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Abstract. The principle of ‘One Person, One Vote’ is viewed by many as one of
the cornerstones of Democracy. But in environments where agents have heterogenous
stakes, a utilitarian social planner would typically prefer non-anonymous rules, i.e. rules
that violate this principle. We consider a simple Bayesian voting environment in which
agents have private valuations for the alternatives and a voting mechanism is used to
determine the outcome. The price of ‘One Person, One Vote’ is defined as the fraction
reduction in expected welfare when the optimal anonymous mechanism is used relative
to the optimal (not necessarily anonymous) mechanism. We analyze how this price
behaves as a function of the environment (distribution of preferences). In particular, it
is shown that if the inequality of stakes in the population increases, in a well-defined
sense, then the price of ‘One Person, One Vote’ is higher. A similar comparative statics
holds if the uncertainty about agents’ preferences increases. Our results may be useful
for social planners who weigh the moral argument (or other arguments) in favor of
‘One Person, One Vote’ with the loss of efficiency that may result by sticking to this
principle.
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1. Introduction

The principle of ‘One Person, One Vote’ is viewed by many as one of the cornerstones

of Democracy. In an influential U.S. supreme court case (Gray v. Sanders, 1963) dealing

with equal representation of voters in the American electoral system, Justice William O.

Douglas argued that

“The conception of political equality from the Declaration of Indepen-

dence, to Lincoln’s Gettysburg Address, to the Fifteenth, Seventeenth,

and Nineteenth Amendments can mean only one thing - one person, one

vote.”

There are environments however in which this principle stands in conflict to other

potentially desirable goals. Specifically, a utilitarian social planner facing an environment

in which agents have heterogenous stakes in the decision at hand can increase social

welfare by assigning higher voting weights (i.e., give more than one vote) to agents with

higher stakes in the decision. To see this, consider an extreme situation in which everyone

except one agent are indifferent (or almost indifferent) between two possible alternatives.

Clearly, it would be optimal from a utilitarian point of view to let that one agent be the

dictator and make the decision by herself.1

Environments with stakes’ heterogeneity abound. As a first example, consider an

academic department who needs to decide whether to give a job offer to a particular

candidate. Faculty members whose research is in the same field as the candidate typically

have much more to gain or lose by the decision than those who work in other fields.

Second, consider a citizen of country X who resides in country Y. Arguably, when there

are general elections in country X the stakes of this citizen are lower than the stakes

of citizens of X who also live in X; and indeed different countries have different rules

regarding eligibility to vote of non-resident citizens. Third, consider a community who

votes on whether to build a new park at location A or at location B. Members who live

close to one of the proposed locations would typically have more at stake than those

whose home is in about the same distance from A and from B.

Another important example is that of a representative democracy with heterogeneous

district sizes. The most famous instance of this type is probably the U.S. Senate, to

1This example and indeed our model assumes that we can somehow measure intensity of preferences and
make comparisons of this measure across agents. We interpret the intensity of preferences of an agent for
alternative A over alternative B as her willingness to pay for A to be chosen rather than B. Thus, each
agent has quasi-linear preferences over pairs of an alternative and money, but the voting mechanisms
we consider do not use transfers between agents as in reality such transfers are often excluded due to
ethical reasons.
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which each state sends two representatives regardless of its population. If we think of

the stakes of a state in the decision over a certain senate bill as an increasing function

of the number of its residents, then California has much more to gain or lose than South

Dakota, even though the votes of senators from these two states get equal weight.2

There are also examples of institutions in which the voting mechanism does take into

account the heterogeneity of the environment. In publicly held firms the weight assigned

to a share holder’s vote is usually proportional to the number of shares she holds. In

ancient Rome the votes of richer citizens counted more than those of the poor, the logic

being that if one has more money then one also has more at stake. And at the United

Nations Security Council the five permanent members have veto power, which means

their votes get higher weight than those of other members of the council.

Our goal in this paper is to quantify the welfare loss incurred due to the anonymity

constraint that ‘One Person, One Vote’ imposes on the voting mechanism, and to analyze

how the size of this loss depends on the distribution of preferences in the society. We

suggest a simple and tractable theoretical model that captures the potential heterogeneity

of the voters by allowing their preferences over the two alternatives to be drawn from

different distributions. A voting mechanism is used to aggregate the ballots of the voters

into a decision, and such a mechanism is called anonymous if it depends on the profile of

ballots only through the number of agents supporting each alternative. We then define

the price of ‘One Person, One Vote’ (price of OPOV, for short) as the fraction reduction

in expected welfare when the optimal anonymous mechanism is used relative to the

optimal (not necessarily anonymous) mechanism.

Our analysis starts with a characterization of the optimal and anonymous–optimal

mechanisms. This gives an explicit formula for the price of OPOV as a function of the

environment (distribution of preferences). We then study the behavior of this function

as certain parameters of the environment vary. Specifically, the relevant parameters are

the probabilities pi that each agent i prefers alternative A over B, and the expected

intensities of preference for A over B conditional on preferring A (ai) and for B over A

conditional on preferring B (bi). We refer to these expected intensities as the stakes that

agents have in the decision.

Consider first the case where all pi’s are equal, and where ai = bi for all i. Proposition 1

shows that in such environments the price of OPOV increases in the inequality of stakes,

where inequality is measured by the majorization partial order. That is, if we smooth

2In this example the voting mechanism satisfies ‘One State, One Vote’ rather than ‘One Person, One
Vote’, but our analysis can still be applied to measure the welfare loss due to this mechanism relative
to the optimal mechanism.
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out the stakes in the decision of the different agents, then the welfare cost associated

with using an anonymous mechanism decreases. In the limit when all agents have the

same stakes the optimal mechanism (without the anonymity constraint) is anonymous

and the price of OPOV is zero. In the same class of environments, Proposition 2 shows

that the price of OPOV increases in the uncertainty about preferences, i.e. it is higher

the closer is the probability of preferring A over B to 0.5.

This type of results are useful since they can inform social planners who weigh the

moral argument (or other arguments) in favor of ‘One Person, One Vote’ with the loss

of efficiency that may result by sticking to this principle. For example, we learn from

Proposition 1 that when choosing a voting system one should pay attention to the level

of inequality of stakes in the society; if that level is high then giving the same weight to

all votes will be expensive in terms of efficiency loss. And from Proposition 2 we learn

that in environments where landslide victory is likely the price of OPOV is relatively

small.

For more general environments the analysis becomes trickier. In non-neutral environ-

ments (ai 6= bi) it is not obvious how to compare the stakes of different agents, and thus

it is not clear what “smoothing out” stakes means. Still, in Proposition 3 we generalize

Proposition 1 to this type of environments by introducing a way to compare inequality

between two pairs of vectors (a, b) and (a′, b′). This result strengthen the conclusion

that the inequality of stakes is a key property in determining the relative efficiency

of anonymous mechanisms. We note that Proposition 2 does not hold in non-neutral

environments.

The most challenging environments are those in which the probabilities pi are het-

erogenous. When this happens it is no longer true that increased inequality of stakes

results in higher price of OPOV; it is easy to construct counter examples. However,

it is still true that smoothing out stakes between agents with the same probabilities pi

reduces the price of OPOV. Thus, if society is composed of groups, where agents in each

group have the same probability pi, then the price of OPOV increases in the inequality

of stakes within each group.

1.1. Relation to the literature. The theoretical study of weighted majority rules

(with heterogenous weights) dates back at least to von-Neumann and Morgenstern’s

book [17]. Much of the literature deals with the measurement of the power of players in

the cooperative game generated by the rule (e.g., [26]). The evaluation of majority rules

based on the expected welfare they generate first appears in [22], and the analysis has

been later extended in [4] and [10]. A more modern treatment appears in [25] for the
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case of symmetric environments and anonymous rules, and in [3] for the case asymmetric

environments and general rules. Other papers on similar issues include [12] and [6]. All

of the above papers, as well as the current paper, deal with the case of voting over

two alternatives. Papers studying welfare properties of voting rules with more than two

alternatives include [2], [13], [14], [18], [19], and [20].

There are also papers who take a similar approach to ours and estimate the loss of

efficiency in mechanism design when an additional constraint is imposed on the mech-

anism. In the voting literature such papers include [11], which measures the loss due

to an incentive compatibility constraint, and [24] which measures the loss due to the

constraint that the decision must be made by a majority rule. In the auctions literature

such papers include [16], [23] and [27], which bound the loss of efficiency or revenue to

the seller when the auction format is restricted to be of a certain type. In matching,

[21] shows that the loss in efficiency that results from restricting attention to ordinal

mechanisms can be arbitrarily large. In a more abstract setting, [7] analyze the ‘price

of fairness’, which is defined as one minus the ratio between the fair allocation welfare

and the utilitarian allocation welfare. The concepts they use to define fair allocations

are proportional fairness and max-min fairness.

Our paper is different than the works mentioned in the previous paragraph in that we

are not only interested in bounding the loss of welfare, but we would also like to gain

understanding regarding the characteristics of the environment that determine whether

this loss is large or small. In particular, our results imply that inequality of stakes across

agents is an important characteristic in that respect. The measurement of inequality

has been extensively studied in Economics, see e.g. [9] for an extensive account. The

recent paper [1] shows an interesting connection between inequality and efficiency in the

context of an allocation game.

2. The voting environment

We consider the simplest framework that allows to quantify the loss of welfare due to

the requirement of treating all agents equally. There are n ≥ 2 agents in the society,

indexed by i ∈ [n] := {1, . . . , n}. The society faces a binary decision problem of choosing

an alternative from the set {A,B}.
Agents have private valuations for the alternatives. Namely, for each agent i there is a

real-valued random variable ṽi, which determines the intensity by which agent i prefers

alternative A over alternative B (or vice versa when ṽi is negative). For example, ṽi = 17

means that i prefers A over B, and moreover that his willingness to pay for alternative
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A to be chosen rather than B is 17. If on the other hand ṽi = −3.5 then i prefers B over

A and 3.5 is his willingness to pay for B to be chosen rather than A.

We denote by π the distribution of ṽ = (ṽ1, . . . , ṽn). We assume throughout the paper

that ṽ1, . . . , ṽn are independent, so that π is the product of its marginals. It will also

be assumed that each ṽi has a finite expectation, that is E|ṽi| < ∞.3 For expositional

reasons we further assume that agents are never indifferent between the alternatives

(P(ṽi = 0) = 0 for all i), and that each of the alternatives may be the favorite of each

agent (P(ṽi > 0) > 0 and P(ṽi < 0) > 0 for all i). We often refer to π as the environment.

Each agent casts a vote for one of the alternatives, and a voting mechanism is used

to aggregate the ballots into a decision.It will be convenient to identify each profile of

ballots with the subset of players (coalition) who voted for alternative A, so that we can

view a voting mechanism as a mapping f : 2[n] → {A,B}. The next standard definition

formalizes the idea that a mechanism treats agents equally, i.e. respects the “One Person,

One Vote” principle.

Definition 1. A voting mechanism f is anonymous if its outcome depends only on

the number of agents who vote for each alternative and not on their names, that is if

whenever S, S ′ are such that |S| = |S ′| we have that f(S) = f(S ′).

We say that agents vote truthfully if they vote for A when they prefer A (i.e. when

ṽi > 0) and for B when they prefer B (when ṽi < 0). Denote by S(ṽ) = {i : ṽi > 0} the

set of agents who prefer alternative A. The utilitarian welfare associated with a voting

mechanism f is (the random variable) given by

Uf (ṽ) =


∑
ṽi, if f(S(ṽ)) = A,

−
∑
ṽi, if f(S(ṽ)) = B.

Thus, if the realization of ṽ is such that A is the chosen alternative (under truthful

voting) then
∑
ṽi is the total benefit (or loss if this sum is negative) of society relative

to the other alternative B. Similarly, if B is chosen then −
∑
ṽi is the total benefit

relative to the alternative A. Let Wπ(f) = E (Uf (ṽ)) be the expected utilitarian welfare

associated with the mechanism f in π.

Given the environment π, we say that f is an optimal mechanism if it is a maximizer

of Wπ among all voting mechanisms, and we denote by W ∗
π the expected welfare asso-

ciated with an optimal mechanism. Similarly, f is an optimal anonymous mechanism

3Expectations and probabilities of events are always computed relative to the distribution π.
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if it maximizes Wπ among all anonymous mechanisms. The welfare associated with an

optimal anonymous mechanism is denoted by W ∗∗
π

Definition 2. 1. The price of “One Person, One Vote” (price of OPOV, for short) in

environment π is

ρ(π) = 1− W ∗∗
π

W ∗
π

.

2. The price of OPOV in a family of environments Π is

ρ(Π) = sup
π∈Π

ρ(π).

Thus, ρ(π) is the fraction reduction in expected welfare due to the additional anonymity

constraint imposed on the voting mechanism. If the environment π is not precisely

known, but it is known that π belongs to some class Π of environments, then ρ(Π)

measures the largest possible such reduction.

3. Optimal mechanisms and welfare

As a first step in the analysis we would like to characterize the optimal mechanisms

with and without the anonymity constraint, and to obtain formulas for the associated

welfare W ∗
π and W ∗∗

π . It will be useful to introduce a few more pieces of notation. For

each agent i we let ai = E (ṽi|ṽi > 0) and bi = E (−ṽi|ṽi < 0), so that ai is i’s expected

intensity of preference for alternative A conditional on i actually preferring A, and bi

is i’s expected intensity of preference for alternative B conditional on him preferring

B. For any coalition S ⊆ [n] denote a(S) =
∑

i∈S ai and b(S) =
∑

i∈S bi. Finally, for

each i let pi = P(ṽi > 0) be the probability that i prefers A, and for a coalition S set

p(S) =
∏

i∈S pi
∏

i∈Sc(1 − pi) the probability that the members of S are exactly those

who support A.4

Consider first the problem of maximizing expected welfare without the anonymity

constraint. By the law of iterated expectations we have that for any mechanism f

E (Uf (ṽ)) = E [E (Uf (ṽ)|S(ṽ))] =
∑
S⊆[n]

p(S)E (Uf (ṽ)|S(ṽ) = S)

=
∑

{S:f(S)=A}

p(S)E

∑
i∈[n]

ṽi

∣∣∣∣∣∣S(ṽ) = S

+
∑

{S:f(S)=B}

p(S)E

−∑
i∈[n]

ṽi

∣∣∣∣∣∣S(ṽ) = S

 .

4Note that pi and p({i}) are different.
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Using the assumption of independent values and the notation introduced above we can

further write that

(1) E (Uf (ṽ)) =
∑

{S:f(S)=A}

p(S) [a(S)− b(Sc)] +
∑

{S:f(S)=B}

p(S) [b(Sc)− a(S)] .

It follows that a mechanism f is optimal if and only if it selects alternative A when

a(S) > b(Sc) and chooses B when the reverse strict inequality holds. If a(S) = b(Sc)

then any alternative can be chosen. Note that this rule is in fact a weighted majority

rule in which each agent i has a weight of ai + bi and the quota required for alternative

A to win is b([n]). The following lemma summarizes the above discussion.

Lemma 1. A mechanism f is optimal if and only if it satisfies

f(S) =

A, if a(S) + b(S) > b([n]),

B, if a(S) + b(S) < b([n]).

Furthermore, the welfare associated with an optimal mechanism is

W ∗
π =

∑
S⊆[n]

p(S) |a(S)− b(Sc)| .

Moving now to the anonymous case, if f is an anonymous voting rule and k is an

integer, 0 ≤ k ≤ n, we write f(k) for the alternative chosen by f when k voters support

A. From (1) it follows that for any anonymous f ,

E (Uf (ṽ)) =
∑

{k:f(k)=A}

∑
{S:|S|=k}

p(S) (a(S)− b(Sc))

+
∑

{k:f(k)=B}

∑
{S:|S|=k}

p(S) (b(Sc)− a(S)) .

Therefore, an anonymous mechanism f is optimal among anonymous mechanisms if and

only if it chooses A when
∑
{S:|S|=k} p(S) (a(S)− b(Sc)) > 0 and B if the reverse strict

inequality holds. It is not hard to check that
∑
{S:|S|=k} p(S) (a(S)− b(Sc)) is a strictly

increasing function of k (see Theorem 4 in [3] for the details), so any optimal rule is

a qualified majority rule in which alternative A is chosen if and only if the number of

supporters of this alternative exceeds a certain (environment-specific) threshold. We

thus have the following.
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Lemma 2. An anonymous mechanism f is optimal among anonymous mechanisms if

and only if it satisfies

f(k) =

A, if
∑
{S:|S|=k} p(S) (a(S)− b(Sc)) > 0,

B, if
∑
{S:|S|=k} p(S) (a(S)− b(Sc)) < 0.

Furthermore, the welfare associated with an optimal anonymous mechanism is

W ∗∗
π =

n∑
k=0

∣∣∣∣∣∣
∑

{S:|S|=k}

p(S)(a(S)− b(Sc))

∣∣∣∣∣∣ .
We end this section with two remarks. First, in both cases with and without anonymity

the optimal rules are incentive compatible. Indeed, it is a weakly dominant strategy for

each agent to vote for his preferred alternative. Second, the optimal rules as well as the

welfare values W ∗
π and W ∗∗

π depend on the environment π only through the parameters

a = (a1, . . . , an), b = (b1, . . . , bn) and p = (p1, . . . , pn), so for our purposes no additional

information about π is needed. In the sequel we therefore view the price of OPOV ρ as

a function of these three parameters. Note that given Lemmas 1 and 2 we have

ρ(a, b, p) = 1−

∑n
k=0

∣∣∣∑{S:|S|=k} p(S)(a(S)− b(Sc))
∣∣∣∑

S⊆[n] p(S) |a(S)− b(Sc)|
.

4. Intensity neutral and probability homogeneous environments

In this section we study the price of OPOV in environments that satisfy the following

two restrictions.

Definition 3. An environment (a, b, p) is Intensity Neutral (IN) if a = b, that is ai = bi

for each agent i. Let ΠIN
n denote the family of IN environments with n agents.

Definition 4. An environment (a, b, p) is Probability Homogenous (PH) if the vector p

is constant, that is pi = pj for any two agents i, j. Let ΠPH
n denote the family of PH

environments with n agents.

An environment which is both IN and PH is characterized by the vector a and by a

single number p ∈ (0, 1),5 and we therefore write W ∗
a,p and W ∗∗

a,p for the welfare associated

with the optimal and optimal anonymous mechanisms, respectively. We denote by ρ(a, p)

the price of OPOV in such environments.

5We use the same notation p for the vector of probabilities (p1, . . . , pn) and for the probability of a single
agent preferring A, in case this is constant across agents. No confusion should result.
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Lemma 3. For IN and PH environments the optimal anonymous rule is simple majority

(with arbitrary tie-breaking rule). Moreover,

W ∗∗
a,p =

(
n∑
i=1

ai

)
1

n

n∑
k=0

(
n

k

)
pk(1− p)n−k|2k − n|

and

W ∗
a,p =

n∑
k=0

pk(1− p)n−k
∑

{S:|S|=k}

|a(S)− a(Sc)|.

Proof. Fix 0 ≤ k ≤ n and consider the sum
∑
{S:|S|=k} p(S) (a(S)− a(Sc)). By the PH

property for each coalition S of size k we have p(S) = pk(1 − p)n−k, so we get that

this sum is equal to pk(1 − p)n−k
∑
{S:|S|=k} (a(S)− a(Sc)). In this latter sum each ai

appears with a positive sign
(
n−1
k−1

)
times and with a negative sign

(
n−1
k

)
times, so the sum

becomes pk(1− p)n−k
((
n−1
k−1

)
−
(
n−1
k

))∑n
i=1 ai. Finally, the difference between these two

binomial coefficients is equal to 1
n

(
n
k

)
(2k − n). Substituting this into the sum we obtain

(
∑n

i=1 ai)
1
n

(
n
k

)
pk(1− p)n−k(2k − n). By Lemma 2 the optimal anonymous rule is simple

majority, and

W ∗∗
a,p =

(
n∑
i=1

ai

)
1

n

n∑
k=0

(
n

k

)
pk(1− p)n−k|2k − n|.

Also, it follows immediately from Lemma 1 that

W ∗
a,p =

n∑
k=0

pk(1− p)n−k
∑

{S:|S|=k}

|a(S)− a(Sc)|.

�

4.1. Stake inequality. In an IN environment the vector a represents the stakes that

agents have in the decision: If ai is large then agent i has (on average) a lot to gain or

lose by the decision, while if ai is close to zero then i is almost indifferent between the

two alternatives. We would now like to formulate a result that says that the price of

OPOV becomes smaller when the stakes of the various agents become more equal. For

this we first need to define what it means that stakes are more equal in one environment

than in another.

For a vector x ∈ Rn and k ∈ {1, . . . , n} we denote by x[k] the kth largest coordinate

of x, so that x[1] ≥ . . . ≥ x[n].

Definition 5. For a, a′ ∈ Rn, we say that a majorizes a′ if
∑n

i=1 ai =
∑n

i=1 a
′
i and∑k

i=1 a[i] ≥
∑k

i=1 a
′
[i] for every k = 1, . . . , n− 1.



11

It is not immediately obvious that the above definition captures the idea that a′ is

more equal than a. To see that this is indeed the case, we can characterize majorization

using the familiar concept of Pigou-Dalton (PD) transfers.

Definition 6. For a, a′ ∈ Rn, a′ is obtained from a by a PD transfer if there are i, j with

ai > aj and 0 ≤ δ ≤ ai − aj such that a′j = aj + δ, a′i = ai − δ, and ak = a′k for every

k 6= i, j.

Lemma 4. [15, Proposition A.1, page 155] a majorizes a′ if and only if a′ can be obtained

from a by a finite sequence of PD transfers.

Thus, a majorizing a′ means that we can get from a to a′ by smoothing out the stakes

of the various agents, sequentially splitting the difference in stakes between high stakes

and low stakes agents. The following is the main result of this section.

Proposition 1. For a fixed p ∈ (0, 1), the price of OPOV ρ(a, p) is (weakly) increasing

relative to the majorization partial order on a. That is, if a majorizes a′ then ρ(a, p) ≥
ρ(a′, p).

Remark. Non-decreasing functions relative to the majorization partial order are known

as Schur-convex functions. Proposition 1 thus states that ρ is a Schur-convex function

of a.

Proof. By Lemma 4 it is enough to show that if a′ can be obtained from a by a PD

transfer then ρ(a, p) ≥ ρ(a′, p). Since a PD transfer does not change the sum of the

coordinates of a vector it follows immediately from Lemma 3 that W ∗∗
a,p = W ∗∗

a′,p. The

proposition will therefore be proved if we can show that W ∗
a,p ≥ W ∗

a′,p whenever a′ is

obtained from a by a PD transfer.

Assume therefore that there are i, j with ai > aj and 0 ≤ δ ≤ ai − aj such that

a′j = aj + δ, a′i = ai − δ, and ak = a′k for every k 6= i, j. We first claim that we may

assume without loss of generality that δ ≤ (ai−aj)/2, so that a′i ≥ a′j. Indeed, a transfer

of δ and a transfer of ai − aj − δ induce vectors that are different only in that their ith

and jth coordinates are exchanged. But it is clear from Lemma 3 that a permutation of

the coordinates of a does not change W ∗
a,p. Thus, if δ ∈ ((ai− aj)/2, ai− aj] then we can

replace it by ai − aj − δ ∈ [0, (ai − aj)/2) without affecting the resulting W ∗
a′,p

Consider the difference

W ∗
a,p −W ∗

a′,p =
∑
S

p(S)(|a(S)− a(Sc)| − |a′(S)− a′(Sc)|).



12

If S is a coalition such that i, j ∈ S or such that i, j ∈ Sc then |a(S) − a(Sc)| =

|a′(S) − a′(Sc)|. If S is such that i ∈ S and j ∈ Sc then (a(S) − a(Sc)) − (a′(S) −
a′(Sc)) = 2δ, so if a′(S) − a′(Sc) ≥ 0 then |a(S) − a(Sc)| − |a′(S) − a′(Sc)| = 2δ and

if a′(S) − a′(Sc) < 0 then |a(S) − a(Sc)| − |a′(S) − a′(Sc)| ≥ −2δ. Similarly, if S is a

coalition with j ∈ S and i ∈ Sc then (a(S)− a(Sc))− (a′(S)− a′(Sc)) = −2δ, so that if

a′(S) − a′(Sc) ≤ 0 then |a(S) − a(Sc)| − |a′(S) − a′(Sc)| = 2δ and if a′(S) − a′(Sc) > 0

then |a(S)− a(Sc)| − |a′(S)− a′(Sc)| ≥ −2δ. Therefore,

W ∗
a,p −W ∗

a′,p ≥ 2δ

 ∑
{S: i∈S, j∈Sc, a′(S)−a′(Sc)≥0}

p(S)−
∑

{S: i∈S, j∈Sc, a′(S)−a′(Sc)<0}

p(S) +

∑
{S: j∈S, i∈Sc, a′(S)−a′(Sc)≤0}

p(S)−
∑

{S: j∈S, i∈Sc, a′(S)−a′(Sc)>0}

p(S)

 .

For any coalition S in the second sum consider the coalition T = (S ∪ {j}) \ {i}. We

have that p(T ) = p(S), and since a′i ≥ a′j it follows that a′(T )− a′(T c) < 0 so T is in the

third sum. Since this mapping from S to T is one-to-one it follows that the third sum

is at least as large as the second. Similarly, any coalition S in the fourth sum we map

to the coalition T = (S ∪ {i}) \ {j} which has the same probability as S and appears in

the first sum because a′i ≥ a′j. This implies that the first sum is at least as large as the

fourth. This proves that W ∗
a,p ≥ W ∗

a′,p. �

4.2. The effect of p. The following proposition describes the behavior of the price of

OPOV as a function of the probability p that agents prefer alternative A.

Proposition 2. For any fixed a, ρ(a, p) is (weakly) decreasing in the distance of p from

0.5. That is, if |p− 0.5| ≤ |p′ − 0.5| then ρ(a, p) ≥ ρ(a, p′).

Proof. Fix a. First, it is easy to see from Lemma 3 that W ∗
a,p = W ∗

a,1−p and W ∗∗
a,p = W ∗∗

a,1−p,

so ρ(a, p) = ρ(a, 1− p). To prove the proposition we will show that ρ(a, p) is increasing

for p ∈ (0.0.5), or equivalently that the ratio W ∗∗
a,p/W

∗
a,p is decreasing on this interval.

To simplify the notation we write g(p) = W ∗
a,p and h(p) = W ∗∗

a,p. Both g and h are

differentiable on (0,0.5) and g is bounded away from zero, so the ratio h/g is differentiable.

The sign of its derivative is determined by the sign of h′g − g′h. The proposition will

therefore be proved if we can show that h′(p) ≤ g′(p) and h′(p) ≤ 0 for any p ∈ (0.0.5),

since then h′g − g′h ≤ h′g − h′h = h′(g − h) ≤ 0, where in the first inequality we used

g ≥ 0 and in the last one we used g ≥ h.
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To compute the derivatives g′ and h′ notice that both g and h are of the form∑n
k=0 p

k(1 − p)n−kdk for some vector d = (d0, . . . , dn) with dk = dn−k for all k. The

derivative of such a function is given by

d

dp

(
n∑
k=0

pk(1− p)n−kdk

)
=

n∑
k=0

dk
(
kpk−1(1− p)n−k − (n− k)pk(1− p)n−k−1

)
=

n−1∑
k=0

((k + 1)dk+1 − (n− k)dk)p
k(1− p)n−k−1 =

b(n−2)/2c∑
k=0

((k + 1)dk+1 − (n− k)dk)p
k(1− p)k[(1− p)n−2k−1 − pn−2k−1],

where in the last equality we used the symmetry of d around n/2. Thus, to prove that

h′ ≤ 0 and h′ ≤ g′ on (0, 0.5) it is sufficient to show that for every k = 0, . . . , b(n− 2)/2c

(k + 1)

∣∣∣∣∣∣
∑
|S|=k+1

(a(S)− a(Sc))

∣∣∣∣∣∣− (n− k)

∣∣∣∣∣∣
∑
|S|=k

(a(S)− a(Sc))

∣∣∣∣∣∣ ≤ 0,

and

(k + 1)

∣∣∣∣∣∣
∑
|S|=k+1

(a(S)− a(Sc))

∣∣∣∣∣∣− (n− k)

∣∣∣∣∣∣
∑
|S|=k

(a(S)− a(Sc))

∣∣∣∣∣∣ ≤
(k + 1)

∑
|S|=k+1

|a(S)− a(Sc)| − (n− k)
∑
|S|=k

|a(S)− a(Sc)| .

Using the fact that
∣∣∣∑|S|=k (a(S)− a(Sc))

∣∣∣ = (
∑

i ai)
1
n

(
n
k

)
|n − 2k| (see the proof of

Lemma 3) and that k ≤ n/2 we get after some simple manipulations that

(k + 1)

∣∣∣∣∣∣
∑
|S|=k+1

(a(S)− a(Sc))

∣∣∣∣∣∣− (n− k)

∣∣∣∣∣∣
∑
|S|=k

(a(S)− a(Sc))

∣∣∣∣∣∣ =

−2

(
n− 1

k

)(∑
i

ai

)
< 0,
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which proves the first inequality. For the second inequality, note that (k+1)
∑
|S|=k+1 |a(S)− a(Sc)| =∑

|S|=k
∑

i∈Sc |a(S ∪ {i})− a ((S ∪ {i})c)|. We can therefore write

(k + 1)
∑
|S|=k+1

|a(S)− a(Sc)| − (n− k)
∑
|S|=k

|a(S)− a(Sc)| =

∑
|S|=k

∑
i∈Sc

(|a(S ∪ {i})− a ((S ∪ {i})c)| − |a(S)− a(Sc)|) .

For each coalition S and an agent i ∈ Sc the above difference is at least −2ai. Since

each agent i appears
(
n−1
k

)
times as the additional player, the total sum is at least

−2
(
n−1
k

)
(
∑

i ai), which proves the second inequality. �

4.3. Worst case analysis. An immediate implication of Propositions 1 and 2 is that,

in the class of IN and PH environments, the highest possible price of OPOV is obtained

when p = 0.5 and all agents except one are (asymptotically) indifferent between the

alternatives. For this type of environment we can explicitly calculate the price of OPOV.

Furthermore, we can also look at the asymptotic behavior of this worst-case bound as

the number of agents increases.

Corollary 1. The maximal price of OPOV in the class of n-agents IN and PH environ-

ments is

ρ
(
ΠIN
n ∩ ΠPH

n

)
= 1− 1

n2n

n∑
k=0

(
n

k

)
|2k − n| = 1−

(
n− 1

bn−1
2
c

)
1

2n−1
.

In particular, ρ
(
ΠIN
n ∩ ΠPH

n

)
is increasing in n and converges to 1 as n→∞. Further-

more,

lim
n

√
n
(
1− ρ

(
ΠIN
n ∩ ΠPH

n

))
=

√
2

π
.

Thus, without restricting further the family of possible environments, the worst-case

price of OPOV approaches 100% as the size of society increases. The rate of convergence

is of the order of 1√
n
, so if for instance n = 104 is the number of agents then at the worst

case the price of OPOV is approximately 99%.

5. Non-neutral intensities

In this section we relax the neutrality assumption of the stakes in the environment. In

IN environments the stakes of each agent i in the decision are characterized by a single

number ai, so it is clear what it means that one agent has higher stakes than another.

Without neutrality agent i stakes are described by two numbers ai, bi and therefore the
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comparison between agents becomes more ambiguous. Nevertheless, we can generalize

Proposition 1 as follows.

Definition 7. Let a, b, a′, b′ ∈ Rn. We say that the pair (a, b) sum-majorizes the pair

(a′, b′) if a+b majorizes a′+b′, and in addition
∑n

i=1 ai =
∑n

i=1 a
′
i and

∑n
i=1 bi =

∑n
i=1 b

′
i.

Note that (a, b) sum-majorizing (a′, b′) is stronger than simply a+ b majorizing a′+ b′.

It is possible to characterize sum-majorization in terms of PD transfers in a similar way

to Lemma 4: (a, b) sum-majorizes (a′, b′) means that we can get from (a, b) to (a′, b′) by

a sequence of transfers of stakes from higher to lower stakes agents, where the level of

the stakes of agent i is measured by the sum ai + bi. The transfers should be such that

they keep the sums
∑n

i=1 ai and
∑n

i=1 bi unchanged, which means that if we reduce ai

by δ then we must also increase aj by the same δ. In other words, the transfers occur

within the vectors a and b and not across.

Proposition 3. Consider two PH environments (a, b, p) and (a′, b′, p′) with p = p′. If

(a, b) sum-majorizes (a′, b′) then ρ(a, b, p) ≥ ρ(a′, b′, p′).

Remark. It is immediate to see that (a, a) sum-majorizes (a′, a′) if and only if a ma-

jorizes a′. Therefore, Proposition 3 is a generalization of Proposition 1.

Proof. To be added. �

A natural question is whether some version of Proposition 2 still holds in non-neutral

environments. From numerical simulations we know that for fixed a, b the maximal value

of ρ(a, b, p) is attained not necessarily at p = 0.5. Rather, the maximum is attained at

a point p that is a function of the ratio
∑

i ai/
∑

i bi, as well as the number of agents n.

Nevertheless, we can still prove that from the worst-case point of view the relaxation of

intensity neutrality does not matter.

Corollary 2. The maximal price of OPOV in the class of n-agents PH environments is

ρ
(
ΠPH
n

)
= ρ

(
ΠIN
n ∩ ΠPH

n

)
= 1−

(
n− 1

bn−1
2
c

)(
1

2

)n−1

.

Proof. To be added. �

6. Heterogenous probabilities

Once the restriction to PH environments is relaxed the analysis becomes much more

challenging. Specifically, we are able to construct examples showing that Proposition 1

is no longer true when agents differ in the likelihood they prefer A over B: There are IN
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environments in which a PD transfer that makes the stakes more equal according to the

majorization order actually increases the price of OPOV. However examining the proof

of Proposition 1 one can see that the following holds.

Proposition 4. Let (a, p) (where p is a vector of probabilities) be an IN but not nec-

essarily PH environment. If pi = pj for some two agents i and j then a PD transfer

between these agents which makes their stakes more equal reduces the price of OPOV.

Thus, we can partition the agents into groups, where each group contains agents with

the same probability pi of preferring A, such that the price of OPOV increases in the

inequality of stakes within each group. This is useful since many applications of interest

involve environments in which the agents can be partitioned into homogenous groups; in

several of the examples in the introduction (academic hiring, non-residents citizens) the

society can be naturally divided into two such groups.

7. Discussion

To be added
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[6] S. Barberà and M.O. Jackson (2006), On the weights of nations: Assiging voting weights in a

heterogeneous union, The Journal of Political Economy 114, 317-339.

[7] D. Bertsimas, V.F. Farias and N. Trichakis (2011), The price of fairness, Operations Research 59,

17-31.

[8] T. Börgers and P. Postl (2009), Efficient compromising, Journal of Economic Theory 144, 2057-

2076.

[9] F.A. Cowell (2011), Measuring inequality (2011), Third Edition, Oxford University Press.

[10] R.B. Curtis (1972), Decision rules and collective values in constitutional choice, In Probability

Models of Collective Decision Making, edited by R.G. Niemi and H.F. Weisberg. Merrill, Columbus,

Ohio.



17

[11] A. Filos-Ratsikas and P.B. Miltersen (2014), Truthful approximations to range voting, working

paper.

[12] M. Fleurbaey (2008), Weighted majority and democratic theory, working paper.

[13] A. Gershkov, B. Moldovanu and X. Shi (2013), Optimal voting rules, working paper.

[14] S. Kim (2014), Ordinal versus cardinal voting rules: A mechanism design approach, working paper.

[15] A.W. Marshal, I. Olkin, and B.C. Arnold (2011), Inequalities: Theory of majorization and its

applications, Second Edition, Springer.

[16] Z. Neeman (2003), The effectiveness of English auctions, Games and economic Behavior 43, 214-

238.

[17] J. von-Neumann and O. Morgenstern (1944), Theory of games and economic behavior, Princeton

University Press.

[18] M. Pivato (2014), Condorcet meets Bentham, working paper.

[19] M. Pivato (2014), Asymptotic utilitarianism in scoring rules, working paper.

[20] M. Pivato (2014), Statistical utilitarianism, working paper.

[21] M. Pycia (2014), The cost of ordinality, working paper.

[22] D.W. Rae (1969), Decision-rules and individual values in constitutional choice, The American

Political Science Review 63, 40-56.

[23] A. Rustichini, A Satterthwaite and M.A. Williams (1994), Convergence to efficiency in a simple

market with incomplete information, Econometrica 50, 1089-1122.
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