies that �(j) � �(j0):

Assumption 2 implies that agents moving later in the sequence have at least as much
payo¤ relevant information as those who move earlier.15 This assumption ensures that
the sequence of numerical reports that agents 1; : : : ; n receive is necessarily a (weakly)
monotonically increasing set of integers. A useful interpretation of Assumption 2 has to do
with the recognition that aggregate information about previous moves can be incomplete
and that this partial information may become available with a lag. For instance, one
can think of a scenario where before taking any action, each agent checks a common
website that reports the number of �hits� and the total number of people who have
joined. If collecting this information takes time and the information is updated at �xed
time intervals, this can result in data collection lags and data publication lags that can
be modeled using our information structure. Example 3 illustrates the concept of an
information structure and how lags may be modeled for the case of n = 3:

Example 3 Let N = f1; 2; 3g. There are �ve possible monotone information structures:

I1 = (0; 0; 0) ; I2 = (0; 0; 1) ; I3 = (0; 0; 2) ; I4 = (0; 1; 1) ; I5 = (0; 1; 2) :

Information structure I1 is the extreme case where no one has any information about
previous agents�moves, while I5 represents the polar opposite case where before they move
each agent knows the complete aggregate history of previous moves, i.e., each agent knows
exactly how many of the previous agents have joined. For instance, if there is no collection
lag (the website operators collect and process the information instantaneously) but suppose
the website is updated every two periods, then we obtain the information structure I3 =
14Consequently, agent j knows how many agents from f1; : : : ; �(j)g have picked the status quo. In

some cases, for instance if �(j) = 1 or if the report received is equal to �(j), j is able to deduce not only
how many but also who has joined the group.
15If �(j) = 1 and �(j0) = 2, then even though by looking at her signal j knows whether 1 has joined

or not joined and j0 may not, j0 will receive at least as much payo¤ relevant information as j does, since
all that matters for payo¤s is how many individuals rather than which individuals have joined :
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(0; 0; 2) : Here the two-period publication lag implies that agents 1 and 2 get no information
before they move while 3 has the entire aggregative history before she moves. Suppose that
in addition to the publication lag, there is a collection lag and it takes one period to collect
and process the data. Then, the report 3 receives only includes the information about 1�s
move, leading to the information structure I2 = (0; 0; 1) :

Figure 3. The Information Structures in Example 3.

The information structures I1; I2; I3 and I5 can be ranked in that there is a greater
availability of (payo¤ relevant) information as we move from I1 to I5:16 However, the
information contents of I3 and I4 cannot be compared. The lattice showing the quasi-
ordering of the information structures in Example 3 is presented in Figure 3, where each
arrow represents the relation of �contains more payo¤ relevant information than.�
In general, we can compare information structures by comparing the associated vec-

tors with those which are larger (in the vector sense) representing �smaller� lags and
hence a greater availability of information. While some comparisons between informa-
tion structures may not be possible, the vector comparisons of information structures will
nevertheless always be a pre-order, a transitive and re�exive (possibly incomplete) binary
relation on the set of all information structures with the maximal and minimal infor-
mation structures being the n-vectors Imax = (0; 1; : : : ; n� 1) and Imin = (0; 0; : : : ; 0),
respectively. Finally we observe the following:

Proposition 1 � is strictly monotone (i.e., if j0 > j implies �(j0) > �(j)) i¤ I = Imax.

2.2.2 Information Chain

Recall that when agent j�s information covers agent j0, the marginal impact of j0�s move on
the total number of participations can be observed by j. Thus, j0�s knowledge about the
aggregate history of the play and the impact of j0�s action on this aggregate history �lter
through to agent j. Thus an important property of an information structure is the concept
of an information chain which provides a measure of the possibility of such transfer of

16Agent 3 in the information structure I2 knows whether 1 has moved but does not in the structiure I3.
Nevertheless agent 3 has more payo¤ relevant information in I3 because the payo¤s depend on the total
number of individuals participating and I3 provides agent 3 with more of the payo¤ relevant aggregate
participation information.
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aggregate information among agents. Intuitively, an information chain measures how
easily the information �ows within the model.

De�nition 1 An ordered set of agents (i1; : : : ; im) � N forms an information chain
of length m if and only if for all s 2 f2; : : : ;mg, agent is�1�s information covers agent is.

Thus, an information chain of lengthm inN1 is a set ofm informationally linked agents
in N1 who can be ordered such that i1�s information covers all the others in the chain, i2�s
information covers all agents in the chain except i1, and so on. Clearly, the existence of
an information chain of length m implies the existence of an information chain of length
m0 with m0 � m: From �niteness, it follows that an information chain of maximal length
m� always exists. We interpret m� as a summary measure of the extent to which available
information �lters through from agents moving earlier to those moving later in N and as
an indicator of the transparency of the information structure. Note, however, that m�

is a property of the information structure that does not measure how much information
is available in an information structure. In particular, while information structures with
strictly more information will have chains of maximal length that are at least as large,
information structures with less information may have maximal information chains that
are just as large as information structures with more information. In Example 3, the
maximal lengths of the information chains for I1; I2; I3; I4 and I5 in N are respectively
0; 2; 2; 2 and 3. Though I4 = (0; 1; 1) has �more information�than I2 = (0; 0; 1), I4 is not
any more transparent (as measured by m�) than I2.17

2.3 Normal Form Game

A pure strategy of agent j 2 N is a (�(j) + 1)-dimensional binary vector of conditional
moves (or actions) aj = (aj (1) ; : : : ; aj(�(j) + 1). For all l 2{1; : : : ; �(j) + 1} we interpret
the conditional move aj (l) 2 f1; 0g as agent j�s decision on whether to participate
if given the information that (l � 1) agents out of the the �rst �(j) agents are going to
participate. The conditional action aj (l) becomes j�s move bj if and only if j receives
the report that exactly (l � 1) out of �(j) previous agents have chosen to participate. In
this case we will say that the pre-requisite of the lth coordinate of j�s strategy has been
satis�ed. The set of all possible pure strategies of j is denoted by Aj and a pure strategy
pro�le is a = (aj; a�j) = (a1; : : : ; an) 2 A = �j2NAj.
For any pro�le a, the path of play is a set of coordinates aj (`) such that for all

j 2 f1; :::; ng, the prerequisite of aj (`) is met and hence aj (`) = bj(a). In this case, we
will say that the `th-coordinate of j�s strategy is on the path of play. For each pro�le
a, one and only one coordinate of each individual is on the path of play and this unique
path of play yields the action pro�le b(a). For any other coordinate l whose pre-requisite

17An information structure can induce various information chains and possibly multiple information
chains with maximal length. We will develop a simple algorithm to �nd an information chain with
maximal length for an information structure in Section 3.2.
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is not satis�ed, we will say that the lth-coordinate of j�s strategy is o¤the path of play.
Finally, given a strategy pro�le a, for all j 2 N , agent j�s payo¤ (using (1)) is given by
uj (b(a)) = bj (a) f

�P
i2N bi (a)

�
:

Gathering together the notation developed so far we de�ne the normal form game G0
as the quadruple hN;A; I; fujgi.
Example 4 illustrates these concepts for a game G0.

Example 4 Let N = f1; 2; 3g, f(1) = �3; f(2) = f(3) = 4 and hence � = 2. Consider
the information structure I = (0; 1; 1) and the following strategy pro�le a:

Agent j 1 2 3
Strategy aj (0) (1; 0) (1; 0)

Given the strategy pro�le a, agents 2 and 3 join if and only if they observe that agent 1
has not joined. The pre-requisites of a2 (1) and a3 (1) are satis�ed and the path of play is
represented by the sequence of conditional actions a1 (1), a2 (1) and a3 (1) (coordinates in
boldface), resulting in action pro�le b(a) = (0; 1; 1) and a payo¤ vector (0; 4; 4):

3 Information Structure and Nash Equilibria

A pure-strategy Nash equilibrium (PSNE) of the normal form game G0 is a strategy pro�le
(aj; a�j) such that for all j 2 N and all a0j 2 Aj, uj (aj; a�j) � uj(a

0
j; a�j): The action

pro�le b(a) associated with a PSNE a is called a pure-strategy Nash equilibrium outcome
(PSNEO). Thus, in Example 4, the strategy pro�le a is a PSNE and b(a) = (0; 1; 1) is a
PSNEO in which two out of the three agents participate.
For a PSNE a, aj is j�s best response to the contingency a�j for all j, and checking

whether a strategy pro�le is a PSNE amounts to verifying that unilateral deviations from
the strategy pro�le are not bene�cial for the deviating agent. In addition, we only need to
consider those unilateral deviations that change the coordinate (of the deviating agent�s
strategy) along the path of play. For any strategy pro�le we will refer to the coordinates
of an individual�s strategy o¤ the path of play as (payo¤) irrelevant coordinates for
that pro�le. Furthermore, due to Assumption 1, a unilateral change in the coordinate
of an agent�s strategy along the path of play necessarily changes that agent�s payo¤.18

Hence, we will refer to such coordinates on the path of play as being (payo¤) relevant
coordinates for that pro�le.
Assumption 1 implies that the status quo (with utility 0) is strictly better than that

of participating when the participating group size is less than the tipping point �. Every
agent by playing a strategy in which all the coordinates are zero can guarantee this status
quo payo¤. The status quo payo¤ is hence the reservation payo¤ and it follows that all

18The agents payo¤ either changes from being non zero to being zero or from being zero to being either
strictly positive or strictly negative.

11



agents receive non-negative payo¤s in a PSNE and we must either have
P

N bi(a) � �

or
P

N bi(a) = 0 for a PSNE a. This observation leads us to consider three mutually
exclusive (and exhaustive) types of Nash equilibria:
(i) A maximal PSNE is a PSNE where all n agents participate in equilibrium. A

maximal PSNE results in a unique PSNEO with payo¤s (f1(n); :::; fn(n)). This outcome
is necessarily Pareto E¢ cient since any other outcome will reduce the utility of some
individual from positive to zero.
(ii) A minimal PSNE is a PSNE where nobody participates in equilibrium. The

associated unique PSNEO with payo¤s (0; : : : ; 0) is strongly ine¢ cient in the sense that
all achievable bene�ts from cooperation are lost. In our setting, every other PSNEO
weakly Pareto dominates the minimal PSNEO.19

(iii) An intermediate PSNE is a PSNE where exactly � + � agents participate in
equilibrium for some � 2 f0; : : : ; (n� �� 1)g.
While an intermediate PSNEO represents a (weak) Pareto improvement over the sta-

tus quo, an intermediate PSNEO may be either e¢ cient or ine¢ cient depending on the
properties of the valuation function f . For instance, if f is non-decreasing, all the in-
termediate PSNEOs are ine¢ cient since these outcomes are Pareto dominated by the
maximal PSNEO. Observe, however, that these intermediate PSNEO may all be e¢ cient
as well. This will happen for instance when starting from a negative value, f reaches
a maximum at the tipping point � and is strictly decreasing for all participation levels
greater than or equal to � (see the discussion after Example 2). The reason for Pareto
e¢ ciency of the intermediate PSNEOs in this case is that when compared to an outcome
with a smaller participation level some individual participating in the PSNEO will have to
be left out and her payo¤ will decline from positive to zero; on the other hand, when any
intermediate PSNEO (in this case) is compared to an outcome with a larger participation
level than �, since f declines (in Example 2) a movement to an outcome with a higher
participation level will make all existing individuals participating in the PSNEO strictly
worse o¤. Indeed, using this argument it is easy to see that the following is true:20

Proposition 2 A PSNEO is e¢ cient if and only if all outcomes with a larger participa-
tion level have strictly lower payo¤s for the participants.

While the maximal PSNEOmay or may not maximize the utilitarian �sum of utilities�
welfare function, it always maximizes the utility of the worst o¤ individual and thus it
maximizes the Rawlsian welfarist maximin (or leximin) egalitarian welfare function.

Proposition 3 A PSNEO maximizes the Rawlsian welfare functionW = maxaminjfuj (a)g
i¤ it is the payo¤ from the maximal PSNE. If f is weakly increasing the maximal PSNE
19We say weakly Pareto dominates in the sense that some individulas are better o¤ and no individual

is worse o¤.
20This condition is clearly satis�ed for the PSNE with maximal participation. On the other hand, if

f is strictly quasi-concave, then the intermediate PSNEOs can be partitioned such that PSNEOs with
participation levels above � and below �argmax f�will be ine¢ cient and those with participation levels
of �argmax f�and above will be e¢ cient.
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being the only e¢ cient outcome maximizes all Paretian welfare functions and in particular
it maximizes the sum of utilities.

We will now discuss how the existence of various PSNEOs of the game G0 is related
to the information structure of the game.

Proposition 4 The game G0 always admits maximal and minimal PSNEOs regardless of
the information structure I.

Proposition 4 is entirely driven by Assumption 1. Consider any strategy pro�le a in
which the top (i.e., largest) coordinates of individuals 1; 2; ::::; n are 1. Any unilateral
change in the individual strategies along the path of play would lower the deviating
individual�s payo¤s from positive to zero. Hence a is a PSNE regardless of I. Similarly,
since � � 2, it follows that a strategy pro�le a where all the coordinates in the strategies
of all the individuals are zero is a PSNE regardless of I.
Unlike the case of maximal and minimal PSNEs, whether an intermediate PSNE

exists depends on the information structure of G0. It is easy to check that with n = 3

and � = 2 and Imin = (0; 0; 0), no intermediate PSNE can exist since the best response to
any contingency when two other agents are participating is to participate. On the other
hand, the reader can easily check that in our earlier Example 4 illustrates an intermediate
PSNE. Our next result provides a characterization of the information structure I of
G0 that can give rise to an intermediate PSNE with exactly (�+ �) participants for
� 2 f0; : : : ; (n� �� 1)g.

Theorem 1 In the game G0, let � 2 f0; : : : ; n� �� 1g. (i) If there exists j� 2 fn� ��
� + 1; : : : ; n� � � 1g such that �(j�) � n� �� � , �(j� + 1) < j�, and n� j� � � � 1 �
jfj : �(j) = j�gj then there exists a PSNE a such that

P
N bi(a) =

P
Nnf1;:::;n�(�+�)g =

(�+ �). (ii) If there exists a PSNE a such that
P

N bi(a) = (�+ �) then there exists
j� 2 fn � � � � + 1; : : : ; n � � � 1g such that �(j�) � n � � � � , �(j� + 1) < j�, and
n� j� � � � 1 � jfj : �(j) = j�gj.

Corollary 1 In the game G0, let � 2 f0; : : : ; n � � � 1g. Then, there exists a PSNE a
such that

P
N bi(a) = (�+ �) if and only if there exists j

� 2 fn��� � +1; : : : ; n� � �1g
such that �(j�) � n� �� � , �(j� + 1) < j�, and n� j� � � � 1 � jfj : �(j) = j�j:

Corollary 2 In the game G0, if either I = Imax=(0; 1; : : : ; n� 1) or I = Imin=(0; : : : ; 0)
then there does not exist an intermediate PSNE.21

Corollary 3 In the game G0, there is a PSNE a such that
P

N bi(a) = � if and only if
there exists j� 2 fn� �+ 1; : : : ; n� 1g such that �(j�) � n� � and �(j� + 1) < j�.
21In particular note that in the game G0, if the information structure is strictly monotone then an

intermediate PSNE does not exist.
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Corollary 4 In the game G0, let � 2 f0; : : : ; n � � � 1g. If I = (�(j)) where �(j) = 0
for all j 2 f1; :::; n� �� �g and �(j) = n� �� � for all j 2 fn� �� � + 1; :::; ng then
G0 has a PSNE with �+ � participants.

For any given participation threshold �; Theorem 1 and Corollary 1 completely charac-
terize the information structures that can induce intermediate PSNEs and the associated
PSNEOs including those PSNEOs where exactly the �rst (n � � � �) agents choose the
status quo and the last (� + �) agents participate. The rough intuition behind Theorem
1 is that in an intermediate PSNE, some early agents do not want to join because a uni-
lateral deviation from any one of them from not joining to joining triggers a large chain
reaction of defections from among the later participants starting with j�. It is only if the
scale of defections is large enough to make the total number of participants fall below the
critical number � will such a deviation be rendered undesirable thus supporting a PSNE.
When � � 1, the condition n � j� � � � 1 � jfj : �(j) = j�gj of Theorem 1 has bite �
it requires that not �too many�agents j moving after j� have �(j) = j�. In particular,
the upper limit on the number of agents j with �(j) = j� is necessary for this cascading
series of defections to be large enough.22 Notice that none of the agents j whose informa-
tion exactly covers j� (i.e., �(j) = j�) can be a part of this chain of defections since the
information report that such an agent j receives remains unchanged when in reaction to
the participation of a non-participant j� defects from being a participant to becoming a
nonparticipant. (The use of this type of nonmonotone strategies by the defecting agents
may not, prima facie, be unreasonable as agents may gang up to prevent others from
joining when additional participation reduces the utility of existing participants).23

The Corollaries 1 to 4 follow immediately from Theorem 1. Corollary 1 uses (ii) of the
theorem together with the fact that when only the last � + � individuals participate we
do have �+� participants to provide a necessary and su¢ cient condition for the existence
of intermediate PSNEs. Corollary 2 concludes that under the maximal and minimal
information structures, an intermediate PSNE cannot occur. Corollaries 3 demonstrates
that the information structures consistent with intermediate PSNEs always feature a pair
of agents, j� and j� + 1, such that agent (j� + 1)�s information does not cover j� and
both agents are such that their information covers the �rst (n � � � �) agents of the
sequence. Corollary 4 shows the existence of information structures such that all feasible
intermediate participation levels are possible PSNEOs.
To summarize, three conditions on the information structure are important for the

existence of intermediate PSNEs: First, there should be an agent j�, not covered by the
next agent j�+1, who covers the �rst (n��� �) agents. Second, there should be enough
agents after j� whose defections are able to bring the total number of participants below
�, i.e., j� � n � � � 1. Thirdly, there should be an upper limit �n � j� � � � 1�on the
number of agents j in fj� + 2; :::; ng who have �(j) = j�.
22For a relevant deviation to be undesirable for the non-participants, the cascade of defections needs

to involve at least � other agents after j� and j� + 1 to defect after the deviation.
23See our discussion of credibility of PSNEs in the next section.
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4 Information Chains and Dominance Solvability

We �rst use an example to illustrate that some of the PSNEs identi�ed in Section 3 can
be implausible:

Example 5 Let the game be given by N = f1; 2; 3g, information structure I = (0; 0; 1)
and payo¤s f(1) = �3; f(2) = f(3) = 4, and hence � = 2. Consider the strategy pro�le

Agent j 1 2 3
Strategy aj (0) (0) (0; 0)

This PSNE is not plausible since it involves agent 3 committing to a conditional move
(�threat�) o¤ the path of play that can negatively a¤ect her payo¤. After observing agent
1 participating agent 3 has a strict incentive to participate. (A similar argument shows
that the intermediate PSNE in Example 4 is also not credible.)

How do we eliminate such implausible PSNE equilibria and focus on equilibria that
are more compelling? A standard re�nement to weed out PSNEs involving non-credible
strategies is subgame perfection. However, it is easily veri�ed that the game in Example 5
admits no proper subgames and hence all its PSNEs, including the non-credible PSNE in
the example, are subgame perfect. To �lter out non-credible equilibria �ner re�nements
than subgame perfection (e.g., perfect Bayesian equilibrium and sequential equilibrium)
usually entail the use of a cardinal framework and use expected utility maximization
together with the possibility of mixed strategies. We take an alternative approach. We
use a re�nement of PSNE that has been extensively analyzed and used, and one that is
easily applicable in our context: dominance solvability. This concept, with an underlying
intuition similar to that of subgame perfection, can be traced back to Moulin (1979),
relies on iterated elimination of weakly dominated strategies, which then results in a set
of strategy pro�les all of which give the same outcome.
We introduce some notation to formalize the process of iterated elimination. In G0 =

hN;A; I; fujgi, a strategy a0j is (weakly) dominated by a strategy aj if uj (aj; a�j) �
uj(a

0
j; a�j) for all a�j and for some a

0
�j, uj(aj; a

0
�j) > uj(a

0
j; a

0
�j).

24 Let R be a function
which gives us the game G1 = R(G0) obtained by eliminating all dominated strategies of
all the agents in game G0. Applying the operator R successively generates a sequence of
games G1, G2, : : :, where Gh+1 = R(Gh) for h � 0. Since only strategies are eliminated
(and none added), as one goes from one game in the sequence to the next, the strategy
pro�les in Gh+1 is a subset of the set of strategy pro�les in games G1; : : : ;Gh with the games
in fG1;G2; : : :g otherwise having the same players and the same information structure as
the game G0. In addition, the payo¤ functions in Gh 2 fG1;G2; : : :g are the same as those
in G0 except for the fact that these functions are restricted to a smaller domain in Gh.
24We only use weak domination in our arguments and in the absence of ambiguity, hereafter, we will

drop the adjective �weak�.
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If Gs = R(Gs) for some Gs 2 fG1;G2; : : :g, then Gs is said to be irreducible. Since G0
has a �nite set of players each with a �nite set of strategies, an irreducible game always
exists. We will analyze the sequence fG0;G1; : : : ;GMg where GM is the �rst irreducible
game in the sequence. Finally, our concepts of strategy pro�le, action pro�le, PSNE,
PSNEO, contingency, and the concepts of coordinates of individual strategies being on
and o¤ the path of play (i.e., relevant and irrelevant coordinates) de�ned for G0 extend
naturally and without any ambiguity from G0 to Gh for all h 2 f1; : : : ;Mg. The game
G0 = hN;A; I; fujgi will be said to be dominance solvable if GM has only one outcome.25

To see how this process works, applying the iterated elimination process to Example
5 above gives rise to the following PSNE:

Agent j 1 2 3
Strategy aj (1) (1) (0;1)

The very �rst round of elimination removes dominated strategies �(0; 0)�and �(1; 0)�,
leaving only two strategies �(0; 1)� and �(1; 1)� for agent 3. Hence, in G1 agent 1�s
strategy �(1)�dominates �(0)�and in G2 agent 2�s strategy �(1)�dominates �(0)�, leading
to GM = G3 with the unique outcome b (a) = (1; 1; 1). Therefore, dominance solvability
here �lters out the non-credible equilibrium, resulting in a unique outcome.
However, depending on the information structure, G0 may not be dominance solvable

and the resulting GM may have both minimal and intermediate PSNEs.

Example 6 Consider G0 with N = f1; 2; 3; 4g, I = (0; 1; 1; 1) and payo¤s f(1) = f(2) =
�3; f(3) = 5 and f(4) = 2, and hence � = 3: Here, no strategy in G0 is dominated (hence
G0 = GM) and the intermediate PSNE (a) and minimal PSNE (a0) shown below survive
the iterated eliminating process:

Intermediate a :
Agent j 1 2 3 4
Strategy aj (0) (1; 0) (1; 0) (1; 0)

Minimal a0 :
Agent j 1 2 3 4
Strategy a0j (0) (0; 0) (0; 0) (0; 0)

In general, whether the game G0 is dominance solvable and whether GM necessarily
has the maximal PSNE as a unique outcome or whether coordination failure remains
a possibility after the iterated elimination of dominated strategies depends on m�, the
maximal length of information chains in G0 and � the degree of coordination necessary for
improvement over the status quo. Recall thatm� is a property of the information structure
that provides us with a summary measure of information transfer possibilities within the
game and represents a measure of the extent to which the information structure allows
the information to �lter through from players who move earlier to players who move later

25This is weaker than the alternative de�nition that is often used requiring that every individual in GM
has only one strategy.
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in the game allowing the earlier players to predict how a later player would behave if
she acted rationally. Whether m� is greater than or equal to the coordination threshold
� becomes key to determining whether the game G0 is dominance solvable. Associating
rational decentralized decision making with individuals playing strategies which survive
iterated dominance and which correspond to some Nash equilibrium, the conditionm� � �
determines whether decentralized rational decision making leads to the maximal PSNE
which is e¢ cient and gives us the Rawlsian maximum welfare.

Theorem 2 Let G0 be a game with tipping point � and let m� be the maximal length of
an information chain in G0. Then G0 is dominance solvable if and only if m� � �.

Corollary 5 (i) If G0 is dominance solvable, then GM has a unique e¢ cient outcome
given by the maximal PSNEO. (ii) If G0 is not dominance solvable, then GM has a minimal
PSNE in which no individual participates.

Corollary 6 (i) If � = 2, then G0 is dominance solvable i¤ the information structure
of G0 is not minimal. (ii) If � = n, then G0 is dominance solvable i¤ the information
structure of G0 is maximal.

Remark 1 Observe that the games in Examples 4 and 5 both have � = 2 and m� = 2

and are hence dominance solvable and that the additional information that individual
2 has in Example 4 (as compared to Example 5) is of no importance in predicting the
outcome of the game. In contrast, the game in Example 6 has � = 3 > m� = 2, and is
hence not dominance solvable.

One implication of Theorem 2 is that policies promoting an improved �ow of the
information between agents can be used as a policy tool to promote coordination. The
intuitive reason as to why the condition �m� � �� leads to dominance solvability can
be seen from an argument similar to backward induction that we provide in the proof
of the su¢ ciency of the condition for our theorem (and in our discussion of Example 5
above). This should not be a surprise to the reader since dominance solvability has a
similar intuitive basis to subgame perfection for games with perfect information. Why
�m� � �� is necessary for dominance solvability is more opaque and represents a deeper
and more important result. It identi�es for us the property of the information structure
without which we cannot rule out coordination failure by using dominance solvability.
The proof of necessity consists of showing that this backward induction type process will
break down and that this will necessarily lead to at least two equilibrium outcomes the
maximal PSNEO and the minimal PSNEO surviving in GM .

An Algorithm for Finding m�: Since an information structure I typically admits
information chains of various lengths, it is important to identify a maximal information
chain of length m� from any given information structure. We will refer to the canonical
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information chain of G0 as the information chain of maximum length m� constructed
using the following algorithm: Construct an ordered set of agents (i1; i2; : : : ; im) such that
i1 = n and is+1 = �(is) whenever �(is) > 0 and �(im) = 0. Since the set of agents is �nite
and the covering relation is both asymmetric (is 6= �(is+1) for all s) and transitive, the
sequence is �nite and well de�ned and involves the repeated application of the operator
�(�). Thus, i2 = �(n); i3 = �2(n) = �(�(n));. . . ; im = �m�1(n) and �(im) = �m(n) = 0.
Figure 3 provides a graphical illustration.
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Figure 3. Constructing the Canonical Information Chain of Maximal Length.

We now argue that m = m� and that this canonical information chain is of maximal
length. It su¢ ces to show that if there is an information chain in G0 given by (j1; : : : ; jt)
then m � t. To this end, we establish a one to one function from the set fj1; : : : ; jtg
to a subset fi1; : : : ; img of the canonical sequence. Notice that by the de�nition of an
information chain, �j1 covers j2�implies (by I-Monotonicity) �i1 = n covers j2�and in
particular �(n) = i2 � j2. Similarly, �j2 covers j3�, using i2 � j2, implies �i2 covers j3 and
i3 = �(i2) = �

2(n) � j3.�Repeating this argument we have that for each jk 2 fj1; : : : ; jtg
there exists a distinct ik such that ik � jk. This establishes a one to one function from
the set fj1; : : : ; jtg to fi1; : : : ; img, proving that m � t. Our next proposition summarizes
this property of the canonical information chain.

Proposition 5 For the game G0 the ordered set of agents given by (i1; : : : ; im), where
i1 = n, i2 = �(i1),..., and im = �m�1(i1) and �m(i1) = �(im) = 0, is an information chain
with maximal length m = m�.

4.1 Extensions and Robustness

To check the robustness of Theorem 2, we examine the implications for Theorem 2 of
relaxing our assumptions on the iterated dominance procedure, on modeling of preferences,
and on the information structure of the model.

Order Independence

While the concept of using weak dominance (�admissibility�) to eliminate implausible
equilibria has strong support in the literature, the process of iterated weak dominance
has faced a particular criticism. While our operator R speci�es that in each stage of
the iteration all dominated strategies are removed, one can propose alternative operators
which remove some but not necessarily all dominated strategies in each stage of the
iteration. It has been argued that this change in the order of elimination of dominated
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strategies can matter and that the di¤erent sequences of games generated by alternative
operators may lead to di¤erent irreducible games. In some of these cases it has been
shown that depending on the order of iterative elimination process the irreducible game
may not have an unique outcome, creating ambiguity about the outcome of the game.
In our case, if the game is dominance solvable, then no matter what alternative operator
R 6= R is used (as long as some dominated strategies are eliminated in each stage of the
iteration) the order of elimination will not matter and the irreducible game obtained from
alternative operators will have exactly the same unique PSNEO as GM : The intuition
for this being true is that for our particular game, if under our speci�ed operator R, a
coordinate of all strategies of some agent becomes 1 at some stage of the reduction process
then either this will also be true under any alternative operator or that coordinate will
have become irrelevant in the irreducible game. This order independence result is not
surprising in our model since our game satis�es Satterthwaite and Sonnenschein�s (1981)
condition of �non-bossiness�and it has been well understood from the earliest discussion
of this subject (Rochet (1980)) that this condition leads to order independence.26

Information

The requirement that the information structure be monotone (Assumption 2), i.e., if
i1 covers i2 and i2 covers i3 then i1 covers i3, remains critical. In our basic model,
we interpreted this assumption as implying that those playing later have just as much
information as those playing earlier. Suppose we interpret �how much information an
agent gets�by the dimensionality of her strategy space and impose a weaker assumption
that later players in the sequence have strategy spaces which are dimensionally no smaller
than those of players playing earlier. The following example of a game with sequential
structure 1; 2; :::; 7 shows that our results fail under this weaker assumption. The set
of individuals in the cell below each of the players 1; 2; :::7 shows which individuals are
covered by that player (cf: 6 covers the individuals in the set f4; 3; 1g:)

Agent i 1 2 3 4 5 6 7
Set { (i) ? ? f1g f1; 2; 3g f4; 2; 1g f4; 3; 1g f4; 3; 2g

Let � = 4. One can verify that information chains of length 4 exist (i.e., (7; 4; 3; 1),
(6; 4; 3; 1), and (5; 4; 3; 1)) and the game is dominance solvable.. However, if we remove
agent 7, while a maximal chain still has length 4, the game is no longer dominance solvable.
When agent 4 gets a report that two agents out of f1; 2; 3g have joined, by joining, agent
4 is not sure that agent 5 or agent 6 will receive a report that three agents have joined
since the two participations agent 4 sees may have come from agents 2 and 3 and neither
5 nor 6 covers both these agents:

26Also see Samuelson (1992), Gilboa, Kalai and Zemel (1993), Mailath, Samuelson and Swinkels (1993),
and Marx and Swinkels (1997).
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Preferences

In our base model, all we require is that all individuals have the same ordinal preferences
which admit a tipping point. There are three aspects of this assumption that can easily
be relaxed without a¤ecting the theorem, (a) Homogeneity of Preferences (the use of the
same valuation function f for all individuals) and (b) Anonymity (dependence of f on
the number of participants rather than on the set of individuals participating) and (c)
the status quo payo¤ being constant and independent of the number of participants.
We start with a general formulation of the �Tipping Point�Assumption.
For each individual j, partition the set of outcome pro�les B into (i) B+j (�) = fb 2 B :

bj = 1,
P

N bi � �g, a set of outcomes where j participates together with at least (�� 1)
other individuals, and (ii) B�j (�) = fb 2 B : bj = 1,

P
N bi < �g, a set of outcomes

where j participates and the total number of participants is less than �; and (iii) B0j =
fb 2 B : bj = 0g, outcomes where j does not participate. Endow each agent j with a
re�exive and binary weak preference relation %j on the set of outcome pro�les B, with an
asymmetric component �j (representing strict preferences) and a symmetric component
vj (representing indi¤erence). In the context of this general de�nition of preferences,
consider the following Common Tipping Point Assumption:

Assumption 3 (CTP) There exists � 2 f2; :::; ng such that for all j 2 N , (if b 2 B+j (�)
and b0 2 B0j then b �j b0) and (if b 2 B�j (�) and b0 2 B0j then b0 �j b).

Notice that unlike the preferences in our base model the preferences %j can be het-
erogenous, non-anonymous, and intransitive. Since no restrictions are imposed on each
agent�s preference relation within the sets B+j (�), B�j (�) and B0j , the preferences can be
non-anonymous: The dependence of preferences on �who� is participating (rather than
just on how many agents are participating) is not necessarily ruled out. Moreover, the
condition is consistent with the status quo values depending on the set of participants.
Also, the lack of any restriction on the binary comparisons using %jwithin the sets B+j (�),
B�j (�) and B0j implies that %j need not even be an ordering on B (indeed, %j need neither
be transitive nor complete). This model of preferences can thus accommodate a variety
of non-traditional preferences, including those not representable by an utility function.27

The formal de�nitions of PSNE and Dominance Solvability do not depend on the tradi-
tional model of the agents�preferences (as being a weak order) and these concepts can
easily be de�ned in terms of the binary relations %j and �j. As mentioned earlier, for
our model, only the changes in strategies along the path of play have an impact on the
outcome pro�le. Thus any such unilateral change along the path of play by any agent j
necessarily involves a comparison either between an outcome pro�le in B+j (�) and an out-
come pro�le in B0j or one between an outcome pro�le in B�j (�) with one in B0j . Since the
CTP Assumption 3 is su¢ cient to inform us on both these types of comparisons and since

27For a justi�cation of the use of such a non-traditional (�quasitransitive�) preference in games, see
Basu and Pattanaik (2014).
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these comparisons are identical to those implied by the preferences in our base model,
this type of extension leaves both our results and their proofs intact.

5 Conclusion

We have considered a sequential binary tipping point game and our objective has been
to analyze the collective behavior of the agents under various information structures of
the game. We have found that the information structure is important in determining the
number and type of pure strategy Nash equilibria that occur in such a game. Moreover,
while both maximal coordination and coordination failure arise as possible pure strategy
Nash equilibrium outcomes in all threshold games irrespective of its information struc-
ture, an adequate transmission of and availability of information leads rational agents
acting in their self interest to achieve decentralized and e¢ cient coordination. In particu-
lar, the greater the degree of coordination necessary to achieve an improvement over the
status quo, greater the informational transparency required to achieve a maximal pure
strategy Nash equilibrium as the unique admissible outcome. Hence, an important impli-
cation of our results is that improving the �ow of the information among agents acting
independently can be used as a policy tool to promote decentralized coordination, avoid
ine¢ ciency, and achieve an egalitarian (Rawlsian) maximal welfare in binary threshold
models.

Appendix

Proof of Theorem 1. (i) Let � 2 f2; 3; :::; n� 1g and � 2 f0; : : : ; n� �� 1g. By our
hypothesis we have j� � n � � � � + 1 with �(j�) � n � � � � and �(j� + 1) < j� and
n � j� � � � 1 � jfj : �(j) = j�gj. We will construct a PSNE a such that exactly the
last (�+ �) agents participate on the path of play, i.e.,

P
N bi(a) ==

P
Nnf1;2;:::n�(�+�)g =

(�+ �).

J1: Never Participate.z }| {
j_______j__
1 (n����)

__

J2: Always Participate.z }| {
j_____________j

(n����+1) (j��1)
__

J3: Each i2J3 participates i¤ i sees
(�+��n+i�1) previous participations.z }| {
j________________j
j� n

Figure 4. Equilibrium strategy pro�le a with exactly (�+ �) participations.

Consider a strategy pro�le a (see Figure 4) such that:

� For all j 2 J1 = f1; : : : ; n� �� �g, aj (l) = 0 for all l 2 f1; : : : ; �(j) + 1g, i.e., all of
the �rst (n� �� �) agents never participate regardless of what they observe.

� For all j 2 J2 = fn����+1; : : : ; j��1g, aj (l) = 1 for all l 2 f1; : : : ; �(j)+1g, i.e.,
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all agents moving after the agents in J1 but before agent j� choose to participate
regardless of what they observe.

� For all j 2 J3 = fj�; : : : ; ng, aj (l) = 1 i¤ the lth coordinate of j is on the path
of play, i.e., agents moving after agent (j� � 1) choose to conditionally join only in
those coordinates that are relevant under a (i.e., these agents have a �1�in the single
coordinate of their strategy that is on the path of play and have �0�elsewhere).

By construction, on the path of play only the last (�+ �) = jJ2 [ J3j agents choose
to join under a and hence we have

P
i2N bi(a) = � + � . Given the payo¤ in (1) and

Assumption 1, the strategies for agents in J1; J2 and J3 then imply

uj (a) =

�
0, if j � n� �� � ;
f (�+ �) > 0, if j � n� �� � + 1: (2)

We now show that the above pro�le a is a PSNE. By de�nition, we only focus on
unilateral deviations of strategies that can be on the path of play by some individual j.
If j 2 J2 [ J3, then j � n � � � � + 1 and using (2), such a unilateral deviation by

j decreases j�s payo¤ from f (�+ �) to 0, which is a reduction in j�s utility. Hence j is
playing a best response at a.
Next, consider a unilateral deviation of a relevant coordinate by j 2 J1 with a resulting

pro�le a0 = (a0j;�a0j) = (a0j;�aj). Given � (j� + 1) < j�, agents j� and (j� + 1) now both
observe a signal at a0 indicating that one more agent (than at a) has joined. According to
a0, since a�j = a0�j, both j

� and j� + 1 now switch from �join�(bj�(a) = bj�+1(a) = 1) to
�not join�(bj�(a0) = bj�+1(a0) = 0) after j�s deviation.28 Now consider agents j0 � j� + 2
(i.e., j0 2 J3n fj�; j� + 1g). There are three possible cases:

� If �(j0) < j�, j0 now (like agents j� and (j� + 1)) gets a signal under a0 indicating
that one more agent has joined than under a: Hence, by construction j0 will switch
from joining to not joining.

� If �(j0) = j�, j0�s signal will not change and agent j0 will, as before, participate.29

� If �(j0) > j�, then j0 gets a signal indicating at least one less agent has joined under
a0 than under a.30 According to aj0 = a0j0, j

0 will switch from joining to not joining.

To summarize, after j�s unilateral deviation, the set of agents who choose to join on
the path of play is given by fjg [ J2 [ fj : �(j) = j�g. It follows thatP

i2N bi(a
0) = 1 + (j� � (n� �� � + 1)) + jfj : �(j) = j�gj � �� 1:

28To be speci�c, agents j� and (j� + 1) both observe (j� � n+ �� + � � 1) previous agents joining
before j�s deviation and (j� � n+ �� + �) agents joining after j�s deviation.
29Since n� j� � � � 1 � jfj : � (j) = j�gj; there are at most (n� j� � � � 1) such agents.
30Since � (j0) � j� + 1, one is added to j0�s information report because j joins, while two is subtracted

from j0�s report from the defections of j� and j� + 1.
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This implies that j�s unilateral deviation is not pro�table: j�s payo¤ from her deviation
on her relevant coordinate in a is at most f (�� 1) which is less than 0 (Assumption 1).
(ii) Let � 2 f0; : : : ; (n� �� 1)g : Suppose there is a PSNE a with exactly (�+�) agents

participating:
P

i2N bi(a) = �+ � . Since the set N1 = f(n� �� �), (n� �� � + 1), : : :,
(n � 1), ng has (�+ � + 1) agents,

P
i2N bi(a) = � + � implies that there exists j 2 N1

such that bj(a) = 0. Let ~j be the �last� agent in N1 such that bj(a) = 0, i.e., let
~j = maxfj : j 2 N1 and bj(a) = 0g. By our choice of ~j, we have that

bj(a) = 1 for all j > ~j, and (3)
~j � (n� �� �) : (4)

Consider a pro�le ea = (eaej; a�ej) that di¤ers from a only in ~j�s strategy such that the
relevant coordinate of ~j under a is changed from bej(a) = 0 to bej(ea) = 1. Since a is a
PSNE, this unilateral deviation must decrease ~j�s utility to less than zero. In other words
at least (� + 2) agents in

�
(~j + 1); : : : ; n

	
who choose to join under a (with bj(a) = 1)

must no longer join under ea (with bj(ea) = 0). De�ne J = fj1; : : : ; j�+2g with ji < ji+1
for all i � � + 1 be the set of the �rst (� + 2) agents such that bj(a) = 1 and bj(ea) = 0
for j 2 J (i.e., the �rst (� + 2) agents switching from joining to not joining after ~j�s
deviation). This implies that there are at least � + 2 agents moving after ~j and hence

~j � n� � � 2: (5)

Inequalities (4) and (5) together imply that

(n� �� � + 1) � j1 � (n� � � 1): (6)

Since ~j has made a unilateral deviation and j1 2 J is such that bj1(a) = 1 and
bj1(ea) = 0, it must be that j1�s information covers ~j, i.e., �(j1) � ~j. By the choice of J ,
since j1 and j2 are the �rst two agents switching from joining under a to not joining underea, and that all agents j, j1 < j < j2, have bj(a) = bj(ea) = 1 by (3), j2�s information does
not over j1, i.e., �(j2) < j1.31 Since j2 � j1+1, Assumption 2 and �(j2) < j1 then jointly
imply that

(j1 + 1) �s information does not cover j1, i.e., �(j1 + 1) < j1: (7)

Finally, by our choice of J , since j1 is the �rst agent switching after ~j�s deviation, the
number of agents who move after agent (j1 + 1) and who cover j1 but not j2 can be at most
(n� (j1 + 1))�� = n�j1���1, i.e., jfj : �(j) = j1gj � n�j1���1. The reason for this
is that agents in fj : �(j) = j1g, when this set is non-empty, receive the same information
signal under a and ea and will have the same move under both pro�les and cannot belong
to J . Since � � 2, the number of agents in fj : �(j) = j1g cannot be too large for there to
31If �(j2) � j1, j2 would receive the same report under both a and ea, contradicting bj2(a) 6= bj2(ea).
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be at least (� + 2) agents in J: It is easy to check that if jfj : �(j) = j1gj > n� j1� � � 1
then the number of agents who remain in the set fj1; j1+1; j1+2; : : : ; ngnfj : �(j) = j1g
is strictly less than n� j1 + 1� (n� j1 � � � 1) = � + 2: Thus,

jfj : �(j) = j1gj � n� j1 � � � 1: (8)

Using (6), (7), (8) and letting j1 be the j� in the statement of the theorem completes
the proof.

Proof of Theorem 2

We will introduce some notation, de�ne some key concepts, and prove preliminary lemmas
that will be used to prove Theorem 2. The �rst set of lemmas (Lemma 1 to Lemma 4)
holds for all G0 whether or not G0 is dominance solvable and is unrelated to the particular
information structure of G0. These lemmas provide useful insights into the iterative re-
duction process of dominated strategies. The second set of lemmas (Lemma 5 and Lemma
6) relates the existence of information chains in G0 to this reduction process and provides
results that represent crucial parts of the proof of Theorem 2.
For convenience, we will abuse notation and use aj 2 Gh to indicate that aj is possible

in the game Gh, i.e., aj has not been eliminated and is a strategy of j in game Gh. Similarly
a 2 Gh will indicate that the pro�le a is possible in Gh, a�j 2 Gh that the contingency a�j
can arise in Gh, and aj(l) 2 Gh that aj (l) is possible in Gh.

De�nition 2 Let Gh 2 fG0;G1; : : : ;GMg. The conditional action aj (l) 2 Gh is a best
response conditional action (BRCA) in Gh i¤ there exists a�j 2 Gh such that the lth
coordinate of agent j�s strategy is on the path of play and aj is a best response to the
contingency a�j in Gh.

Notice that for the games in fG1; : : : ;GMg, as dominated strategies are iteratively
eliminated, certain paths of play occurring in earlier games may not appear in later
games. As this happens, some coordinates of an agent�s strategy become irrelevant, i.e.,
no path of play that is possible in the game passes through that coordinate. Similarly,
a coordinate is relevant in a game if there is a path of play that goes through that
coordinate in the game. It is important to identify which coordinates and which paths
persist. The following Lemma 1 shows that an undominated strategy is closely related to
BRCA�s and these coordinates of individual strategies persist from game to game. The
�rst part of the lemma shows that if some coordinates of a strategy in a game consist of
BRCA�s then these BRCA�s survive in that some undominated strategy in that game has
these BRCA�s in its coordinates, while the second part shows that for a strategy to be
undominated in a game, all relevant coordinates of that strategy must be either a BRCA
or irrelevant in that game.32

32Notice that the results in Lemma 1 are stated in the form of a set of coordinates rather than an
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Lemma 1 (Persistence) Let Gh 2 fG0; : : : ;GM�1g and j 2 N . (i) For aj 2 Gh and
L � f1; : : : ; �(j) + 1g, if for all l 2 L, aj(l) is a BRCA then, there exists a0j 2 Gh+1
such that a0j(l) = aj(l). (ii) If a�j is undominated in Gh, then a�j is such that for all
l 2 f1; : : : ; �(j) + 1g, either a�j(l) is a BRCA in Gh or the lth coordinate of j�s strategy is
irrelevant in Gh.

Proof. (i) Let aj 2 Gh be such that aj(l) is a BRCA in Gh for all l 2 L. By the de�nition
of a BRCA, for each such l, there is a strategy pro�le al =

�
aj; a

l
�j
�
2 Gh such that the lth

coordinate of j is on the path of play and aj is a best response for al�j in Gh. If aj itself is
undominated, then aj 2 Gh+1 and we are done. If aj is dominated, then by �niteness of
Aj and transitivity of the dominance relation, there is an undominated strategy a0j 2 Gh
that dominates aj. This implies that for each of the contingencies al�j 2 Gh, the payo¤ of
j from a0j is at least as large as that from aj. But, since aj is a best response to a

l
�j 2 Gh,

we must have a0j(l) = aj(l) for all l 2 L. Finally, as a0j is undominated in Gh, a0j 2 Gh+1.
(ii) Assume to the contrary that there exists an undominated strategy a�j 2 Gh and

a non-empty set of coordinates eL of a�j where eL = fl : l 2 f1; : : : ; �(j) + 1g, a�j(l) is
relevant and a�j(l) is not a BRCA in Ghg. Replace of all the coordinates of a�j in eL with
the corresponding BRCA�s in Gh to construct a new strategy a0j which agrees with a�j on
all coordinates other than those in eL. Thus, by construction, the coordinates of a0j are
either irrelevant or are BRCA�s in Gh and if this a0j exists in Gh it would dominate a�j .
Since all contingencies for j in Gh are also contingencies for j in Gh�1 and since every
relevant coordinate of a0j is a BRCA in Gh it must be the case that these coordinates
must also be BRCA�s in Gh�1. Denoting all these relevant coordinates of a0j which are
BRCA�s by L, Lemma 1 (i) (applied to Gh�1) tells us that there exists a00j 2 Gh such that
each of a00j�s coordinates either coincides with that of a

0
j or the coordinate is irrelevant in

Gh. Thus, since a00j �generates exactly the same outcomes as�a0j in Gh, it dominates a�j
contradicting our hypothesis that a�j is undominated in Gh.

Given our binary setting, another consequence of eliminating dominated strategies is
that certain relevant coordinates of an agent�s strategies become ��xed�in that for these
coordinates all strategies take on the same value. Once this has happened in a game, these
coordinates remain �xed in subsequent games. We will be particularly interested in cases
where the possibility of non-participation is eliminated by dominance and some coordinate
of an agent�s strategy is reduced to 1 in a game and is �xed at 1 in all subsequent games.
Moreover, if all relevant coordinates greater than or equal to some coordinate are also
�xed at one, we will say that that particular coordinate of the agent�s strategy has been
strictly reduced to 1 and the coordinate is strictly �xed at 1 :

De�nition 3 Let Gh 2 fG0; : : : ;GM�1g, j 2 N and l 2 f1; : : : ; �(j)g. (i) The conditional
action aj (l) is �xed at 1 in Gh+1 i¤ for all aj 2 Gh+1; aj(l) = 1 and (ii) The conditional

individual coordinate. Such a somewhat cumbersome formulation is chosen so as to ease our proof for
part (ii) of Lemma 1, which currently has no need for arguments in induction.
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action aj (l) is strictly �xed at 1 in Gh+1 i¤ aj (l) = 1 is �xed at 1 in Gh+1 and in
addition for all s 2 f1; : : : ; �(j) + 1 � lg either aj (l + s) = 1 or the (l + s)th coordinate
of j�s strategy is irrelevant in Gh+1. If aj (l) is �xed at 1 in Gh+1 and aj (l) is not �xed at
1 in Gh we will say that the lth coordinate of j�s strategy is reduced to 1 in game Gh. If
aj (l) is strictly �xed at 1 in Gh+1 and aj (l) is not strictly �xed at 1 in Gh we will say that
the lth coordinate of j�s strategy is strictly reduced to 1 in Gh.

Remark 2 Notice that as per the terminology we have adopted in the above de�nition
that the coordinate is �not �xed�in the game in which it is �reduced�and only becomes
�xed in subsequent games and aj (l) = 1 being strictly �xed at 1 in Gh+1 implies that
aj (l) = 1 is �xed at 1 in Gh+1. It is also clear that aj (l) = 1 being �xed at 1 in Gh implies
that aj (l) is �xed at 1 in Gh0 for all h0 � h. Moreover, since an irrelevant coordinate of
a strategy in a game is irrelevant in all subsequent games, it also follows that if aj (l) is
strictly �xed at 1 in Gh then aj (l) is strictly �xed at 1 in Gh0 for all h0 � h.

We next introduce notation for a particular set of �participating�strategies (P) and a
set of �non-participating�strategies (NP). These are simply some book-keeping devices
that we shall use to describe the process of the agent�s coordinates being �reduced� to
1. Here, P is the collection of strategy pro�les where agents �participate if all the others
participate�, i.e., all players choose to participate whenever their information signal shows
no evidence of previous non-participations. Hence the largest coordinate of each agent�s
strategy takes the value 1.

P = fa 2 G0 : aj (�(j) + 1) = 1 for all j 2 Ng .

On the other hand, NP (r) is the set of strategy pro�les where agents decide not to
participate if they do not observe at least (r� 1) participations. Here, all the coordinates
of all the agents�strategies less than or equal to the rth-coordinate are zero.

NP (r) = fa 2 G0 : For all j 2 N , aj (l) = 0 for all l � min f�(j) + 1; rg ; r 2 Ng .

Notice that by varying r, we get a nested set of subsets of NP (r) with NP (r � 1) �
NP (r). We will use the terminology P in Gh (respectively, NP (r) in Gh) to indicate
the subset of the pro�les in P (respectively, the subset of the pro�les in NP (r)) that
survive the elimination process from G0 to Gh.33 We will also use aj 2 P (respectively,
aj 2 NP (r)) to indicate a strategy of j with aj (�(j) + 1) = 1 (respectively, with aj (l) = 0
for all l � min f�(j) + 1; rg).

Lemma 2 (Unanimous Participation) Let Gh 2 fG0; : : : ;GMg. Then P 6= ? in Gh
and for all strategy pro�les a 2 P, a is a PSNE in Gh with

P
N bj(a) = n.

33For all games Gh 2 fG0; : : : ;GMg, P \NP (r) = ? for all r � 1 and both the sets P and NP (r) are
non-empty in G0 for all possible values of r � 1.
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Proof. In G0 since no strategies have been eliminated, P 6= ?. In addition, for all j 2 N ,
aj is a best response to a�j for (aj; a�j) 2 P in G0 since any unilateral deviation on
the path of play with aj(�(j) + 1) = 0 will reduce agent j�s payo¤ from positive to
zero. Thus, by the persistence Lemma 1, there is then an undominated strategy aj with
aj (�(j) + 1) = 1 in G0. Since this is true for all j, we have P 6= ? in G1. A similar
argument establishes the result inductively.

The above lemma shows that in all games Gh there always exists a PSNEO in which
each individual receives a payo¤ of f(n), which is the maximal payo¤ in our baseline
model � hence the e¢ cient PSNEO will never be eliminated in the reduction process.34

An immediate consequence of the unanimous participation Lemma 2 is Corollary 7, which
shows that for dominance solvability it is necessary that after the process of iterative
dominance, the irreducible game GM should satisfy NP (1) = ?:

Corollary 7 If NP (1) 6= ? in GM then GM has at least two outcomes, one in whichP
N bj = n and another in which

P
N bj = 0 and hence G0 is not dominance solvable.

The following special type of a prerequisite will play an important role in the sequel:

De�nition 4 The pre-requisite of the lth coordinate of j�s strategy is satis�ed exactly for
a contingency a�j in the pro�le (aj; a�j) if

Pl�1
i=1 bi(aj; a�j) = l�1, where b(aj; a�j) is the

action pro�le induced by (aj; a�j). The contingency a�j is called an exact contingency
for the lth coordinate of j�s strategy.

Under an exact contingency a�j, the information that j receives represents a full and
complete aggregate report of what actually occurs and this report is generated by exactly
the �rst (l�1) individuals participating. Our next lemma shows that for all r � �(n)+1,
if NP (r) 6= ? in Gh, then for each agent, for every (possible) coordinate in the agent�s
strategy that is no larger than r; there exists an exact contingency in Gh such that such
coordinate of the agent is on the path of play.

Lemma 3 (Exact Contingency) Let Gh 2 fG0; : : : ;GMg be such that NP (r) 6= ? in
Gh for some r 2 f1; : : : ; �(n) + 1g. Then for j 2 N; l 2 f1; : : : ;min f�(j) + 1; rgg, there
is a strategy pro�le a� 2 Gh, a� depending on l, such that the lth coordinate of j�s strategy
is on the path of play under a�,and

Pl�1
i=1 bi(a

�) =
P

N bi(a
�) = l � 1:

Proof. The proof is done by construction. First, P 6= ? in Gh (Lemma 2) implies
that for each i 2 N , there is a strategy âi 2 Gh with âi (�(i) + 1) = 1. Since by the
hypothesis NP (r) 6= ? in Gh, there is also a strategy �ai 2 NP (r) for all i 2 N such

34A similar argument cannot be applied to the PSNE with
P

N bj(a) = 0 as under certain information
structure, a1 = a1 (1) = 0 may no longer be a BRCA at some stage, while for any j, aj (� (j) + 1) = 1 is
always a BRCA independently of the information structure in our setting.
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that �ai (1) = � � � = �ai (min f�(i) + 1; rg) = 0. Let j 2 N and l 2 f1; : : : ; �(j) + 1g with
1 � l � r and consider a strategy pro�le a� where (see Figure 5)

for i 2 f1; : : : ; l � 1g , a�i = âi, (9)

for i 2 fl; : : : ; ng , a�i = �ai.

Participate only at the top. Not participate on the path of play.z }| {
j_________________j

z }| {
__________j_________j

1 (l � 1) j n

Figure 5. The Strategy Pro�le a� for the lth Coordinate of j�s Strategy (An agent
i � l � 1 chooses a�i 2 P, while an agent i � l chooses a�i 2 NP (r) ).

Hence, under the pro�le a� 2 Gh, aj(l) is on the path of play, and
Pl�1

1 bi(a
�) =P

N b(a
�) = l � 1, where a�i 2 NP (r) for all i � l, establishing the result.

The above construction in (9) yields two key consequences: First, since all strategies
are possible in G0, it follows that G0 satis�es NP (�) 6= ?: Second, for the case where
2 � r � � � 1 as one proceeds along the sequence G1; : : : ;GM�1, except possibly for the
�rst round (from G0 to G1), the maximum possible �reduction�per round of elimination is
�one�in the following sense: If r � �� 1 and one has NP (r) 6= ? in Gh (i.e., every agent
has a strategy in Gh with zeros in all coordinates no larger than the rth coordinate), then
it holds that NP (r � 1) 6= ? in Gh+1 (i.e., every agent has a strategy in Gh+1 with zeros
in all coordinates no larger than the (r � 1)th coordinate). We summarize the above in
the next lemma. In particular, the maximal reduction Lemma 4 implies that G1 satis�es
NP (�� 1) 6= ? whether or not the game G0 is dominance solvable.

Lemma 4 (Maximal Reduction) (i) G0 satis�es NP (�) 6= ?. (ii) Let j 2 N and
Gh 2 fG1; : : : ;GM�1g be such that NP (r) 6= ? in Gh for some r 2 f2; : : : ; � � 1g. Then
for all l 2 f1; : : : ;minfr� 1; �(j) + 1gg; aj(l) = 0 is BRCA in Gh and NP (r � 1) 6= ? in
Gh+1.

Proof. (i) immediately follows from the fact that all strategies are possible in G0.
(ii) By the exact contingency Lemma 3, NP (r) 6= ? in Gh implies the existence of

a� 2 Gh such that the lth coordinate of j�s strategy is on the path of play under a�. As
l � r� 1 � �� 2, it follows that aj (l) = 0 is a BRCA for the contingency a��j in (9). By
the persistence Lemma 1 (i), j has a strategy in Gh+1 with zero in the lth coordinate. As
this is true for all j and all l � �� 2, we have that NP (r � 1) 6= ? in Gh+1.

We now present two lemmas that represent the key steps in the proof of Theorem 2.

Lemma 5 (Su¢ ciency) Consider the canonical sequence of agents given by the ordered
set (i1; i2; : : : ; im�) where i1 = n and is+1 = �(is) and �(im�) = �m

��1(n) = 0. If m� � �
then G0 is dominance solvable.
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Proof. Consider the game G0. From m� � � and Assumption 2 (I-Monotonicity) we
know that i1 covers at least (m� � 1) agents, i.e., agents i2; : : : ; im�, and hence �(i1) =
�(n) � m��1 � ��1. Observe that there exists a contingency such that the path of play
passes through the �th coordinate of i1�s strategy in G0 where all strategies are possible.
Moreover, for every contingency in G0 with a path of play passing through the �th or
higher coordinate of i1, i1 knows that at least (��1) individuals have participated before
she moves and hence an(�) = ai1(�+ s) = 1 is BRCA in G0.35 Thus, using the persistence
Lemma 1, we can conclude that for i1 = n the �

th coordinate is reduced to 1 in G1 and all
coordinates ai1(�) and ai1(�+ s) are strictly �xed at 1 for all s 2 f1; : : : ; �(n) + 1� �g in
G1+t for all t 2 f0; : : : ;M � 1g. This implies G1 satis�es NP (�) = ?. By the maximal
reduction Lemma 4, we know that G1 satis�es NP (�� 1) 6= ?.
Similarly, the existence of a chain of length � implies that �(i2) � �� 2. By the exact

contingency Lemma 3, there is an exact contingency in G1 passing through the (�� 1)th
coordinate of i2. Since �(i1) = i2, if ai2(� � 1) = 1, this path of play must pass through
the �th of i1�s strategy. Since ai1(�) is strictly �xed at 1 in G1+t for all t 2 f0; : : : ;M �1g,
for any contingency in G1 where the path of play passes through the (�� 1)th coordinate
or higher of i2, we have that ai2(� � 1) = 1 is a BRCA. By the persistence Lemma 1,
ai2(� � 1) is strictly �xed at 1 in G2+t for all t 2 f0; : : : ;M � 2g. In addition, by the
maximal reduction Lemma 4, NP (�� 2) 6= ? in G2.
Using a similar argument repeatedly for G3; : : : ;G��1 and i3; : : : ; i�, we have that ai�(1)

is strictly �xed at 1 in G� and that for all a 2 G�,
P

N bi(a) � �. This implies that in G�+1
for every a 2 G�+1, for every agent j, and for every relevant coordinate l of j�s strategies
on the path of play, aj(l) = 1 is a BRCA. Using the persistence Lemma 1, it follows that
for all a 2 GM ,

P
N bi(a) = n. Thus, G0 is dominance solvable.

Recall that dominance solvability of G0 implies GM must satisfyNP (1) = ? (Corollary
7), i.e., in GM it should not be possible for every individuals to have some strategy with
zero in the �rst coordinate. Furthermore, with dominance solvability, using the maximal
reduction lemma, Lemma 4 (i) and (ii), we know that G1 satis�es NP (�� 1) 6= ?. Thus,
using the maximal reduction Lemma 4 repeatedly we can conclude that as one proceeds
along the sequence fG1; : : : ;GMg we will encounter (sequentially) games which satisfy
�NP (�� 1) = ? and NP (�� 2) 6= ?)�followed by games satisfying �NP (�� 2) = ?
andNP (�� 3) 6= ?�and so on until we will get to the set of games satisfying �NP (2) =
? andNP (1) 6= ?�and then to games satisfyingNP (1) = ?, which, as we have noted, is
a condition necessary for dominance solvability. To ease exposition, for �� 1 � k � 1, we
will adopt the notation of denoting the set of games satisfying �NP (�� k + 1) = ? and
NP (�� k) 6= ?�by the block of games

�
G��ki

	
with the �rst and last games in

�
G��ki

	
(as ranked in the sequence G1; : : : ;GM) being denoted by G��kmin and G��kmax , respectively.

36

Thus, [��1k=1

�
G��ki

	
= fG1; : : : ;GMg and ffG��ki gg is simply a partition of fG1; : : : ;GMg.

Note that in all games in the block
�
G��ki

	
, all agents have strategies in which all the

35In G0, since all strategies are possible, the set of strategies for which this is true is non-empty.
36We do not rule out the possibility that

�
G��ki

	
can be a singleton and G��kmin = G��kmax .
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coordinates less than or equal to the (�� k)th coordinate is zero, while in the game G��kmax

the (� � k)th coordinate reduces to 1 in all strategies for some individual and that this
coordinate is �xed at 1 in all subsequent games starting with G��k�1min . Using the sets�
G��ki

	
where 1 � k � �� 1 we will now establish a property of the canonical sequence

of agents i1; i2; : : : ; im� that will be critically important in demonstrating that the process
with successive coordinates becoming �xed at 1 breaks down when � is strictly less than
the length of the longest information chain (m�).
Our next lemma establishes a key step in the proof of the �necessity�part of Theorem

2. In particular, this lemma shows that in each round of reduction of zeros to ones (in the
sense of the maximal reduction Lemma 4) that occurs between the blocks partitioning
fG1; : : : ;GMg, the reduction of the coordinate always has to start with an agent less than
or equal to a distinguished agent from the canonical sequence i1; i2; : : : ; im� (where the
selection of this distinguished agent depends on the block

�
G��ki

	
under consideration).

Lemma 6 (Non-Reduction) Let s 2 f1; : : : ; �� 1g. If Gh 2
�
G��si

	
then for all agents

j such that j > is+1 and �(j) � (�� s� 1), aj(�� s) = 0 is a BRCA in Gh:

Proof. We will provide a proof by induction. In each step, we explicitly construct a
strategy pro�le to establish the result.

Basis Step. s = 1:

We �rst consider the block fG��1i g. The analysis here leads to the reduction that takes
place between G��1max and G��2min , where the (��1)th coordinate of some agent becomes �xed
at 1. Recall that all games in the block fG��1i g satisfy NP (�� 1) 6= ? and G��1min = G1.
Consider an agent j with j > i2 and �(j) � (� � 2) in a game Gh 2

�
G��1i

	
. Since

NP (�� 1) 6= ? in Gh, there exists aj0 2 NP (�� 1) in Gh for all j0 � j. Moreover, since
�(j) � (� � 2) and NP (�� 1) 6= ?, the exact contingency Lemma 3 implies that there
exists an exact contingency a��j for the (�� 1)th coordinate of j in Gh.
Construct a contingency a�j 2 Gh as follows (see Figure 6):

� Let all agents j00 < j use their strategies from the exact contingency a��j.

� Let all agents j0 > j use the strategies aj0 2 NP (�� 1).

Participate only at the top. Not participate on the path of play.z }| {
j_________________j

z }| {
_____j_____j_________j

1 (�� 2) i2 j n

Figure 6. An Illustration of the Contingency a�j for Basis Step.

By the construction of a�j, the �rst (�� 2) agents participate on the path of play, while
the other agents playing before j choose to not participate. Since, j > i2 = �(n) = �(i1);
j is not covered by any individual. It follows that all agents moving after j do not
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participate along the path of play since all such agents after j are using their strategies
from NP (�� 1). Hence, irrespective of whether aj(� � 1) = 1 is possible or not in Gh,
aj(�� 1) = 0 is a BRCA for j in Gh, establishing Basis Step.37
Applying the above to the game G��1max 2

�
G��1i

	
and using the persistence Lemma 1,

if G��2min , the next game after G��1max in the sequence G1; : : : ;GM , exists, we then have:

If j > i2 and �(j) � (�� 2), then there is aj 2 G��2min with aj(�� 1) = 0: (10)

In other words, a reduction of the (�� 1)th coordinate of any agent moving after i2 to 1
cannot take place in the block

�
G��1i

	
and therefore any such reduction (if any) has to

necessarily take place for an agent moving before i2.

Inductive Step. s � 2:

Consider the inductive hypothesis: If Gh 2
�
G��s+1i

	
then for all agents j0 such that

j0 > is and �(j0) � (�� s), aj0(�� s+ 1) = 0 is a BRCA in Gh.
Using this inductive hypothesis, we need to show that if Gh 2

�
G��si

	
then for all

agents j such that j > is+1 and �(j) � (�� s� 1), aj(�� s) = 0 is a BRCA in Gh:
Analogous to (10), use the inductive hypothesis and Lemma 1 to obtain:

If j0 > is and �(j0) � (�� s), then there is aj0 2 G��smin with aj0(�� s+ 1) = 0: (11)

Consider the �rst game in the block fG��si g: G��smin .
Let j be such that j > is+1 and �(j) � (�� s� 1). We will consider two cases: Case

1. aj (�� s) = 0 for all aj 2 G��smin . Case 2. There exists aj 2 G��2min with aj (�� s) = 1.
Case 1. Since NP (�� s) 6= ? in G��smin , aj (�� s) = 0 is possible and the (�� s)th

coordinate of j is relevant (Lemma 3) in G��smin . In addition, as aj (�� s) = 0 for all
aj 2 G��smin , aj(�� s) = 0 is a BRCA in Gh, completing the proof in this case.
Case 2. In this case we have

there exists aj 2 G��smin with aj (�� s) = 1: (12)

Let j0 be any agent that covers j, i.e., �(j0) � j. Since �(j) � (��s�1) and �(j0) � j;
we have �(j0) � (�� s). In addition, we know that since j0 covers j and j > is it must be
the case that agent j0 moves after is.38 Statement (11) shows that for any such j0, there
is aj0 2 G��smin with aj0(� � s + 1) = 0. This allows us to construct the following strategy
pro�le a 2 G��smin (and hence a contingency a�j 2 G��smin ) to show that aj (�� s) = 0 is a
37It is possible for some j > i2 to have aj (�� 1) = 0 for all aj 2 Gh. For example, consider agent n.
38The key di¤erence between Basis Step and Inductive Step is that an agent j (with j > is+1) may

be covered by another agent j0 in Inductive Step while an agent j (with j > i2) cannot be covered
by any agent in Basis Step. This creates additional complications in constructing the contingency a�j
toward the result of aj (�� s) = 0 being a BRCA in Inductive Step.
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BRCA for j in G��smin (see Figure 7):

Participation only at the top.
No participation on the path of play except
j, who participates on the path of play.z }| {

j_________________j
z }| {
_____j_____j_____j____j

1 (�� s� 1) is j j0 n

Figure 7. An Illustration of the Strategy Pro�le a for Inductive Step.

� Let agent j use aj 2 G��smin with aj (�� s) = 1 (see (12)).

� Let all agents j00, who do not cover j (i.e., �(j00) < j), use the strategies in the
corresponding exact contingency a��j so that the (�� s)

th coordinate of j�s strategy
is on the path of play. (This includes all agents moving before j and possibly
some agents moving after j. Notice that NP (�� s) 6= ? in G��smin and the exact
contingency Lemma 3 imply that this is possible.)

� Let all agents j0 with j0 > j and �(j0) � j use aj0 2 G��smin such that aj0(��s+1) = 0.
(Recall that our above arguments for j0 imply that this is possible.)

Notice that by construction, there are (exactly) (�� s) agents participating on the
path of play (i.e.,

P
N bi(a) = �� s). In particular, only agent j and the �rst (�� s� 1)

agents moving before j participate and no agent moving after j participates. In addition,
for each agent j0 that covers j, the (�� s+ 1)th coordinate of j0 is on the path of play.
Since

P
N bi(a) = �� s � �� 2, we have that aj (�� s) = 0 is a BRCA for j in G��smin . In

addition, under exactly the same strategy pro�le a, aj0 (�� s+ 1) = 0 is a BRCA for all
j0 with j0 > j and �(j0) � j. If G��smin = G��smax, our proof is complete. If not, the persistence
Lemma 1 implies that aj0 (�� s+ 1) = 0 persists and is possible in the next game after
G��smin which we denote by G��smin+1. Hence, if G��smin+1 exists, we have the following:

if j0 > is and �(j0) � (�� s), then there is aj0 2 G��smin+1 with aj0(�� s+ 1) = 0: (13)

Using an argument similar to the above used for G��smin , we can show that aj (�� s) = 0
is a BRCA in G��smin+1 for any agent j > is+1. The persistence Lemma 1 and the repeated
use of this argument establish Inductive Step for all games in

�
G��si

	
.

Proof of Theorem 2. Consider the canonical sequence of agents given by the ordered
set (i1; i2; : : : ; im�) where i1 = n, i2 = �(i1) = �1(n), � � � , and �(im�) = �m

��1(n) = 0. By
Proposition 5, m� is the maximum length of an information chain in G0. The su¢ ciency
Lemma 5 already establishes that m� � � implies that G0 is dominance solvable. Hence
we only need to show that if G0 is dominance solvable then we have m� � �.
In G0, choose any j 2 N and any coordinate l � �(j)+1 in j�s strategy with l � ��1:

Since all strategies are possible in G0, we can construct an exact contingency such that
the path of play passes through the lth coordinate of j�s strategy. Hence, aj(l) = 0 is a
BRCA. Using the persistence Lemma 1 (i) it follows that G1 satis�es NP (�� 1) 6= ?.
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By the maximal reduction Lemma 4, as we proceed along the sequence G1; : : : ;GM ; we
will encounter (sequentially) the (� � 1) non-empty blocks

�
G��ki

	
��1�k�1 where in the

block
�
G��ki

	
all agents have strategies in which all the coordinates less than or equal to

the (�� k)th coordinate are zero and in the game G��kmax the (�� k)th coordinate of some
individual is reduced to 1 and becomes �xed at 1 in all subsequent games.
Consider the �rst block

�
G��ki

	
with k = ��1.39 By de�nition, some agent�s (��1)th

coordinate is reduced to 1 in game G1max. There must be some individual j0 such that
�(j0) � �� 1: Thus, noticing that the hypothesis of Lemma 6 is non-vacuously satis�ed,
using the persistence Lemma 1, we can conclude that j0 � i2.
Notice that the existence of these (��2) more of such blocks implies that the hypothesis

of the non-reduction Lemma 6 is non-vacuously satis�ed in each step of the reduction
process and that in the game G��smax for � � 1 � s � 2, the (� � s)th coordinate can be
on the path of play and reduces to 1 in G��hmax only for some individual j � is where
�(j) � � � s � 1.40 Hence, for NP (1) = ? to be true (i.e., the (� � � + 1)th = 1st

coordinate of some agent�s strategy to be reduced to 1), we must have an agent j � i� with
�(j) � 0. Accordingly, we have that G0 being dominance solvable implies the existence of
the canonical sequence i1; : : : ; im� of length at least equal to �.
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