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Abstract

Often persuaders have a richer understanding of the world than their audience.
This paper models such situations by letting persuader and audience have prior
beliefs with different supports. This asymmetry adds unexplored aspects to the
persuasion problem: Persuaders can hide their superior knowledge or surprise their
audience with unexpected information; After surprises Bayes’ rule cannot describe
the audience’s response. The paper examines persuaders’ incentives to hide and
surprise and their resulting communication strategies. Moreover, it derives neces-
sary and sufficient conditions for persuaders to surprise their audience as well as to
hide some information.
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1 Introduction

Persuasion plays an important role across economic activities.1 In many situations, the
persuader has a superior understanding of the subject about which she wants to persuade
her audience. This asymmetry can be better information—a more precise assessment of
the likelihood of the possible cases—but more often it is better knowledge—a richer,
broader, or more accurate theory of what is possible. Examples include experts and
policymakers, physicians and patients, parents and young children, sellers of new products
and consumers. Due to her superior knowledge, the persuader may view as possible things
that her audience ignores, deems impossible, or is unaware of.

This asymmetry between persuader and audience adds unexplored aspects to the
persuasion problem, which this paper aims to investigate. First of all, the persuader
(Sender, she) understands that part of the information she can convey is completely
unexpected for her audience (Receiver, he). This raises new questions: How will Receiver
react to unexpected information? Given this, should Sender hide such information (if
possible) or disclose it, thus surprising Receiver? What are the benefits and drawbacks of
hiding information and surprising Receiver? Can Sender combine hiding and surprising
to her best advantage? How? The paper answers these questions in general persuasion
games à la Kamenica and Gentzkow (2011), in which the asymmetry between Sender’s
and Receiver’s ‘theory of the world’ is modeled by letting their subjective priors over an
arbitrary state space have different supports.

To illustrate the analysis and ease the comparison with the standard case of common-
support priors, it is helpful to revisit the court example in Kamenica and Gentzkow
(2011).2 A lawyer (Sender) wants to convince the judge (Receiver) that the defendant
caused a damage to her client, so as to obtain a sentence to an equal refund. The damage
can be of four levels (states): 0, 1, 2, or 3 (thousands/millions of) dollars. The lawyer’s
prior assigns them probability 0.35, 0.4, 0.15, and 0.1, respectively. By contrast, the
judge thinks that the damage is either $0 or $2, with prior probabilities 0.7 and 0.3.3

Assume that the lawyer’s prior is correct. The judge’s goal is to match sentence to
actual damage: in each state, he gets payoff 1 from doing so and zero otherwise. The
lawyer maximizes the expected refund.4 To do so, she conducts an investigation whose

1See, e.g., McCloskey and Klamer (1995).
2This example is formally solved in Section 5.1.
3Note that conditional on the event {$0,$2} the lawyer and the judge have the same belief. To be

clear, the case in which both priors are (0.7, 0, 0.3, 0) corresponds to Kamenica and Gentzkow’s (2011)
example.

4The general model allows Sender’s utility function to be state dependent as well.
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outcome must be fully disclosed as per due-process law. Formally, an investigation is a
family π of distributions—one for each state—specifying the probabilities of observing
different signals (or evidence). In particular, the lawyer must produce some evidence also
in states $1 and $3, hence she cannot hide them by simply remaining silent.

The priors’ different supports immediately raise a conceptual issue: how does the
judge respond to unexpected evidence? If an investigation perfectly reveals the damage,
for instance, he may observe signals to which ex ante he assigned zero probability. To
describe his response to such signals we cannot directly invoke Bayes’ rule, the backbone
of the entire literature on persuasion (see below). However, allowing the judge to have any
posterior belief seems unsatisfactory, for instance simply because the observed signal may
rule out some states. It seems also reasonable that his posteriors satisfy some regularity
and predictability.

This paper considers different models of how Receiver responds to unexpected infor-
mation. The first is an application of Ortoleva’s (2012) axiomatic model of “paradigm
change.” The second assumes that Receiver is endowed with a lexicographic belief system
(LBS), whose first element corresponds to his prior (e.g., (0.7, 0, 0.3, 0) for the judge).5 In
both models, after expected signals Receiver updates his initial prior using Bayes’ rule,
as usual. After unexpected signals, however, he first looks for a new prior (or theory)
that accounts for the observed evidence—following different procedures depending on the
model. Once he finds his new prior, Receiver again updates it using Bayes’ rule. In our
example, let the judge’s LBS have two priors with the secondary one equal to the lawyer’s
prior.6

With these assumptions, we can formally study a key dilemma Sender faces in our
setting. Should the lawyer confirm the judge’s theory that the defendant is either innocent
or guilty of a $2 damage, or disprove it? Always producing evidence the judge expects will
confirm his theory and lead at most to a $2 refund. By contrast, producing unexpected
evidence will disprove that theory. It is intuitive that if the damage is $3, the lawyer
would like the judge to know. But what about the $1 damage?

The solution to Sender’s dilemma relies on a general characterization of the joint dis-
tributions over posterior beliefs she can achieve by controlling information (one of the pa-
per’s main results). In settings with common-support priors, Receiver’s and Sender’s pos-
teriors are always in a one-to-one relationship.7 This is no longer true without common-

5This second class of models is related to the lexicographic sequences of hypotheses in Kreps and
Wilson (1982) (see Section 2).

6This case also corresponds to the simplest version of Ortoleva’s (2012) model (see Section 4.1).
7See Kamenica and Gentzkow (2011) and Alonso and Câmara (2013).
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support priors: each Sender’s posterior corresponds to a unique Receiver’s posterior, but
not vice versa. Indeed, Sender’s posterior tells us whether Receiver’s theory has been
confirmed or disproved, which prior in his LBS he updates, and the ensuing posterior.
In Ortoleva’s (2012) model, it tells us how Receiver changes paradigm and forms his
posterior. Finally, the marginal distribution over Sender’s posteriors has to satisfy the
usual constraint: her expected posterior must equal her prior.

The feasible distributions over posteriors have specific properties, absent in the stan-
dard setting. We can illustrate them with our example. First, the judge’s posterior cannot
assign positive probability both to elements in {$0,$2} and to elements in {$1,$3}. If the
lawyer confirms his theory, he continues to think only $0 and $2 are possible; to disprove
it, the lawyer must show that the damage is neither $0 nor $2. Second, the judge’s
posterior varies discontinuously in the lawyer’s as we go from expected to unexpected
signals; this discontinuity captures formally the idea of surprise.8 Third, after expected
signals, the judge’s posterior depends only on the lawyer’s posterior conditional on the
states the former deemed possible at the outset, i.e., the event {$0,$2}. As a result, the
lawyer can have any posterior conditional on the remaining states. More generally, this
says that Receiver’s reluctance to abandon his theory in light of inconclusive evidence
allows Sender to ‘hide’ states outside that theory by pooling them with signals on states
inside it; moreover, she can learn about the states she hides, without affecting Receiver’s
behavior. Concretely, if an investigation yields signal x when the damage is either $1 or
$2 and y when it is either $2 or $3, the judge will always conclude that it is $2, but the
lawyer learns about state $1 from x and state $3 from y.

These general properties drive how Sender will communicate. To analyze this, the
paper has to extend and modify the ‘concavification method’ now common in the per-
suasion literature (see below). This method allows us to characterize Sender’s expected
payoff from feasible distributions over posteriors and Receiver’s ensuing actions, which
contains useful information on her communication strategy.

To build intuition, suppose first that Sender always confirms Receiver’s theory, hid-
ing all states outside it. In this case, her payoff coincides with the one she would get by
dividing her problem as follows. She first learns only whether the true state is consistent
with Receiver’s theory—the event {$0,$2} or {$1,$3} in the example. If it is, her interim
belief has the same support as Receiver’s prior, and she adopts the optimal communi-
cation strategy as in Kamenica and Gentzkow (2011) and Alonso and Câmara (2013).
Otherwise, she optimally hides the states as follows. For each state, she produces one

8This is different from the notion of surprise in Ely et al. (2013).

4



signal which leads her to assign almost probability 1 to it and Receiver to choose the best
action for her in that state among all actions she can induce while confirming his theory.
Concretely, the lawyer hides the $1 and $3 damages with an investigation that maps
each to a different signal which, however, does not rule out entirely the $2 damage—the
same signal also arises with a tiny probability in this state. This sophisticated strategy
defines the value of hiding states—$2 in the example—and hence is the key to Sender’s
incentives to surprise Receiver.

Based on these observations, the paper provides a simple necessary and sufficient
condition for Sender to surprise Receiver. There must exist some posterior of Sender
such that, given Receiver’s response to the surprise, her expected payoff exceeds that
from optimally hiding all states to which she assigns positive probability. Our example
immediately satisfies this condition for the posterior assigning probability 1 to state $3,
since the value of optimally hiding it is $2.

To understand Sender’s communication and payoff when she surprises Receiver, we
can again imagine that she divides her problem into two parts. If the true state is
consistent with Receiver’s theory ($0 or $2), she communicates as before. If not, she
optimally combines hiding states and surprising Receiver. This combination’s payoff can
be computed as the value taken at Sender’s interim belief (i.e., given event {$1,$3}) by
the concavification of the maximum between two functions: for each posterior, one gives
her expected payoff from optimally hiding states, the other that from surprising Receiver.
This procedure also delivers the ex-ante probability that Sender surprises Receiver, how
she hides states, and a necessary and sufficient condition for her to never hide any state.

All results on Sender’s payoffs and communication are in terms of primitives and
do not involve geometric properties of concavifications. These results are derived even
though in the present model an optimal signal device may formally not exist, due to the
natural discontinuity of Receiver’s posterior after surprises. This technical difficulty is
overcome by considering the value function of Sender’s problem.

To finish our example, although a truly optimal π does not exists, the lawyer can
approximately get an expected refund of $1.8—without communication it would be $0.
Her investigation has four signals: The first arises if the defendant is innocent, revealing it;
The second arises in states $0 and $2 and makes the judge assign them equal probability;9

The third arises in states $1 and $2 and makes the lawyer assign probability arbitrarily
close to 1 to $1, while the judge assigns probability 1 to $2 ; The fourth arises in states $1

9These first two signals are reminiscent of the optimal investigation in Kamenica and Gentzkow’s
(2011) environment.
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and $3 and makes the judge assign them equal probability. So, even though the lawyer
can always hide the most likely $1 damage with the better $2 one, she reveals it with
positive probability! In so doing, she makes the judge less sure when he orders a $3
refund, but she increases its overall probability. For comparison, the expected refund can
at most be $1.6 if the investigation always hides states $1 and $3, and $1.5 if it never
hides states. So, by optimally combining hiding and surprising, the lawyer increases her
expected payoff by 12.5% and 20% respectively.

The paper applies the main results to the classic model in which Sender’s and Re-
ceiver’s payoffs are quadratic loss functions and their ideal actions differ for each state.
Since Crawford and Sobel (1982), this model has been used to study communication
in many contexts.10 Finally, the paper shows with an example that Sender’s superior
knowledge need not benefit her: she may be strictly better off if initially Receiver shared
her richer theory of the world, rather than viewing some states as impossible. In this
case, Sender would like to ‘persuade’ Receiver to switch theory before communication
occurs, but no signal technology allows her to do so.

2 Related Literature

This paper contributes to the literature on games of persuasion and information control.
It is the first to study games in which Sender and Receiver disagree on their subjective
theory of the possible states of the world. A common question addressed in the literature
has been if and when Sender benefits from revealing (expected) information. By contrast,
one of this paper’s main questions is if and when Sender benefits from surprising Receiver
with unexpected information, rather than hiding it. This paper differs from the literature
in another important aspect. With common-support priors, Bayes’ rule always dictates
how Receiver responds to information and represents the constraint on what Sender
can achieve. As noted, this is no longer true without common-support priors. While
moving beyond Bayesian rationality, this paper does not introduce bounded rationality
or behavioral features on Receiver’s side.11

The closest papers in the persuasion literature are the following. In Brocas and Car-
rillo (2007), Sender has access to a fixed device producing i.i.d. signals about a binary
state. She chooses sequentially whether to produce another signal, or stop and let Re-

10Examples include organizational design (Dessein (2002); Alonso et al. (2008)), political economy
(Grossman and Helpman (2002)), legal-dispute resolution (Goltsman et al. (2009)), lobbying (Kamenica
and Gentzkow (2011)), and financial advising (Morgan and Stocken (2003)).

11For a study of persuasion with these features see, e.g., Mullainathan et al. (2008).
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ceiver act. The paper examines Sender’s optimal stopping rule and how much she benefits
from controlling information. Kamenica and Gentzkow (2011) study persuasion in more
general settings with common priors and no restrictions on signal devices. They show
that the problem of choosing a device can be conveniently reformulated as choosing a dis-
tribution over posteriors subject to only one constraint imposed by Bayesian rationality:
the expected posterior must equal the prior. They also find conditions for Sender to ben-
efit from informative communication, characterize its properties, and examine the effects
of changing the alignment of Sender’s and Receiver’s preferences. Within Kamenica and
Gentzkow’s (2011) settings, Alonso and Câmara (2013) examine how disagreement in
priors (with common support) affects Sender’s communication, showing that it increases
the scope for benefiting from revealing information. They also show that disagreement
does not expand the set of feasible distributions over posteriors. As noted, this set is
qualitatively very different without common-support priors.12

As in the previous literature (Kamenica and Gentzkow (2011), Alonso and Câmara
(2013), Ely (2014)), this paper’s analysis relies on the ‘concavification method’ proposed
in the seminal work of Aumann and Maschler (1995) on repeated games with incomplete
information. However, it modifies this method in several ways to examine Sender’s payoff
separately when she confirms and disproves Receiver’s theory. This method also turns
out to be helpful to characterize Sender’s behavior despite the possible non-existence of
optimal information devices.

This paper models responses to unexpected information in ways related to several
papers in the literature. On the one hand, it borrows Ortoleva’s (2012) axiomatic model
of “change of paradigm,” which provides specific predictions on how Receiver ‘chooses’ a
new prior and updates it after surprises. A key difference is that in Ortoleva (2012) the
information structure is exogenous; here it is not, which will require some care in applying
his model. On the other hand, the use of lexicographic belief systems (LBS’s) is inspired
by Kreps and Wilson (1982) and Karni and Vierø (2013).13 In their work on sequential
equilibria, Kreps and Wilson (1982) imagine that each player has a system of “hypothe-
ses” on how the game is played, the primary one corresponding to equilibrium play. A
player always applies his primary hypothesis on the equilibrium path. But if an off-path
information set is reached—a zero-probability event under the primary hypothesis—the
player attempts to apply other hypotheses until one predicts what happened. The player

12Other papers study problems of information design, both static and dynamic (see, e.g., Forges and
Koessler (2008), Rayo and Segal (2010), Horner and Skrzypacz (2010), Ely et al. (2013), Ely (2014)).
All these papers assume common priors and address different questions from the present paper.

13LBS’s appear also in Blume et al. (1991a, 1991b), but in these papers they work in a fundamentally
different way: the agent always takes into account, though lexicographically, all layers of his LBS.
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always updates his current hypothesis using Bayes’ rule. In Kreps and Wilson (1982),
players have a common prior over Nature’s moves and the hypotheses are on each others’
strategies; here the common-prior assumption is absent, and we can interpret Receiver’s
hypotheses as being on player Nature.

Karni and Vierø (2013) model how an agent’s beliefs evolve when he either discovers
that states he considered impossible are actually possible, or becomes aware of new states.
They suggest and axiomatize a notion of belief consistency similar to that used in the
present paper. A key difference is that here not only Receiver may have to expand his
subjective set of possible states and hence form new priors; he also has to update such
priors after observing Sender’s information.

Finally, this paper is related to the literature on strategic information transmission
following Crawford and Sobel (1982), but differs from it in several aspects shared with
all previously mentioned papers on persuasion. In that literature Sender learns the state
before choosing how to communicate; here he commits to a signal device before the state
occurs. This property changes deeply the incentive problems Sender faces and eliminates
multiplicity of equilibria. Also, that literature has focussed on settings with common-
support priors.

3 Model

The primitives of the model are as in Kamenica and Gentzkow (2011), except of course
for the assumptions on priors.

There are two agents, called Sender (she) and Receiver (he). Ω is a finite set of
mutually exclusive states of the world. Sender and Receiver have a common language to
describe each ω ∈ Ω and agree on the meaning of this description. Each state ω is an
exhaustive description of reality. If ω occurs, we say that ω is ‘true;’ otherwise, we say
that ω is ‘false.’

At the beginning, neither Sender nor Receiver know the true state ω. Sender has a
subjective prior belief σ with support S = Ω and Receiver has a subjective prior belief
ρ0 with support R ( Ω.14 Hereafter, let R = S \R and supp σ denote the support of σ,
and adopt this notation for any other probability distribution. We shall call σ Sender’s
theory of the world, and ρ0 Receiver’s theory.

14In Kamenica and Gentzkow (2011), S = R and σ = ρ0. In Alonso and Câmara (2013), S = R but
σ may differ from ρ0. In the present model, R may differ from S without R ( S. This case, however,
comprises all key aspects of the different-support assumption as explained in Section 6.3.
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Following the literature on persuasion, Sender and Receiver interact as follows. Sender
commits to a signal device to provide Receiver with information on the true state, with
the goal of steering his behavior.15 After observing a signal realization, Receiver chooses
an action from the compact set A, with |A| > 1, which affects both agents’ payoffs. As
in Kamenica and Gentzkow (2011), a signal device π is defined by a family of conditional
distributions {π(·|ω)}ω∈Ω over a finite set Xπ of signal realizations: for each ω ∈ Ω,
π(·|ω) ∈ ∆(Xπ) where Xπ = ∪ω∈Ωsuppπ(·|ω). The set of all signal devices is Π. As
in Alonso and Câmara (2013), signal devices are “commonly understood:” Sender and
Receiver agree on how π generates signals given each state ω. Hereafter, the term signal
will refer to a particular realization x of a device π; the term message will refer to any
pair (x, π) with x ∈ Xπ.

Regarding payoffs, Sender design her device so as to maximize her subjective expected
utility with cardinal utility function uS : A × Ω → R, continuous in a for every ω. For
Receiver, let his utility function be uR : A × Ω → R, again continuous in a for every ω.
Receiver’s behavior after every signal will be specified below.16

The paper’s goal is to examine how Sender communicates with Receiver in this envi-
ronment.

Interpretation of Priors’ Different Supports

Many reasons can explain why Sender and Receiver have different priors.17 A natural—
certainly not unique—one is that Sender is an expert with a more complete and accurate
understanding of the world and consequently her theory is the ‘correct’ one. But this is
not necessary: we can view the entire analysis as from the subjective ex-ante perspective
of Sender. That is, the paper examines how Sender communicates if she thinks that
Receiver has a different theory ρ0 from her σ and responds to signals as described below.

The mathematical property that the supports of Sender’s and Receiver’s priors differ
can be interpreted in several ways. For the sake of clarity, most of the paper will focus
on one: Receiver is aware of all states in S and views them as well-specified hypotheses,
but simply thinks that some states are impossible based on his theory of the world.
For instance, the statement “the Earth goes around the Sun” was formally correct and

15For an extensive discussion and justification of the commitment assumption, see Kamenica and
Gentzkow (2011). Modifying this assumption is beyond the scope of the present paper.

16The functions uS and uR should be interpreted as reduced forms in an Anscombe and Aumann
(1963) setting, where subjective beliefs are well defined. Letting G = {ga}a∈A be a set of Anscombe and
Aumann’s acts where A is a set of ‘labels,’ we have ui(a, ω) = ûi(ga(ω)) for i = R,S.

17See also the discussion in Morris (1995).
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scientists could understand its meaning even before the Copernican Revolution; yet they
deemed such a statement impossible according to their theories. In the more recent
debate on climate change, deniers and believers in manmade global warming understand
each other’s theories; yet each side views the other’s theory as impossible. Receiver may
assign zero probability to some states for different reasons. Some may be exogenous and
subjective, like religion in the previous examples. Sender’s and Receiver’s theories may
be logically inconsistent, so that they cannot have the same set of possible predictions.
In some cases, Receiver may frame the situation at hand in some narrow way that leads
him to ignore some states.18 Finally, Receiver may be boundedly rational or face high
cognitive costs; as a result, he may be able to reason only in terms of simple theories,
which again ignore some states.

Before observing any signal, Receiver has no doubt on his theory in the following
sense. If he assigned a positive probability to another theory which incorporates states
outside R as possible, then a correct probabilistic description of his overall theory should
include these additional states in its support. Hence, if R 6= S, it means that ex ante
Receiver is fully confident that the states outside R are impossible—even though he may
know that Sender has a different opinion. Nonetheless, of course Receiver will have to
abandon his theory if a signal unambiguously proves that the true state is outside R.

Another possible interpretation of the model is that Receiver’s prior assigns zero
probability to states outside R because he is unaware of them. Though perhaps natu-
ral, this interpretation is more delicate and requires careful explanation in the present
environment. We shall defer its discussion until Section 6.1.

4 Feasible Distributions over Posteriors

To understand how Sender communicates with Receiver, we first need to answer the
following question: which Receiver’s probabilistic assessments over Ω can Sender induce
using signal devices in Π?

This question does not have an immediate answer in our environment. If ρ0’s support
were Ω, we would usually invoke Bayesian rationality and combine ρ0 with any π using
Bayes’ rule to get a unique posterior of Receiver for each signal. Here, however, Receiver
may endogenously observe unexpected messages, evidence to which he assigns zero prob-
ability ex ante. In this case Bayes’ rule does not apply. So one possibility is to say that

18Ahn and Ergin (2010), for instance, develop a model of framing in which an agent can ‘overlook’
some events.
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after surprises Receiver can have any belief; but this approach would be unsatisfactory.
We would like his posteriors to feature some regularity and predictability and to take into
account properties of π even after unexpected signals. For instance, a posterior should
assign zero probability to states that cannot lead to message (x, π).

To this end, we shall first consider Ortoleva’s (2012) axiomatically founded model of
‘change of paradigm.’ Section 4.2 answers our main question within this model. Sec-
tion 6.2 will consider other models of how Receiver responds to signals and shows that
the paper’s main conclusions continue to hold.

4.1 A Model of Receiver’s Response to Information

Hereafter, we say that message (x, π) confirms ρ0 if Receiver assigns positive probability
to observing x from π given ρ0; otherwise, (x, π) disproves ρ0. Let Cπ be the set of signals
such that (x, π) confirms ρ0 and Dπ the set of signals such that (x, π) disproves ρ0:19

Cπ = {x ∈ Xπ : π(x|ω) > 0 for some ω ∈ R}, and Dπ = Xπ \ Cπ.

Note that Cπ is always nonempty, but Dπ may be empty.

According to Ortoleva’s (2012) model of ‘change of paradigm,’ Receiver responds to
Sender’s messages as follows. Receiver has a prior over priors µ ∈ ∆(∆(Ω)) with finite
support. Initially, he adopts the prior with the highest likelihood under µ as his theory of
the world—i.e., ρ0. After expected messages, he updates ρ0 using Bayes’ rule. But after
unexpected messages, he first updates µ obtaining µ̂, adopts prior ρ̂ with the highest
likelihood under µ̂, and then again updates ρ̂ using Bayes’ rule. Formally, let µ be such
that for every ω ∈ Ω there exists ρ ∈ supp µ with ρ(ω) > 0. Then, given message (x, π),
let the probability the updated prior over priors assigns to ρ for every ρ ∈ ∆(Ω) be

µ̂(ρ|x, π) =

[∑
ω∈Ω π(x|ω)ρ(ω)

]
µ(ρ)∑

ρ̃∈supp µ

[∑
ω∈Ω π(x|ω)ρ̃(ω)

]
µ(ρ̃)

. (1)

Also, let
M = arg max

ρ
µ(ρ) and M(x, π) = arg max

ρ
µ̂(ρ|x, π).

In general, M and M(x, π) need not be singletons. Indeterminacies in Receiver’s ‘choice’
of a prior, however, would make his behavior ill defined. Following Ortoleva (2012), we

19Both sets depend on ρ0, but this dependence is left implicit to simplify notation. Also, recall that Xπ

includes only signals in the support of π(·|ω) for some ω.
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endow Receiver with a strict linear order � over ∆(Ω) which he uses to ‘choose’ a prior
when the maximum-likelihood criterion is inconclusive.20 For simplicity, assume that M
is singleton.

Assumption 1 (A1: Hypothesis-Testing Model (Ortoleva (2012))). Receiver has a prior
over priors µ ∈ ∆(∆(Ω)) with finite support and such that for every ω ∈ Ω there exists
ρ ∈ supp µ with ρ(ω) > 0 and M = {ρ0}. Also, (c) if x ∈ Cπ, Receiver updates ρ0

using Bayes’ rule; (d) if x ∈ Dπ, he updates ρ using Bayes’ rule where ρ is �-maximal
in M(x, π).

A1 corresponds to Ortoleva’s (2012) Hypothesis-Testing Representation with ε = 0,
which is consistent with our definition of Cπ. As a simple example of A1, suppose that
supp µ = (ρ0, ρ1) with µ(ρ0) > 1

2
and supp ρ1 = Ω. Then, for x ∈ Cπ Receiver uses his

primary prior ρ0, but for x ∈ Dπ he switches to his secondary prior ρ1. In both cases,
Receiver updates it using Bayes’ rule.

A few remarks on part (c) of A1 are in order. If message (x, π) confirms ρ0, it gives
Receiver no objective reason to doubt his theory; therefore he does not abandon it. A1(c)
holds if and only if Receiver’s behavior is dynamically consistent (Theorem 1 in Ortoleva
(2012)). It is also in the spirit of the notion of Perfect Bayesian Equilibrium and its
refinements, which require that Bayes’ rule hold whenever possible.21 It is consistent
with the interpretation that, at the outset, Receiver thinks that his theory is correct. It
is also consistent with the property that signal devices, per se, contain no information;
so Receiver should respond only to the evidence given by signal realizations. Finally, it is
consistent with a phenomenon known in the psychology literature as ‘confirmatory bias:’
when presented with inconclusive evidence, people tend to interpret it in favor of their
initial hypothesis (see, e.g., Rabin and Schrag (1999) and references therein).22

4.2 Characterization of Distributions over Posteriors

As usual, Bayesian rationality implies a tight link between each signal device and a
distribution over Sender’s posteriors. Studying distributions over posteriors is helpful, for

20Since in our setting Receiver’s prior over priors µ is predetermined while the evidence he observes
is endogenous, it is logically impossible to construct µ so that the maximum-likelihood criterion always
gives a unique answer as in Ortoleva (2012).

21We can always think of a third player, Nature, who chooses ω at the beginning of the game and has
flat preferences.

22Ortoleva’s (2012) representation allows for the possibility that Receiver views (x, π) as disproving ρ0
if the probability of observing x from π given ρ0 is less than some ε > 0. This violates the usual dynamic-
consistency condition which characterizes Bayesian updating. Studying such violations in persuasion
games is clearly orthogonal to and beyond this paper’s scope: they may arise even if ρ0 = σ.
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it focuses attention on the heart of information revelation and sets aside possibly fragile
aspects that may depend on irrelevant details of signal devices (like language or frames).
Previous papers have shown that in settings with common-support priors Receiver’s and
Sender’s posteriors induced by any π are always in a one-to-one relationship.23 As we
will see, this property does not hold without common-support priors, opening the door
to new, specific properties of the distributions over posteriors.

Any π induces a distribution over Sender’s posteriors as follows. By Bayes’ rule, given
(x, π) the probability she assigns to ω satisfies

q(ω|x, π) =
π(x|ω)σ(ω)∑

ω′∈S π(x|ω′)σ(ω′)
. (2)

Applying (2) across x’s delivers a distribution τ with finite support over Sender’s poste-
riors, where the probability that τ assigns to any q ∈ ∆(S) is

τ(q) =
∑

{x:q(·|x,π)=q}

∑
ω∈S

π(x|ω)σ(ω).

As usual, we must have
∑

q∈supp τ qτ(q) = σ for any τ ∈ ∆(∆(S)) induced by some
π ∈ Π.

Definition 1. Fix Sender’s prior σ. A distribution τ ∈ ∆(∆(S)) is feasible if and only
if supp τ is finite and

∑
q∈supp τ qτ(q) = σ. The set of feasible distributions is Fσ.

Definition 1 is equivalent to Kamenica and Gentzkow’s (2011) notion of Bayes plausibility.
As they showed, for any τ ∈ Fσ there exists π ∈ Π that induces τ through Bayes’ rule.

This is a useful result. But if we know only Sender’s posterior—not the message that
led to it—can we infer whether Receiver’s prior has been confirmed or disproved? Can
we always recover his posterior? We will show that the answer to both questions is yes.

Supports of Sender’s and Receiver’s Posteriors

It is useful to first consider the support of Sender’s posterior induced by message (x, π)—
and hence in the support of some τ ∈ Fσ. Given q(·|x, π) in (2), its support reveals
whether x belongs to Cπ or Dπ. Indeed, supp q(·|x, π) coincides with the set of states
that are consistent with (x, π), defined by

Ωπ(x) = {ω ∈ Ω : π(x|ω) > 0}. (3)
23See Kamenica and Gentzkow (2011) and Alonso and Câmara (2013).
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Therefore,
x ∈ Cπ ⇔ supp q(·|x, π) ∩R 6= ∅.

Of course, then x ∈ Dπ if and only if supp q(·|x, π) ⊂ R. So, for any τ ∈ Fσ, the
support of any Sender’s posterior q arising under τ allows us to tell whether ρ0 has been
confirmed or disproved, without even knowing the message that led to q.

We can then classify Sender’s posteriors as follows. Given the whole set ∆(S), let

∆d = ∆(R) and ∆c = ∆(S) \∆d.

Abusing terminology, we say that q confirms ρ0 if q ∈ ∆c, otherwise q disproves ρ0.24 For
any τ ∈ Fσ, then define

Dτ = {q ∈ supp τ : q ∈ ∆d} and Cτ = supp τ \Dτ .

The next preliminary result links the supports of Sender’s and Receiver’s posteriors.25

Proposition 1. Given any (x, π), let p(·|x, π) be Receiver’s posterior. Under A1, if
q(·|x, π) ∈ ∆c, then supp p(·|x, π) ⊂ R; if q(·|x, π) ∈ ∆d, then supp p(·|x, π) ⊂ R.

Proposition 1 highlights a constraint on the posteriors of Receiver that Sender can induce
in settings with different-support priors, which does not arise with common-support
priors.26 Here Sender cannot make Receiver assign positive probability to both elements
in R and in R. She faces a strict decision: either confirm ρ0, in which case Receiver will
assign positive probability only to states in R, or disprove ρ0, which requires showing
that all states in R are false.

Proposition 1 also restricts the probability Sender assigns ex ante to confirming and
disproving ρ0. For any τ , these are τ c = τ(Cτ ) and τ d = τ(Dτ ).

Corollary 1. For any τ ∈ Fσ, the probability τ c of confirming ρ0 is at least σ(R) > 0.

However Sender decides to disclose information, there is always a strictly positive prob-
ability that Receiver will not abandon his theory of the world. From Sender’s viewpoint,
the largest probability of disproving ρ0 is σ(R) < 1; this happens if π is fully reveal-
ing, for instance. By contrast, Sender can always design a π which confirms ρ0 with

24Since R ( S, ∆d is a strictly lower dimensional subset of ∆(S) and ∆d ∩ int(∆(S)) = ∅. ∆d is also
a face of the convex set ∆(S) which lies on its (relative) boundary.

25All proofs are in Appendix B.
26See Kamenica and Gentzkow (2011) and Alonso and Câmara (2013).
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probability 1—by ensuring that, for every ω ∈ R, supp π(·|ω) ⊂ supp π(·|ω′) for some
ω′ ∈ R. This feature highlights an asymmetry between confirming an ‘incorrect’ the-
ory and disproving it by giving information on its predictions (as opposed to logical
arguments uncovering its contradictory predictions, for instance).

Relationship Between Sender’s and Receiver’s Posteriors

Given any message (x, π), we need to know only Sender’s posterior q = q(·|x, π) to know
which prior Receiver updates. Of course, if q confirms ρ0 (i.e., q ∈ ∆c), then Receiver
updates ρ0. If q disproves ρ0 (i.e., q ∈ ∆d), even without knowing (x, π), we can recover
how Receiver ‘changes his paradigm’ after observing x and selects a new prior ρ′. To see
this, note that how he updates his prior over priors µ depends on the total probability
each ρ′ ∈ supp µ assigns to x under π (see (1)). These probabilities can be uniquely
inferred from Sender’s posterior q(·|x, π): using (2), we can write

π(x|ω)ρ′(ω) = q(ω|x, π)
ρ′(ω)

σ(ω)

[∑
ω̃∈Ω

π(x|ω̃)σ(ω̃)

]
.

Therefore, for every ρ′ ∈ supp µ, expression (1) becomes

µ̂(ρ′|x, π) =

[∑
ω∈Ω q(ω|x, π)ρ

′(ω)
σ(ω)

]
µ(ρ′)∑

ρ̃∈supp µ

[∑
ω∈Ω q(ω|x, π) ρ̃(ω)

σ(ω)

]
µ(ρ̃)

. (4)

Given q(·|x, π), this expression depends neither on x nor on π. Hence, let µ̂(·; q) be
Receiver’s updated prior over priors given Sender’s posterior q and

M(q) = arg max
ρ′

µ̂(ρ′; q).

By A1, Receiver picks the unique prior in M(q) which is maximal according to the strict
order �. Thus, define the following function over the set of Sender’s posteriors ∆(S):

ρ(q) =

{
ρ0 if q ∈ ∆c

ρ′ s.t. ρ′ � ρ̃ for all ρ̃ ∈M(q), ρ̃ 6= ρ′ if q ∈ ∆d
. (5)

Once we know which prior Receiver updates, we can conclude that Sender’s posterior
also tells us everything about Receiver’s posterior. The argument generalizes that in
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Alonso and Câmara (2013).27 Note that, since by assumption for every ω ∈ Ω there is a
ρ′ ∈ supp µ with ρ′(ω) > 0, for every q ∈ ∆(S) the prior ρ(q) in (5) must assign positive
probability to observing the (x, π) that induced q; that is,

∑
ω∈Ω π(x|ω)ρ(ω; q) > 0.

Lemma 1. Given any message (x, π), let q(·|x, π) be Sender’s posterior, ρ ∈ ∆(Ω) be
such that

∑
ω∈Ω π(x|ω)ρ(ω) > 0, and p(·|x, π) be Receiver’s posterior after updating ρ.

Then, for all ω ∈ Ω,

p(ω|x, π) =
q(ω|x, π) ρ(ω)

σ(ω)∑
ω′∈Ω q(ω

′|x, π) ρ(ω′)
σ(ω′)

. (6)

If ρ(ω) = 0, expression (6) is well-defined and p(ω|x, π) = 0, even though q(ω|x, π)

may be positive. Moreover, if (x, π) and (y, π) are such that q(·|x, π) = q(·|y, π), then
p(·|x, π) = p(·|y, π).

These observations lead to the first main result of the paper: a full characterization
of the set of feasible joint distributions over posteriors under A1. Even though here
Receiver’s responses to information is more complicated than in models with common-
support priors, we can describe his posteriors only in terms of Sender’s posteriors and
without reference to signal devices.

Proposition 2. Consider any τ ∈ Fσ. Under A1, for every q ∈ supp τ and ω ∈ Ω,
Receiver’s posterior satisfies

p(ω; q) =
q(ω)ρ(ω;q)

σ(ω)∑
ω′∈Ω q(ω

′)ρ(ω′;q)
σ(ω′)

, (7)

where ρ(q) is given in (5).

Proposition 2 implies several key properties for the rest of the analysis:

• When Sender’s posterior q confirms ρ0, Receiver’s posterior does not depend on the
probability q assigns to states in R. Every q ∈ ∆c assigns positive probability to
the event R, as supp q ∩R 6= ∅; moreover, ρ0(ω) = 0 for ω ∈ R. So

p(ω; q) =

q(ω)
q(R)

ρ0(ω)
σ(ω)/σ(R)∑

ω′∈R
q(ω′)
q(R)

ρ0(ω′)
σ(ω′)/σ(R)

=
q(ω|R) ρ0(ω)

σ(ω|R)∑
ω′∈R q(ω

′|R) ρ0(ω′)
σ(ω′|R)

. (8)

Given q ∈ ∆c, Receiver has the same posterior he would have in a world in which
priors were ρ0 and σ(·|R) and Sender had posterior q(·|R).

27Though immediate, the steps of this generalization are reproduced in Appendix B to make the paper
self contained.
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• Conditional on confirming ρ0 and inducing posterior p, Sender can have any pos-
terior over R. Hence we lose the one-to-one relationship between Sender’s and
Receiver’s posteriors which characterizes models with common-support priors. To
see this, take any q′ ∈ ∆c and q′′ ∈ ∆(R). For every ω ∈ S, let q̂(ω) =

αq′(ω|R) + (1 − α)q′′(ω) with α ∈ (0, 1). Clearly, q̂ ∈ ∆(S). It is easy to see
that q̂(·|R) = q′(·|R) and q̂(·|R) = q′′.

• Since there are no restrictions on π, Sender can induce any posterior q(·|R) and
Receiver’s corresponding posterior under (8). Indeed, any q ∈ ∆c must arise from
a signal x ∈ Cπ for some device π, i.e., q = q(·|x, π). Then, for any ω ∈ R,

q(ω|R) = q(ω|(x, π),R) =
π(x|ω)σ(ω|R)∑

ω′∈R π(x|ω′)σ(ω′|R)
,

which depends only on π(·|ω) for ω ∈ R.

Analogous properties hold when Sender disproves ρ0. For instance, let supp µ =

(ρ0, ρ1) with µ(ρ0) > 1
2
. Then, for any q ∈ ∆d Receiver updates ρ1 and expression (7)

can be written as

p(ω; q) =
q(ω)ρ1(ω|R)

σ(ω|R)∑
ω′∈R q(ω

′)ρ1(ω′|R)

σ(ω′|R)

. (9)

So Receiver has the same posterior he would have in a world in which priors were ρ1(·|R)

and σ(·|R) and Sender had posterior q. Moreover, Sender can again induce any poste-
rior q ∈ ∆d and Receiver’s corresponding posterior under (9). Indeed, any q ∈ ∆d must
arise from a signal x ∈ Dπ for some π. That is, q = q(·|x, π) so that

q(ω|x, π) =
π(x|ω)σ(ω)∑

ω′∈R π(x|ω′)σ(ω′)
.

The claim follows because Sender can construct any π with π(x|ω) = 0 if ω ∈ R.

Further distinctive features of settings without common-support priors come to light
by examining how Receiver’s posterior varies as a function of Sender’s. By Proposition 2,
p(q) varies continuously in q over ∆c. However, it always changes discontinuously as q
moves from ∆c to ∆d; this discontinuity captures formally the idea of surprise.

Corollary 2. For any q ∈ ∆c and q′ ∈ ∆d, we have ||p(q)− p(q′)|| > ||p(q′)|| > 0.

By contrast, in Kamenica and Gentzkow (2011) and Alonso and Câmara (2013) Receiver’s
posterior is always a continuous function over ∆(S).
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When Sender disproves ρ0 (i.e., over ∆d), the continuity of Receiver’s posterior in
Sender’s depends on his prior over priors µ. As can be easily checked, Receiver’s posterior
is continuous over ∆d if supp µ = (ρ0, ρ1) with µ(ρ0) > 1

2
, for example. Appendix A

provides an example with discontinuities over ∆d. Intuitively, for a given prior Receiver’s
updating through Bayes’ rule varies continuously as q varies in ∆d, but his choice of a
prior may vary discontinuously when the maximum-likelihood criterion is inconclusive.28

This kind of discontinuity, however, is different from that highlighted in Corollary 2. Since
after unexpected evidence Receiver must abandon ρ0, a discrete difference in posteriors
with and without surprise is necessarily implied by the very nature of being surprised.

5 Optimal Communication

Building on the previous results, this section examines the signal devices that Sender
chooses.

We first need to specify how Receiver chooses actions. Assume that given posterior p
Receiver chooses an action that maximizes the resulting expected utility:29

a(p) ∈ A(p) = arg max
a∈A

∑
ω∈Ω

uR(a, ω)p(ω).

In general, given p, Receiver can be indifferent among multiple actions.

Assumption 2. If A(p) contains multiple actions, Sender can recommend Receiver to
choose any a ∈ A(p) and Receiver follows the recommendation.

Assumption 2 corresponds to Kamenica and Gentzkow’s (2011) ‘Sender-preferred’ subgame-
perfect equilibrium and also appears in Alonso and Câmara (2013). In their settings with
common-support priors, it ensures that an optimal signal device always exists.

Despite this standard assumption, due to the natural discontinuity in Receiver’s pos-
teriors after surprises, here optimal signal devices may not exist. To see why, given
posteriors q and p let Sender’s expected payoff be

v(q, p) = max
a∈A(p)

∑
ω∈Ω

uS(a, ω)q(ω).

28The function µ̂(·) in (4) is continuous in q and hence M(·) is upper hemicontinuous. This is insuffi-
cient to conclude that the function ρ(·) defined in Proposition 2 is continuous on ∆d.

29In Ortoleva (2012), SEU maximization is part of the Hypothesis-Testing Representation of the
decision-maker’s behavior.

18



Given any mapping from Sender’s to Receiver’s posterior p̂ : ∆(S)→ ∆(Ω), define

w(q) = v(q, p̂(q)) for all q ∈ ∆(S). (10)

As in Kamenica and Gentzkow (2011) and Alonso and Câmara (2013), v(·, ·) is upper
semicontinuous.30 Moreover, since in those papers p̂(·) is continuous, w(·) is upper semi-
continuous as well. By contrast, here w(·) need not be upper semicontinuous, because
p(·) in Proposition 2 (and 6 below) is discontinuous.

Example 1 (Non-existence of Optimal Communication). Let S = {ω1, ω2} with σ =

(1
2
, 1

2
), R = {ω1}, and A = {a, b, c}. Sender’s and Receiver’s utility functions are as

follows:

uS(·, ·) ω1 ω2

a 1 0
b 0 1
c −1 −1

uR(·, ·) ω1 ω2

a 1 0
b 1 0
c 1 1

For Sender, a is optimal if q(ω1) ≥ 1
2
and b is optimal if q(ω1) ≤ 1

2
. For any q 6= (0, 1),

p(q) = (1, 0) and A((1, 0)) = A. Therefore, Sender can make Receiver choose a or b
depending on her posterior q. For q = (0, 1), p(q) = (0, 1) and A((0, 1)) = {c}.

Consider device π ∈ Π with Xπ = {x1, x2} and

π(x̂|ω1) =

{
1− ε if x̂ = x1

ε if x̂ = x2

; π(x̂|ω2) =

{
1− ε if x̂ = x2

ε if x̂ = x1

.

So q(·|x1, π) = (1− ε, ε) and q(·|x2, π) = (ε, 1− ε), each arising with probability 1
2
. For

any ε > 0, Sender’s expected payoff is then

1

2
w(q(·|x1, π)) +

1

2
w(q(·|x2, π)) =

1− ε
2

+
1− ε

2
= 1− ε, (11)

However, for ε = 0, we have

1

2
w((1, 0)) +

1

2
w((0, 1)) =

1

2
(1) +

1

2
(−1) = 0.

Clearly, the supremum of Sender’s expected payoff over Π is 1, which is also the maximum
she can hope for. But no π can achieve 1. This would require that Sender learn the true

30This is because A(p) is a nonempty, compact-valued, upper-hemicontinuous correspondence by
Berge’s Maximum Theorem.
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state to make Receiver choose her preferred action accordingly; but then Receiver must
also learn the true state and hence will choose c in ω2.

Importantly, these technical difficulties do not preclude an informative analysis of
how Sender communicates. Under our assumptions, we can view Receiver as a ‘machine’
computing posteriors and associated optimal actions. Sender’s problem is then essentially
a single-agent decision problem. Although this problem may not have an exact solution,
we can examine its value function and infer from it properties of signal devices that are
virtually optimal. For instance, in example 1 expression (11) says that it is virtually
optimal for Sender to adopt a π that allows her to almost perfectly learn ω but never
disproves ρ0. To formalize this approach, denote Sender’s expected payoff from any τ by

V (τ) =
∑
q

w(q)τ(q),

where w(·) in (10) uses the function p(·) in Proposition 2 (or 6 below). Sender would like
to reach the highest V (τ) by choosing τ ∈ Fσ. This problem’s value function is31

Wσ = sup
τ∈Fσ

V (τ). (12)

The key observation here is that the usual ‘concavification’ procedure32 is well defined
even if the function w in (10) is not upper semicontinuous.

Definition 2 (Concavification). Let g : E ⊂ Rn → R. The concavification ĝ of g is the
lowest concave function with ĝ(e) ≥ g(e) for all e ∈ E; it satisfies

ĝ(e) = sup{ξ : (e, ξ) ∈ co(hyp g)} for all e ∈ E,

where co(hyp g) is the convex hull of the hypograph33 of g (Rockafellar (1997), p. 52).34

Using the concavification of w, we obtain the following.

Lemma 2. Wσ = ŵ(σ). Moreover, in (12), it is without loss of generality to restrict
attention to distributions τ with |supp τ | ≤ |S|.

31By characterizing Wσ, we will also obtain useful information on ε-optimal τ ’s for any ε > 0, since
there always exists a feasible τ with V (τ) ≥Wσ − ε.

32See Section 2 for references.
33Given a function g : Rn → R, its hypograph is defined as hyp g = {(e, r) ∈ Rn+1 : r ≤ g(e)}.
34In example 1, ŵ(q) = 1 for all q 6= (0, 1) and ŵ((0, 1)) = 0.
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By definition ŵ(σ) ≥ w(σ). If ŵ(σ) = w(σ), Sender does not benefit from any infor-
mative π and she can clearly achieve Wσ. If ŵ(σ) > w(σ), there exist feasible τ ’s that
correspond to informative π’s and satisfy V (τ) > w(σ). We therefore adopt the following
terminology.

Definition 3. If ŵ(σ) = w(σ), it is optimal for Sender not to reveal information. If
ŵ(σ) > w(σ), it is (virtually) optimal for Sender to reveal information.

Definition 3 refers to Sender’s viewpoint, as some π may reveal information according to
her theory of the world, σ, but no information according to Receiver’s theory, ρ0.35

In this paper the main question is not whether Sender reveals any information at
all, but if and when she disproves Receiver’s prior and how she optimally communicates
overall. Clearly, if ŵ(σ) = w(σ), for Sender it is optimal to never disprove ρ0 and to
communicate nothing. So hereafter we focus on the case with ŵ(σ) > w(σ).36

To address our questions, we need a different concavification argument, which consid-
ers the function w over ∆c and ∆d separately. Let wc and wd be the restrictions of w to ∆c

and ∆d and ŵc and ŵd their concavifications (Definition 2). For i = c, d, ŵi(q) ≤ ŵ(q) for
all q ∈ ∆i since co(hypwi) ⊂ co(hypw); moreover, limq′→q ŵ

i(q′) ≥ ŵi(q) for all q ∈ ∆i.37

As shown later, ŵd is continuous if wd is continuous, which holds when p(·) is continuous
over ∆d.

Lemma 3. If ŵc(σ) < ŵ(σ), there exists τ ∈ Fσ such that V (τ) > ŵc(σ). Moreover,
if V (τ) > ŵc(σ), then the probability τ d of disproving ρ0 is strictly positive.

This result suggests the following terminology.

Definition 4. If ŵc(σ) = ŵ(σ), it is (virtually) optimal for Sender to always confirm ρ0.
If ŵc(σ) < ŵ(σ), it is (virtually) optimal for Sender to disprove ρ0.

35In example 1, w(σ) = 1
2 , Wσ = 1, and Sender can approximate Wσ using a feasible τ with supp τ =

{(ε, 1 − ε), (1, 0)} for ε arbitrarily small. With this τ , however, Receiver’s posteriors are p((1, 0)) =
p((ε, 1− ε)) = (1, 0) = ρ0. So, from Receiver’s viewpoint, no information is revealed.

36As shown in Corollary 3 and Proposition 5 below, conditional on R Sender communicates as in the
standard settings of Kamenica and Gentzkow (2011) and Alonso and Câmara (2013). So the sufficient
conditions for Sender to optimally reveal some information in those settings can be adapted to ensure
that ŵ(σ) > w(σ).

37Being concave, ŵc is continuous at every q ∈ int∆c by Theorem 10.1 in Rockafellar (1997). By
Theorem 10.3 in Rockafellar (1997), there exists only one way to extend ŵc from int∆c to a continuous
finite convex function on ∆(S). In fact, this extension equals −cl(−ŵc) on ∆(S) where cl(−ŵc) is the
closure of the convex function −ŵc (see the proof of Theorem 10.3 and p. 52 of Rockafellar (1997)).
Therefore, for any q ∈ ∆c \ int∆c, we have lim q′→qŵ

c(q′) ≥ ŵc(q) since cl(−ŵc) ≤ −ŵc. A similar
argument applies for ŵd.
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The next result characterizes how Sender communicates with Receiver when she al-
ways confirms ρ0. This is also a key step in understanding her incentives to disprove ρ0.
Recall that

ŵc(σ) = sup
{τ∈Fσ :supp τ⊂∆c}

V (τ) = sup
Fcσ

∑
m

τmw(qm), (13)

where

F cσ =

{
{(qn, τn)}Nn=1 :

N∑
m=1

τmqm = σ,
N∑
m=1

τm = 1, τm ≥ 0, qm ∈ ∆c,∀m

}
.

Proposition 3. To compute ŵc(σ) in (13), it is without loss of generality to consider
distributions τ with the following properties:
(1) for every q ∈ supp τ , there exists at most one ω ∈ R such that q(ω) ∈ (0, 1) and38

q = (1− q(ω))q(·|R) + q(ω)δω;

(2) for every ω ∈ R, there exists a unique q ∈ supp τ such that q(ω) > 0 and, given
Receiver’s action a(p(q)),39

uS(a(p(q)), ω) = u∗S(ω) ≡ max
q′∈∆(R)

{ max
a∈A(p(q′))

uS(a, ω)}.

When Sender always confirms ρ0—either as an assumption or because it is optimal—
she communicates as follows. First, each message leads to a posterior q′ such that she
rules out all states that are impossible under ρ0 except at most one, say ω′ ∈ R. Since
Receiver’s posterior p(q′) continues to assign probability zero to ω′, we will refer to
this strategy as hiding ω′ in posterior q′. Second, Sender hides each ω′ ∈ R in only one
posterior and, among all those confirming ρ0, she selects q′ so that, having posterior p(q′),
Receiver chooses the best action for Sender in state ω′. We will refer to this strategy as
optimal hiding of ω′ and to u∗S(ω′) as its payoff.

The intuition is this. Property (1) arises because Sender can replace a posterior
assigning positive probability to, say, two states in R with two posteriors such that both
are identical to the original one conditional on R—and hence lead to the same posterior
for Receiver—but each assigns positive probability to only one of the two states. This
is possible because the priors’ different supports allow Sender to become more informed

38For every ω, δω represents the distribution that assigns probability 1 to ω.
39Note that ∆(R) is compact and maxa∈A(p(q′)) uS(a, ω) is upper semicontinuous in q, so u∗S is well

defined.
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without necessarily making Receiver more informed as well. Property (2) arises because
Sender can ensure that she assigns positive probability to ω′ ∈ R at a posterior q′ for
which Receiver’s action is most beneficial for her if ω′ is true; moreover, she can make q′

assign almost probability 1 to ω′. This also means that if the true state is not ω′, almost
certainly her signals will not induce q′. In this way, for states in R, her device can yield
with almost certainty signals that make Receiver behave in her best interest for those
states.

Proposition 3 allows us to obtain a simple expression for ŵc(σ).

Corollary 3. Sender’s expected payoff from always confirming ρ0 is

ŵc(σ) = σ(R)ŵc(σ(·|R)) +
∑
ω∈R

σ(ω)u∗S(ω).

The value of always confirming ρ0 is the value Sender would achieve if she could divide
her problem into two steps as follows. First, she learns whether R or R occurred.
Conditional on R, her belief has the same support as Receiver’s prior and she chooses
the optimal signal device as in settings with common-support priors—this is the case
studied in Kamenica and Gentzkow (2011) and Alonso and Câmara (2013). Conditional
on R, she chooses a fully informative device, where her payoff in each state ω is replaced
by that from optimally hiding ω.

We can now obtain a simple necessary and sufficient condition for Sender to optimally
disprove ρ0 (i.e., for ŵ(σ) > ŵc(σ)). To this end, define h : ∆d → R as

h(q) =
∑
ω∈R

u∗S(ω)q(ω).

This is the payoff Sender expects, at posterior q, from optimally hiding all states for
which she is providing supporting evidence (i.e., all ω ∈ supp q). In words, Sender
disproves ρ0 with positive probability if and only if there exists some posterior q at which
she disproves ρ0 and, given Receiver’s response, her expected payoff strictly exceeds h(q).

Proposition 4. It is optimal for Sender to disprove ρ0 if and only if wd(q) > h(q) for
some q ∈ ∆d.

Note that this condition can be directly checked without using any concavification.

The next result characterizes Sender’s payoff and communication strategy when she
disproves ρ0. Some preliminary observations are in order. If wd is continuous, so is ŵd
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and hence ŵd(q) is achieved for every q ∈ ∆d.40 To deal with the general case, we slightly
modify wd by considering the lowest upper-semicontinuous function that is pointwise
larger than wd, denoted wd∗, and let ŵd∗ be its concavification (Definition 2). Then ŵd∗

is continuous, it agrees with ŵd on the interior of ∆d, and ŵd∗(q) is achieved for every
q ∈ ∆d (see Lemma 4 in Appendix B). Now define the function m : ∆d → R by

m = max{h,wd∗}.

For every q disproving ρ0, m(q) captures whether with belief q Sender expects to do
better by actually surprising Receiver or by optimally hiding states. Since h and wd∗ are
upper semicontinuous, so is m. Then its concavification m̂ is continuous and m̂(q) is
achieved for all q ∈ ∆d by the argument establishing these properties for ŵd∗.41

Proposition 5. If Sender optimally disproves ρ0, then

ŵ(σ) = τ cŵc(qc) + (1− τ c)ŵd∗(qd) (14)

= σ(R)ŵc(σ(·|R)) + σ(R)m̂(σ(·|R)) (15)

where qc ∈ ∆c, qd ∈ ∆d, τ c ∈ [σ(R), 1), τ cqc + (1− τ c)qd = σ, and

m̂(σ(·|R)) =
τ cqc(R)

σ(R)
h(qc(·|R)) +

1− τ c

σ(R)
ŵd∗(q

d).

Moreover, any (conditional) distribution on ∆d achieving ŵd∗(qd) assigns positive prob-
ability only to q ∈ ∆d such that wd∗(q) ≥ h(q). Finally, τ c = σ(R) if and only if
m̂(σ(·|R)) = ŵd(σ(·|R)).

Proposition 5 can be interpreted as follows. Expression (14) highlights the dichotomy
in Sender’s problem between confirming and disproving ρ0. To solve her problem, she
can find the best among all convex combinations averaging to σ and involving only two
posteriors: one, qc, confirms ρ0 and one, qd, disproves it. To qc, she assigns the expected
payoff of the fictitious scenario in which qc is her prior and she always confirms ρ0

(Corollary 3). To qd, she assigns the expected payoff of the fictitious scenario in which qd

is again her prior, but Receiver responds to messages in the possibly non-Bayesian way
captured by the function p(·) in Proposition 2 after surprises. The weight τ c she assigns

40The claimed property follows from Part (i) of Lemma 4 in Appendix B.
41To see that m is upper semicontinuous (u.s.c.), note that hypm = hyph ∪ hypwd∗ where both h

and wd∗ are u.s.c.. By Theorem 7.1 in Rockafellar (1997), a function is u.s.c. if and only if its hypograph
is closed.
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to qc pins down the ex-ante probabilities of confirming and disproving ρ0.

Expression (15) highlights the difference in Sender’s communication between states
inside and outside Receiver’s theory of the world and allows us to compute her overall
payoff from primitives. Conditional onR, Sender gets the expected payoff from optimally
communicating with Receiver in the fictitious (standard) world in which their priors
are σ(·|R) and ρ0. Conditional on R, Sender gets the expected payoff from optimally
combining disproving ρ0 and hiding states given ‘prior’ σ(·|R). This is clear from the
expression of m̂(σ(·|R)), which can be computed by finding ŵd∗ and the best convex
combination γh(q1)+(1−γ)ŵd∗(q2) with q1, q2 ∈ ∆(R) and γq1+(1−γ)q2 = σ(·|R). Given
the optimal γ, we get the probability of disproving ρ0, τ d = (1− γ)σ(R), the probability
of hiding states, τ cqc(R) = γσ(R), and qc = q2 + 1

τc
(σ − q2) since q2 = qd. Proposition

5 also says—as should be expected—that when Sender ends up with q disproving ρ0,
she never expects that she could do strictly better by hiding the states for which she is
providing supporting evidence.

Finally, Proposition 5 gives a necessary and sufficient condition for Sender to optimally
disprove ρ0 whenever the true state would call for it. The key is that, at the specific
‘prior’ σ(·|R), Sender has one way to maximize her expected payoff which never involves
optimally hiding states. Note, however, that τ c in Proposition 5 need not be unique. Of
course, a stronger sufficient condition for τ c = σ(R) is wd ≥ h with strict inequality for
some q ∈ ∆d.

The next result gives a simpler sufficient condition for Sender not to disprove ρ0

whenever required by the state. Let T (σ(·|R)) be the set of distributions τ ∈ ∆(∆d) such
that

∑
q qτ(q) = σ(·|R) and

∑
q w

d
∗(q)τ(q) = ŵd∗(σ(·|R)). Recall that T (σ(·|R)) 6= ∅.

Corollary 4. Suppose ŵ(σ) > ŵc(σ). If there exists τ̂ ∈ T (σ(·|R)) and q ∈ supp τ̂ such
that wd∗(q) < h(q), then τ d < σ(R).

In words, Sender will not disprove ρ0 whenever required by ω if there is an optimal way
of doing so that involves a posterior at which she could do strictly better, in expectation,
by optimally hiding all states for which she provides supporting evidence. All elements
in this condition can be directly computed from primitives of the model. The condition
is weaker than requiring that wd(q) < h(q) for all q ∈ ∆d, which of course implies τ d = 0.
Note that we can have ŵd∗(σ(·|R)) > h(σ(·|R)) and yet τ d < σ(R). Also, conditional
on R Sender and Receiver could have sufficiently aligned preferences, so that ŵd∗(σ(·|R))

is achieved by fully revealing all states in R. Yet Sender may prefer to optimally hide
some ω ∈ R, thus confirming ρ0 in that sate.
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Proposition 5 also implies that a (virtually) optimal τ has to satisfy the following
“no regret” property. When Sender ends up disproving ρ0, she cannot strictly prefer any
action that Receiver takes when she confirms ρ0.

Corollary 5 (‘No Regret’). Take any τ ∈ Fσ with τ d > 0. Suppose that for some q̂ ∈ Dτ

and q′ ∈ Cτ
wd(q̂) <

∑
ω∈Ω

uS(a(p(q′)), ω)q̂(ω).

Then, V (τ) < ŵ(σ).

This is again because of the flexibility Sender enjoys in managing her posteriors, while
not changing Receiver’s. She can have posterior q̂ conditional on R and q′ conditional
on R, and at the same time assign very low probability to the states in R. In this way,
she makes Receiver choose a(p(q′)) while having a posterior arbitrarily close to q̂ and
hence an expected payoff close to

∑
ω∈Ω uS(a(p(q′)), ω)q̂(ω).

5.1 Illustrative Example: Court

We can now formally solve the court example from the introduction. Recall the data of the
problem: S = {ω0, ω1, ω2, ω3},R = {ω0, ω2}, σ = (0.35, 0.4, 0.15, 0.1), ρ0 = (0.7, 0, 0.3, 0),
and ρ1 = σ.42 The judge (Receiver) only cares about matching defendant’s refund with
the state. Letting f(ωi) = i (where i stands for i thousands/millions of dollars) and
A = {0, 1, 2, 3}, we have

uR(a, ωi) =

{
1 if a = f(ωi)

0 otherwise
.

Concerning the lawyer (Sender), we have uS(a, ωi) = a, the refund amount.

By Proposition 4 Sender must disprove ρ0 with strictly positive probability. For
Sender the best way to hide both ω1 and ω3 is to ensure that Receiver chooses a = 2.
This occurs at posteriors q assigning at least probability 0.5 to ω2 conditional on R.
Therefore, u∗S(ω1) = u∗S(ω3) = 2 and hence h(q) = 2 for all q ∈ ∆d = ∆({ω1, ω3}). Since
wd(δω3) = 3, Proposition 4 implies the claimed property.

To obtain Sender’s payoff ŵ(σ) in (15), we first compute ŵc(σ(·|R)) with the help of
Figure 1. As in Kamenica and Gentzkow (2011), when both parties have prior σ(·|R) =

42Note that, with these priors, Sender’s and Receiver’s posteriors coincide if either q ∈ ∆(R) or
q ∈ ∆(R).
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(0.7, 0.3), it is optimal for Sender to generate two posteriors: At the first, both parties
assign probability 1 to ω0 (i.e., q = (1, 0, 0, 0)) and Receiver chooses a = 0; At the
second, both assign equal probabilities to ω0 and ω2 (i.e., q′ = (0.5, 0, 0.5, 0)) and Receiver
chooses a = 2. The full red dots in Figure 1 represent the corresponding expected payoffs
for Sender. Hence, ŵc(σ(·|R)) = 0.3

0.5
2 = 1.2.

$

1

2

3

0 10.50.3 q(ω2|R)

ŵc(σ(·|R))

wcŵc

Figure 1: Confirming ρ0
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0 10.50.2 q(ω3|R)

h
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ŵd(σ(·|R))

m̂(σ(·|R))

ŵd

m̂

Figure 2: Disproving ρ0

Second, we compute m̂(σ(·|R)) in (15). Since for all q ∈ ∆d Receiver’s posterior equals
Sender’s, wd(q) = 1 if q(ω3) < 0.5 and wd(q) = 3 otherwise. Therefore, m = max{2, wd}
equals 2 if q(ω3) < 0.5 and 3 otherwise. As illustrated in Figure 2, again when both
parties have prior σ(·|R) = (0.8, 0.2) and Sender has payoff function m, she optimally
induces two posteriors: At the first, both parties assign equal probability to ω1 and ω3

(i.e., qd = (0, 0.5, 0, 0.5)) and Receiver chooses a = 3; At the second, both parties assign
probability 1 to ω1 (i.e., q̂ = (0, 1, 0, 0)) and Sender get’s payoff u∗S(ω1). So,

m̂(σ(·|R)) =
0.2

0.5
wd(qd) +

0.3

0.5
h(δω1) = 2.4.

Given this, Sender’s overall expected payoff (the expected refund for her client) is

Wσ = 0.5(1.2) + 0.5(2.4) = 1.8.

Consider now the probability with which Sender disproves ρ0. By Proposition 5, this
probability is strictly less than 0.5 = σ(R), because

ŵd(σ(·|R)) =
0.2

0.5
wd(qd) +

0.3

0.5
wd(δω1) =

0.2

0.5
3 +

0.3

0.5
1 = 1.8
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which is lower than m̂(σ(·|R)).43 In fact,

τ d = σ(R)
0.2

0.5
= 0.2.

$

1

2

3

ω3

ω1 ω0

ω2

ŵc(σ(·|R))

σ(·|R)

σ

m̂(σ(·|R))

σ(·|R)

ŵd(σ(·|R))

wd

h

Wσ
ŵc(σ)

Figure 3: Optimal Signal Device

Figure 3 helps us describe Sender’s (virtually) optimal signal device. It involves four
signals: three confirm ρ0 and one disproves it. Signal x0 arises only in state ω0, revealing
it. Signal x2 arises in ω0 and ω2 and leads both parties to assign them equal probability.
Signal x1 arises in ω1 and ω2 and leads Sender to assign ω1 probability arbitrarily close
to 1, while Receiver assigns probability 1 to ω2. Finally, signal x3 arises in ω1 and ω3

and leads both parties to assign them equal probability. Graphically, the solid red dots
in Figure 3 represent Sender’s expected payoff for each signal.

For comparison, consider Sender’s payoff from the strategies of never and always
disproving ρ0. In the first case, her maximal expected payoff is given in Corollary 3:

ŵc(σ) = 0.5(1.2) + 0.5(2) = 1.6.

This corresponds to the black square in Figure 3. In the second case, her maximal
43In this example, we could have immediately used Corollary 4 to reach the same conclusion

since wd(δω1) < h(δω1).
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expected payoff is

0.5ŵc(σ(·|R)) + 0.5ŵd(σ(·|R)) = 0.5(1.2) + 0.5(1.8) = 1.5.

This corresponds to the blue square in Figure 3. So, by optimally combining hiding and
surprising, Sender improves her payoff by 12.5% relative to always hiding and by 20%

relative to always surprising.

5.2 Application with Quadratic Payoffs

This section applies the previous results to a setting in which states and actions take
values on the real line and Sender’s and Receiver’s payoffs are quadratic loss functions of
the gap between an ideal and the implemented action. Such settings have been applied
to study many concrete problems.44

The setting is defined as follows. Let Ω = {ω1, . . . , ωn} ⊂ R++ where states are
ordered so that ωi < ωi+1 for all i, and let A = R. Payoffs functions are uS(a, ω) =

−(a− ω)2 and uR(a, ω) = −(a− β(ω))2 where β(ω) is Receiver’s ideal action in state ω.
Assume that β(ω) > ω for all ω and that β(·) involves a fixed and a linear component in
ω, i.e., β(ω) = κω+b with κ > 0 and b ≥ 0. Receiver initially views low and high enough
states as impossible: R = {ωi}mi=m with 1 < m < m < n. Moreover, suppµ = (ρ0, ρ1)

with µ(ρ0) > 1
2
, ρ0 = σ(·|R), and ρ1 = σ. As usual, in this setting given posterior p

Receiver chooses his expected ideal action: a(p) = Ep[β].

First of all, we need to compute Sender’s expected payoffs for any posterior and from
optimally hiding. For any q ∈ ∆(S),

w(q) = Eq[uS(Ep(q)[β], ω)] (16)

= −κ2(Ep(q)[ω])2 + 2κEp(q)[ω]Eq[ω]− 2b(κEp(q)[ω]− Eq[ω])− b2 − Eq[ω2].

Recall that p(q) = q(·|R) for q ∈ ∆c by (8); also, p(q) = q for q ∈ ∆d. So Ep(q)[ω] is
always linear in q and wd is continuous. To compute u∗S(ω) we have to consider several
cases. For ω < ωm it is clearly optimal to hide ω so that Receiver assigns probability 1
to ωm, the closest state to ω within R; hence u∗S(ω) = −(β(ωm)− ω)2. For ω > ωm the
optimal hiding strategy depends on β. If ωm < ω < β(ωm) the situation is equivalent
to the case ω < ωm. If β(ωm) ≤ ω, it is optimal to hide ω so that Receiver assigns
probability 1 to ωm; hence u∗S(ω) = −(β(ωm)−ω)2. If instead β(ωm) > ω ≥ β(ωm), there

44See Footnote 10.
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always exists q ∈ ∆c such that Ep(q)[β] = ω; hence u∗S(ω) = 0.

Applying Proposition 4, we have that Sender will disprove Receiver’s theory with
positive probability (τ d > 0) for all specifications of κ and b. Indeed, for any ω < ωm,
δω ∈ ∆d and wd(δω) = −(β(ω)−ω)2 which is strictly larger than h(δω) = −(β(ωm)−ω)2

because ω < β(ω) < β(ωm).

Using Proposition 5, we can fully characterize Sender’s communication strategy as a
function of the bias parameters κ and b. To compute ŵ(σ) in expression (15), consider
each component separately. First, if τ ∈ ∆(∆(S)) is such that

∑
q qτ(q) = σ(·|R), then

supp q ⊂ R for all q ∈ supp τ and hence q = q(·|R). It follows that (16) simplifies to

wc(q) = κ(2− κ)(Eq[ω])2 + 2b(κ− 1)Eq[ω]− Eq[ω2]− b2. (17)

Note that wc(q) is strictly convex in q if and only if κ < 2. Therefore, if κ ≤ 2,
ŵc(σ(·|R)) is achieved by τ = {(δω, σ(ω|R))}ω∈R (uniquely if κ < 2), that is, by fully
revealing the state; by contrast, if κ > 2, revealing no information is strictly optimal and
ŵc(σ(·|R)) = wc(σ(·|R)). Second, for any q ∈ ∆d, expression (17) again holds. Hence,
if κ ≤ 2, ŵd(σ(·|R)) is again achieved by τ ′ = {(δω, σ(ω|R))}ω∈R (uniquely if κ < 2),
whereas ŵd(σ(·|R)) = wd(σ(·|R)) if κ > 2.

Based on these observations, consider first the case with κ ≤ 2. In short, Sender
always fully reveals all states below ωm. For higher states, she divides them into two
groups depending on Receiver’s bias: those close enough to ωm are always hidden, the
others are fully revealed. Finally, the stronger the Receiver’s bias, the larger the set of
hidden states.

Corollary 6. If κ ≤ 2, Sender’s communication strategy has the following properties.
• For each i ≤ m, she fully reveals ωi.
• For all i > j > m, there exist thresholds bi(κ) and bj(κ) decreasing in κ (each strictly
when positive) and such that bi(κ) ≤ bj(κ) (with < if either is positive). If b ≤ bm+1(κ), we
have ŵd(σ(·|R)) = m̂(σ(·|R)) and hence τ d = σ(R). If b > bm+1(κ), there exists i∗(b, κ),
non-decreasing in both κ and b, such that Sender hides with probability 1 each ωi with
m < i < i∗(b, κ) and fully reveals each ωi with i ≥ i∗(b, κ).

So, when κ ≤ 2, the fixed component b of Receiver’s bias plays no role in how Sender
communicates when she is not hiding states. This point generalizes a similar observation
in Kamenica and Gentzkow (2011). By contrast, however, here b affects which states
Sender hides and how she optimally hides them.

The case with κ > 2 is less straightforward. Since wd is strictly concave in q, we
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always have ŵd(qd) = wd(qd) in Proposition 5. Therefore, whenever Sender disproves ρ0,
she reveals no information and makes Receiver take the same action: Eqd [β]. It turns
out that this action always caters to either the low states or the high states, rather than
trying to achieve a compromise.

Corollary 7. If κ > 2, then either Eqd [β] < β(ωm) or Eqd [β] > β(ωm), and Sender’s
expected payoff is

−

∑
ω∈R

(Eσ(·|R)[β]− ω)2σ(ω) + τ dEqd(Eqd [β]− ω)2 + τ c
∑
ω∈R

{−u∗S(ω)}qc(ω)

 (18)

where τ d = 1− τ c > 0 and τ cqc + τ dqd = σ. If ωm ≤ Eσ(·|R)[ω] ≤ ωm, then τ d < σ(R).

To gain intuition, suppose Eqd [β] were between β(ωm) and β(ωm), the highest and
lowest action Receiver would take if his theory is confirmed. Then, for all states ω < ωm,
Sender would strictly prefer to hide them. But if she does so, Eqd [β] jumps above β(ωm).
She can then combine hiding and surprising for states above ωm to achieve the best Eqd [β],
thus improving her payoff. A similar improvement may start from hiding states ω > ωm

which leads to Eqd [β] < β(ωm). Overall, given κ and b, whether it is best for Sender to
cater to high or to low states with Eqd [β] ultimately depends on which states she thinks
are more likely.

Sender’s expected payoff in (18) contains information on the other actions that she
persuades Receiver to choose. For states in R, he chooses Eσ(·|R)[β] with probability
arbitrarily close to 1 (which becomes exactly 1 if τ d = σ(R)). Sender ‘uses’ the re-
maining probability to hide states in R, in which case Receiver’s action is in the interval
[β(ωm), β(ωm)] but differs in general from Eσ(·|R)[β]. If σ is such that Eσ(·|R)[ω] ∈ [ωm, ωm],
we can say more about which states Sender hides. If at the optimum Eqd [β] < β(ωm),
there exists ω > ωm which is optimally hidden with strictly positive probability (oth-
erwise Eqd [β] ≥ β(ωm)). Similarly, if Eqd [β] > β(ωm) there exists ω < ωm which is
optimally hidden with strictly positive probability. In other words, Sender makes Re-
ceiver’s action cater to low (high) states by optimally hiding high (low) states. Note that
these qualitative properties as well as those in Corollary 7 are independent of κ and b.

5.3 Is Having a Richer Theory Always Good for Persuaders?

With the help of an example, this section aims to illustrate two simple points: (1) Sender
may be strictly better off if Receiver shared her theory of the world rather than viewing
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some states as impossible; (2) Sender may reveal some information in the former scenario
but not in the latter.45 The key to these points is Proposition 1: by treating some states
as impossible, Receiver’s theory can severely limit how Sender can influence his beliefs
and hence actions.

Consider a setting with two states: S = {ω1, ω2}. Sender has prior σ = (1
2
, 1

2
).

Receiver has four actions, A = {a, b, c, d}, and payoffs are as follows:

uS(·, ·) ω1 ω2

a 0 5
b 3 1
c 1 4
d 2 2

uR(·, ·) ω1 ω2

a 2 −3
b 1 0
c 0 1
d −3 2

The next table summarizes Receiver’s best actions depending on his posterior p:

Values of p(ω2) [0, 1
4
) {1

4
} (1

4
, 1

2
) {1

2
} (1

2
, 3

4
) {3

4
} (3

4
, 1]

A(p) {a} {a, b} {b} {b, c} {c} {c, d} {d}

When Receiver’s prior is ρ0 = (0, 1), Sender has only two options: always confirm ρ0 and
always disprove it. The expected payoff from these strategies are 2 and 1 respectively, so
it is optimal for Sender not to communicate at all.

Now suppose that ρ0 = σ as in Kamenica and Gentzkow (2011). In this case, Sender’s
and Receiver’s posteriors coincide for any message: p(q) = q for all q ∈ ∆(S). Using the
previous table, we can easily compute Sender’s expected payoff as a function of q:

wKG(q) =


5q2 if q2 ∈ [0, 1

4
)

3− 2q2 if q2 ∈ [1
4
, 1

2
)

1 + 3q2 if q2 ∈ [1
2
, 3

4
]

2 if q2 ∈ (3
4
, 1]

,

where q2 = q(ω2). By Corollary 2 in Kamenica and Gentzkow (2011), Sender’s expected
payoff from an optimal π is WKG

σ = ŵKG(σ) and she benefits from revealing information
45When Sender’s and Receiver’s have common-support but different priors, Alonso and Câmara (2013)

show that generically reveling some information is optimal for Sender.
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if and only if ŵKG(σ) > wKG(σ). It is easy to see that in this example

ŵKG(q) =


10q2 if q2 ∈ [0, 1

4
)

17
8

+ 3
2
q2 if q2 ∈ [1

4
, 3

4
)

7− q2 if q2 ∈ (3
4
, 1]

.

Therefore, ŵKG(1
2
, 1

2
) = 2.875 whereas wKG(1

2
, 1

2
) = 2.5. Moreover,WKG

σ exceeds Sender’s
expected payoff when Receiver views ω1 as impossible (Wσ = 2).

This example raises an intriguing issue for the literature on persuasion. Starting from
a situation in which Receiver’s theory is ρ0 = (0, 1), Sender would like to first ‘persuade’
him to adopt her theory σ and only then reveal some information on the states. We have
seen, however, that no signal device in Π—the class commonly studied in the literature—
can make Receiver switch from ρ0 to σ. So, if there is any technique that would make him
switch theories (perhaps arguments on their internal logical consistency), it must belong
to a different class of persuasion activities than those usually studied in the literature.
This class may deserve further investigation.

6 Extensions

6.1 Unawareness Interpretation of the Model

It is possible, perhaps natural, to interpret this paper’s model as a way to describe
situations in which Sender wants to persuade a Receiver who is initially unaware of some
states of the world. Receiver’s unawareness of the states in R would be the underlying
reason why his prior assigns them zero probability.

This interpretation requires further explanation. It is reasonable to assume that,
though initially unaware of ω, Receiver can fully understand its description once given to
him. This description can also exhaustively specify Receiver’s payoff in ω; for example, it
says how actions map to monetary prizes, for which he knows his utility function. Hence,
we can continue to define uR as a function of Ω, not just R. We can also continue to
assume that Sender commits to signal devices. When π is disclosed to Receiver before any
signal realizes, he understands that he may have been unaware of some conceivable states.
Nonetheless, we can assume that Receiver does not abandon his prior after observing
only π. This may happen for several reasons: (1) Per se π contains no information;
(2) Receiver may be firmly skeptic and think that Sender simply invented states that
are incompatible with his theory, and hence he should not abandon it unless conclusive
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evidence disproves it; (3) Receiver may always try to interpret any observation in favor
of his initial theory, as shown in studies on “confirmatory bias.”46 Of course, another
possibility is that as soon as Receiver hears the description of an ω /∈ R, he abandons
his initial theory of the world and adopts one that includes ω. In this case, however,
the model essentially collapses to one with common-support priors: by construction all
π ∈ Π describe all states in Ω and therefore Sender will design π as if Receiver already
assigns positive probability to all states.

A natural concern—especially under the unawareness interpretation—is that after
observing a signal Sender may want to conceal some part of her device. In this way,
Sender can literally hide states Receiver is unaware of. Formally, after observing x

from π, Sender may want to communicate a message (x, π′) where π′ is obtained by
deleting π(·|ω) for some ω. If (x, π) does not make Receiver abandon ρ0 and ω ∈ R,
such a change does not benefit Sender: Receiver ignores π(x|ω) anyways. But in other
cases the change may benefit Sender: she can prevent Receiver from becoming aware
of some states, after gaining better information for herself. Concealing parts of π is
conceptually different from concealing some signal realization (e.g., by lumping signals
together in a coarser one) and can have different consequences. Their analysis is left for
future research.

6.2 Alternative Models of Receiver’s Responses to Information

This section examines a set of assumptions describing other tractable ways to model
how Receiver responds to unexpected evidence. These models are less sophisticated
than Ortoleva’s (2012). They are, however, simpler to the extent that they do not
involve a prior over priors—which should be part of what Sender knows about Receiver—
and assume a direct procedure by which Receiver picks new theories after surprises.
These models rely on lexicographic belief systems (LBS’s) and are similar in spirit to the
‘sequences of hypotheses’ in Kreps and Wilson’s (1982) work on sequential equilibria.
They may also fit better an unawareness interpretation of different-support priors.47

The first assumption describes how Receiver responds to messages confirming ρ0 and
has the same rationale as A1(c).

Assumption 3 (A3). If x ∈ Cπ, Receiver updates ρ0 using Bayes’ rule.
46See, e.g., Rabin and Schrag (1999) and references therein.
47Such interpretations may be compatible with Ortoleva’s (2012) axioms. However, if at the outset

Receiver is unaware of some states in Ω, it may be hard to imagine that he conceives a prior ρ assigning
positive probability to them and, a fortiori, a prior over priors with ρ in its support.
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To describe how Receiver responds to messages disproving ρ0, we consider two possi-
bilities. In both cases, we shall continue to assume that Receiver forms a unique posterior
belief.48 To do so, after a surprising x, he updates some prior other than ρ0 which is
‘triggered’ by x. We formalize this idea using lexicographic belief systems (LBS’s).

In the first assumption, Receiver has only one alternative theory of the world which
contains all states in Ω.

Assumption 4 (A4: Binary LBS). Receiver has an LBS (ρ0, ρ1) with supp ρ1 = Ω. If
x ∈ Dπ, he updates ρ1 using Bayes’ rule.

To illustrate, suppose Ω = {ω1, ω2, ω3}, R = {ω1}, and that x can arise only in ω2 under
π, i.e., Ωπ(x) = {ω2}. Given (x, π), first of all Receiver switches to viewing ω1, ω2,
and ω3 as possible; he then updates his new theory using Bayes’ rule. A4 captures a
Receiver who is willing to easily abandon his theory of the world and, given evidence
contradicting it, admits that all states in Ω are actually possible. Together, A3 and A4
are similar to Ortoleva’s (2012) model with µ(ρ0) > 1

2
and µ(ρ1) = 1−µ(ρ0). His model,

however, suggests a richer story for why Receiver first adopts ρ0 and then turns to ρ1

after unexpected signals.

The next assumption allows for richer LBS’s. Recall that Ωπ(x) is the set of states
that are consistent with (x, π) (see (3)).

Assumption 5 (A5: Gradual LBS). Receiver has LBS (ρ0, . . . , ρN) such that, for each
Ωi ⊂ Ω with Ωi ) R, there is exactly one ρi with supp ρi = Ωi.49 If x ∈ Dπ, he updates
prior ρi with supp ρi = R∪ Ωπ(x) using Bayes’ rule.

A5 captures a Receiver who is reluctant to abandon his theory. Given evidence contra-
dicting it, he is willing to expand it to include only those states which are either possible
under ρ0 or consistent with (x, π). Suppose again that Ω = {ω1, ω2, ω3}, R = {ω1}, and
Ωπ(x) = {ω2}. Given (x, π), now Receiver’s new theory views only ω1 and ω2 as possible.

In general, we may require some consistency between layers in Receiver’s LBSs.50

Assumption 6 (A6: Consistency). Given LBS (ρ0, . . . , ρN), for any ρi and ρj and

48Alternatively, one could imagine that surprising signals may leave Receiver with some ambiguity,
captured by a set of posteriors.

49To clarify, N in Receiver’s LBS equals the number of subsets of Ω containing R as a strict subset.
50Karni and Vierø (2013) study a decision-theoretic model of growing awareness and provide an ax-

iomatic foundation for this consistency property. This property should not be confused with the notion
of consistency in Kreps and Wilson (1982).
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corresponding supports Ωi and Ωj,

ρi(ω|Ωi ∩ Ωj)

ρi(ω′|Ωi ∩ Ωj)
=
ρj(ω|Ωi ∩ Ωj)

ρj(ω′|Ωi ∩ Ωj)
for all ω, ω′ ∈ Ωi ∩ Ωj.

That is, for any ρi and ρj, Receiver assigns the same relative likelihood to all states that
are possible under both theories. For example, let Ω = {ω1, ω2, ω3, ω4}, ρ0 = (1

2
, 1

2
, 0, 0),

and ρ1 have support Ω1 = {ω1, ω2, ω3}. Then, conditional on {ω1, ω2}, ρ1 assigns equal
probability to the two states. A6 seems reasonable since each state is an exhaustive
description of reality. If ω1 and ω2 can occur only when neither ω3 nor ω4 occurs, then
the assessment of ω1 and ω2’s relative likelihood knowing that {ω3, ω4} is impossible
should be the same as when knowing that {ω3, ω4} was possible but did not occur.

Under A3-A6, we can characterize the joint distributions over posteriors Sender can
achieve with signal devices, along the lines of Section 4.2. The analysis in Section 5 then
applies unchanged.

The key step is to realize that Sender’s posterior after any (x, π) pins down which
prior Receiver will update among those in his LBS. Under A4 this is immediate: for every
x ∈ Dπ, q(·|x, π) ∈ ∆d and Receiver updates ρ1. Consider now A5. For every x ∈ Dπ,
supp q(·|x, π) equals the set Ωπ(x) of states consistent with (x, π). Given (x, π), Receiver
updates ρi with support R∪ Ωπ(x). So, for every x ∈ Dπ, let

Ω(q(·|x, π)) = R∪ supp q(·|x, π).

This mapping from Sender’s posteriors to subsets of Ω is well defined: supp q(·|x, π) =

supp q(·|y, π) if q(·|x, π) = q(·|y, π) for x, y ∈ Dπ. Then, for every τ ∈ Fσ and ρi in
Receiver’s LBS, let Dτ (ρi) ⊂ Dτ be the set of Sender’s posteriors at which Receiver
updates ρi:

Dτ (ρi) = {q ∈ supp τ : Ω(q) = supp ρi}.

Note that {Dτ (ρi)}Ni=1 forms a partition of Dτ . Relying on Lemma 1, we may then draw
the following conclusion.

Proposition 6. Consider any τ ∈ Fσ and let Receiver’s LBS be (ρ0, . . . , ρN). Then, for
every q ∈ supp τ and ω ∈ Ω, we have

p(ω; q) =
q(ω)ρ(ω;q)

σ(ω)∑
ω′∈Ω q(ω

′)ρ(ω′;q)
σ(ω′)

, (19)
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where under A4 (i.e., N = 1)

ρ(q) =

{
ρ0 if q ∈ Cτ
ρ1 if q ∈ Dτ

,

and under A5

ρ(q) =

{
ρ0 if q ∈ Cτ
ρi if q ∈ Dτ (ρi)

.

By Proposition 6, if A6 holds, Sender can achieve the same joint distributions over
posteriors under A4 and A5. Therefore, considering the simpler case of A4 involves no
loss of generality for the purpose of this paper.

Corollary 8. Consider LBS (ρA0 , ρ
A
1 ) under A4 and LBS (ρBi )Ni=0 under A5. Suppose that

ρA0 = ρB0 , ρA1 = ρBN with supp ρBN = Ω, and (ρBi )Ni=0 satisfies A6. Then, for any τ ∈ Fσ,

pA(ω; q) = pB(ω; q) for all ω ∈ Ω and q ∈ supp τ.

Proposition 6 also implies that under A4 p(q) varies continuously in q over the sets ∆c

and ∆d separately. By Corollary 8, the same is true under A5 if A6 holds.

Without A6, A4 and A5 can lead to different sets of joint distributions over posteriors
and Receiver’s posterior may be discontinuous over ∆d. To see this, suppose that S =

{ω1, ω2, ω3, ω4}, R = {ω1}, σ = ρA1 = ρB7 = (1
4
, 1

4
, 1

4
, 1

4
), and ρB6 = (1

4
, 1

4
, 1

2
, 0). Let q =

(0, 1
2
, 1

2
, 0) ∈ ∆d. Then, ρ(q) = ρA1 under A4, but ρ(q) = ρB6 under A5. Straightforward

calculations yield

pA(ω3; q) =
1

2
and pB(ω3; q) =

2

3
.

For ε ∈ (0, 1), consider qε = (0, 1−ε
2
, 1−ε

2
, ε) ∈ ∆d. Then, under both A4 and A5, we have

pA(ω3; qε) = pB(ω3; qε) =
1− ε

2
,

which converges to 1
2
as ε→ 0.

6.3 Alternative Differences in Priors’ Supports

The support Receiver’s prior need not be a subset of that of Sender’s prior (R ( S).
This case, however, comprises all key aspects of the different-support assumption. For
S,R ⊂ Ω, consider the alternatives (i) S ( R, (ii) S ∩ R 6= ∅ but S 6⊂ R and R 6⊂ S,
and (iii) S ∩ R = ∅. Case (i) is trivial and uninteresting for our purposes, as Receiver
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can never be surprised and Bayes’ rule always applies. For the other cases, suppose first
that Sender cannot provide information on states outside S. In this setting, we can add a
default signal—‘no evidence’—which arises whenever ω /∈ S. Then, case (ii) is equivalent
to R ( S because Sender cannot affect Receiver’s beliefs for states outside S and thinks
that such states are impossible. Similar considerations apply for case (iii), except that
Receiver will always be surprised. If Sender can provide information on states outside
S, in both case (ii) and (iii) we can always rely on Bayes’ rule whenever Receiver is not
surprised; when he is, the problem is the same as with R ( S.
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A Appendix: Discontinuity of Receiver’s Posterior over

∆d under Assumption 1

Given Ω = {ω1, ω2, ω3, ω4} and σ = (1
4 ,

1
4 ,

1
4 ,

1
4), let supp µ = (ρ0, ρ1, ρ2) with µ(ρ0) = 1

2 ,
µ(ρ1) = µ(ρ2) = 1

4 , R = {ω1}, ρ1 = (1
4 ,

1
4 ,

1
2 , 0), and ρ2 = σ. Consider Sender’s posterior

qz = (0, 1−z
2 , 1−z

2 , z) ∈ ∆d for z ∈ (0, 1). Then,

µ(ρ1; qz) =

∑
ω∈Ω qz(ω)ρ1(ω)∑

ω∈Ω qz(ω)ρ1(ω) +
∑

ω∈Ω qz(ω)ρ2(ω)
=

1

1 + 2
3(1−z)

,

µ(ρ2; qz) = 1− µ(ρ1; qz).

Hence, µ(ρ1; qz) ≥ µ(ρ2; qz) if and only if z ≤ 1
3 . For z = 1

3 Receiver will choose either ρ1 or ρ2

depending on how he ranks them under �.

Using Lemma 1, we can compute Receiver’s posteriors starting with ρ1 and ρ2 when Sender
has posterior qz. Focusing on ω3, we have

p1(ω3; qz) =
(1− z)1

2

(1− z)1
2 + (1− z)1

4

=
2

3
,

p2(ω3; qz) =
(1− z)1

4

(1− z)1
4 + (1− z)1

4 + 2z 1
4

=
1− z

2
.

So Receiver’s posterior must vary discontinuously in qz at z = 1
3 .

B Appendix: Proofs

B.1 Proof of Proposition 1

If q(·|x, π) ∈ ∆c, then p(·|x, π) results from updating ρ0 ∈ ∆(R) using Bayes’ rule. Hence,
supp p(·|x, π) ⊂ R. If q(·|x, π) ∈ ∆d, then under A1, we have that p(·|x, π) results from
updating some prior ρ ∈ ∆(Ω) using Bayes’ rule and hence supp p(·|x, π) ⊂ Ωπ(x). Finally, by
definition of ∆d, we have Ωπ(x) = supp q(·|x, π) ⊂ R.
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B.2 Proof of Lemma 1

This steps generalize the proof of Proposition 1 in Alonso and Câmara (2013). Take any π,
x ∈ Xπ, and ρ ∈ ∆(Ω) such that

∑
ω′∈Ω π(x|ω′)ρ(ω′) > 0. Applying Bayes’ rule, we get

p(ω|x, π) =
π(x|ω)ρ(ω)∑

ω′∈Ω π(x|ω′)ρ(ω′)
for all ω ∈ Ω.

For any ω ∈ Ω, since σ(ω) > 0, using (2) we can write

π(x|ω)ρ(ω) = q(ω|x, π)
ρ(ω)

σ(ω)

[∑
ω′∈Ω

π(x|ω′)σ(ω′)

]
.

Hence, ∑
ω∈Ω

π(x|ω)ρ(ω) =

[∑
ω′∈Ω

π(x|ω′)σ(ω′)

][∑
ω∈Ω

q(ω|x, π)
ρ(ω)

σ(ω)

]
.

Substituting and simplifying, we obtain that

p(ω|x, π) =
q(ω|x, π) ρ(ω)

σ(ω)∑
ω′∈Ω q(ω

′|x, π) ρ(ω′)
σ(ω′)

for all ω ∈ Ω.

B.3 Proof of Corollary 2

By Proposition 1, supp p(q) ∩ supp p(q′) = ∅. Therefore,

∣∣∣∣p(q)− p(q′)∣∣∣∣2 =
∑
ω∈R
|p(ω; q)|2 +

∑
ω∈R

∣∣p(ω; q′)
∣∣2 > ∑

ω∈R

∣∣p(ω; q′)
∣∣2 > 0.

B.4 Proof of Lemma 2

For q ∈ ∆(S), we have w(q) > −∞ by continuity of uS and compactness of A. For all q ∈
R|S|−1\∆(S) define w(q) = −∞. By Carathéodory’s Theorem (see Rockafellar (1997), Corollary
17.1.5),

ŵ(σ) = sup
Tσ

∑
m

τmw(qm),

where

Tσ = {{(qm, τm)}|S|m=1 :

|S|∑
m=1

τmqm = σ,

|S|∑
m=1

τm = 1, τm ≥ 0, qm ∈ ∆(S),∀m}.

Since Tσ ⊂ Fσ, it follows that ŵ(σ) ≤ Wσ. By definition of Wσ, for every ε > 0, there exists
τε ∈ Fσ such that V (τε) ≥ Wσ − ε. However, V (τε) ∈ {ξ : (σ, ξ) ∈ co(hypw)} and hence
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V (τε) ≤ ŵ(σ). So for every ε > 0, ŵ(σ) ≥Wσ − ε which implies that ŵ(σ) ≥Wσ.

B.5 Proof of Lemma 3

The first part follows from Lemma 2. For the second part, note that by the same argument as
in the proof of Lemma 2,

ŵc(σ) = sup
T cσ

∑
m

τmw(qm),

where

T cσ = {{(qm, τm)}Nm=1 : N ≥ 1,
N∑
m=1

τmqm = σ,
N∑
m=1

τm = 1, τm ≥ 0, qm ∈ ∆c, ∀m}.

Suppose V (τ) > ŵc(σ) but τ(Dτ ) = 0. Since τ ∈ Fσ, |supp τ | = N for some finite N and
hence Dτ = ∅. Therefore, τ ∈ T cσ and hence V (τ) ≤ ŵc(σ). A contradiction.

B.6 Proof of Proposition 3

Part (1): Take any τ ∈ Fcσ with q ∈ supp τ such that q(ω) > 0 and q(ω′) > 0 for some
ω, ω′ ∈ R with ω 6= ω′. We will show that there exists another τ1 ∈ Fc which satisfies the first
part of (1) and such that V (τ1) ≥ V (τ). Since τ ∈ Fcσ, there exists π ∈ Π that induces τ , i.e.,
for every q ∈ supp τ there exists x such that q = q(·|x, π) induced by π through Bayes’ rule.
For every q ∈ supp τ , let R(q) = {ω ∈ R : q(ω) > 0}. By assumption, |R(q̂)| > 1 for some
q̂ ∈ supp τ .

For any such q̂ do the following. Let x̂ be the signal inducing it under π, i.e., q̂ = q(·|x̂, π).
Clearly, π(x̂|ω) > 0 if and only if ω ∈ supp q(·|x̂, π) with includes as a strict subset R(q(·|x̂, π))

because q(·|x̂, π) ∈ ∆c. Modify π to π′ as follows. For each ω ∈ R(q(·|x̂, π)), create a signal xω
with the following properties: (i) π′(xω|ω) = π(x̂|ω), (ii) π′(xω|ω′) = 0 for all ω′ ∈ R(q(·|x̂, π))\
{ω}, (iii) for each ω̃ ∈ R

π′(xω|ω̃) = π(x̂|ω̃)
π(x̂|ω)∑

ω′∈R(q(·|x̂,π)) π(x̂|ω′)
.

Note that π′ is a well-defined signal device, since π(·|ω) is a probability distribution over finitely
many signals for every ω. By construction, for every ω ∈ R(q(·|x̂, π)), q(ω′|xω, π′) = 0 if
ω′ ∈ R(q(·|x̂, π)) \ {ω} and for every ω̃ ∈ R

q(ω̃|xω, π′,R) =
π′(xω|ω̃)σ(ω̃|R)∑

ω′∈R π
′(xω|ω′)σ(ω′|R)

=
π(x̂|ω̃)σ(ω̃|R)∑

ω′∈R π(x̂|ω′)σ(ω′|R)
= q(ω̃|x̂, π,R).
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This implies that A(p(q(·|xω, π′))) = A(p(q(·|x̂, π))) for every ω ∈ R(q(·|x̂, π)). Let the total
probability that q(·|xω, π′) arises under π′ be β′(xω) =

∑
ω′∈S π

′(xω|ω′)σ(ω′) and note that

∑
ω∈R(q(·|x̂,π))

β′(xω) =
∑

ω∈R(q(·|x̂,π))

π(x̂|ω)σ(ω) +
∑

ω∈R(q(·|x̂,π))

[∑
ω̃∈R

π′(xω|ω̃)σ(ω̃)

]

=
∑

ω∈R(q(·|x̂,π))

π(x̂|ω)σ(ω) +
∑
ω̃∈R

π(x̂|ω̃)σ(ω̃) = β(x̂),

i.e., the probability that q(·|x̂, π) arises under π. Note also that q(·|x̂, π) =
∑

ω∈R(q(·|x̂,π)) q(·|xω, π′)
β′(xω)
β(x̂) ,

so q̂ is the conditional expectation of posteriors {q(·|xω, π′)}ω∈R(q(·|x̂,π)). Indeed, if ω ∈ R(q(·|x̂, π)),
then q(ω|xω′) = 0 for all ω′ 6= ω and

q(ω|xω, π′)
β′(xω)

β(x̂)
=
π(x̂|ω)σ(ω)

β′(xω)

β′(xω)

β(x̂)
= q(ω|x̂, π);

if ω ∈ R, then

∑
ω′∈R(q(·|x̂,π))

π′(xω′ |ω)σ(ω)

β(x̂)
=

∑
ω′∈R(q(·|x̂,π))

π(x̂|ω)σ(ω) π(x̂|ω′)∑
ω′′∈R(q(·|x̂,π)) π(x̂|ω′′)

β(x̂)
= q(ω|x̂, π).

In summary, the distribution π′ replaces the posterior q̂ allocating its probability τ(q̂) across a
collection of posteriors qω = q(·|xω, π′), each with probability τ ′(qω), such that q̂ =

∑
ω∈R(q̂) qω

τ ′(qω)
τ(q̂) .

Note that τ ′(q) = τ(q) for all other q ∈ supp τ , hence Sender’s payoff changes only when pos-
terior q̂ arises. We want to show that this change can only be a (weak) improvement. Given
posterior q̂, let a(q̂) ∈ A(p(q̂)) be Receiver’s action. Then, Sender’s conditional expected payoff
from the distribution over qω’s is

∑
ω∈R(q̂)

{
max

a∈A(p(q̂))

∑
ω̃∈S

uS(a, ω̃)qω(ω̃)

}
τ ′(qω)

τ(q̂)
≥

∑
ω∈R(q̂)

{∑
ω̃∈S

uS(a(q̂), ω̃)qω(ω̃)

}
τ ′(qω)

τ(q̂)

=
∑
ω̃∈S

uS(a(q̂), ω̃)

 ∑
ω∈R(q̂)

qω(ω̃)
τ ′(qω)

τ(q̂)


=

∑
ω̃∈S

uS(a(q̂), ω̃)q̂(ω̃),

namely Sender’s expected payoff at posterior q̂.

This construction can be replicated for all q̂ ∈ supp τ with
∣∣R(q̂)

∣∣ > 1, leading to a new
distribution τ1 over ∆c such that V (τ1) ≥ V (τ) and, by construction, for every q ∈ supp τ1

there exists at most one ω ∈ R such that q(ω) ∈ (0, 1). For any such q, q(R) =
∑

ω′∈R q(ω
′) =

1 − q(ω). Hence, q(ω′) = (1 − q(ω))q(ω′|R) for every ω′ ∈ R and q(ω) = q(ω)δω, so that
q = (1− q(ω))q(·|R) + q(ω)δω.
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Part (2): Take any τ ∈ Fσ with supp τ ⊂ ∆c and satisfying property (1) in the proposition.
For every ω ∈ R there must exist at least one q ∈ supp τ with q(ω) > 0: in the device π leading
to τ , π(·|ω) must assign positive probability to some signal x ∈ supp π(·|ω′) for some ω′ ∈ R.
Let Q(ω) = {q ∈ supp τ : q(ω) > 0} and suppose that for some ω∗ ∈ R we have |Q(ω∗)| > 1.
Then let T ∗ =

∑
q∈Q(ω∗) τ(q) and

q∗ =
∑

q∈Q(ω∗)

qτ(q|Q(ω∗)) =
∑

q∈Q(ω∗)

[(1− q(ω∗))q(·|R) + q(ω∗)δω∗ ] τ(q|Q(ω∗))

=
∑

q∈Q(ω∗)

q(·|R)(1− q(ω∗))τ(q|Q(ω∗))

+δω∗
∑

q∈Q(ω∗)

q(ω∗)τ(q|Q(ω∗)),

where the second equality follows from Part (1). So, q∗ arises with probability T ∗ and is the
convex combination of the posteriors δω∗ and {q(·|R)}q∈Q(ω∗).

Now consider Sender’s expected payoff conditional onQ(ω∗), letting a(q) be Receiver’s choice
at each q ∈ Q(ω∗):∑

q∈Q(ω∗)

{
∑
ω∈S

uS(a(q), ω)q(ω)}τ(q|Q(ω∗))

=
∑

q∈Q(ω∗)

{(1− q(ω∗))
∑
ω∈S

uS(a(q), ω)q(ω|R) + q(ω∗)uS(a(q), ω∗)}τ(q|Q(ω∗))

=
∑

q∈Q(ω∗)

{
∑
ω∈S

uS(a(q), ω)q(ω|R)}(1− q(ω∗))τ(q|Q(ω∗))

+
∑

q∈Q(ω∗)

uS(a(q), ω∗)q(ω∗)τ(q|Q(ω∗))

=(1− ξ(ω∗))

 ∑
q∈Q(ω∗)

{
∑
ω∈S

uS(a(q), ω)q(ω|R)}(1− q(ω∗))τ(q|Q(ω∗))

1− ξ(ω∗)

 (20)

+ ξ(ω∗)

 ∑
q∈Q(ω∗)

uS(a(q), ω∗)
q(ω∗)τ(q|Q(ω∗))

ξ(ω∗)

 ,

where ξ(ω∗) =
∑

q∈Q(ω∗) q(ω
∗)τ(q|Q(ω∗)). Now recall that A(p(q)) depends only on q(·|R),

so any change in q which leaves q(·|R) unaffected does not change the actions Sender can
make Receiver choose. Expression (20) can only increase if, for every q ∈ Q(ω∗), we replace
uS(a(q), ω∗) with uS(a(q̃), ω∗) ≡ maxq′∈Q(ω∗) uS(a(q′), ω∗)—that is, we shift the entire weight
ξ(ω∗) to the largest uS(a(q), ω∗). This change modifies τ to τ ′ as follows. For every q /∈ Q(ω∗),
τ ′(q) = τ(q). Each q ∈ Q(ω∗) with q 6= q̃ is replaced by q′ = q(·|R) and q̃ is replaced by

q̃′ = q̃(·|R)
(1− q̃(ω∗))τ(q̃|Q(ω∗))

(1− q̃(ω∗))τ(q̃|Q(ω∗)) + ξ(ω∗)
+ δω∗

ξ(ω∗)

(1− q̃(ω∗))τ(q̃|Q(ω∗)) + ξ(ω∗)
.
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Moreover, letting Q′ = supp τ ′ \ Q(ω∗) (where Q(ω∗) is the complement of Q(ω∗)), we have
τ ′(q′|Q′) = (1−q(ω∗))τ(q|Q(ω∗)) and τ ′(q̃′|Q′) = (1−q̃(ω∗))τ(q̃|Q(ω∗))+ξ(ω∗). By construction,∑

q′∈Q′ q
′τ ′(q′|Q′) = q∗ and

∑
q′∈Q′ τ

′(q′) = T ∗, so that τ ′ ∈ Fcσ. Using this notation, by the
previous argument, (20) is less than or equal to∑

q∈Q(ω∗)

{
∑
ω∈S

uS(a(q), ω)q(ω|R)}(1− q(ω∗))τ(q|Q(ω∗)) + ξ(ω∗)uS(a(q̃), ω∗)

=
∑
q′∈Q′
{
∑
ω∈S

uS(a(q′), ω)q′(ω)}τ(q′|Q′) ≤
∑
q′∈Q′
{ max
a∈A(p(q′))

∑
ω∈S

uS(a, ω)q′(ω)}τ(q′|Q′),

where the inequality follows because, for each q′ and associated original q in the construction,
a(q) ∈ A(p(q′)).

This shows that, for every ω ∈ R such that |Q(ω)| > 1 under the original τ ∈ Fcσ, it is
possible to modify τ to obtain τ ′ ∈ Fcσ such that |Q′(ω)| = 1 and V (τ ′) ≥ V (τ).

To prove the last claim, take any ω ∈ R and associated qω ∈ supp τ such that qω(ω) > 0. Let
a(qω) be Receiver’s choice at qω. Suppose that there exists q′ ∈ ∆(R) such that uS(a(qω), ω) <

maxa∈A(p(q′)) uS(a, ω) = uS(a(q′), ω). By part (1), for any ε > 0 small enough, we can write

qω = λεqω(·|R) + (1− λε) [εqω(·|R) + (1− ε)δω] ,

where λε ∈ (0, 1) is chosen so that qω(ω) = (1− λε)(1− ε) and hence λε → 1− qω(ω) as ε→ 0.
For any z > 0, define qz = q̂ + 1

z (σ − q̂) with q̂ =
∑

q 6=qω q
τ(q)

1−τ(qω) . Recall that qω = qτ(qω). Now
take posterior q′ and consider εq′+ (1− ε)δω. Note that, for ε > 0 small enough, εq′+ (1− ε)δω
is arbitrarily close to εqω(·|R) + (1− ε)δω and hence

q′ω = λεqω(·|R) + (1− λε)[εq′ + (1− ε)δω]

is arbitrarily close to qω.

Given qω, there exists zε ≥ τ(qω) and αε ∈ (0, 1) such that qzε ∈ int∆c, qαε ∈ ∆c, and
qzε = αεqαε + (1− αε)q′ω. Moreover, as ε→ 0, we can choose zε and αε so that zε ↓ τ(qω) and
αε ↓ 0. Hence, we can modify τ to obtain τε with

τε(q) =


1−zε

1−τ(qω)τ(q) if q ∈ supp τ, q 6= qω

zεαε if q = qαε

zε(1− αε)λε if q = qω(·|R)

zε(1− αε)(1− λε) if q = εq′ + (1− ε)δω

.

It can be easily checked that τε ∈ Fσ for every ε > 0.
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Now consider V (τ) and V (τε). Letting k =
∑

q 6=qω w(q) τ(q)
1−τ(qω) , we have

V (τ) = τ(qω){(1− qω(ω))
∑
ω′∈S

uS(a(qω), ω′)qω(ω′|R) + qω(ω)uS(a(qω), ω)}+ (1− τ(qω))k,

V (τε) = (1− zε)k + zεαε
∑
ω′∈S

uS(a(qαε), ω
′)qαε(ω

′)

+zε(1− αε)λε
∑
ω′∈S

uS(a(qω), ω′)qω(ω′|R)

+zε(1− αε)(1− λε){ε
∑
ω′∈S

uS(aω, ω
′)q′(ω′) + (1− ε)uS(aω, ω)},

where aω = arg maxa∈A(p(q′)) uS(a, ω). Recall that Sender’s expected payoff from any action
and posterior q is finite. So,

lim
ε→0

V (τε) = τ(qω)(1− qω(ω))
∑
ω′∈S

uS(a(qω), ω′)qω(ω′|R)

+τ(qω)qω(ω)uS(aω, ω) + (1− τ(qω))k > V (τ).

Therefore, there exists ε > 0 small enough such that V (τε) > V (τ). This shows that we can focus
without loss on distributions τ ∈ Fcσ such that uS(a(qω), ω) ≥maxq∈∆(R){maxa∈A(p(q)) uS(a, ω)}
for every ω ∈ R.

B.7 Proof of Corollary 3

Hereafter, let ŵc∗(σ) be the expression of ŵc(σ) in the statement and Fc∗σ ⊂ Fcσ be the family
of all feasible distributions satisfying the properties in Proposition 3.

Claim 1. V (τ) ≤ ŵc∗(σ) for any τ ∈ Fc∗σ .

Proof. Given τ , for each ω ∈ R, let qω be the unique posterior in supp τ assigning positive
probability to ω as in part (2) of Proposition 3. Also, let Q = {qω}ω∈R, Q = supp τ \Q, and
a(qω) = aω ∈ arg maxa∈A(p(qω)) uS(a, ω) for every ω ∈ R. Then,

V (τ) =
∑
q∈Q

w(q)τ(q)

+
∑
qω∈Q

[∑
ω̃∈S

uS(aω, ω̃){(1− qω(ω))qω(ω̃|R) + qω(ω)uS(aω, ω)}

]
τ(qω)

=
∑
q∈Q

w(q)τ(q) +
∑
qω∈Q

[∑
ω̃∈S

uS(aω, ω̃)qω(ω̃|R)

]
(1− qω(ω))τ(qω)
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+
∑
qω∈Q

uS(aω, ω)qω(ω)τ(qω)

≤
∑
q∈Q

w(q)τ(q) +
∑
qω∈Q

w(qω(·|R))(1− qω(ω))τ(qω) (21)

+
∑
qω∈Q

u∗S(ω)qω(ω)τ(qω).

Since
σ =

∑
q∈Q

qτ(q) +
∑
qω∈Q

qω(·|R)(1− qω(ω))τ(qω) +
∑
qω∈Q

δωqω(ω)τ(qω),

we have σ(ω) = qω(ω)τ(qω) for every ω ∈ R and
∑

qω∈Q qω(ω)τ(qω) = σ(R). This in turn
implies that for each ω̃ ∈ R,

1

σ(R)

∑
q∈Q

q(ω̃)τ(q) +
∑
qω∈Q

qω(ω̃|R)(1− qω(ω))τ(qω)

 =
σ(ω̃)

σ(R)
= σ(ω̃|R).

The first two terms in (21) are then a convex combination of values wc(q) with q ∈ ∆(R) and
with average posterior σ(·|R). Therefore, expression (21) is bounded above by

σ(R)ŵc(σ(·|R)) +
∑
ω∈R

u∗S(ω)σ(ω) = ŵc∗(σ).

Claim 2. For any ε > 0 there exists τε ∈ Fc∗σ such that V (τε) ≥ ŵc∗(σ)− ε. Hence, ŵc∗(σ) is the
least upper bound of the values of V (τ) over Fc∗σ .

Proof. Starting from any τ ∈ Fc∗σ , first construct a sequence {τn}∞n=1 ⊂ Fc∗σ with τ0 = τ as
follows. Define Q and Q as in the proof of Claim 1. For every q ∈ Q, let τn(q) = τ0(q). For
each qω ∈ Q and each n ≥ 1, split τ0(qω) by replacing it with

τn(q′) =

{
τ0(qω)zω,n for q′ = qω(·|R)

τ0(qω)(1− zω,n) for q′ = qω,n ≡ 1
Kn
ω
qω(·|R) + (1− 1

Kn
ω

)δω
,

with zω,n ∈ (0, 1) so that qω(ω) = (1 − zω,n)(1 − 1
Kn
ω

) for every n, where Kω > 1 is chosen
large enough so as to satisfy this condition for n = 1 and hence for all n ≥ 1. By construction,
zω,n ↑ (1− qω(ω)) and qω,n → δω as n→∞, and for every n

qω = zω,nqω(·|R) + (1− zω,n)qω,n.

So, for every n, the conditional distribution defined by zω,n+1 is a mean-preserving spread around
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qω of that defined by zω,n. It follows that, for every qω ∈ Q,

max
a∈A(p(qω))

∑
ω̃∈S

uS(a, ω̃)qω(ω̃) ≤ zω,1 max
a∈A(p(qω))

∑
ω̃∈S

uS(a, ω̃)qω(ω̃|R)

+(1− zω,1) max
a∈A(p(qω))

∑
ω̃∈S

uS(a, ω̃)qω,1(ω̃),

and for all n ≥ 1

zω,n max
a∈A(p(qω))

∑
ω̃∈S

uS(a, ω̃)qω,n(ω̃|R) + (1− zω,n) max
a∈A(p(qω))

∑
ω̃∈S

uS(a, ω̃)qω,n(ω̃)

≤zω,n+1 max
a∈A(p(qω))

∑
ω̃∈S

uS(a, ω̃)qω(ω̃|R) + (1− zω,n+1) max
a∈A(p(qω))

∑
ω̃∈S

uS(a, ω̃)qω,n+1(ω̃).

For every n, letting Q′n = supp τn \ Q, by construction we also have
∑

qω∈Q qωτ0(qω) =∑
q′∈Q′n q

′τn(q′) and
∑

qω∈Q τ0(qω) =
∑

q′∈Q′n τn(q′)—hence each τn ∈ Fc∗σ . We conclude that
V (τn) ≤ V (τn+1) for every n.

Now, for each n, let Zn =
∑

q∈Q τn(q) +
∑

ω∈R τ0(qω)zω,n and express V (τn) as

Zn
∑
q∈Q

w(q)
τ0(q)

Zn
+
∑
ω∈R

w(qω(·|R))
τ0(qω)zω,n

Zn︸ ︷︷ ︸
Bn

+
∑
ω∈R

w(qω,n)τ0(qω)(1− zω,n)

︸ ︷︷ ︸
B′n

.

Since zω,n ↑ (1− qω(ω)) for every ω ∈ R as n→∞ and we must have

σ(ω) = τ0(qω)(1− zω,n)(1− 1

Kn
ω

) = τ(qω)qω(ω)

for all n, it follows that limn→∞B
′
n =

∑
ω∈R u

∗
S(ω)σ(ω). Note also that limn→∞ Zn = 1 −

limn→∞
∑

ω∈R τ0(qω)(1− zω,n) = σ(R).

Regarding the term Bn, first observe that

1

Zn

∑
q∈Q

qτn(q) +
∑
ω∈R

qω(·|R)τ0(qω)zω,n

 = q̂n ∈ ∆(R),

and hence limn→∞ q̂n = σ(·|R). This implies that, for every n, Bn is a convex combination of
values wc(q) with q ∈ ∆(R) and with average posterior q̂n. Recall that, restricted to ∆(R),
the function ŵc(q) is continuous in q. Letting χ = ŵc(σ(·|R)) and ζ =

∑
ω∈R u

∗
S(ω)σ(ω) for

simplicity, we can write

ŵc∗(σ)− V (τn) ≤ |χ| |Zn − σ(R)|+ Zn |Bn − χ|+
∣∣B′n − ζ∣∣ .
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Given any ε > 0, there exists N1 such that |χ| |Zn − σ(R)| + |B′n − ζ| ≤ ε
2 for all n ≥ N1.

Also, there exists N2 such that |χ− ŵc(q̂n)| ≤ ε
2 for all n ≥ N2. So, fix n∗ ≥ max{N1, N2}

and consider the distribution τ̂ ∈ ∆(∆(R)) that achieves ŵc(q̂n∗). Define the distribution τε as
follows:

τε(q) =


Zn∗ τ̂(q) if q ∈ supp τ̂
τn∗(qω,n∗) if q = qω,n∗

0 otherwise.

By construction, V (τε) ≥ ŵc∗(σ)− ε and∑
q∈supp τε

qτε(q) = Zn∗
∑

q∈supp τ̂

qτ̂(q) +
∑
ω∈R

qω,n∗τn∗(qω,n∗)

=
∑
q∈Q

qτ0(q) +
∑
ω∈R

qω(·|R)τ0(qω)zω,n∗

+
∑
ω∈R

qω,n∗τ0(qω)(1− zω,n∗) = σ.

B.8 Proof of Proposition 4

The result follows from the next two claims.

Claim 3. If wd(q) ≤ h(q) for all q ∈ ∆d, then ŵ(σ) ≤ ŵc(σ).

Proof. For any τ ∈ Fσ, let qc =
∑

q∈Cτ qτ(q|Cτ ) and qd =
∑

q∈Dτ qτ(q|Dτ ) so that qc ∈ ∆c,
qd ∈ ∆d, σ = τ cqc + (1− τ c)qd. Then,

V (τ) ≤ τ cŵc(qc) + (1− τ c)
∑
q∈Dτ

wd(q)τ(q|Dτ )

≤ τ cŵc(qc) + (1− τ c)
∑
q∈Dτ

h(q)τ(q|Dτ )

= τ cŵc(qc) + (1− τ c)
∑
q∈Dτ

∑
ω∈R

u∗S(ω)q(ω)

 τ(q|Dτ )

= τ cŵc(qc) +
∑
ω∈R

u∗S(ω)β(ω), (22)

β(ω) = τd
∑

q∈Dτ q(ω)τ(q|Dτ ). Note that supp qc ⊃ R and qc ∈ int∆(supp qc). Therefore, we
can view qc as Sender’s prior in the fictitious environment with Ω̃ = supp qc and ρ̃ = ρ0. By
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Proposition 3, we then have

ŵc(qc) = qc(R)ŵc(qc(·|R)) +
∑
ω∈R

u∗S(ω)qc(ω).

Moreover, we have
σ = τ cqc(R)qc(·|R) +

∑
ω∈R

δω{β(ω) + τ cqc(ω)},

which implies that σ(ω) = β(ω) + τ cqc(ω) for all ω ∈ R and hence qc(·|R) = σ(·|R). Therefore,
(22) is equal to

σ(R)ŵ(σ(·|R)) +
∑
ω∈R

u∗S(ω)σ(ω) = ŵc(σ).

Using the definition of Wσ and Lemma 2, we conclude that ŵ(σ) ≤ ŵc(σ).

Claim 4. If wd(q) > h(q) for some q ∈ ∆d, then there exists τ such that V (τ) > ŵc(σ) and
hence ŵ(σ) > ŵc(σ).

Proof. Let q∗ be any element of ∆(R) with wd(q∗) > h(q∗). Since σ ∈ int∆(S), there exists
λ ∈ (0, 1) and qc ∈ int∆(S) such that σ = λqc + (1− λ)q∗. By the same argument in the proof
of Claim 3

(1− λ)wd(q∗) + λŵc(qc) > (1− λ)
∑
ω∈R

u∗S(ω)q∗(ω) + λŵc(qc)

=
∑
ω∈R

u∗S(ω){(1− λ)q∗(ω) + λqc(ω)}+ λqc(R)ŵc(qc(·|R))

= ŵc(σ),

where the last equality follows again from observing that σ(ω) = (1 − λ)q∗(ω) + λqc(ω) for all
ω ∈ R and hence qc(·|R) = σ(·|R). Therefore, there exists τ ∈ Fσ such that V (τ) > ŵc(σ).

B.9 Lemma 4

Lemma 4. The function ŵd∗ satisfies the following properties:
(i) for every q ∈ ∆d, there exists τ ∈ ∆(∆d) such that ŵd∗ =

∑
q′ w

d
∗(q
′)τ(q′) with q =

∑
q′ q
′τ(q′)

and |supp τ | ≤
∣∣R∣∣;

(ii) ŵd ≤ ŵd∗ with equality over int∆d;
(iii) ŵd∗ = clŵd∗ and hence it is continuous.
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Proof. Part (i): By Corollary 17.1.5 in Rockafellar (1997),

ŵd∗(q) = sup
T (q)

|R|∑
m=1

wd∗(qm)τm

where

T (q) =

{(qm, τm)}|R|m=1 :

|R|∑
m=1

qmτm = q,

|R|∑
m=1

τm = 1, τm ≥ 0, qm ∈ ∆(R), ∀m

 .

Since wd∗ is upper semicontinuous and T (q) is compact, by standard arguments ŵd∗(q) is achieved
for every q ∈ ∆d.

Part (ii): Given a function f : ∆d → R, let hypf be the hypograph of f : hypf = {(q, ξ) :

q ∈ ∆d, ξ ∈ R, ξ ≤ f(q)}. Note that hypwd∗ = hypwd. Therefore, for all q ∈ ∆d,

ŵd(q) = sup{ξ : (q, ξ) ∈ co(hypwd)}

≤ sup{ξ : (q, ξ) ∈ co(hypwd)} = ŵd∗(q).

Now consider the closure of ŵd, clŵd, which is the unique continuous extension of ŵd to ∆d by
Theorem 10.3 in Rockafellar (1997), is concave, and satisfies clŵd ≥ ŵd ≥ wd. So, for every
q ∈ ∆d,

wd∗(q) = lim sup
q′→q

wd(q′) ≤ lim sup
q′→q

clŵd(q′) = clŵd(q).

Hence, clŵd is a concave function majorizing wd∗ . Since ŵd∗ is the smallest of such functions,
clŵd ≥ ŵd∗ . Finally, since clŵd = ŵd over int∆d, property (i) follows.

Part (iii): We already know that ŵd∗ = clŵd∗ over int∆d. By definition, hyp clŵd∗ = hyp ŵd∗ .
If hyp ŵd∗ is closed, then hyp ŵd∗ = hyp clŵd∗ and hence we are done. Indeed, by definition
ŵd∗ ≤ clŵd∗ . So, suppose there exists q ∈ ∂∆d such that ŵd∗(q) < clŵd∗(q). Then there exists
ξ ∈ R such that ŵd∗(q) < ξ ≤ clŵd∗ , which is a contradiction. So, we need to prove that hyp ŵd∗
is closed.

First, for every q ∈ ∆d, by property ŵd∗(q) = max{ξ : (q, ξ) ∈ co(hypwd∗)} and therefore
hyp ŵd∗ = co(hypwd∗). Second, define wd∗ = infq∈∆d wd∗(q) so that we can express hypwd∗ as
G ∪H where

G = {(q, ξ) : q ∈ ∆d, wd∗ − 1 ≤ ξ ≤ wd∗(q)} and H = {(q, ξ) : q ∈ ∆d, ξ ≤ wd∗ − 1}.

Now co(hypwd∗) = (coG) ∪ (coH) = (coG) ∪H. One inclusion is trivial. Now consider (q, ξ) ∈
co(hypwd∗). Then, by Theorem 2.3 in Rockafellar (1997), (q, ξ) is a convex combination of
points (qn, ξn) in hypwd∗ . Therefore, q ∈ ∆d as the latter is a convex set and ξ =

∑
n αnξn ≤
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∑
n αnw

d
∗(qn) as αn ≥ 0 for all n. But (coG) ∪H contains all convex combinations of points in

hypwd∗ that satisfy this property. Finally, note that H is closed and G is bounded and closed
since wd∗ is upper semicontinuous. Therefore, co(G) is also closed by Theorem 17.2 in Rockafellar
(1997). We conclude that co(hypwd∗) = (coG) ∪H is closed, as desired.

B.10 Proof of Proposition 5

Claim 5. If ŵ(σ) > ŵc(σ), then

ŵ(σ) = τ cŵc(qc) + (1− τ c)ŵd∗(qd)

with qc ∈ ∆c, qd ∈ ∆d, σ(R) ≤ τ c < 1, and σ = τ cqc + (1− τ c)qd.

Proof. Take any τ ∈ Fσ with supp τ ≤ |S| and τd = τ(Dτ ) > 0, which is necessary by Lemma
3. Define51 τ(q|Cτ ) = τ(q)

τ(Cτ ) and

τ(q|Dτ ) =

{
0 if τ(Dτ ) = 0 or q /∈ Dτ
τ(q)
τ(Dτ ) if τ(Dτ ) > 0 and q ∈ Dτ

.

We can then write

V (τ) = τ c
∑
q∈Cτ

w(q)τ(q|Cτ ) + τd
∑
q∈Dτ

w(q)τ(q|Dτ ).

If we define qc =
∑

q∈Cτ qτ(q|Cτ ) and qd =
∑

q∈Dτ qτ(q|Dτ ), we have qc ∈ ∆c, qd ∈ ∆d,
σ = τ cqc + (1− τ c)qd. Since V (τ) ≤ τ cŵc(qc) + (1− τ c)ŵd(qd), we must have

ŵ(σ) = Wσ = sup
τ∈Fσ

V (τ) ≤ sup
T
{τ cŵc(qc) + (1− τ c)ŵd(qd)}, (23)

where
T = {(τ c, qc, qd) : τ c ∈ [σ(R), 1], qc ∈ ∆c, qd ∈ ∆d, σ = τ cqc + (1− τ c)qd};

moreover, the inequality in (23) must be an equality, otherwise there would be τ ∈ Fσ with
V (τ) > Wσ. Since τ c ∈ [σ(R), 1], we must have qc(ω) = 1

τcσ(ω) ≥ σ(ω) for all ω ∈ R. The
function ŵc is continuous over ∆(R) and therefore, by Corollary 3, ŵc(qc) is continuous over
Qc = {q ∈ ∆c : q(ω) ≥ σ(ω), ∀ω ∈ R}, which is a compact subset of ∆c. Construct T ′ by
replacing ∆c with Qc in T . So, since ŵd ≤ clŵd = clŵd∗ = ŵd∗ and ŵd∗ is continuous by Lemma

51Recall that τ(Cτ ) > 0 always by Corollary 1
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4, the right-hand side of (23) equals

sup
T ′
{τ cŵc(qc) + (1− τ c)ŵd(qd)} ≤ max

T ′
{τ cŵc(qc) + (1− τ c)ŵd∗(qd)}.

First, note that the maximum on the right-hand side must be attained at τ c < 1, because
by assumption ŵc(σ) < ŵ(σ). Second, note that the inequality must be an equality. This is
immediate if

∣∣R∣∣ = 1, since in this case ŵd = wd = wd∗ = ŵd∗ . So, suppose
∣∣R∣∣ > 1 and define

∆d
n = {q ∈ ∆(R) : q(ω) ≥

∣∣R∣∣−n ,∀ω ∈ R} for n ≥ 1. Construct T ′n by replacing ∆d with ∆d
n in

T ′ for every n. Note that, for all n, ∆d
n ⊂ int∆d, ∆d

n ⊂ ∆d
n+1, and ∆d

n → ∆d as n→∞. Since
ŵd = ŵd∗ over int∆d by Lemma 4, for all n we have

max
T ′n
{τ cŵc(qc) + (1− τ c)ŵd∗(qd)} ≤ sup

T ′
{τ cŵc(qc) + (1− τ c)ŵd(qd)}.

Since the left-hand side forms an increasing sequence in n that converges to the maximum over
T ′, the desired equality follows.

Claim 6. If ŵ(σ) > ŵc(σ), then (15) holds. Moreover, if τ̂ ∈ ∆(∆d) is such that ŵd∗(qd) =∑
q w

d
∗(q)τ̂(q) and qd =

∑
q qτ̂(q), then w∗d(q) ≥ h(q) for all q ∈ supp τ̂ with strict inequality

for some q.

Proof. Again by Lemmas 3 and Claim 5, τ c ∈ (0, 1) and

ŵ(σ) = τ cŵc(qc) + (1− τ c)ŵd∗(qd)

= τ cqc(R)ŵc(qc(·|R)) + τ c
∑
ω∈R

u∗S(ω)qc(ω) + (1− τ c)ŵd∗(qd)

with
σ = τ cqc(R)qc(·|R) +

∑
ω∈R

δω{τ cqc(ω) + (1− τ c)qd(ω)}.

Therefore, σ(ω) = τ cqc(ω) + (1 − τ c)qd(ω) for all ω ∈ R and hence τ cqc(R) = σ(R) and
qc(·|R) = σ(·|R). Note also that (1− τ c) + τ c

∑
ω∈R q

c(ω) = σ(R) and therefore

σ = σ(R)σ(·|R) + σ(R)

τ cqc(R)

σ(R)

∑
ω∈R

δωq
c(ω|R) +

1− τ c

σ(R)
qd

 .
Hence, for every ω ∈ R

δω
τ cqc(ω)

σ(R)
+

1− τ c

σ(R)
qd(ω) = σ(ω|R).

52



So, we obtain

ŵ(σ) = σ(R)ŵc(σ(·|R)) + σ(R)
[
γh(qc(·|R)) + (1− γ)ŵd∗(q

d)
]

︸ ︷︷ ︸
ξ∗

, (24)

where γ = τcqc(R)

σ(R)
and γqc(·|R) + (1− γ)qd = σ(·|R).

Now consider any τ̂ ∈ ∆(∆d) such that ŵd∗(qd) =
∑

q w
d
∗(q)τ̂(q) and qd =

∑
q qτ̂(q). Suppose

wd∗(q
′) < h(q′) for any q′ ∈ supp τ̂ . Then,∑

q

wd∗(q)τ̂(q) <
∑
{q:q 6=q′}

wd∗(q)τ̂(q) + τ̂(q′)
∑
ω∈R

u∗S(ω)q′(ω).

But this implies the existence of τ ∈ Fσ with V (τ) > Wσ, a contradiction. So, for all q ∈ supp τ̂ ,
wd∗(q) ≥ h(q). Finally, suppose wd∗(q) = h(q) for all q ∈ supp τ̂ . Then ξ∗ becomes

γh(qc(·|R)) + (1− γ)
∑
q

h(q)τ̂(q) =
∑
ω∈R

u∗S(ω)σ(ω|R),

and hence ŵ(σ) = ŵc(σ) by Corollary 3, contradicting ŵ(σ) > ŵc(σ).

Similarly, in (24) we must have h(qc(·|R)) ≥ wd∗(q
c(·|R)) because otherwise it would again

be possible to improve upon Wσ. Hence, ξ∗ in (24) belongs to the set {ξ : (σ(·|R), ξ) ∈
co(max{h,wd∗})} and must equal to its maximum, which exists and equals m̂(σ(·|R)).

Claim 7. τ c = σ(R) if and only if m̂(σ(·|R)) = ŵd(σ(·|R)).

Proof. If 1 − τ c = σ(R), then γ = 0 in (24). This implies that qc(R) = 0, qd = σ(·|R),
and ξ∗ = ŵd∗(q

d); moreover, since σ(·|R) ∈ int∆d, ŵd∗(σ(·|R)) = ŵd(σ(·|R)) by Lemma 4.
Conversely, suppose m̂(σ(·|R)) = ŵd(σ(·|R)). Then, ξ∗ = ŵd∗(σ(·|R)) in (24) and hence γ = 0,
which implies that qc(R) = 0 and hence σ(R) = τ cqc(R) + 1− τ c = 1− τ c.

B.11 Proof of Corollary 5

First, observe that∑
ω∈Ω

uS(a(p(q′)), ω)q̂(ω) ≤ max
a∈A(p(q′))

∑
ω∈Ω

uS(a, ω)q̂(ω) ≤
∑
ω∈Ω

u∗S(ω)q̂(ω) = h(q̂).
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Hence, in the expression of V (τ)∑
q

wd(q)τ(q|Dτ ) <
∑
q 6=q̂

wd(q)τ(q|Dτ ) + h(q̂)τ(q̂|Dτ ),

which implies that there exists τ ′ ∈ Fσ such that V (τ) < V (τ ′) ≤ ŵ(σ).

B.12 Proof of Corollary 6

For κ ≤ 2, we already know that Sender fully reveals all states in R. Since wd is convex, so
is m = max{h,wd}. Therefore, m̂(σ(·|R)) is achieved by τ ′ = {(δω, σ(ω|R))}ω∈R (uniquely if
κ < 2) and hence

m̂(σ(·|R)) =
∑
ω∈R

max{wd(δω), h(δω)}σ(ω|R).

For each i < m, we already know that wd(δωi) > h(δωi) and therefore it is optimal to fully reveal
ωi. Now consider i > m. For each value of κ there exists a value bi(κ) such that wd(δωi) ≥ h(δωi)

if and only if b ≤ bi(κ): this threshold is given by

bi(κ) = max{ωi −
κ

2
(ωm + ωi), 0} = max{(1− κ

2
)ωi −

κ

2
ωm, 0}.

So each bi(κ) is decreasing in κ (strictly when positive) and bi(κ) ≤ bj(κ) if and only if i < j

(with < if either threshold is positive). So if b ≤ bm+1(κ), we have that ŵd(σ(·|R)) = m̂(σ(·|R))

and hence τd = σ(R) by Proposition 5. On the other hand, if b > bm+1(κ), we have that
wd(δωm+1) < h(δωm+1) and hence τd < σ(R) by Corollary 4. Moreover, in this case let i∗(b, κ) =

min{i > m : bi(κ) ≥ b}, which is non-decreasing in both κ and b. Then, it is optimal to fully
hide all states ωi with m < i < i∗(b, κ) and fully reveal all others states in R.

B.13 Proof of Corollary 7

By Proposition 5, m̂(σ(·|R)) is given by

max
γ∈[0.1],q1,q2∈∆d

γ
∑
ω∈R

u∗S(ω)q1(ω) + (1− γ)
∑
ω∈R

{−(Eq2 [β]− ω)2}q2(ω)

subject to γq1 + (1 − γ)q2 = σ(·|R). By continuity of h and wd, a solution (γ, q1, q2) to this
problem exists. Suppose that (γ, q1, q2) implies β(ωm) ≤ Eq2 [β] ≤ β(ωm). We will show that
there exists a feasible (γ′, q′1, q

′
2) which strictly dominates (γ, q1, q2). Since β is strictly increasing,

we must have ωi, ωj ∈ supp q2 for some i < m and j > m. Suppose first that ω > β(ωm) for
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some ω > ωm. Then, for any ξ ∈ [β(ωm), β(ωm)],

−
∑
ω∈R

(ξ − ω)2q2(ω) < −
∑
ω∈R

(β(ωm)− ω)21{ω < β(ωm)}q2(ω)

−
∑
ω∈R

(β(ωm)− ω)21{ω > β(ωm)}q2(ω) =
∑
ω∈R

u∗S(ω).

This means that γ′ = 1 and q′1 = σ(·|R) strictly dominates (γ, q1, q2). Now, suppose that
ω ≤ β(ωm) for all ω > ωm. If β(ωm) < Eq2 [β] ≤ β(ωm), then again γ′ = 1 and q′1 = σ(·|R)

strictly dominates (γ, q1, q2). If Eq2 [β] = β(ωm), then m̂(σ(·|R)) = h(σ(·|R)). But we know that
always hiding all states in R is not optimal: ŵ(σ) > ŵc(σ) since wd(δω1) > h(δω1). Therefore,
(γ, q1, q2) is again strictly dominated.

Finally, if σ is such that ωm ≤ Eσ(·|R)[ω] ≤ ωm, then τd = σ(R) implies that qd = σ(·|R)

and hence β(ωm) ≤ Eσ(·|R)[β] ≤ β(ωm).

B.14 Proof of Corollary 8

Given any τ ∈ Fσ, the claim follows immediately from (7) for every q ∈ Cτ . Now consider any
q ∈ Dτ . If q ∈ Dτ (ρN ), then again the claim follows directly from (7). So suppose q ∈ Dτ (ρi)

for some i 6= N . Then,

pA(ω; q) =
q(ω)

ρA1 (ω)
σ(ω)∑

ω′∈Ω q(ω
′)
ρA1 (ω′)
σ(ω′)

and pB(ω; q) =
q(ω)

ρBi (ω)
σ(ω)∑

ω′∈Ω q(ω
′)
ρBi (ω′)
σ(ω′)

.

Note that q(ω) = 0 implies both pA(ω; q) = 0 and pB(ω; q) = 0. So, restrict attention to supp q
which contains both supp pA(q) and supp pB(q). By definition, ρA1 (ω) > 0 for all ω ∈ Ω;
therefore, supp q = supp pA(q). Also, by definition, supp q ⊂ supp ρBi = Ω(q); therefore,
supp q = supp pB(q) as well. Now, restrict attention to Ω(q) ( Ω =supp ρA1 . By A6, we have

ρA1 (ω|Ω(q))

ρA1 (ω′|Ω(q))
=
ρBi (ω)

ρBi (ω′)

for all ω, ω′ ∈ Ω(q), where ρA1 (ω|Ω(q)) =
ρA1 (ω)

ρA1 (Ω(q))
. So, fixing one ω̂ ∈ Ω(q), we have

ρA1 (ω|Ω(q)) =
ρA1 (ω̂|Ω(q))

ρBi (ω̂)
ρBi (ω).
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It follows that, for all ω ∈ supp q,

pA(ω; q) =
ρA1 (Ω(q))q(ω)

ρA1 (ω)
σ(ω)

ρA1 (Ω(q))
∑

ω′∈Ωi
q(ω′)

ρA1 (ω′)
σ(ω′)

=
q(ω)

ρA1 (ω|Ω(q))
σ(ω)∑

ω′∈Ω(q) q(ω
′)
ρA1 (ω′|Ω(q))

σ(ω′)

=

q(ω)
σ(ω)

ρA1 (ω̂|Ω(q))

ρBi (ω̂)
ρBi (ω)∑

ω′∈Ω(q)
q(ω′)
σ(ω′)

ρA1 (ω̂|Ω(q))

ρBi (ω̂)
ρBi (ω′)

=

q(ω)
σ(ω)ρ

B
i (ω)∑

ω′∈Ω(q)
q(ω′)
σ(ω′)ρ

B
i (ω′)

= pB(ω; q).
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