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Abstract

We prove that a universal preference type space exists under more general
conditions than those postulated by Epstein and Wang (1996). To wit, it suf-
fices that preferences can be encoded monotonically in rich enough ways by
collections of continuous, monotone real-valued functionals over acts, which
determine—even in discontinuous fashion—the preferences over limit acts. The
proof relies on a generalization of the method developed by Heifetz and Samet
(1998a).
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1 INTRODUCTION

Classical game theory has largely been developed under the assumption that players

have Savage (1954) preferences, and can hence be modeled as maximizing subjective

expected utilities. In single-person decision problems, in contrast, a voluminous

literature axiomatizes and analyzes many additional classes of preference relations,

which are obviously relevant in strategic interactions as well. How should games of

incomplete information be modeled and handled with such more general preferences?

With Savage (1954) preference relations, games with incomplete information are

modeled by probabilistic type spaces (Harsanyi (1967-68)). Each type of each player is
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associated with a probabilistic belief over the space of states of ‘nature’—the players’

von Neumann and Morgenstern (1944) utility indices from their action profiles, the

external signals they get, etc.—and the other players’ types. A strategy of each player

is a measurable mapping from her types to her actions. Thus, from each player’s

perspective, her own actions coupled with the strategy profiles of the other players

constitute acts from their types and nature into the space of everybody’s action profiles;

integration with respect to the probabilistic belief of each of the player’s types of the

payoffs associated by nature to each action profile defines a Savage (1954) preference

relation over these acts. Moreover, by considering the type’s marginal belief over

nature, over nature and the other players’ marginal beliefs on nature, etc., we see how

each type’s belief encapsulates an infinite hierarchy of beliefs of all orders.

Type spaces can be readily extended to more general classes of preferences by

endowing each type directly with a preference relation over acts which are measurable

functions from nature and the others’ types into everybody’s action profiles. The

type’s marginal preference over constant acts, over acts which are measurable with

respect to the other players’ marginal preferences over constant acts, etc., form a

hierarchy of preferences. In the particular case in which the preference relations

satisfy Savage (1954) axioms and, for each player, states of nature associate real-

valued von Neumann and Morgenstern (1944) payoffs with the players’ action profiles,

each of these preference relations can be represented by a probability measure over

nature and the other players’ types, as in Harsanyi’s formulation.

Given a class of preference relations over acts, does the corresponding class of

type spaces contain a universal space, i.e. one which ‘embeds’ all others in the sense

of containing all preference hierarchies which appear in some type space? This is

a pertinent question since, in applications, ‘small’ type spaces are tailored to the

problem at hand, and it is important to know whether any generality is lost by this

restriction or rather the same analysis could, in principle, be carried out in a universal

space and deliver the same result. Furthermore, robustness results are most relevant

if they obtain in a universal space, which allows for all possible perturbations, rather

than within any particular, restricted type space.

For the case of preferences based on probabilistic beliefs, Mertens and Zamir

(1985), followed by Brandenburger and Dekel (1993), Heifetz (1993), and Mertens

et al. (1994) showed that under suitable topological or regularity assumptions, the

set of all hierarchies of probabilistic beliefs constitutes a type space, which is hence

universal.1 In the absence of regularity, however, Heifetz and Samet (1999) showed that

1 Other developments under regularity assumptions include Battigalli and Siniscalchi (1999) for
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there exist hierarchies of beliefs which are not types in any type space. Nevertheless,

Heifetz and Samet (1998a) showed that even in the absence of regularity, the set of

all profiles of belief hierarchies appearing in type spaces is itself a type space, which

is universal.2

What happens with more general classes of preferences? Epstein and Wang (1996)

showed, under topological assumptions, that when preferences are regular in the

appropriate sense, the set of all preference hierarchies forms a type space and Chen

(2010) proved that it is universal. Alternatively, if one restricts attention to algebras

of events then Di Tillio (2008) showed that a universal space exists under very mild

conditions. However, what happens in the absence of regularity and when the pertinent

class of events forms a σ-algebra?

In this paper, we show that a universal space exists under milder and more general

conditions on preferences than those postulated by Epstein and Wang (1996). To

wit, it suffices that preferences can be encoded monotonically in rich enough ways

by finite or countably infinite collections of continuous real-valued functionals over

acts, which determine—even in discontinuous fashion—the preferences over limit

acts. For example, a lexicographic preference represented by a (finite or countably

infinite) sequence of |L| continuous functionals is not itself continuous, since an act

may be superior to all acts in some increasing sequence, but inferior to their limit.

Nevertheless, there does exist a universal space in the category of type spaces where

each type is associated with a lexicographic preference representable by a collection

of |L| continuous functionals over acts. Furthermore, this existence result applies to

both well-founded3 and non-well-founded lexicographic preferences.4

To prove this result we proceed in two steps. First, in Section 3, generalizing

conditional beliefs in dynamic games, Mariotti et al. (2005) for compact possibility models, Ahn
(2007) for compact sets of probabilistic beliefs, Gul and Pesendorfer (2010) to study interdependent
preferences that accommodate reciprocity, Bergemann et al. (2011) to study strategic distinguisha-
bility of types, Heifetz et al. (2012) to study unawareness, and Heifetz and Kets (2012) to study
bounded reasoning. Lee (2013) constructs the universal type space for lexicographic preferences
under topological assumptions.

2 Meier (2008), Pinter and Udvari (2011), Heinsalu (2012), Kets (2012), and Pinter (2012) provide
recent developments of more general type spaces using the Heifetz and Samet (1998a) approach,
while Moss and Viglizzo (2004) formulate type spaces as coalgebras and show the existence of a final
coalgebra which provides the universal type space.

3 Well-founded lexicographic beliefs are sequences of beliefs such that the “most important” belief
in any subsequence is always well-defined. Rényi (1956) explored notions closely related to non-well-
founded lexicographic beliefs.

4 The epistemic characterization of iterated admissibility in Lee (2015b) uses hierarchies of lexi-
cographic beliefs that can be extended to non-well-founded lexicographic beliefs but not extended
to well-founded ones. This suggests that the analysis in Lee (2015b) could be carried out in type
spaces, which are simpler objects than hierarchy spaces.
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Heifetz and Samet (1998a), we collect all hierarchies of preference representations

that appear in type spaces in the category, and show that the resulting collection

is a universal type space. A crucial point of the argument made in Proposition 3 is

that even if the ever-extended preference representation is not itself continuous, the

fact that it is encoded by continuous functionals is sufficient to imply that the limit

preference representation is uniquely defined. One must then furthermore show that

this limit preference representation varies in a measurable way with the hierarchy.

This follows from a functional monotone class theorem employed in Lemma 1.

Second, in Section 4 we partition the universal type space into equivalence classes

of types whose preference representations express the same preference relation over

acts that depend on nature, on nature and others’ preference relations over acts that

depend on nature, etc. We show that this quotient space is universal in the category

of preference type spaces, i.e. type spaces partitioned into members consisting of

types with the same preferences on acts over nature and the other players’ partition

members. Heifetz and Samet (1998a) bypassed this second step by working in the

first place with the standard representation of each Savage preference relation, namely

the functional which attaches the value 0 to the constant act 0 and the value 1 to

the constant act 1. This standard representation of the Savage preference relation

constitutes integration with respect to a probability measure, interpreted as the type’s

“belief”. However, for more general classes of preferences, such as lexicographic prefer-

ences, there does not necessarily exist within the cone of preference representations a

“standard” representation, which is preserved under type morphisms, and hence the

need to work explicitly with equivalence classes of preference representations.

The paper is organized as follows. Section 2 introduces preliminary notation and

definitions. Section 3 contains the definitions and statement of the results for the

existence of the universal type space, which is the main result of the section. Section 4

introduces and develops the notion of a preference type space and contains the main

result of the paper: the existence of the universal preference type space. Section 5

concludes by discussing the main conceptual ideas and challenges of the paper. All

proofs are collected in the Appendix A. A supplementary appendix provides examples

of preferences for which the present paper’s results apply: Appendix B.1 considers

lexicographic expected utility and shows (in Section B.1.1) that the representation

of lexicographic expected utility preferences satisfy a key monotone determination

property (Definition 7). Appendix B also provides additional examples of preferences

to which the present results apply.
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2 PRELIMINARIES

Let L be a countable index set and D be a partial order on R
L for which the upper

and lower contour sets for all r “ prℓqℓPL P R
L

tr1 P R
L : r1

D ru and tr1 P R
L : r D r1u (1)

are Borel. For any measurable space Y with an associated σ-algebra ΣY , we denote by

FpY q the set of all real-valued bounded acts, i.e., bounded ΣY -measurable functions

from Y to the set of outcomes R. We say that a reflexive and transitive binary

relation Á over FpY q, henceforth termed a preference relation, admits a monotone

continuous pL,Dq-representation if there exists a function

U : FpY q Ñ R
L

that satisfies the following three conditions.

1. Representation: For f, g P FpY q

g Á f ðñ Upgq D Upfq. (2)

2. Representation continuity: For tgnuně1 Ď FpY q and g P FpY q,

p@y P Y gnpyq Ñ gpyqq ùñ Uℓpgnq Ñ Uℓpgq (3)

for all ℓ P L with Uℓ denoting the ℓ-th coordinate of U .5

3. Representation monotonicity: For f, g P FpY q,

f ě g ùñ Uℓpfq ě Uℓpgq (4)

for all ℓ P L.

Definition 1. R is called a representation class if, for any measurable space Y , RpY q

is some set of monotone continuous pL,Dq-representations equipped with the σ-algebra

5 This is not continuity of the preference relation. It is only the continuity of the representation
functions U “ pUℓqℓPL. For example, this condition is satisfied by lexicographic expected utility
preferences, which are not continuous.
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generated by sets of the following form.

rf Ěℓ gs “ tU P RpY q : Uℓpfq ě Uℓpgqu f, g P FpY q, ℓ P L

For measurable spaces Y and Z and a measurable function φ : Y Ñ Z, define the map
qφ : RpY q Ñ RpZq as follows.

@U P RpY q @f P FpZq qφpUqpfq “ Upf ˝ φq (5)

The map qφ, if well-defined (see the next definition) is measurable because, for every

f, g P FpZq and ℓ P L,

qφ´1prf Ěℓ gsq “ tU P RpY q : Uℓpf ˝ φq ě Uℓpg ˝ φqu P ΣRpY q.

Definition 2. Representation class R is image-regular if, for all measurable spaces

Y and Z and every measurable function φ : Y Ñ Z, the map qφ is well-defined.

Given that φ : Y Ñ Z can be viewed as a projection map from tpy, zq P Y ˆ Z |

z “ φpyqu on its second coordinate Z, image-regularity is simply the requirement

that, for each r P RpY q, the corresponding “marginal representation” of preferences

on FpZq is well-defined.

For the remainder, fix a representation class R and assume that it is image-regular.

Image-regularity is sufficient for the existence of a universal type space, as defined in

Definition 5 in Section 3.1 below.

For all f, g P FpY q, let

rf Ě gs “ tU P RpY q : Upfq D Upgqu.

Then rf Ě gs P ΣRpY q since the sets in (1) are Borel.6

The set of players is I and I0 “ I Y t0u denotes the set of players and “nature”

(player 0). As usual, for any collection tYiuiPI0
, Y´i “

Ś
i1PI0ztiu Yi1 . We consider the

6 Since L is countable, this follows from noting that (i) if B Ď R
L is Borel then

tU P RpY q | Upfq R Bu “ RpY qztU P RpY q | Upfq P Bu

and (ii) if B1, B2, ¨ ¨ ¨ Ď R
L are Borel then

tU P RpY q | Upfq P
8ď

n“1

Bnu “
8ď

n“1

tU P RpY q | Upfq P Bnu
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product, finite or infinite, of measurable spaces as a measurable space with the product

σ-algebra.

3 TYPE SPACES

Let S be a measurable space of states of nature. Fix the countable index set L and

partial order D satisfying (1).

Definition 3. An pL,Dq type space on S is a tuple xpTiqiPI0
, pmiqiPIy “ xT,my, such

that

1. T0 “ S; and

2. for each i P I0, Ti is a measurable space; and

3. for each i P I, mi : Ti Ñ RpT´iq is measurable.

Given a type space xT,my and i P I, elements of T are called states of the world

and an element of Ti is called an i-type. For any f, g P FpT´iq, let

rf Ěℓ gsi “ tti P Ti : miptiqℓpfq ě miptiqℓpgqu

and the belief operator rf Ě gsi is defined as

rf Ě gsi “ tti P Ti : miptiqpfq Dmiptiqpgqu.

Then recalling that rf Ě gs “ tU P RpT´iq : Upfq D Upgqu, we have that

rf Ě gsi “ m´1

i prf Ě gsq.

Let xT,my and xT 1,m1y be pL,Dq type spaces on S. Type morphisms, defined

next, are mappings that preserve the representation structures as given by m and m1.

Definition 4. A type morphism from xT,my to xT 1,m1y is a function φ “ pφiqiPI0
: T Ñ

T 1 such that

1. φ0 : T0 Ñ T 1
0

is the identity on S; and

2. for each i P I0, φi : Ti Ñ T 1
i is measurable; and

3. for each i P I and ti P Ti, m
1
ipφiptiqq “ qφipmiptiqq, i.e., for every f P FpT 1

´iq,

m1
ipφiptiqqpfq “ miptiqpf ˝ φq. (6)
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Then, it can be verified that a type morphism φ preserves belief operators, i.e., for

each i P I, f P FpT 1
´iq,

φ´1

i prf Ě gsiq “ rf ˝ φ´i Ě g ˝ φ´is
i. (7)

3.1 THE UNIVERSAL TYPE SPACE

Definition 5. An pL,Dq type space xT ˚,m˚y on S is universal if, for every pL,Dq

type space xT,my on S, there exists a unique type morphism from xT,my to xT ˚,m˚y.

The existence of a universal type space is the main result of this section and is

established in the remainder.

3.2 MAIN MEASURE-THEORETIC LEMMA

The main measure-theoretic lemma needed for the construction of the universal type

space is the following.

Lemma 1. Let pY,ΣY q be a measurable space. Let F0 Ď FpY q be such that the

σ-algebra ΣY is generated by

AF0
“ tf´1pEq : f P F0, E Ď R is Borelu

and such that F0 satisfies the following properties.

1. The constant function 1 P F0

2. For any f, f 1 P F0 and α, α1 P R, αf ` α1f 1 P F0.

3. For any f, f 1 P F0, mintf, f 1u P F0.

Let ΣF0
be the σ-algebra on RpY q generated by sets of the form

rf Ěℓ gs for ℓ P L and f, g P F0.

Then ΣRpY q “ ΣF0
.

3.3 HIERARCHIES OF REPRESENTATIONS

We now define spaces of hierarchies of preference representations Hk
i for each k ě 0

and i P I0. For every k ě 0, Hk
0

“ S and for every i P I, H0
i is a singleton. As usual
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Hk “
Ś

iPI0
Hk

i . We define inductively

Hk`1

i “ Hk
i ˆ RpHk

´iq “ H0

i ˆ

˜
k1ą

k“0

RpHk1

´iq

¸
. (8)

The space of i-hierarchies for player i P I is

Hi “ H0

i ˆ

˜
8ą

k“0

RpHk1

´iq

¸
(9)

and the projection from Hi to Hk
i is denoted ̟k

i .

Given an pL,Dq type space T , we can define an i-description map hi : Ti Ñ Hi for

each i P I0 as follows. For all k ě 0, let hk
0

be the identity on S. For i P I, h0
i : Ti Ñ H0

i

is uniquely defined since H0
i is a singleton. Inductively, define hk`1

i : Ti Ñ Hk`1

i for

k ě 0 by

hk`1

i ptiq “
´
hk

i ptiq,qhk
´ipmiptiqq

¯
“

´
h0

i ptiq,qh0

´ipmiptiqq, . . . ,qhk
´ipmiptiqq

¯
(10)

where qhk
´i : RpT´iq Ñ RpHk

´iq is the mapping between the sets of representations as

defined by (5) in Section 2. Now define hi : Ti Ñ Hi, i P I as the unique function that

satisfies for all k ě 0, hk
i “ ̟k

i phiq, i.e.,

hiptiq “
´
h0

i ptiq,qh0

´ipmiptiqq, . . . ,qhk
´ipmiptiqq, . . .

¯
(11)

and define h0 to be the identity on S. The first result is as follows.

Proposition 1. Type morphisms preserve i-descriptions.

We can now define the universal type space by setting T ˚
0

“ S and T ˚
i to be the

set of all i-descriptions in Hi, i.e., all hierarchies t˚i P Hi for which t˚i “ hiptiq for some

ti P Ti in some type space xT,my over S. The σ-algebra of T ˚
i is the one inherited

from Hi. We define m˚
i : T ˚

i Ñ RpT ˚
´iq by

m˚
i ptiq “ qh´ipmiptiqq. (12)

The next result establishes that xT ˚,m˚y thus defined is a pL,Dq type space.

Proposition 2. xpT ˚
i qiPI0

, pm˚
i qiPIy is a pL,Dq type space on S.

Proposition 3. For every pL,Dq type space xT,my, the description map h : T Ñ T ˚

is a type morphism.
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Lemma 2. The hierarchy description maps hi : T
˚
i Ñ T ˚

i are the identity maps.

We now state and prove the result on the existence of the universal pL,Dq type

space.

Theorem 1. xpT ˚
i qiPI0

, pm˚
i qiPIy is the universal pL,Dq type space on S.

4 PREFERENCE TYPE SPACES AND

THE UNIVERSAL PREFERENCE TYPE SPACE

Having shown the existence of the universal type space for representations, we now

establish the main result of the paper: the existence of the universal preference type

space, as defined in Definition 14 in Section 4.3 below. This is essential since, in general,

many representations may stand for the same preference, whereas it is the preference

relation itself that is of economic relevance. We first introduce some terminology and

notation.

4.1 PRELIMINARIES

Definition 6. Let Y be a measurable space. A filtration of ΣY is a sequence pΣk
Y qkě0

of sub-σ-algebras on Y such that

1. Σk
Y Ď Σk`1

Y for all k ě 0; and

2. ΣY is generated by
Ť

kě0
Σk

Y .

Definition 7. Representation class R is preference monotone determined if, for every

measurable space Y , the two statements below are equivalent for all U, V P RpY q and

for every filtration pΣk
Y qkě0 of ΣY .

1. For all k ě 0, the preferences represented by U and V coincide on Σk
Y -measurable

acts.

@k ě 0 @f, g P FpΣk
Y q, Upfq D Upgq ðñ V pfq D V pgq

2. The preferences represented by U and V coincide on all ΣY -measurable acts.

@f, g P FpΣY q Upfq D Upgq ðñ V pfq D V pgq
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Monotone determination, in the familiar setting of expected utility preferences,

is the property that when and if an extension of a projective system of probability

measures (i.e., a sequence of probability measures on an inverse system of measurable

sets) exists, then it is unique. This property is used by Heifetz and Samet (1998a)

to obtain their universal type space result. In the more general settings allowed here,

monotone determination says that if an inverse system of preferences (i.e., a sequence

of preferences over acts defined on a projective system of measurable sets) has an an

extension to a preference over acts defined on the projective limit of the system, then

it is unique. In the appendices, we prove that monotone determination is satisfied by

several well-known classes of preferences that are of interest.

Definition 8. We say that R is regular if it is both image-regular and preference

monotone determined.

For the remainder, assume that R is regular. Regularity of R is sufficient for the

existence of a universal preference type space. Given a regular representation class R,

we define the corresponding preference class P as follows.

Definition 9. For any measurable space Y , given a regular representation class RpY q

let PpY q denote the set of preference relations Á on FpY q that admit a representation

in RpY q. Each ÁP PpY q is identified with the equivalence class of all U P RpY q that

represent Á.

PpY q is equipped with the σ-algebra generated by sets of the following form.

rrf Ě gss “ tÁP PpY q : f Á gu f, g P FpY q

Definition 10. For each U P RpY q, let pY pUq denote the equivalence class in PpY q

to which U belongs. The map pY : RpY q Ñ PpY q is measurable because

p´1

Y prrf Ě gssq “ rf Ě gs for every f, g P FpY q.

Definition 11. For measurable spaces Y and Z and a measurable function φ : Y Ñ Z,

define the map pφ : PpY q Ñ PpZq as follows.

@ ÁP PpY q pφpÁq “ tqφpUq | U PÁu

The map pφ is measurable because, for every f, g P FpZq,

pφ´1prrf Ě gssq “ tÁP PpY q : f ˝ φ Á g ˝ φu P ΣPpY q.
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4.2 PREFERENCE TYPE SPACES

We now introduce the notion of a preference type space and a preference type morphism

between preference type spaces.

Definition 12. A pL,Dq preference type space on S is a tuple xpΠiqiPI0
, pµiqiPI0

y “

xΠ,my such that for some pL,Dq type space xT,my on S, for every i P I0, Πi is a

measurable space which is a partition of Ti, i.e., Πi consists of the partition members

tΠiptiq | ti P Tiu, where the following are satisfied.

1. Π0 is the partition of S to singletons, i.e., Π0psq “ tsu for all s P S, endowed

with the σ-algebra inherited from S, i.e., E Ď S is measurable in S iff

tΠ0psq : s P Eu “ ttsu : s P Eu is measurable in Πi.

2. For all i P I, µi : Πi Ñ PpΠ´iq is a measurable map defined by

µipΠiptiqq “ pΠ´i
pqΠ´ipmiptiqqq @ti P Ti.

3. For all i P I0, the map ti ÞÑ Πiptiq is measurable.

We say that xΠ, µy is based on xT,my.

In particular, the condition in Definition 12.2 implies that µipΠiptiqq “ µipΠipt
1
iqq

whenever Πiptiq “ Πipt
1
iq.

In general, there may be many preference-type spaces based on the same xT,my. In

particular, xT,my itself can be viewed as a preference type space based on itself where,

for all i P I, Πi is the partition of Ti into singletons and the measurable structure of

Πi is inherited from that of Ti and µi “ pΠ´i
˝ qΠ´i ˝ mi.

7

Definition 13. Let xΠ, µy and xΠ1, µ1y be pL,Dq preference-type spaces on S. A

preference-type morphism from xΠ, µy to xΠ1, µ1y is a function φ “ pφiqiPI0
: Π Ñ Π1

such that

1. φ0 : Π0 Ñ Π1
0

is the identity on S,

2. for each i P I0, φi : Πi Ñ Π1
i is a measurable function, and

3. for each i P I and πi P Πi, µ
1
ipφipπiqq “ pφ´ipµipπiqq.

7 That is, Πiptiq “ ttiu for all ti P Ti and E Ď Ti is measurable in Ti if and only if

tΠiptiq : ti P Eu “ tttiu : ti P Eu

is measurable in Πi.
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4.3 THE UNIVERSAL PREFERENCE TYPE SPACE

Given that, as explained above, every type space xT,my can be viewed also as a

preference type space where Πi is the partition of Ti to singletons for all i P I, and

given that it is the preferences of types ti P Ti that is of economic relevance, more so

than the particular representation miptiq of these preferences, it is of interest to know

if a universal preference type space as defined next exists.

Definition 14. A pL,Dq preference-type space xΠ˚, µ˚y on S is universal if, for every

preference-type space xΠ, µy on S, there exists a unique preference type morphism

from xΠ, µy to xΠ˚, µ˚y.

The positive answer to this existence question, which is the main result of this

paper, is given by the following theorem.

Theorem 2. There exists a universal preference-type space on S.

We prove this result by constructing the putative universal pL,Dq preference type

space xΠ˚, µ˚y as a preference type space based on xT ˚,m˚y and establishing that

there is a unique preference type morphism to xΠ˚, µ˚y from any preference type space

xΠ, µy.

xΠ˚, µ˚y is constructed as follows. For each k ě 0, let Π˚,k
0 be the partition of

T ˚
0

“ S into singletons. Let Σ
Π

˚,k
0

be σ-algebra inherited from ΣT ˚

0

“ ΣS. For each

i P I and k “ 0, let Π˚,0
i “ tT ˚

i u. For each i P I and k ě 0, define Π˚,k`1

i inductively.

Suppose that we have already defined the partitions Π˚,0
i , . . . ,Π˚,k

i for each i P I.

Let Π˚,k`1

i be the partition of T ˚
i into equivalence classes of types that induce the

same preferences on FpΠ˚,k
´i q, i.e.,

@t˚i P T ˚
i Π˚,k`1

i pt˚i q “ ty˚
i P T ˚

i : p
Π

˚,k

´i

pqΠ˚,k
´i pm˚

i pt˚i qqq “ p
Π

˚,k

´i

pqΠ˚,k
´i pm˚

i py˚
i qqqu

Let Σ
Π

˚,k`1

i

be generated by the following family of sets.

trf Ě gsi : f, g P FpΠ˚,k
´i qu

Let Π˚
i denote the join (coarsest common refinement) of the weakly refining sequence

of partitions pΠ˚,k
i qkě0 “ pΠ˚,0

i ,Π˚,1
i ,Π˚,2

i , . . . q, i.e.,

Π˚
i “

ł

kě0

Π˚,k
i

13



Let ΣΠ
˚

i
denote the σ-algebra generated by the union of the weakly refining sequence

of σ-algebras pΣ
Π

˚,k

i

qkě0 “ pΣ
Π

˚,0

i
,Σ

Π
˚,1

i
,Σ

Π
˚,2

i
, . . . q.

Finally, define µ˚
i : Π˚

i Ñ PpΠ˚
´iq by the following.

@t˚i P T ˚
i µ˚

i pΠ˚
i pt˚i qq “ pΠ

˚

´i

´
qΠ˚

´ipm
˚
i pt˚i qq

¯

Then µ˚
i is well-defined, i.e., µ˚

i pΠ˚
i pt˚i qq “ µ˚

i pΠ˚
i pt˚1

i q, whenever Π˚
i pt˚i q “ Π˚

i pt˚1
i q due

to the monotone determination property (Definition 7). The next result establishes

that xΠ˚, µ˚y is indeed a preference type space based on xT ˚,m˚y.

Proposition 4. For all i P I, µ˚
i is measurable.

Let xΠ, µy be a preference-type space based on the type space xT,my. Let η0 be

the identity on S. For each i P I, let ηi : Πi Ñ Π˚
i be defined by the following.

@ti P Ti ηipΠiptiqq “ Π˚
i phiptiqq

where hi is the representation i-description map associated with xT,my.

Proposition 5. η is a preference-type morphism.

To establish that η is in fact the unique preference type morphism from any

preference type space to xΠ˚, µ˚y, we first establish a property of any preference type

morphism. Let xΠ, µy be a preference-type space based on the type space xT,my. Let ψ

be a preference-type morphism from xΠ, µy to xΠ˚, µ˚y. Then µ˚
i pψipπiqq “ pψ´ipµipπiqq

for each i P I by Definition 13.3. Furthermore, we can inductively define ψk : Π Ñ Π˚,k

for each k ě 0 as follows. For each k ě 0, let ψk
0

be the identity on S. For each i P I,

ψ0
i : Πi Ñ Π˚,0

i is uniquely defined because Π˚,0
i is a singleton. Let ψk`1

i “ pψk
´i ˝ µi.

Lemma 3. For all i P I0 and k ě 0, ψk
i “ Π˚,k

i ˝ ψi.

The next result establishes the uniqueness of η, which completes the proof of

Theorem 2.

Proposition 6. If ψ is a preference-type morphism from xΠ, µy to xΠ˚, µ˚y, then

ψ “ η.

5 CONCLUDING REMARKS

The universal type space and universal preference type space construction above can

be applied to wide-ranging classes of preferences. These include lexicographic expected
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utility preferences (Appendix B.1), continuous preferences under risk and ambiguity,

and some instances of preferences over menus (Appendix B).

In the construction of a universal preference type space, our starting point was

the main conceptual idea of Heifetz and Samet (1998a), namely to collect from all the

type spaces in the category all the hierarchies that describe the state of mind of each

player about nature, about nature and the others’ state of mind about nature, and

so forth. The collection of these description hierarchies would constitute a universal

space if each such hierarchy determines uniquely the limit state of mind of the player

in a measurable way. When such a continuity property does not hold (like in the case

of dichotomous knowledge, see Heifetz and Samet (1998b)), a universal space fails to

exist. While implementing this idea when a “state of mind” is a preference relation

over acts rather than a belief, we had to address several challenges.

First, whereas for the case of probabilistic beliefs, (Heifetz and Samet, 1998a,

Lemma 4.5) used a monotone class theorem to prove the measurability of the limit

state of mind, for the case of preferences we had to to employ a stronger tool, namely

a double application of a functional monotone class theorem (Lemma 1). Second, and

more importantly, we are able to cater to classes of preferences of economic relevance,

like lexicographic preferences, that are themselves discontinuous but nevertheless

satisfy a weaker, limit determination property: each description hierarchy of states of

mind uniquely determines a limit state of mind, even if in a discontinuous way. We

showed how this weaker property is sufficient for a universal space to exist. Last, in

the classes of preferences of interest, the same preference relation may be represented

by numerous functional tuples, and from within the positive cone of representations of

the same preference relation there might emerge no natural candidate as the “standard”

representation, a standardization which would be preserved under type morphisms.

Thus, unlike in the case of Savage (1954) preferences over acts, which have a standard

representation by the integral of these acts with respect to a probability measure, for

lexicographic expected utility preferences of 3 or more levels, for example, such an

anchor representation does not exist. This challenge led us to proceed in two steps.

First (Section 3), we constructed the universal type space in the category of type

spaces actually used by game theorists, namely type spaces in which each type is

associated in a measurable way with a particular representation of the preference

relation of that type. In this universal space, there are numerous types which, albeit

with different representations, entertain the same preference relation on acts over

nature and the other players’ types. Therefore in the second step (Section 4), we

partitioned the universal type space into equivalence classes of types whose preference

15



representations express the same preference relation over acts that depend on nature,

on nature and others’ preference relations over acts that depend on nature, and so

on (Definition 14). We showed that this quotient space is universal in the category

of preference type spaces, i.e. type spaces partitioned into members consisting of

types with the same preferences on acts over nature and the other players’ partition

members (Definition 12).

The class of type spaces forms a sub-class of preference type spaces, because each

type space can be viewed, in particular, as a preference type space by partitioning each

player’s types to singletons, and associating each such singleton with the preference

relation represented by the functional-tuple of that type. It is this preference relation

(within its measurable structure) rather than the particular preference representation

(within its stronger, coordinate-wise measurable structure of functional-tuples) that

is of economic relevance, and hence the significance of the existence of a universal

preference type space (Theorem 2), into which every type space can be embedded in

a unique way by a preference type morphism. The universal preference type space

might be guaranteed to be a type space itself (selecting for each type a functional-

tuple representing its preference relation in a measurable way) only under very specific

topological assumptions (see for example Lee (2015a)). Here, in contrast, like in Heifetz

and Samet (1998a), we adopted a purely measurable approach, and hence the strength

and wide potential applicability of the results.
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A PROOFS

Proof of Lemma 1. Clearly ΣRpY q Ě ΣF0
, since ΣRpY q is generated by

trf Ěℓ gs | f, g P FpY q, ℓ P Lu

which is a subset of the family of sets

trf Ěℓ gs | f, g P F0, ℓ P Lu

that generates ΣF0
. We now establish in two steps that ΣRpY q Ď ΣF0

. First, let

F 1 Ď FpY q be the collection of acts f such that rf Ě gsℓ P ΣF0
for all g P F0 and

ℓ P L. We prove that F 1 Ě FpY q by employing the functional monotone class theorem

(Dellacherie and Meyer, 1978, theorem 22.3, p.15-1).8 Given assumptions (i)-(iii) on

F0, and the fact that FpY q is the set of ΣY -measurable acts while ΣY is generated

by AF0
, it remains to show that F 1 is closed under bounded monotone convergence.

Indeed, let tfnu8
n“1

be a bounded monotonically increasing sequence of functions in F 1

converging to f P FpY q.9 Then for all g P F0 and ℓ P L, by representation continuity

8 The corresponding notation there has H “ F 1 and C “ F0.
9 That is, tfnu8

n“1 is a sequence for which (i) there exists M ă 8 such that 0 ď fnpyq ď M for
all y P Y and n “ 1, 2, . . . and (ii) fnpyq is increasing in n for all y P Y .
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(3) and monotonicity (4),

rf Ěℓ gs “
8č

k“1

8ď

m“1

č

něm

„
fn Ěℓ g ´

1

k


P ΣF0

and hence f P F 1, as required.

Second, let F2 Ď FpY q be the collection of acts g such that rf Ěℓ gs P ΣF0
for

all f P F 1 “ FpY q and ℓ P L. Here too we prove that F2 Ě FpY q by employing

the functional monotone class theorem, and the crucial step is to show that F2 is

closed under bounded monotone convergence. Indeed, let tgnu8
n“1

be a bounded

monotonically increasing sequence of functions in F2 converging to g P FpY q. Then

for all f P FpY q

rf Ěℓ gs “
č

ně1

rf Ěℓ gns P ΣF0

and hence g P F2, as required. From the two steps together we conclude that FpY q ˆ

FpY q “ F 1 ˆ F2 is the collection of act-pairs pf, gq for which rf Ěℓ gs P ΣF0
for all

ℓ P L. Hence ΣF0
contains all the generators of ΣRpY q, and therefore ΣRpY q Ď ΣF0

.

Proof of Proposition 1. Let φ : T Ñ T 1 be a type morphism. We have to show that

h1
ipφiptiqq “ hiptiq for all ti P Ti and i P I0. For i “ 0, this follows immediately since

φ0, h
k
0
, h0, h

1k
0
, h1

0
are all the identity map on S. For i P I, h0

i ptiq “ h10
k pφiptiqq since H0

i is

a singleton. Suppose, inductively, that we have already proved that hk
i ptiq “ h1k

i pφiptiqq

for every ti P Ti and every i P I0. In the following sequence of equalities, the second

equality stems from the fact that type morphisms preserve preference representations

(6) and the induction hypothesis is used in the third equality. For any f P FpHk
´iq

qh1k
´ipm

1
ipφiptiqqqpfq “ m1

ipφiptiqqpf ˝ h1k
´iq

“ miptiqpf ˝ h1k
´i ˝ φ´iq “ miptiqpf ˝ hk

´iq “ qhk
´ipmiptiqqpfq

It then follows that

h1k`1

i pφiptiqq “
´
h1k

i pφiptiqq,qh1k
´ipm

1
ipφiptiqqq

¯

“
´
hk

i ptiq,qhk
´ipmiptiqq

¯
“ hk`1

i ptiq

as needed.

Proof of Proposition 2. To show that xT ˚,m˚y is a type space on S, we have
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to show that m˚
i is a measurable mapping for each i P I. For t˚i , let ti be the

i-type used to define m˚
i pt˚i q P RpT ˚

´iq Ď RpH´iq, i.e., m˚
i pt˚i q “ qh´ipmiptiqq. Con-

sider the preference relation on FpHk
´iq induced by m˚pt˚i q, i.e., q̟ k

´ipm
˚
i pt˚i qq where

q̟ k
´i : RpH´iq Ñ RpHk

´iq is the representation mapping defined in (5) corresponding

to the projection ̟k
i : Hi Ñ Hk

i . Then,

q̟ k
´ipm

˚
i pt˚i qq “ q̟ k

´ip
qh´ipmiptiqqq (13)

“ qhk
´ipmiptiqq since hk

i ptiq “ ̟k
i phiptiqq (14)

“ pk ` 1qth coordinate of hiptiq (15)

“ pk ` 1qth coordinate of the hierarchy t˚i (16)

” pt˚i qk`1 (17)

Let Gk Ď FpH´iq be the set of acts that are measurable with respect to Hk
´i, i.e., Gk

is the set of acts fk such that for every Borel measurable E Ď R there exists some

measurable Ek Ď Hk
´i for which f´1

k pEq “ p̟k
´iq

´1pEkq. Let

G “
8ď

k“0

Gk

Then AG “ tf´1pEq : f P G, E Ď R Borelu is the collection of all cylinders with

finite-dimensional bases, which generates the σ-algebra on H´i. Moreover, (i) the

constant act 1 is in G0 and hence in G. Furthermore, if f, f 1 P G then f P Gk and

f 1 P Gk1 for some k, k1, and if, without loss of generality k ě k1 then f 1 P Gk. It thus

follows that (ii) αf ` α1f 1 P Gk Ă G for every α, α1 P R, and (iii) mintf, f 1u P Gk Ă G.

Lemma 1 then implies that ΣRpH´iq “ ΣG, i.e., that ΣRpH´iq is generated by the sets

of the form

trf Ěℓ gs | f, g P G, ℓ P Lu “
8ď

k“0

trfk Ěℓ gks | fk, gk P Gk, ℓ P Lu

But if fk, gk P Gk, ℓ P L, then denoting by fk, gk P FpHk
´iq the acts on Hk

´i for which

fk “ fk ˝ ̟k
´i, gk “ gk ˝ ̟k

´i, from (13) we get that

pm˚
i q´1prfk Ěℓ gksq “ tt˚i | pm˚

i pt˚i qqℓpfkq ě pm˚
i pt˚i qqℓpgkqu (18)

“ tt˚i | ppt˚i qk`1qℓpf
kq ě ppt˚i qk`1qℓpg

kqu (19)

which are hence measurable subsets in Hi. This proves that m˚
i is a measurable
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mapping as required.

Proof of Proposition 3. The functions phiqiPI , are measurable and h0 is the identity.

Since the range of hi is T ˚
i , it is also measurable as a function to T ˚

i . Also, from (13),

it follows that for acts fk in FpH´iq that are measurable with respect to the σ-algebra

on Hk
´i, pm˚

i pt˚i qqℓpfkq does not depend on the specific type ti chosen to define m˚
i pt˚i q,

since there exists fk P FpHk
´iq such that fk “ fk ˝ ̟k

´i and so

pm˚
i pt˚i qqℓpfkq “ ppt˚i qk`1qℓpf

kq “ pqh´ipmiptiqqqℓpfkq “ pmiptiqqℓpfk ˝ h´iq (20)

for any ti such that hiptiq “ t˚i and every ℓ P L. Now, every measurable act f P FpH´iq

is a pointwise limit of a sequence of functions fk P FpH´iq which are, respectively,

measurable with respect to the σ-algebra on Hk
´i. The continuity of pm˚

i pt˚i qqℓ and

pmiptiqqℓ in (3) then implies that

pm˚
i pt˚i qqℓpfq “ lim

kÑ8
pm˚

i pt˚i qqℓpfkq “ lim
kÑ8

pmiptiqqℓpfk ˝ h´iq “ pmiptiqqℓpf ˝ h´iq (21)

for every ℓ P L and i P I, which proves that h is a type morphism.

Proof of Lemma 2. It suffices to show that for each k and i P I, the function

hk
i on T ˚ is the projection on Hk

i . We show this by induction on k. It is clearly

true for k “ 0. Suppose that hk “ ̟k. By definition, phipt
˚qqk`1 “ qhk

´ipm
˚
i pt˚i qq.

Using the induction hypothesis we get qhk
´ipm

˚
i pt˚i qq “ q̟ k

´ipm
˚
i pt˚i qq, implying that

phipt
˚qqk`1 “ q̟ k

´ipm
˚
i pt˚i qq “ pt˚i qk`1.

Proof of Theorem 1. For any type space xT,my, the description map h : T Ñ T ˚

is a type morphism by Proposition 3. We need to show that it is unique. Suppose

φ : T Ñ T ˚ is a type morphism. Then for each i P I and ti P Ti, hiptiq “ hipφiptiqq

by Proposition 1. However, from Lemma 2, we get hipφiptiqq “ φiptiq. Hence, φi “ hi

and the result follows.

Proof of Proposition 4. Measurability of µ‹
i follows from the measurability of pΠ

˚

´i
,

qΠ˚
´i, and m‹

i .

Proof of Proposition 5. For all i P I, ΣΠ
˚

´i
is generated by pΣ

Π
˚,k

´i

qkě0. Due

to monotone determination, it therefore suffices to show the following for all Σ
Π

˚,k

´i

-

measurable f, g P FpΠ˚
´iq.

η´1

i prrf Ě gssiq “ µ´1

i prrf ˝ η´i Ě g ˝ η´issq
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Note that η´1

i prrf Ě gssiq is equal to the following by definition.

“ tπi P Πi : ηipπiq P rrf Ě gssiu

“ tΠiptiq : ηi ˝ Πiptiq P rrf Ě gssi ^ ti P Tiu (replacing πi with Πiptiq where ti P Ti)

“ tΠiptiq : Π˚
i ˝ hiptiq P rrf Ě gssi ^ ti P Tiu (using ηi ˝ Πi “ Π˚

i ˝ hi)

“ tΠiptiq : Π˚
i ˝ hiptiq P tπ˚

i P Π˚
i : µ˚

i pπ˚
i q P rrf Ě gssu ^ ti P Tiu (expanding rrf Ě gssi)

“ tΠiptiq : µ˚
i pΠ˚

i ˝ hiptiqq P rrf Ě gss ^ ti P Tiu (replacing π˚
i with Π˚

i ˝ hiptiq)

This is in turn equal to the following.

“ tΠiptiq : µ˚
i ˝ Π˚

i phiptiqq P rrf Ě gss ^ ti P Tiu

“ tΠiptiq : pΠ
˚

´i
˝ qΠ˚

´ipm
˚
i phiptiqqq P rrf Ě gss ^ ti P Tiu (by definition of µ˚

i )

“ tΠiptiq : qΠ˚
´ipm

˚
i phiptiqqq P rf Ě gs ^ ti P Tiu (by definition of pΠ

˚

´i
)

“ tΠiptiq : m˚
i phiptiqq P rf ˝ Π˚

´i Ě g ˝ Π˚
´is ^ ti P Tiu (by definition of qΠ˚

´i)

“ tΠiptiq : qh´i ˝ miptiq P rf ˝ Π˚
´i Ě g ˝ Π˚

´is ^ ti P Tiu (since h : T Ñ T ˚ is a type morphism)

“ tΠiptiq : miptiq P rf ˝ Π˚
´i ˝ h´i Ě g ˝ Π˚

´i ˝ h´is ^ ti P Tiu (by definition of qh´i)

“ tΠiptiq : miptiq P rf ˝ η´i ˝ Π´i Ě g ˝ η´i ˝ Π´is ^ ti P Tiu (using ηi ˝ Πi “ Π˚
i ˝ hi)

“ tΠiptiq : qΠ´i ˝ miptiq P rf ˝ η´i Ě g ˝ η´is ^ ti P Tiu (by definition of qΠ´i)

“ tΠiptiq : pΠ´i
˝ qΠ´i ˝ miptiq P rrf ˝ η´i Ě g ˝ η´iss ^ ti P Tiu (by definition of pΠ´i

)

“ tΠiptiq : µipΠiptiqq P rrf ˝ η´i Ě g ˝ η´iss ^ ti P Tiu (because xΠ, µy is based on xT,my)

“ tπi P Πi : µipπiq P rrf ˝ η´i Ě g ˝ η´issu (replacing Πiptiq, ranging over ti P Ti, with πi P Πi)

“ µ´1

i prrf ˝ η´i Ě g ˝ η´issq

It remains to be shown that ηi : Πi Ñ Π˚
i is measurable for all i P I0. The map

η0 : Π0 Ñ Π˚
0

is measurable because it is the identity on S. For i P I, we proceed by

induction. For k “ 0, ηi : Πi Ñ Π˚
i is pΣΠi

,Σ
Π

˚,0

i
q-measurable by definition.

Suppose ηi : Πi Ñ Π˚
i is pΣΠi

,Σ
Π

˚,k

i

q-measurable for k ě 0. We want to show

that ηi : Πi Ñ Π˚
i is pΣΠi

,Σ
Π

˚,k`1

i

q-measurable. The σ-algebra Σ
Π

˚,k`1

i

is generated by

sets of the form rrf Ě gssi for Σ
Π

˚,k

´i

-measurable f, g P FpΠ˚
´iq. We therefore need to

show that η´1

i prrf Ě gssiq Ď Πi is measurable for all Σ
Π

˚,k

´i

-measurable f, g P FpΠ˚
´iq.

Let f, g P FpΠ˚
´iq be Σ

Π
˚,k

´i

-measurable. Then f ˝ η´i and g ˝ η´i are measurable by

the inductive hypothesis. It then follows that η´1

i prrf Ě gssiq is measurable because

η´1

i prrf Ě gssiq “ µ´1

i prrf ˝ η´i Ě g ˝ η´issq and µi is measurable.
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Proof of Lemma 3. It is trivial that ψ0
i “ Π˚,0

i ˝ψi. Assume the inductive hypothesis

that ψk
i “ Π˚,k

i ˝ ψi. Recall that ψk`1

i “ pψk
´i ˝ µi.

ψk`1

i “ pψk
´i ˝ µi “ ppΠ˚,k

´i ˝ pψ´iq ˝ µi “ pΠ˚,k
´i ˝ p pψ´i ˝ µiq

“ pΠ˚,k
´i ˝ pµ˚

i ˝ ψiq

“ ppΠ˚,k
´i ˝ µ˚

i q ˝ ψi

“ Π˚,k`1

i ˝ ψi

Proof of Proposition 6. The inductive definition of pψkqkě0 depends only on ψ0.

The inductive definition of pηkqkě0 depends only on η0. However, if ψ and η are

type morphisms, then ψ0 “ η0. It follows that pψkqkě0 “ pηkqkě0, which implies the

following.

@i P I ψipπiq “
č

kě0

pΠ˚,k`1

i ˝ ψiqpπiq “
č

kě0

ψk`1

i pπiq “
č

kě0

p pψk
´i ˝ µiqpπiq

“
č

kě0

ppηk
´i ˝ µiqpπiq “

č

kě0

ηk`1

i pπiq “
č

kě0

pΠ˚,k`1

i ˝ ηiqpπiq “ ηipπiq

Furthermore, ψ0 “ η0 because ψ and η are preference-type morphisms. Therefore,

ψ “ η.

Proof of Theorem 2. xΠ˚, µ˚y is a preference type space by Proposition 4. For

any preference type space xΠ, µy, η is a preference type morphism to xΠ˚, µ˚y by

Proposition 5 and it is unique by Proposition 6. The result follows.

B APPLICABLE CLASSES OF PREFERENCE RELATIONS

B.1 LEXICOGRAPHIC EXPECTED UTILITY PREFERENCES

When L Ď N and D is the lexicographic order on R
L, then Á admits a lexicographic

expected utility representation if each Uℓ is a continuous linear functional. The following

results in Section B.1.1 show that this representation class satisfies the monotone

determination property (Definition 7) and hence the results of Section 4 apply to

provide the existence of the universal preference type space.
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B.1.1 Lexicographic probability systems: preference monotone determination

Suppose L “ N and RpY q is the set of all monotone continuous pL,Dq-representations

of lexicographic expected utility (LEU) preferences on FpY q for any measurable space

Y . We show that R satisfies preference monotone determination (Definition 7) in

Corollary 1 below, which follows from results that we prove next.

While we assume that L is countably infinite, the proofs below establish monotone

determination for LEU preferences represented by both finite and countably infinite

LPSs. LEU preferences that can be represented by finite LPSs are those that have

“minimal” representations with a “repeating tail” in a way that will become clear in

Definition 16.

Let UpY q denote the set of all bounded linear functionals on FpY q so that RpY q “
ś

ℓPL UpY q and let ělex denote the lexicographic order.

Definition 15. Let ℓ1 P L and let pUℓqℓďℓ1 P
ś

ℓďℓ1 UpY q. pUℓqℓďℓ1 is non-minimal

if there is some ℓ2 ă ℓ1 such that, for all f, g P FpY q:

pUℓpfqqℓďℓ2 ělex pUℓpgqqℓďℓ2 ðñ pUℓpfqqℓďℓ2`1 ělex pUℓpfqqℓďℓ2`1

pUℓqℓďℓ1 is minimal if it is not non-minimal.

Definition 16. Let U “ pUℓqℓPL P RpY q. U is minimal if, for all ℓ1 P L, it must be

the case that either pUℓqℓďℓ1`1 is minimal or Uℓ1 “ Uℓ1`1. That is, a minimal U will

either have no non-minimal initial segment or have a minimal initial segment and a

repeating tail.

p

min. init. segmenthkkkkkkkikkkkkkkj
U1, U2, . . . , Uℓ1 , Uℓ1 , Uℓ1 , . . .loooomoooon

repeating tail

q

The arguments showing the following remarks can be seen in Blume et al. (1991)

(Theorem 3.1 and the subsequent discussion on p.66), which axiomatizes lexicographic

expected utility preferences.

Remark 1. Let ℓ1 P L and let pUℓqℓďℓ1 , pVℓqℓďℓ1 P
ś

ℓďℓ1 UpY q be minimal. Furthermore,

let the following hold for all f, g P FpY q:

pUℓpfqqℓďℓ1 ělex pUℓpgqqℓďℓ1 ðñ pVℓpfqqℓďℓ1 ělex pVℓpfqqℓďℓ1

This is equivalent to the following: There is some ppαℓ
jqjďℓqℓďℓ1 P

ś
ℓďℓ1

ś
jďℓ R such
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that pαℓ
ℓqℓďℓ1 ą p0qℓďℓ1 and

pVℓqℓďℓ1 “

˜
ÿ

jďℓ

αℓ
jUj

¸

ℓďℓ1

.

Remark 2. Let ℓ1 P L and let pUℓqℓďℓ1`1 P
ś

ℓďℓ1 UpY q be non-minimal. If pUℓqℓďℓ1 is

minimal then there is some pαℓ1

j qjďℓ1 P
ś

jďℓ1 R such that

Uℓ1`1 “
ÿ

jďℓ1

αℓ1

j Uj

Lemma 4. Let pΣn
Y qně0 be a filtration of ΣY . Let U P RpY q and ℓ1 P L such that

pUℓqℓďℓ1 is minimal and denote by Un the restriction of U to acts in FpY q that are

Σn
Y -measurable. Then there is some Nℓ1 such that, for all n ě Nℓ1, pUn

ℓ qℓďℓ1 is minimal.

Proof. The proof is by induction as follows.

Base case. The case when ℓ1 “ 1 is trivial.

Inductive hypothesis. There is some Nℓ1 such that, for all n ě Nℓ1 , pUn
ℓ qℓďℓ1 is

minimal.

Inductive Step. Suppose that pUℓqℓďℓ1`1 is minimal. We need to show that there

is some Nℓ1`1 such that, for all n ě Nℓ1`1, pUn
ℓ qℓďℓ1`1 is minimal. Suppose by way

of contradiction that, for all Nℓ1`1, there is some n ě Nℓ1`1 such that pUn
ℓ qℓďℓ1`1 is

non-minimal. Without loss of generality, let Nℓ1`1 ě Nℓ1 . Since pUn
ℓ qℓďℓ1 must be

minimal by the inductive hypothesis, there is exactly one pαℓ1

j qjďℓ1 such that

Un
ℓ1`1

“
ÿ

jďℓ1

αℓ1

j U
n
j (22)

due to the required linear independence. Note that if Un`1

ℓ1`1
“

ř
jďℓ1 α

ℓ1

j U
n`1

j , then it

must be the case that Un
ℓ1`1

“
ř

jďℓ1 α
ℓ1

j U
n
j . This is due to the fact that Un and Un`1

coincide on FpΣn
Y q by definition since Σn

Y Ď Σn
Y . It follows that (22) must hold for all

n ě 1 for some fixed pαℓ1

j qjďℓ1 . From this and Remark 2 it follows that

Uℓ1`1 “
ÿ

jďℓ1

αℓ1

j Uj

which contradicts the fact that pUℓqℓďℓ1`1 is minimal.
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Proposition 7. Let pΣn
Y qně0 be a filtration of ΣY . Let U, V P RpY q so that

@n @f, g P FpY q that are Σn
Y -measurable, Upfq D Upgq ðñ V pfq D V pgq. (23)

Then pY pUq “ pY pV q, which is equivalent to

@f, g P FpY q Upfq D Upgq ðñ V pfq D V pgq.

Proof. Let FpY,Σn
Y q Ď FpY q denote the Σn

Y ´measurable acts and denote by Un, V n

the respective restrictions of U, V to FpY,Σn
Y q. Without loss of generality, assume

that U and V are minimal. The proof is by induction on ℓ1. What we want to prove

is that the following holds for all f, g P FpY q.

@ℓ1 P L pUℓpfqqℓďℓ1 ělex pUℓpgqqℓďℓ1 ðñ pVℓpfqqℓďℓ1 ělex pVℓpgqqℓďℓ1

Base Case. We can rewrite (23) more succinctly as

ppY,Σn
Y

qpU |FpY,Σn
Y

qq “ ppY,Σn
Y

qpV |FpY,Σn
Y

qq,

which makes it obvious that Un
1

“ V n
1

for all n. Furthermore, if Un
1

“ V n
1

for all n,

then U1 “ V1. Therefore, for all f, g P FpY q:

pUℓpfqqℓď1 ělex pUℓpgqqℓď1 ðñ pVℓpfqqℓď1 ělex pVℓpgqqℓď1

Inductive Hypothesis (ℓ1). For all f, g P FpY q:

pUℓpfqqℓďℓ1 ělex pUℓpgqqℓďℓ1 ðñ pVℓpfqqℓďℓ1 ělex pVℓpgqqℓďℓ1

Inductive Step. We want to show that, for all f, g P FpY q,

pUℓpfqqℓďℓ1`1 ělex pUℓpgqqℓďℓ1`1 ðñ pVℓpfqqℓďℓ1`1 ělex pVℓpgqqℓďℓ1`1

If pUℓqℓďℓ1 is the longest minimal initial segment of U , then no further work is needed.

Therefore, now consider the case when pUℓqℓďℓ1`1 is minimal.

By Lemma 4 and the minimality of U and V , there is some Nℓ1`1 such that, for

all n ě Nℓ1`1, pUn
ℓ qℓďℓ1`1 and pV n

ℓ qℓďℓ1`1 are both minimal.10

10 Apply Lemma 4 to U and V separately to find the corresponding Nℓ1`1 for each and take the
maximum of the two numbers.
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By (23) and Remark 2, there is some pαℓ1`1

j qjďℓ1`1 such that αℓ1`1

ℓ1`1
ą 0 and

V n
ℓ1`1

“
ÿ

jďℓ1`1

αℓ1`1

j Un
j .

By the minimality of pUn
ℓ qℓďℓ1`1, there is exactly one such pαℓ1`1

j qjďℓ1`1. Therefore,

the analogous property carries over to the limit extensions, i.e.,

Vℓ1`1 “
ÿ

jďℓ1`1

αℓ1`1

j Uj,

which, when combined with the Inductive Hypothesis, shows the Inductive Step by

Remark 2.

Corollary 1. R satisfies monotone determination.

Proof. This is immediate because Proposition 7 holds for all nonempty measurable

Y .

B.2 CONTINUOUS PREFERENCES UNDER RISK AND AMBIGUITY

If |L| “ 1 and D is the usual order ě on R, Á admits a continuous representation for

preferences under risk and ambiguity. These preferences include uncertainty-averse

preferences (Cerria-Vioglio et al., 2011) and vector expected utility preferences (Sinis-

calchi, 2009) and cumulative prospect theory preferences (Wakker and Tversky, 1993).

For these classes of preferences, as we describe below, there exist ‘standard’ repre-

sentations of beliefs, as separate from tastes, such as the representation of monotone

continuous Savage (1954) preferences by a countably additive probability measure.

The standard representation is unique and the result of Section 3 provides the ex-

istence of a universal type space in the category of type spaces where each type is

associated in a measurable way with the standard representation of the preferences.

However, it is also possible to consider representations where beliefs and tastes

are not separated and a standard representation may not exist. In particular, for

many preferences, the standard representations capture the ‘belief’ part of preferences

and not the ‘tastes’ part. The latter would be, for example, the so-called Bernoulli

or von Neumann-Morgenstern utility function u which captures the risk attitude in

the case of Savage (1954) preferences. The Bernoulli utility function is typically only

identified up to positive affine transformations. That is, u and u1 “ αu ` β, α ą
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0, β P R both represent the same risk attitude. Representations which do not separate

beliefs and tastes have been extensively studied under the label of ‘state-dependent’

representations, See, for example, Karni et al. (1983) and references therein. In this

case, there typically does not exist a ‘standard’ or unique representation that also

incorporates differences in tastes. However, the approach of Section 4, by working

with the equivalence classes of representations, provides the existence of the universal

preference type space where the representations do not distinguish between tastes and

beliefs.

Below, we first provide a list of standard representations of the belief part of

preferences, for many preferences under risk and ambiguity to which the results of

this paper are applicable.11 Uniqueness of the standard representation implies that

R is image regular (Definition 2) and results of Section 3 provide the existence of

the universal type space where preferences are uniquely represented. We then discuss

the case of state-dependent representations for which there may not be a standard or

unique representation in the relevant class of representations and where the results of

Section 4 apply to provide the existence of the universal preference type space.

B.2.1 Standard representations of beliefs12

For uncertainty averse preferences, let RpY q be encoded by the set of all lower semi-

continuous and linearly continuous functions G : Rˆ∆σpY q Ñ p´8,8s, where ∆σpY q

is the set of all countably additive probabilities over pY,ΣY q. The results of Cerria-

Vioglio et al. (2011) (Theorem 7, Lemma 48, Lemma 57) imply that each element

of RpY q uniquely represents a continuous functional U over FpY q that represents

preference Á over FpY q, where

Upfq “ min
pP∆

G

ˆż
f dp, p

˙

and

Gpt, pq “ sup

"
Upfq

ˇ̌
ˇ̌ f P FpY q,

ż
f dp ď t

*

11 The list is certainly not comprehensive and is only meant to indicate the scope of the present
paper’s approach.

12 The results of Heifetz and Samet (1998a) already cover the case of preferences where beliefs
are represented by continuous non-additive measures or capacities, (see Schmeidler (1989) for an
axiomatization of such preferences).
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Examples of uncertainty averse preferences, such as multiple prior preferences, varia-

tional preferences, smooth ambiguity preferences and the specific functional form of

Gp¨q for each, are provided in Cerria-Vioglio et al. (2011). Restricting R to the set of

all G corresponding to any of the above subclasses also satisfies image regularity.13

For vector expected utility preferences, axiomatized in Siniscalchi (2009), let RpY q

be encoded by a collection of tuples pp, n, pζiq0ďiďn, Aq where p P ∆σpY q, n P NY t8u,

pζiq0ďiďn P FnpY q, A : Rn Ñ R satisfy the following conditions.14

For every 0 ď i ď n, Eprζis “ 0

App0q0ďiďnq “ 0 and

Appriq0ďiďnq “

$
&
%
App´riq0ďiďnq if priq0ďiďn “ pEprζi ¨ f sq0ďiďn for some f P FpY q

0 otherwise.

The result of Siniscalchi (2009) (Theorem 1) implies each element of RpY q is a con-

tinuous functional U over FpY q, which represents vector expected utility preference

Á over FpY q where

Upfq “ Eprf s ` A ppEprζi ¨ f sq0ďiďnq .

For cumulative prospect theory preferences, axiomatized in Wakker and Tversky (1993),

let RpY q be encoded by a collection of continuous capacity pairs pν1, ν2q P bvmσ
1

pY q ˆ

bvmσ
1

pY q, where bvmσ
1

pY q is the collection of set functions on ν : ΣY Ñ r0,8s satisfying

(i) νpHq “ 0 “ 1 ´ νpY q, (ii) (monotonicity) νpAq ď νpBq if A Ď B, (iii) (continuity)

for each A, limnÑ8 νpAnq “ νpAq whenever pAnq Ò A or pAnq Ó A. The result of

Wakker and Tversky (1993) (Theorem 6.3) implies that each element of RpY q is a

continuous functional U over FpY q, which represents preference ÁP FpY q, where

f` “ maxt0, fu, f´ “ ´ mint0, fu, and ν̄2pAq “ 1 ´ ν2pAcq for all A P ΣY and

Upfq “

ż
f` dν1 `

ż
f´ dν̄2

13 For example, variational preferences are represented by G satisfying Gpt, pq “ t ` cppq, where
c : ∆σpY q Ñ r0, 8s is a lower semicontinuous convex function, with minpP∆σpY q cppq “ 0. Suppose
RpY q is encoded by the set of all such G. Then R is image-regular and players preferences are of
the variational preferences class.

14 In what follows, pEprζi ¨ f sq0ďiďn “ 0 if n “ 0.
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B.2.2 Non-separation of beliefs and tastes

Suppose RpY q is encoded by the set of all continuous, additively separable, monotonic

functionals over FpY q, where for each U P RpY q, there exists µ P ∆σpY q and strictly

increasing continuous Vy : R Ñ R, y P Y, such that, for all f P FpY q

Upfq “

ż
Vypfpyqq dµ.

If pµ˚, pV ˚
y qyPY q represents the same preference as pµ, pVyqyPY q then (i) µpAq “ 0 ðñ

µ˚pAq “ 0 and (ii) V ˚
y “ αpyq ` σβpyqVy where σ ą 0 is a constant, α : Y Ñ R is

measurable, and β is the Radon-Nikodym density of µ with respect to µ˚. Then U P

RpY q represents preferences Á over FpY q that are complete, transitive, continuous,

and satisfy the sure-thing principle as required in Wakker and Zank (1999) (Theorem

12), but do not separately represent beliefs and tastes in a unique way.15

However, RpY q is image-regular and is preference monotone determined (Lemma 5

below) and U P RpY q satisfy (2)–(4). Section 4 provides the existence of the universal

preference type space for such preferences.

Lemma 5. R satisfies monotone determination.

Proof. Let U,U˚ P RpY q and let pΣn
Y qně0 be a filtration of ΣY . Denote by FpY,Σn

Y q Ď

FpY q the set of Σn
Y -measurable acts and by Un “ pµn, pV n

y qyPY q, U˚n “ pµ˚n, pV ˚n
y qyPY q

the respective restrictions of U, V to FpY,Σn
Y q. Suppose

@n @f, g P FpY,Σn
Y q Upfq ě Upgq ðñ U˚pfq ě U˚pgq. (24)

That is, @n, Un, U˚n represent the same preference over FpY,Σn
Y q. Then, V ˚n

y “

αnpyq ` σnβnpyqV n
y where σn ą 0 is a constant, αn : Y Ñ R is measurable, and βn is

the Radon-Nikodym density of µn with respect to µ˚n. So, for any f, g P FpY,Σn
Y q

U˚npfq “

ż

Y

αn dµ˚ ` σnUnpfq.

Let f P FpY q (resp. g P FpY q) and pfnqně1 be a sequence converging pointwise to f ,

fn P FpY,Σn
Y q (resp. pgnqně1 be a sequence converging pointwise to g, gn P FpY,Σn

Y q).

15 The results of this paper would not apply to the additively separable representations in the more
recent work of Hill (2010) that need not satisfy monotonicity.
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Then,

U˚pfq ´ U˚pgq ě 0

ðñ lim
nÑ8

pU˚pfnq ´ U˚pgnqq ě 0

ðñ lim
nÑ8

pU˚npfnq ´ U˚npgnqq ě 0

ðñ lim
nÑ8

σnpUnpfnq ´ Unpgnqq ě 0

ðñ lim
nÑ8

σnpUpfnq ´ Upgnqq ě 0

ðñ lim
nÑ8

pUpfnq ´ Upgnqq ě 0,

since

@n σn “
U˚np1q ´ U˚np0q

Unp1q ´ Unp0q
“
U˚p1q ´ U˚p0q

Up1q ´ Up0q
ą 0.

This yields the desired result since limnÑ8pUpfnq ´ Upgnqq “ Upfq ´ Upgq.16

B.3 PREFERENCES OVER MENUS

U P RpY q can be used to characterize some instances of preferences over countable

menus of acts in FpY q that feature behavior such as self-control and temptation. For

instance, self-control preferences over menus (Gul and Pesendorfer (2001), Epstein

(2006)) are defined in terms of a commitment utility C and temptation utility T for

each act.

Suppose C and T are continuous linear functionals on FpY q and let RpY q be

encoded by ∆σpY qˆ∆σpY q, the set of countably additive measures over pY,ΣY q. Then

every C is uniquely determined by some p P ∆σpY q and T by some q P ∆σpY q. Self-

control preferences over countable menus along the lines of Epstein (2006) (Theorem 1)

can be characterized via a commitment utility C : FpY q Ñ R and a temptation utility

T : FpY q Ñ R, which combine in the representation V : FNpY q Ñ R defined by

V pfq “ sup
n“1,2,...

tCpfnq ` T pfnqu ´ sup
n“1,2...

T pfnq (25)

16 The choice of acts 1 and 0 to evaluate σn is not special. Any constant acts a, b such that a ‰ b

will suffice. This reflects a restriction on how constant acts are compared under the preference
representation of Wakker and Zank (1999) (Theorem 12).
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Here L “ N ˆ N, where for every pf1, . . . , fn, . . . q P FNpY q,

Uppf1, . . . , fn, . . . qq “ ppCpf1q, . . . , Cpfnq, . . . q, pT pf1q, . . . , T pfnq, . . . qq

with the order D on R
NˆN defined by

ppcnq8
n“1

, ptnq8
n“1

q D ppc1
nq8

n“1
, pt1nq8

n“1
q

ðñ sup
n“1,2,...

tcn ` tnu ´ sup
n“1,2,...

tn ě sup
n“1,2,...

tc1
n ` t1nu ´ sup

n“1,2,...

t1n

This order satisfies condition (1) since coordinate-projections in R
NˆN, sums of mea-

surable functions and suprema of measurable functions are themselves measurable

functions. In this case, Section 3 provides the existence of the universal type space in

the category of type spaces where each type is measurably associated with a standard

representation. On the other hand, for the Gul and Pesendorfer (2001) style representa-

tion, pC, T q need not be identified with probability measures, and may be represented

by a additively separable representation, along the lines of Wakker and Zank (1999)

(Theorem 12). In this case, the preference type space approach of Section 4 provides

the existence of the universal preference type space.
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