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Abstract

We re-examine the canonical question of Myerson and Satterth-

waite (1983) whether two parties can trade an indivisible good in

a Pareto efficient way when they are both privately-informed about

their valuations for the good. Relaxing the assumption that utilities

are quasi-linear, we show that efficient trade is generically possible if

agents’ utility functions are not too responsive to private information.

In natural examples efficient trade is possible even when agents’ util-

ity functions are highly responsive to their private information. The

analysis relies on new methods we introduce.

1 Introduction

Can a seller and a buyer of an indivisible good trade efficiently if they are
privately informed about their valuations for the good and if ex ante either
of them might have the higher valuation? The theorem of Myerson and
Satterthwaite (1983), a central result of the theory of mechanism design,
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We are still tweaking the exposition. For their comments, we would like to thank Andrew
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Ronny Razin, Stergios Skaperdas, Tayfun Sonmez, Guofu Tan, Tom Wilkening, Steven
Williams, William Zame, and the audiences at SWET 2014, LSE, UCL, NBER Decen-
tralization Conference 2014, SING 2014, UCLA, Rochester, BC, the Bank of England,
Amherst, NEGT 2014, Rutgers, LA Theory Conference 2014, and UC Irvine. Garratt:
FRBNY, Pycia: UCLA.
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provides a negative answer to this question. Assuming that agents have
quasi-linear utility functions, Myerson and Satterthwaite showed that no
Bayesian incentive-compatible, individually rational, non-subsidized mecha-
nism is ex-post Pareto efficient. The reason is that in an incentive compatible
mechanism, each agent needs to be provided with rents commensurate with
her type, and the gains from efficient trade are not sufficient to cover the
rents of both parties. Their impossibility theorem had a large impact on the
economics literature and the practice of market design, and it offers a stark
contrast to Coase’s (1960) claim that markets lead to efficient outcomes when
property rights are unambiguously established and there are no transaction
costs.1

We examine the possibility of efficient trade allowing for risk aversion
and wealth effects, phenomena which are assumed away in the standard
quasilinear analysis and which nonetheless play an important role in bilat-
eral trade of valuable assets. Surprisingly, we establish that the presence of
risk aversion or wealth effects greatly improves the possibilities for efficient
trade.2

Our main result establishes that efficient trade is generically possible as
long as either agents’ utilities are not too dependent on private information,
or the asymmetry of information is not too large. We provide a Bayesian
incentive-compatible and interim individually rational mechanism that, un-
der these conditions, is ex-post Pareto efficient and that does not rely on
any subsidies or on budget breaking by third parties.3 The restriction on
private information is necessary in this general possibility result as the scope
of efficient trade diminishes in the limit as we approach the quasi-linear

1See, for instance, Milgrom’s (2004) discussion of the role the impossibility theorem
played in the FCC deliberations on the first US spectrum auctions, and Loertscher, Marx,
and Wilkening’s (2013) discussion of how the impossibility theorem led to the focus of
market design on primary markets.

2While we describe the problem in terms of trade of an indivisible good, our results
remain true for trading a divisible good, or for trading multiple goods against each other.
The tools we develop are useful beyond bilateral trade models.

3Like Myerson and Satterthwaite we look at ex post efficiency in the sense that we
evaluate efficiency assuming that we know the agents’ types. With respect to the resolution
of the lotteries, our contracts are efficient not only ex post but also ex ante.
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model. We complement this general possibility result by showing that when
risk-aversion or wealth effects are substantive, or when the good traded is
valuable, then efficient trade may be possible even if agents’ utilities are
highly dependent on their private information. In particular, our results im-
ply that the central impossibility insight of mechanism design hinges on the
assumption of quasi-linear utilities.

Efficient trade remains possible if agents’ private information determines
not only their valuations for the good but also the marginal utility of money.
Our main result remains valid in this more general setting as long as (i)
the traded good is normal (a good is normal if each player’s reservation
price for the good increases with the agent’s wealth; see, for instance, Cook
and Graham 1977), and (ii) the semi-elasticity of marginal utility of money
with respect to private information is constant and dominated by the semi-
elasticity of marginal utility of the good with respect to private informa-
tion.4 For instance, agents endowed with Cobb-Douglas utilities can trade
efficiently regardless of the extent of informational asymmetry. Our analysis
furthermore implies that efficient trade might be possible even if neither of
the assumptions (i) and (ii) is satisfied.5

Why is efficient trade possible when agents are risk averse but cannot
be attained with quasi-linear preferences? With quasi-linear preferences the
only gains from trade are those of assigning the object to the highest value
agent. Risk aversion and wealth effects open up an additional source of
efficiency gains. Suppose the seller’s utility function over money and the ob-
ject is the same as the buyer’s and suppose that seller’s and buyer’s money

4The normality condition for an indivisible good is a natural counterpart of normality
for divisible commodities. Cook and Graham require that each player’s reservation price
for the good strictly increases with the agent’s wealth. Thus their condition does not hold
under quasi-linear utility. Our results however continue to hold for generic utility profiles
if we relax the Graham and Cook normality condition to require only that each player’s
reservation price for the good weakly increases with the agent’s wealth. Such a relaxed
normality condition is satisfied by quasi-linear preferences.

5In particular, the trading mechanism we construct is efficient, individually rational,
budget-balanced, and makes truthful reporting a solution to the first-order condition of the
agents’ maximization problem whether or not assumption (ii) is satisfied. Assumption (ii)
ensures that the second-order condition of the agents’ maximization problem is satisfied
for all possible distributions of private information.
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holdings are such that they derive the same utility from their endowments.
Consider giving the good to the buyer with a small probability, while com-
pensating the seller with a money transfer in the state when the seller keeps
the good. Normality means that the money transfer needed to compen-
sate the seller for the small probability of giving up the good is less than the
money transfer the buyer is willing to make in return for the same probability
of obtaining the good. Hence, such a lottery contract is Pareto improving.6

Of course, these efficiency gains affect agents’ informational rents: agents
compete over how they share the additional gains from trade and it is a
priori not obvious whether efficient trade is possible.

To establish our possibility result, we need to develop a methodology to
study Pareto efficient mechanisms in settings with risk-averse agents because
these mechanisms rely on randomization and the rich prior literature con-
structing optimal mechanisms in the presence of risk aversion and wealth
effects restricted attention to deterministic mechanisms.7 For instance in
symmetric settings, Pareto efficiency requires randomization when agents’
valuations for the good are nearly equal; thus the mechanism design prob-
lem we study is very different from the one studied by Myerson and Sat-
terthwaite precisely in the range of types that underlies their impossibility
result. Unlike in their quasilinear setting, in ours the size of money transfers
conditional on allocation are then uniquely determined by efficiency but who
obtains the allocation of the good itself is not. The key to constructing the
Pareto efficient mechanism is a judicious choice of the probability of allo-
cating the good to each of the trading agents; in a direct mechanism the
probability needs to respond to agents’ reports in a way that ensures that
truthful reporting is Bayesian incentive compatibility and interim individ-
ually rational. We reduce the problem of constructing such a probability
function to a non-standard system of partial differential equations and offer

6In this discussion we restrict attention to small probabilities of transferring the good
to the buyer in order to make sure the buyer has enough money to compensate the seller.
For more developed examples of such gains from randomized trade, see Garratt (1999)
and Baisa (2014).

7We discuss this literature below.
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a constructive way to solve this system of equations.8

The question when efficient trade is possible is important and has been
extensively studied. Two crucial assumptions have been recognized already
by Myerson and Sattherwaite: their result requires that the distribution
of types is continuous and that buyer’s value is always higher than the
seller’s value.9 Gresik and Satthertwaite (1983) and Williams (1999) ex-
tend the impossibility result to symmetric settings with many agents while
Makowski and Mezzetti (1994) show that for an open set of asymmetric dis-
tributions trade can be efficient provided there are multiple buyers.10 Wil-
son (1985), Makowski and Ostroy (1989), Rustichini, Satterthwaite, and
Williams (1994), Reny and Perry (2006), Cripps and Swinkels (2006), and
many others establish that trade is asymptotically efficient as the number of
buyers and sellers becomes large. McAfee (1991) shows that efficient trade
can be possible when the ex ante gains from trade are large and the two
trading parties have access to an uniformed budget breaking third agent.11

At the same time, we know of no successful attempt to go beyond My-
erson and Satthertwaite (1983) and demonstrate the possibility of fully effi-
cient mechanisms in their original context of two agents, one buyer and one
seller.12 What was demonstrated is the possibility of approximate efficiency
in two contexts. Chatterjee and Samuelson (1983) show that double-auctions
are asymptotically efficient in the limit as the agents become infinitely risk-
averse.13 And, McAfee and Reny (1992) show that when private values are

8Each of the partial differential equations needs to be satisfied only on average. In
this sense, this system of equations resembles the problem of finding an allocation rule
in reduced form auctions (though the latter problem involves no differentiation); see e.g.
Border (1991) and Che, Kim, and Mierendorff (2013).

9The case of discrete distributions is studied by Matsuo (1989) and Kos and Manea
(2008).

10This observation has been extended to settings with multiple buyers and sellers by
Williams (1999) and Schweizer (2006).

11McAfee (1991) studied the problem of trading divisible goods; see (Riley 2012) for an
analysis with indivisible goods.

12Relaxing the assumption that one of the agents is pre-assigned the role of a seller,
and the other the role of a buyer, and working in the context of divisible goods, Cramton,
Gibbons, and Klemperer (1987) show that trade may be efficient if initially both trading
partners own some quantity of the good, and depending on the realization of types each
of them might become a seller or a buyer.

13Chatterjee and Samuelson (1983) also show that double auction is not efficient, and
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correlated (and a hazard rate assumption is satisfied) a judicious use of Cre-
mer and McLean (1988) lotteries allows the parties to reduce their incentives
to misreport so as to permit outcomes as close to efficiency as desired.14

While ours is likely the first paper to study optimal Bayesian incentive
compatible bilateral trade mechanisms for an indivisible normal good, it
follows a rich mechanism design literature studying wealth effects and risk
aversion. As discussed above, this literature, e.g. Holt (1980), Matthews
(1983), Maskin and Riley (1984), restricted attention to deterministic mech-
anisms such as the first-price or the second-price auctions. The exceptions
are Garratt (1999) who shows that random mechanisms can dominate deter-
ministic ones in a complete information setting, and Baisa (2013) who shows
that such mechanisms can dominate second-price auctions in a setting with
private information, and that efficiency, individual rationality, and the lack
of subsidies may be inconsistent with strategy-proofness.15

The rest of the paper is organized as follows. In Section 2 we study
an example in which agents’ types are distributed independently on [0, 1]

and agents’ utilities are linear in both money and consumption of the good.
any distribution of agents’ types, and for any distribution of agents’ initial

Chatterjee (1982) shows that no mechanism in a large class of incentive compatible mech-
anisms is efficient; these two papers are important precursors of Myerson and Satterth-
waite’s impossibility theorem. After Myerson and Satthertwaite, many authors provided
alternative proofs of their impossibility result, see for instance Williams (1999) and Kr-
ishna and Perry (1998).

14For simplicity, we formulate our main theorem in the context of risk averse agents, but
we allow any level of risk aversion, including arbitrarily small risk aversion. Furthermore,
as demonstrated by the example of Section 2, the underlying insight does not rely on risk
aversion. Also, our results allow for both independence and correlation, and they do not
rely on large bets in the spirit of Cremer and McLean: all lotteries we employ are bounded
by agents’ wealth levels.

15Baisa studies a setting in which a seller wants to allocate a normal good to one of
a finite number of buyers; unlike in our setting, in his setting the seller has no private
information about the good. Baisa proves his impossibility claim by constructing an
example of a profile of utility functions such that no strategy-proof, individually rational,
non-subsidized mechanism allocates the good in an efficient way. Our example in Section
2 shows that in some settings efficient trade can be accomplished in strategy-proof way,
and we show in the Conclusion the generic impossibility of achieving efficient trade in an
ex-post incentive compatible way. While we focus on bilateral trade, our analysis can also
be used to show that, in the allocation setting, generically no ex-post incentive compatible
mechanism is efficient.
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wealth levels, we construct a mechanism that is incentive-compatible, indi-
vidually rational and efficient. We present our model and assumptions in
Section 3. Section 4 contains our main results. Suppose that the traded
object is normal and that agents’ types impact their marginal utility of the
good more than the marginal utility of money, and that either the utility
functions are not too dependent on types, or that the supports of agents’
types are not too large. Then, for any initial distribution of money holdings,
except possibly one, we construct a mechanism that is incentive-compatible,
individually rational and efficient. Thus the example provided in Section 2 is
not special. Furthermore, our main result implies that efficient trade is pos-
sible in problems arbitrarily close to Myerson and Satterthwaite’s quasilinear
setting.

2 An Example

A seller is endowed with a good and money endowment m

s

while the buyer
has money endowment m

b

. Each agent privately knows his or her type
✓ 2 [0, 1] and has a shifted Cobb-Douglas utility: u (x,m, ✓) = (1 + ✓x)m

where m denotes the money the agent has and x is a dummy variable taking
values x = 1 or x = 0 depending on whether the agent has the good.16

The seller’s type, denoted c for cost of trade, is distributed according to an
arbitrary distribution on [0, 1]. The buyer’s type, denoted v for value, is
distributed according to an arbitrary distribution on [0, 1].

In this example there is a mechanism that generates efficient trade, is
Bayesian incentive compatible, individually rational, and requires no subsi-
dies. As shown below, the following mechanism � satisfies these properties:
� allocates the good and the sum of the money endowments of both agents
to the seller with probability ms

ms+mb
, and it allocates the good and the sum

of money endowments to the buyer with the remaining probability, mb
ms+mb

.
Mechanism � is obviously Bayesian incentive compatible because the

allocation and transfers do not depend on the agents’ reports.17 To see that
16As usual, the utility of money derives from other goods the agent might purchase.
17While mechanism � is also dominant-strategy incentive compatible, our general results
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the mechanism is individually rational, notice that the mechanism gives the
seller with type c the expected utility of

m

s

m

s

+m

b

(1 + c) (m

s

+m

b

) = (1 + c)m

s

,

and that this expected utility is equal to the utility of the seller if no trade
takes place. Similarly, the mechanism gives the buyer with type v the ex-
pected utility of

m

b

m

s

+m

b

(1 + v) (m

s

+m

b

) = (1 + v)m

b

,

and this expected utility is larger than the utility of the buyer if no trade
takes place (the latter utility is m

b

).
Finally, to see that the mechanism is efficient notice that the Pareto

frontier in this example consists of all randomizations among two outcomes:
either the seller keeps the good and gets all the financial wealth, or the buyer
gets the good and all the financial wealth. This can be immediately seen in
Figure 1 (we provide an explicit argument in the appendix).18

3 Assumptions for the General Case

Here we generalize the assumptions used in the example of the previous sec-
tion. We denote aggregate money holdings by M = m

s

+ m

b

. We assume
the seller’s type (cost) c 2 [c, c] and the buyer’s type (value) v 2 [v, v].
Furthermore, we assume the utility function u (x,m, ✓) of each agent is
monotonic in having the good (x) and in money (m), strictly concave in
money, and twice continuously differentiable in money and in type. For con-
venience, we extend the utility function notation to lotteries over the good:
u (x,m, ✓) = xu (1,m, ✓) + (1� x)u (0,m, ✓) for x 2 [0, 1].

will only demonstrate the existence of a Bayesian incentive-compatible mechanism.
18An even simpler example obtains when agents’ have standard Cobb-Douglas utilities

over the good and the money, u (x,m; ✓) = A (✓)x↵(✓)
m

�(✓) for some functions A,↵,�.
With Cobb-Douglas utilities, the mechanism that allocates the good and all the money to
the seller implements efficient trade. Of course, such an example is extreme since, without
the indivisible good, agents have no use for money.
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Figure 1: Pareto Frontier in the Shifted Cobb-Douglas Example.

We assume that the good is normal in the standard sense (see Cook and
Graham 1977): for any type ✓ and any relevant money levels m, p, ✏ > 0, if
u(0,m, ✓) = u(1,m�p, ✓) then u(0,m+ ✏�p, ✓) < u(1,m+ ✏, ✓). Normality
captures the intuition that the more money an agent has, the more she is
willing to pay for the good.

We also impose the following assumption on how agents’ utilities respond
to their types. We assume that @

@✓

log

�
@

@m

u (x,m, ✓)

�
does not depend on

m, and that for any x 2 [0, 1], m 2 [0,M ], and any type ✓, we have

@

@✓

log

✓
@

@x

u (x,m, ✓)

◆
>

@

@✓

log

✓
@

@m

u (x,m, ✓)

◆
(1)

That is we want the type-elasticity of the marginal value of the good to
exceed the type-elasticity of the marginal utility of money, and the latter
elasticity to be constant in money. Both components of this assumption are
automatically satisfied when utilities are quasi-linear in money, and higher
types have higher utility from consuming the good. The assumption is also
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satisfied when agents’ utilities are additively separable, u (x,m, ✓) = ✓x +

v (m). Furthermore, this assumption is only needed for our analysis of the
second-order condition of the mechanism we construct, where it is sufficient
but not necessary. The necessary condition is more complex, and is provided
in the analysis of the second-order condition.

The normality assumption allows us to determine some features of the
Pareto frontier (See Figure 2).19 To describe the frontier, let us fix agents’
types c and v. The frontier is the upper envelope of the curves

C
S

= {(u (1,m, c) , u (0,M �m, v)) : m 2 [0,M ]}

and
C
B

= {(u (0,m, c) , u (1,M �m, v)) : m 2 [0,M ]} .

The curve C
S

traces the utilities when the seller has the good, while the
curve C

B

traces the utilities when the buyer has the good. Since we assume
that it is better to have the good than not to have it, the curve C

S

starts
higher than C

B

on the axis of seller’s utilities (the vertical axis), and C
S

ends
lower than C

B

on the axis of buyer’s utilities (the horizontal axis). We also
assume that each agent prefers to have all of the money and no good to the
good and no money: u

s

(0,M, c) > u

s

(1, 0, c) and u

b

(0,M, v) > u

b

(1, 0, v).20

This assumption ensures that the two curves intersect, and the normality
assumption implies that C

S

intersects C
B

only one time from above.21

As we move along the Pareto frontier from the seller’s most preferred
point to the buyer’s most preferred point, we start on the curve C

S

and we
end on the curve C

B

. The point at which the curves C
S

and C
B

intersect
cannot be part of the frontier because normality implies that at this point
C
S

intersects C
B

strictly from above, and hence a randomization over any
19See Garratt (1999) for a more detailed discussion of the Pareto frontier for normal

goods.
20This is not necessary for the analysis, but it simplifies the presentation and validates

the cases depicted in the figures. Note that in the figures the origin is not necessarily the
point (0,0). It is the point (ub(1, 0, v), us(1, 0, c)).

21The uniqueness of the intersection point is the main implication of normality in the
paper. Without normality the two curves could intersect multiple times.

10



 
 
 
 
 

 
 

S(c,v) 

B(c,v) 
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us 

us(1,mS(c,v),c) 

us(1,ms,c) 

ub(1,mB(c,v),v) ub(0,mb,v) 

CS 

CB 

Figure 2: Pareto Frontier in the General Case.

point just to the left of the intersection and any point just to the right of
the intersection is strictly preferred to the intersection point by both trading
parties. The frontier thus contains a flat part consisting of randomizations
between two points: S (c, v) 2 C

S

and B (c, v) 2 C
B

, where the seller strictly
prefers S to B while the buyer strictly prefers B to S. The strict concavity of
u in money implies that these two points are uniquely determined. We call
them the critical points. Let m

S

(c, v) denote the seller’s money holdings at
S and m

B

(c, v) denote the buyer’s money holdings at B. In the example of
Section 2, mS

(c, v) = m

B

(c, v) = M , so the critical efficient levels of money
holdings do not depend on the types. This will not be true in the general
case. In general the critical levels of money holdings will depend on agents’
types, and hence on their reports. The dependance of the points B (c, v) and
S (c, v) on (c, v) is continuously differentiable by the assumed regularity of u
and its strict concavity in money. We assume that these two points are either
at the boundary (that is involve money levels of M and 0) or they are both
internal. When the critical points S and B are internal, the money levels
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m

S

(c, v) and m

B

(c, v) are uniquely determined by the following equations

@

@m

u

�
1,m

S

, c

�

@

@m

u (0,M �m

S

, v)

=

@

@m

u

�
0,M �m

B

, c

�

@

@m

u (1,m

B

, v)

=

u

�
1,m

S

, c

�
� u

�
0,M �m

B

, c

�

u (1,m

B

, v)� u (0,M �m

S

, v)

.

(2)
These equations express the fact that the randomization interval is tangent
to the Pareto frontier at both critical points S and B.

In the appendix we show that in the internal case our assumptions imply
that

@

@✓

m

�✓
(c, v) > 0 >

@

@✓

m

✓

(c, v) , (3)

(in the corner case the two inequalities become equalities). Thus, agents’
money holdings at the critical point of the Pareto frontier the agent prefers
are decreasing in agent’s type, while the agent’s money holdings at the critical
point the other agent prefers are increasing in agent’s own type.

4 Main Results

We now show that efficient trade is possible for the class of utility functions
described in Section 3. We formulate our possibility result in two related
ways. First, efficient trade is possible if agents’ utilities are not too dependent
on their types.

Theorem 1. Fix c

⇤
, v

⇤ 2 [0, 1] and u

s

(·, ·; c⇤) and u

b

(·, ·; v⇤). For every
profile of money endowments but one, there is � > 0 such that if

max

✓2[0,1],m2[0,M ],x2{0,1}
|u (x,m, ✓)� u (x,m, ✓

⇤
)| < �, (4)

then there is an incentive-compatible, individually-rational, and budget-balanced
mechanism that generates efficient trade.

As an immediate corollary we obtain

Corollary 2. Fix (c

⇤
, v

⇤
) 2 (0, 1)

2 and function u. For any profile of money
endowments but one, there are intervals (c, c) 3 c

⇤ and (v, v) 3 v

⇤ such
that: if agents draw their types from arbitrary distributions on (c, c)⇥ (v, v),
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then there is an incentive-compatible mechanism, individually-rational, and
budget-balanced mechanism that generates efficient trade.

This corollary obtains because by taking the intervals (c, c) 3 c

⇤ and
(v, v) 3 v

⇤ to be sufficiently small, and re-scaling them to [0, 1], we can
ensure condition (4).

A special case of interest obtains when c

⇤
= v

⇤. In this case, the corollary
takes the following simpler form:

Corollary 3. Fix any ✓⇤ 2 (0, 1) and function u. For any profile of money
endowments but one, there is an interval

�
✓, ✓

�
3 ✓

⇤ such that for any dis-
tribution of agents’ types on

�
✓, ✓

�
⇥
�
✓, ✓

�
, there is an incentive-compatible,

individually-rational, and budget-balanced mechanism that generates efficient
trade.

Why is efficient trade possible when the object is normal, but it cannot
be attained with quasi-linear preferences? With quasi-linear preferences the
only gains from trade are those of assigning the object to the highest value
agent. As we observed in the introduction, with normal goods an additional
source of efficiency gains opens up. Suppose the seller’s utility function over
money and the object is the same as the buyer’s and suppose that seller’s and
buyer’s money holdings are such that they derive the same utility from their
endowments. Consider giving the good to the buyer with a small probability,
while compensating the seller with a money transfer in the state when the
seller keeps the good. Normality means that the money transfer needed
to compensate the seller for the small probability of giving up the good is
less than the money transfer the buyer is willing to make in return for the
same probability of obtaining the good. Hence, such a lottery contract is
Pareto improving. The change from quasilinear preferences to normal goods
creates not only additional efficiency gains to trade but also affects agents’
informational rents: agents compete over how they share the additional gains
from trade. Furthermore, unlike in the example of Section 2, in the above
theorems the efficient allocation may depend on the agents’ types.
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4.1 Proof of Theorem 1

Fix a distribution of endowed money holdings other than
�
m

S

(c

⇤
, v

⇤
),M �m

S

(c

⇤
, v

⇤
)

�
.

There are three cases depending on how much money the seller initially has.
In the first case, the seller’s endowed money holdings are strictly above

m

S

(c

⇤
, v

⇤
), then it remains so for utilities close to u

s

, u

b, and hence there is
� > 0 that guarantees that the no-trade mechanism is efficient and satisfies
all our other requirements.

In the second case, the seller’s endowment is such that the seller’s utility
is strictly below u

�
0,M �m

B

(c

⇤
, v

⇤
) , c

⇤�. Then there is a point on the
Pareto frontier of (c⇤, v⇤) that strictly dominates the agents’ utility at the
initial endowments (point F in Figure 3). At this point on the frontier the
seller has no good and has money holdings mS

+ t for some constant transfer
t, while the buyer has the good and money holdings m

B � t. In particular,
the pre-trade seller’s utility is strictly below u

�
0,m

S

+ t, c

⇤� and the pre-
trade buyer’s utility is strictly below u

�
1,m

B � t, v

⇤�. These bounds on
agents’ pre-trade utility remain true for type profiles close to (c

⇤
, v

⇤
). There

is then � > 0 that guarantees that the mechanism that allocates the good
and money m

B � t to the buyer, and money m

S

+ t (without good) to the
seller is Pareto efficient, individually rational, and does not require a subsidy.
Furthermore, this mechanism is incentive compatible as it does not rely on
agents reports.22

In the third case, the seller’s endowment is intermediate, that is the
seller’s money holdings are strictly below m

S

(c

⇤
, v

⇤
) but seller’s utility is

weakly above u

�
0,M �m

B

(c

⇤
, v

⇤
) , c

⇤�. This is the main case, and the
reminder of the proof is devoted to its analysis.

In this third case, there is a point F = F (c

⇤
, v

⇤
) on the flat part of

the frontier strictly between S(c

⇤
, v

⇤
) and B(c

⇤
, v

⇤
) (see Figure 4) that

is strictly preferred by the buyer and the seller to the initial situation,
(u

s

(1,m

s

; c

⇤
), u

b

(0,m

b

; v

⇤
)). The point F is determined by ⇡ (c⇤, v⇤) = ⇡

⇤ 2
22A similar fixed-terms-of-trade mechanism delivers efficient trade whenever there exists

a point on the Pareto frontier that is strictly preferred by both the buyer and seller to
status quo, and strictly more favorable to the buyer than having the good and money
m

B (c⇤, v⇤).
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 S(c*,v*) 

B(c*,v*) 

ub 

us 

us(1,mS( c*,v*),c*) 

F 

us(1,ms,c*) 

ub(1,mB( c*,v*),v*) ub(0,mb,v*) 

u(M) 

Figure 3: Individually Rational Part of the Pareto Frontier. The Case of
Trade at Fixed Price.

(0, 1) as follows: the utility pair F corresponds to the seller having the good
and wealth m

S

(c

⇤
, v

⇤
) with probability ⇡

⇤, and the buyer having the good
and wealth m

B

(c

⇤
, v

⇤
) with probability 1� ⇡

⇤. 
 
 
 
 

 
 

S(c*,v*) 

B(c*,v*) 

ub 

us 

us(1,mS(c*,v*),c*) 

F 

us(1,ms,c*) 

ub(1,mB(c*,v*),v*) ub(0,mb,v*) 

u(M) 

Figure 4: Individually Rational Part of the Pareto Frontier. The Case of
Trade at Varying Prices.

For small �, the critical money holdings mS

(c, v) and m

B

(c, v) are nearby
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m

S

(c

⇤
, v

⇤
) and m

B

(c

⇤
, v

⇤
), and there are ⇡ (c, v) nearby ⇡

⇤ such that the
corresponding F (c, v) is strictly preferred by the agents to the initial situ-
ation. If both m

S

(c, v) and m

B

(c, v) are locally constant around (c

⇤
, v

⇤
)

then a mechanism with fixed ⇡ (c, v) = ⇡

⇤ satisfies our postulates. Let us
thus assume that at least one m

S

(c, v) and m

B

(c, v) varies in c, v. By (3)
and its qualifying discussion, one of the two functions have non-zero partials
throughout the domain.

The crux of the reminder of the argument is to show that ⇡ (c, v) can be
defined in such a way that in a Bayesian Nash equilibrium of the budget-
balanced mechanism that assigns the seller the good and money holdings
m

S

(c, v) with probability ⇡ (c, v) and assigns the good and money m

B

(c, v)

to the buyer with probability 1�⇡ (c, v), both agents report their true types.
(Note that in this mechanism the buyer gets money M �m

S

(c, v) when the
seller gets the good, and the seller gets money M�m

B

(c, v) when the buyer
gets the good).

We thus need to find a function ⇡ such that for the seller

⇧

S

(c, ĉ) = E

v

�
⇡ (ĉ, v)u

�
1,m

S

(ĉ, v) , c

�
+ (1� ⇡ (ĉ, v))u

�
0,M �m

B

(ĉ, v) , c

��

is maximized at ĉ = c, and similarly for the buyer,

⇧

B

(v, v̂) = E

c

�
⇡ (c, v̂)u

�
0,M �m

S

(c, v̂) , v

�
+ (1� ⇡ (c, v̂))u

�
1,m

B

(c, v̂) , v

��

is maximized at v̂ = v. In order to guarantee this we will construct ⇡ such
that the first order condition is satisfied for truthful reporting, and the second
order condition is satisfied at all points satisfying the first order condition.
We will take ⇡ (c⇤, v⇤) to be ⇡⇤ 2 (0, 1) given above, thus guaranteeing that
⇡ (c, v) 2 (0, 1) for small � > 0, and that the individual rationality is satisfied
for small � > 0. As an aside, let us note that the individual rationality and
the requirement that ⇡ is a probability constraints our mechanism to be well-
behaved only locally around c

⇤
, v

⇤; the incentive compatibility conditions
could be made to be globally satisfied.
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4.1.1 The First Order Condition

Assuming truthful reporting by the other agent, the first order condition for
the seller is

0 = E

v

(
@

@ĉ

⇡ (ĉ, v)

�
u

�
1,m

S

(ĉ, v) , c

�

+⇡ (ĉ, v)


@

@m

u

�
1,m

S

(ĉ, v) , c

�� 
@

@ĉ

m

S

(ĉ, v)

�

�

@

@ĉ

⇡ (ĉ, v)

�
u

�
0,M �m

B

(ĉ, v) , c

�

� (1� ⇡ (ĉ, v))


@

@m

u

�
0,M �m

B

(ĉ, v) , c

�� 
@

@ĉ

m

B

(ĉ, v)

�)
, (5)

and the first order condition for the buyer is

0 = E

c

(
@

@v̂

⇡ (c, v̂)

�
u

�
0,M �m

S

(c, v̂) , v

�

�⇡ (c, v̂)

@

@m

u

�
0,M �m

S

(c, v̂) , v

�� 
@

@v̂

m

S

(c, v̂)

�

�

@

@v̂

⇡ (c, v̂)

�
u

�
1,m

B

(c, v̂) , v

�

+(1� ⇡ (c, v̂))


@

@m

u

�
1,m

B

(c, v̂) , v

�� 
@

@v̂

m

B

(c, v̂)

�)
(6)

We want ĉ = c to satisfy the seller’s first order condition and v̂ = v to
satisfy the buyer’s first order condition, and hence the two conditions give
us a system of PDE equations on ⇡ (c, v).23 These equations take the form

E

v


S1 (c, v)

@

@c

⇡ (c, v) + S2 (c, v)⇡ (c, v)

�
= � (c) ,

E

c


B1 (c, v)

@

@c

⇡ (c, v) +B2 (c, v)⇡ (c, v)

�
=  (v) ,

23To ensure that the coefficient in front of @
@c⇡ (c, v) is positive, we multiply the second

equation by (�1) before calculating B1, B2, and  below.
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where the coefficients in front of @

@c

⇡ and @

@v

⇡ are

S1 (c, v) = u

�
1,m

S

(c, v) , c

�
� u

�
0,M �m

B

(c, v) , c

�
> 0,

B1 (c, v) = u

�
1,m

B

(c, v) , v

�
� u

�
0,M �m

S

(c, v) , v

�
> 0,

the coefficients in front of ⇡ are

S2 (c, v) =


@

@w

u

�
1,m

S

(c, v) , c

�� 
@

@c

m

S

(c, v)

�
+


@

@w

u

�
0,M �m

B

(c, v) , c

�� 
@

@c

m

B

(c, v)

�
,

B2 (c, v) =


@

@w

u

�
1,m

B

(c, v) , v

�� 
@

@v

m

B

(c, v)

�
+


@

@w

u

�
0,M �m

S

(c, v) , v

�� 
@

@v

m

S

(c, v)

�
,

and the functions �, are given by

� (c) = E

v

⇢
@

@w

u

�
0,M �m

B

(c, v) , c

�� 
@

@c

m

B

(c, v)

��
,

 (v) = �E

c

⇢
@

@w

u

�
1,m

B

(c, v) , v

�� 
@

@v

m

B

(c, v)

��
.

By assumption u and its derivatives are continuously differentiable. The
continuous differentiability of mS and m

B follows from strict concavity of u
and the implicit function theorem (the implicit equations defining m

S and
m

B are in the appendix).
The above averaged-out system of PDEs has a solution for any initial

condition ⇡ (c

⇤
, v

⇤
) = ⇡

⇤ by the following crucial lemma (proven in the ap-
pendix).

Lemma 4. Let I be a bounded interval of positive length and let F be
a joint distribution of (c, v) over domain I

2 ✓ R2. Let S1 (·, ·) , S2 (·, ·)
and B1 (·, ·) , B2 (·, ·) be functions defined on I

2, and �, be functions on
I. Suppose that all these functions are continuously differentiable and that
S1, B1 6= 0 for all arguments (c, v). Then, the system of PDE equations

E

v


S1 (c, v)

@

@c

⇡ (c, v) + S2 (c, v)⇡ (c, v)

�
= � (c) , (7)
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E

c


B1 (c, v)

@

@v

⇡ (c, v) +B2 (c, v)⇡ (c, v)

�
=  (v) , (8)

has a solution ⇡ for any boundary condition ⇡ (c

⇤
, v

⇤
) = ⇡

⇤. Furthermore,
as S2

S1
, B2

B1
, �

S1
, and  

B1
tend to zero, the derivatives of the solution ⇡ tend to

zero as well.

Finally, notice that because ⇡⇤ 2 (0, 1), and because by taking � to be
sufficiently small we can guarantee that ⇡ is near flat, we can find a domain of
types such that ⇡ takes values in [0, 1] and satisfies the individual rationality
conditions on the entire domain.

The above lemma is of independent interest. It tells us that for any
marginal distributions of the linear PDE formulas from the lemma, we can
find a function that implements these marginal distributions.24

4.1.2 The Second Order Condition

The last thing to check is that the agents objectives satisfy the second-order
condition at every point at which the first-order condition is satisfied so that
truthful reporting is not only a solution of the first-order condition but also
the optimal report. Let us thus check the second-order conditions for the
seller; the buyer’s problem is analogous.

Since at points at which the first-order condition is satisfied we have

0 =

d

dc

✓
@

@ĉ

⇧

S

(c, c)

◆
=

@

@c

✓
@

@ĉ

⇧

S

(c, c)

◆
+

@

@ĉ

✓
@

@ĉ

⇧

S

(c, c)

◆
,

the second-order condition for the seller would be implied if we shown that

@

@c

@

@ĉ

⇧

S

(c, c) > 0.

24We have not been able to find this lemma in the literature on partial differential
equations. The sufficient conditions for existence of solutions of non-averaged linear PDEs
of Thomas (1934) and Mardare (2007) can easily tell us that the lemma is true if @

@v
S2
S1

=
@
@c

B1
B2

, which is satisfied for instance when the coefficients Bi, Si are all constant, but they
are not satisfied in the general case we consider here (which is not surprising as it is much
easier to satisfy the PDE equations on average than it is to satisfy them pointwise).
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A straightforward calculation shows that @

@c

@

@ĉ

⇧

S

(c, c) equals

E

v

(
@

@c

⇡ (c, v)

� ⇥
u

c

�
1,m

S

(c, v) , c

�
� u

c

�
0,M �m

B

(c, v) , c

�⇤

+ ⇡ (c, v)

✓
@

@m

u

c

�
1,m

S

(c, v) , c

�� 
@

@c

m

S

(c, v)

�
+


@

@m

u

c

�
0,M �m

B

(c, v) , c

�� 
@

@c

m

B

(c, v)

�◆

�

@

@m

u

c

�
0,M �m

B

(c, v) , c

�� 
@

@c

m

B

(c, v)

�)

We can substitute in for @

@c

⇡ (c, v) from the first-order condition obtaining
that @

@c

@

@ĉ

⇧

S

(c, c) equals (1� ⇡ (c, v))

@

@c

m

B

(c, v) times


@

@m

u

�
0,M �m

B

(c, v) , c

�� ⇥
u

c

�
1,m

S

(c, v) , c

�
� u

c

�
0,M �m

B

(c, v) , c

�⇤

�

@

@m

u

c

�
0,M �m

B

(c, v) , c

�� ⇥
u

�
1,m

S

(c, v) , c

�
� u

�
0,M �m

B

(c, v) , c

�⇤

minus ⇡ (c, v) @

@c

m

S

(c, v) times


@

@m

u

�
1,m

S

(c, v) , c

�� ⇥
u

c

�
1,m

S

(c, v) , c

�
� u

c

�
0,M �m

B

(c, v) , c

�⇤

�

@

@m

u

c

�
1,m

S

(c, v) , c

�� ⇥
u

�
1,m

S

(c, v) , c

�
� u

�
0,M �m

B

(c, v) , c

�⇤

By assumption we are considering the case when one of the partials
@

@c

m

B

(c, v) ,

@

@c

m

S

(c, v) is non-zero throughout the domain. Thus, (3) im-
plies that the second order condition is satisfied provided both above dis-
played expressions are strictly positive. Since mS � M�m

B, the expressions
are positive if

@

@m

u (0,m, c)

� ⇥
u

c

�
1,m

0
, c

�
� u

c

(0,m, c)

⇤
�

@

@m

u

c

(0,m, c)

� ⇥
u

�
1,m

0
, c

�
� u (0,m, c)

⇤
> 0

and

@

@m

u

�
1,m

0
, c

�� ⇥
u

c

�
1,m

0
, c

�
� u

c

(0,m, c)

⇤
�

@

@m

u

c

�
1,m

0
, c

�� ⇥
u

�
1,m

0
, c

�
� u (0,m, c)

⇤
> 0
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for all m0 � m. We can re-express the two inequalities as

u

c

(1,m

0
, c)� u

c

(0,m, c)

u (1,m

0
, c)� u (0,m, c)

>

@

@m

u

c

(0,m, c)

@

@m

u (0,m, c)

and
u

c

(1,m

0
, c)� u

c

(0,m, c)

u (1,m

0
, c)� u (0,m, c)

>

@

@m

u

c

(1,m

0
, c)

@

@m

u (1,m

0
, c)

for all m0 � m. These two inequalities are implied by our assumptions. Let
us show it for the first of the two inequalities; the proof of the second one
follows the same steps. Let us rewrite the left-hand side as

u

c

(1,m

0
, c)� u

c

(0,m, c)

u (1,m

0
, c)� u (0,m, c)

=

[u

c

(1,m

0
, c)� u

c

(1,m, c)] + [u

c

(1,m, c)� u

c

(0,m, c)]

[u (1,m

0
, c)� u (1,m, c)] + [u (1,m, c)� u (0,m, c)]

=

[u

c

(1,m, c)� u

c

(0,m, c)] +

´
m

0

m

u

cm

(0, m̃, c)

[u (1,m, c)� u (0,m, c)] +

´
m

0

m

u

m

(0, m̃, c)

Now, the first inequality of (1) gives

u

c

(1,m, c)� u

c

(0,m, c)

u (1,m, c)� u (0,m, c)

>

@

@m

u

c

(0,m, c)

@

@m

u (0,m, c)

,

and the constancy of ucm(0,m̃,c)
um(0,m̃,c) in m̃ gives

@

@m

u

c

(0, m̃, c)

@

@m

u (0, m̃, c)

=

@

@m

u

c

(0,m, c)

@

@m

u (0,m, c)

.

Thus, the left-hand side is a ratio of sums such that the ratio of each sum-
mand in the nominator to the corresponding summand in denominator is
weakly higher, and in one non-zero measure case strictly higher than the
left-hand side above. This ends the proof of Theorem 1.

In the following example, we illustrate the dependence of optimal con-
tracts on agents’ types, and the resulting need to elicit the types.
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4.2 Separable Utilities

We now look at the case when agents have private information about their
valuation for the good but their marginal utility of money is commonly
known. In this case, the agents’ utility takes the following separable form
u (x,m; ✓) = ✓x+V (m), where V is strictly increasing and strictly concave.25

In the separable case, the equations given in (2) that define the money levels
m

S

(c, v) and m

B

(c, v) associated with the points S and B in Figures 2-4,
respectively, reduce to

@

@m

V (m

S

)

@

@m

V (M �m

S

)

=

@

@m

V (M �m

B

)

@

@m

V (m

B

)

(9)

and

c+V (m

S

) = V (M�m

B

)+

@

@m

V (m

S

)

@

@m

V (M �m

S

)

⇤[v+V (m

B

)�V (M�m

S

)]. (10)

Equation (9) implies
m

S

= M �m

B

. (11)

To see this, suppose m

S

> M � m

B. Then, mB

> M � m

S and since V

is strictly increasing in m, the LHS of (9) would be strictly greater than
the RHS, contradicting (11). The reverse contradiction occurs if we assume
m

S

< M � m

B. In other words, in the optimal contract for the separable
case, each player has equal money in each state.

Substituting (11) into (10) yields

c =

@

@m

V (m

S

)

@

@m

V (M �m

S

)

v. (12)

Given any pair (c, v), equation (12) uniquely defines m

S

(c, v) and m

B

(c, v)

is then given by (11).
The relation m

S

(c, v) = M �m

B

(c, v) implies that @

@ĉ

u(1,m

S

(ĉ, v); c) =

25For simplicity we focus on the case wherein V is common to both agents; this restric-
tion is not crucial.
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@

@ĉ

u(0,M�m

B

(ĉ, v); c) =

@

@ĉ

V (m

S

(ĉ, v)) and that @

@v̂

u(0,M�m

S

(c, v̂); v) =

@

@v̂

u(1,m

B

(c, v̂); v) =

@

@v̂

V (m

B

(c, v̂)). Thus, the first-order equations (5) and
(6) that define ⇡(c, v) the incentive compatible contract become

0 = E

v

{@⇡(c, v)
@c

c+

@V (m

S

(c, v))

@c

}. (13)

and
0 = E

c

{�@⇡(c, v)
@v

v +

@V (m

B

(c, v))

@v

}, (14)

respectively.

4.2.1 Log example

If V (m) = log(m), then m

B

(c, v) =

Mc

c+v

and m

S

(c, v) =

Mv

c+v

. Moreover,
@

@c

V (m

S

(c, v)) = � 1
(c+v) and @

@v

V (m

B

(c, v)) = � 1
(c+v) . Substituting these

expressions into (13) and (14) yields

0 = E

v


@⇡(c, v)

@c

c� 1

c+ v

�
(15)

0 = E

c


�@⇡(c, v)

@v

v � 1

c+ v

�
(16)

We now use the proof of Lemma 1 to compuite the solution. Suppose
that c, v are distributed independently and uniformly on [2, 100]. Define

 (v) = �E

c


� 1

c+ v

�
=

ˆ 100

2

1

c+ v

1

98

dc =

log (100 + v)� log (2 + v)

98

and

� (c) = E

v


� 1

c+ v

�
= �

ˆ 100

2

1

c+ v

1

98

dv =

� log (100 + c) + log (2 + c)

98

.

Following the construction in the proof of Lemma 1, we can set

�

s

(c, v) = 1, �

b

(c, v) = 1.
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The function b (·) is now given by the ODE

 (v) = E

c

h
B1 (c, v)�

b

(c, v)

i
b

0
(v) + E

c


B1 (c, v)

@

@v

�

b

(c, v) +B2 (c, v)�
b

(c, v)

�
b (v)

= E

c

[v] b

0
(v) = vb

0
(v) ,

and thus

b

0
(v) =

log (100 + v)� log (2 + v)

98v

.

Similarly, � (c) = cs

0
(c), and thus

s

0
(c) =

� log (100 + c) + log (2 + c)

98c

.

We use the initial condition ⇡

⇤
= .5. Then, the seller retains the item

with probability .5 when the reports are 51, 51. Variations in the seller’s
report adjusts the probability by the amount

ˆ 51

c

s

0
(x)dx =

1

98

ˆ 51

c

� log(100 + x) + log(2 + x)

x

dx

and variations in the buyer’s report adjusts the probability by the amount

ˆ 51

v

b

0
(x)dx =

1

98

ˆ 51

v

log(100 + x)� log(2 + x)

x

dx.

So the probability that the seller gets the item if the seller reports c and the
buyer reports v is

⇡(c, v) =

1

2

+

1

98

ˆ 51

c

� log(100 + x) + log(2 + x)

x

dx+

1

98

ˆ 51

v

log(100 + x)� log(2 + x)

x

dx.

The propsed mechanism is, by construction, incentive compatible. Hence we
can assume truthful reporting.

We need to verify that for any true types in the range, [2, 100] the mech-
anism is individually rational. For this purpose it is helpful to start of at a
good place. Specifically, we choose initial money holdings so that the endow-
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ment point lies at the intersection of the two Pareto frontiers that correspond
to the case where the seller has the item and the case where the buyer has
the item. Set M = 1 and choose endowed money holdings m

b

and m

s

so
that utilities are equal if each agent has the mean type. Specifically, set
c = v =

100+2
2 = 51 and choose m

b

so that

51 + log(1�m

b

) = log(m

b

).

Then, m

b

=

e

51

1+e

51 and m

s

=

1
1+e

51 . This places us solidly in the interior
solution case (the third case in the proof of Theorem 1).

We need to show that for buyer and seller pairs with endowed wealths
m

b

=

e

51

1+e

51 and m

s

=

1
1+e

51 , and any type profile in [2, 100]

2, that both the
buyer and the seller are better off under the mechanism than under no trade.

The expected utility of the type c seller under the mechanism is

1

98

ˆ 100

2
⇡(c, v)c+ log(

v

c+ v

)dv.

Why? Since the money allocation of the seller is the same in both states,
expected utility is given by the utility of that money allocation plus the
expected utility of consuming the item. Both of these components depend
upon the type reported by the buyer. Assuming truthful reporting, the seller
can compute her expected payoff under the assumption that the buyer’s
report will be uniformly distributed over the buyer-type range.

Likewise, the expected utility of the type v buyer under the mechanism
is

1

98

ˆ 100

2
(1� ⇡(c, v))v + log(

c

c+ v

)dc.

The no-trade payoffs for the seller and buyer are c+log(

1
1+e

51 ) and log(

e

51

1+e

51 ),
respectively. Hence, for any type c 2 [2, 100], the expected net utility gain
for the seller under the mechanism is

1

98

ˆ 100

2
⇡(c, v)c+ log(

v

c+ v

)dv � c� log(

1

1 + e

51
)
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and for any type v 2 [2, 100] the expected net utility gain for the buyer under
the mechanism is

1

98

ˆ 100

2
(1� ⇡(c, v))v + log(

c

c+ v

)dc� log(

e

51

1 + e

51
).

The plots in Figure 5 show that both functions are always strictly positive.
In particular, the expected net benefit to the seller at c = 100 and the buyer
at v = 2 is 0.7938407 > 0.

Figure 5: Net utility gain from participating in the mechanism. Left chart
shows the gain to the seller for seller types ranging from 2 to 100. Right
chart shows the gain to the buyer for buyer types ranging from 2 to 100.

Clearly, the mechanism is most beneficial to low seller types and high
buyer types. This makes sense since the gains to trade are greatest when the
seller value is the lowest and the buyer value is the highest.

5 Conclusion

We focused on providing incentives for agents to truthfully reveal their
cost/value information. It is natural to think that preferences are not ob-
servable and need to be elicited, while information such as the size of money
holdings can be objectively verified. At the same time, in some environ-
ments, for instance in the example of Section 2, we can not only incentivize
agents to reveal their value/cost of the good, we can also provide incentives
for them to truthfully announce their money holdings, provided the cost of
delivering more money than one has (in the event one is asked to do it) is
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appropriately high. This is so because—as long as the agent is able to de-
liver the money—each agent benefits from reporting higher money holdings
rather than lower.

While we focused on Bayesian implementation, in the example of Section
2 the mechanism achieving efficient trade was strategy-proof. This is not true
in general.26 Our analysis of the first order condition of agents’ optimization
implies the following:

Proposition 5. When the randomization interval is interior, m

S

,m

B 2
(0,M), and money endowments are such that efficiency requires random-
ization, then for generic utility function u no mechanism can implement
efficient trade in an ex-post equilibrium.

Finally, our results on efficient trade open the possibility that other prob-
lems might have efficient solutions in non-quasilinear settings. For instance,
our results imply the possibility of efficient mechanism for two agents to
make a binary decision, e.g. whether to provide a public good, when each of
the agents favors a different decision and each has higher marginal utility of
money if his preferred decision is taken.

Appendix

Pareto Frontier in the Example of Section 2

Fix c and v and take any allocation (⇡, y, z) where ⇡ is the probability the
seller gets the good, y is the money holding of the seller if she gets the good,
and z is the money holding of the seller if he does not get the good. Denoting
the total financial wealth by M , the seller’s utility is then

u

S

= ⇡ (1 + c) y + (1� ⇡) z,

26In a related setting in which a seller wants to allocate a normal good to one of a finite
number of buyers, and in which, unlike in our setting, the seller has no private information
about the good, Baisa (2013) constructs an elegant example of a profile of utility functions
such that no strategy-proof mechanism allocates the good in an efficient way.
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and the buyer’s utility is

u

B

= ⇡ (M � y) + (1� ⇡) (1 + v) (M � z) .

If ⇡ = 0 or ⇡ = 1, then we are at a deterministic allocation on one of the
dotted lines in Figure 1. Consider ⇡ 2 (0, 1). Then, we can weakly increase
the utility of both agents by transferring money to the buyer from the seller
in the state where the buyer has the good, and transferring the money to
the seller from the buyer in the state where the seller has the good. Let us
do it so that for every dollar taken from the seller in the state she does not
have the good, we allocate her 1�⇡

⇡

dollars in the state where she has the
good, and let us continue transferring the money till either z = 0 or y = M .
Consider the case where we reach the point where z = 0 before y = M . That
is, we stop at a point where

M � y +

1� ⇡

⇡

z (17)

(the case where we reach y = M before z = 0 is symmetric). The utilities
after the money transfer are

u

S1
= ⇡ (1 + c)

✓
y +

1� ⇡

⇡

z

◆
,

and

u

B1
= ⇡

✓
M � y � 1� ⇡

⇡

z

◆
+ (1� ⇡) (1 + v)M.

= (M � ⇡y � (1� ⇡) z) + (1� ⇡) vM.

Notice that u

S1 � u

S , and thus this transfer provides a Pareto improve-
ment for the seller. Let us now further reallocate the money to the seller
in the state she has the good till she has all the money in this state while
compensating the buyer through lowering ⇡ while keeping the seller’s util-
ity constant. Then, the new probability the seller has the good is ⇡̃ =

28



⇡

y+ 1�⇡
⇡ z

M

=

⇡y+(1�⇡)z
M

, and the buyer utility becomes

u

B2
=

�
1� ⇡

0�
(1 + v)M =

✓
1� ⇡y + (1� ⇡) z

M

◆
(1 + v)M

= (1 + v) (M � ⇡y � (1� ⇡) z) ,

which is better than u

B because we are in the case where (17) is satisfied.
Thus, both the seller and the buyer prefer a lottery from the postulated
Pareto frontier to the initial allocation. To finish the argument notice that
no two lotteries from the postulated frontier can be Pareto ranked.

Derivation of (3)

Here we derive the inequalities that play a crucial role in our analysis of the
second-order condition. We know from (2) that

@

@m

u

�
1,m

S

, c

�

u (1,m

S

, c)� u (0,M �m

B

, c)

=

@

@w

u

�
0,M �m

S

, v

�

u (1,m

B

, v)� u (0,M �m

S

, v)

.

Let us show that for m

0  m (notice that M � m

B  m

S), the expression
@

@m u(1,m,c)
u(1,m,c)�u(0,m0

,c) strictly decreases in c. To prove this it is enough to show
that

u

c

(1,m, c)� u

c

(0,m

0
, c)

u (1,m, c)� u (0,m

0
, c)

>

u

cm

(1,m, c)

u

m

(1,m, c)

for m

0  m. As in the analysis of SOC, let us rewrite the left-hand side as

u

c

(1,m, c)� u

c

(0,m

0
, c)

u (1,m, c)� u (0,m

0
, c)

=

[u

c

(0,m, c)� u

c

(0,m

0
, c)] + [u

c

(1,m, c)� u

c

(0,m, c)]

[u (0,m, c)� u (0,m

0
, c)] + [u (1,m, c)� u (0,m, c)]

=

[u

c

(1,m, c)� u

c

(0,m, c)] +

´
m

m

0 ucm (0, m̃, c)

[u (1,m, c)� u (0,m, c)] +

´
m

m

0 um (0, m̃, c)

.

Now, (1) gives

u

c

(1,m, c)� u

c

(0,m, c)

u (1,m, c)� u (0,m, c)

>

@

@m

u

c

(0,m, c)

@

@m

u (0,m, c)

,
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and the constancy of ucm(0,m̃,c)
um(0,m̃,c) in m̃ gives

@

@m

u

c

(0, m̃, c)

@

@m

u (0, m̃, c)

=

@

@m

u

c

(0,m, c)

@

@m

u (0,m, c)

.

Together this demonstrates that
@

@m u(1,m,c)
u(1,m,c)�u(0,m0

,c) strictly decreases in c.
Going back to our initial equality, as we increase c while keeping money

levels constant the left-hand side decreases, while the right hand side stays
constant. Looking at the graph shows that to balance this out, the critical
point shifts towards higher utility of the buyer. And, thus the seller’s money
level mS decreases in this critical point. The analysis of other critical money
levels is similar.

Proof of Lemma 1

We will develop a constructive procedure to find proper randomization. As
a preparation, consider the PDE

S1 (c, v)
@

@c

⇡ (c, v) + S2 (c, v)⇡ (c, v) = 0, (18)

B1 (c, v)
@

@v

⇡ (c, v) +B2 (c, v)⇡ (c, v) = 0, (19)

Considered separately, these equations are standard ODEs. They have so-
lutions, and on a bounded domain we can assume that the solutions are
positive. We can thus fix a solution �

b

> 0 to the first equation and a
solution �

s

> 0 to the second. Consider functions b (·) and s (·), and set

⇡ (c, v) = b (v)�

b

(c, v) + s (c)�

s

(c, v) .

Consider the second PDE equation from the lemma, and notice that the first
summand above is zero for each v, and thus it is zero in expectation. Thus,
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the second equation reduces to

 (v) = E

c


B1 (c, v)

@

@v

h
b (v)�

b

(c, v)

i
+B2 (c, v) b (v)�

b

(c, v)

�
=

E

c

h
B1 (c, v)�

b

(c, v)

i
b

0
(v) + E

c


B1 (c, v)

@

@v

�

b

(c, v) +B2 (c, v)�
b

(c, v)

�
b (v)

Since, B1�
b

> 0 this equation has solutions. Let b be one such solution
satisfying the initial condition b (v

⇤
)�

b

(c

⇤
, v

⇤
) =

1
2⇡

⇤. Similarly, we can find
function s for which the first PDE equation from the lemma is satisfied, and
such that s (c⇤)�s

(c

⇤
, v

⇤
) =

1
2⇡

⇤. Thus, for these two functions b and s, the
function ⇡ defined above satisfies the system of PDE from the lemma, as well
as the initial condition. The flatness claim of the lemma now follows because
�

s and �

b are nearly flat (since the coefficient in front of the derivative is
separated from zero, and the other parts of the equation are close to zero),
and because b and s are nearly flat (for the same reason). QED
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