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Abstract

We propose a solution concept called Generalized Sampling Equilibrium (GSE), where

players use statistical rather than strategic reasoning. This concept is rooted in the sam-

pling equilibrium of Osborne and Rubinstein (1998, 2003), and accommodates a variety of

other statistical inference procedures. We show that the GSE is unique for a large class of

two-action games, and characterize how it relates to the Nash equilibrium. We also charac-

terize how the GSE changes with the size of the sample players obtain, and demonstrate the

predictions of this solution concept in several applications including a labor matching envi-

ronment. We show that sampling introduces a friction that results in larger unemployment

than in Nash equilibrium.
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1 Introduction

An individual’s benefit from taking a particular action often depends on how many other indi-

viduals take that same action. For example, when deciding whether to attend some event, it is

often important to know how many people plan to attend the event; When deciding whether

to get vaccinated, the proportion of people who are or are not vaccinated against the disease

is relevant; When a firm decides whether to enter a new market, the number of other potential

entrants is important and so on.

In the standard game theoretic framework, rational players understand the structure of their

environment and reason strategically about the behavior of others. According to this approach,

every individual forms expectations about the proportion of people who will take each action;

When everybody maximizes their utility given these expectations, the expectations are “correct”

in the sense that the proportion of people who take each action is identical to the expectations.

Several alternatives to this approach have been discussed in the literature, the most relevant

for the current paper being the Sampling Equilibrium of Osborne and Rubinstein (1998, 2003).

In a sampling equilibrium, every individual “samples” either other individuals’ actions or the

(random) payoffs from his own actions. The individual then treats his sample as representative

of the entire population to form point estimates about the proportion of people who take each

action and maximizes his utility based on this (possibly, incorrect) belief. In equilibrium, the

distribution from which every individual obtains his sample is a fixed point: if individuals

sample from this distribution and maximize utility, then the proportion of individuals taking

each action is identical to the distribution. Osborne and Rubinstein (2003) study the application

of this solution concept to a voting model, in which each individual samples two or three other

individuals.

Generalized Sampling Equilibrium, the solution concept introduced and studied in this paper,

builds on Osborne and Rubinstein (2003) in two ways. First, rather than assuming agents’ be-

liefs coincide with sample averages, we allow for individuals to understand that their sample may

be noisy. Using only the sample average is one of many possible reasoning procedures players

may use to form beliefs about the population with which to compute best replies. Our model

accommodates, and compares the predictions of, a wide class of reasoning procedures. Sec-

ond, we develop tools that operationalize sampling-based solution concepts to obtain existence,

uniqueness and comparative statics in a variety of applications.
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Related Literature

to be completed...

2 Model

A unit mass of players each decide whether or not to take an action A. Each player’s utility

from taking the action A is u(θi, α) = θi − f(α), where θi is a player’s type, i.e., his private

benefit from taking the action A, and f(α) is the cost incurred by a player taking the action A

if a proportion α of players take the action A. The benefit θi is distributed uniformly on [0, 1],

and the function f is a positive, increasing and continuous function with 0 ≤ f(0), f(1) ≤ 1.

That is, the highest type will take action A for any α, and there is a small enough α to make

the lowest type weakly prefer action A. Assume that the utility from not taking the action A is

normalized to 0.

In order to decide whether to take the action, each player has to reason about the proportion

of players that will take action A. The standard game theoretic approach posits that every

player forms the same “correct” belief about this proportion, in the sense that if every player

maximizes utility given this belief, the proportion of players taking the action is identical to

the belief. One way a player may arrive at the correct belief is by reasoning strategically about

the situation. He may reason that when a proportion α plans to take the action A, all players

with a type θ ≤ f(α) will take the action A. Thus the proportion has to be equal to 1− f(α).

So the conjecture is correct when it satisfies α = 1 − f(α). If players have common knowledge

of a shared conjecture α∗

NE , then α∗

NE is Nash equilibrium. The proportion α∗

NE that solves

α = 1− f(α) is the unique Nash equilibrium of the game.

Following Osborne and Rubinstein (1998, 2003), we propose an alternative solution to the

game. According to this solution, each player in the population has a tentative plan whether to

take the action or not. Players collect information by randomly asking k other players about

their tentative plans. Players then infer from their random sample the proportion of players

who tentatively plan on taking the action, and each reevaluates their own action based on

their estimate. In a generalized sampling equilibrium, players sample from a reliable source:

the proportion of players who initially plan to take the action is identical to the proportion of

players who actually take the action after collecting information and potentially revising their
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planned action.

More formally, each player’s tentative plan is either 1 or 0, depending on whether he plans

to take the action or not. Let α denote the proportion in the population who tentatively plan to

take the action. All players obtain a sample of k random draws from a Bernoulli random variable

with a probability of success α. Given their sample, players form beliefs about the proportion α

taking the action. A reasoning procedure describes their belief formation as a function of their

sample size and their observed proportion of successes.

Definition (Reasoning Procedure). A reasoning procedure G = {Gk
z} is a family of probabil-

ity distributions over α indexed by the sample size k ≥ 1 and the fraction of successes z ∈ [0, 1]

such that (1): Fixing the sample size k, Gk
z′ strictly first order stochastically dominates Gk

z for

z < z′, and (2): Fixing the proportion of successes z, Gk
z is a mean-preserving spread of Gk′

z for

k < k′.

A reasoning procedures satisfies two properties. The first is that fixing the sample size k, a

player puts higher weight on more players taking the action for a higher observed proportion of

successes. The second is that fixing the proportion of successes, the beliefs are less dispersed

when the sample size is larger.

Note that a reasoning procedure is defined for any possible proportion of successes z, while

the player actually only observes proportions on a j

k
grid. We need the additional structure

when analyzing the structure of equilibria as the number of samples k, and therefore the grid,

changes. Let gkz (α) be the density function of Gk
z(α) when it exists. Following are a few examples

of reasoning procedures.

Example 2.1 (Sample Average, Osborne and Rubinstein (2003)). When a player observes a

proportion z of successes, he reasons that a proportion z of players will take the action with

probability 1, independently of his sample size. That is,

Gk
z(α) =











1 α ≥ z

0 α < z

⋄

Example 2.2 (Bayesian Updating with a Uniform Prior). Each player has a uniform prior over

the proportion α, and uses Bayesian updating to obtain a posterior given a sample size k with
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a proportion z of successes. The density of the posterior belief given this reasoning procedure is

given by

gkz (α) =
αzk(1− α)(1−z)k

B(zk + 1, (1− z)k + 1)

where B(·, ·) is the Beta function. Thus Gk
z is a Beta(zk + 1, (1− z)k + 1) distribution. ⋄

Example 2.3 (Haldane’s Reasoning Procedure). Each player has complete ignorance about

the proportion α taking the action. “Haldane’s prior” (Haldane, 1932; Zhu and Lu, 2004), the

limit of Beta(ǫ, ǫ) distributions as ǫ → 0, is often used in the statistics literature to capture

such ignorance. After observing a sample size k with a proportion z of successes, the player

updates his belief to the Beta(zk, (1 − z)k) distribution. Note that this reasoning procedure is

non-Bayesian since there does not exist a proper prior that, together with Bayesian updating,

generates a Beta(zk, (1− z)k) posterior. ⋄

Comment on Beta Distributions. The Beta distribution is a conjugate prior for Binomial

distributions. That is, given a Beta(a, b) prior, the posterior following the realization of a

Binomial random variable with n draws is a Beta(a + s, b + n − s) distribution, where s is the

number of successes: The first argument is incremented by the number of successes, and the

second incremented for the number of failures. The sum a + b + n is the number of pseudo-

observations, a way of measuring the relative weight placed on the prior (a+b) compared to that

on the sample n. A uniform prior on [0,1] corresponds to a Beta(1,1) distribution, or in other

words, that after sampling the player holds beliefs that correspond to k+2 pseudo-observations,

so he puts some weight on his prior. In contrast, a player using Haldane’s reasoning procedure

has no information, and bases his entire belief on the outcome of his sampling in the sense that

the inferences drawn after observing a sample size k reflects k pseudo-observations.

Example 2.4 (Truncated Normal). When a player observes a proportion z of successes in a

sample of size k, he reasons that a proportion α will take the action, where α has a normal

distribution with mean z and variance z(1−z)
k

, truncated symmetrically. ⋄

Fixing a sample size k and a reasoning procedure, a type θi player who observed a proportion z

successes in the sample best responds to his belief Gk
z . That is, he takes the action iff

θi ≥ Fk(z)

where Fk(z) is the expectation of f under Gk
z

Fk(z) =

∫ 1

0

f(α) dGk
z(α).
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We now define the solution concept. Suppose a proportion α of players tentatively plans on

taking action A, and each player observes the tentative plans of k other players. Then the

probability of observing j successes in a sample of size k is

(

k

j

)

αj(1− α)k−j.

Conditional on observing j successes, the proportion of players taking the actionis
(

1− Fk

(

j

k

))

.

Then the fraction of players observing j successes and taking action A is

(

k

j

)

αj(1− α)k−j

(

1− Fk

(

j

k

))

.

Summing over j yields the total measure of players choosing action A

k
∑

j=0

(

k

j

)

αj(1− α)k−j

(

1− Fk

(

j

k

))

.

In equilibrium, the aggregate tentative plan is correct in the sense that sampling from a pop-

ulation in which a proportion α plan to take the action A induces a proportion α to take the

action A.

Definition. A Generalized Sampling Equilibrium is a proportion α̂ such that

α̂ =
k
∑

j=0

(

k

j

)

α̂j(1− α̂)k−j

(

1− Fk

(

j

k

))

.

A generalized sampling equilibrium makes weaker demands on players’ knowledge and rea-

soning than Nash equilibrium. In terms of knowledge, all that a player needs to know (in addition

to his available actions and utility) is that he obtains information from a reliable source in the

sense that the tentative plan of the population reflects how the population will actually behave.

In particular, knowledge of other players’ incentives, rationality, information or how they reason

about the games is not needed.

An Example: Consumption with Negative Externalities To illustrate the solution con-

cept, consider a setting in which the consumption of a good by one player reduces the utility

of consumption for all other agents. One example is visiting an amusement park: The more

people that visit the park, the more congested it is, and hence the less enjoyable the experience

is. Another example is purchasing a status good such as clothing item of a new style: As more

individuals choose to own the good, the less effectively it conveys status.
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Players derive a private benefit θi from consuming the good and suffer an externality cost of

1
2
α2. Specifically, we assume that the utility from consuming the good is u(θi, α) = θi − 1

2
α2, i.e.

the good is provided for free.1 The Nash equilibrium proportion of individuals consuming the

good is given by the solution to the equation

1− α =
1

2
α2

which has a unique solution on [0, 1] at α =
√
3− 1 ≈ .73.

Suppose instead that each player samples the tentative plans of k other individuals and uses

the sample average reasoning procedure to form beliefs about α. That is, a player who observes j

out of k successes consumes the good if and only if the private benefit θi exceeds the cost
1
2

(

j

k

)2
.

Fix α. For a sample size k = 1, with probability α a player believes the entire population is

consuming, and consumes only if his private benefit exceeds 1
2
. With probability 1− α a player

believes no one is consuming the good, and since there is no externality, he consumes the good.

Thus a GSE has to satisfy

α = α · 1
2
+ (1− α) · 1.

This equation has a unique solution α = 2
3
.

For k = 2, a GSE is characterized by

α = α2 · 1
2
+ 2α(1− α) ·

(

1− 1

2

(

1

2

)2
)

+ (1− α)2 · 1

The equilibrium condition is quadratic in α, and has a unique positive root at α = 1
2

(√
41− 5

)

.

In general, a generalized sampling equilibrium will be a proportion α̂ that solves the k-th order

polynomial

α̂ =

k
∑

j=0

(

k

j

)

α̂j(1− α̂)k−j

(

1− 1

2

(

j

k

)2
)

Whether a solution in [0, 1] exists or is unique is far from obvious.

3 Existence, Uniqueness, and Comparative Statics

In this section, we establish that the Generalized Sampling Equilibrium is unique for any rea-

soning procedure and for any number of samples. By adding the assumption on reasoning

1We extend this example to include prices in Section 4.1
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procedures that mean beliefs equal sample averages, we can prove that the Nash equilibrium is

higher (lower) than the GSE whenever f is convex (concave). We then introduce the second

of two assumptions on reasoning procedures, which together allow us to provide comparative

statics on how the unique GSE changes as the sample size gets larger. The proofs of these

theorems, driven primarily by the connection between our equilibrium condition and Bernstein

polynomials, can be found in the appendix.

Definition (Bernstein Polynomial). For any function f(α) defined on the closed interval [0, 1],

the k-th order Bernstein Polynomial of f(α) is defined to be

Bk(f ;α) ≡
k
∑

j=0

(

k

j

)

αj(1− α)k−jf(j/k)

For any function f , the Bernstein Polynomial of order k approximates the function f at the k+1

points {0, 1
k
, 2
k
, . . . , k−1

k
, 1} with binomial weights prescribed by α. Thus Bk(f ;α) is a function

of α ∈ [0, 1]. In a GSE,

α̂ =
k
∑

j=0

(

k

j

)

α̂j(1− α̂)k−j

(

1− Fk

(

j

k

))

1− α̂ =
k
∑

j=0

(

k

j

)

α̂j(1− α̂)k−j

(

Fk

(

j

k

))

1− α̂ = Bk(Fk; α̂)

Analyzing equilibria in our model in large part reduces to studying how the Bernstein operator

acts on expected utility functions. We make most use of two types of results in the theory

of Bernstein polynomials. The first is that the Bernstein operation maintains properties like

the monotonicity and convexity of the function on which it operates. The second provides

monotonicity properties of the operator’s order k.

Theorem 1. There exists a unique Generalized Sampling Equilibrium α∗

k for every number of

samples k ≥ 1.

Proof of Theorem 1. In a Generalized Sampling Equilibrium

1− α = Bk(Fk;α)

1−α on the LHS is a strictly decreasing continuous function on [0, 1], which starts at 1 and ends

at 0. The first order stochastic dominance of the reasoning procedure implies Fk is increasing, a
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Figure 1: Generalized Sampling Equilibrium: Existence and Uniqueness

property inherited by the Bernstein polynomial Bk (Fk;α). The continuous function Bk(Fk;α)

is increasing in α, and by definition equal to 0 at α = 0 and equal to 1 when α = 1. Thus the

two functions cross exactly once.

Assumption 1 (Mean Preserving). A reasoning procedure G = {Gk
z} is mean preserving if, for

every sample size k and any proportion of successes z, the expectation of α w.r.t. Gk
z is equal

to z, i.e.
∫ 1

0

α dGk
z(α) = z

Assumption 1 is satisfied by the reasoning procedures in Examples 2.1, 2.3, and 2.4. However,

the Bayesian reasoning procedure described in Example 2.2 fails to satisfy Assumption 1 because

whenever a player has a proper prior and uses Bayesian updating, the posterior mean of α is a

weighted average of the prior mean and the sample mean, where the weight is a function of k.

Therefore it cannot coincide with the sample mean for all sample sizes.
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Theorem 2. If f is convex and the reasoning procedure is mean preserving, then the propor-

tion α∗

k is strictly lower than α∗

NE. If f is concave, the ranking is reversed.

Assumption 2 (Shape Preserving). A reasoning procedure G is shape preserving if for every

sample size k and f convex (concave), Fk(z) is convex (concave) in z.

The reasoning procedure in Example 2.1 trivially satisfies Assumption 2 because Fk = f . A

sufficient condition for Assumption 2 is that, fixing k, the reasoning procedure Gk
z(α) be mean

preserving and totally positive of order 3 (TP3) in (z, α) (c.f. Jewitt (1988)).2 The reasoning

procedures in Examples 2.2, 2.3 and 2.4 all satisfy Assumption 2 as well since the distributions

generated by those reasoning procedures belong to the exponential family, and exponential family

densities are totally positive of all orders.

Given Assumptions 1 and 2, we can derive comparative statics of the equilibrium proportions

taking action A as the number of samples k increases.

Theorem 3. If f is convex, and the reasoning procedure is mean preserving and shape preserving,

the proportion α∗

k is strictly lower than α∗

k+1, which in turn is strictly lower than α∗

NE. If f is

concave, the reverse rankings hold.

An immediate corollary of Theorem 3 relates any two mean and shape preserving reasoning

procedures G,G′ by the dispersion of the distributions they induce.

Corollary 1. If f is convex and Gk(z) is a mean-preserving spread of G′

k(z) for all k, then

α∗

k ≤ α′∗

k . If f is strictly convex then α∗

k < α′∗

k . The inequalities are reverse if f is concave (resp.

strictly concave).

Proof. We prove the strictly convex case. First, observe that Fk(z), the expectation of f under

Gk(z), is lower than F ′

k(z), the expectation of f under G′

k(z), since f is strictly convex. Since

both G and G′ are shape preserving it follows, then, that Bk(Fk(z);α) < Bk(F ′

k(z);α) by the

properties of Bernstein polynomials.

Another immediate corollary is that for any k, the reasoning procedure that assigns proba-

bility 1 to the sample average (as described in Example 2.1) obtains predictions that are closest

2A function h(x, y) is totally positive of order 3 if for any x1 < x2 < x3 and y1 < y2 < y3 the matrix (h(xi, yj)

has a non-negative determinant for each minor of size ≤ 3. Total positivity of order 2 (TP2) is the Monotone

Likelihood Ratio Property, and is implied by TP3. Therefore TP3 ensures that the likelihood ratios increase

sufficiently quickly to preserve convexity under integration.
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Figure 2: Generalized Sampling Equilibrium: Existence and Uniqueness

to the Nash equilibrium. We therefore focus on this reasoning procedure in what follows, as it

provides a lower bound on the difference between GSE and Nash equilibrium.

Comment on Convergence. Osborne and Rubinstein (1998) proves that as k → ∞ the

sequence of sampling equilibria converges to a Nash equilibrium. Allowing k to grow without

bound is not sufficient to guarantee convergence to Nash equilibrium in a Generalized Sampling

Equilibrium. To see this, consider a mean preserving and shape preserving reasoning procedureG

that has noise in the limit, i.e. there exists ǫ > 0 such that the variance of Gk
z ≥ ǫ for all k.

Thus when Gk
z does not collapse to the point mass Hz as k tends to infinity, GSE will be

bounded away from the Nash equilibrium. This observation suggests a sufficient condition for

convergence of GSE to Nash equilibrium. Call a reasoning procedure G = {Gk
z} noiseless in the

limit if Gk
z

d−→ Hz for all z.

Corollary 2. If a reasoning procedure G is noiseless in the limit, then limk→∞ α∗

k = α∗

NE.
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Intuitively, it is not enough that players collect enough information to make suitable inferences,

their reasoning procedure must actually make use of a law of large numbers. ⋄

We will now illustrate the implications of Theorems 1, 2 and 3 in two specific settings.

Labor Supply

A unit mass of small firms use capital and labor to produce a consumption good x using the

Cobb-Douglas production function x(K,L) = (L+ c)γK1−γ for c > 0.3 Suppose each firm has a

single, fixed unit of capital. Then the only variable input is labor, which contributes to output

with decreasing returns x(L) = (L+c)γ . Assume for simplicity that the demand for x is perfectly

elastic at a price normalized to 1.

Profit maximization by a firm implies that it will continue hiring labor until the the marginal

product of labor x′(L) = γ(L + c)γ−1 equals the market wage. Since the firms are symmetric

they all employ the same amount of labor. If L units of labor are supplied inelastically, the labor

market will clear at a wage w(L) = γ(L+ c)γ−1.

There is a unit mass of players, and each of them needs to decide whether or not to supply

a unit of labor to the market. Each individual’s private benefit of leisure is θi, and he has to

give up this private benefit if he decides to work. Each individual’s wage w(L) = γ(L + c)γ−1

depends on the proportion of individuals supplying labor. Thus, an individual will supply labor

only if he thinks w(L) is larger than θi.

In order to estimate w(L), each individual samples other workers’ labor supply plans. An

individual obtaining a sample of j successes infers that a fraction j

k
of potential workers will

choose to supply a unit of labor, and that the wage will be w
(

j

k

)

. Therefore the individual will

choose to work if w
(

j

k

)

exceeds his private benefit of leisure θi.

To establish how the proportion of workers in a GSE relates to that in a Nash equilibrium,

and how the proportion changes with the sample size, we need to rewrite utilities in terms of

“not supplying labor”. Let N = 1− L denote the proportion of individuals not supplying labor

and let z(N) = w(1−L) be the wage if a proportion N do not work. The utility of not supplying

labor (relative to supplying labor) is then θi−z(N). Since w(L) = γ(L+ c)γ−1 is decreasing and

convex, z(N) is increasing and concave, so by Theorems 2 and 3 the proportion of individuals

3We assume that firms can still generate positive output in the absence of labor to ensure that the marginal

product of labor (and therefore the wage) at L = 0 is defined.
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not supplying labor is decreasing in the sample size and above the Nash equilibrium proportion.

Therefore, the proportion of individuals supplying labor increases in the sample size and is below

the Nash equilibrium proportion.

Demand for Vaccinations

A unit mass of players face the potential to contract and spread an infectious disease such as

the flu. A vaccine exists that fully protects recipients from infection. Individuals who are not

vaccinated may contract the disease one of two ways. When flu season begins, a proportion c

of unvaccinated individuals contract the disease. In subsequent time periods, an agent who has

not previously been infected may contract the flu by contact with an infected individual. An

infected individual is contagious for 1 period. The utility of a player who remains healthy is

0, while getting sick delivers a payoff of -1. Each individual has a private cost θi of getting

vaccinated, reflecting heterogeneous costs of traveling to a clinic or varying sensitivities to the

vaccination’s side effects.

For simplicity, suppose there are just three time periods. In period 0, individuals simulta-

neously decide once-and-for-all whether to obtain a vaccination. Those not vaccinated face a

chance c of being infected. Thus if proportion α choose vaccination, then the mass of infected

individuals at the end of period 0 is c (1− α).

In subsequent periods, individuals meet each other randomly. When an agent previously

uninfected meets an infected agent, he becomes infected. Denote by it the mass of infected indi-

viduals at the end of period t, st the mass of susceptible (i.e. previously uninfected) individuals

at the end of period t, and rt is the mass of removed (i.e. vaccinated or recovered) individuals

at the end of period t.

The environment evolves according to the following equations:

it = st−1it−1

st = st−1(1− it−1)

rt = rt−1 + it−1

with the initial conditions:

i0 = c (1− α)

s0 = 1− α− c (1− α)

13



r0 = α

At the end of period 2, the total mass of agents infected at some point I(α; c) is

I(α; c) = i0 + i1 + i2

Substituting the expressions that describe the evolution of the system we obtain

I(α; c) =

(1− α) c
(

(α− 3)α− (1− α)3c3 − (2α− 3)(1− α)2c2 − (α− 2)2(1− α)c+ 3
)

This can be simplified to4

I(α; c) = γ0 + γ1α + γ2α
2 + γ3α

3 + γ4α
4

The ex-ante expected infection probability for an individual remaining unvaccinated is de-

creasing and convex in the proportion of others obtaining vaccinations.5 Recasting the problem

so the action is “not vaccinated” and denoting the proportion not obtaining the vaccination

by ρ = 1 − α, a type θi player who observed j out of k people tentatively planning on not

being vaccinated, will not obtain the vaccination if and only if θi ≥ I(1− j

k
; c). A proportion ρ

abstaining from vaccination constitutes a GSE if

1− ρ =

k
∑

j=0

(

k

j

)

ρj(1− ρ)k−jI

(

1− j

k
; c

)

will get vaccinated. By Theorems 2 and 3, the GSE rate of abstention is lower than in the Nash

equilibrium and is increasing in the sample size. Therefore the vaccination rate is higher than

that in the Nash equilibrium and is decreasing in the sample size k.

When players use Haldane’s reasoning procedure (as described in Example 2.3), rather than

the sample average, Corollary 1 indicates that the vaccination rate is strictly between the Nash

equilibrium vaccination rate and the GSE vaccination rate with the sample average reasoning

procedure.

4where the constants γi are γ0 = −c4+3c3−4c2+3c, γ1 = 4c4−11c3+12c2−6c, γ2 = −6c4+15c3−13c2+4c,

γ3 = 4c4 − 9c3 + 6c2 − c, and γ4 = −c4 + 2c3 − c2.

5It is easily verified that I(α; c) is decreasing and convex in α, and increasing and concave in c for all 0 ≤ α ≤ 1

and 0 ≤ c ≤ 1. Similarly, one can show that the probability of eventual infection is increasing and concave in the

initial infection rate c for a given proportion α being vaccinated.
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4 Applications

4.1 Selling to Consumers who Sample

Returning to the consumption with negative externalities example above, suppose now that a

profit-maximizing monopolist sets a price p that consumers observe before deciding whether to

obtain the good. For simplicity, assume the monopolist faces zero marginal cost. A consumer’s

utility from purchasing the good is u(θi, p, α) = θi−p− 1
2
α2. After observing the price p but prior

to acting, players sample the tentative plans of other potential customers. A player observing j

out of k successes attends if and only if

θi ≥ p− 1

2
α2

Fix the price p ≤ 1
2
for the monopolist.6 Then, a GSE in the subgame requires

α =
k
∑

j=0

(

k

j

)

αj(1− α)k−j

(

1− p− 1

2

(

j

k

)2
)

and by Theorem 1, there is a unique αk(p) that solves this equation.

Fixing k, αk(p) is decreasing in p. We thus have for every k a well-defined demand function.

Rewrite the expression for a GSE as the inverse demand

p(α) = 1− α− Bk(f ;α)

Since f is convex, the properties of the Bernstein Polynomials imply that p(α) is decreasing and

concave.

Next, we turn to the monopolist’s problem. The monopolist seeks to solve

max
α

Π(α) = α · p(α) = α (1− α−Bk(f ;α))

Since p(α) is concave, so is the objective function, and the first order condition

MRk(α
∗

k) ≡ 1− 2α∗

k − Bk(f ;α
∗

k)− α∗

kB
′

k(f ;α
∗

k) = 0

is sufficient for optimality. For a sample of size k, let pk(α
∗

k) denote the profit maximizing price,

let α∗

k be the profit maximizing quantity (i.e. proportion of customers served at the optimum),

and let Π∗

k = Π(α∗

k) denote the monopolist’s optimal profit.

Theorem 4. The monopolist’s profit Π∗

k, quantity α∗

k, and price pk(α
∗

k) are all increasing in the

sample size k.

6We prove in what follows that the monopolist would never choose a price above 1

2
.
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Figure 3: Demand Curves Faced by the Monopolist
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4.2 Labor Matching Market

In this market, there are many workers and firms who must engage in costly search to create

employment outcomes. Assume that a unit mass of workers seek job vacancies at a unit mass

of firms. When a proportion α of workers choose to search for jobs and a proportion β of firms

advertise positions, the number of vacancies filled is given by:

m(α, β) ≡ µαxβy

Assume x + y = 1, so that the matching function m(·, ·) exhibits constant returns to scale.7

Further, we assume 0 < µ < 1, i.e. the presence of labor market frictions that would prevent full

employment even if all workers and all firms participated. Denote by g(α, β) ≡ m(α,β)
α

the utility

of a worker when a proportion α of workers participate and a proportion β of firms participate.

Analogously, denote by h(α, β) ≡ m(α,β)
β

the utility of a firm when a proportion α of workers

participate and a proportion β of firms participate. Normalize to 0 the payoff to abstaining from

the market.

Prior to the market, each worker must decide whether or not to participate in the market.

Participation requires a worker to incur a cost θi, perhaps for preparing a resume’, purchasing

interview clothing, etc. Similarly, each firm must decide whether or not to participate in the

market. Participation also requires a firm to incur a cost ωi, perhaps for advertising the vacancy,

administrative efforts to allocate the salary in the budget, etc.

Before making participation decisions, workers are able to sample the tentative participation

plans of k firms. Upon observing j out of the k firms intending to participate, a worker believes

a fraction β = j

k
will participate in aggregate. A worker with cost θi believes the utility of going

to the labor market is positive iff

µ

(

j

k

)y

α1−x
≥ θi

Define the cost of a worker who is indifferent between participation and abstention by

θ̄j ≡ µ

(

j

k

)y

α1−x

In the same manner, we can describe the behavior of firms, who are able to observe a sample of

7As noted by Pissarides (2000, page 4) the matching function summarizes a trading technology between

heterogeneous agents that is not made explicit.”
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k workers’ tentative plans. A firm with cost ωi believes the utility of participation is positive iff

µ

(

j

k

)x

β1−y
≥ ωi

Define the cost of a firm that is indifferent between participation and abstention by

ω̄j ≡ µ

(

j

k

)x

β1−y

Notice that since 0 < x, y < 1, both θ̄j and ω̄j are concave in j. Now suppose the tentative

plans of workers and firms are α and β, respectively. Then the probability that a worker (firm)

observes j out of k successes is
(

k

j

)

βj(1 − β)k−j (resp. firms
(

k

j

)

αj(1 − α)k−j), and of those, a

proportion θ̄j (resp. firms ω̄j) choose to participate. To obtain the total number of workers and

firms participating, we sum over j on both sides of the market and substitute the definitions of

θ̄j and ω̄j. This yields the system

α =
µ

α1−x

k
∑

j=0

(

k

j

)

βj(1− β)k−j

(

j

k

)y

(1)

β =
µ

β1−y

k
∑

j=0

(

k

j

)

αj(1− α)k−j

(

j

k

)x

(2)

which can be rearranged into

α(β) ≡
(

µ
k
∑

j=0

(

k

j

)

βj(1− β)k−j

(

j

k

)y
)

1

2−x

(3)

β(α) ≡
(

µ
k
∑

j=0

(

k

j

)

αj(1− α)k−j

(

j

k

)x
)

1

2−y

(4)

By the properties of Bernstein polynomials, the system describes (for every number of samples k)

a function αk(β) that is concave in β and a function βk(α) that is concave in α.

Definition (Labor Matching Equilibrium). An equilibrium in the labor matching market is a

pair of proportions (α∗

k, β
∗

k) of workers and firms satisfying the system

αk(β
∗

k) = α∗

k

βk(α
∗

k) = β∗

k

Theorem 5. For every number of samples k, there exists a unique Labor Matching Equilibrium

with positive employment. Labor Market participation and equilibrium employment are increasing

in k, and strictly below the Nash equilibrium level.
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Figure 4: Labor Matching Equilibrium: µ = 9
10
, x = y = 1

2
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Figure 5: α as a function of µ
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Figure 6: Total Matches as a function of µ

Appendix

Proof of Theorems 2 & 3. We prove the theorems for a convex function f . The proof for a

concave function is analogous. It is sufficient (c.f. Figure 2) to prove that for all α ∈ [0, 1]

Bk(Fk;α) ≥ Bk+1(Fk+1, α) ≥ f(α)

We establish these inequalities in three steps. Note that only the first two steps are necessary

for proving Theorem 2.

Step 1. Fk(z) ≥ Fk+1(z) ≥ f(z):

Since f is convex, the reasoning procedure property that Gk
z ≺SOSD Gk+1

z implies, by Jensen’s

Inequality, that Fk(z) ≥ Fk+1(z). Let Hz be the distribution that places probability 1 on z:

Hz(α) = 0 if α < z and Hz(α) = 1 if α ≥ z. Then Fk(z) ≥ f(z) by Jensen’s Inequality, since

Gk
z ≺SOSD Hz. Appealing to this argument pointwise in z as it ranges from 0 to 1 completes

this step. ⊳

Step 2. Bk(Fk;α) ≥ Bk(Fk+1;α) ≥ f(α)

We invoke two monotonicity properties of Bernstein Polynomials. First, if v, w are real functions
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on [0, 1] and v ≥ w, then for all k ≥ 1

Bk(v; ·) ≥ Bk(w; ·)

Second, if v(α) is convex, then for all k ≥ 1

Bk(v;α) ≥ Bk+1(v;α) ≥ v(α), α ∈ [0, 1]

These properties, together with the inequality established in Step 1, prove this step. ⊳

Having established Bk(Fk;α) ≥ f(α), Theorem 2 is proved.

Step 3. Bk(Fk;α) ≥ Bk+1(Fk+1;α) The reasoning procedure is shape preserving, so Fk and

Fk+1 are convex. We again appeal to the fact that Bernstein polynomials overestimate convex

functions to obtain

Bk(v;α) ≥ Bk+1(v;α) ≥ v(α)

Taking v = Fk+1 implies that Bk(Fk+1;α) ≥ Bk+1(Fk+1;α) ⊳

Combining the above results yields Bk(Fk;α) ≥ Bk+1(Fk+1, α) ≥ f(α).

Proof of Theorem 4. To establish later results, we first show that the firm will never choose a

quantity strictly greater than 1/2.

Proof. The result is proven if the marginal revenue of the firm is negative at α = 1/2. The

marginal revenue is

MRk(1/2) = 1− 2(1/2)−Bk(f ; 1/2)− 1/2B′

k(f ;α
∗

k) < 0

since Bk(f ;α) and B′

k(f ;α) are both positive for all α, marginal revenue at 1/2 is negative.

Observation. The monopolist’s profit is increasing in k, and is largest in the Nash equilibrium.

Proof. Appealing to Theorem 3, as we range over prices p ∈ [0, 1
2
], we obtain αk(p) ≤ αk+1(p) ≤

α(p) where α(p) is demand in the rational case. The monopolist faces higher demand at every

price, and thus earns weakly higher profits.

We are now in a position to state our first comparative static, namely that as the number of

samples consumers take grows, the equilibrium quantity sold by the firm increases monotonically.

Lemma 1. For all k ≥ 1

α∗

k < α∗

k+1 < α∗

R
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Proof. To prove α∗

k ≤ α∗

k+1 it suffices to show that if MRk(α
∗

k) = 0 then MRk+1(α
∗

k) > 0,

for then the monopolist has a strict incentive to raise output. Thus we compare the marginal

revenue with k samples to that with k+1 samples, noting that by the previous lemma α∗

k ≤ 1/2:

MRk(α
∗

k) = 1− 2α∗

k −Bk(Fk;α
∗

k)− α∗

kB
′

k(Fk;α
∗

k) = 0

MRk+1(α
∗

k) = 1− 2α∗

k − Bk+1(Fk+1;α
∗

k)− α∗

kB
′

k+1(Fk+1;α
∗

k)

Since Bk(Fk;α
∗

k) < Bk+1(Fk+1;α
∗

k) for α∗

k ∈ [0, 1] and B′

k(Fk;α
∗

k) < B′

k+1(Fk+1;α
∗

k) for α∗

k ∈
[0, 1/2], it follows that MRk+1(α

∗

k) > 0.

A similar argument establishes that α∗

k ≤ α∗

R for all k ≥ 1 by noting that by a property of the

Bernstein Polynomials Bk(f ;α) > f(α) for all α ∈ [0, 1] and since f(α) is convex, B′

k(Fk;α) >

f ′(α) for all α ∈ [0, 1/2]. It follows immediately that the marginal revenue for a monopolist

facing rational consumers at the optimal quantity for k-sample boundedly rational consumers is

positive.
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