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Abstract

This paper studies the design of a selling mechanism by a privately informed seller of an

indivisible object, whose private information directly a¤ects the the buyers�valuations on

the object. The analysis focuses on safe mechanisms (Myerson, 1983) which are incentive

compatible and individually rational for all the players, regardless of the buyers� beliefs

about the seller�s type. Among this class of mechanisms, we characterize the Rothschild-

Stiglitz-Wilson (RSW) mechanism (Maskin and Tirole, 1992) which maximizes the revenue

of each type of the seller. The RSW mechanism only di¤ers in reserve prices from the

revenue-maximizing mechanism where the seller�s information is public. Speci�cally, the

lowest type of the seller has the same reverve prices in the two mehcanisms, while all other

types of the seller set higher reserve prices in the RSW mechansim. This result indicates

that for an informed seller, the reverse price is the least costly device of signaling. The

paper also shows that the RSW mechanism can be supported as the the seller�s equilibrium

strategy in the seller-optimal separating equilibrium of the mechanism-selection game where

the inscrutability principle (Myerson, 1983) does not apply.
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1 Introduction

The standard literature of mechanism design usually assumes that a mechanism designer has no

private information relevant to the design of a mechanism. This assumption does not perfectly

�t some situations involving the design of selling mechanisms. For example, when designing

an artwork auction, the seller may have private information about some characteristics of the

object, such as the evaluation of the object by a connoisseur and the easiness of reselling the

objects; in keyword auctions, the auctioneers are usually better informed than the buyers about

the frequencies that the keywords are searched; in a spectrum auction, the government�s agenda of

regulating the telecommunication industry, which is important for the bidders to set their bidding

strategies, may be unknown to them at the time of bidding.

This paper departs from the standard literature, and studies the mechanism design problem

facing a seller of an indivisible object, who learns a private signal regarding the quality of the object

prior to choosing the selling mechanism. The valuations of the seller and buyers on the object are

all increasing in this signal. It is obvious that the privacy of seller information induces a signaling

consideration: the choice of mechanism by the seller may (partially) reveal her information to the

buyers. This paper is devoted to studying how this signaling issue will change the design of the

selling mechanism from the case where the seller has no private information.

This paper is mostly related to the seminal work of Myerson (1983) and Maskin and Tirole

(1990, 1992) on mechanism design by an informed principal. Myerson (1983) lays down the

foundation of analyzing this problem by developing several equilibrium concepts with di¤erent

strengths. Maskin and Tirole (1990,1992) focus their analysis on the one-principal/one-agent

situation. Maskin and Tirole (1992) consider the case that principal�s private information directly

a¤ects the agent�s utility, which is the same as the case considered in the current paper.

Mylovanov and Tröger have several papers on the informed-principal problem. Their work

focuses on the private-value case in which the principal�s information does not directly enter the

agents�utility functions; it a¤ects the payo¤s of the agents through its e¤ects on the principal�s

equilibrium behavior.

This paper is also closely related to the signaling literature. In signaling games, the privately

informed sender takes a costly action which may partially or fully reveal her information in equi-

librium. The structure of the informed-principal mechanism selection game is the same as that

of the signaling game: the choice of mechanism may reveal the principal�s information. The

main di¤erence is that the �action� in the signaling model is changed to �mechanism� in the

informed-principal problem.

The signaling games developed in Jullien and Mariotti (2006) and Cai, Riley and Ye (2007)

can be taken as semi-auction-selection games. In those games, the auction format is �xed, and the

privately informed seller has freedom in setting the reserve price of the auction. Cai, Riley and Ye

(2007) �nd that in this game, there is a unique separating equilibrium in which the lowest type
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of the seller sets the reverse price that same as that in the case where her information is publicly

known, and other types set higher reserve prices compared with the public information case.

Our model setup is similar to that of Cai, Riley and Ye (2007), except that we endow the seller

with the freedom of choosing every element of a mechanism, instead of only the reserve price.

Our analysis focuses on the safe mechanisms (Myerson, 1983) which are mediated mechanisms

that are incentive compatible and individually rational for all the players, regardless of the buyers�

beliefs about the seller�s type. I give a full characterization of the set of safe mechanisms, and

derive the Rothschild-Stiglitz-Wilson (RSW) mechanism (Maskin and Tirole, 1992) which is the

safe mechanism maximizing the revenue of each type of the seller among all the safe mechanisms.

The main �nding of the paper is that the RSW mechanism only di¤ers in reserve prices from the

revenue-maximizing mechanism where the seller�s information is public. Speci�cally, the lowest

type of the seller has the same reserve prices in the two mehcanisms, while all other types of the

sellers set higher reserve prices in the RSW mechanism. This result indicates that for an informed

seller, the reverse price is the least costly device of signaling.

This result is in fact intuitive. Given that buyers�valuations on the object are increasing in the

seller�s type, a low type seller would like to have the buyers believe that she is of some higher type,

so that she has a chance to sell the object at a higher price. There are two ways to disincentivize a

lower type seller to mimic a higher type: (1) increasing the reserve price in the mechanism adopted

by the high-type seller, thus decreasing the probability of selling the object, and (2) decreasing the

payment of the buyers in the mechanism chosen by the high type seller, thus reducing the revenue

of the lower type seller from mimicking the higher type. Both channels can work independently

to eliminate the �cheating bene�ts�of a lower type seller, and separate a higher type from lower

types. However, the �rst approach is better from the perspective of a high type seller, because it

increases the probability that the seller to keeps the object, which makes the higher type seller

lose less than the lower type, as the higher type values the object more.1 The second approach

induces the same loss to both types of the seller, as it is equivalent to letting the higher type seller

to give up the same amount of revenue as the low type.

The paper also shows that the RSW mechanism can be supported as the seller�s equilibrium

strategy in the seller-optimal separating equilibrium of the mechanism-selection game where the

inscrutability principle (Myerson, 1983) does not apply. Combined with the characterization of

the RSW mechanism, we will see that this result provides a support for the literature on reserve

price signaling (Jullien and Mariotti, 2006; Cai, Riley and Ye, 2007): the seller only uses the

reserve price to signal herself, even if she has the freedom to vary the whole mechanism.

This paper is organized as follows: section 2 sets up the models; section 3 discusses mechanism

design with a mediator, and focuses on showing how the full-information optimal mechanism fails

1When the reserve prices are increased, the payments of the buyers become higher in the case that there is only
one buyer having a type higher than his reserve price. However, compared with the e¤ect of reserve prices on the
probability of trading, this is second order.
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to be incentive compatible and characterizing the RSW mechanism; section 4 analyzes mechanism

design when the principle of instrutability fails, and tries to connect equilibria of this game with

the set of safe mechanisms.

2 Model Setup

The setup of the model is standard. There is an indivisible object for sale. The owner of the object

would like to design a revenue-maximizing auction mechanism and sell the object to n potential

buyers.

The seller privately observes a signal s which determines her valuation v0 (s) of the object. We

assume that v0 (s) is increasing in s and twice continuously di¤erentiable with bounded derivatives.

It is common knowledge for all the players that s is drawn from the distribution f0 : [s; �s] 7! R++.

For any buyer i = 1; 2; : : : ; n, his valuation vi (s; ti) for the object depends on the signal s of the

seller and the private signal ti of his own, and is increasing and twice continuously di¤erentiable

with bounded derivatives in both signals. ti is drawn from distribution fi : [ti; �ti] 7! R++, which is

common knowledge. Signals s; t1; t2; : : : ; tn are all independent. To simplify notations, we de�ne

t � (t1; t2; : : : ; tn) and use S, Ti, and T to denote [s; �s] ; [ti; �ti], and �ni=1 [ti; �ti], respectively.
The seller chooses an auction mechanism after she learns her private signal. The most of our

analysis will focus on incentive feasible direct revelation mechanism, according to the revelation

principle. A direct revelation auction mechanismM consists of an allocation function x : S�T !
[0; 1]n and a payment function p : S � T ! Rn: Speci�cally,

x (s; t) = (x1 (s; t) ; x2 (s; t) ; : : : ; xn (s; t)) ;

p (s; t) = (p1 (s; t) ; p2 (s; t) ; : : : ; pn (s; t)) ;

where xi (s; t) and pi (s; t) are respectively buyer i�s probability of getting the object and payment

under (s; t). x (s; t) should satisfy the feasibility constraint

Pn
i=1 xi (s; t) � 1 and xi (s; t) � 0, for 8s; t: (1)

We use x0 (s; t) in this paper to denote the probability that the seller keeps the object, i.e.,

x0 (s; t) = 1�
Pn

i=1 xi (s; t) for 8s; t. By abusing notations a little bit, we de�ne xi (s; ti) =R
T�i
xi (s; ti; t�i) f�i (t�i) dt�i, pi (s; ti) =

R
T�i
pi (s; ti; t�i) f�i (t�i) dt�i, and x0 (s) =

R
T
x0 (s; t) f (t) dt,

where t�i = (t1; : : : ; ti�1; ti+1; : : : ; tn), T�i = �nj 6=iTj and f�i (t�i) =
Qn
j 6=i fj (tj).

In the rest of our analysis, we say that a direct mechanism is incentive feasible if and only

if the feasibility condition (1) and all the incentive compatibility (IC) and individual rationality

(IR) constraints of the players are satis�ed. The speci�cation of IC and IR constraints of a direct

mechanism depends on whether the mechanism design game is mediated or not. In the following
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section, we �rst consider the mediated case.

3 Mechanism Design with a Mediator

In a mediated mechanism design game, the informed seller �rst selects a mechanism which will

be executed by an interest-neutral, non-strategic mediator. Under the selected mechanism, all

players including the seller take strategies in their strategy sets speci�ed by the mechanism. The

allocation of the object and the payment of each player are realized based on the strategy pro�le

of the players. Since a mechanism is selected after the seller learns about her type, the choice of

mechanism may partially or completely reveal her information. Thus, on observing the selected

mechanism, the buyers may update their belief about the seller�s type.

For any selected mechanism and an associated (common) posterior of the buyers about the

seller�s type, according to the revelation principle, there exists a direct revelation mechanism

which is incentive feasible under the same posterior and yields the same payo¤s for all the players.

Suppose that a direct mechanism M is selected, and the posterior of the buyers about the seller�s

type is f0 (�jM). If M is incentive feasible, it should satisfy condition (1), and the seller with any

type s 2 S should have incentive to tell the truth, i.e.,

U0 (M js) � U0 (M; s0js) ; for 8s; s0 2 S, where (2)

U0 (M js) =

Z
T

(
v0 (s)x0 (s; t) +

nX
i=1

pi (s; t)

)
f (t) dt; and

U0 (M; s
0js) =

Z
T

(
v0 (s)x0 (s

0; t) +
nX
i=1

pi (s
0; t)

)
f (t) dt; f (t) =

nY
i=1

fi (ti) : (3)

U0 (M js) is the expected truth-telling payo¤of any type-s seller, U0 (M; s0js) is the expected payo¤
of misreporting her type as s0.

For buyer i; incentive feasibility of M requires that given that all other players report their

types truthfully, he would like to participate and report his type truthfully, i.e.,

Ui(tijM) � Ui (t
0
i; tijM) , and (4)

Ui(tijM) � 0 for 8ti; t0i ;where

Ui(tijM) =

Z
S

[vi (s; ti)xi (s; ti)� pi (s; ti)] f0 (sjM) ds, and

Ui (t
0
i; tijM) =

Z
S

[vi (s; ti)xi (s; t
0
i)� pi (s; t0i)] f0 (sjM) ds: (5)
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Ui(tijM) is buyer i0s expected payo¤ from telling the truth, Ui (t0i; tijM) is that from misreporting
his type as t0i.

According to Milgrom and Segal (2002), we can rewrite the constraints (2) and (4). The results

are summarized in the following lemma. The proof of this lemma is put in Appendix A, as the

method used in the proof is standard in the literature of mechanism design.

Lemma 1 For any direct mechanism M and the associated posterior f0 (�jM) of the buyers, we
can derive that

1. IC constraint (2) for the seller holds if and only if

x0 (s) � x0 (s0) if s � s0;8s; s0 2 S (6)

U0 (M js) =
Z s

s

v00 (~s)x0 (~s) d~s+ U0 (M js) ; 8s 2 S: (7)

2. Buyers�IC and IR constraints in (4) hold if and only ifZ ti

t0i

�Z
S

v0i2
�
s; ~ti

� �
xi
�
s; ~ti

�
� xi (s; t0i)

�
f0 (sjM) ds

�
d~ti � 0, 8ti; t0i 2 Ti; (8)

Ui (tijM) =
Z ti

ti

�Z
S

v0i2
�
s; ~ti

�
xi
�
s; ~ti

�
f0 (sjM) ds

�
d~t+ Ui (tijM), 8ti 2 Ti; (9)

Ui (tijM) � 0 : (10)

As one can see, di¤erent from the classical mechanism design problems, to make a mechanism

with an informed principal incentive feasible, it requires that the probability of the seller keeping

this object be nondecreasing with her type (condition (6)) and expect payo¤ of the seller be in a

certain structure (condition (7)).

This lemma can also be applied to the interdependent value case in which every player�s

valuation for the object depends on all other buyers�private information in the form that v0 (s; t) =

u0 (s) + '0 (t) and vi (s; t) = ui (s; ti) + 'i (t�i). If ui (s; ti) is in additive form, i.e., ui (s; ti) =

gi (s) + hi (ti), then condition (8) can be simpli�ed toZ
S

xi (s; ti) f0 (sjM) ds �
Z
S

xi (s; t
0
i) f0 (sjM) ds for ti � t0i:

That is, the expected probability of buyer i getting this object is increasing in ti.

3.1 Inscrutability Principle

The game of mechanism design with an informed seller has the feature of signaling games that

the choice of mechanism may signal to the buyers about the seller type. This signaling feature
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potentially complexes our analysis dramatically. However, thanks to the principle of inscrutability

introduced in Myerson (1983), in analyzing seller�s revenue-maximizing mechanisms, we can with

loss of generality assume that all types of the seller in equilibrium propose the same mechanism,

thus the choice of mechanism reveals no private information of the seller in the mediated mechanism

design game. This principle can be formally stated in the following lemma.

Lemma 2 (Inscrutability Principle, Myerson (1983)) For any equilibrium of the mechanism de-

sign game with an informed seller, there exists an equilibrium in which all types of the seller choose

the same incentive feasible mechanism and get the same payo¤s as in the original equilibrium.

In this subsection, we prove this principle for the case in which every type of seller plays a pure

strategy in the mechanism selection stage. The proof for the case of mixed strategy can be found

in Appendix B.

Proof. Consider a partition
�
Sl
	
l2I of S, where I is a set of index that can be �nite or in�nite.�

Sl
	
l2I is de�ned in a way that di¤erent types of the seller in the same element S

l choose the

same mechanism M l, but the mechanisms across elements are di¤erent, and the seller in Sl has

no incentive to change his mechanism to one corresponding to Sl
0
; l0 6= l.2 Thus, by choosing

mechanismM l, the seller signals the buyers that her type belongs to Sl: According to the revelation

principle, we can assume thatM l is a direct incentive feasible mechanism without loss of generality.

That is,M l satis�es (1), (2), and (4). The self-signaling property of the partition and the incentive

compatibility of M l imply that

U0
�
M ljs

�
� U0(M l0js); for s 2 Sl; l0 6= l: (11)

We can construct an inscrutable mechanism M in the following way,(
x (s; t) = xl (s; t)

p (s; t) = pl (s; t)
; if s 2 Sl; l 2 I (12)

where xl (s; t) and pl (s; t) are the allocation function and payment function of mechanism M l,

respectively. It is clear that if every type of the seller chooses the mechanism M , IC constraints

for the buyers still hold, because

Ui(tijM) =

Z
l2I

�
Ui(tijM l) �

Z
Sl
f0 (s) ds

�
dl

�
Z
l2I

�
Ui
�
t0i; tijM l

�
�
Z
Sl
f0 (s) ds

�
dl = Ui (t

0
i; tijM) ;

2If the seller with her type in one element of the partition would like to deviate to the mechanism corresponding
to another element of the partion, then we can rede�ne the partition.
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where the �rst and last equalities are from the de�nition of M; and the inequality is derived using

the incentive compatibility of M l.3 The IR constraints can be veri�ed similarly.

The construction of M immediately implies that any type of the seller has no incentive to

misreport her signal due to the incentive compatibility of M l, l 2 I, and (11). By the truthfully
reporting her type, the seller gets the same payo¤ as in the original strategy

�
M l
	
l2I .

Given this principle, in the rest of our analysis of the mediated game, we can focus on the case

in which all types of the seller choose the same mechanism. This means that on the equilibrium

path, the posterior of the buyers after observing the selected mechanism can always be assumed

to be the same as their prior.

3.2 Full-information Optimal Mechanism

As we move from the full-information case in which the seller�s signal is public knowledge to the

case of informed seller, a natural question for one to ask is whether the full-information optimal

mechanism is incentive feasible in the informed-seller case. We address this question in this

subsection and study how the privacy of the seller�s information changes the seller�s problem.

In the full-information case, the seller is a mechanism designer, but not a player in a mechanism.

Each type s 2 S of the seller chooses the mechanism solving the following problem,

max
x(s;t) ;p(s;t)

Z
T

(
v0 (s)x0 (s; t) +

nX
i=1

pi (s; t)

)
f (t) dt

s.t. Ui(tijs;M) � Ui (t0i; tijs;M) , and Ui(tijs;M) � 0, for 8ti; t0i ;
Feasibility Condition (1) ;

where Ui(tijs;M) = vi (s; ti)xi (s; ti) � pi (s; ti) and Ui (t0i; tijs;M) = vi (s; ti)xi (s; t
0
i) � pi (s; t0i).

According to Milgrom and Segal (2002), the IC and IR constraints can be replaced by the following

conditions

xi (s; ti) � xi (s; t0i), if ti � t0i ; (13)

Ui(tijs;M) =
Z ti

ti

v0i2
�
s; ~ti

�
xi
�
s; ~ti

�
d~t+ Ui (tijs;M) ; (14)

Ui (tijs;M) � 0 : (15)

Solving the pi (s; ti) from (14), substituting it into the objective function, and using integration

3This argument for the buyers shows that moving from the informative strategy
�
M l
	
l2I to the inscrutable

strategy M , the interim expected payo¤s of the buyers may be changed. But their ex post payo¤s are unchanged.
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by parts, we can obtain

max
x(s;t)

v0 (s) +

Z
T

nX
i=1

[Ji (s; ti)� v0 (s)]xi (s; t) f (t) dt�
nX
i=1

Ui (tijs;M)

s.t. (13) ; (15) ; and (1) :

Ji (s; ti) is the virtual valuation of buyer i with signal ti and has expression

Ji (s; ti) = vi (s; ti)�
1� Fi (ti)
fi (ti)

v0i2 (s; ti) ; (16)

where v0i2 (s; ti) is the �rst order derivative of vi (s; ti) with respect to ti. To simplify our analysis,

throughout this paper, we put the following assumption which is satis�ed for some commonly used

functional forms of vi when the hazard rate fi (ti) = [1� Fi (ti)] is nondecreasing in ti, for example,
the linear form vi (s; ti) = �s+ �ti; �; � > 0 and the multiplicative form vi (s; ti) = u (s) � ti.

Assumption 1 Ji (s; ti) = vi (s; ti)� 1�Fi(ti)
fi(ti)

v0i2 (s; ti) is increasing in ti, and Ji (s; �ti) > v0 (s) ; for

8i;8s 2 S:

Under this assumption, the optimal allocation rule xF : S � T ! [0; 1]n can be characterized

as (
xFi (s; t) > 0; only if Ji (s; ti) � max fmaxk 6=i fJk (s; tk)g ; v0 (s)g ;Pn

i=1 x
F
k (s; t) = 1; if maxk fJk (s; tk)g � v0 (s) :

(17)

The superscript F is to indicate that it is of the full-information optimal mechanism. One can

�nd that xF automatically satis�es the monotonicity constraint (13). The expected payo¤ of each

buyer with the lowest type in optimality is 0, i.e.,
Pn

i=1 Ui (tijs;M) = 0, which can be immediately
seen from the seller�s maximization problem above. The optimal payment rule pF : S � T ! Rn,

which is not unique, can be solved from (14). In the rest of the paper, we use MF to denote the

full-information optimal mechanism composed of
�
xF ; pF

�
.

To proceed, let UF0 (s) be the optimal expected payo¤ of type-s seller in the full-information

case, i.e.,

UF0 (s) = v0 (s) +

Z
T

nX
i=1

[Ji (s; ti)� v0 (s)]xFi (s; t) f (t) dt

= v0 (s)x
F
0 (s) +

Z
T

nX
i=1

Ji (s; ti)x
F
i (s; t) f (t) dt: (18)

We de�ne g (s; x) � v0 (s)x0+
R
T

Pn
i=1 Ji (s; ti)xi (t) f (t) dt in which x0 = 1�

R
T

Pn
i=1 xi (t) f (t) dt,

and let g01 (s; x) and J
0
i1 (s; ti) be the partial derivatives of g and Ji with respect to s, respectively.

It is easy to verify that g (s; x) is absolutely continuous and di¤erentiable with respect to s for
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any feasible allocation rule x, and since the derivatives of v0 and Ji are all bounded, there exists

a large number b such that

sup
x(t)

jg01 (s; x)j = sup
x(t)

�����v00 (s)x0 +
Z
T

nX
i=1

J 0i1 (s; ti)xi (t) f (t) dt

����� � b for 8s:
According to Theorem 1 and Theorem 2 of Milgrom and Segal (2002), we can derive that

UF0 (s) =

Z s

s

g01
�
~s; xF (~s)

�
d~s+ UF0 (s) ; (19)

in which xF (s; �) : T ! [0; 1]n represents the full-information optimal allocation rule for the type-s

seller, and

g01
�
s; xF (s; �)

�
= v00 (s)x

F
0 (s) +

Z
T

nX
i=1

J 0i1 (s; ti)x
F
i (s; t) f (t) dt: (20)

If the seller�s signal becomes private, is the full-information optimal mechanism MF incentive

feasible in the mediated game? To answer this question, we check the IC and IR constraints for

all the players. For each buyer, one can see that (13), (14), and (15) are su¢ cient for (8), (9), and

(10) ; regardless of the posterior of the buyers. Thus, if all other players report truthfully, it is

incentive compatible and individually rational for a buyer to report his type truthfully. But this

may not be the case for the seller. If MF is executed by a mediator, the constraint (6) might be

satis�ed, and the expected revenue for type-s seller to tell the truth is U0
�
MF js

�
= UF0 (s), i.e.,

equal to her full-information optimal expected revenue. Since UF0 (s) satis�es (19), there is

U0
�
MF js

�
=

Z s

s

g01
�
~s; xF (~s)

�
d~s+ U0

�
MF js

�
:

But this is not consistent with the constraint (7) which requires that

U0
�
MF js

�
=

Z s

s

v00 (~s)x
F
0 (~s) d~s+ U0

�
MF js

�
for MF to be incentive compatible for the seller, becauseZ s

s

g01
�
~s; xF (~s)

�
d~s�

Z s

s

v00 (~s)x
F
0 (~s) d~s =

Z s

s

Z
T

nX
i=1

J 0i1 (~s; ti)x
F
i (~s; t) f (t) dtd~s: (21)

Therefore, as long as the di¤erence in (21) is not zero, MF is not incentive feasible due to the

failure of the seller�s IC constraint.4

4This result indicates that if the seller�s signal does not enter the buyers�valuation for the object, i.e., the model
is a private-value model, then J 0i1 (s; ti) = 0 for 8s; ti, and the di¤erence in (21) is equal to 0. Therefore, MF is
incentive feasible. This result implies that in the private-value case, the expected revenue of the seller with private
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When the seller�s signal directly a¤ects the valuation of the buyers, i.e., in the interdependent

value case, it is hard to have the di¤erence in (21) be zero for any s 2 S. If Ji (s; ti) changes
with s in an arbitrary way, it becomes impossible for one to track the deviations of MF from the

incentive feasible mechanisms for di¤erent s 2 S. In order to get rid of this problem, in the rest
of the paper we are going to impose the following important assumption:

Assumption 2 Ji (s; ti) is increasing in s for 8ti 2 Ti;8i; :

This assumption is also satis�ed for some commonly adopted functional forms of vi, for example,

the linear form vi (s; ti) = �s+ �ti, �; � > 0; and the multiplicative form vi (s; ti) = u (s) � ti when
ti � (1� Fi (ti)) =fi (ti) > 0 for 8ti. Under this assumption, the term in (21) is always positive.

This indicates that MF gives too much revenue to the seller of type s > s than that required by

the IC constraint. The next lemma points out the source thatMF fails to be incentive compatible

for the seller.

Lemma 3 Given Assumption 2, a lower type seller would have incentive to misreport her type
(locally) upwards when MF is executed by the mediator and all buyers truthfully report their types.

Proof. When MF is executed by the mediator and all buyers report sincerely, a type-s seller,

s 2 [s; �s), would get expected revenue U0
�
MF js

�
= UF0 (s) from reporting truthfully, where U

F
0 (s)

is given by (18). If the seller misreports her type as ŝ instead, she can get expected revenue

U0
�
MF ; ŝjs

�
= v0 (s)x

F
0 (ŝ) +

Z
T

nX
i=1

Ji (ŝ; ti)x
F
i (ŝ; t) f (t) dt (22)

= U0
�
MF jŝ

�
� [v0 (ŝ)� v0 (s)]xF0 (ŝ) :

To examine the incentive of misreporting, we take the di¤erence of these two expected revenues

and obtain

U0
�
MF ; ŝjs

�
� U0

�
MF js

�
= U0

�
MF jŝ

�
� U0

�
MF js

�
� [v0 (ŝ)� v0 (s)]xF0 (ŝ)

=

Z ŝ

s

g01
�
~s; xF (~s)

�
d~s�

Z ŝ

s

v00 (~s)x
F
0 (ŝ) d~s

=

Z ŝ

s

(
v00 (~s)

�
xF0 (~s)� xF0 (ŝ)

�
+

Z
T

nX
i=1

J 0i1 (~s; ti)x
F
i (~s; t) f (t) dt

)
d~s;

where the �rst equality is obtained using (22), the second equality is due to (19), and the third

equality is derived according to the de�nition of g01
�
s; xF (s)

�
in (20).

Let ŝ = s +�. When � is an arbitrarily small positive number, due to the continuity of xF0 ,

information is no less than that in the full-information case. This is consistent with the �nding of Mylovanov and
Tröger (2012).
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v00 (~s)
�
xF0 (~s)� xF0 (ŝ)

�
is arbitrarily small for ~s 2 [s; ŝ).5 However, the second term in the large

bracket is bounded from zero. Thus, in this case there is U0
�
MF ; ŝjs

�
� U0

�
MF js

�
> 0. That is,

the type-s seller gets better o¤ from misreporting (locally) upwards.

This lemma is not as redundant as it seems. Pinning down the reason why MF fails the IC

constraint of the seller is not only helpful for us to learn about the e¤ect of private information

on the design of auction mechanism, but also, and more importantly, gives us an idea on how to

adjust the MF so that the modi�ed the mechanism is incentive feasible. This idea is proved to be

crucial for our analysis in the following subsection on safe mechanisms.

3.3 Safe Mechanisms

Subsection 3.1 shows that in the mediated mechanism design game, without loss of generality,

one can assume that all types of the seller propose the same mechanism in equilibrium, and the

posterior of the buyers about the seller�s type is the same as their prior after observing the selected

mechanism. This inscrutability principle frees us from belief updating in equilibrium analysis, but

does not completely free us from concerns on beliefs: the prior of the buyers still plays an important

in determining the incentive feasibility of a mechanism.

This subsection is denoted to studying the set of mechanisms whose incentive feasibility is

completely belief-free. We call this set of mechanisms as safe mechanisms, which is �rstly de�ned

and studied by Myerson (1983). Below is the formal de�nition of the safe mechanisms.

De�nition 1 A mechanism is a safe if it is incentive feasible and satis�es the IC and IR con-

straints of the buyers when the seller�s signal is publicly known.

The concept of safe mechanism is one that lies between interim incentive feasible mechanism

and ex post incentive feasible mechanism. The set of interim incentive feasible mechanisms is

characterized by lemma 1, it only requires that a mechanism is incentive compatible when the

players only know their own types. An ex post mechanism requires that no one have incentive to

misreport his/her type when all other players types are publicly known, thus is more demanding

than a safe mechanism.

According to this de�nition, one can see that if mechanismM is safe, then it satis�es constraints

(6), (7) in lemma 1, and (13), (14), and (15). The incentive feasibility of safe mechanisms is belief-

free, because regardless of f (�jM), (13), (14), and (15) imply (8), (9), and (10) in lemma 1.
The next lemma characterizes the set of safe mechanisms:

5The continuity of xF0 can be easily proved. Let ri (s) be the "reserve price" set by the seller of type s for buyer
i. That is, if buyer i has type ti < ri (s), he has no chance to get this object regardless of the types of other buyers.
The value of ri (s) is determined by Ji (s; ri (s)) � v0 (s) = 0: The di¤erentiability of Ji with respect to its two
arguments implies that ri (s) is di¤erentiable in s. The de�nition of xF0 gives that x

F
0 (s) =

Qn
i=1 Fi (ri (s)). Fi are

continutous, thus xF0 (s) is continuous.
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Lemma 4 A mechanism M is safe if and only if it satis�es the following constraints, for 8s 2 S,
t 2 T;

v0 (s) +

Z
T

nX
i=1

[Ji (s; ti)� v0 (s)]xi (s; t) f (t) dt�
nX
i=1

Ui (tijs;M) =
Z s

s

v00 (~s)x0 (~s) d~s+ U0 (M js) ;

(23)

x0 (s) � x0 (s0) , xi (s; ti) � xi (s; t0i) ; if s � s0 2 S; ti � t0i 2 Ti;Pn
i=1 xi (s; t) � 1; xi (s; t) � 0;
Ui (tijs;M) � 0; and

pi (s; ti) = vi (s; ti)xi (s; ti)�
Z ti

ti

v0i2
�
s; ~ti

�
xi
�
s; ~ti

�
d~ti � Ui (tijs;M) :

Condition (23) is derived by rewriting U0 (M js) into a function of allocation rule and Ui(tijs;M)
as we did in the full-information case in rewriting the seller�s objective function. Speci�cally, given

the de�nition of Ui(tijs;M), we can solve out pi (s; ti) from (14). Substituting the expression of

pi (s; ti) into U0 (M js) and using integration by parts, we can transform (7) to (23). All other

conditions in the lemma are directly from (1), (6) ; (13), (14), and (15). We list all of them here

explicitly for the convenience of readers.

It is easy to see that the set of safe mechanisms is nonempty. The mechanism which has

the seller always keep the object, i.e., the mechanism with xi (s; t) = 0 and pi (s; t) = 0 for

i = 1; 2; : : : ; n, s 2 S; t 2 T; satis�es all the constraints in lemma 4, thus is safe.
Moreover, the set is not a singleton and is convex. Based on the insight provided by lemma 3,

we can construct a safe mechanism M̂ by modifying MF .6 Speci�cally, let the allocation rule x̂ of

M̂ be de�ned as8<: x̂0 (s) = x
F
0 (s) , x̂0 (s) = sup~s2[s;s]

�
xF0 (~s)

	
for s > s; and

x̂ (s; �) 2 argmaxx(t)
�Z

T

Pn
i=1 [Ji (s; ti)� v0 (s)]xi (t) f (t) dt, s.t. x0 = x̂0 (s)

�
;

(24)

in which x̂ (s; �) : T ! [0; 1]n is the allocation rule of x̂ given s. Ui
�
tijs; M̂

�
� 0, i = 1; 2; : : : ; n,

be constructed such that

nX
i=1

Ui

�
tijs; M̂

�
= v0 (s)+

Z
T

nX
i=1

[Ji (s; ti)� v0 (s)] x̂i (s; t) f (t) dt�
Z s

s

v00 (~s) x̂0 (~s) d~s�U0
�
MF js

�
:

Due to assumption 2,
Pn

i=1 Ui

�
tijs; M̂

�
is positive for s > s. The proof can be found in the

Appendix C. The payment rule p̂ (s; t) of M̂ can be de�ned based on x̂i (s; t) and Ui
�
tijs; M̂

�
6This is not the simplest way of constructing a safe mechanism. Choosing to contruct this mechanism, instead

of other simpler ones, would facilitate our discussion in the rest of the paper.
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using the last constraint in lemma 4. One can verify that M̂ satis�es all the constraints in lemma

4. The convexity of the set of safe mechanisms is straightforward, so we omit its proof here.

In the case of mechanism design by an informed seller, we usually cannot �nd an incentive

feasible mechanism that maximizes the revenue of each type of the seller. However, if we reduce

our choice set to the set of safe mechanisms, we can �nd such a mechanism. That is, there is a safe

mechanism that yields each type of the seller a payo¤ no less than does any other safe mechanism.

Maskin and Tirole (1992) call such a mechanism as Rothschild-Stiglitz-Wilson (RSW) mechanism.

Their analysis of the one-principal/one-agent case is centered on this mechanism.

The next proposition characterizes the RSW mechanism in our auction setting. One can �nd

that a RSW mechanism can be derived by properly raising the reserve prices of MF only. The

lowest type of the seller gets the same revenue as inMF , but all other types of the seller get worst

o¤ than in MF .

Proposition 1 Under Assumption 1 and Assumption 2, a safe mechanism M� is a RSW mech-

anism if and only if it satis�es the following three conditions,

1. x� (s; �) 2 argmaxx(t)
�Z

T

Pn
i=1 [Ji (s; ti)� v0 (s)]xi (t) f (t) dt, s.t. x0 = x�0 (s)

�
, and x�0 (s) �

xF0 (s), 8s 2 S;

2. Ui (tijs;M�) = 0, 8s; i = 1; 2; : : : n;

3. The lowest type of the seller gets her optimal full-information payo¤, i.e.,

U0 (M
�js) = U0

�
MF js

�
:

Proof. (1) The su¢ ciency of the three conditions:
Suppose thatM� is a safe mechanism satisfying all the three conditions, but there exists a safe

mechanism M such that for some s 2 S, U0 (M js) > U0 (M�js). If this is true, then there should
be Z s

s

v00 (~s)x0 (~s) d~s+ U0 (M js) >
Z s

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
;

according to (23). Since U0 (M js) � U0
�
MF js

�
, we haveZ s

s

v00 (~s)x0 (~s) d~s >

Z s

s

v00 (~s)x
�
0 (~s) d~s.

This inequality holds only if there is a set SM � [s; s] such that x0 (s) > x�0 (s) for s 2 SM : Let
ssup be the supremum of SM . If ssup =2 SM , then we can �nd a s" 2 SM that is arbitrarily close to

ssup. De�ne

sM =

(
ssup, if ssup 2 SM ;
s", if ssup =2 SM :
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So sM 2 SM , and
x0
�
sM
�
> x�0

�
sM
�
: (25)

Then we have Z sM

s

v00 (~s)x0 (~s) d~s+ U0 (M js) >
Z sM

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
;

because the set
�
sM ; ssup

�
is arbitrarily small or empty and for 8s0 2 (ssup; s], x0 (s0) � x�0 (s

0).

According to equation (23) and condition 2 above which implies that
Pn

i=1 Ui
�
tijsM ;M�� = 0, we

obtain Z
T

nX
i=1

�
Ji
�
sM ; ti

�
� v0

�
sM
��
xi
�
sM ; t

�
f (t) dt�

nX
i=1

Ui
�
tijsM ;M

�
>

Z
T

nX
i=1

�
Ji
�
sM ; ti

�
� v0

�
sM
��
x�i
�
sM ; t

�
f (t) dt:

Pn
i=1 Ui

�
tijsM ;M

�
is nonnegative, so

Z
T

nX
i=1

�
Ji
�
sM ; ti

�
� v0

�
sM
��
xi
�
sM ; t

�
f (t) dt >

Z
T

nX
i=1

�
Ji
�
sM ; ti

�
� v0

�
sM
��
x�i
�
sM ; t

�
f (t) dt;

Since M� satis�es condition 1 of the proposition, this inequality contradicts (25). Thus, M� is a

RSW mechanism.

(2) The necessity of the three conditions:

Suppose that M� is a RSW mechanism. It is easy to show that the third condition is satis�ed

by M�. Equation (23) indicates that U0
�
MF js

�
� U0 (M

�js). Since no other safe mechanisms
could yield any type of the seller a higher payo¤ than does M�, there is U0 (M�js) � U0

�
M̂ js

�
=

U0
�
MF js

�
, in which M̂ is the safe mechanism constructed below lemma 4. So U0 (M�js) =

U0
�
MF js

�
.

We prove the �rst and second conditions together. Suppose that the �rst condition is not

satis�ed by M�, then it must be the case that for some s, either

x� (s; �) =2 argmax
x(t)

�Z
T

Pn
i=1 [Ji (s; ti)� v0 (s)]xi (t) f (t) dt, s.t. x0 = x�0 (s)

�
or x�0 (s) < xF0 (s) or both. If the �rst case happens, then we can always construct a new RSW

mechanism �M� by adjusting the allocation rule of M� such that

�x� (s; �) 2 argmax
x(t)

�Z
T

Pn
i=1 [Ji (s; ti)� v0 (s)]xi (t) f (t) dt, s.t. x0 = x�0 (s)

�
;
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so �x�0 (s) = x
�
0 (s) : The expected payo¤ to the lowest type of each buyer under �M

� is de�ned in

the following way so that the equation (23) holds,

nX
i=1

Ui
�
tijs; �M�� =

nX
i=1

Ui (tijs;M�) +

Z
T

nX
i=1

Ji (s; ti) �x
�
i (s; t) f (t) dt�

Z
T

nX
i=1

Ji (s; ti)x
�
i (s; t) f (t) dt

>
nX
i=1

Ui (tijs;M�) � 0: (26)

The �rst inequality is from the de�nition of �x�. The second inequality is based on the supposition

that M� is a RSW mechanism. (26) implies that the failure of the �rst part of condition 1 is

equivalent to the failure of conditions 2. Thus, in the rest of our proof, we assume that the M�

satis�es the �rst part of condition 1, and show that x�0 (s) � xF0 (s) and condition 2 must hold.
Suppose for some s1; x�0 (s1) < xF0 (s1). According to the continuity of x

F
0 (s), there exists

s2 < s1 (s2 close to s) such that x�0 (s1) < x
F
0 (s2). We construct a safe mechanism M which has

xMi (s; t) =

(
x�i (s; t) , for s < s2;

xFi (s2; t) , for s � s2
(27)

and Ui (tijs;M) satis�es

nX
i=1

Ui (tijs;M) (28)

=

8<:
Pn

i=1 Ui (tijs;M�) , if s < s2;

v0 (s)x
M
0 (s) +

Z
T

Pn
i=1 Ji (s; ti)x

M
i (s; t) f (t) dt�

Z s

s

v00 (~s)x
M
0 (~s) d~s� U0

�
MF js

�
, if otherwise.

Proof for the safety of M can be found in the Appendix D. In mechanism M , the seller with a

signal s 2 [s2; s1] gets higher expected revenue than under M�, because for s 2 [s2; s1],Z s

s

v00 (~s)x
M
0 (~s) d~s+ U0

�
MF js

�
=

Z s2

s

v00 (~s)x
�
0 (~s) d~s+

Z s

s2

v00 (~s)x
F
0 (s2) d~s+ U0

�
MF js

�
>

Z s2

s

v00 (~s)x
�
0 (~s) d~s+

Z s

s2

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
=

Z s

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
;

where the �rst equality is from the de�nition of xM , the inequality is based on that x�0 (s1) <

xF0 (s2). This is a contradiction to that M
� is a RSW mechanism.

Let us turn to condition 2. Suppose that for some ŝ > s,
Pn

i=1 Ui (tijŝ;M�) > 0. Then we can
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show that there exist some � > 0 such that over the interval [ŝ� �; ŝ],

inf
s2[ŝ��;ŝ]

nX
i=1

Ui (tijs;M�) > 0: (29)

The proof of it is put in the Appendix E. Given this result, we can construct a safe mechanism

M " making all types of the seller in the set [ŝ� �; ŝ] strictly better o¤. Speci�cally, the allocation
rule of M " is de�ned as

x" (s; t) = x� (s; t) , for s < ŝ� �;

x" (s; �) = argmax
x(t)

�Z
T

Pn
i=1 [Ji (s; ti)� v0 (s)]xi (t) f (t) dt, s.t. x0 = x�0 (s) + "

�
, for s 2 [ŝ� �; ŝ] ;

x" (s; t) = x" (ŝ; t) , for s > ŝ:

The
Pn

i=1 Ui (tijs;M�) of M " is constructed in the following way,

nX
i=1

Ui (tijs;M ")

=

8>>>>>>>><>>>>>>>>:

Pn
i=1 Ui (tijs;M�) , if s < ŝ� �

Pn
i=1 Ui (tijs;M�)�

8><>:
Z
T

Pn
i=1 Ji (s; ti)x

�
i (t) f (t) dt

�
Z
T

Pn
i=1 Ji (s; ti)x

"
i (t) f (t) dt� "v0 (ŝ� �)

9>=>; , if s 2 [ŝ� �; ŝ]
v0 (s)x

"
0 (s) +

Z
T

Pn
i=1 Ji (s; ti)x

"
i (s; t) f (t) dt�

Z s

s

v00 (~s)x
"
0 (~s) d~s� U0

�
MF js

�
, if s > ŝ

:

When " is small enough, M " is safe. The proof is put in the Appendix F. Here we show that the

seller with s 2 [ŝ� �; ŝ] gets better o¤. For s 2 [ŝ� �; ŝ] ; the di¤erence of the seller�s payo¤s
under M " and M� isZ s

s

v00 (~s)x
"
0 (~s) d~s�

Z s

s

v00 (~s)x
�
0 (~s) d~s =

Z s

ŝ��
v00 (~s) "d~s > 0:

This again contradicts thatM� is a RSW mechanism. Thus, condition 2 must be satis�ed forM�.

This �nally completes our proof.

Lemma 3 points out that it is the seller�s incentive to misreport upwards that prevents MF

to be incentive compatible. Intuitively, this is because an upward deviation allows them to sell

the object at a relatively higher price, even though the probability of trading might be reduced.

This intuition suggests two ways to disincentivize the lower types of the seller to misreport, thus

make a mechanism incentive compatible, based on the fact that the payo¤ of the seller is totally

determined by x and
Pn

i=1 Ui (tijs;M). These two ways are, (1) to increase the reserve prices
of mechanisms adopted by a high-type seller, thus decrease the probability of selling the object,
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and (2) to increase the expected payo¤s of the lowest types of the buyers (this is equivalent to

uniformly decreasing the payment of the buyers).

Proposition 1 tells us that from the seller�s perspective, the �rst approach outperforms the

second one. This is because the �rst one is less costly to the higher type seller whom the lower

type is trying to mimic. Both of these two approaches eliminate the incentive of the lower type

seller to misreport upward by reducing her "cheating bene�ts" by certain amount. To achieve this

reduction, the second approach is equivalent to letting the higher type seller to give up the same

amount of revenue. The �rst way increases the probability of the seller to receive no payments

and keeping the object, which makes the higher type seller lose less than the lower type, as the

higher type values the object more.7

There are two ways to prove the existence of RSW mechanisms. The �rst way is like what

Maskin and Tirole (1992) did for the one-principal/one-agent case. The other way is to reduce

the problem of proving the existence of the mechanism to the problem of proving the existence of

a function x0 : S ! [0; 1] satisfying conditions (23) and the �rst condition in Proposition 1.

Proposition 2 There exists a RSW mechanism.

Proof. See Appendix G.

Corollary 1 In a RSW mechanism, x0 : S ! [0; 1], the probability that the seller keeps the object,

is continuous and strictly increasing in s if x0 (s) < 1.

Proof. See Appendix G.

4 Mechanism Design without Inscrutability

In the section above, we considered a mechanism selection game in which the seller is inscrutable

in equilibrium. In this section, we analyze a game in which the principle of inscrutability fails.

That is, we can no long restrict our attention to the cases where all possible types of the seller

propose the same mechanism.

In the game of this section, a mechanism selected by a seller is not a function of a selller�s

report. Taking direct revelation mechanisms for example. A direct revelation auction mechanism

M consists of an allocation function x : T ! [0; 1]n and a payment function p : T ! Rn, with

x (t) = (x1 (t) ; x2 (t) ; : : : ; xn (t)) ;

p (t) = (p1 (t) ; p2 (t) ; : : : ; pn (t)) ;

7When the reserve prices are increased, the payments of the buyers become higher in the case that there is only
one buyer having a type higher than his reserve price. However, compared with the e¤ect of reserve prices on the
probability of trading, this is second order.
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where xi (t) and pi (t) are respectively buyer i�s probability of getting the object and payment

under t. x (t) should satisfy the feasibility constraint

Pn
i=1 xi (t) � 1 and xi (t) � 0, for 8t:

Based on the insights derived in the above section, we have the following proposition.

Proposition 3 Suppose that the strategy space of the seller is the set of mechanisms which have
buyer-equilibria regardless of buyers�beliefs above the seller�s type. The RSW mechanism in the

mediated mechanism selection game can be supported as the equilibrium strategy of the seller in

the seller-optimal separating equilibrium.

Proof. The trickiest part of this proof is to �nd a system of belief to support RSW mechanism

as the seller�s equilibrium strategy. We put this proof in Appendix H.

This proposition, combining with the characterization of the RSW mechanism, provides a

support for the literature on reserve price signaling (Jullien and Mariotti, 2006; Cai, Riley and

Ye, 2007): the seller only uses the reserve price to signal herself, even if she has the freedom to

vary the whole mechanism.

References

[1] Balkenborg, Dieter, and Miltiadis Makris. 2015. "An Undominated Mechanism for a Class

of Informed Principal Problems with Common Values," Journal of Economic Theory. Forth-

coming.

[2] Cai, Hongbin, John Riley, and Lixin Ye. 2007. "Reserve Price Signaling," Journal of Economic

Theory. Vol. 135, No. 1, pp. 253-268.

[3] Jullien, Bruno, and Thomas Mariotti. 2006. "Auction and the Informed Seller Problem,"

Games and Economic Behavior. Vol. 56, No. 2, pp. 225-258.

[4] Kremer, Ilan, and Andrzej Skrzypacz. 2004. "Auction Selection by an Informed Seller,"

mimeo.

[5] Mailath, George. 1987. "Incentive Compatibility in Signaling Games with a Continuum of

Types," Econometrica. Vol. 55, No. 6, pp. 1349-1365

[6] Maskin, Eric, and Jean Tirole. 1990. "The Principal-Agent Relationship with an Informed

Principal: The Case of Private Values," Econometrica. Vol. 58, No. 2, pp. 379-409.

19



[7] Maskin, Eric, and Jean Tirole. 1992. "The Principal-Agent Relationship with an Informed

Principal, II: Common Values," Econometrica. Vol. 60, No. 1, pp. 1-42.

[8] Milgrom, Paul, and Ilya Segal. 2002. "Envelope Theorems for Arbitrary Choice Sets," Econo-

metrica. Vol. 70, No. 2, pp. 583-601.

[9] Myerson, Roger. 1981. "Optimal Auction Design," Mathematics of Operations Research. Vol.

6, No. 1, pp. 58-73.

[10] Myerson, Roger. 1983. "Mechanism Design by an Informed Principal," Econometrica. Vol.

51, No. 6, pp. 1767-1797.

[11] Mylovanov, Tymo�y, and Thomas Tröger. 2012a. "Informed-principal Problems in Environ-

ments with Generalized Private Values," Theoretical Economics. Vol. 7, No. 3, pp. 465-488.

[12] Mylovanov, Tymo�y, and Thomas Tröger. 2012b. "Irrelevancy of the Principal�s Private In-

formation in Independent Private Values Environments," mimeo.

[13] Mylovanov, Tymo�y, and Thomas Tröger. 2015. "Mechanism Design by an Informed Princi-

pal: The Quasi-linear Private-values Case," Review of Economic Studies. Forthcoming.

[14] Riley, John. 1979. "Informational Equilibrium," Econometrica. Vol. 47, No. 2, pp. 331-359

[15] Severinov, Sergei. 2008. "An E¢ cient Solution to the Informed Principal Problem," Journal

of Economic Theory. Vol. 141, No. 1, pp. 114-133.

[16] Zheng, Z. Charles. 2012. "Goethe�s Secret Reserve Price," mimeo.

20



Appendix

A. Proof for Lemma 1

To be added.

B. Proof for Lemma 3.1

To be added.

C. M̂ is a Safe Mechanism

It is clear that M̂ in subsection 3.3 immediately satis�es all the constraints for a safe mechanism,

except that
Pn

i=1 Ui

�
tijs; M̂

�
� 0. Now we prove that this is also true. The de�nition of x̂

implies that for s1 < s2 2 S, either there exists a s0 2 (s1; s2] such that xF0 (s
0) = x̂0 (s2) or

x̂0 (s1) = x̂0 (s2) : In the �rst case,

nX
i=1

Ui

�
tijs2; M̂

�
�

nX
i=1

Ui

�
tijs1; M̂

�
� v0 (s2)x

F
0 (s

0) +

Z
T

nX
i=1

Ji (s2; ti)x
F
i (s

0; t) f (t) dt� v0 (s1) x̂0 (s1)�
Z
T

nX
i=1

Ji (s1; ti) x̂i (s1; t) f (t) dt

�
Z s2

s1

v00 (~s) x̂0 (~s) d~s

� v0 (s2)x
F
0 (s

0) +

Z
T

nX
i=1

Ji (s
0; ti)x

F
i (s

0; t) f (t) dt� v0 (s1) x̂0 (s1)�
Z
T

nX
i=1

Ji (s1; ti) x̂i (s1; t) f (t) dt

�
Z s2

s1

v00 (~s) x̂0 (~s) d~s

� U0
�
MF js0

�
� U0

�
MF js1

�
+ [v0 (s2)� v0 (s0)]xF0 (s0)�

Z s2

s1

v00 (~s) x̂0 (~s) d~s

=

Z s0

s1

g01
�
~s; xF (~s)

�
d~s�

Z s0

s1

v00 (~s) x̂0 (~s) d~s

=

Z s0

s1

(
v00 (~s)

�
xF0 (~s)� x̂0 (ŝ)

�
+

Z
T

nX
i=1

J 0i1 (~s; ti)x
F
i (~s; t) f (t) dt

)
d~s:

The �rst inequality uses the de�nition of x̂ in (24) and the fact that xF0 (s
0) = x̂0 (s2). The

second inequality is derived using the monotonicity of Ji and nonnegativity of xFi (s
0; t). The third

inequality is based on the de�nition of U0
�
MF js0

�
and the optimality of xF . The �rst equality

uses the result of (19) and the fact that x̂0 (s) = xF0 (s
0) for s 2 [s0; s2]: The last equality is obtained

by substituting the expression of g01
�
~s; xF (~s)

�
into the �rst equality. It is clear that if s1 and s2

are arbitrarily close to each other, then this di¤erence is positive.
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If x̂0 (s1) = x̂0 (s2), it is obviously true that
Pn

i=1 Ui

�
tijs2; M̂

�
�
Pn

i=1 Ui

�
tijs1; M̂

�
� 0. Thus,

no matter which case happens,
Pn

i=1 Ui

�
tijs; M̂

�
is nondecreasing in s. Since

Pn
i=1 Ui

�
tijs; M̂

�
=

0,
Pn

i=1 Ui

�
tijs; M̂

�
is never negative.

D. M de�ned by (27) and (28) is Safe

Since M� is safe, the construction of M immediately implies that it satis�es equation (23)

and the feasibility condition. According to (27), xMi (s; ti) and x
M
0 (s) both satisfy the monotonic-

ity conditions.
Pn

i=1 Ui (tijs;M) is always nonnegative, because for s < s2,
Pn

i=1 Ui (tijs;M) =Pn
i=1 Ui (tijs;M�) � 0, and for s = s2,

nX
i=1

Ui (tijs2;M) = v0 (s)x
F
0 (s2) +

Z
T

nX
i=1

Ji (s2; ti)x
F
i (s2; t) f (t) dt�

Z s2

s

v00 (~s)x
�
0 (~s) d~s� U0

�
MF js

�
� v0 (s)x

�
0 (s2) +

Z
T

nX
i=1

Ji (s2; ti)x
�
i (s2; t) f (t) dt�

Z s2

s

v00 (~s)x
�
0 (~s) d~s� U0

�
MF js

�
=

nX
i=1

Ui (tijs2;M�) � 0.

The weak inequality is due to the optimality of xF (s2; �) at s2.
For s > s2,

nX
i=1

Ui (tijs;M) = v0 (s)x
M
0 (s) +

Z
T

nX
i=1

Ji (s; ti)x
M
i (s; t) f (t) dt�

Z s

s

v00 (~s)x
M
0 (~s) d~s� U0

�
MF js

�
= v0 (s)x

F
0 (s2) +

Z
T

nX
i=1

Ji (s; ti)x
F
i (s2; t) f (t) dt

�
Z s2

s

v00 (~s)x
�
0 (~s) d~s�

Z s

s2

v00 (~s)x
F
0 (s2) d~s� U0

�
MF js

�
= v0 (s2)x

F
0 (s2) +

Z
T

nX
i=1

Ji (s; ti)x
F
i (s2; t) f (t) dt�

Z s2

s

v00 (~s)x
�
0 (~s) d~s� U0

�
MF js

�
> v0 (s2)x

F
0 (s2) +

Z
T

nX
i=1

Ji (s2; ti)x
F
i (s2; t) f (t) dt�

Z s2

s

v00 (~s)x
�
0 (~s) d~s� U0

�
MF js

�
=

nX
i=1

Ui (tijs2;M) � 0:

Therefore, M is a safe mechanism.

E. Proof for (29)

Suppose that for some ŝ,
Pn

i=1 Ui (tijŝ;M�) > 0, then there must exist � > 0, such that for

8s 2 [ŝ� �; ŝ],
Pn

i=1 Ui (tijs;M�) > 0. Suppose this is not true, i.e., for 8� > 0, 9s 2 [ŝ� �; ŝ]
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such that
Pn

i=1 Ui (tijs;M�) = 0, then we can �nd a sequence fsng1n=1 converging to ŝ withPn
i=1 Ui (tijsn;M�) = 0 for 8n. According to equation (23), we have

v0 (sn) +

Z
T

nX
i=1

[Ji (sn; ti)� v0 (sn)]x�i (sn; t) f (t) dt =
Z sn

s

v00 (~s)x
�
0 (~s) d~s+ U0 (M

�js) :

By continuity,

lim
n!1

v0 (sn) +

Z
T

nX
i=1

[Ji (sn; ti)� v0 (sn)]x�i (sn; t) f (t) dt =
Z ŝ

s

v00 (~s)x
�
0 (~s) d~s+ U0 (M

�js) : (30)

However, since x�0 (sn) � x�0 (ŝ) and condition 1 of Proposition 1 is satis�ed, there is

v0 (sn)+

Z
T

nX
i=1

[Ji (sn; ti)� v0 (sn)]x�i (sn; t) f (t) dt � v0 (sn)+
Z
T

nX
i=1

[Ji (sn; ti)� v0 (sn)]x�i (ŝ; t) f (t) dt:

The expressions on both sides of the inequality are continuous. By taking limit of them, we can

derive Z ŝ

s

v00 (~s)x
�
0 (~s) d~s+ U0 (M

�js) � v0 (ŝ) +
Z
T

nX
i=1

[Ji (ŝ; ti)� v0 (ŝ)]x�i (ŝ; t) f (t) dt:

This contradicts equation (23), given
Pn

i=1 Ui (tijŝ;M�) > 0. There, we have shown that 9� > 0,
such that for 8s 2 [ŝ� �; ŝ],

Pn
i=1 Ui (tijs;M�) > 0:

Now we further show that 9� 2 (0; �) such that infs2[ŝ��;ŝ]
Pn

i=1 Ui (tijs;M�) > 0: We again

prove this by contradiction. Suppose this is not the case, then it means that for 8� 2 (0; �),

infs2[ŝ��;ŝ]
Pn

i=1 Ui (tijs;M�) = 0: If so, for decreasing positive sequences f�mg1m=1 and f"mg1m=1
with �1 < �; limm!1 �m = 0 and limm!1 "m = 0, we can construct a sequence fsmg1m=1 such that

sm 2 [ŝ� �m; ŝ] and
Pn

i=1 Ui (tijsm;M�) < "m:

This implies that

lim
m!1

sm = ŝ and lim
m!1

Pn
i=1 Ui (tijsm;M�) = 0:

According to equation (23),

lim
m!1

v0 (sm) +

Z
T

nX
i=1

[Ji (sm; ti)� v0 (sm)]x�i (sm; t) f (t) dt

= lim
m!1

Z sm

s

v00 (~s)x
�
0 (~s) d~s+ lim

m!1

nX
i=1

Ui (tijsm;M�) + U0 (M
�js)

=

Z ŝ

s

v00 (~s)x
�
0 (~s) d~s+ U0 (M

�js) : (31)
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However, due to that x�0 (sm) � x�0 (ŝ) and condition 1,

v0 (sm)+

Z
T

nX
i=1

[Ji (sm; ti)� v0 (sm)]x�i (sm; t) f (t) dt � v0 (sm)+
Z
T

nX
i=1

[Ji (sm; ti)� v0 (sm)]x�i (ŝ; t) f (t) dt:

Taking limits on both sides, we deriveZ ŝ

s

v00 (~s)x
�
0 (~s) d~s+ U0 (M

�js) � v0 (ŝ) +
Z
T

nX
i=1

[Ji (ŝ; ti)� v0 (ŝ)]x�i (ŝ; t) f (t) dt;

according to (31). This is a contradiction to equation (23), given
Pn

i=1 Ui (tijŝ;M�) > 0. Therefore,

we have proved that 9� 2 (0; �) such that infs2[ŝ��;ŝ]
Pn

i=1 Ui (tijs;M�) > 0.

F. M " is a Safe Mechanism

Verifying that M " satis�es the equation (23), monotonicity condition, feasibility condition is

straightforward, so we only need to show that
Pn

i=1 Ui (tijs;M ") � 0, for 8s. For s < ŝ � �,Pn
i=1 Ui (tijs;M ") =

Pn
i=1 Ui (tijs;M�) � 0. For s 2 [ŝ� �; ŝ],

Pn
i=1 Ui (tijs;M ") � inf

s2[ŝ��;ŝ]

Pn
i=1 Ui (tijs;M�)�

( R
T

Pn
i=1 Ji (s; ti)x

�
i (t) f (t) dt

�
R
T

Pn
i=1 Ji (s; ti)x

"
i (t) f (t) dt� "v0 (ŝ� �)

)
;

which is positive when " is small enough. For s > ŝ,

Pn
i=1 Ui (tijs;M ") = v0 (s)x

"
0 (ŝ) +

R
T

Pn
i=1 Ji (s; ti)x

"
i (ŝ; t) f (t) dt�

R s
s
v00 (~s)x

"
0 (~s) d~s� U0

�
MF js

�
= v0 (ŝ)x

"
0 (ŝ) +

R
T

Pn
i=1 Ji (s; ti)x

"
i (ŝ; t) f (t) dt�

R s
s
v00 (~s)x

"
0 (~s) d~s� U0

�
MF js

�
� v0 (ŝ)x

"
0 (ŝ) +

R
T

Pn
i=1 Ji (ŝ; ti)x

"
i (ŝ; t) f (t) dt�

R s
s
v00 (~s)x

"
0 (~s) d~s� U0

�
MF js

�
=

Pn
i=1 Ui (tijŝ;M ") � 0;

in which the �rst equality and second equality are from the de�nition of x" (s; �) for s > ŝ, the

inequality is due to that Ji (s; ti) is increasing in s, the last equality holds because at s = ŝ, M "

satis�es equation (23).

G. Existence of RSW Mechanisms

According to Proposition 1 and Lemma 4, a mechanism M� � (x�; p�) is a RSW mechanism if

and only if

1. The allocation rule x� satis�es

v0 (s) +

Z
T

nX
i=1

[Ji (s; ti)� v0 (s)]x�i (s; t) f (t) dt =
Z s

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
;
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and x� (s; �) is a solution of

max
x(t)

�Z
T

Pn
i=1 [Ji (s; ti)� v0 (s)]xi (t) f (t) dt, s.t. x0 = x�0 (s)

�
; (32)

with x�0 (s) � xF0 (s), and x�0 (s) and x�i (s; ti) are respectively weakly increasing in s and ti;

2. The payment rule satis�es

p�i (s; ti) = vi (s; ti)x
�
i (s; ti)�

Z ti

ti

v0i2
�
s; ~ti

�
x�i
�
s; ~ti

�
d~ti:

These conditions imply that to prove the existence of a RSW mechanism, the key is to prove

the existence of a function x�0 (s) that is greater than x
F
0 (s) and weakly increasing in s, and satis�es

v0 (s)+max
x(t)

�Z
T

Pn
i=1 [Ji (s; ti)� v0 (s)]xi (t) f (t) dt, s.t. x0 = x�0 (s)

�
=

Z s

s

v00 (~s)x
�
0 (~s) d~s+U0

�
MF js

�
:

(33)

This is because once there exists such a x�0 (s), we can easily derive x
� and p� satisfying the

above conditions, thus derive a RSW mechanism. Intuitively, given x�0 (s), x
� (s; �) solving the

maximization problem (32) would allocate the object to a buyer with the highest virtual sur-

plus, and if the maximum virtual surplus under pro�le t0 is higher than that under t, thenPn
i=1 x

�
i (s; t

0) �
Pn

i=1 x
�
i (s; t). Thus, characterizing x

� (s; �) is equivalent to �nding a value J
of virtual valuation such that the seller keeps the object if and only if the maximum virtual

valuation under a pro�le t is lower than J . J should satisfy

max
k
fJk (s; tk) : k = 1; : : : ; ng � Jmin (s) � J � Jmax (s) � max

k
fJk (s; �tk) : k = 1; : : : ; ng : (34)

In line with this intuition, we de�ne ri (s; J) as the minimum type of buyer i that has a chance to

get the object given s and J , thus if Ji (s; ti) � J � Ji (s; �ti), ri (s; J) satis�es Ji (s; ri (s; J)) = J ;
if Ji (s; �ti) < J , ri (s; J) = �ti.8 The continuity and monotonicity of Ji (s; ti) in s and ti imply that

ri (s; J) is continuously decreasing in s and continuously increasing in J . The probability of the

seller keeping the object given J is thus
Qn
i=i Fi (ri (s; J)), because the object is left unsold if and

only if the virtual valuations of the buyers are all smaller than J . Condition (33) can be rewritten

as

v0 (s) +
Pn

i=1

Z �ti

ri(s;J
�(s))

Z
T�i(s;ti)

[Ji (s; ti)� v0 (s)] f (t) dt =
Z s

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
, (35)

8According to condition (34), one can varify that Ji (s; ti) > J will not happen.
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where J� (s) and T�i (s; ti) are de�ned as

nY
i=i

Fi (ri (s; J
� (s))) = x�0 (s) ,

T�i (s; ti) �
n
t�i 2 T�i : Ji (s; ti) � max

k
fJk (s; tk) : k < ig , Ji (s; ti) > max

k
fJk (s; tk) : k > ig

o
:

So for any t�i 2 T�i (s; ti), buyer i is the highest indexed agent with the maximum virtual valuation.
This indicates that equation (35) corresponds to an allocation rule which satis�es (32) and allocates

the object to the highest indexed buyer when there is tie in the maximium virtual valuation.

Proving the existence of a RSW mechanism is reduced to proving the existence of a function

x�0 : S ! [0; 1] that is increasing in s and bounded by xF0 and 1, i.e., x
F
0 (s) � x�0 (s) � 1, 8s, and

satis�es equation (35) for any s. To proceed, we de�ne function D (J; s; x0) and mapping �,

D (J; s; x0) = v0 (s)+
Pn

i=1

Z �ti

ri(s;J)

Z
T�i(s;ti)

[Ji (s; ti)� v0 (s)] f (t) dt�
�Z s

s

v00 (~s)x0 (~s) d~s+ U0
�
MF js

��

�x0 (s) =

(
nY
i=1

Fi (ri (s; J (s))) : J (s) = arg min
maxfJmin(s);v0(s)g�J�Jmax(s)

jD (J; s; x0)j
)
:

Once we prove that � has a �xed point x�0 that is increasing in s and bounded by x
F
0 and 1, and

makes D (J� (s) ; s; x�0) = 0, 8s, then the existence of a RSW mechanism is proved.

We use Schauder�s �xed point theorem to complete this proof. First of all, we specify the

domain of �. Let C (S) denote the set of bounded continuous functions h : S ! R endowed

with sup norm, khk = sups2S jh (s)j. Thus, C (S) is a Banach space. We use X0 (S) to represent

the set of continuous functions x0 : S ! R which are increasing and bounded by xF0 and 1, so

X0 (S) � C (S). X0 (S) is nonempty, convex, and compact. Nonemptiness and convexity are

obvious. Here we show its compactness. X0 (S) is bounded, as each of its element is bounded.

Now we prove that it is closed. Let fxn0gn2N be a sequence in X0 (S) converging to x0, so

lim
n!1

xn0 (s) = x0 (s) ;8s 2 S. (36)

Since xn0 (s) ;8n;belong to closed interval
�
xF0 (s) ; 1

�
, x0 (s) 2

�
xF0 (s) ; 1

�
. Thus, x0 is bounded by

xF0 and 1. x0 is increasing in s. If not, there would exist s < s
0 such that x0 (s) > x0 (s0). Due to

(36), for any "=2 > 0, 9N , 8n > N ,

jxn0 (s)� x0 (s)j < "=2,

or equivalently,

x0 (s)� "=2 < xn0 (s) < x0 (s) + "=2;
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and 9N 0, 8n > N 0,

jxn0 (s0)� x0 (s0)j < "=2,

or equivalently,

x0 (s
0)� "=2 < xn0 (s0) < x0 (s0) + "=2:

For n > max fN;N 0g and " < x0 (s)� x0 (s0), we would have

xn0 (s)� xn0 (s0) > x0 (s)� x0 (s0)� " > 0,

which contradicts the assumption that xn0 2 X0 (S). The continuity of x0 can also be proved easily.

Since xn0 are continuous, 8" > 0, 9� > 0, if js� s0j < �, then

jxn0 (s)� xn0 (s0)j < "=3;8n:

Also, due to the convergence of fxn0gn2N, we have that 9N;

jxn0 (s)� x0 (s)j < "=3;

jxn0 (s0)� x0 (s0)j < "=3:

Hence, 8" > 0, 9� > 0, if js� s0j < �,

jx0 (s)� x0 (s0)j � jxn0 (s)� x0 (s)j+ jxn0 (s0)� x0 (s0)j+ jxn0 (s)� xn0 (s0)j < ".

This completes the proof of the continuity of x0. Therefore, x0 2 X0 (S), and X0 (S) is compact.

� maps X0 (S) into a subset Ĉ (S) of C (S) which includes continuous function bounded by

xF0 and 1. To prove this, we show that for any x0 2 X0 (S), �x0 is bounded by xF0 and 1 and

continuous. Given that max
�
Jmin (s) ; v0 (s)

	
� J � Jmax (s), it is easy to derive

xF0 (s) =
nY
i=1

Fi
�
ri
�
s;max

�
Jmin (s) ; v0 (s)

	��
� �x0 (s) �

nY
i=1

Fi (ri (s; J
max (s))) = 1;8s:

Thus, �x0 is bounded by xF0 and 1. Since D (J; s; x0) is continuous in J and s given the continuity

of ri (s; J) and
R
T�i(s;ti)

f�i (t�i) dt�i, and the interval
�
max

�
Jmin (s) ; v0 (s)

	
; Jmax (s)

�
is compact

and continuous in s, J (s) is continuous in s according to the Theorem of the Maximum. This

consequently implies that �x0 (s) =
Qn
i=i Fi (ri (s; J (s))) is continuous in s.

� is a continuous mapping. Consider a converging sequence fxn0gn2N with limn!1 x
n
0 = x0 in

sup norm. That is, 8" > 0, 9N > 0, 8n > N , there is

kxn0 � x0k < ":
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Since k�k is sup norm, we have����Z s

s

v00 (~s)x
n
0 (~s) d~s�

Z s

s

v00 (~s)x0 (~s) d~s

���� = ����Z s

s

v00 (~s) [x
n
0 (~s)� x0 (~s)] d~s

���� < " [v0 (�s)� v0 (s)] ; (37)
and 8s 2 S,

jD (J; s; xn0 )�D (J; s; x0)j < " [v0 (�s)� v0 (s)] : (38)

De�ne Jn (s) as

Jn (s) = arg min
maxfJmin(s);v0(s)g�J�Jmax(s)

jD (J; s; xn0 )j :

Now we show that Jn ! J in sup norm. Let

A =
�
(s; J) : s 2 S; and J 2

�
max

�
Jmin (s) ; v0 (s)

	
; Jmax (s)

�	
:

It is obvious that A is compact. We de�ne a subset A" of A by

A" = f(s; J) 2 A : jJ � J (s)j � "g : (39)

A" is compact, and for " small enough, it is nonempty. The result is trivial when A" is empty. For

any ", let

� = min
(s;J)2A"

jjD (J; s; x0)j � jD (J (s) ; s; x0)jj : (40)

The continuities of D in J; s and of J (s) in s guarantee the existence of �. According to (38),

8� > 0, 9N�, 8n > N�,
jD (J; s; xn0 )�D (J; s; x0)j <

�

2
; (41)

so

jjD (Jn (s) ; s; x0)j � jD (J (s) ; s; x0)jj
= jD (Jn (s) ; s; x0)j � jD (J (s) ; s; x0)j
� jD (Jn (s) ; s; x0)j � jD (Jn (s) ; s; xn0 )j+ jD (J (s) ; s; xn0 )j � jD (J (s) ; s; x0)j
� jD (Jn (s) ; s; x0)�D (Jn (s) ; s; xn0 )j+ jD (J (s) ; s; xn0 )�D (J (s) ; s; x0)j
< �:

The equality and �rst inequality are based on the de�nitions of Jn (s) and J (s), the second

inequality is using the triangle inequality of absolute values. The last inequality is from (41).

Thus, from (39) and (40), for n > N�,

jJn (s)� J (s)j < ", 8s 2 S:
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This is equivalent to that Jn ! J in sup norm. To proceed, we de�ne function

H (s; J) =
nY
i=1

Fi (ri (s; J))�
nY
i=1

Fi (ri (s; J (s)))

and Ju" (s) and J
d
" (s) for " > 0 by

Ju" (s) =

(
min fJ : H (s; J) � "g , if fJ : H (s; J) � "g is nonempty;
Jmax (s) , if fJ : H (s; J) � "g is empty.

Jd" (s) =

(
max fJ : H (s; J) � �"g , if fJ : H (s; J) � �"g is nonempty;
max

�
Jmin (s) ; v0 (s)

	
, if fJ : H (s; J) � �"g is empty.

Let

�̂" = inf
s2S

�
max

�
Ju" (s)� J (s) ; J (s)� Jd" (s)

		
:

It is clear that �̂" > 0 for " > 0. Employing the convergence of Jn, we have for �̂" > 0, 9N�̂",
8n > N�̂",

jJn (s)� J (s)j < �̂"; 8s 2 S;

so Jn (s) 2
�
Jd" (s) ; J

u
" (s)

�
, and

sup
s2S

�����
nY
i=1

Fi (ri (s; J
n (s)))�

nY
i=1

Fi (ri (s; J (s)))

����� = k�xn0 � �x0k < ".
Therefore, limn!1 �x

n
0 = �x0 in sup norm. � is continuous.

� does not map X0 (S) into itself, as we can guarantee that �x0 is increasing in s. Here we

de�ne another mapping 	 over Ĉ (S), with 	h (s) = supŝ2[s;s] h (ŝ), for h 2 Ĉ (S). It is obvious
that 	h (s) is increasing in s. So 	 maps Ĉ (S) into X0 (S), and the compound mapping 	 � �
maps X0 (S) into itself.

	 is continuous. Consider a converging sequence fhngn2N with limn!1 h
n = h in sup norm,

then 8" > 0, 9N", 8n > N ",

khn � hk < ";

which is equivalent to

jhn (s)� h (s)j < ", 8s 2 S. (42)

According to the de�nition of 	, for s 2 S

j	hn (s)�	h (s)j =
����� supŝ2[s;s]

hn (ŝ)� sup
ŝ2[s;s]

h (ŝ)

�����
= jhn (s0)� h (s00)j ;
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where s0 and s00 are values on [s; s] that maximize hn and h respectively. If hn (s0) � h (s00) > 0,
then

jhn (s0)� h (s00)j = hn (s0)� h (s00) � hn (s0)� h (s0) ;

if hn (s0)� h (s00) � 0, then

jhn (s0)� h (s00)j = h (s00)� hn (s0) � h (s00)� hn (s00) :

Thus, given (42), for n > N", we have

j	hn (s)�	h (s)j < ";8s 2 S:

That is,

k	hn �	hk < ":

This completes the proof that 	 is continuous.

Given all the results above, one can see that the compound mapping 	 � � is continuous and
maps from X0 (S), which is non-empty, convex, and compact, into itself. According to Schauder�s

�xed point theorem, 	�� has a �xed point on X0 (S), that is, there exists a x�0 2 X0 (S) satisfying

x�0 = 	 � �x�0:

It is obvious that x�0 (s) = x
F
0 (s).

x�0 is also a �xed point of �. To prove this, we �rst show that if for some s 2 S, x�0 (s) = 1,
then x�0 (s

0) = �x�0 (s
0) = 1 for s0 � s. Because if x�0 (s) = 1, then there exists ŝ � s, �x�0 (ŝ) = 1

which implies that

D (Jmax (ŝ) ; ŝ; x�0) = v0 (ŝ)�
�Z ŝ

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

��
� 0,

so for any ŝ0 2 (ŝ; �s],

D (Jmax (ŝ0) ; ŝ0; x�0) = v0 (ŝ
0)�

"Z ŝ0

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�#

= D (Jmax (ŝ) ; ŝ; x�0) +

Z ŝ0

ŝ

v00 (~s) [1� x� (~s)] d~s � 0,

Hence, �x�0 (ŝ
0) = 1 = x�0 (ŝ

0).

Now we show that if x�0 (s) < 1, x
�
0 (s) is strictly increasing in s. We prove this by contradiction.

Suppose that for some s0 < s00, x�0 (s
0) = x�0 (s

00) < 1. Let �s = inf fŝ 2 S : x�0 (ŝ) = x�0 (s00)g. The
continuity and monotonicity of x�0 guarantee the existence of �s, and x

�
0 (s) < x�0 (�s) for s < �s,
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x�0 (s) = x�0 (s
00) for any s 2 [�s; s00]. Moreover, x�0 (�s) = �x�0 (�s) � xF0 (�s), as x

�
0 (s) < x�0 (�s) for

s < �s. It is not possible to have D (J (�s) ; �s; x�0) = 0, because if so, for s 2 (�s; s00],

v0 (s)x
�
0 (s) +

Z
T

Pn
i=1 Ji (s; ti)x

�
i (s; t) f (t) dt�

Z s

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
� v0 (s)x

�
0 (�s) +

Z
T

Pn
i=1 Ji (s; ti)x

�
i (�s; t) f (t) dt�

Z s

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
> v0 (s)x

�
0 (�s) +

Z
T

Pn
i=1 Ji (�s; ti)x

�
i (�s; t) f (t) dt�

Z s

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
= D (J (�s) ; �s; x�0) + [v0 (s)� v0 (�s)]x�0 (�s)�

Z s

�s

v00 (~s)x
�
0 (~s) d~s

= 0:

In the �rst line, x� (s; �) denote the allocation rule maximizing the virtual surplus given x�0 (s). The
�rst inequality is due to the optimality of x� (s; �). The second inequality is because that Ji (s; ti)
is strictly increasing in s. The �rst equality is derived from the de�nition of D (J (�s) ; �s; x�0), and

the last equality is resulted from D (J (�s) ; �s; x�0) = 0 and x
�
0 (s) = x

�
0 (s

00) for any s 2 [�s; s00]. This
sequence of inequalities implies that �x�0 (s) > �x�0 (s). This contradicts the de�nition of x

�
0 (s).

Thus, it is only possible to have D (J (�s) ; �s; x�0) < 0, which indicates that �x�0 (�s) = xF0 (�s) =

	xF0 (�s). De�ne

D (s; x�0) = v0 (s)x
�
0 (s) +

Z
T

Pn
i=1 Ji (s; ti)x

�
i (s; t) f (t) dt�

Z s

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�
;

�s = sup fs 2 [s; �s] : D (s; x�0) = 0g :

The set fs 2 [s; �s] : D (s; x�0) = 0g is nonempty, as it includes s, so �s exists. The continuity of x�0 (s)
implies that �s < �s and D (�s; x�0) = 0, D (s; x

�
0) > 0, for s 2 (�s; �s]. Suppose that x�0 (s0) > 	xF0 (s0)

for some s0 2 (�s; �s]. Given that x�0 (s0) = 	 � �x�0 (s0), there exists s00 � s0, x�0 (s0) = �x�0 (s00), thus
�x�0 (s

00) > 	xF0 (s
0) � xF0 (s

00), which implies that D (s00; x�0) = 0, s00 � �s, and x�0 (s) = x�0 (s
00)

for any s 2 (s00; s0]. The argument above already points out that this is not possible. Therefore,
x�0 (s

0) = 	xF0 (s
0), 8s0 2 (�s; �s]. Continuity of x�0 (s) ;	xF0 (s) implies that x�0 (�s) = 	xF0 (�s). Then

we can obtain

D (�s; x�0)�D (�s; x�0) = v0 (�s)x
�
0 (�s) +

Z
T

Pn
i=1 Ji (�s; ti)x

�
i (�s; t) f (t) dt

�v0 (�s)x�0 (�s) +
Z
T

Pn
i=1 Ji (�s; ti)x

�
i (�s; t) f (t) dt�

Z �s

�s

v00 (~s)x
�
0 (~s) d~s

� 0;

according to (24) and Appendix C. This contradicts the supposition thatD (�s; x�0) = D (J (�s) ; �s; x
�
0) <

0. This �nally completes the proof that x�0 (s) is strictly increasing in s if x
�
0 (s) < 1. Hence, x

�
0 (s) =
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�x�0 (s) for x
�
0 (s) < 1. Combining with the result above that x

�
0 (s) = �x

�
0 (s) for x

�
0 (s) = 1, x

�
0 is

a �xed point of �.

In the rest of the proof, we show that for x�0,

D (J (s) ; s; x�0) = 0, 8s 2 S:

We still prove this by contradiction. First, suppose that 9s0, D (J (s0) ; s0; x�0) > 0, which implies
that x�0 (s

0) = 1. Continuity of x�0 and D (J (s) ; s; x
�
0) indicates that 9ŝ < s0, such that x�0 (ŝ) = 1

and D (J (ŝ) ; ŝ; x�0) = 0. The monotonicity of x
�
0 gives us

D (J (s0) ; s0; x�0) = v0 (s
0)�

"Z s0

s

v00 (~s)x
�
0 (~s) d~s+ U0

�
MF js

�#

= D (J (ŝ) ; ŝ; x�0) +

Z s0

ŝ

v00 (~s) [1� x�0 (~s)] d~s

= 0,

which violates the supposition thatD (J (s0) ; s0; x�0) > 0. Second, suppose that 9s00,D (J (s00) ; s00; x�0) <
0, which implies that x�0 (s

00) = xF0 (s
00). Still, employing the continuity of x�0 and D (J (s) ; s; x

�
0)

yields that 9ŝ < s00, such that x�0 (s) = xF0 (s) for s 2 [ŝ; �s], D (J (ŝ) ; ŝ; x�0) = 0.

D (J (s00) ; s00; x�0)�D (J (ŝ) ; ŝ; x�0) = v0 (s
00)xF0 (s

00) +

Z
T

Pn
i=1 Ji (s

00; ti)x
F
i (s

00; t) f (t) dt

�v0 (ŝ)xF0 (ŝ) +
Z
T

Pn
i=1 Ji (ŝ; ti)x

F
i (ŝ; t) f (t) dt

�
Z �s

�s

v00 (~s)x
F
0 (~s) d~s

> 0:

The inequality is due to that fact that full-information optimal mechanism is not incentive com-

patible. (See equation (21)). Therefore, D (J (s) ; s; x�0) = 0, 8s 2 S.

H.
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