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Abstract

Blackwell (1951, 1953) proposes an informativeness ranking of experiments: Ex-

periment I is more Blackwell-informative than Experiment II if and only if the value

of experiment I is higher than that of experiment II for all expected-utility maxi-

mizers. Under commitment and reduction, our main theorem shows that Blackwell

equivalence holds for all convex and strongly monotone preferences, i.e., the uncer-

tainty averse preferences (Cerreia-Vioglio et al. 2011b), which nest most ambiguity

averse preferences commonly used in applications as special cases. Furthermore, we

discuss the possibility of extending the equivalence results to the no commitment

case for the maxmin expected utility and variational preferences under certain con-

ditions.
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1 Introduction

Consider a firm with a new product for release. There are two possible states: in one state

10% of the population like the product; in the other state 20% of the population like it.

The firm manager does not know the true state, but he can always sample the population.

Clearly the manager weakly prefers a larger sample to a smaller sample regardless of his

utility function and his prior belief about the two states, as he can always replicate the

outcome with a smaller sample by ignoring the extra samples.

A more general notion of sampling is called experiment, or information structure, which

specifies the likelihoods of signal realizations conditional on each state. In his seminal

papers, Blackwell (1951, 1953) defines a partial ranking of experiments, where Experiment

I is more Blackwell-informative than Experiment II if the latter is a garble of the former.

In other words, the less informative experiment can be considered as the more informative

experiment with a noise. Blackwell’s theorem establishes that the value of Experiment I is

weakly higher than that of Experiment II for all expected-utility maximizers and all sets

of actions if and only if Experiment I is more “Blackwell-informative” than Experiment

II.

What if the firm manager does not have enough information to form a probabilistic

belief over the two states? Recent experimental evidence suggests that when people do

not know the probability of an event, they dislike betting on it.[1] The tendency, called

ambiguity aversion, has attracted significant interest in theory and applications.[2] Thus it

is of interest to study the comparison of experiment/ information acquisition for decision

makers (dms) who are ambiguity averse.

Çelen (2012) showed that Blackwell’s theorem extends to maxmin expected utility (MEU)

preferences (Gilboa and Schmeidler 1989).[3] In this paper, we look for broader families

of ambiguity preferences whose induced value of information characterizes the Blackwell

ranking. As in Çelen (2012), we consider dms who can commit to any (ex-ante) strat-

egy and only perceive ambiguity in the states, while treating the information structures

as objectively given. We show that, with relatively mild technical assumptions, most

families of ambiguity preferences commonly used in applications, such as variational pref-

erences (Maccheroni et al. 2006a), smooth ambiguity preferences (Klibanoff et al. 2005),

[1]For a review of earlier experimental evidence, see Camerer and Weber (1992). For more recent
experiments, see for instance Fox and Tversky (1995), Chow and Sarin (2001), Halevy (2007), Bossaerts
et al. (2010), Abdellaoui et al. (2011).

[2]See references below for axiomatic models of ambiguity averse preferences. For the economic and
financial applications of ambiguity, see Mukerji and Tallon (2004) and Epstein and Schneider (2010) and
references therein.

[3]Recently, Heyen and Wiesenfarth (2014) propose a recursive calculation of the value of information;
Gensbittel et al. (2015) consider ambiguous information structure and the no commitment case. Both
papers focus on the MEU case.

2



multiplier preferences (Hansen and Sargent 2001; Strzalecki 2011), confidence preferences

(Chateauneuf and Faro 2009) and second-order expected utility (Grant et al. 2009) can

also induce a partial ranking of information that is equivalent to the Blackwell ranking.

The largest such characterizing family we identify is the uncertainty averse preferences

(Cerreia-Vioglio et al. 2011b). Our main proof suggests a link between Blackwell’s equiva-

lence and convex preferences. This also confirms the impression that the Blackwell ranking

is coarse.[4]

Our paper is related to the literature on the value of information for non-EU dms. For

choice under risk, Wakker (1988), Hilton (1990), and Safra and Sulganik (1995) show

how Blackwell’s theorem might fail for non-EU dms. Grant et al. (1998) study objective

two-stage compound lotteries and focus on the intrinsic value of information under a fixed

action.[5] For ambiguity, Siniscalchi (2011) shows how a sophisticated ambiguity averse

dm might reject freely available information.[6] These earlier papers seemingly draw very

different conclusions from Çelen (2012) and our paper. The key reason is that Çelen

(2012) and our paper assume that a dm can commit to any signal contingent strategy and

focus on the ex-ante pure decision value of information, while the earlier papers assume

decisions are only made after observing the signals and consider a trade-off between the

decision value and commitment value of information. Compared with the earlier findings,

Celen and our paper identify a benchmark way of considering the value of information

for non-EU dms, and show that under this benchmark Blackwell’s equivalence extends

to all uncertainty averse preferences. Hence our results are complementary to the earlier

findings.

A separate literature is motivated by the concern that the Blackwell ranking is too coarse

for many applications. Some later papers study finer information rankings but impose

certain structural restrictions on the Von Neumann-Morgenstern (vNM) utility indices or

restrictions on the decision problems. For example, Lehmann (1988) and Persico (2000)

consider utility indices satisfying the single crossing property, Athey and Levin (2001)

study supermodular utility indices, and Quah and Strulovici (2009) explore interval dom-

inance order utilities. Cabrales et al. (2013) explore non-arbitrary investment decisions

and focus on ruin-averse utilities. In contrast to these papers, we do not put any restric-

tion on the vNM utility indices, but consider the validity of the Blackwell equivalence

result under non-EU preferences.

The remainder of the paper is organized as follows. We describe notation in Section 2.

Section 3 introduces uncertainty averse preferences and the main assumptions. Section 4

[4]See Blackwell and Girshick (1954) and Lehmann (1988) for discussions along this line.
[5]They find that (Proposition 1, ii) intrinsic information loving implies utility function of one-stage

lotteries is quasi-convex.
[6]Strzalecki (2013) and Li (2013) show if one allows for preferences for temporal resolution of uncertain-

ties, then in some region an ambiguity aversion dm with recursive preferences might prefer late resolution
of uncertainties. In this paper we assume reduction and rule out such concerns.
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presents the main theorem for uncertainty averse preferences. Section 5 applies the main

theorem to six well known families of ambiguity preferences. Some discussions are drawn

in Section 6. The appendix includes direct proofs of smooth ambiguity preferences and

second order expected utility.

2 Notation

Our notation follow that of Çelen (2012). Let ∆(Ω) be the set of all priors on Ω. The set

int(∆(Ω)) contains priors with full support. For any matrix ma×b of dimension a× b, mij

and m′ denote the (i, j)th entry and the transpose of m, respectively. The inner product

of two matrices of the same dimension is defined as 〈m,n〉 :=
∑

i

∑
jmijnij = tr(m′n).

For any vector π ∈ Rn,Dπ denotes the diagonal matrix such that Dπ
ii = πi. Finally I

denotes the identity matrix.

Let Ω := {ω1, · · · , ωn} be a finite set of states, and A := {a1, · · · , a|A|} be a finite set of

actions available to a dm.[7] A dm is characterized by a utility function or a vNM utility

index u : Ω × A 7→ R and a prior π ∈ ∆(Ω). We can construct a matrix un×|A| with

entries uωa = u(ω, a), for all ω ∈ Ω, a ∈ A.

Experiments, or sometimes called information structures, are tuples (S,p) and (T ,q),

where S := {s1, · · · , s|S|} and T := {t1, · · · , t|T |} are sets of signals, and pn×|S| and qn×|T |
are markov matrices.[8] In particular, pωs := Pr(s|ω) for s ∈ S and qωt := Pr(t|ω) for

t ∈ T .

For a dm who observes a signal s from the experiment (S,p), a strategy is a vector-

valued mapping f : S 7→ ∆(A). For each strategy f we define the matrix f|S|×|A|, such that

(fj1, · · · , fj|A|) := f(sj).
[9] Similarly we can define a strategy g : T 7→ ∆(A). If a strategy

maps every signal to the same (mixed) action a in ∆(A), it is identified with a.

Blackwell (1951) defines the following ranking of two experiments.

Definition 1. An experiment (S,p) is more Blackwell-informative than experiment (T ,q)

if there exists a markov matrix r such that q = pr.

The matrix r is also called the garbling matrix.

We incorporate ambiguity by considering an environment in which there is ambiguity

about states in Ω, while the signal-generating process, described by the likelihood matrix

[7]We assume the number of available actions is larger than the number of signals.
[8]A matrix m is markov if it is nonnegative and row stochastic, i.e., mij ≥ 0 and

∑
j mij = 1 for all i.

[9]Strategy f is a markov matrix.
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p, is treated as objectively given. By focusing on unambiguous signal likelihoods, we

can relate the generalized value of signals under ambiguity to a clear ranking of their

informational content. Examples below illustrate situations in which this assumption is

natural.

Example 1 (Partition). In many economic and financial applications, information is rep-

resented by partitions of the state space. A finer partition is more Blackwell-informative.

Specifically, if Ω = {ω1, ω2, ω3, ω4}, then the partition {{ω1}, {ω2}, {ω3, ω4}} is more in-

formative than the partition {{ω1, ω2}, {ω3, ω4}}. The likelihood and garbling matrices

are 
1 0

1 0

0 1

0 1


︸ ︷︷ ︸

q

=


1 0 0

0 1 0

0 0 1

0 0 1


︸ ︷︷ ︸

p

1 0

1 0

0 1


︸ ︷︷ ︸

r

.

A dm may perceive ambiguity about the states. But conditional on the true state, a

partitional signal structure unambiguously describes whether it belongs to each event in

the partition.

Example 2 (Sampling). Consider the sampling example in the introduction. Clearly the

larger the sample size n, the more informative the signal structure. For example, for n = 1

and n = 2, the likelihood and garbling matrices are

[
0.1 0.9

0.2 0.8

]
︸ ︷︷ ︸

q

=

[
0.01 0.18 0.81

0.04 0.32 0.64

]
︸ ︷︷ ︸

p

 1 0

0.5 0.5

0 1


︸ ︷︷ ︸

r

In this case, the firm might perceive ambiguity about the preference distributions in the

population. But conditional on a given proportion of the population who like the product,

the sample information unambiguously follows a binomial distribution.[10]

Example 3 (Noisy communication Channel). A sender wants to transmit a piece of news

to a receiver, which can be either good or bad. The news is sent via a noisy communication

channel: with probability 1 − k, the news is transmitted successfully; with probability k,

the news is lost and the receiver gets an error message. A communication channel with

a smaller error probability is more Blackwell-informative. For example, a message sent

via email with an error probability of 1/100 is more informative than a message sent via

[10]For insiders of the ambiguity literature, this is reminiscent of repeated sampling from an urn with
unknown compositions of black and red balls. If a state is a given composition of the urn, then it is
natural to consider a dm who faces prior uncertainty about the composition of the urn, while conditional
on a given composition, the likelihood of a sample history is unambiguous. See Epstein and Schneider
(2007) for further discussion.
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telegraph with an error probability of 1/10. The likelihood and garbling matrices are

[
9
10

0 1
10

0 9
10

1
10

]
︸ ︷︷ ︸

q

=

[
99
100

0 1
100

0 99
100

1
100

]
︸ ︷︷ ︸

p

10
11

0 1
11

0 10
11

1
11

0 0 1


︸ ︷︷ ︸

r

.

In this case, the content of the news might be ambiguous to the receiver, yet the error

probability, which depends on the physical properties of the Internet/wire, can be viewed

as objective.

3 Uncertainty Averse Preferences

To model ambiguity aversion, we take Cerreia-Vioglio et al.’s (2011b) uncertainty averse

preferences, which are the most general to our knowledge and nest other ambiguity averse

preferences as special cases. If a dm has uncertainty averse preferences and takes action

a, then in our notation her utility is

U(a) = min
π∈∆(Ω)

G

(∑
w∈Ω

π(w)
∑
a∈A

aau(w, a), π

)

Here the function G : X ×∆(Ω) 7→ (−∞,+∞] is the index of uncertainty aversion, which

depends on the expected utility of action a and prior π. The set X is an interval of the real

line R. Moreover, G is quasi-convex, G(·, π) is increasing for all π, and infπ∈∆(Ω)G(x, π) =

x for all x ∈ X .

We make two behavioral assumptions.

First, the dm can commit to all signal-contingent strategies. It is well-known that non-

EU preferences can potentially be dynamically inconsistent: the ex-ante and conditional

preferences might differ.[11] Under full commitment, dynamic inconsistency is not an issue:

the dm will always implement her ex-ante optimal strategies. This allows us to focus on

the pure decision value of information and to remain comparable with Blackwell (1951),

which also studies the ex-ante value of information. See Section 6.3 for detailed discussion

on how the analysis would change if the commitment assumption are dropped.

Second, for a given experiment (S,p), the dm faces uncertainties from two sources, Ω

and S. Since the likelihood matrix p is objectively given, we assume that the uncertainty

[11]Machina (1989) discusses the issue of dynamic inconsistency for non-EU dm under risk. Numerous
papers discuss how an ambiguity averse dm can potentially be dynamically inconsistent. See Epstein and
Schneider (2003: Section 4.1) for an example.
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averse index G̃ : X ×∆(Ω× S) 7→ (−∞,+∞] is related to the original index G through

the following:

G̃(x, P ) =

{
G(x, π), if P = Dπp for some π;

+∞, otherwise.

This is well defined as the mapping from prior π to the joint probability Dπp is one-to-one.

Given experiment (S,p), prior π, and vNM utility index u, the expected utility of strategy

f is ∑
s∈S

Pr(s)
∑
ω∈Ω

Pr(ω|s)
∑
a∈A

fs(a)u(ω, a) =
∑
ω∈Ω

∑
s∈S

∑
a∈A

πwpwsfsauωa = 〈Dπpf ,u〉.

For a uncertainty averse DM with uncertainty averse index G and vNM utility index u,

her ex-ante utility from committing to strategy f when facing experiment (S,p) is

UUA(S,p, f) = min
{Dπp:π∈∆(Ω)}

G̃(〈Dπpf ,u〉, Dπp) = min
π∈∆(Ω)

G(〈Dπpf ,u〉, π).

And her value of an experiment (S,p) is UUA(S,p) := maxf U
UA(S,p, f).

Finally, we impose some technical assumptions on the uncertainty averse index G.

Assumption 1. There exists a prior π0 ∈ int(∆(Ω)) and some constant b ∈ int(X ) such

that G(b, π0) = b. Moreover, G(·, π0) is strictly increasing and continuous.

The main restriction in Assumption 1 is the existence of a prior π0 with full support. It

is straightforward to check that G(x, π0) = x for all x ∈ X in every special case studied

in Section 5. Obviously such G(·, π0) is strictly increasing and continuous. See Section

6.2 for a discussion on necessity of the full support requirement.

To provide a better geometric intuition behind the main theorem, we look at an equivalent

characterization of the uncertainty averse preferences, relying mostly on its convexity

structure instead of its functional form. For each mixed strategy f , we can construct a

state-contingent mixed action a, and a state-contingent expected utility upf ∈ X n, where

a = pf , and upf specifies
∑

a∈A(
∑

s∈S pωsfsa)uωa for each state w ∈ Ω. An uncertainty

averse dm has underlying uncertainty averse preferences over induced state-contingent

actions AS := {a = pf : f is a mixed strategy}, which is represented by a utility function

U(pf) = UUA(S,p, f) = minπ∈∆(Ω)G(〈Dπpf ,u〉, π). Let I(upf ) := U(pf) then I is a

function X n 7→ R aggregating state-contingent utilities. By Cerreia-Vioglio et al. (2011b),

if preferences admit an uncertainty averse representation, then I is (i) quasi-concave; (ii)

strongly monotone: if xi > yi for all i, I(x) > I(y); (iii) normalized: for any constant

b ∈ X , I(b1n) = b; (iv) continuous.
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For such an aggregator I, its Greenberg-Pierskalla superdifferential at x ∈ X n is

∂GP I(x) := {ξ : 〈ξ, y − x〉 ≤ 0⇒ I(y) ≤ I(x)}.

By Corollary 10.2 in Greenberg and Pierskalla (1973), Greenberg-Pierskalla superdifferen-

tial exists everywhere if I is quasi-concave, strongly monotone, and continuous. Further-

more, observe that for any b ∈ X , the set ∂GP I(b1n) ∩ ∆(Ω) = arg minπ∈∆(Ω)G(π, b) =

{π ∈ ∆(Ω) : G(π, b) = b}.[12] So Assumption 1 is equivalent to the following assumption.

Assumption 1′. There exists a fully supported prior π0 and some constant b ∈ int(X )

such that π0 is a Greenberg-Pierskalla superdifferential of I at b1n, i.e., π0 ∈ ∂GP I(b1n).

4 Main Result

Theorem 1. Suppose that Assumption 1 holds. The following statements are equivalent:

(i) (S,p) is more Blackwell-informative than (T ,q), i.e., there exists a markov

matrix r,

q = pr.

(ii) (S,p) is more valuable than (T ,q) for all dms with uncertainty averse index G,

i.e.,

max
f

min
π∈∆(Ω)

G(〈Dπpf ,u〉, π) ≥ max
g

min
π∈∆(Ω)

G(〈Dπqg,u〉, π), ∀u. (1)

Proof. (i) ⇒ (ii) direction. Given the set of actions A and the set of states Ω, let

AS = {pf |f is a mixed strategy} and AT = {qg|g is a mixed strategy} be the set of

state-contingent actions induced by experiment (S,p) and (T ,q) respectively. If S is

more Blackwell-informative than T , Blackwell (1951: Theorem 2) shows that the set of

state-contingent actions induced by S is larger than that by T . Since the dm’s utility of

an experiment is the maximum utility of the set of state-contingent actions, a larger set

is always better, and as a result the more informative experiment is always preferable.

Formally,

max
g

min
π∈∆(Ω)

G(〈Dπqg,u〉, π) = max
qg∈AT

U(qg)

≤ max
pf∈AS

U(pf) = max
f

min
π∈∆(Ω)

G(〈Dπpf ,u〉, π).

[12]See Cerreia-Vioglio et al. (2011a: Section 9).
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as we have AT ⊆ AS .[13]

(ii) ⇒ (i) direction. We prove by contraposition. Suppose there does not exist any

markov matrix r such that q = pr. Let P = {Dπ0pr : r is a σ × σ′ markov matrix} and

Q = {Dπq : π ∈ ∆(Ω)}. Then P ∩ Q = ∅. To see this, suppose not, then Dπ0pr = Dπq

for some markov matrix r and some π. Multiplying both sides by a column vector of 1’s

yields π0 = π. Since π0 has full support, Dπ0 is invertible, and multiplying both sides by

(Dπ0)−1 implies pr = q, contradicting the contrapositive assumption. Moreover, P and Q
are nonempty, compact, and convex. By the strict separating hyperplane theorem, there

exists v 6= 0 such that 〈n,v〉 > 0 > 〈m,v〉 for all n ∈ Q and m ∈ P . By assumption,

there is some constant b ∈ int(X ) such that G(b, π0) = b. Let A := {a1, · · · , a|T |}. Let

u = δv + b1n×|T |, where δ > 0 is small enough so that u ∈ Xn×|T |. Then

〈n,u〉 > b > 〈m,u〉, ∀n ∈ Q and m ∈ P . (2)

For the experiment (S,p) and vNM utility index u, the LHS of inequality (1) is

max
f

min
π∈∆(Ω)

G(〈Dπpf ,u〉, π) = max
f
I(upf ) = I(upf∗).

The optimal strategy f∗ exists since {upf : f a markov matrix} is compact and I is con-

tinuous. By (2), 〈Dπ0pf∗,u〉 − b < 0, which is equivalent to 〈π0,upf∗〉 − 〈π0, b1n〉 < 0.

Since I is quasiconcave and π0 is a Greenberg-Pierskalla superdifferential of I at b1n,

I(upf∗)− I(b1n) ≤ 0.

I is normalized so I(b1n) = b, thus

max
f

min
π∈∆(Ω)

G(〈Dπpf ,u〉, π) = I(upf∗) ≤ b. (3)

For the experiment (T ,q) and vNM utility index u, the RHS of inequality (1) is

max
g

min
π∈∆(Ω)

G(〈Dπqg,u〉, π) = max
g

I(uqg) ≥ I(uqI)

where I is the |T | × |T | identity matrix. By (2), there exists some small enough ε > 0

such that b− 〈DπqI,u〉+ ε < 0. Pick any π ∈ ∂GP I(uqI − ε1n), then we have 〈π, b1n〉 −
〈π,uqI − ε1n〉 < 0, which implies

I(b1n)− I(uqI − ε1n) ≤ 0.

[13]Note that in (i)⇒ (ii) we do not use quasi-concavity of U(·).
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as I is quasiconcave. By strong monotonicity of I,

b = I(b1n) ≤ I(uqI − ε1n) < I(uqI). (4)

Combining (3) and (4) yields

max
g

min
π∈∆(Ω)

G(〈Dπqg,u〉, π) ≥ I(uqI) > b ≥ max
f

min
π∈∆(Ω)

G(〈Dπpf ,u〉, π).

This is a contradiction to inequality (1).

The intuition for the proof of (ii) ⇒ (i) is as follows. If (S,p) is not more Blackwell-

informative than (T ,q), then the set P and the set Q defined above are nonempty,

disjoint, convex, and compact. Thus they can be separated by a hyperplane, whose

normal vector is interpreted as a utility index u after normalization. Figure 1 illustrates

the geometric relations among state-utility vectors uqI − ε1n, b1n and upf∗ . By quasi-

concavity and monotonicity of aggregator I, we can find two hyperplanes passing vectors

b1n and uqI − ε1n and supporting their convex upper contour sets. By inequality (2),

the vector upf∗ lies below the hyperplane supporting the upper contour set of vector b1n.

Thus I(upf∗) ≤ I(b1n). Similarly, the vector b1n must lie below the supporting hyperplane

at vector uqI − ε1n and hence I(uqI − ε1n) ≥ I(b1n). The value of experiment (S,p)

is I(upf∗). Yet I(uqI − ε1n) is strictly less than the value of experiment (T ,q) as ε is

positive and I is a feasible strategy under the experiment (T ,q). As a result, experiment

(T ,q) is strictly more valuable than experiment (S,p), which contradicts inequality (1)

in (ii).

5 Special Cases

Uncertainty averse preferences nest many ambiguity averse preferences as special cases.

Below we give the dm’s ex-ante valuation of an experiment (S,p) for six subfamilies of

uncertainty averse preferences.

1. Variational preferences (Maccheroni et al. 2006a)

UV (S,p) = max
f

min
π∈∆(Ω)

〈Dπpf ,u〉+ c(π),

where the cost function c : ∆(Ω) 7→ [0,∞] is convex, lower-semi continuous, and

c−1(0) 6= ∅.
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State 2

State 1(0,0)

45◦

Indifference curve 2

Indifference curve 1

b1n

uqI − ε1n

upf∗

Figure 1: Supporting hyperplanes.

2. Maxmin EU (Gilboa and Schmeidler 1989)

UM(S,p) = max
f

min
π∈C
〈Dπpf ,u〉,

where the prior set C ⊆ ∆(Ω) is convex and closed.

3. Multiplier preferences (Hansen and Sargent 2001; Strzalecki 2011)

UMP (S,p) = max
f

min
π∈∆(Ω)

〈Dπpf ,u〉+ θR(π||π0),

where π0 ∈ ∆(Ω) is a reference prior, θ ∈ (0,+∞] is the coefficient of ambiguity

aversion, and R(·||π0) : ∆(Ω) 7→ [0,+∞] is the relative entropy distance: R(π||π0) =∑
i πi log

(
πi
π0i

)
if π is absolutely continuous with respect to π0, and +∞ otherwise.

4. Confidence preferences (Chateauneuf and Faro 2009). If range(u) = Rn×k
+ , then

UC(S,p) = max
f

min
{π:φ(π)≥α}

1

φ(π)
〈Dπpf ,u〉,

where the confidence level α ∈ (0, 1) and the confidence function φ : ∆(Ω) 7→ [0, 1]

is quasi-concave, upper semi-continuous, and φ(π) = 1 for some π ∈ ∆(Ω).
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5. Smooth preferences (Klibanoff et al. 2005)

US(S,p) = max
f
φ−1

(∫
∆(Ω)

φ(〈Dπpf ,u〉)dµ(π)

)
,

where µ ∈ ∆(∆(Ω)) is a second-order prior, and the function φ : R 7→ R, capturing

ambiguity attitudes, is continuous, strictly increasing, and concave. Let ∆(∆(Ω), µ)

denote the set of second-order priors that are absolutely continuous with respect to

µ.

6. Second-order expected utility (Grant et al. 2009) [14]

USO(S,p) = max
f
φ−1〈Dπp, φ(uf ′)〉,

where φ : R 7→ R is continuous, concave, and strictly increasing function. Let

∆(Ω, π) be the set of priors that are absolutely continuous with respect to π.

As a direct application of Theorem 1, the following Corollary holds:

Corollary 1. Blackwell’s equivalence results hold for the following preference families:

Variational preferences (VP), Maxmin EU (MEU), Multiplier preferences (MP), Con-

fidence preferences (CP), Smooth preferences (SP), and Second-order expected utility

(SOEU), with Assumption 1 taking the form specified in Table 1.

Value of Experiment (S,p) Assumption 1 Blackwell
Equivalence

VP: maxf minπ∈∆(Ω)〈Dπpf ,u〉+ c(π) ∃π0 ∈ int(∆(Ω)) ∩ c−1(0)
√

MEU: maxf minπ∈C〈Dπpf ,u〉 ∃π0 ∈ int(∆(Ω)) ∩ C
√

MP: maxf minπ∈∆(Ω)〈Dπpf ,u〉+ θR(π||π0) π0 ∈ int(∆(Ω))
√

CP: maxf min{π:φ(π)≥α}
1

φ(π)
〈Dπpf ,u〉 ∃π0 ∈ int(∆(Ω)) ∩ φ−1(1)

√

SP: maxf φ
−1
(∫

∆(Ω)
φ(〈Dπpf ,u〉)dµ(π)

)
π0 =

∫
πdµ(π) ∈ int(∆(Ω))

√

SOEU: maxf φ
−1〈Dπ0p, φ(uf ′)〉 π0 ∈ int(∆(Ω))

√

Table 1: Preference families and assumptions under which Blackwell’s equivalence results
hold.

Proof of Corollary 1: We prove the equivalence results case by case. It suffices to verify

Assumption 1 for each preferences family. Then the Blackwell’s equivalence results follow

from Theorem 1.

Variational preferences. Let X = R and G(x, π) = x + c(π). Then for π0 ∈
int(∆(Ω)) ∩ c−1(0), G(x, π0) = x and G(·, π0) is strictly increasing and continuous.

[14]See also Neilson (2010), Ergin and Gul (2009), Nau (2006).
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Maxmin EU. Let X = R and G(x, π) =

{
x, if π ∈ C;

+∞, otherwise.
Then for π0 ∈ (C ∩

int(∆(Ω))), G(x, π0) = x and G(·, π0) is strictly increasing and continuous.

Multiplier preferences. Let X = R and G(x, π) = x+θR(π||π0). Since R(π0||π0) = 0,

G(x, π0) = x and G(·, π0) is strictly increasing and continuous.

Confidence preferences. Let X = R+ and G(x, π) =

{
x

φ(π)
, if φ(π) ≥ α;

+∞, otherwise.
By

assumption G(x, π0) = x, so G(·, π0) is strictly increasing and continuous on R+.

Smooth preferences. Let X = R. By Cerreia-Vioglio et al. (2011b) Theorem 19,

smooth ambiguity representation (φ, µ) is equivalent to an uncertainty averse representa-

tion with

G(x, π) =

{
x+ infν∈Γ(π) Ix(ν||µ), if Γ(π) 6= ∅;
+∞, if Γ(π) = ∅,

where the set Γ(π) = {ν ∈ ∆(∆(Ω), µ) :
∫
π′dν(π′) = π}. Here Ix(·||µ) : ∆(∆(Ω)) 7→

[0,+∞] is a statistical distance function with the property that Ix(µ||µ) = 0 and Ix(ν||µ) ≥
0 for all ν ∈ ∆(∆(Ω), µ).[15] Clearly µ ∈ Γ(π0) and infν∈Γ(π0) Ix(ν||µ) = 0. Therefore

G(x, π0) = x and G(·, π0) is strictly increasing and continuous on R.

Second-order expected utility. Let X = R. By Cerreia-Vioglio et al. (2011b)

Theorem 24, the second order expected utility representation (φ, π0) is equivalent to an

uncertainty averse representation with

G(x, π) =

{
x+ Ix(π||π0), if π ∈ ∆(Ω, π0);

+∞, otherwise.

Again Ix(·||π0) : ∆(Ω) 7→ [0,+∞] is a statistical function such that Ix(π0||π0) = 0.[16]

Thus G(x, π0) = x and G(·, π0) is strictly increasing and continuous on R. �

[15]The statistical distance function is

Ix(ν||µ) = φ−1
(

inf
k≥0

[
kx−

∫
φ∗(k

dν

dµ
)dµ

])
− x,

where φ∗(z) = infk∈R(kz − φ(k)) is the concave conjugate function of φ.
[16]Similarly, the statistical distance function is

Ix(π′||π) = φ−1
(

inf
k≥0

[
kx−

∫
φ∗(k

dπ′

dπ
)dπ

])
− x,

where φ∗(z) = infk∈R(kz − φ(k)) is the concave conjugate function of φ.
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6 Discussion

6.1 Non-convex Preferences

Our main theorem says that Blackwell’s equivalence theorem holds for all convex prefer-

ences. Below we give an example when this equivalence fails with non-convex preferences.

Consider a dm who perceives extreme ambiguity about ω and views every prior in ∆(Ω)

as possible. She is also optimistic and evaluates a strategy by the best case scenario.[17]

So her ex-ante evaluation of an experiment (S,p) is described by the following maxmax

EU:

UMM(S,p) := max
f

max
π∈∆(Ω)

〈Dπpf ,u〉 = max
ω,a

u(ω, a).

Then for any u, the values of two arbitrary experiments (S,p) and (T ,q) are equal, i.e.,

UMM(S,p) = UMM(T ,q) = max
ω,a

u(ω, a).

So Blackwell’s equivalence theorem fails.

6.2 Full Support Assumption

Assumption 1 requires a fully supported π0 such that G(b, π0) = b for some b. Although

only used in proving the (ii) ⇒ (i) direction of Theorem 1, it is not redundant. To see

this, consider an MEU dm with a singleton prior set C = {π̂}, where π̂ = (1, · · · , 0). The

full support assumption is violated. For any experiment (S,p) and any utility index u,

we have

UM(S,p) = max
f

min
π∈C
〈Dπpf ,u〉 = max

f
〈Dπ̂pf ,u〉 = max

a
u(ω1, a).

Thus any two experiments (S,p) and (T ,q) have the same value, i.e., UM(S,p) =

UM(T ,q) for all u. But we cannot say that (S,p) is more informative than (T ,q),

as they are arbitrarily chosen.

[17]Note that the full support assumption still holds as any interior prior is possible.
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6.3 No-Commitment Case

Until now we have assumed that the dm has full commitment to all signal-contingent

strategies. Without commitment, our results do not apply in general. For instance,

Wakker (1988), Hilton (1990), and Safra and Sulganik (1995) show that Blackwell’s the-

orem might fail for non-EU dms, if choices are only made after the signal realizes. Sinis-

calchi (2011: Section 4.4.2) illustrates how a sophisticated MEU dm might reject freely

available information if there is no commitment. The reason is that ambiguity sensitive

preferences might not be dynamically consistent. When a dm is dynamically inconsistent

and anticipates potential preference changes, she might reject free information in order to

commit to her ex-ante optimal action. In this case, the pure decision value of information

is traded off against the value of commitment. We will explore such a trade-off for gen-

eral ambiguity preferences under the Blackwell-type probabilistic information in future

work. On the other hand, there are well-known specifications of ambiguity sensitive and

dynamically consistent preferences. For those preferences, our results apply even without

commitment. In particular, Epstein and Schneider (2003) characterize dynamic consis-

tency by a rectangularity condition for the MEU preferences. And Maccheroni et al.

(2006b) show that dynamic consistency is equivalent to a “no-gain condition” for the

variational preferences. Below we specify these conditions for our problem.

For a fixed state space Ω, an experiment (S,p) introduces a two-period dynamic problem

with a product state space S ×Ω. By the end of period 1, information {{s}×Ω : s ∈ S}
is revealed. A prior π ∈ ∆(Ω) induces a joint probability P = Dπp ∈ ∆(S × Ω). Let

m = p′π ∈ ∆(S) denote the marginal probability on signals with ms =
∑

ω πωpωs, and

π·s ∈ ∆(Ω) denote the Bayesian posterior conditional on signal s.

MEU Preferences. A convex and closed prior set C ⊆ ∆(Ω) induces a set of joint

probabilities P = {Dπp : π ∈ C} and a set of marginal probabilities M = {m = p′π ∈
∆(S) : π ∈ C}. The set of signal-contingent posterior matrices is C·S = {Π ∈ Rn×|S| :

each column Π·s equals πs·s for some πs ∈ C}. Thus the S-rectangularized (Epstein and

Schneider 2003) set of joint probabilities is

rect(P)S,p = {ΠDm : m ∈M,Π ∈ C·S}.

We say the prior set C is (S,p)-rectangular if

P = rect(P)S,p.

If the prior set C is both (S,p)-rectangular and (T ,q)-rectangular, our results extend to

the case without commitment.

Variational Preferences. Given a convex, grounded, and lower semi-continuous cost
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function c̃ : ∆(S × Ω) 7→ [0,+∞]. Let cs : ∆(Ω) 7→ [0,+∞] be the updated cost function

conditional on signal s ∈ S. Then c̃ and {cs}s∈S satisfy the “no-gain condition” with

discount factor 1 (Maccheroni et al. 2006b) if

c̃(Dπp) = min
{π̃∈∆(Ω):p′π̃=m}

c̃(Dπ̃p) +
∑
s

mscs(π·s).

To further specify the conditional cost function cs, one could use an updating formula

shown by Li (2013)

cs(π·s) = min
{π̃∈∆(Ω):π̃·s=π·s}

c̃(Dπ̃p)

m̃s

,

where π̃·s and m̃s are the s-Bayesian posterior and the s-marginal probability of prior π̃.

Moreover, since the signal structure (S,p) is considered unambiguous, we assume there

exists a cost function c : ∆(Ω) 7→ [0,+∞] such that c̃(Dπp) = c(π) for all π ∈ ∆(Ω).

Then the “no-gain condition” and updating rule become

c(π) = min
{π̃∈∆(Ω):p′π̃=m}

c(π̃) +
∑
s

mscs(π·s), and

cs(π·s) = min
{π̃∈∆(Ω):π̃·s=π·s}

c(π̃)

m̃s

.

If the cost function c satisfies the “no-gain condition” for experiments (S,p) and (T ,q),

our results extend to the case without commitment.

Appendix

In Section 5, we give proofs for the smooth preferences and second-order expected utility

cases via their corresponding G function representations. They rely heavily on Theorems

19 and 24 in Cerreia-Vioglio et al. (2011b), which are not obvious. Hence we provide

direct proofs in the appendix, which may be of independent interest.

A Smooth preferences

Proof. We want to show that q = pr for some markov matrix r if and only if

max
f
φ−1

(∫
∆(Ω)

φ(〈Dπpf ,u〉)dµ(π)

)
≥ max

g
φ−1

(∫
∆(Ω)

φ(〈Dπqg,u〉)dµ(π)

)
, ∀u.

(5)

16



“Only if” part: For any µ, let g∗ be the strategy that maximizes the RHS of inequality

5. Let f∗ = rg∗. f∗ is a strategy for experiment (S, π) because r is markov. Thus

max
g

φ−1

(∫
∆(Ω)

φ(〈Dπqg,u〉)dµ(π)

)
= φ−1

(∫
∆(Ω)

φ(〈Dπqg∗,u〉)dµ(π)

)
= φ−1

(∫
∆(Ω)

φ(〈Dπprg∗,u〉)dµ(π)

)
= φ−1

(∫
∆(Ω)

φ(〈Dπpf∗,u〉)dµ(π)

)
≤ max

f
φ−1

(∫
∆(Ω)

φ(〈Dπpf ,u〉)dµ(π)

)
.

“If” part: Suppose there is no r such that p = qr. By assumption, π0 =
∫
πdµ(π) has full

support. Define P = {Dπ0pr : for some markov matrix r} and Q = {Dπ̂q : π̂ ∈ ∆(Ω)}.
Then P and Q are nonempty, convex, compact and P ∩ Q = ∅. By the Separating

Hyperplane Theorem, there exists v 6= 0 such that 〈n,v〉 > 0 > 〈m,v〉 for all n ∈ Q and

m ∈ P . We can show that for this v,

max
f
〈Dπ0pf ,v〉 < 0 < max

g
〈Dπqg,v〉, ∀π. (6)

Assume φ(0) = 0 and φ′(0) = 1. This is WLOG because φ(·) is unique up to a positive

affine transformation.[18] Let M0 := maxi,j |vij|. We first claim that there exists a positive

constant M1 such that

|φ(t)− t| ≤M1t
2, ∀t ∈ [−M0,M0].

(For example, pick M1 = 1
2

maxt∈[−M0,M0] |φ′′(t)|.)

For any strategy f and any ε ∈ (0, 1), |〈Dπpf , εv〉| ≤ εmaxij |vij| = εM0, therefore

|max
f

∫
∆(Ω)

φ(〈Dπpf , εv〉)dµ(π)−max
f

∫
∆(Ω)

〈Dπpf , εv〉dµ(π)| (7)

≤ max
f

∫
∆(Ω)

|φ(〈Dπpf , εv〉)− 〈Dπpf , εv〉|dµ(π) = max
f

∫
∆(Ω)

M1(εM0)2dµ(π) = M1(εM0)2.

Similarly,

|max
g

∫
∆(Ω)

φ(〈Dπqg, εv〉)dµ(π)−max
g

∫
∆(Ω)

〈Dπqg, εv〉dµ(π)| ≤M1(εM0)2. (8)

[18]We assume φ is twice continuously differentiable around 0.
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Moreover,

max
f

∫
∆(Ω)

〈Dπpf , εv〉dµ(π) = max
f
〈D

∫
∆(Ω) πdµ(π)pf , εv〉 = εmax

f
〈Dπ0pf ,v〉 (9)

and similarly

max
g

∫
∆(Ω)

〈Dπpg, εv〉dµ(π) = εmax
g
〈Dπ0qg,v〉. (10)

Define δ := maxg〈Dπ0qg,v〉 −maxf 〈Dπ0pf ,v〉. Clearly δ > 0 by equation (6). Let

ε̄ := min

(
1,

δ

2M1M2
0

)
> 0.

Pick any ε satisfying 0 < ε < ε̄. Then by the triangular inequality and equations (7)–(10),

we have

max
f

∫
∆(Ω)

φ(〈Dπpf , εv〉)dµ(π)−max
g

∫
∆(Ω)

φ(〈Dπqg, εv〉)dµ(π) (11)

≤ max
f

∫
∆(Ω)

〈Dπpf , εv〉dµ(π)−max
g

∫
∆(Ω)

〈Dπpg, εv〉dµ(π)

+|max
f

∫
∆(Ω)

φ(〈Dπpf , εv〉)dµ(π)−max
f

∫
∆(Ω)

〈Dπpf , εv〉dµ(π)|

+|max
g

∫
∆(Ω)

φ(〈Dπqg, εv〉)dµ(π)−max
g

∫
∆(Ω)

〈Dπqg, εv〉dµ(π)|

≤ −εδ +M1M
2
0 ε

2 +M1M
2
0 ε

2 = −ε(δ − 2M1M
2
0 ε) < 0.

Define A := {a1, · · · , a|T |} and u := εv. Then

max
f
φ−1

(∫
∆(Ω)

φ(〈Dπpf ,u〉)dµ(π)

)
< max

g
φ−1

(∫
∆(Ω)

φ(〈Dπqg,u〉)dµ(π)

)
,

which contradicts equation (5).

B Second-order expected utility

Proof. We want to show that q = pr for some markov matrix r if and only if

max
f
φ−1〈Dπ0p, φ(uf ′)〉 ≥ max

g
φ−1〈Dπ0q, φ(ug′)〉, ∀u. (12)
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“Only if” part: Suppose q = pr. For any strategy g : T 7→ ∆(X), define f = rg. First,

we show that

φ−1〈Dπ0p, φ(uf ′)〉|f=rg ≥ φ−1〈Dπ0q, φ(ug′)〉

This follows from the fact that

〈Dπ0p, φ(uf ′)〉|f=rg = 〈Dπ0p, φ(u(rg)′)〉 = 〈Dπ0p, φ(ug′r′)〉
≥ 〈Dπ0p, φ(ug′)r′〉 = 〈Dπ0pr, φ(ug′)〉 = 〈Dπ0q, φ(ug′)〉,

where in the inequality step we use Jensen’s inequality as φ is concave, and each column

of r′ is nonnegative and adds up to one (recall that r is row-stochastic, so its transpose is

column-stochastic).

As a result,

max
f
φ−1〈Dπ0p, φ(uf ′)〉 ≥ φ−1〈Dπ0p, φ(uf ′)〉|f=rĝ

≥ φ−1〈Dπ0q, φ(uĝ′)〉 = max
g

φ−1〈Dπ0q, φ(ug′)〉,

where ĝ = arg maxg φ
−1〈Dπ0q, φ(ug′)〉.

“If” part: This part is similar to that in the proof of the smooth preference case.

Suppose there is no r such that p = qr. By assumption, the reference prior π0 has full

support. Define P = {Dπ0pr : for some markov r} and Q = {Dπ̂q : π̂ ∈ ∆(Ω)}. These

are nonempty, convex, compact and P ∩Q = ∅. By the Separating Hyperplane Theorem,

there exists v 6= 0 such that 〈n,v〉 > 0 > 〈m,v〉 for all n ∈ Q and m ∈ P . By a similar

argument, we can show that for this v,

max
f
〈Dπ0p,vf ′〉 < 0 < max

g
〈Dπ0q,vg′〉. (13)

Assume φ(0) = 0 and φ′(0) = 1. This is WLOG because φ(·) is unique up to a positive

affine transformation. Let M0 := maxi,j |vij|. We first claim that there exists a positive

constant M1 such that

|φ(t)− t| ≤M1t
2, ∀t ∈ [−M0,M0].

(For example, pick M1 = 1
2

maxt∈[−M0,M0] |φ′′(t)|.)

For any strategy f and any ε ∈ (0, 1), each entry of εvf ′ is bounded by εM0, and therefore

max
i,j
|φ(εvf ′)− εvf ′|ij ≤M1(max

i,j
|εvf ′|ij)2 ≤ M1M

2
0 ε

2. (14)
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Thus

|〈Dπ0p, φ(εvf ′)〉−〈Dπ0p, εvf ′〉| ≤
∑
ij

π0ipij|φ(εvf ′)−εvf ′|ij ≤M1M
2
0 ε

2
∑
ij

π0ipij = M1M
2
0 ε

2.

(15)

Similarly, for any strategy g,

|〈Dπ0q, φ(εvg′)〉 − 〈Dπ0q, εvg′〉| ≤M1M
2
0 ε

2. (16)

Define δ := maxg〈Dπ0q,vg′〉 − maxf 〈Dπ0p,vf ′〉. Clearly δ > 0 by equation (13). Let

ε̄ := min
(

1, δ
2M1M2

0

)
> 0. Then for any ε satisfying 0 < ε < ε̄, we have

max
g
〈Dπ0q, φ(εvg′)〉 −max

f
〈Dπ0p, φ(εvf ′)〉

=

(
max

g
〈Dπ0q, φ(εvg′)〉 −max

g
〈Dπ0q, εvg′〉

)
+
(

max
f
〈Dπ0p, εvf ′〉 −max

f
〈Dπ0p, φ(εvf ′)〉

)
+

(
max

g
〈Dπ0q, εvg′〉 −max

f
〈Dπ0p, εvf ′〉

)
.

By equation (16), the first term satisfies(
max

g
〈Dπ0q, φ(εvg′)〉 −max

g
〈Dπ0q, εvg′〉

)
≥ −max

g
|〈Dπ0q, φ(εvg′)〉−〈Dπ0q, εvg′〉| ≥ −M1M

2
0 ε

2.

Similarly, by equation (15), the second term satisfies(
max

f
〈Dπ0p, εvf ′〉 −max

f
〈Dπ0p, φ(εvf ′)〉

)
≥ −M1M

2
0 ε

2.

And the third term is(
max

g
〈Dπ0q, εvg′〉 −max

f
〈Dπ0p, εvf ′〉

)
= ε

(
max

g
〈Dπ0q,vg′〉 −max

f
〈Dπ0p,vf ′〉

)
= εδ.

As a consequence,

max
g
〈Dπ0q, φ(εvg′)〉−max

f
〈Dπ0p, φ(εvf ′)〉 ≥ −M1M

2
0 ε

2−M1M
2
0 ε

2+εδ = ε(δ−2M1M
2
0 ε) > 0.

Define A := {a1, · · · , a|T |}, u := εv, then

max
g

φ−1〈Dπ0q, φ(ug′)〉 > max
f
φ−1〈Dπ0p, φ(uf ′)〉,

which contradicts inequality (12).
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