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Abstract

In the private values single object auction model, we construct a satisfactory mech-
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mechanism. Our mechanism allocates the object to the highest valued agent with

more than 99% probability provided there are at least 14 agents. It is also ex-post

individually rational. We show that our mechanism is optimal in a restricted class of

satisfactory ranking mechanisms. Since achieving efficiency through a dominant strat-

egy incentive compatible and budget-balanced mechanism is impossible in this model,

our results illustrate the limits of this impossibility.
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1 Introduction

How should a group of agents allocate a unit of resource among themselves? For instance,

consider the problem of allocating a bequest among a group of potential heirs. Many a

times, no will exists. In such situations, intestate succession laws mandate who gets how

much of the estate. Even then, dividing up the value of the estate, by selling it in a market,

may be problematic. The value that heirs assign to a property may be much higher than

that assigned by the market. This may be due to sentimental reasons, or because family

members have private information that is difficult to credibly share with the market. Often,

some heirs refuse to sell a property while others prefer to liquidate the asset. Even when a

will exists, disputes arise. Designated estate agents are often employed to resolve bequest

related problems. A Wall Street Journal article quotes an expert suggesting the following

dispute resolution procedure:

In family disputes, Ms. Olsavsky says, one option is to have all the items put up

for auction. Family members can bid on what they want. The money goes back

to the estate to be divided equally (Coombs, 2013).

Consider the related problem of member countries deciding on the venue of the next

Olympic Games or the soccer World Cup. The allocation problem is often contentious and

at times opaque leading to discontent and charges of corruption. In the popular blog The

Leisure of the Theory Class, Rakesh Vohra writes:

Instead of running beauty contests to decide where to hold FIFA events, auction

off the right to the highest bidder. This can be done in two ways. Allow each

FIFA official with a vote to auction off their vote to the highest bidder. Or, do

away with the officials altogether and have countries bid directly for the right to

hold FIFA events. Full transparency, no bribery and FIFA may be richer than

before! (Vohra, 2015)

Just like the bequest settlement case, FIFA must redistribute the transfers collected from

the countries among them.

There are a number of other examples: a group of firms sharing time slots on a jointly

owned supercomputer (Guo et al., 2011); a group of municipalities deciding on the location

of a stadium (Cramton et al., 1987). A key feature of these problems is that transfers can be

used (either as taxes or subsidies) for resource allocation. However, transfers across agents

have to balance - money raised by auctioning a bequest must be redistributed among the

heirs.
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We design mechanisms for such problems with the aim of achieving efficiency. Efficiency

requires one to allocate the bequest to the highest valued heir or to allocate the world cup

venue to the country which benifits the most from hosting the event. In the standard private

values model, where each agent has a value for the unit of resource/object and transfers are

allowed with quasilinear utility, the Vickrey auction satisfies three compelling desiderata of a

mechanism: (a) dominant strategy incentive compatibility (DSIC), (b) (allocative) efficiency

- allocating the object to the highest valuation agent, and (c) ex-post individual rationality.

A well-known criticism of the Vickrey auction is that it is not budget-balanced - it collects

revenue from the agents, which distorts ex-post efficiency. Green and Laffont (1979) shows

that this criticism applies to every DSIC and efficient mechanism: no DSIC and efficient

mechanism can be budget-balanced. We look for a second-best solution, where we explore

the limits of this impossibility result:

How close to efficiency can we get using a DSIC and budget-balanced mechanism?

We require our solution to satisfy symmetry - agents with identical valuation must get the

object with equal probability and pay the same amount. Symmetry is a compelling fairness

property - for instance, in the bequest allocation problem, an asymmetric mechanism may

either be unacceptable to potential heirs or lead to unpleasant lawsuits later on.

We identify a class of DSIC, budget-balanced, and symmetric mechanisms that we call

ranking mechanisms. A ranking mechanism is one that uses a ranking allocation rule, which

is specified (for n agents) by n numbers (π1, . . . , πn) between 0 and 1 such that they add up

to not more than 1 and πj ≥ πj+1 for each j. For every j, the number πj is the probability

with which an agent with the j-th highest value is allocated the object at any generic profile

of values. Our main result is a description of the r-optimal mechanism - a DSIC, budget-

balanced, and symmetric ranking mechanism that beats every such mechanism in terms of

the allocation probability to the highest valuation agent.

At every profile of values, our r-optimal mechanism allocates the object to the highest

valued agent with more than 99% probability, provided there are at least 14 agents. It is also

ex-post individually rational. The welfare generated by the r-optimal mechanism converges

to efficiency as the number of agents increase. The nature of convergence is shown in Table

1, where we report on the probability with which the highest valued agent gets the object in

our mechanism.

The r-optimal mechanism we identify satisfies ex-post individual rationality. Ex-post

individual rationality is a desired property of mechanisms. Consider politicians across mu-

nicipalities or countries, involved in procuring a public facility or negotiating the venue of
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No of agents Probability to the highest valued agent

9 92.3%

10 95%

11 96.2%

12 98.1%

13 98.9%

14 99.4%

15 99.6%

16 99.8%

17 99.9%

Table 1: Convergence in our mechanism

an international sporting event. Failure to get the facility or the event would result in crit-

icisms. The criticism would be compounded if in addition to a failure, payments also have

to be made. Political opponents could well allege corruption.

Ranking mechanisms contain two familiar DSIC, budget-balanced, and symmetric mech-

anisms: (i) the mechanism that allocates the object to each agent with equal probability

without using any transfers and (ii) the residual claimant mechanism in Green and Laf-

font (1979). The residual claimant mechanism is defined by choosing an agent uniformly at

random as a residual claimant and conducting a Vickrey auction among the other agents.

The revenue generated from the auction is then given to the residual claimant. We refer to

this mechanism as the Green-Laffont (GL) mechanism, and note that at profiles of distinct

values, it allocates the object to the highest valued agent with probability 1−1/n and to the

second highest valued agent with probability 1/n. 1 Our r-optimal mechanism coincides with

the GL mechanism if the number of agents is no more than 8 but differs from it significantly

for more than 8 agents.

Our analysis is prior-free. We use DSIC as our solution concept. As we discuss later

in Section 5, Cramton et al. (1987) show that Bayesian incentive compatible, efficient, and

budget-balanced mechanisms satisfying a form of individual rationality exists in our model.

While the mechanism they propose require prior information, our result shows the level of

efficiency that can be achieved using DSIC and budget-balanced mechanisms, thus showing

the limits of such a prior-free and robust approach in this problem. Inspired by the semi-

1This mechanism (and its variants) were discussed in the context of public-good provision problem in

Green and Laffont (1979). Later, Gary-Bobo and Jaaidane (2000) formally define this mechanism and study

its statistical and strategic properties.
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nal work of Bergemann and Morris (2005), recent literature in mechanism design has been

investigating such questions in other models (Chung and Ely, 2007; Carroll, 2015). 2

In view of the Green and Laffont impossibility result, comparing efficiency levels of two

DSIC, budget-balanced, and symmetric mechanisms is a natural question. The notion we use

here compares ranking mechanisms by the probability with which the highest valued agent

gets the object. Formally, we show that this notion coincides with a worst-case measure of

efficiency: the worst-case ratio of welfare generated by a ranking mechanism and efficient

level of welfare. In a prior-free environment, such worst-case measures give a very robust

method of comparing mechanisms. These measures are widely used to compare algorithms

in the computer science literature, and in the algorithmic game theory literature (Cavallo,

2006; Guo and Conitzer, 2009). They are also becoming popular in the mechanism design

literature (Chung and Ely, 2007; Moulin, 2009; Carroll, 2015; Massó et al., 2015).

From a technical point, our paper extends the Myersonian approach. Recall that Myerson

(1981) provides necessary and sufficient conditions for a mechanism to be DSIC. 3 We extend

his characterization to give necessary and sufficient conditions for a mechanism to be DSIC,

budget-balanced, and symmetric. One of the surprising corollaries of this characterization is

that if there is a DSIC, budget-balanced, and symmetric mechanism using an allocation rule,

then it is the only such mechanism using this allocation rule. A consequence of this result

is that the search over the domain of DSIC, budget-balanced, and symmetric mechanisms

can be confined to the domain of allocation rules satisfying our necessary and sufficient

conditions - we do not have to worry about payments since they are identified uniquely.

Our characterization reveals a rich but complex class of such mechanisms. The ranking

mechanisms that we consider in this paper are much simpler to describe. The separation of

payment and allocation decisions gives us a lot of tractability in the class of ranking allocation

rules, where we derive our mechanism and show its constrained optimality. Though we do

not know if we can improve upon our r-optimal mechanism, by considering more complex

mechanisms, the overwhelming speed of convergence of our mechanism (as shown in Table 1)

implies that we may not be losing out much by restricting attention to ranking mechanisms.

The rest of the paper is organized as follows. We present our model in Section 2. We

2There are two recent papers which also provide foundational results of DSIC mechanisms in the private

values single object auction environment. Manelli and Vincent (2010) show that in such models, for every

Bayesian incentive compatible mechanism, there is an “equivalent” DSIC mechanism - this equivalence is in

terms of interim expected utility of agents. This result is extended to other settings in Gershkov et al. (2013).

Unlike our work, these papers do not impose budget-balance as a constraint - indeed, these equivalence results

do not hold if budget-balance constraint is imposed.
3His characterization is for Bayesian incentive compatible mechanisms, but can be straightforwardly

adapted to DSIC mechanisms.
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introduce ranking mechanisms and discuss our main results in Section 3. We give a technical

characterization of DSIC, budget-balanced, and symmetric mechanisms in Section 4. We

relate our results to the literature in Section 5 and conclude in Section 6. All the omitted

proofs are relegated to an Appendix at the end. To keep the proofs of our results lucid, we

present them in a different sequence than the sequence in which corresponding results appear

in the main text. Hence, we recommend that the proofs be read after reading the main text.

2 The Model

We consider the standard single object independent private values model withN = {1, . . . , n}
as the set of agents. Throughout, we assume that n ≥ 3 - the n = 1 case is trivial and the

n = 2 case is discussed later. Each agent i ∈ N has a valuation vi for the object. If he is

given αi ∈ [0, 1] of the object, or given the object with probability αi, and he pays pi for it,

then his net utility is αivi− pi. The set of all valuations for any agent is given by V ≡ [0, β],

where β ∈ R. A valuation profile will be denoted by v ≡ (v1, . . . , vn).

An allocation rule is a map f : V n → [0, 1]n, where we denote by fi(v) the probability

of agent i getting allocated the object at valuation profile v. We assume that at all v ∈ V n,∑
i∈N fi(v) ≤ 1.

A payment rule of agent i is a map pi : V n → R. A collection of payment rules of all

the agents will be denoted by p ≡ (p1, . . . , pn). A mechanism is a pair (f,p). We require

our mechanism to satisfy the following three properties:

• A mechanism (f,p) is dominant strategy incentive compatible (DSIC) if for

every i ∈ N , for every v−i ∈ V n, and for every vi, v
′
i ∈ V , we have

vifi(vi, v−i)− pi(vi, v−i) ≥ vifi(v
′
i, v−i)− pi(v′i, v−i).

• A mechanism (f,p) is budget-balanced (BB) if for every v ∈ V n, we have∑
i∈N

pi(v) = 0.

• A mechanism (f,p) is symmetric if for every v ∈ V n and for every i, j ∈ N with

vi = vj, we have

fi(v) = fj(v), pi(v) = pj(v).
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We call a mechanism satisfactory if it is DSIC, BB, and symmetric. 4 Symmetry

allows us to consider a mild notion of fairness in our mechanism. It also explicitly rules out

dictatorial mechanisms, where a dictator agent is given the object for free at all valuation

profiles. 5

An allocation rule f is satisfactorily implementable if there exists a p such that (f,p)

is a satisfactory mechanism. We are interested in finding satisfactory mechanisms that are

almost efficient in the following sense.

At any valuation profile v, denote by v[k] the set of agents who have the k-th highest

valuation at v. More formally,

v[1] := {i ∈ N : vi ≥ vj ∀ j ∈ N}.

Having defined v[k − 1], we recursively define v[k] as

v[k] := {i ∈ N \ (∪k−1k′=1v[k′]) : vi ≥ vj ∀ j ∈ N \ (∪k−1k′=1v[k′])}.

Definition 1 An allocation rule f is efficient at v if∑
i∈v[1]

fi(v) = 1.

An allocation rule f is efficient if it is efficient at all v ∈ V n. A mechanism (f,p) is efficient

if f is efficient.

The efficiency of a BB mechanism is equivalent to maximizing the total welfare of agents

at every profile of valuations. To see this, note that the total welfare of agents at a valuation

profile v from a mechanism (f,p) is∑
i∈N

[
vifi(v)− pi(v)

]
=
∑
i∈N

vifi(v),

where the second equality followed from BB. This is clearly maximized by assigning the

object to the highest valued agents.

Green and Laffont (1979) show that no DSIC and budget-balanced mechanism can be

efficient. Hence, a satisfactory mechanism cannot be efficient. The precise question we are

interested in is: what is the “most” efficient satisfactory mechanism?

4Green and Laffont (1977) use the terminology satisfactory mechanism to mean something different.

Among other things, their satisfactory mechanisms are DSIC and efficient but need not be BB and symmetric.

We apologize if this creates a confusion.
5A weaker version of symmetry would be to consider anonymity of the mechanism with respect to net

utilities of the agents - see Sprumont (2013) for a formal definition. We will require our stronger version of

symmetry for our main result.
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2.1 A Prior-Free Notion to Measure Efficiency

In view of the Green-Laffont result, we adopt one of the well-known notions to measure

efficiency of satisfactory mechanisms. Fix a satisfactory mechanism M ≡ (f,p). Note that

at any valuation profile v with v1 ≥ . . . ≥ vn, the maximum possible (efficient) social welfare

is v1, and the social welfare achieved by M is∑
i∈N

vifi(v).

The ratio of these two numbers is a good measure of efficiency at the valuation profile v.

More precisely, the number

f1(v) +
1

v1

(∑
i 6=1

vifi(v))
)
,

is a measure of efficiency at the valuation profile v. Here, as in the rest of the paper, we

assume 0
0

= 1. Note that such a measure only depends on f and not on p because (f,p) is a

budget-balanced mechanism. Now, the worst-case of this ratio happens when we minimize

this over all v. In particular, for a satisfactory mechanism M ≡ (f,p), the worst-case

efficiency is given by

µM = inf
v

[
f1(v) +

1

v1

(∑
i 6=1

vifi(v))
)]
.

A natural objective is to find a satisfactory mechanism that maximizes this worst-case

efficiency. As discussed in the introduction, this is a robust method of comparing efficiency

of mechanisms. We apply this notion of comparing efficiency levels of mechanisms in a

restricted class of mechanisms that we describe next.

3 Ranking Mechanisms

In most of the paper, we focus attention on the following class of simple allocation rules and

satisfactory mechanisms that can be constructed using such allocation rules.

Definition 2 An allocation rule f is a ranking allocation rule if it is symmetric and there

exists numbers πi ∈ [0, 1] for all i ∈ N with π1 ≥ . . . ≥ πn and
∑

i∈N πi ≤ 1 such that at

every valuation profile v and every k ∈ N , we have∑
i∈∪kj=1v[j]

fi(v) =
∑

i∈∪kj=1v[j]

πi.

A mechanism (f,p) is a ranking mechanism if f is a ranking allocation rule.
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Generically with v1 > v2 > . . . > vn, a ranking allocation rule allocates agent k the object

with probability πk. Since a ranking allocation rule is symmetric (by definition), it allocates

the object in a particular way when there are ties. To see this, suppose there are seven agents:

N = {1, . . . , 7} and consider a valuation profile v such that v1 = v2 > v3 = v4 = v5 > v6 > v7.

Consider a ranking allocation rule (π1, . . . , π7). According to the definition, agents 1 and 2

will equally share (due to symmetry) the allocation probabilities (π1 + π2), i.e., each agent

gets the good with probability π1+π2
2

. Then, agents 3, 4, and 5 will equally share the allocation

probabilities (π3 + π4 + π5). Finally, agents 6 and 7 get allocation probabilities π6 and π7

respectively.

Note that breaking ties in this manner in a ranking allocation rule maintains continuity

of total welfare in terms of valuations of agents. For instance, consider the valuation profile

discussed in the above example. Consider any arbitrarily close generic (with distinct valua-

tions for agents) valuation profile to this valuation profile. The total expected value of agents

1 and 2 in this profile is arbitrarily close to v1π1 + v2π2 = v1(π1 + π2), where the equality

follows from the fact that v1 = v2. Hence, we can maintain continuity of total welfare by

giving a total of (π1 +π2) probability to agents 1 and 2. Finally, using symmetry, we equally

divide this probability among these two agents. This explains the tie-breaking in the ranking

allocation rule.

Even though the ranking allocation rule is a simple class of allocation rules, there is a

rich subclass of ranking allocation rules that are satisfactorily implementable. Our focus on

this class is purely driven by their tractability and simplicity.

Two well-known ranking allocation rules are satisfactorily implementable. The equal-

sharing allocation rule, where each agent gets the object with probability 1
n

is satisfactorily

implementable - no transfers are required for this. The other allocation rule comes from a

mechanism proposed by Green and Laffont. Pick an agent i uniformly at random. Run a

Vickrey auction among the remaining N \ {i} agents. Give the revenue from the Vickrey

auction to agent i. Since agents are treated symmetrically, the Vickrey auction is DSIC, and

by construction, the mechanism is budget-balanced. 6

A closer look at the Green-Laffont mechanism reveals the following. For valuation profiles

with a distinct highest valued agent, it allocates the object to him with probability (1−1/n)

and shares the remaining probability 1/n among the second highest valued agents. For

valuation profiles with more than one highest valued agents, it allocates the entire object

6Green and Laffont (1979) discuss an even larger class of satisfactory mechanisms where they take out

a coalition of “residual claimant” agents with some probability, run the Vickrey auction on the remaining

agents, and allocate the revenue of the Vickrey auction to the residual claimants equally. These mechanisms

are also ranking mechanisms.
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equally among the highest valued agents. Therefore, given Definition 2, the allocation rule

used in the Green-Laffont mechanism is a ranking allocation rule, where

π1 = 1− 1/n, π2 = 1/n, π3 = . . . = πn = 0.

To be precise, this is the allocation rule corresponding to the direct mechanism of the Green-

Laffont mechanism.

We now characterize the ranking allocation rules that can be satisfactorily implemented.

Notation: For any two non-negative numbers K and K ′ with K ≥ K ′, we denote by

C(K,K ′) the number of ways we can choose K ′ agents from a set of K agents.

Proposition 1 A ranking allocation rule with probabilities (π1, . . . , πn) is satisfactorily im-

plementable if and only if

n∑
k=1

(−1)kC(n− 1, k − 1)πk = 0.

Later, in Theorem 4, we give necessary and sufficient conditions for a general allocation

rule f to be satisfactorily implementable. Those necessary and sufficient conditions are

complicated - they involve verifying an infinite system of equations. On the other hand, the

necessary and sufficient condition for satisfactorily implementing a ranking allocation rule is

a single equation given by Proposition 1. This hints that it may be tractable to search over

the space of ranking allocation rules.

Now, we adapt our notion of efficiency measure by restricting the class of mechanisms to

ranking mechanisms.

Definition 3 A ranking allocation rule (π1, . . . , πn) is r-optimal if it satisfactorily imple-

mentable and for any other satisfactorily implementable ranking allocation rule (π′1, . . . , π
′
n),

we have

π1 ≥ π′1.

A ranking mechanism (f,p) is r-optimal if (i) (f,p) is a satisfactory mechanism and (ii)

f is r-optimal.

The notion of r-optimality is an indirect way of requiring a mechanism to maximize the

value of worst-case efficiency in the class of satisfactory ranking mechanisms. To see this, fix

a ranking mechanism M≡ (f,p) with allocation probabilities (π1, . . . , πn). Note that

µM = inf
v

[
π1 +

1

v1

(∑
j 6=1

πjvj
)]

= π1 + inf
v

1

v1

(∑
j 6=1

πjvj
)

= π1,
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where we used the fact that infimum of the above expression occurs when each agent j 6= 1

has zero valuation.

Later, in Theorem 4, we shall establish the fact that if f is satisfactorily implementable,

then there is a unique p such that (f,p) is a satisfactory mechanism. As a result, we

shall only talk about the r-optimality of an allocation rule - the corresponding r-optimal

mechanisms are uniquely defined.

3.1 The Main Result

In this section, we provide our main results, which identify an r-optimal allocation rule. To

do so, we first propose a general class of ranking allocation rules. In this generalization, at a

generic valuation profile, the top ranked agent is given the object with some probability π1

and agents ranked 2 to ` are given the object with equal probability π2, where π1+(`−1)π2 =

1. Formally, a two-step allocation rule is defined as follows.

Definition 4 A two-step ranking allocation rule is a ranking allocation rule with prob-

abilities

(π1, π2, . . . , π2︸ ︷︷ ︸
`−1

, 0, . . . , 0),

where π1 > π2 > 0 and π1 + (`− 1)π2 = 1.

Hence, a two-step allocation rule is uniquely defined by (π1, `) - ` is the number of agents

receiving positive probability. The GL allocation rule is a two-step ranking allocation rule

with π1 = 1− 1/n and ` = 2. In Proposition 5 (see Appendix), we characterize the class of

two-step ranking allocation rules that can be satisfactorily implementable - this class requires

` to be even and π1 is determined uniquely given an even value of `.

We are now ready to state the main result of the paper. It shows that there is a two-step

ranking allocation rule that is r-optimal, which has excellent convergence to efficiency.

Theorem 1 There is a two-step ranking allocation rule that is r-optimal. Its allocation

probabilities (π∗1, . . . , π
∗
n) are defined as follows:

π∗i =


1− `−1

C(n−2,`−1)+` if i = 1
1

C(n−2,`−1)+` if i ∈ {2, . . . , `}
0 otherwise,
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where

` ∈ arg min
2≤i≤(n−1), i even

(i− 1)(
C(n− 2, i− 1) + i

) .
Moreover, if n 6= 8, there is a unique r-optimal allocation rule.

Remark 1. Though Theorem 1, and later 3, require at least three agents, we can easily

identify the r-optimal and r-Pareto optimal mechanism in the two-agent case. Proposition

1 continues to hold even if n = 2. As a result, the only ranking allocation rule that can

be satisfactorily implemented are those where both the agents get the object with equal

probability. Hence, the unique r-optimal and r-Pareto optimal allocation rule is the equal

sharing allocation rule where both the agents get the object with probability 1/2 - transfers

are not needed to make this allocation rule satisfactorily implementable.

Remark 2. All our optimality results rely on the fact that the valuation space V of each

agent is rich - an interval with zero as the lowest valuation. We do not know how to extend

these results to a setting where V is an arbitrary interval. However, we stress here that the

mechanism we derive in Theorem 1 remains valid for any arbitrary interval V . To see this,

consider V := [L,H], where 0 ≤ L < H. Note that our results along with the mechanism

in Theorem 1 hold true if valuation space is [0, H]. Now, consider the restriction of this

mechanism to the valuation space [L,H] - such a restriction is well-defined and satisfactory.

Thus, our mechanism will have the same efficiency properties when V := [L,H]. Of course,

this mechanism need not satisfy the optimality property claimed in Theorem 1 - though,

we have no counter-examples to show this. In fact, we conjecture that our mechanism will

remain optimal even in such type spaces.

3.2 Computations

Besides the optimality of the two-step allocation rule identified in Theorem 1, we want to

stress the speed with which it converges to efficiency. Because of combinatorial terms in the

denominator of the expression for π∗1, its convergence to 1 is exponential. We spell out the

exact nature of this convergence below.

The exact form of the r-optimal allocation rule will depend on the value of n. Note that

the value of ` is determined by minimizing the following expression over all even i ≤ (n− 1):

min
2≤i≤(n−1), i even

(i− 1)(
C(n− 2, i− 1) + i

) .
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Routine calculations show that the minimum of this expression occurs when i = 2 for n < 8.

Hence, for n < 8, the GL allocation rule is the unique r-optimal allocation rule.

If n = 8, the minimum of this expression occurs at i = 2 or i = 4. If n ≥ 9, the maximum

value of C(n − 2, i − 1) over all even i determines the minimum of this expression - it is

possible that two values of i maximizes C(n− 2, i− 1), in which case we choose the smaller

one to minimize i−1
C(n−2,i−1)+i .

Hence, the choice of ` in Theorem 1 is unique for all values of n 6= 8. In the proof of

Theorem 1, we show that as long as we can choose ` uniquely, the r-optimal allocation rule

is unique.

We now consider the case n ≥ 9 and give an explicit formula for ` in this case. Denote

by bxce and bxco respectively the largest even number smaller than x and the largest odd

number smaller than x. We now consider two cases.

Case 1. If n is odd, then n − 2 is odd. So, C(n − 2, i − 1) is maximized at two values of

i− 1: at n−2+1
2

or n−2−1
2

, out of which one of them is odd. So, we can say C(n− 2, i− 1) is

maximum when i− 1 = bn−1
2
co or i = bn+1

2
ce.

Case 2. If n is even, then C(n− 2, i− 1) is maximum when i− 1 = n−2
2

. Since we require

(i − 1) to be odd, we can say that i − 1 = bn−2
2
co or i = bn

2
ce. Since n is even, we can

equivalently write this as i = bn+1
2
ce.

Hence, when n ≥ 9, we conclude that ` in Theorem 1 is bn+1
2
ce. We document this as a

corollary.

Corollary 1 The two-step ranking r-optimal allocation rule identified in Theorem 1 sat-

isfies

` = 2 if n < 8,

` ∈ {2, 4} if n = 8,

` = bn+ 1

2
ce if n ≥ 9.

Hence, for n < 8, the GL allocation rule is the unique r-optimal allocation rule.

Corollary 1 shows that for n = 8, there are many r-optimal allocation rules. For ` = 2

and ` = 4, we have two two-step ranking allocation rules that are r-optimal. Any convex

combination of these two allocation rules will also be r-optimal. Note that ranking rules

generated by such convex combinations need not be two-step ranking allocation rules. In
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conclusion, for n 6= 8, we have a unique r-optimal allocation rule defined by Theorem 1.

But for n = 8, the uniqueness is lost and there exists r-optimal allocation rules that are not

two-step ranking allocation rule.

Corollary 1 allows us to compute the allocation probabilities of the highest valuation agent

using the Pascal triangle in Figure 1. Each row (starting with the second row) represents a

particular value of n, starting with n = 3 in the second row. By Corollary 1, ` = 2 if n < 8,

` ∈ {2, 4} if n = 8, and ` = bn+1
2
ce if n > 9. In each row of the Pascal triangle, the entries

are C(n− 2, 0), C(n− 2, 1), . . . , C(n− 2, n− 2). Now, the value C(n− 2, `− 1) is highlighted

in the orange (lighter shaded) cell of each row. 7 The probability of the highest valuation

agent is then easily computed from this and the value of ` as: C(n−2,`−1)+1
C(n−2,`−1)+` , which is shown

to the right of the Pascal triangle.

Note that for n ≥ 14, the object is allocated to the highest valuation agent with at least

99% probability. The Green-Laffont allocation rule will require at least 100 agents to achieve

such probability for the highest valuation agent.

3.3 Participation Constraints

We now show that a strong form of participation constraint is satisfied by a class of ranking

mechanisms, including the r-optimal mechanism in Theorem 1.

Definition 5 A mechanism (f,p) is ex-post individually rational if for every i ∈ N
and for every v, we have

vifi(v)− pi(v) ≥ 0.

The ex-post notion of participation constraint is appropriate in our prior-free model.

Notice that, unlike the model in Cramton et al. (1987), our model does not have any property

rights defined for the agents. Hence, we assume that the outside option of each agent is

zero. In that sense, even though our participation constraints are ex-post, they only ensure

non-negative payoff from participation. On the other hand, the participation constraints in

Cramton et al. (1987) is interim but because of the property rights structure, they ensure

larger interim payoffs to agents.

We prove below that a class of mechanisms using two-step ranking allocation rules sat-

isfy ex-post individual rationality. The two extremes of this class are the Green-Laffont

mechanism and our r-optimal mechanism in Theorem 1.

7The values in the brown (darker shaded) cells correspond to the entries of the Green-Laffont allocation

rule.
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Figure 1: The r-optimal allocation rule

Theorem 2 Suppose f is a two-step ranking allocation rule defined by (π1, `), where 2` ≤
n+ 1. If (f,p) is a satisfactory mechanism, then it is ex-post individually rational.

The r-optimal allocation rule in Theorem 1 satisfies the sufficient condition identified in

Theorem 2.

Corollary 2 Suppose f is the r-optimal allocation rule identified in Theorem 1. If (f,p)

is a satisfactory mechanism, then it is ex-post individually rational.

Proof : By Corollary 1, the r-optimal allocation rule in Theorem 1 satisfies 2` ≤ n+ 1. By

Theorem 2, the claim follows. �

We compute the payments in the mechanisms discussed in Theorem 2. While the general

payment formula for a satisfactory mechanism is quite complicated (see Theorem 4), the

payment formula for the mechanisms in Theorem 2 is easier to express.
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Proposition 2 Suppose (f,p) is a satisfactory mechanism, where f is a two-step ranking

allocation rule defined by (π1, `) with π1 + (` − 1)π2 = 1. For any valuation profile v with

v1 > v2 > . . . > vn > 0, we have

• if i = 1, then

pi(v) = − π2
(`− 1)!

[ `−1∑
k=1

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
.

• if i ∈ {2, . . . , `}, then

pi(v) = − π2
(`− 1)!

[ i−1∑
k=2

(−1)k(k−1)!ψ(n−`, n−k−1)vk+
`−1∑
k=i

(−1)k(k−1)!ψ(n−`, n−k−1)vk+1

]
.

• if i > `, then

pi(v) = − π2
(`− 1)!

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk + (−1)`(`− 1)!v`

]
.

In any two step ranking allocation rule (π1, `), at a valuation profile v with v1 > v2 >

. . . > vn > 0, an agent i with i > ` gets the object with zero probability - call such agents

losing agents. According to the payment formula computed in Proposition 2, losing agents

receive some payments. Theorem 2 shows that losing agents receive non-negative payment

if 2` ≤ n + 1. Hence, participation constraints are satisfied for losing agents in such class

of mechanisms. For two step ranking allocation rules, where 2` > n + 1, it is possible that

losing agents may be asked to pay, violating their participation constraint.

3.4 Pareto Optimal Ranking Mechanisms

We now discuss an alternate prior-free notion of comparing mechanisms, where we compare

mechanisms at every valuation profile in term of total social welfare. Informally, a satisfac-

tory mechanism M dominates another satisfactory mechanism M′ if M generates as much

total welfare as M′ in every profile of valuations and strictly higher in some profile of val-

uations. A satisfactory mechanism is Pareto optimal if it is not dominated by any other

satisfactory mechanism.

It is a relatively weak notion to compare mechanisms - for instance, it may be that a

Pareto optimal mechanism is dominated by another satisfactory mechanism at a positive

measure of valuation profiles. Two satisfactory mechanisms may not even be comparable

using this notion.

We adapt the notion of Pareto optimality to the class of ranking mechanisms.
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Definition 6 A ranking allocation rule f is r-Pareto optimal if (i) f is satisfactorily

implementable and (ii) there does not exist another ranking allocation rule f ′ such that f ′ is

satisfactorily implementable and at every valuation profile v, we have∑
i∈N

vif
′
i(v) ≥

∑
i∈N

vifi(v),

with strict inequality holding at some v.

A ranking mechanism (f,p) is r-Pareto optimal if (i) (f,p) is a satisfactory mechanism

and (ii) f is r-Pareto optimal.

We first show that the GL allocation rule is an r-Pareto optimal allocation rule.

Theorem 3 The GL allocation rule is an r-Pareto optimal allocation rule. Moreover, it is

the unique r-Pareto optimal allocation rule satisfying π3 = . . . = πn = 0.

Theorem 3 gives a foundation for the GL mechanism. Among all ranking mechanisms

that only allocate the object to top-two agents, the GL mechanism is the unique r-Pareto

optimal mechanism. As we show in the next result, if n ≤ 8, the GL mechanism is the

unique r-Pareto optimal mechanism, but there are other r-Pareto optimal mechanisms if the

number of agents is greater than 8. In particular, our r-optimal mechanism is always r-Pareto

optimal.

Proposition 3 For n ≤ 8, the GL allocation rule is the unique r-Pareto optimal allocation

rule. For n > 8, the unique r-optimal allocation rule identified in Theorem 1 is also r-Pareto

optimal. Further, for any arbitrary r-Pareto optimal allocation rule (π1, . . . , πn), we have

1− 1/n ≤ π1 ≤ π∗1,

where π∗1 is as defined in Theorem 1.

4 Satisfactory Implementability

In this section, we provide a characterization that drives all our main results. In particular,

we provide a complete characterization of allocation rules which can be satisfactorily imple-

mented. Besides the technical aspect, there are other reasons why such a characterization

is useful: (1) it provides a recipe for carrying out such analysis of satisfactory mechanisms
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in other models and (2) it showcases the rich but complex class of non-ranking mechanisms

that are satisfactory, thus, highlighting the salience of ranking mechanisms.

Before stating the characterization, we remind the reader about the following character-

ization of DSIC mechanisms by Myerson. 8

Lemma 1 (Myerson (1981)) A mechanism (f,p) is DSIC if and only if

• Montonicity of f . for every i ∈ N , for every v−i ∈ V n−1, and for every vi, v
′
i ∈ V

with vi > v′i, we have

fi(vi, v−i) ≥ fi(v
′
i, v−i).

• Revenue Equivalence. for every i ∈ N , for every v−i ∈ V n−1, and for every vi ∈ V ,

we have

pi(vi, v−i) = pi(0, v−i) + vifi(vi, v−i)−
∫ vi

0

fi(xi, v−i)dxi.

For any mechanism M ≡ (f,p), we define UMi (v) as the net utility of agent i at valuation

profile v:

UMi (v) = vifi(v)− pi(v).

A consequence of the Myersonian characterization of DSIC is the following characterization

of DSIC and budget-balanced mechanisms.

Proposition 4 A mechanism M ≡ (f,p) is DSIC and budget-balanced if and only if

1. for every i ∈ N , for every v−i ∈ V n−1, and for every vi, v
′
i ∈ V with vi > v′i we have

fi(vi, v−i) ≥ fi(v
′
i, v−i).

2. for every i ∈ N , for every v−i ∈ V n−1, for every vi ∈ V , we have

UMi (vi, v−i) = UMi (0, v−i) +

∫ vi

0

fi(xi, v−i)dxi.

3. for every v ≡ (v1, . . . , vn) ∈ V n,∑
i∈N

UMi (0, v−i) =
∑
i∈N

[
vifi(v)−

∫ vi

0

fi(xi, v−i)dxi
]
.

8The characterization in Myerson is for Bayesian incentive compatible mechanisms. However, it is straight-

forward to extend it to DSIC mechanisms.

18



Proof : From Lemma 1, (1) and (2) are equivalent to DSIC. For (3), note that budget-

balance of a mechanism M ≡ (f,p) requires that for all v ≡ (v1, . . . , vn) ∈ V n, we must

have ∑
i∈N

UMi (v) =
∑
i∈N

vifi(v).

Using (2), we conclude that a DSIC mechanism is budget-balanced if and only if for all

v ≡ (v1, . . . , vn) ∈ V n,∑
i∈N

UMi (0, v−i) +
∑
i∈N

∫ vi

0

fi(xi, v−i)dxi =
∑
i∈N

vifi(v).

Equivalently, a DSIC mechanism M ≡ (f,p) is budget-balanced if and only if for all v ≡
(v1, . . . , vn) ∈ V n, ∑

i∈N

UMi (0, v−i) =
∑
i∈N

[
vifi(v)−

∫ vi

0

fi(xi, v−i)dxi
]
.

�

Our main characterization, like Myerson’s characterization, provides a way to separate

out the allocation rule and the payment rule in a satisfactory mechanism. While Myerson

does not impose budget-balance, our result shows that this separation continues to hold even

if we impose budget-balance.

Fix an allocation rule f . If f is monotone (in the sense of Lemma 1), then we can

immediately define a payment scheme p that makes (f,p) DSIC as follows: for every i ∈ N
and for every v, set

pi(v) = vifi(v)−
∫ vi

0

fi(xi, v−i)dxi.

Note that pi(0, v−i) = 0 for all i and for all v−i in this mechanism. We call a mechanism

defined from such a payment scheme as the elementary mechanism corresponding to a

monotone f . It can be easily verified that if f is the efficient allocation rule, then the

corresponding elementary mechanism is the Vickrey auction.

For every valuation profile v, define for every i ∈ N , the payment of agent i in the

elementary mechanism corresponding to a monotone f as:

Rf
i (v) := vifi(v)−

∫ vi

0

fi(xi, v−i)dxi.

Then,

Rf (v) :=
∑
i∈N

Rf
i (v),
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denotes the total revenue collected at valuation profile v in the elementary mechanism cor-

responding to f .

We will provide necessary and sufficient conditions on f for it to be satisfactorily im-

plementable. These conditions are given in terms of revenue collected from the elementary

mechanism corresponding to f at various valuation profiles.

At any valuation profile v, define N0
v := {i ∈ N : vi = 0}. Given any valuation profile v,

for any T ⊆ N , we denote by (0T , v−T ) the valuation profile where all the agents in T have

zero valuation and each agent i /∈ T has valuation vi.

Definition 7 An allocation rule f is residually balanced if for every v such that N0
v = ∅,

we have ∑
T⊆N

(−1)|T | Rf (0T , v−T ) = 0. (1)

Residual balancedness is a technical combinatorial condition on an allocation rule. We

show that for a symmetric and monotone allocation rule residual balancedness is necessary

and sufficient for satisfactory implementability.

Theorem 4 A symmetric allocation rule f is satisfactorily implementable if and only if it

is (a) monotone and (b) residually balanced.

Further, if f is satisfactorily implementable, then there is a unique p such that (f,p) is a

satisfactory mechanism. Such a unique p is defined as follows: for all v ∈ V n, for all i ∈ N ,

pi(v) = − 1

|N0
v|

∑
T⊆N :N0

v⊆T

(−1)|T\N
0
v|

C(|T |, |N0
v|)
Rf (0T , v−T ) if i ∈ N0

v

pi(v) = Rf
i (v)− 1

|N0
v|+ 1

∑
T⊆N :(N0

v∪{i})⊆T

(−1)|T\N
0
v|−1

C(|T |, (|N0
v|+ 1))

Rf (0T , v−T ) if i /∈ N0
v

The condition in Theorem 4 looks very similar to the cubical array lemma in Walker

(1980). While the cubical array lemma applies to only efficient allocation rule, our char-

acterization is for any allocation rule. Theorem 2 in Yenmez (2015) characterizes ex-post

incentive compatible and budget-balanced mechanisms. 9 His characterization is a charac-

terization of DSIC and budget-balanced mechanisms, and hence, still uses transfers. On the

other hand, the advantage of our characterization is that it gives necessary and sufficient

9His solution concept is ex-post incentive compatibility because he looks at a setting that can potentially

allow for interdependent valuations.
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condition on the allocation rule to be satisfactorily implementable. Thus, we are able to

separate out allocation rule and payments for analyzing budget-balanced mechanisms.

The proof of Theorem 4 is in the Appendix. It is notationally quite complex. Here, we

illustrate the idea of the necessity part with an example of three agents: N = {1, 2, 3}. Let

f be a symmetric, monotone, and satisfactorily implementable allocation rule. Then, there

is a p such that (f,p) is a satisfactory mechanism. Consider a valuation profile v ≡ (0, 0, 0).

By BB and symmetry, we get p1(v) = p2(v) = p3(v) = 0. Now, consider a valuation profile

v ≡ (v1, 0, 0). By Lemma 1,

p1(v) = p1(0, 0, 0) +Rf
1(v) = Rf

1(v).

Note that Rf (v) = Rf
1(v). By symmetry p2(v) = p3(v). Hence, by BB and symmetry,

0 = p1(v) + 2p2(v) = 2p2(v) +Rf (v).

This implies that

p2(v1, 0, 0) = −1

2
Rf (v1, 0, 0).

Now, consider a valuation profile v ≡ (v1, v2, 0). Using BB and Lemma 1, and following the

above arguments, we get

p1(v) = p1(0, v2, 0) +Rf
1(v) = −1

2
Rf (0, v2, 0) +Rf

1(v)

p2(v) = p2(v1, 0, 0) +Rf
2(v) = −1

2
Rf (v1, 0, 0) +Rf

2(v)

Adding these two with p3(v) and using BB, we get

p3(v1, v2, 0) =
1

2

(
Rf (v1, 0, 0) +Rf (0, v2, 0)

)
−Rf (v1, v2, 0).

Finally, consider the valuation profile (v1, v2, v3) with v1, v2, v3 > 0. Again, using Lemma 1,

we get

p1(v) = p1(0, v2, v3) +Rf
1(v) =

1

2

(
Rf (0, v2, 0) +Rf (0, 0, v3)

)
−Rf (0, v2, v3) +Rf

1(v)

p2(v) = p2(v1, 0, v3) +Rf
2(v) =

1

2

(
Rf (v1, 0, 0) +Rf (0, 0, v3)

)
−Rf (v1, 0, v3) +Rf

2(v)

p3(v) = p3(v1, v2, 0) +Rf
2(v) =

1

2

(
Rf (0, v2, 0) +Rf (v1, 0, 0)

)
−Rf (v1, v2, 0) +Rf

3(v)
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Adding and using BB, we get

Rf (v1, v2, v3)−Rf (v1, v2, 0)−Rf (0, v2, v3)−Rf (v1, 0, v3)+R
f (v1, 0, 0)+Rf (0, v2, 0)+Rf (0, 0, v3) = 0,

which is the residual balancedness condition. The sufficiency can be shown using the explicit

form of payment functions hidden in these calculations. In summary, residual balancedness

allows a recursive calculation of payments at all valuation profiles so that budget-balance

holds.

5 Relation to the Literature

The impossibility of achieving efficiency, dominant strategy incentive compatibility, and

budget-balance was first shown by Green and Laffont (1979), which also contains a lot

of discussions on achieving second-best using non-efficient but DSIC and budget-balanced

mechanisms. This includes the Green-Laffont mechanism that we discuss. Though, they fo-

cussed attention on public good problems and gave sketches of the Green-Laffont mechanism

we discuss, they clearly anticipated the mechanism as well as many environments beyond the

public good problem where the impossibility result would hold. Gary-Bobo and Jaaidane

(2000) contains an extensive discussion on this - they also formally define the Green-Laffont

mechanism and study its statistical and strategic properties in the public good problem.

This impossibility result started a long literature on how to overcome it. We classify

them in several categories and discuss some relevant ones. Most of the literature we discuss

concern with private good allocation among several buyers. There are parallel literature on

bilateral trading and public good provision that we do not discuss.

Domain identification. Classic revenue equivalence results imply that every efficient

and DSIC mechanism must be a Groves mechanism (Green and Laffont, 1977; Holmström,

1979). The Green-Laffont impossibility result essentially implies that no Groves mechanism

can balance budget in many settings - though their focus is mainly of public good problems.

In the public good context, Laffont and Maskin (1980) consider differentiable mechanisms

and show that existence of a DSIC, BB, and efficient mechanism is equivalent to solving a

system of differential equations. In the same model, Walker (1980) identifies domains (of

utility functions of agents) where impossibilities exist - he restricts attention to continuous

mechanisms. As corollary of their results, they identify form of utility functions of agents

where possibility or impossibility result exists. Hurwicz and Walker (1990) extend the Green-

Laffont impossibility to pure exchange economies. These papers are mainly focused on

identifying domains where the negative result of Green and Laffont persists.
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But there are settings where DSIC, BB, and efficient mechanisms exist. Suijs (1996) is

a good example of a domain where Groves mechanisms that balance the budget exists - he

discusses a sequencing problem. In the context of multi-object assignment, a recent contribu-

tion is Mitra and Sen (2010). This paper identifies domains of multi-object auctions where

the Green-Laffont impossibility can be overcome.

Bayesian incentive compatibility. One way to get around the Green-Laffont impossi-

bility is to consider the weaker solution concept of Bayesian incentive compatibility. Arrow

(1979); d’Aspremont and Gérard-Varet (1979) construct Bayesian incentive compatible, ef-

ficient, and budget-balanced mechanism, now known as the dAGV mechanism, that work in

a variety of settings. The dAGV mechanisms fail to be interim individually rational in many

settings. In an unpublished paper, Fudenberg et al. (1995) extend this result in the following

sense - for every Bayes-Nash implementable allocation rule, there exists a Bayesian incentive

compatible and budget-balanced mechanism using this allocation rule. Like in the dAGV

mechanism, such budget-balanced mechanisms need not satisfy interim individual rational-

ity. Rahman (2011) gives a characterization of Bayesian (and ex-post) incentive compatible

and budget-balanced mechanisms in a very general framework.

In a seminal paper, Cramton et al. (1987) show that efficient, Bayesian incentive com-

patible, budget-balanced mechanisms satisfying interim individual rationality is possible in

a single object allocation problem. 10 The possibility result in our problem using Bayesian

incentive compatibility is in sharp contrast to the impossibility results known in bilateral

trading problems like in Myerson and Satterthwaite (1983).

Unlike Cramton et al. (1987), we focus on DSIC mechanisms, and our mechanism is not

efficient. Naturally, the mechanism in Cramton et al. (1987) require a lot of prior informa-

tion. Our mechanism is prior-free and satisfies ex-post individually rationality. Thus, we

illustrate a prior-free way of approximately achieving the possibility result in Cramton et al.

(1987).

Redistribution mechanisms. The prior-free approach of mechanism design using DSIC

mechanisms have been popular in algorithmic game theory literature in computer science.

Restricting attention to efficient mechanisms, which means restricting attention to Groves

mechanisms, several papers relax budget-balance and show how best to redistribute the sur-

plus revenue. The measure of efficiency of redistribution is worst-case in these papers. One

10They consider a problem where agents have property rights over the object, and stronger form of interim

individual rationality is satisfied by their mechanism. However, their results can still be applied to our

problem if we assume equal property rights to all the agents.
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of the earliest papers to do this is Cavallo (2006), who studied this problem in our setting

(single object allocation). He showed that remarkable Groves mechanisms exist that can

redistribute large fraction of Vickrey auction payments using Groves mechanisms. Moulin

(2009) and Guo and Conitzer (2009) derive optimal redistribution mechanisms in the multi-

unit allocation setting where agents demand exactly one unit - their mechanisms are identical

and discovered independently. 11 As the number of agents increase, like our mechanism, their

Groves mechanisms can redistribute large fraction of Vickrey auction revenue among agents.

The main difference from these papers and ours is budget-balance. Since these papers do

not impose budget-balance, the actual budget imbalance in these mechanisms can be high in

various valuation profiles. On the other hand, like in Cramton et al. (1987), budget-balance

is a constraint in our problem. Hence, unlike these papers, we work with mechanisms outside

the Groves class. Our results show that we can achieve excellent levels of efficiency (99%

with at least 14 agents) using DSIC and budget-balanced mechanisms.

Beyond Groves mechanisms. While most of the literature seems to have either weak-

ened DSIC to Bayesian incentive compatibility or relaxed the budget-balanced criteria while

working with efficient and DSIC mechanisms (Groves mechanisms), there is very little lit-

erature on exploring the limits of DSIC and budget-balanced mechanisms. We do this for

the case of single object allocation problem. One of the problems with exploring non-Groves

mechanisms is that we search over the space of allocation rules and payment rules - Groves

mechanisms pin down the allocation rule to be the efficient allocation rule. A non-efficient al-

location rule can achieve better social welfare redistribution is well known - see for instance

examples in Laffont and Maskin (1980) and a more computational analysis in de Clippel

et al. (2009). Sprumont (2013) consider Pareto-undominated mechanisms by considering

DSIC and non-efficient mechanisms, though his mechanisms are not budget-balanced. Falt-

ings (2005) and Guo et al. (2011) consider variants of Green-Laffont mechanisms discussed

in Green and Laffont (1979) and show some worst-case results, but they do not consider

the general class of DSIC and budget-balanced mechanisms that we analyze. Hashimoto

(2015) discusses a non-ranking satisfactory mechanism and provides several axiomatization

his mechanism.

Another possibility is to consider priors and design the expected welfare maximizing

DSIC and budget-balanced mechanism for allocating an object. This is similar to the ex-

pected revenue maximizing question in Myerson (1981), but significantly more complicated.

11Several papers related to this theme have also appeared - see for instance, Apt et al. (2008) and Moulin

(2010).
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Restricting attention to the case of two agents and deterministic mechanisms, Drexl and

Kleiner (2015) derive the optimal expected welfare maximizing DSIC and budget-balanced

mechanism. Shao and Zhou (2013) do the same analysis for two agents but without requiring

budget-balance. These papers illustrate difficulty in extending such analysis to more than

two agents. In that sense, we provide a prior-free method of measuring welfare of mechanisms

which turns out to be tractable for any number of agents.

6 Conclusion

This paper provides a novel DSIC, budget-balanced, symmetric, and ex-post individually

rational mechanism to allocate a single unit of a resource. The mechanism converges to

efficiency with moderately high number of agents. Further, the mechanism can be viewed

as a generalization of the Green-Laffont mechanism. From a methodological standpoint, we

provide several key insights on how to analyze DSIC and budget-balanced mechanisms, and

propose a tractable class of mechanisms that we call ranking mechanisms.

While we carry out this analysis for allocating a single unit of resource, we feel that the

ideas in this paper can be pushed in other models of mechanism design where budget-balance

is a constraint. Further, an indirect implementation of our mechanism will significantly

improve the practicality of our proposed mechanism.

From a broader perspective, our results quantify the impossibility on designing DSIC,

budget-balanced, and efficient mechanisms in the single object allocation problem. It shows

that even though impossibility exists, it is really thin. Thus, the possibility results with

Bayesian incentive compatibility (Cramton et al., 1987) or approximate possibility results

with relaxed budget-balanced constraints (Guo and Conitzer, 2009; Moulin, 2009) can also

be approximately achieved with DSIC and budget-balanced mechanisms.
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Appendix: Omitted Proofs

This section contains all the missing proofs. We first prove our workhorse result - Theorem

4. Once this result is proved, we use it to prove Proposition 1. Then, we proceed to prove

our two main results - Theorem 3 and Theorem 1. Then, we prove our individual rationality

result - Theorem 2.

Notations. We will need some extra notations. At every valuation profile v and for every

k ∈ N , we denote by v(k) the valuation of every agent in v[k]. Note that for some k ∈ N ,

it is possible that v[k] = ∅, in which case v(k) is defined to be 0. For any j ∈ N , let the

cardinality of the set ∪jh=1v[h] be Lj.

We illustrate these notations with an example. Suppose N = {1, . . . , 8}. Consider

a valuation profile v such that v[1] = {1, 2}, v[2] = {3, 4, 5, 6}, and v[3] = {7, 8}. Then,

L1 = 2, L2 = 6, L3 = 8. According to a ranking allocation rule with probabilities (π1, . . . , π8),

agents 1 and 2 share π1 + π2 equally, agents 3, 4, 5, 6 share π3 + π4 + π5 + π6 equally and

agents 7 and 8 share π7 + π8 equally. In other words, for every j ∈ N , agents in v[j] share

equally the probabilities

πLj−1+1 + . . .+ πLj
,

where L0 ≡ 0.

We begin by a lemma, which will be useful to all our proofs.

Lemma 2 Suppose f is a ranking allocation rule. Then, Rf is continuous.

Proof : For any v, we know that

Rf (v) =
∑
i∈N

vifi(v)−
∑
i∈N

∫ vi

0

fi(xi, v−i)dxi.

We now do the proof in two steps. Assume that the allocation probabilities of the ranking

allocation rule are π1 ≥ π2 ≥ . . . ≥ πn.

Step 1. In this step, we show that for every i ∈ N , the expression
∫ vi
0
fi(xi, v−i)dxi is

continuous in v. Fix a valuation profile v. Consider agent i and suppose i ∈ v[j]. Hence,

vi ≡ v(j) for some j. Then, using the definition of the ranking allocation rule, we note that∫ vi

0

fi(xi, v−i)dxi =

∫ v(j)

0

fi(xi, v−i)dxi

= πLj
(v(j) − v(j+1)) + πLj+1

(v(j+1) − v(j+2)) + . . .

=
∑
h≥j

πLh
(v(h) − v(h+1)).
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To establish continuity, we look at a valuation profile v′ which is arbitrarily close to v, and

v′ and v differ in valuation of only agent k - it is enough to look at valuation profiles that

differ in one component. Suppose k ∈ v[`]. If ` < j, then there is nothing to prove since the

above summation is unchanged from v to v′. Hence, assume ` ≥ j. Since v′ is arbitrarily

close to v, it must be that k ∈ v′[`] (this happens if v′k > vk) or k ∈ v′[` + 1] (this happens

if v′k < vk). Indeed, since v′ is arbitrarily close to v, it must be that {k} = v′[` + 1] or

{k} = v′[`]. We consider both the cases separately. We denote the cardinality of the set

∪rh=1v
′[h] by L′r for all r. Note that if {k} = v[`] (i.e., if k is the only element in v[`]), then

Lr = L′r for all r. As a result,∫ v′i

0

fi(xi, v
′
−i)dxi =

∑
h≥j

πL′h(v′(h) − v′(h+1))

→
∑
h≥j

πLh
(v(h) − v(h+1))

=

∫ vi

0

fi(xi, v−i)dxi

So, the claim is true. Hence, we assume |v[`]| > 1. Now, consider the following two cases.

Case 1-a. Suppose {k} = v′[`]. Since |v[`]| > 1, v′(`) = v′k → vk = v(`) = v′(`+1). Then,

L′r = Lr for all r < ` and L′r = Lr−1 for all r > `. Further, v′(r) = v(r) for all r < ` and

v′(r) = v(r−1) for all r > `. As a result,∫ v′i

0

fi(xi, v
′
−i)dxi =

∑
h≥j

πL′h(v′(h) − v′(h+1))

=
`−1∑
h=j

πL′h(v′(h) − v′(h+1)) + πL′`(v
′
(`) − v′(`+1)) +

∑
h≥`+1

πL′h(v′(h) − v′(h+1))

→
`−1∑
h=j

πLh
(v(h) − v(h+1)) +

∑
h≥`+1

πLh−1
(v(h−1) − v(h))

=
`−1∑
h=j

πLh
(v(h) − v(h+1)) +

∑
h≥`

πLh
(v(h) − v(h+1))

=

∫ vi

0

fi(xi, v−i)dxi.

This shows that
∫ vi
0
fi(xi, v

′
−i)dxi →

∫ vi
0
fi(xi, v−i)dxi as v′k → vk.
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Case 1-b. Suppose {k} = v′[` + 1]. Since |v[`]| > 1, we have v′(`) = v(`). This implies that

v′(`+1) = v′k → vk = v(`) = v′(`).

Here, we need to worry about the case k = i. If k = i, then i ∈ v′[` + 1]. Further, for

every r ≥ `+ 1, we have L′r = Lr−1 and for every r > `+ 1, we have v′(r) = v(r−1).∫ v′i

0

fi(xi, v
′
−i)dxi =

∑
h≥`+1

πL′h(v′(h) − v′(h+1))

= πL′`+1
(v′(`+1) − v′(`+2)) +

∑
h>`+1

πL′h(v′(h) − v′(h+1))

→ πL`
(v(`) − v(`+1)) +

∑
h>`+1

πLh−1
(v(h−1) − v(h))

=
∑
h≥`+1

πLh−1
(v(h−1) − v(h))

=
∑
h≥`

πLh
(v(h) − v(h+1))

=

∫ vi

0

fi(xi, v−i)dxi.

This shows that
∫ vi
0
fi(xi, v

′
−i)dxi →

∫ vi
0
fi(xi, v−i)dxi as v′i → vi.

A similar proof works if k 6= i. Then, L′r = Lr for all j < ` and L′r = Lr−1 for all r > `.

Further, v′(r) = v(r) for all r < ` and v′(r) = v(r−1) for all r > `. As a result,∫ v′i

0

fi(xi, v
′
−i)dxi =

∑
h≥j

πL′h(v′(h) − v′(h+1))

=
`−1∑
h=j

πL′h(v′(h) − v′(h+1)) + πL′`(v
′
(`) − v′(`+1)) +

∑
h≥`+1

πL′h(v′(h) − v′(h+1))

→
`−1∑
h=j

πLh
(v(h) − v(h+1)) +

∑
h≥`+1

πLh−1
(v(h−1) − v(h))

=
`−1∑
h=j

πLh
(v(h) − v(h+1)) +

∑
h≥`

πLh
(v(h) − v(h+1))

=

∫ vi

0

fi(xi, v−i)dxi.

This again shows that
∫ vi
0
fi(xi, v

′
−i)dxi →

∫ vi
0
fi(xi, v−i)dxi as v′k → vk.

Step 2. Now, we argue that the summation
∑

i∈N vifi(v) is continuous. Fix a valuation

profile v. Consider all the j-th ranked valuation agents, v[j], for some j. Note that the total
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sum of welfare of agents in v[j] is

v(j)
(
πLj−1+1 + . . .+ πLj

)
,

where L0 ≡ 0. Hence, the total welfare of all agents is

n∑
j=1

v(j)
(
πLj−1+1 + . . .+ πLj

)
.

For any other valuation profile arbitrarily close to v, agents in v[j] will (a) have valuations

arbitrarily close to v(j) and (b) their ranks (in the valuation profile) will be from Lj−1 + 1 to

Lj. As a result, their total welfare is arbitrarily close to

v(j)
(
πLj−1+1 + . . .+ πLj

)
.

Applying this argument to every j, we get that for any valuation arbitrarily close to v, the

total welfare of agents is arbitrarily close to

n∑
j=1

v(j)
(
πLj−1+1 + . . .+ πLj

)
=
∑
i∈N

vifi(v).

Steps 1 and 2 show that Rf is continuous in v. �

Proof of Theorem 4

Proof : Suppose f is a symmetric allocation rule which is satisfactorily implementable. This

implies that there exists a symmetric p such that the mechanism M ≡ (f,p) is satisfactory.

By Proposition 4, f is monotone. The remainder of the claims we do in steps.

Step 1. In this step, we show that for every v ∈ V n such that N0
v 6= ∅, we have for every

i ∈ N0
v,

UMi (v) =
1

|N0
v|

∑
T⊆N :N0

v⊆T

(−1)|T\N
0
v|

C(|T |, |N0
v|)
Rf (0T , v−T ).

We show this using induction. If |N0
v| = n, then budget-balance implies that

∑
i∈N UMi (v) =

0. Symmetry implies that UMj (v) = UMk (v) for all j, k ∈ N at this valuation profile. Hence,

UMi (v) = 0 for all i ∈ N . Since v ≡ 0N , we have Rf (v) = 0. Hence, the claim is true for

N0 = N .
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Suppose the claim is true for all valuation profiles v̄ such that |N0
v̄| > |N0

v|. Let K ≡ N0
v.

Since M is DSIC and budget-balanced, by Proposition 4, we get

Rf (v) =
∑
i∈N

UMi (0, v−i) =
∑
i∈K

UMi (0, v−i) +
∑
i/∈K

UMi (0, v−i)

=
∑
i∈K

UMi (0K , v−K) +
∑
i/∈K

UMi (0K∪{i}, v−(K∪{i}))

= |K|UMj (0K , v−K) +
∑
i/∈K

UMi (0K∪{i}, v−(K∪{i})) (where j is some agent in K)

= |K|UMj (0K , v−K) +
1

|K|+ 1

∑
i/∈K

∑
T⊆N :(K∪{i})⊆T

(−1)|T\K|−1

C(|T |, (|K|+ 1))
Rf (0T , v−T ),

where the third equality followed from symmetry and the final equality followed from the

induction hypothesis. The summation in the last line of the above sequence of expressions

can be simplified as follows:∑
i/∈K

∑
T⊆N :(K∪{i})⊆T

(−1)|T\K|−1

C(|T |, (|K|+ 1))
Rf (0T , v−T )

=
∑

T⊆N :K(T

(−1)|T\K|−1

C(|T |, (|K|+ 1))
(|T \K|) Rf (0T , v−T )

=
∑

T⊆N :K(T

(−1)|T\K|−1

C(|T |, |K|)
(|K|+ 1) Rf (0T , v−T ).

To understand why the first equality works, note that for every T ⊆ N such that K ⊆ T ,

the summation will come for all i ∈ T \K. Hence, it will appear (|T \K|) times.

Using the above equations in the earlier expression, we get that for all j ∈ K,

UMj (0K , v−K) =
1

|K|
Rf (v) +

1

|K|
∑

T⊆N :K(T

(−1)|T\K|

C(|T |, |K|)
Rf (0T , v−T )

=
1

|K|
Rf (0K , v−K) +

1

|K|
∑

T⊆N :K(T

(−1)|T\K|

C(|T |, |K|)
Rf (0T , v−T )

=
1

|K|
∑

T⊆N :K⊆T

(−1)|T\K|

C(|T |, |K|)
Rf (0T , v−T )

This proves the claim.

Step 2. Now consider any valuation profile v. By Proposition 4, we see that for every agent

i ∈ N ,

pi(v) = Rf
i (v)− UMi (0, v−i).
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Using Step 1 in this equation gives us the desired expression for pi(v).

Step 3. Finally, we show that f is residually balanced. Consider any type profile v such

that N0
v = ∅. Then, using Step 2, for every i ∈ N ,

pi(v) = Rf
i (v)−

∑
T⊆N :i∈T

(−1)|T |−1

|T |
Rf (0T , v−T ).

Hence, we get

0 =
∑
i∈N

pi(v) = Rf (v) +
∑
i∈N

∑
T⊆N :i∈T

(−1)|T |

|T |
Rf (0T , v−T )

= Rf (v) +
∑

T⊆N :T 6=∅

(−1)|T |Rf (0T , v−T )

=
∑
T⊆N

(−1)|T |Rf (0T , v−T ).

This shows that f is residually balanced. This concludes one direction of our proof.

For the other direction, suppose f is a symmetric allocation rule that is monotone and

residually balanced. Consider p defined in the statement of this theorem. Clearly, p is

symmetric since f is symmetric. Hence, M ≡ (f,p) is a symmetric mechanism. Further, for

every agent i ∈ N and every valuation profile v, we get

UMi (vi, v−i) = vifi(vi, v−i)−Rf
i (vi, v−i) + UMi (0, v−i),

where we have used the expression for pi(v) to substitute it with Rf
i (v)− UMi (0, v−i) in the

above expression. This gives us

UMi (vi, v−i) = UMi (0, v−i) +

∫ vi

0

fi(xi, v−i)dxi.

This along with the monotonicity of f implies M is DSIC (Proposition 4).

Finally, we show that M is budget-balanced. To do so, consider a valuation profile v.

We consider two cases.

31



Case 1. N0
v 6= ∅. Let K ≡ N0

v. Now,∑
i∈N

pi(v) =
∑
i∈K

pi(v) +
∑
i/∈K

pi(v)

=
∑
i∈K

[
Rf
i (v)− 1

|K|
∑

T⊆N :K⊆T

(−1)|T\K|

C(|T |, |K|)
Rf (0T , v−T )

]

+
∑
i/∈K

[
Rf
i (v)− 1

|K|+ 1

∑
T⊆N :(K∪{i})⊆T

(−1)|T\K|−1

C(|T |, (|K|+ 1))
Rf (0T , v−T )

]

= Rf (v)−
∑

T⊆N :K⊆T

(−1)|T\K|

C(|T |, |K|)
Rf (0T , v−T )

−
∑
i/∈K

[
1

|K|+ 1

∑
T⊆N :(K∪{i})⊆T

(−1)|T\K|−1

C(|T |, (|K|+ 1))
Rf (0T , v−T )

]

= Rf (v)−
∑

T⊆N :K⊆T

(−1)|T\K|

C(|T |, |K|)
Rf (0T , v−T )

+

[ ∑
T⊆N :K(T

(−1)|T\K|

C(|T |, |K|)
Rf (0T , v−T )

]
= Rf (v)−Rf (0K , v−K)

= 0.

Note that budget-balance followed without any extra conditions in this case.

Case 2. N0
v = ∅. In that case,

∑
i∈N

pi(v) = Rf (v) +
∑
i∈N

∑
T⊆N :i∈T

(−1)|T |

|T |
Rf (0T , v−T )

= Rf (v) +
∑

T⊆N :T 6=∅

(−1)|T | Rf (0T , v−T )

=
∑
T⊆N

(−1)|T | Rf (0T , v−T )

= 0,

where the last equality follows from the fact that f is residually balanced.

This completes the proof. �
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Proof of Proposition 1

In this section, we give a proof of Proposition 1. We extensively use Theorem 4 to prove

our result. Before starting our proofs, we explicitly compute the Rf values for any ranking

allocation rule f . A valuation profile v is called 0-generic if for all i 6= j with vi = vj we

have vi = vj = 0.

We start off with the following claim.

Lemma 3 Suppose f is a ranking allocation rule with allocation probabilities π ≡ (π1, . . . , πn).

Then, for every 0-generic valuation profile v, we have

Rf (v) =
n−1∑
j=1

jv(j+1)(πj − πj+1),

where v(k) = 0 if v[k] = ∅ for any k.

Proof : Choose a 0-generic valuation profile v. Consider agent i ∈ N with vi > 0. Since v is

a 0-generic valuation profile, {i} = v[j] for some j. If j = n, then vifi(v)−
∫ vi
0
fi(xi, v−i)dxi =

0. So, consider j < n. As a result

vifi(v)−
∫ vi

0

fi(xi, v−i)dxi = πjv(j) −
∫ v(j)

0

fi(xi, v−i)dxi

= πjv(j) −
n∑
h=j

πh(v(h) − v(h+1)) (Note: v(n+1) ≡ 0.)

=
n∑

h=j+1

v(h)(πh−1 − πh).

This implies that

Rf (v) =
n−1∑
j=1

n∑
h=j+1

v(h)(πh−1 − πh)

=
n−1∑
j=1

jv(j+1)(πj − πj+1).

�

Using Lemma 3, we will now give a proof of Proposition 1.
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Proof of Proposition 1.

Proof : Let f be a ranking allocation rule with allocation probabilities (π1, . . . , πn). Note

that f is monotone in the sense of Myerson. By Theorem 4, we know that f is satisfactorily

implementable if and only if for every v with v1 ≥ v2 ≥ . . . ≥ vn > 0, we have

∑
T⊆N

(−1)|T |Rf (0T , v−T ) =
n∑
k=0

∑
T⊆N :|T |=n−k

(−1)n−kRf (0T , v−T ) = 0.

Since Rf is continuous (Lemma 2), it is enough to show the above equality for 0-generic valu-

ation profiles. In other words, continuity of Rf implies that f is satisfactorily implementable

if and only if for every v with v1 > v2 > . . . > vn > 0, we have

∑
T⊆N

(−1)|T |Rf (0T , v−T ) =
n∑
k=0

∑
T⊆N :|T |=k

(−1)kRf (0T , v−T ) = 0.

Note that for every T ⊆ N , the profile (0T , v−T ) is a 0-generic valuation profile. We can

divide this sum into two parts.∑
T⊆N

(−1)|T |Rf (0T , v−T ) =
∑

T⊆N :n∈T

(−1)|T |Rf (0T , v−T ) +
∑

T⊆N :n/∈T

(−1)|T |Rf (0T , v−T )

Hence, we can write the residual balancedness condition as∑
T⊆N

(−1)|T |Rf (0T , v−T ) =
∑

T⊆N :n/∈T

(−1)|T |
[
Rf (0T , v−T )−Rf (0T∪{n}, v−(T∪{n}))

]
= 0.

Now, fix a T ⊆ N with n /∈ T and |T | = n − k. Since v is a 0-generic valuation profile,

the rank of agent n in (0T , v−T ) is k. Without loss of generality, we denote (0T , v−T ) ≡ v′.

Note that v′(k) = vn. Using Lemma 3,

Rf (0T , v−T ) =
k−1∑
j=1

jv′(j+1)(πj − πj+1)

and

Rf (0(T∪{n}), v−(T∪{n})) =
k−2∑
j=1

jv′(j+1)(πj − πj+1).

Hence, we can write

Rf (0T , v−T )−Rf (0T∪{n}, v−(T∪{n})) = (k − 1)v′(k)(πk−1 − πk) = (k − 1)vn(πk−1 − πk),
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where the last equality follows because v′(k) = vn. Note that the RHS only depends on the

size of T but not on which elements are present in T . As a result, we can write the residual

balancedness condition as

0 =
∑
T⊆N

(−1)|T |Rf (0T , v−T ) =
∑

T⊆N :n/∈T

(−1)|T |
[
Rf (0T , v−T )−Rf (0T∪{n}, v−(T∪{n}))

]
=

n∑
k=1

∑
T⊆N :n/∈T,|T |=n−k

(−1)n−k(k − 1)vn(πk−1 − πk)

=
n∑
k=2

(−1)n−kC(n− 1, k − 1)(k − 1)(πk−1 − πk)vn.

The last inequality follows because we can form a subset of size n − k from n − 1 elements

in C(n − 1, k − 1) ways. Now, we simplify this expression to get our desired result. Since

vn > 0, residual balancedness is equivalent to:

0 =
n∑
k=2

(−1)n−kC(n− 1, k − 1)(k − 1)(πk−1 − πk)

=
n∑
k=2

(−1)n−kC(n− 1, k − 1)(k − 1)πk−1 −
n∑
k=2

(−1)n−kC(n− 1, k − 1)(k − 1)πk

= −
n−1∑
`=1

(−1)n−`C(n− 1, `)`π` −
n∑
`=1

(−1)n−`C(n− 1, `− 1)(`− 1)π`

= −
n−1∑
`=1

(−1)n−`π`
[
`C(n− 1, `) + (`− 1)C(n− 1, `− 1)

]
− (−1)0(n− 1)C(n− 1, n− 1)πn

= −
n−1∑
`=1

(−1)n−`(n− 1)C(n− 1, `− 1)π` − (−1)0(n− 1)C(n− 1, n− 1)πn

(Here, we used the fact that `C(n− 1, `) + (`− 1)C(n− 1, `− 1) = (n− 1)C(n− 1, `− 1).)

= −
n∑
`=1

(−1)n−`(n− 1)C(n− 1, `− 1)π`

Since n > 1, we get that residual balancedness is equivalent to

0 =
n∑
`=1

(−1)n−`C(n− 1, `− 1)π`.

This can be equivalently written as

0 =
n∑
`=1

(−1)`C(n− 1, `− 1)π`,
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which is the desired claim. �

Proofs of Theorem 1

In this section, we give a proof of Theorem 1. We start by characterizing the two-step ranking

allocation rules that can be satisfactorily implemented.

Proposition 5 A two-step ranking allocation rule is satisfactorily implementable if and

only if 2 ≤ ` ≤ n− 1, ` is even, and

π1 =
C(n− 2, `− 1) + 1

C(n− 2, `− 1) + `
.

Proof : In this and subsequent proofs, we use the following combinatorial fact.

Fact 1 For any r ∈ {0, . . . , n− 1},
r∑
j=0

(−1)jC(n, j) = (−1)rC(n− 1, r)

and
n∑
j=0

(−1)jC(n, j) = 0.

By Proposition 1, we know that for any two-step ranking allocation rule defined by (π1, `),

satisfactorily implementability is equivalent to

−π1 +
∑̀
k=2

(−1)kC(n− 1, k − 1)π2 = 0. (2)

This immediately implies that ` 6= 1. Further, if ` = n, then we must have π1 =
∑n

k=2(−1)kC(n−
1, k − 1)π2 = π2. But, by definition of a two-step allocation rule π1 > π2. So, we have

1 < ` < n.

Now, using Fact 1,∑̀
k=2

(−1)kC(n− 1, k − 1) = −
`−1∑
k=1

(−1)kC(n− 1, k)

= 1−
[ `−1∑
k=0

(−1)kC(n− 1, k)
]

= 1− (−1)`−1C(n− 2, `− 1)

= 1 + (−1)`C(n− 2, `− 1).
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Using this and the fact that π2 = 1
`−1(1− π1), we simplify Equation 2 as

−π1 +
1

`− 1
(1− π1)

(
1 + (−1)`C(n− 2, `− 1)

)
= 0.

For this to hold, we must have ` even and

π1 =
C(n− 2, `− 1) + 1

C(n− 2, `− 1) + `
.

�

We now provide a proof of Theorem 1.

Proof of Theorem 1.

Proof : We do the proof in several steps.

Step 1 - The Primal Problem. In this step, we formulate the problem of finding an

r-optimal allocation rule as a linear program.

Pick ε ∈ Rn sufficiently close to the zero vector. Note that ε may be the n-dimensional

zero vector or a vector with negative components. We formulate a linear program (in terms

of ε) as follows.

max
(π1,...,πn)

π1 +
n∑
j=1

εjπj

s.t. (LP−RANK)

πi+1 − πi ≤ 0 ∀ i ∈ {1, . . . , n− 1}
n∑
i=1

(−1)iC(n− 1, i− 1)πi = 0

n∑
i=1

πi = 1

πi ≥ 0 ∀ i ∈ {1, . . . , n}.

By Proposition 1, a feasible solution to the linear program (LP-RANK) is a satisfacto-

rily implementable ranking allocation rule. Note that we have imposed
∑n

i=1 πi = 1 instead

of weak inequality. Since we are interested in finding an r-optimal allocation rule, by Lemma

7, this is without loss of generality. Also, if ε is the zero vector, then the optimal solution of
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this linear program will give us an r-optimal allocation rule. We will find an optimal solution

of (LP-RANK) for all ε sufficiently close to the zero vector. This will ensure that such an

optimal solution is the unique r-optimal allocation rule.

Step 2 - The Dual Problem We first consider the dual of (LP-RANK) and construct

a dual feasible solution. For formulating the dual, we associate a variable θi for each of the

constraint in the first set of constraints corresponding to i ∈ {1, . . . , n−1}. We also associate

variables y and z for the second and third constraints respectively.

This leads us to the dual of the linear program (LP-RANK).

min
(y,z,(θ1,...,θn−1))

z

s.t. (DP−RANK)

−θ1 − y + z ≥ 1 + ε1

θi−1 − θi + (−1)iC(n− 1, i− 1)y + z ≥ εi ∀ i ∈ {2, . . . , n− 1}
θn−1 + (−1)ny + z ≥ εn

θi ≥ 0 ∀ i ∈ {1, . . . , n− 1}.

We construct a dual feasible solution as follows. Set θ1 = 0 and we will choose y and z

such that z − y = 1 + ε1. This will imply that the first constraint is automatically satisfied.

The rest of the constraints are satisfied by successively computing θi for i ∈ {2, . . . , n− 1}.
First, we set

θ2 = θ1 + (−1)2C(n− 1, 1)y + z − ε2 = (−1)2C(n− 1, 1)y + z − ε2.

Then,

θ3 = θ2 + (−1)3C(n−1, 2)y+ z− ε3 =
(

(−1)2C(n−1, 1) + (−1)3C(n−1, 2)
)
y+ 2z− ε2− ε3.
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Continuing in this manner, we have for all i ∈ {2, . . . , n− 1},

θi =
( i−1∑
j=1

(−1)j+1C(n− 1, j)
)
y + (i− 1)z −

i∑
j=2

εj

= (i− 1)z −
i∑

j=2

εj −
( i−1∑
j=1

(−1)jC(n− 1, j)
)
y

= (i− 1)z −
i∑

j=2

εj −
(

(−1)i−1C(n− 2, i− 1)− 1
)
y (Using Fact 1)

= (i− 1)z −
i∑

j=2

εj −
(

(−1)i−1C(n− 2, i− 1)− 1
)

(z − 1)

+ ε1

(
(−1)i−1C(n− 2, i− 1)− 1

)
(Using y = z − 1− ε1)

= (1 + ε1)
(

(−1)i−1C(n− 2, i− 1)− 1
)
− z
(

(−1)i−1C(n− 2, i− 1)− i
)
−

i∑
j=2

εj.

This choice of θi ensures that the second set of inequalities in DP-RANK are satisfied.

However, we need to make sure that (a) θis are non-negative and (b) the last inequality is

satisfied. These are ensured by choosing y and z appropriately.

For every i ∈ {2, . . . , n− 1}, let

H(n, i) := (−1)i−1C(n− 2, i− 1).

First, for non-negativity of θi, we will choose z appropriately. Note that (1 + ε1) > 0

since ε1 is sufficiently close to zero. Further, θi ≥ 0 if and only if

(1 + ε1)
(
H(n, i)− 1

)
− z
(
H(n, i)− i

)
−

i∑
j=2

εj ≥ 0. (3)

We consider two cases.

Case a. If i is even, we have H(n, i) = −C(n− 2, i− 1) < 0. Simplifying, we get

z ≥ (1 + ε1)

(
C(n− 2, i− 1) + 1

)
(
C(n− 2, i− 1) + i

) +
1(

C(n− 2, i− 1) + i
) i∑

j=2

εj

= (1 + ε1)

(
1− (i− 1)(

C(n− 2, i− 1) + i
))+

1(
C(n− 2, i− 1) + i

) i∑
j=2

εj. (4)
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Note that if i = 2, we need

z ≥ (1 + ε1)(1−
1

n
) +

1

n
ε2

Now, choose ` as follows:

` ∈ arg min
n−1≥i≥2,i even

(i− 1)(
C(n− 2, i− 1) + i

) . (5)

Observe that as ε is sufficiently close to the zero vector, the second term on the RHS of

Inequality 4 is very small (close to zero) for all i. Hence, this choice of ` maximizes the

RHS of Inequality 4 if (a) ε is the zero vector or (b) there is a unique ` that minimizes the

expression in (5) - if there are more than one ` which minimizes the expression in (5), then

the RHS of Inequality (4) is minimized by looking at the second term. By Corollary 1, if

n 6= 8, then there is a unique ` that minimizes the expression in (5). For n = 8, there are

two possible values of ` that minimize this the expression in (5). As a result, which choice

of ` maximizes the RHS of Inequality 4 will depend on the value of ε - if ε is the zero vector,

then either choice will work.

This implies that for ε sufficiently close to the zero vector and n 6= 8, Inequality 4 can be

satisfied by choosing z = z∗, where

z∗ := (1 + ε1)

(
1− (`− 1)(

C(n− 2, `− 1) + `
))+

1(
C(n− 2, `− 1) + `

) i∑
j=2

εj.

For n = 8, choice of z = z∗, where z∗ is defined by choosing any ` that minimizes the

expression in (5), satisfies Inequality 4 if ε is the zero vector.

As argued earlier, z∗ ≥ (1 + ε1)(1− 1
n
) + 1

n
ε2.

Case b. If i is odd, then H(n, i) = C(n− 2, i− 1). If i = n− 1, then Inequality 3 reduces

to z(n − 2) −
∑n−1

j=2 εj ≥ 0. Since n ≥ 3 and ε is sufficiently close to the zero vector, by

choosing z = z∗, it is satisfied. Hence, we assume i < n − 1. In that case H(n, i) ≥ i.

If H(n, i) − i = 0, then the desired Inequality (3) is satisfied for any choice of z since ε is

sufficiently close to the zero vector. Assume that H(n, i) > i. Then, Inequality 3 holds if

z ≤ (1 + ε1)

(
C(n− 2, i− 1)− 1

)
(
C(n− 2, i− 1)− i

) − 1(
C(n− 2, i− 1)− i

) i∑
j=2

εj

= (1 + ε1)

(
1 +

(i− 1)(
C(n− 2, i− 1)− i

))− 1(
C(n− 2, i− 1)− i

) i∑
j=2

εj.
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Since ε is arbitrarily close to the zero vector, by setting z = z∗, this inequality is trivially

satisfied.

Hence, we choose z = z∗, where

z∗ = (1 + ε1)

(
1− (`− 1)(

C(n− 2, `− 1) + `
))+

1(
C(n− 2, `− 1) + `

) i∑
j=2

εj. (6)

Hence, we satisfy the non-negativity constraints by this choice of z. Let y∗ = z∗ − 1 − ε1.
Finally, we show that the last inequality in DP-RANK is satisfied. To see this, if n is odd,

then the inequality reduces to

θn−1 − y∗ + z∗ = θn−1 + 1 + ε1 ≥ εn,

where the inequality follows since we have chosen θn−1 ≥ 0 and ε is arbitrarily close to the

zero vector.

If n is even, we note that θn−1 = z(n − 2) −
∑n−1

j=2 εj by definition. Then the inequality

reduces to

θn−1 + y∗ + z∗ = z∗(n− 2) + 2z∗ − 1−
n−1∑
j=1

εj

= z∗n− 1−
n−1∑
j=1

εj

≥ n(1 + ε1)(1−
1

n
) + ε2 − 1−

n−1∑
j=1

εj

= n− 2 + ε1(n− 1) + ε2 −
n−1∑
j=1

εj

≥ εn,

where we used the fact that z∗ ≥ (1 + ε1)(1− 1
n
) + 1

n
ε2, n ≥ 3, and ε is sufficiently close to

the zero vector in the above inequalities.

This completes the proof that there is a feasible solution of (DP-RANK) with z∗ de-

fined by Equation 6.

Step 3 - Optimality. In this step, we construct a feasible solution of (LP-RANK) by
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constructing the probabilities of a two-step ranking allocation rule as follows:

π∗1 = 1− `− 1(
C(n− 2, `− 1) + `

) .
π∗i =

1(
C(n− 2, `− 1) + `

) ∀ i ∈ {2, . . . , `}

π∗i = 0 ∀ i ∈ {`+ 1, . . . , n}.

By construction,
∑

j∈N π
∗
j = 1 and π∗1 ≥ π∗i for all i ∈ {2, . . . , `}. By Proposition 5,

(π∗1, . . . , π
∗
n) is a feasible solution of (LP-RANK). Further, we see that the objective function

value of (LP-RANK) with this feasible solution is

(1 + ε1)

(
1− `− 1(

C(n− 2, `− 1) + `
))+

∑̀
j=2

εj
1(

C(n− 2, `− 1) + `
) = z∗,

which is the objective function value of (DP-RANK) for the dual feasible solution we found

in Step 2. Hence, by the strong duality theorem of linear programming, (π∗1, . . . , π
∗
n) is an

optimal solution of (LP-RANK). For all n ≥ 3, this is an optimal solution when ε is the zero

vector. Hence, it describes an r-optimal allocation rule. For n 6= 8, this is an optimal solution

for all ε arbitrarily close to the zero vector, and hence, it is the unique optimal solution when

ε is equal to the zero vector - this follows from a result by Mangasarian (1979), who showed

that an optimal solution of a linear program is unique if and only if it remains the optimal

solution for sufficiently small perturbation of the objective function. �

Proof of Theorem 2

In this section, we provide a proof of individual rationality of a class of two-step ranking

mechanisms. First, we remind the following elementary fact from Myerson (1981).

Fact 2 A mechanism (f,p) is individually rational if and only if for every i ∈ N and for

every v−i, we have pi(0, v−i) ≤ 0.

Note that the above fact is a necessary and sufficient condition for IR. We now present

two useful lemmas that will help us prove Theorem 2.

Lemma 4 Suppose f is a satisfactorily implementable two-step ranking allocation rule de-

fined by (π1, `). Then, for every 0-generic valuation profile v, we have

Rf (v) = (π1 − π2)v(2) + `π2v(`+1),
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where π2 = 1
`−1(1− π1).

Proof : The proof of the formula forRf follows from the formula derived for any satisfactorily

implementable ranking allocation rule in Lemma 3. �

Notation. For any two positive integers K,K ′ with K ≥ K ′, we denote the consecutive

product of integers from K ′ to K as

ψ(K ′, K) = K ′ × (K ′ + 1)× · · · ×K.

Lemma 5 Suppose (f,p) is a satisfactory mechanism, where f is a two-step ranking al-

location rule defined by (π1, `). Then, for every v with |N0
v| = n − K, K ≤ `, and

v1 > . . . > vK > 0, we have for every i ∈ N0
v,

pi(v) = − (π1 − π2)
ψ(n−K,n− 2)

[K−1∑
j=2

(−1)j(j − 1)!ψ(n−K,n− j − 1)vj + (−1)K(K − 1)!vK

]
, if K ≥ 2,

and pi(v) = 0 if K ∈ {0, 1}.

Proof : Pick a satisfactory mechanism (f,p), where f is a two-step ranking allocation rule

defined by (π1, `). Suppose v is such that |N0
v| = n−K, K ≤ `. If K = 0, then by symmetry

and budget-balance, we get pi(v) = 0 for all i ∈ N . Else, suppose v1 > . . . > vK > 0. If

K = 1, then, by budget-balance and symmetry we get p1(v)+(n−1)pi(v) = 0 for any i ∈ N0
v.

But p1(v) = p1(0, v−1) + v1π1 − v1π1 = p1(0, v−1) = 0, where we used revenue equivalence

formula for the first equality and p1(0, v−1) = 0 for the last equality. Hence, we get p1(v) = 0,

and hence, pi(v) = 0 for all i 6= 1. Now, suppose K = 2. Then, budget-balance requires

p1(v) + p2(v) +
∑
i/∈{1,2}

pi(v) = 0.

But using revenue equivalence and the fact that p1(0, v−1) = 0, we get that

p1(v) = p1(0, v−1) + v1π1 − (v1 − v2)π1 − v2π2 = v2(π1 − π2).

Similarly, we get p2(v) = p2(0, v−2) + v2π2 − v2π2 = 0. Hence, by choosing some i /∈ {1, 2},
we can simplify the budget-balance equation as v2(π1− π2) + (n− 2)pi(v) = 0. This implies

that

pi(v) = −(π1 − π2)
(n− 2)

v2,

which is the required expression.
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Next, suppose K > 2 and use induction. Suppose the claim is true for all k < K. Then,

by revenue equivalence and symmetry we get

∑
j∈N

pj(v) =
∑
j∈N

pj(0, v−j) +Rf (v) = (n−K)pi(v) +
K∑
j=1

pj(0, v−j) +Rf (v),

where i is some agent in N0
v. By budget-balance, the above summation is zero, and Rf (v) =

(π1 − π2)v2 since K ≤ ` (by Lemma 4). Using this, we get

0 = (n−K)pi(v) +
K∑
j=1

pj(0, v−j) + (π1 − π2)v2. (7)

Now, for every j ∈ {1, . . . , K}, the profile (0, v−j) has one more zero-valued agent than the

profile v, and hence, we can apply our induction hypothesis. We refer to (0, v−j) for each

j ∈ {1, . . . , K} as a marginal profile having an additional zero-valuation agent than v, and

denote this as vj with the valuation of the k-th ranked agent in this valuation profile denoted

as vj(k). Note that a marginal profile contains (K−1) non-zero valuation agents. Thus, using

our induction hypothesis, Equation 7 can be rewritten as

(n−K)pi(v)

=
K∑
j=1

(π1 − π2)
ψ(n−K + 1, n− 2)

[K−2∑
k=2

(−1)k(k − 1)!ψ(n−K + 1, n− k − 1)vj(k) + (−1)K−1(K − 2)!vj(K−1)

]
− (π1 − π2)v2

=
(π1 − π2)

ψ(n−K + 1, n− 2)

K∑
j=1

[K−2∑
k=2

(−1)k(k − 1)!ψ(n−K + 1, n− k − 1)vj(k) + (−1)K−1(K − 2)!vj(K−1)

]
− (π1 − π2)v2

We write this equivalently as

ψ(n−K,n− 2)

π1 − π2
pi(v) =

K∑
j=1

[K−2∑
k=2

(−1)k(k − 1)!ψ(n−K + 1, n− k − 1)vj(k) + (−1)K−1(K − 2)!vj(K−1)

]
− ψ(n−K + 1, n− 2)v2. (8)

Now, we remind that v is a valuation profile of the form v1 > v2 > . . . > vK > 0 and vj = 0

for all j > K. We now simplify the RHS of Equation 8 in terms of v1, . . . , vK . To do so,

we explicitly compute the coefficients of vk for each k ∈ {1, . . . , K} in the RHS of Equation 8.
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Case 1. Note that v1 does not appear in the summation, and hence, its coefficient is always

zero. Next, v2 = vj(2) for all j 6= {1, 2}. Hence, it has a rank 2 in (K − 2) marginal profiles,

and in each such case, its coefficient in the first summation is

(−1)2(1)!ψ(n−K + 1, n− 3).

Adding this with −ψ(n−K + 1, n− 2)v2, we get the coefficient of v2 as

(K − 2)ψ(n−K + 1, n− 3)− ψ(n−K + 1, n− 2) = −ψ(n−K,n− 3) = −(−1)2(1!)ψ(n−K,n− 3).

Case 2. Now, consider K > k > 2. Note that vk = vj(k′) where k′ ∈ {k, k−1}. In particular,

k′ = k if j ∈ {k + 1, . . . , K} and k′ = k − 1 if j ∈ {1, . . . , k − 1}. Hence, it has rank k in

(K − k) marginal profiles and rank (k − 1) in (k − 1) marginal profiles. When it has rank k

in a marginal profiles, its coefficient in the RHS of Equation 8 is

(−1)k(k − 1)!ψ(n−K + 1, n− k − 1),

and when it has rank (k − 1), its coefficient is

(−1)k−1(k − 2)!ψ(n−K + 1, n− k).

Hence, collecting the coefficient of vk, we get

(−1)k(K − k)(k − 1)!ψ(n−K + 1, n− k − 1) + (−1)k−1(k − 1)(k − 2)!ψ(n−K + 1, n− k)

= (−1)k(k − 1)!ψ(n−K + 1, n− k − 1)
(

(K − k)− (n− k)
)

= −(−1)k(k − 1)!ψ(n−K,n− k − 1).

Case 3. Finally, vK = vj(k′) where k′ = K − 1 when j ∈ {1, . . . , K − 1}. Hence, vK has

rank (K−1) in (K−1) marginal profiles. Whenever it has rank (K−1) its coefficient in the

RHS of Equation 8 is (−1)K−1(K − 2)!. Hence, the coefficient of vK in the RHS of Equation

8 is

−(−1)K(K − 1)(K − 2)! = −(−1)K(K − 1)!

Aggregating the findings from all the three cases, we can rewrite Equation 8 as

ψ(n−K,n− 2)

π1 − π2
pi(v) =

[K−1∑
k=2

(−1)k(k − 1)!ψ(n−K,n− k − 1)vk + (−1)K(K − 1)!vK

]
.

(9)

45



This simplifies to the desire expression:

pi(v) = − (π1 − π2)
ψ(n−K,n− 2)

[K−1∑
k=2

(−1)k(k − 1)!ψ(n−K,n− k − 1)vk + (−1)K(K − 1)!vK

]
�

Lemma 6 Suppose (f,p) is a satisfactory mechanism, where f is a two-step ranking al-

location rule defined by (π1, `). Then, for every v with |N0
v| = n − K, K ≥ ` + 1, and

v1 > . . . > vK > 0, we have for every i ∈ N0
v,

pi(v) = − (π1 − π2)
ψ(n− `, n− 2)

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk + (−1)`(`− 1)!v`

]
.

Proof : We follow a similar line of proof as Lemma 5. Consider a valuation profile v with

|N0
v| = n−K, K ≥ `+ 1, v1 > . . . > vK > 0 and vj = 0 for all j > K.

We now modify Equation 7 by using Rf (v) = (π1 − π2)v2 + `π2v`+1 (by Lemma 4) as

follows:

0 = (n−K)pi(v) +
K∑
j=1

pj(0, v−j) + (π1 − π2)v2 + `π2v`+1. (10)

Now, for every j ∈ {1, . . . , K}, the profile vj has one more zero-valued agent than the

profile v, and hence, we can apply our induction argument - the base case of K = ` is solved

in Lemma 5 where we computed pi(v) with K ≤ ` agents having non-zero valuations. Using

induction hypothesis, we simplify Equation 10 as follows:

−(n−K)pi(v) =
K∑
j=1

− (π1 − π2)
ψ(n− `, n− 2)

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vj(k) + (−1)`(`− 1)!vj(`)

]
+ (π1 − π2)v2 + `π2v`+1.

This can be rewritten as follows:

(n−K)ψ(n− `, n− 2)

π1 − π2
pi(v) =

K∑
j=1

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vj(k) + (−1)`(`− 1)!vj(`)

]
− ψ(n− `, n− 2)v2 −

`π2ψ(n− `, n− 2)

π1 − π2
v`+1. (11)
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By Proposition 5,

π1 − π2 = 1− (`− 1)

C(n− 2, `− 1) + `
− 1

C(n− 2, `− 1) + `

=
C(n− 2, `− 1)

C(n− 2, `− 1) + `

= C(n− 2, `− 1)π2

=
ψ(n− `, n− 2)

(`− 1)!
π2. (12)

Hence, Equation 11 can be rewritten as

(n−K)ψ(n− `, n− 2)

π1 − π2
pi(v) =

K∑
j=1

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vj(k) + (−1)`(`− 1)!vj(`)

]
− ψ(n− `, n− 2)v2 − `!v`+1 (13)

Like in Lemma 5, we will rewrite the RHS of Equation 14 in terms of v1, . . . , vK .

For this, observe that for any k, vk will appear on the RHS of Equation 14 if there is

some j ∈ {1, . . . , K} and some k′ ∈ {2, . . . , `} such that vj(k′) = vk. Hence, v1 and

v`+2, . . . , vn do not appear on the RHS of Equation 14. We compute the coefficients of

vk for k ∈ {2, . . . , `+ 1}. We consider three cases.

Case 1. For v2, we note that v2 = vj(2) for all j 6= {1, 2}. Hence, it has a rank 2 in (K − 2)

marginal profiles, and in each such case, its coefficient in the first summation is

(−1)2(1)!ψ(n− `, n− 3).

Adding this with −ψ(n− `, n− 2), we get the coefficient of v2 in the RHS of Equation 14 as

(K − 2)ψ(n− `, n− 3)− ψ(n− `, n− 2) = −ψ(n− `, n− 3)(n−K)

= −(−1)2(1!)ψ(n− `, n− 3)(n−K).

Case 2. Now, consider 2 < k < `. For vk, note that vk = vj(k′) where k′ ∈ {k, k − 1}. In

particular, k′ = k if j ∈ {k + 1, . . . , K} and k′ = k − 1 if j ∈ {1, . . . , k − 1}. Hence, it has

rank k in (K−k) marginal profiles and rank (k−1) in (k−1) marginal profiles. In the RHS

of Equation 14, the coefficient of vk is (−1)k−1(k− 2)!ψ(n− `, n− k) if its rank is k− 1 and

the coefficient is (−1)k(k − 1)!ψ(n− `, n− k − 1) if its rank is k. Adding them, we get the
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coefficient of vk in the RHS of Equation 14 as

(−1)k(K − k)(k − 1)!ψ(n− `, n− k − 1) + (−1)k−1(k − 1)(k − 2)!ψ(n− `, n− k)

= (−1)k(k − 1)!ψ(n− `, n− k − 1)
(

(K − k)− (n− k)
)

= −(−1)k(n−K)(k − 1)!ψ(n− `, n− k − 1).

Case 3. For v`, note that v` = vj(k′) where k′ ∈ {`, ` − 1}. In particular, k′ = ` if

j ∈ {` + 1, . . . , K} and k′ = ` − 1 if j ∈ {1, . . . , ` − 1}. Hence, it has rank ` in (K − `)

marginal profiles and rank (` − 1) in (` − 1) marginal profiles. In the RHS of Equation 14,

the coefficient of v` is (−1)`−1(`− 2)!ψ(n− `, n− `) if its rank is `− 1 and the coefficient is

(−1)`(`−1)! if its rank is `. Adding them, we get the coefficient of v` in the RHS of Equation

14 as

(−1)`−1(`− 1)(`− 2)!ψ(n− `, n− `) + (−1)`(K − `)(`− 1)!

= (−1)`(`− 1)!
(
(K − `)− (n− `)

)
= −(−1)`(n−K)(`− 1)!

Case 4. Now, consider k = `+ 1. Note that v`+1 = vj(k′) if k′ = ` and j ∈ {1, . . . , `}. Hence,

it has a rank ` in ` marginal economies, where its coefficient in the summation of the RHS

of Equation 14 is

(−1)`(`− 1)! = (`− 1)!,

since ` is even. Hence, the coefficient of v`+1 in the RHS of Equation 14 is `(`− 1)!− `! = 0.

Aggregating the findings from all the four cases, we can rewrite Equation 14 as

(n−K)ψ(n− `, n− 2)

π1 − π2
pi(v) = −

`−1∑
k=1

(−1)k(n−K)(k − 1)!ψ(n− `, n− k − 1)− (−1)`(n−K)(`− 1)!

(14)

This simplifies to the desired expression:

pi(v) = − (π1 − π2)
ψ(n− `, n− 2)

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk + (−1)`(`− 1)!v`

]
�

With the help of these two lemmas, we can now present the proof of Theorem 2.
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Proof of Theorem 2.

Proof : Consider a two-step allocation rule (π1, `) such that 2` ≤ n + 1. Proposition 5

characterizes the two-step allocation rules that are satisfactorily implementable. If p is such

that (f,p) is a satisfactory mechanism, then it is individually rational (by Fact 2) if and

only if for every i ∈ N and for every v, we have pi(0, v−i) ≤ 0.

Fix i ∈ N and choose a profile (0, v−i). By Lemma 2, Rf is continuous in v. Hence,

by the expression of pi(0, v−i) in Theorem 4, pi(0, v−i) is continuous in v−i. Hence, we only

consider v−i such that (0, v−i) is 0-generic. Thus, we can apply Lemma 5 and 6 to compute

pi(0, v−i) and show that it is non-positive.

Suppose v1 > v2 > . . . > vK > 0 and vj = 0 for all j > K. By Lemmas 5 and 6,

pi(0, v−i) ≤ 0 if and only if for every K ≤ `, the following summation is non-negative:

[K−1∑
j=2

(−1)j(j − 1)!ψ(n−K,n− j − 1)vj + (−1)K(K − 1)!vK

]
.

Expanding this, we get

1!ψ(n−K,n− 3)v2 − 2!ψ(n−K,n− 4)v3 + . . .+ (−1)K(K − 1)!ψ(n−K,n−K − 1)vK ,

(15)

where we abused notation to define ψ(n−K,n−K− 1) ≡ 1. Note that if K is even the last

term of Expression 15 is positive. In that case, it is sufficient to show that this summation is

non-negative till K − 1 (i.e., the last negative term in the expression). This idea is captured

by considering the summation till bKco (the largest odd number less than or equal to K).

Hence, we need to show the following expression is non-negative:

bKco∑
j=2

(−1)j(j − 1)!ψ(n−K,n− j − 1)vj

=
∑

2≤j≤bKco:j even

[
(j − 1)!ψ(n−K,n− j − 1)vj − (j!)ψ(n−K,n− j − 2)vj+1

]
=

∑
2≤j≤bKco:j even

(j − 1)!ψ(n−K,n− j − 2)
[
(n− j − 1)vj − jvj+1

]
.

≥
∑

2≤j≤bKco:j even

(j − 1)!ψ(n−K,n− j − 2)(n− 2j − 1)vj.

Note that we are consider a 2-step allocation rule (π, `) such that 2` ≤ n+ 1. Since K ≤ `,

for every 2 ≤ j ≤ bKco : j even, we have j + 1 ≤ `. Hence, for every 2 ≤ j ≤ bKco : j even,
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we have 2(j + 1) ≤ n + 1 or n − 2j − 1 ≥ 0. This implies that the above expression is

non-negative, which completes the proof. �

Proof of Proposition 2

Proof : Consider a valuation profile v with v1 > v2 > . . . > vn > 0. By Proposition 5,

π1 − π2 = 1− (`− 1)

C(n− 2, `− 1) + `
− 1

C(n− 2, `− 1) + `

=
C(n− 2, `− 1)

C(n− 2, `− 1) + `

= C(n− 2, `− 1)π2

=
ψ(n− `, n− 2)

(`− 1)!
π2. (16)

Then, the payments are computed using Lemma 6 as follows.

p1(v) = p1(0, v−1) + v1π1 −
∫ v1

0

f1(x1, v−1)dx1

= p1(0, v−1) + v1π1 − (v1 − v2)π1 − (v2 − v`+1)π2

= p1(0, v−1) + v2(π1 − π2) + v`+1π2

= − π2
(`− 1)!

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
− v`+1π2 + v2(π1 − π2) + v`+1π2

(The above simplification uses Lemma 6 along with Equation 16 and the fact that ` is even.)

= − π2
(`− 1)!

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
+
ψ(n− `, n− 2)

(`− 1)!
v2π2

= − π2
(`− 1)!

[ `−1∑
k=1

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]

For every i ∈ {2, . . . , `},
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pi(v) = pi(0, v−i) + viπ2 −
∫ vi

0

fi(xi, v−i)dxi

= pi(0, v−i) + viπ2 − (vi − v`+1)π2

= pi(0, v−i) + v`+1π2

= − π2
(`− 1)!

[ i−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk +
`−1∑
k=i

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
− v`+1π2 + v`+1π2

(The above simplification uses Lemma 6 along with Equation 16 and the fact that ` is even.)

= − π2
(`− 1)!

[ i−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk +
`−1∑
k=i

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk+1

]
For every i > `, we directly use Lemma 6 along with Equation (16) to get

pi(v) = pi(0, v−i) = − π2
(`− 1)!

[ `−1∑
k=2

(−1)k(k − 1)!ψ(n− `, n− k − 1)vk + (−1)`(`− 1)!v`

]
�

Proof of Theorem 3 and Proposition 3

In this section, we give proofs of Theorem 3 and Proposition 3. We first show that every

r-Pareto optimal allocation rule satisfies the fact that probabilities add up to 1, i.e., the good

is never wasted.

Lemma 7 If f is an r-Pareto optimal or an r-optimal ranking allocation rule with probabil-

ities (π1, . . . , πn), then ∑
i∈N

πi = 1.

Proof : Suppose f is a ranking allocation rule with probabilities (π1, . . . , πn). Assume for

contradiction f is r-optimal but
∑n

i=1 πi < 1. Let δ = 1 −
∑

i∈N πi > 0. We construct

another ranking allocation rule f ′ with probabilities π′i ≡ πi + δ
n

for all i ∈ N . Note that
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∑
i∈N π

′
i = 1 and

n∑
k=1

(−1)kC(n− 1, k − 1)π′k =
n∑
k=1

(−1)kC(n− 1, k − 1)πk +
δ

n

n∑
k=1

(−1)kC(n− 1, k − 1)

=
n∑
k=1

(−1)kC(n− 1, k − 1)πk

= 0,

where the first equality is from the definition of (π′1, . . . , π
′
n), the second equality follows from

the fact that
∑n

k=1(−1)kC(n−1, k−1) = 0, and the third equality follows from Proposition 1

and the fact that (π1, . . . , πn) is a satisfactorily implementable ranking allocation rule. Hence,

by Proposition 1, f ′ is satisfactorily implementable. But this contradicts the r-optimality of

f .

Now, suppose f is r-Pareto optimal. The above argument also implies that at every

valuation profile v, we have ∑
i∈N

vif
′
i(v) ≥

∑
i∈N

vifi(v),

with strict inequality holding at almost everywhere. This contradicts the fact that f is r-

Pareto optimal. �

This leads to a simplification of r-Pareto optimality in terms of first-order stochastic-

dominance.

Definition 8 A ranking allocation rule f with probabilities (π1, . . . , πn) first-order stochastic-

dominates (FOSD) a ranking allocation rule f ′ with probabilities (π′1, . . . , π
′
n) if for every

j ∈ N , we have ∑
i≤j

πi ≥
∑
i≤j

π′i,

with strict inequality holding at least once. In this case, we write f �FOSD f ′.

Lemma 8 Suppose f is a ranking allocation rule with probabilities (π1, . . . , πn) such that it

is satisfactorily implementable. Then, f is r-Pareto optimal if and only if

1.
∑

i∈N πi = 1 and

2. if there exists no ranking allocation rule f ′ with probabilities (π′1, . . . , π
′
n) such that

•
∑

i∈N π
′
i = 1,
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• f ′ is satisfactorily implementable, and

• f ′ �FOSD f .

Proof : Suppose a ranking rule f with probabilities (π1, . . . , πn) is r-Pareto optimal. By

Lemma 7, we know that
∑

i∈N πi = 1. Now, assume for contradiction that there exists a

ranking allocation rule f ′ with probabilities (π′1, . . . , π
′
n) such that f ’ is satisfactorily im-

plementable,
∑

i∈N π
′
i = 1, and f ′ �FOSD f . Since f ′ �FOSD f , for any profile of generic

valuations v with v1 > v2 > . . . > vn, we have∑
i∈N

viπ
′
i ≥

∑
i∈N

viπi.

The strict inequality must hold for some generic valuation profile by the definition of first-

order stochastic dominance. Now, take any arbitrary valuation profile v. Note that the total

welfare of a ranking allocation rule is continuous in the valuations of the agents. Hence, it

can be written as a limit point of generic valuation profiles like above. This implies that for

every valuation profile v, we have∑
i∈N

vif
′
i(v) ≥

∑
i∈N

vifi(v),

with strict inequality holding for some v. This implies that f is not r-Pareto optimal, a

contradiction.

Now, for the other direction suppose f is a ranking allocation with probabilities (π1, . . . , πn)

satisfying the properties in the claim. Assume for contradiction that f is not Pareto optimal.

Then, there exists a satisfactorily implementable ranking allocation rule f ′ with probabilities

(π′1, . . . , π
′
n) such that for valuation profiles v, we have∑

i∈N

vif
′
i(v) ≥

∑
i∈N

vifi(v),

with strict inequality holding for some v. By Lemma 7, we can assume
∑

i∈N π
′
i = 1 without

loss of generality. For generic valuation profiles v with v1 > . . . > vn, we have
∑

i∈N viπ
′
i ≥∑

i∈N viπi. As in the previous paragraph, continuity of the total welfare of agents in a ranking

allocation rule implies that f ′ �FOSD f . This is a contradiction. �

We now provide a proof of Theorem 3.

Proof of Theorem 3.
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Proof : We denote the GL allocation rule as fG. Assume for contradiction that fG is not

r-Pareto optimal. By Lemma 8, there is another ranking allocation rule f such that f is

satisfactorily implementable and f �FOSD fG. Suppose the allocation probabilities of f are

(π1, . . . , πn). We know that the allocation probabilities of fG are (1 − 1/n, 1/n, 0, 0, . . . , 0).

Since f �FOSD fG, π1 + π2 = 1, and hence, π3 = . . . = πn = 0. Since f is satisfactorily

implementable, by Proposition 1, we get

π1 − (n− 1)π2 = 0.

Using π1 + π2 = 1 and simplifying, we get π1 = 1 − 1/n. Hence, f is the Green-Laffont

allocation rule, which is a contradiction.

The above proof along with Lemma 7 also makes it clear that among all ranking allocation

rules which allocates probability to only π1 and π2, the GL allocation rule is the unique r-

Pareto optimal allocation rule. �

We now provide a proof of Proposition 3.

Proof of Proposition 3.

Proof : Suppose n ≤ 8. Then, the GL allocation rule is an r-optimal allocation rule by

Corollary 1. Since π1 + π2 = 1 in the GL allocation rule, this implies that the GL allocation

rule dominates every other satisfactorily implementable ranking allocation rule an FOSD

sense. By Lemma 8, the GL allocation rule is the unique r-Pareto optimal allocation rule.

Suppose n > 8. Then, Theorem 1 implies that there is a unique r-optimal allocation

rule. Hence, no other satisfactorily implementable ranking allocation rule can dominate this

unique r-optimal allocation rule in an FOSD sense. By Lemma 8, this unique r-optimal

allocation rule is then r-Pareto optimal.

Finally choose an r-Pareto optimal allocation rule (π1, . . . , πn). By definition of π∗1, we

have π1 ≤ π∗1. Further, if π1 < 1− 1/n, the GL allocation rule dominates this allocation rule

in an FOSD sense, and by Lemma 8, it is not r-Pareto optimal. Hence, π1 ≥ 1− 1/n. �
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