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Abstract

We consider an agent who chooses from a set of options after receiving some
private information. This information however is unobserved by an analyst, so
from the latter’s perspective, choice is probabilistic or random. We provide a

theory in which information can be fully identified from random choice. In ad-
dition, the analyst can perform the following inferences even when information

is unobservable: (1) directly compute ex-ante valuations of option sets from ran-

dom choice and vice-versa, (2) assess which agent has better information by using
choice dispersion as a measure of informativeness, (3) determine if the agent’s
beliefs about information are dynamically consistent, and (4) test to see if these

beliefs are well-calibrated or rational.
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1 Introduction

1.1 Overview and motivation

In many economic situations, an agent’s private information is not observable. For example,
consider an agent choosing whether to invest in a project. Before deciding, the agent obtains

some private information (i.e. a signal) that influences her beliefs about the prospects of the

project. As a result, her investment decision depends on the realization of her signal. An

analyst (i.e. an outside observer) does not observe the agent’s signal so from the former’s

perspective, the agent’s choice is probabilistic or random. Call this the individual inter-

pretation of random choice. Alternatively, consider a group of agents choosing whether to

invest in a project where each agent has some private information about the project that
is unobserved by the analyst. From the analyst’s perspective, an agent’s choice within the

group is random, and we call this the group interpretation of random choice.1

In this paper, we provide a theory for identifying private information from random choice.
We model a standard expected utility maximizer who chooses optimally after receiving a
signal that is strictly private, that is, it is completely unobservable to the analyst. Many

problems in information economics and decision theory fit in this framework. These include

specialists providing expert advice2, consumers choosing health insurance3 and users clicking
on online ads.4

Our main results provide a methodology for identifying information and performing stan-

dard exercises of inference. First, the analyst can evaluate option sets by directly computing
ex-ante valuations of option sets from random choice and vice-versa. Second, the analyst can

use choice dispersion to assess the informativeness of agents’ signals. Third, if valuations
of option sets are known, then the analyst can compare them with random choice to detect

biases, that is, when beliefs about information are dynamically inconsistent. Finally, from

the joint distribution of choices and payoff-relevant states, the analyst can calibrate beliefs
1 Note that all agents in the group are initially observationally identical to the analyst. We can think of

this as the end result after applying all possible econometric analysis (parametric and non-parametric) on
the observable data to differentiate agents.

2 For example, see Chambers and Lambert [10].
3 For example, see Finkelstein and McGarry [18] and Hendren [26] who provide an alternative approach

by directly eliciting private information from survey data. Respondents however may not accurately report
their true beliefs or the data may be subject to other complications (such as excess concentrations at focal
points). In contrast, our approach follows the original spirit of Savage [43] by inferring beliefs from choice
behavior.

4 For example, see Rayo and Segal [40].
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and test if agents’ beliefs are rational.

When information is observable, the above inferences are important and well-understood
exercises in information theory and information economics. We demonstrate how to carry

out the same analysis even when information is not directly observable and can only be
inferred from choice behavior. Our theorems reveal that when all relevant choice data is
available, all these inferences can be performed just as effectively as in the case with ob-

servable information. The more practical question of drawing inferences when choice data is

only partially available is left for future research.

Consider an objective state space. Each choice option corresponds to a state-contingent
payoff or an Anscome-Aumann [2] act. A set of acts is a decision-problem. Since the agent’s

private information is unobservable to the analyst, the analyst only observes a random choice

rule (RCR) that specifies a choice distribution over acts for each decision-problem. We

consider a random utility maximization (RUM)5 model where the utilities are subjective
expected utilities that depend only on the distribution of the agent’s beliefs. As in Savage
[43] and Anscombe and Aumann [2], we assume that beliefs are independent of the decision-

problem.6 The probability that an act is chosen is then the probability that the act attains

the highest subjective expected utility in the decision-problem. Call this an information

representation of the RCR.7

Theorem 1 shows that the analyst can completely identify the agent’s private information

from binary choices. We introduce a key tool that will feature prominently in the subsequent
analysis. Given a decision-problem, consider the addition of a test act (for example, an act

that gives fixed payoff). As the value of the test act decreases, the probability that some act

in the original decision-problem will be chosen over the test act will increase. Call this the test

function for the decision-problem. Test functions are cumulative distribution functions that
characterize the utility distributions of decision-problems. They serve as sufficient statistics

for identifying information.

We first evaluate option sets. In the individual interpretation, the valuation of an option
5 For more about RUM, see Block and Marschak [7], Falmagne [17], McFadden and Richter [35], Gul and

Pesendorfer [24] and Gul, Natenzon and Pesendorfer [25]. RUM is also used extensively in discrete choice
estimation where most models assume specific parametrizations such as the logit, the probit, the nested
logit, etc. (see Train [46]).

6 In the group interpretation, the assumption that the distribution of beliefs is independent of the decision-
problem corresponds exactly to the assumption that each agent’s prior in the Anscombe and Aumann [2]
model is independent of the decision-problem.

7 In the Supplementary Appendix, we provide a full axiomatic characterization of an information repre-
sentation along with other more general representations.
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set is the ex-ante utility of the set before any information is received and corresponds to

the subjective learning representation of Dillenberger, Lleras, Sadowski and Takeoka [15]
(henceforth DLST). In the group interpretation, the valuation of an option set is the total

utility of the set for all agents in the group.8 Theorem 2 shows that computing integrals
of test functions recovers valuations. Conversely, Theorem 3 shows that computing the
marginal valuations of decision-problems with respect to test acts recovers random choice.

These operations are mathematical inverses; the analyst can directly compute valuations

from random choice and vice-versa. This provides a precise connection between menu (i.e.

option set) choice and random choice and offers a methodology for elicitation that is similar
to classical results from consumer and producer theory (Theorem 3 for example is the random

choice analog of Hotelling’s Lemma).

Next, we assess informativeness. In the classical approach of Blackwell [5, 6], better

information is characterized by higher ex-ante valuations. Theorem 4 shows that under
random choice, better information is characterized by second-order stochastic dominance of
test functions. Given two agents (or two groups of agents), one is better informed than the

other if and only if test functions under the latter second-order stochastic dominate those

of the former. This equates an unobservable multi-dimensional ordering of information with
observable single-dimensional stochastic dominance relations. Intuitively, a more informative
signal structure (or more private information in a group of agents)9 is characterized by greater

dispersion or randomness in choice.
We then apply these results to detect biases. We address a form of informational dynamic

inconsistency where the ex-ante preference relation (reflecting valuations) suggests a more

(or less) informative signal than that implied by random choice. In prospective overconfi-

dence, the agent initially prefers large option sets in anticipation of an informative signal but
subsequently exhibits deterministic choice reflecting a less informative signal. In prospective

underconfidence, the ordering is reversed. In either case, the agent exhibits subjective miscon-

fidence. These biases also apply in the group interpretation. For example, if a firm chooses

option sets based on total employee welfare (i.e valuation), then misconfidence suggests that
the firm has an incorrect assessment of the distribution of employee beliefs. Our tools allow
the analyst to detect these biases even when information is not directly observable.

8 McFadden [34] calls this the “social surplus”.
9 In the group interpretation, Theorem 4 is the revealed preference analog of Hendren [26] who uses

elicited beliefs from survey data to test whether there is more private information in one group of agents
(insurance rejectees) than another group (non-rejectees).
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Finally, we calibrate beliefs. We show that given joint data on choices and actual state

realizations, the analyst can test whether the agent has well-calibrated (i.e. consistent)
beliefs. In the individual interpretation, this implies that the agent has rational expectations

about her signals. In the group interpretation, this implies that agents have beliefs that are
predictive of actual state realizations, indicating that there is genuine private information.10

Define a conditional test function using a conditional test act with payoffs that vary only in

a given state. Theorem 5 shows that beliefs are well-calibrated if and only if conditional and

unconditional test functions share the same mean. This provides a test for rational beliefs

which can be combined with the results on detecting biases to obtain measures of objective
misconfidence.

In general, RUM models have difficulty dealing with indifferences in the random utility.

We address this issue by drawing an analogy with deterministic choice. Under deterministic

choice, if two acts are indifferent (i.e. they have the same utility), then the model is silent
about which act will be chosen. Similarly, under random choice, if two acts are indifferent
(i.e. they have the same random utility), then the model is silent about what the choice

probabilities are. This approach has two advantages: (1) it allows the analyst to be agnos-

tic about choice data that is beyond the scope of the model and provides some additional
freedom to interpret data, and (2) it allows for just enough flexibility so that we can include
deterministic choice as a special case of random choice. In particular, the subjective expected

utility model of Anscombe and Aumann [2] is a special case of our model when choice is
completely deterministic.

1.2 Related literature

This paper is related to a long literature on stochastic choice. Recent papers that have specif-

ically studied the relationship between stochastic choice and information include Natenzon
[37], Caplin and Dean [8], Matějka and McKay [33] and Ellis [16]. In these models, the
information structure varies with the decision-problem so the resulting RCR may not have
a RUM representation. In contrast, the information structure in our model is fixed and is

independent of the decision-problem, which conforms to the benchmark model of information

processing and choice. Caplin and Martin [9] also study a RUM model with a fixed infor-
10 See Chiappori and Salanié [11] and Finkelstein and McGarry [18] for empirical tests for the presence of

private information.
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mation structure. If we recast their model in our Anscombe-Aumann setup, our use of test

functions to calibrate beliefs coincides with checking their NIAS inequalities (see Proposition
1). Note that by working in our richer setup, information can be uniquely identified from

the RCR.
This paper is also related to the literature on menu choice which includes Kreps’ [31],

Dekel, Lipman and Rustichini [14] (henceforth DLR) and DLST. Our main contribution to

this literature is showing that there is an intimate connection between ex-ante choice over

option sets and ex-post random choice from option sets. Ahn and Sarver [1] (henceforth AS)

also study this relationship but in the lottery space, and their work connecting DLR with Gul
and Pesendorfer [24] random expected utility is analogous to our results connecting DLST

with our model. As our choice options reside in the richer Anscombe-Aumann space, we are

able to achieve a much tighter connection between the two choice behaviors (see Appendix E).

Fudenberg and Strzalecki [20] also analyze the relationship between preference for flexibility
and random choice but in a dynamic setting with a generalized logit model. Saito [42]
establishes a relationship between greater preference for flexibility and more randomness,

although the agent in his model deliberately randomizes due to ambiguity aversion.

Grant, Kajii and Polak [22, 23] study decision-theoretic models involving information.
They consider generalizations of the Kreps and Porteus [32] model where the agent has
an intrinsic preference for information even when she is unable to or unwilling to act on

that information. In contrast, the agent in our model prefers information only due to its
instrumental value as in the classical sense of Blackwell.

Finally, in the strategic setting, Bergemann and Morris [3] study information structures

in Bayes’ correlated equilibria. In the special case where there is a single bidder, our results
translate directly to their setup for a single-person game. Kamenica and Gentzkow [28] and
Rayo and Segal [40] characterize optimal information structures where senders commit to

an information disclosure policy. In these models, the sender’s ex-ante utility is a function

of the receiver’s random choice rule, so our results relating random choice with valuations

provide a technique for expressing the sender’s utility in terms of the receiver’s utility and
vice-versa.
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2 An Informational Model of Random Choice

Let S be a finite objective state space and X be a finite set of prizes. Let �S and �X be
their respective probability simplexes. Interpret �S as the set of beliefs about S and �X

as the set of lotteries over prizes. Each choice option corresponds to an Anscombe-Aumann
[2] act, that is, a mapping f : S ! �X. Let H be the set of all acts. A finite set of acts
is called a decision-problem and let K be the set of all decision-problems endowed with the

Hausdorff metric.11 Call an act f constant iff f (s) is the same for all s 2 S. For notational

convenience, let f denote the singleton set {f} whenever there is no risk of confusion.

The primitive of our model is a random choice rule (RCR) that specifies choice proba-
bilities for acts in every decision-problem. In the individual interpretation of random choice,

the RCR specifies the frequency distribution of choices by an agent if she chooses from the

same decision-problem repeatedly. In the group interpretation of random choice, the RCR

specifies the frequency distribution of choices in the group if every agent in the group chooses
from the same decision-problem.

Under classic deterministic choice, if two acts are indifferent (i.e. they have the same

utility), then the model is silent about which act will be chosen. We introduce an analogous

innovation to address indifferences under random choice and random utility. If two acts are
indifferent (i.e. they have the same random utility), then the random choice rule is unable to

specify choice probabilities for each act in the decision-problem. As in deterministic choice,
we interpret indifference as choice behavior that is beyond the scope of the model. This
provides the analyst with additional freedom to interpret data. It also allows for just enough

flexibility so that we can include the deterministic Anscombe-Aumann [2] model as a special
case of ours.

Formally, indifferences correspond to non-measurability with respect to a �-algebra H
on H. For example, if H is the Borel algebra, then this corresponds to the benchmark case

where every act is measurable and there are no indifferences. Indifferences occur when H
is coarser than the Borel algebra. Since the agent will be choosing some act in a decision-

problem, the decision-problem itself must be measurable. Hence, given any decision-problem
11 For two sets F and G, the Hausdorff metric is given by

dh (F,G) := max

 

sup

f2F
inf

g2G
|f � g| , sup

g2F
inf

f2G
|f � g|

!
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F , the corresponding choice distribution must be a measure on the �-algebra generated by

H [ {F} which we denote by HF .12 Let ⇧ be the set of all probability measures on H.

Definition. A random choice rule (RCR) is a (⇢,H) where ⇢ : K ! ⇧ and ⇢F is a measure
on (H,HF ) with support F 2 K.

For each decision-problem F , the RCR ⇢ assigns a probability measure on (H,HF ) such

that ⇢F (F ) = 1. Interpret ⇢F (G) as the probability that some act in G will be chosen in

F 2 K. For ease of exposition, we denote RCRs by ⇢ with the implicit understanding that

it is associated with some H. To address the fact that G may not be HF -measurable, define
the outer measure13

⇢⇤F (G) := inf

G⇢G02HF

⇢F (G0
)

As both ⇢ and ⇢⇤ coincide on measurable sets, let ⇢ denote ⇢⇤ without loss of generality.
An RCR is deterministic iff all choice probabilities are either zero or one. What fol-

lows is an example of a deterministic RCR; its purpose is to highlight (1) the use of non-
measurability to model indifferences and (2) how classic deterministic choice is a special case

of random choice.

Example 1. Let S = {s1, s2} and X = {x, y}. Without loss of generality, we can associate
H with [0, 1] ⇥ [0, 1] where fi = f (si) (x) for i 2 {1, 2}. Let H be the �-algebra generated

by sets of the form B ⇥ [0, 1] where B is a Borel set on [0, 1]. Consider the RCR (⇢,H)

where ⇢F (f) = 1 if f1 � g1 for all g 2 F . Acts are ranked based on how likely they will
yield prize x if state s1 occurs. This could describe an agent who prefer x to y and believes
that s1 will realize for sure. Let F = {f, g} where f1 = g1 and note that neither f nor g is
HF -measurable; the RCR is unable to specify choice probabilities for f or g and they are

indifferent. Observe that ⇢ corresponds exactly to classic deterministic choice where f is

preferred to g iff f1 � g1.

We now describe an information representation of an RCR. Recall the timing of our
model. At time 1, the agent receives some private information about the underlying state.

At time 2, she chooses the best act in the decision-problem given her updated belief. Since

her private information is unobservable, to the analyst, choice is probabilistic and can be

modeled as an RCR.
12 This definition imposes a common measurability across all decision-problems which can be relaxed if

our axioms (see Supplementary Appendix) are strengthened.
13 Lemma A1 in the Appendix ensures that this is well-defined.
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Since each signal realization corresponds to a posterior belief q 2 �S, we model private

information as a signal distribution µ over the canonical signal space �S. This approach al-
lows us to be agnostic about updating and work directly with posterior beliefs. To illustrate,

consider the degenerate distribution µ = �q for some q 2 �S. In the individual interpre-
tation, this corresponds to the case where the agent never changes her prior. In the group
interpretation, this corresponds to the case where all agents in the group share a common

belief. Note that in either interpretation, the resulting RCR is deterministic.

Let u : �X ! R be an affine utility function. An agent’s subjective expected utility of

an act f given her belief q is q · (u � f).14 Given a utility function, a signal distribution is
regular iff the subjective expected utilities of two acts are either always or never equal. This

a relaxation of the standard restriction in traditional RUM where utilities are never equal

and allows us to handle indifferences.

Definition. µ is regular iff q · (u � f) = q · (u � g) with µ-measure zero or one.

Let (µ, u) consist of a regular µ and a non-constant u. Define an information representation
as follows.

Definition (Information Representation). ⇢ is represented by (µ, u) iff for f 2 F 2 K,

⇢F (f) = µ {q 2 �S | q · (u � f) � q · (u � g) 8g 2 F }

This is a RUM model where the random utilities are subjective expected utilities that

depend on the agent’s private information. The probability of choosing an act f is exactly the
measure of beliefs that rank f higher than every other act in the decision-problem. Although
both µ and u are unobserved, the analyst can infer about the agent’s private information

and taste utility by studying her RCR. Note that when µ = �q, this reduced to the standard

subjective expected utility model of Anscombe and Aumann [2].

Since we are interesting in studying the role of information in random choice, the taste
utility u is fixed in an information representation. In the individual interpretation, this

implies that signals only affect beliefs but not tastes. In the group interpretation, this

implies that agents have unobserved beliefs but observed tastes (e.g. risk aversion). To the
analyst, choice is random only as a result of unobserved belief shocks.15

14 For any act f 2 H, let u � f 2 RS denote its utility vector where (u � f) (s) = u (f (s)) for all s 2 S.
15 In the Supplementary Appendix, we provide an axiomatic characterization of a more a general model

that allows for unobserved utility shocks as well.
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One of the classic critiques of subjective expected utility (especially in the context of

choosing health insurance for example) is the state independence of the (taste) utility. This
can be addressed in our model by considering random choice generalizations of classic solu-

tions to state-dependent utility as in Karni, Schmeidler and Vind [30] and Karni [29]. Note
that in practice however, the empirical literature on health insurance has largely assumed
state independence due to lack of better empirical evidence.16

Theorem 1 below states that studying binary choices is enough to completely identify

private information. In other words, given two agents (or two groups of agents), comparing

binary choices is sufficient to completely differentiate between the two information struc-
tures.17

Theorem 1 (Uniqueness). Suppose ⇢ and ⌧ are represented by (µ, u) and (⌫, v) respectively.

Then the following are equivalent:

(1) ⇢f[g (f) = ⌧f[g (f) for all f and g

(2) ⇢ = ⌧

(3) (µ, u) = (⌫,↵v + �) for ↵ > 0

Proof. See Appendix.

We end this section with a technical remark about regularity. As mentioned above, indif-

ferences in traditional RUM must occur with probability zero. Since all choice probabilities
are specified, these models run into difficulty when there are indifferences in the random

utility. Our definition of regularity circumvents this by allowing for just enough flexibility

so that we can model indifferences using non-measurability. Note that our definition still
imposes certain restrictions on µ. For example, multiple mass points are not allowed if µ is
regular.18

16 See Finkelstein, Luttmer and Notowidigdo [19].
17 Chambers and Lambert [10] also study the elicitation of unobservable information. While we consider an

infinite collection of binary decision-problems to obtain uniqueness, they consider a single decision-problem
but with an infinite set of choice options.

18 More precisely, our definition of regularity permits strictly positive measures on sets in �S that have
less than full dimension. Regularity in Gul and Pesendorfer [24] on the other hand, requires µ to be full-
dimensional (see their Lemma 2). See Block and Marschak [7] for the case of finite alternatives.
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3 Test Functions

We now introduce a key technical tool that will play an important role in our subsequent
analysis. To motivate the discussion, imagine enticing the agent with a test act that yields a

fixed payoff in every state. Given a decision-problem, what is the probability that the agent
will choose some act in the original decision-problem over the test act? If the test act is
very valuable (i.e. the fixed payoff is high), then this probability will be low. As we lower

the value of the test act, this probability will rise. Call this the test function for the original

decision-problem.

An act is the best (worst) act under ⇢ iff in any binary choice comparison, the act (other
act) is chosen with certainty. In other words, ⇢f[f

�

f
�

= ⇢f[f (f) = 1 for all f 2 H. If

⇢ is represented by (µ, u), then there exists constant best and worst acts.19 Test acts are

mixtures between the best and worst acts.

Definition. A test act is fa
:= af + (1� a) f for some a 2 [0, 1].

Note that test acts are also constant acts. Define test functions as follows.

Definition. Given ⇢, the test function of F 2 K is F⇢ : [0, 1] ! [0, 1] where

F⇢ (a) := ⇢F[fa
(F )

Let F⇢ denote the test function of decision-problem F 2 K given ⇢. If F = f is a

singleton act, then denote f⇢ = F⇢. As a increases, the test act fa progresses from the best

to worst act and becomes less attractive. Thus, the probability of choosing something in
F increases. Test functions are in fact cumulative distribution functions under information
representations.

Lemma 1. If ⇢ has an information representation, then F⇢ is a cumulative for all F 2 K.

Proof. See Appendix.

What follows is an example of a test function.

Example 2. Let S = {s1, s2}, X = {x, y} and u (a�x + (1� a) �y) = a 2 [0, 1]. Consider

the decision-problem F = {f, g} where u � f =

�

2
5 ,

2
5

�

and u � g =

�

1
4 ,

3
4

�

. Set µ such that
19 To see this, note that ⇢ induces a preference relation over constant acts that is represented by u. Since

u is affine and X is finite, we can always find a best and worst act.
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the density of qs1 is 6qs1 (1� qs1). Let ⇢ be represented by (µ, u). The test function of F is

F⇢ (a) = µ

⇢

qs1 2 [0, 1]

�

�

�

�

max

⇢

2

5

,
1

4

qs1 +
3

4

(1� qs1)

�

� 1� a

�

=

8

>

>

>

>

<

>

>

>

>

:

0 if a < 1
4

(4a� 1)

2
(1� a) if 1

4  a < 3
5

1 if 3
5  a

which is a cumulative distribution function.

Test functions are the random choice generalizations of best-worst mixtures that yield
indifference under deterministic choice. They completely characterize utility distributions.

An immediate corollary is that they are sufficient statistics for identifying information.

Corollary 1. Let ⇢ and ⌧ have information representations. Then ⇢ = ⌧ iff f⇢ = f⌧ for all

f 2 H.

Proof. Follows immediately from Theorem 1.

4 Evaluating Option Sets

We now address our first exercise of inference and show that there is an intimate relation-

ship between random choice and ex-ante valuations of option sets (i.e. decision-problems).
Consider a valuation preference relation ⌫ over decision-problems.

Definition (Subjective Learning). ⌫ is represented by (µ, u) iff it is represented by

V (F ) =

Z

�S

sup

f2F
q · (u � f) µ (dq)

In the individual interpretation, V gives the agent’s ex-ante valuation of decision-problems
prior to receiving her signal. For example, if the agent expects to receive a very informative

signal, then she will exhibit a strict preference for flexibility. This is the subjective learning

representation axiomatized by DLST. In the group interpretation, V gives the total utility

or “social surplus” (see McFadden [34]) of decision-problems for all agents in the group. For
instance, consider an entity (e.g. a firm) that completely internalizes the utilities of all agents
(e.g. employees) in a group and makes decisions based on total welfare. If the entity thinks
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that agent beliefs are very dispersed, then it would prefer more flexible (i.e. larger) option

sets.
In this section, assume that ⇢ has a best and worst act and F⇢ is a well-defined cumulative

for all F 2 K. Let K0 ⇢ K be the set of decision-problems where every act in the decision-
problem is measurable with respect to the RCR.20 Consider the following properties of RCRs.

Definition. ⇢ is monotone iff G ⇢ F implies ⇢G (f) � ⇢F (f).

Definition. ⇢ is linear iff ⇢F (f) = ⇢aF+(1�a)g (af + (1� a) g) for a 2 (0, 1).

Definition. ⇢ is continuous iff it is continuous on K0.21

An RCR is standard iff it is monotone, linear and continuous. Monotonicity is necessary
for any RUM while linearity is the random choice analog of the standard independence

axiom. Continuity is the usual continuity adjusted for indifferences. Any RCR that has an
information representation is standard, although the condition is a relatively weak restriction;
in fact, it is insufficient to guarantee that a random utility representation even exists.22

Consider evaluating decision-problems as follows.

Definition. Given ⇢, let ⌫⇢ be represented by V⇢ : K ! [0, 1] where

V⇢ (F ) :=

Z

[0,1]

F⇢ (a) da

A decision-problem that is valuable ex-ante will have acts that are chosen more frequently

over a potential test act, yielding a test function that takes on high values. Theorem 2
confirms that ⌫⇢ is the valuation preference relation corresponding to the RCR ⇢.

Theorem 2. The following are equivalent:

(1) ⇢ is represented by (µ, u)

(2) ⇢ is standard and ⌫⇢ is represented by (µ, u)

Proof. See Appendix.
20 That is, f 2 HF for all f 2 F 2 K0.
21 In other words, ⇢ : K0 ! ⇧0 is continuous where ⇧0 is the set of all Borel measures on H endowed with

the topology of weak convergence. Note that ⇢F 2 ⇧0 for all F 2 K0 without loss of generality.
22 See the axiomatic treatment in the Supplementary Appendix. In particular, extremeness is necessary

in order to ensure the existence of a random expected utility representation.
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Thus, if ⇢ has an information representation, then the integral of the test function F⇢ is

exactly the valuation of F . The analyst can simply use V⇢ to compute ex-ante valuations.
An immediate consequence is that if F⇢ (a) � G⇢ (a) for all a 2 [0, 1], then V⇢ (F ) � V⇢ (G).

Hence, first-order stochastic dominance of test functions implies higher valuations.
Theorem 2 also demonstrates that if a standard RCR induces a preference relation that

has a subjective learning representation, then that RCR must have an information represen-

tation. In fact, both the RCR and the preference relation are represented by the same (µ, u).

This serves as an alternate characterization of information representations using properties

of its induced preference relation.
The discussion above suggests a converse: given valuations, can the analyst directly

compute random choice? First, given any act f and state s, let fs denote the constant act

that yields f (s) in every state.

Definition. ⌫ is dominant iff fs ⌫ gs for all s 2 S implies F ⇠ F [ g for f 2 F .

Dominance is one of the axioms of a subjective learning representation in DLST. It captures
the intuition that adding acts that are dominated in every state does not affect ex-ante
valuations. Consider an RCR induced by a preference relation as follows.

Definition. Given ⌫, let ⇢⌫ denote any standard ⇢ such that a.e.

⇢F[fa (fa) =
dV (F [ fa)

da

where V : K ! [0, 1] represents ⌫ and fa := af + (1� a) f .

Given any preference relation ⌫, the RCR ⇢⌫ may not even exist. On the other hand,

there could be a multiplicity of RCRs that satisfy this definition. Theorem 3 shows that
these issues are irrelevant; if ⌫ has a subjective learning representation, then ⇢⌫ exists and

is the unique RCR corresponding to ⌫.

Theorem 3. The following are equivalent:

(1) ⌫ is represented by (µ, u)

(2) ⌫ is dominant and ⇢⌫ is represented by (µ, u)

Proof. See Appendix.
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The probability that an act fa is chosen is exactly its marginal contribution to the

valuation of the decision-problem.23 The more often the act is chosen, the greater its effect
on the decision-problem’s overall valuation. For instance, if the act is never chosen, then it

will have no effect on valuations (this is a cardinal version of Axiom 1 in AS).24 Any violation
of this would indicate some form of inconsistency, which we explore in Section 6.

The analyst can now use ⇢⌫ to directly compute random choice from valuations. To see

how, first define ⇢ so that it coincides with ⌫ over all constant acts. Then use the definition

of ⇢⌫ to specify ⇢F[fa (fa) for all a 2 [0, 1] and F 2 K. Linearity then extends ⇢ to all

decision-problems. By Theorem 3, the ⇢ so constructed is represented by (µ, u).
The other implication is that if a dominant preference relation induces an RCR that

has an information representation, then that preference relation has a subjective learning

representation. As in Theorem 2, this is an alternate characterization of subjective learning

representations using properties of its induced RCR.
Theorem 3 is the random choice version of Hotelling’s Lemma from classical producer

theory. The analogy follows if we interpret choice probabilities as “outputs”, conditional

utilities as “prices” and valuations as “profits”.25 Similar to how Hotelling’s Lemma is used

to compute firm outputs from the profit function, Theorem 3 can be used to compute random
choice from valuations.

Thus, similar to how classical results from consumer and producer theory (e.g. Hotelling’s

Lemma) provide a methodology for relating data, Theorems 3 and 4 allow an analyst to relate
valuations with random choice and vice-versa. Integrating test functions yields valuations,

while differentiating valuations yields random choice. This is a method of direct computa-

tion that completely bypasses the need to identify the signal distribution or taste utility.
Observing choice data in one time period allows the analyst to directly compute choice data
in the other. We summarize these results below.

Corollary 2. Let ⌫ and ⇢ be represented by (µ, u). Then ⌫⇢ = ⌫ and ⇢⌫ = ⇢.

23 In the econometrics literature, this is related to the Williams-Daly-Zachary Theorem that follows from
an envelope argument (see McFadden [34]). The presence of constant acts in the Anscombe-Aumann setup
however means Theorem 2 has no counterpart.

24 See Appendix E for a more detailed discussion.
25 Formally, let y be a probability on F , and for each y, let Qy = {Qf}f2F denote some partition of �S

such that µ (Qf ) = y (f). For f 2 F , let pf :=

R

Qf

q·(u�f)
µ(Qf )

µ (dq) denote the conditional utility of f . Interpret
y as “output” and p as “price” so V (F ) = supy,Qy

p ·y is the maximizing “profit”. Note that a = pfa is exactly
the price of fa. The caveat is that prices are fixed in Hotelling’s Lemma while in our case, pf depends on
Qy.
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Proof. Follows immediately from Theorems 3 and 4.

5 Assessing Informativeness

We now show how the analyst can infer who gets better information even when informa-

tion is not directly observable. First, consider the classic methodology when information is

observable. A transition kernel26 on �S is mean-preserving iff it preserves average beliefs.

Definition. The transition kernel K : �S ⇥ B (�S) ! [0, 1] is mean-preserving iff for all

q 2 �S,
Z

�S

p K (q, dp) = q

Let µ and ⌫ be two signal distributions. We say µ is more informative than ⌫ iff the
distribution of beliefs under µ is a mean-preserving spread of the distribution of beliefs under

⌫.

Definition. µ is more informative than ⌫ iff there is a mean-preserving transition kernel K

such that for all Q 2 B (�S)

µ (Q) =

Z

�S

K (p,Q) ⌫ (dp)

If µ is more informative than ⌫, then the information structure of ⌫ can be generated by

adding noise or “garbling” µ. This is Blackwell’s [5, 6] ordering of informativeness based on

signal sufficiency. If K is the identity kernel for example, then no information is lost and
⌫ = µ.

In the classical approach, Blackwell [5, 6] showed that better information is characterized

by higher ex-ante valuations. We now show how to characterize better information using

random choice. First, consider a degenerate signal distribution corresponding to an unin-

formative signal (or a group of agents all with the same belief). Choice is deterministic in
this case, so the test function of an act corresponds to a singleton mass point. Another
agent (or group of agents) with more information will have test functions that have a more

dispersed distribution. This is captured exactly by second-order stochastic dominance, that

is, F �SOSD G iff
R

R �dF � R

R �dG for all increasing concave � : R ! R.
26 K : �S ⇥ B (�S) ! [0, 1] is a transition kernel iff q ! K (q,Q) is measurable for all Q 2 B (�S) and

Q ! K (q,Q) is a measure on �S for all q 2 �S.
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Theorem 4. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively. Then µ is more

informative than ⌫ iff F⌧ �SOSD F⇢ for all F 2 K.

Proof. See Appendix.

Theorem 4 equates an unobservable multi-dimensional information ordering with an ob-

servable single-dimensional stochastic dominance relation. An analyst can assess informa-
tiveness simply by comparing test functions via second-order stochastic dominance. It is the
random choice characterization of better information. The intuition is that better informa-

tion corresponds to more dispersed (i.e. random) choice while worse information corresponds

to more concentrated (i.e. deterministic) choice. We illustrate with an example.

Example 3. Recall Example 2 from above and now let ⌫ be the uniform distribution. Let
⌧ be represented by (⌫, u). The test function of F = {f, g} under ⌧ is

F⌧ (a) =

8

>

>

>

>

<

>

>

>

>

:

0 if a < 1
4

2a� 1
2 if 1

4  a < 3
5

1 if 3
5  a

Note that ⌫ is more informative than µ and F⇢ �SOSD F⌧ as desired.

In DLST, better information is characterized by a greater preference for flexibility in the
valuation preference relation. This is the choice-theoretic version of Blackwell’s [5, 6] result.

A preference relation exhibits more preference for flexibility than another iff whenever the

other prefers a set to a singleton, the first must do so as well. Corollary 3 relates our random
choice characterization of better information with more preference for flexibility.

Definition. ⌫1 has more preference for flexibility than ⌫2 iff F ⌫2 f implies F ⌫1 f .

Corollary 3. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively. Then the following

are equivalent:

(1) F⌧ �SOSD F⇢ for all F 2 K
(2) ⌫⇢ has more preference for flexibility than ⌫⌧

(3) µ is more informative than ⌫

Proof. By Theorem 4, (1) and (3) are equivalent. By Corollary 2, ⌫⇢ and ⌫⌧ are represented

by (µ, u) and (⌫, u) respectively. Hence, by Theorem 2 of DLST, (2) is equivalent to (3).

16



Greater preference for flexibility and greater choice dispersion are the behavioral mani-

festations of better information. In the individual interpretation, a more informative signal
corresponds to greater preference for flexibility (ex-ante) and more randomness in choice

(ex-post). In the group interpretation, more private information corresponds to a greater
group preference for flexibility and more heterogeneity in choice. Note the prominent role
of test functions: computing their integrals evaluates options sets while comparing them via

second-order stochastic dominance assesses informativeness.

If µ is more informative than ⌫, then it follows from the Blackwell ordering that the two

distributions must have the same average belief. Combined with Theorem 4, this implies
that test functions of singleton acts under the more informative signal is a mean-preserving

spread of those under the less informative signal. This condition however is insufficient for

assessing informativeness; it corresponds to a strictly weaker stochastic dominance relation

known as the linear concave order.27 Note that an analyst cannot assess informativeness
by studying valuations of singleton acts since all singletons have the same ex-ante valuation
under two signals with the same average belief. However, looking at test functions will allow

the analyst to assess informativeness so the random choice characterization of better infor-

mation may sometimes be richer than the valuation one.

6 Detecting Biases

In this section, we study situations when the information inferred from valuations is in-

consistent with that inferred from random choice. In the individual interpretation, this

misalignment describes an agent whose prospective (ex-ante) beliefs about her signal are
misaligned with her retrospective (ex-post) beliefs. This is an informational version of the

dynamic inconsistency as in Strotz [45]. In the group interpretation, this describes the situa-

tion when valuations of option sets indicate a more (or less) dispersed distribution of beliefs
in a group than that implied by random choice.

Consider an agent who expects to receive a very informative signal. Ex-ante she prefers

large option sets and may be willing to pay a cost in order to postpone choice and “keep

her options open”. Ex-post however, she consistently chooses the same option. For example,
in the diversification bias, although an agent initially prefers option sets containing a large

27 See Section 3.5 of Muller and Stoyan [36] for more about the linear concave order.
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variety of foods, in the end, she always chooses the same food from the set.28 If her choice

is driven by informational reasons, then we can infer from her behavior that she initially
anticipated a more informative signal than what her later behavior suggests. This could be

due to a misplaced “false hope” of better information. Call this prospective overconfidence.

On the flip side, there may be situations where ex-post choice reflects greater confidence
than that implied by ex-ante preferences. To elaborate, consider an agent who expects to

receive a very uninformative signal. Hence, ex-ante, large option sets are not very valuable.

However, after receiving her signal, the agent becomes increasingly convinced of its informa-

tiveness. Both good and bad signals are interpreted more extremely, and she updates her
beliefs by more than what she anticipated initially. This could be the result of a confirmatory

bias where consecutive good and consecutive bad signals generate posterior beliefs that are

more dispersed.29 Call this prospective underconfidence.

Since beliefs in our model are subjective, we are silent as to which period’s behavior
is more “correct”. Both prospective overconfidence and underconfidence are relative com-
parisons involving subjective misconfidence. This is a form of belief misalignment that is

independent of the true information structure and is in some sense more fundamental.30

Let (⌫, ⇢) denote the valuation preference relation ⌫ and the RCR ⇢. Motivated by
Theorem 4, define subjective misconfidence as follows.31

Definition. (⌫, ⇢) exhibits prospective overconfidence (underconfidence) iff F⇢ �SOSD F⇢⌫

(F⇢ SOSD F⇢⌫) for all F 2 K.

Corollary 4. Let ⌫ and ⇢ be represented by (µ, u) and (⌫, u) respectively. Then (⌫, ⇢)

exhibits prospective overconfidence (underconfidence) iff µ is more (less) informative than ⌫.

Proof. Follows immediately from Corollary 2 and Theorem 4.

Corollary 4 provides a choice-theoretic foundation for subjective misconfidence. We can also
apply it to other behavioral biases involving information processing such as the hot-hand

28 See Read and Loewenstein [41]. Note that in our case, the uncertainty is over future beliefs and not
tastes. Nevertheless, there could be informational reasons for why one would prefer one food over another
(a food recall scandal for a certain candy for example).

29 See Rabin and Schrag [39] for a model and literature review of the confirmatory bias.
30 In Section 7, we show how an analyst can discern which period’s choice behavior is correct by studying

a richer data set (e.g. the joint data over choices and state realizations).
31 Note that by Corollary 3, we could redefine prospective overconfidence (underconfidence) solely in terms

of more (less) preference for flexibility.
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fallacy and the gambler’s fallacy.32 If we assume that the agent is unaffected by these bi-

ases ex-ante but she becomes afflicted ex-post, then the hot-hand and gambler’s fallacies
correspond to prospective underconfidence and overconfidence respectively. Corollary 4 also

allows us to rank the severity of these biases via the Blackwell ordering of information struc-
tures and provides a unifying methodology to study a wide variety of behavioral biases.

7 Calibrating Beliefs

Following Savage [43] and Anscombe and Aumann [2], we have adopted a purely subjective

treatment of beliefs. Our theory identifies when observed choice behavior is consistent with
some distribution of beliefs but is unable to recognize when these beliefs may be incorrect.33

For example, our notions of misconfidence in the previous section are descriptions of subjective

belief misalignment and not measures of objective misconfidence.
In this section, we incorporate additional data to achieve this distinction. By studying

the joint distribution over choices and state realizations, the analyst can test whether agents’
beliefs are objectively well-calibrated. In the individual interpretation, this implies that the

agent has rational expectations about her signals. In the group interpretation, this implies

that agents have beliefs that are predictive of actual state realizations and suggests that there
is genuine private information in the group. If information is observable, then calibrating
beliefs is a well-understood statistical exercise.34 We show how the analyst can use test

functions to calibrate beliefs even when information is not observable.

Let r 2 �S be some observed distribution over states. Assume that r has full support

without loss of generality. In this section, the primitive consists of r and a state-dependent

random choice rule (sRCR) ⇢ := (⇢s)s2S that specifies a RCR for each state.35 Let ⇢s,F (f)

denote the probability of choosing f 2 F given state s 2 S. The unconditional RCR is

⇢̄ :=
X

s2S
rs⇢s

Note that r in conjunction with the sRCR ⇢ completely specify the joint distribution over
32 See Gilovich, Vallone and Tversky [21] and Rabin [38] respectively.
33 In the Supplementary Appendix, we also provide an axiomatic treatment that incorporates the observed

distribution of states as part of the primitive.
34 For example, see Dawid [13].
35 Formally, an sRCR consists of (⇢,H) where ⇢ : S ⇥K ! ⇧ and (⇢s,H) is an RCR for all s 2 S.
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choices and state realizations.36

Information now corresponds to a joint distribution over beliefs and state realizations. In
this section, let µ := (µs)s2S be a state-dependent signal distribution where µs is the signal

distribution conditional on s 2 S. Let (µ, u) denote a state-dependent signal distribution µ

and a non-constant u. We now define a state-dependent information representation and say
⇢ is represented by (µ, u) iff ⇢s is represented by (µs, u) for all s 2 S. Note that this does not

imply beliefs are well-calibrated since µ may not be consistent with the observed frequency

r. Define the unconditional signal distribution as

µ̄ :=

X

s2S
rsµs

Definition. µ is well-calibrated iff for all s 2 S and Q 2 B (�S),

µs (Q) =

Z

Q

qs
rs
µ̄ (dq)

Well-calibration implies that µ satisfies Bayes’ rule. For each s 2 S, µs is exactly the
conditional signal distribution as implied by µ. In other words, choice behavior implies beliefs

that agree with the observed joint data on choices and state realizations. In the individual

interpretation, this implies that the agent has rational (i.e. correct) expectations about her
signals. In the group interpretation, this implies that all agents have rational (i.e. correct)
beliefs about their payoff-relevant state so there is genuine private information in the group.

We now show how the analyst can test for well-calibrated beliefs using test functions.
Let ⇢ be represented by (µ, u). Since u is fixed, both the best and worst acts are well-defined

for ⇢. Given a state s 2 S, define a conditional worst act f s as the act that coincides with

the worst act if s occurs and with the best act otherwise.37 Let fa
s := af s

+ (1� a) f be a

conditional test act and define a conditional test function as follows.

Definition. Given ⇢, the conditional test function of F 2 K is F s
⇢ : [0, rs] ! [0, 1] where

F s
⇢ (rsa) := ⇢s,F[fa

s
(F )

A conditional test function specifies the conditional choice probability as we vary the

conditional test act from the best to the conditional worst act. As with unconditional
36 State-dependent stochastic choice was studied by Caplin and Martin [9] and Caplin and Dean [8] who

demonstrate the feasibility of collecting such data for individuals. In the group interpretation, this data is
also readily available (see Chiappori and Salanié [11]).

37 That is, fs
(s) = f (s) and fs

(s0) = ¯f (s0) for all s0 6= s.
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test functions, conditional test functions are increasing functions that are cumulatives if

F s
⇢ (rs) = 1. Let Ks denote all decision-problems with conditional test functions that are

cumulatives.

Theorem 5. Let ⇢ be represented by (µ, u). Then µ is well-calibrated iff F s
⇢ and F⇢̄ share

the same mean for all F 2 Ks and s 2 S.

Proof. See Appendix.

Theorem 5 equates well-calibrated beliefs with the requirement that both conditional and
unconditional test functions have the same mean. It is a random choice characterization of

rational beliefs using test functions.

Suppose that in addition to the sRCR ⇢, the analyst also observes the valuation preference
relation ⌫ over all decision-problems. In this case, if beliefs are well-calibrated, then any

misalignment between ⌫ and ⇢ is no longer solely subjective. For example, in the individual
interpretation, any prospective overconfidence (underconfidence) can now be interpreted as

objective overconfidence (underconfidence) with respect to the true information structure.
By enriching choice behavior with data on state realizations, the analyst can now make

claims about objective belief misalignment.
Finally, we relate Theorem 5 to Caplin and Martin [9] who characterize state-dependent

random choice with a restriction called No Improving Action Switches (NIAS). We adapt

NIAS to our setting below and the proposition below relates NIAS to belief calibration.

Definition. Let ⇢ be represented by (µ, u). Then ⇢ satisfies NIAS iff for all g 2 F 2 K,

X

s2S
rs⇢s,F (f) u (f (s)) �

X

s2S
rs⇢s,F (f) u (g (s))

Proposition 1. Let ⇢ be represented by (µ, u). Then µ is well-calibrated iff ⇢ satisfies NIAS.

Proof. See Appendix.

Under state-dependent information representations, using test functions to calibrate be-
liefs is equivalent to checking for NIAS. Hence, the application of NIAS extends to our

model.
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Appendix

A. Preliminaries and identification

Given a non-empty collection G of subsets of H and some F 2 K, define

G \ F := {G \ F |G 2 G}

If G is a �-algebra, then G \ F is the trace of G on F 2 K. For G ⇢ F 2 K, define the
smallest HF -measurable set containing G as follows

GF :=

\

G⇢G02HF

G0

Lemma (A1). Let G ⇢ F 2 K.

(1) HF \ F = H \ F .

(2) GF =

ˆG \ F 2 HF for some ˆG 2 H.

(3) F ⇢ F 0 2 K implies GF = GF 0 \ F .

Proof. Let G ⇢ F 2 K.

(1) Recall that HF := � (H [ {F}) so H ⇢ HF implies H \ F ⇢ HF \ F . Let

G := {G ⇢ H|G \ F 2 H \ F}

We first show that G is a �-algebra. Let G 2 G so G \ F 2 H \ F . Now

Gc \ F = (Gc [ F c
) \ F = (G \ F )

c \ F

= F\ (G \ F ) 2 H \ F

as H \ F is the trace �-algebra on F . Thus, Gc 2 G. For Gi ⇢ G, Gi \ F 2 H \ F so
 

[

i

Gi

!

\ F =

[

i

(Gi \ F ) 2 H \ F

Hence, G is an �-algebra

Note that H ⇢ G and F 2 G so H [ {F} ⇢ G. Thus, HF = � (H [ {F}) ⇢ G. Hence,

HF \ F ⇢ G \ F = {G0 \ F |G0
= G \ F 2 H \ F} ⇢ H \ F
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so HF \ F = H \ F .

(2) Since HF \ F ⇢ HF , we have

GF :=

\

G⇢G02HF

G0 ⇢
\

G⇢G02HF\F
G0

Suppose g 2 T

G⇢G02HF\F G0. Let G0 be such that G ⇢ G0 2 HF . Now, G ⇢ G0 \ F 2
HF \F so by the definition of g, we have g 2 G0 \F . Since this is true for all such G0,

we have g 2 GF . Hence,

GF =

\

G⇢G02HF\F
G0

=

\

G⇢G02H\F
G0

where the second equality follows from (1). Since F is finite, we can find ˆGi 2 H where
G ⇢ ˆGi \ F for i 2 {1, . . . , k}. Hence,

GF =

\

i

⇣

ˆGi \ F
⌘

=

ˆG \ F

where ˆG :=

T

i
ˆGi 2 H. Note that GF 2 HF follows trivially.

(3) By (2), let GF =

ˆG \ F and GF 0
=

ˆG0 \ F 0 for
n

ˆG, ˆG0
o

⇢ H. Since F ⇢ F 0,

G ⇢ GF 0 \ F =

ˆG0 \ F 2 HF

so GF ⇢ GF 0\F by the definition of GF . Now, by the definition of GF 0 , GF 0 ⇢ ˆG\F 0 2
HF 0 so

GF 0 \ F ⇢
⇣

ˆG \ F 0
⌘

\ F =

ˆG \ F = GF

Hence, GF = GF 0 \ F .

Let ⇢ be an RCR. By Lemma A1, we can now define

⇢⇤F (G) := inf

G⇢G02HF

⇢F (G0
) = ⇢F (GF )

for G ⇢ F 2 K. Going forward, let ⇢ denote ⇢⇤ without loss of generality. We also employ
the notation

⇢ (F,G) := ⇢F[G (F )
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for {F,G} ⇢ K. We say that two acts are tied iff they are indifferent.

Definition. f and g are tied iff ⇢ (f, g) = ⇢ (g, f) = 1.

Lemma (A2). For {f, g} ⇢ F 2 K, the following are equivalent:

(1) f and g are tied

(2) g 2 fF

(3) fF = gF

Proof. We prove that (1) implies (2) implies (3) implies (1). Let {f, g} ⇢ F 2 K. First,

suppose f and g are tied so ⇢ (f, g) = ⇢ (g, f) = 1. If ff[g = f , then g = (f [ g) \fF 2 Hf[g

so gf[g = g. As a result, ⇢ (f, g)+⇢ (g, f) = 2 > 1 a contradiction. Thus, ff[g = f [g. Now,

since f [ g ⇢ F , by Lemma A1, f [ g = ff[g = fF \ (f [ g) so g 2 fF . Hence, (1) implies
(2).

Now, suppose g 2 fF so g 2 gF \ fF . By Lemma A1, gF \ fF 2 HF so gF ⇢ gF \ fF

which implies gF ⇢ fF . If f 62 gF , then f 2 fF\gF 2 HF . As a result, fF ⇢ fF\gF implying

gF = Ø a contradiction. Thus, f 2 gF , so f 2 gF \ fF which implies fF ⇢ gF \ fF and
fF ⇢ gF . Hence, fF = gF so (2) implies (3).

Finally, assume fF = gF so f [ g ⇢ fF by definition. By Lemma A1 again,

ff[g = fF \ (f [ g) = f [ g

so ⇢ (f, g) = ⇢f[g (f [ g) = 1. By symmetric reasoning, ⇢ (g, f) = 1 so f and g are tied.

Thus, (1), (2) and (3) are all equivalent.

Lemma (A3). Let ⇢ be monotonic.

(1) For f 2 F 2 K, ⇢F (f) = ⇢F[g (f) if g is tied with some g0 2 F .

(2) Let F :=

S

i fi, G :=

S

i gi and assume fi and gi are tied for all i 2 {1, . . . , n}. Then

⇢F (fi) = ⇢G (gi) for all i 2 {1, . . . , n}.

Proof. We prove the lemma in order:

(1) By Lemma A2, we can find hi 2 F for i 2 {1, . . . , k} such that
�

h1
F , . . . h

k
F

 

forms a
unique partition on F . Without loss of generality, assume g is tied with some g0 2 h1

F .
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By Lemma A2 again, h1
F[g = h1

F [ g and hi
F[g = hi

F for i > 1. By monotonicity, for all

i

⇢F
�

hi
F

�

= ⇢F
�

hi
� � ⇢F[g

�

hi
�

= ⇢F[g
�

hi
F[g

�

Now, for any f 2 hj
F , f 2 hj

F[g and

⇢F (f) = 1�
X

i 6=j

⇢F
�

hi
F

�  1�
X

i 6=j

⇢F[g
�

hi
F[g

�

= ⇢F[g (f)

By monotonicity again, ⇢F (f) = ⇢F[g (f).

(2) Let F :=

S

i fi, G :=

S

i gi and assume fi and gi are tied for all i 2 {1, . . . , n}. From

(1), we have
⇢F (fi) = ⇢F[gi (fi) = ⇢F[gi (gi) = ⇢(F[gi)\fi (gi)

Repeating this argument yields ⇢F (fi) = ⇢G (gi) for all i.

For {F, F 0} ⇢ K, we use the condensed notation FaF 0
:= aF + (1� a)F 0. Let Hc ⇢ H

denote the set of all constant acts.

Lemma (A4). Let ⇢ be monotonic and linear. For f 2 F 2 K, let F 0
:= Fah and f 0

:= fah

for some h 2 H and a 2 (0, 1). Then ⇢F (f) = ⇢F 0
(f 0

) and f 0
F 0 = fFah.

Proof. Note that ⇢F (f) = ⇢F 0
(f 0

) follows directly from linearity, so we just need to prove

that f 0
F 0 = fFah. Let g0 := gah 2 fFah for g 2 F tied with f . By linearity, ⇢ (f 0, g0) =

⇢ (g0, f 0
) = 1 so g0 is tied with f 0. Thus, g0 2 f 0

F 0 by Lemma A2 and fFah ⇢ f 0
F 0 . Now, let

g0 2 f 0
F 0 so g0 = gah is tied with fah. By linearity again, f and g are tied so g0 2 fFah.

Thus, f 0
F 0 = fFah.

Lemma (A5). Let ⇢ be represented by (µ, u). Then for any measurable � : R ! R,

Z

[0,1]

�dF⇢ =

Z

�S

�

 

u
�

f
�� supf2F q · (u � f)
u
�

f
�� u

�

f
�

!

µ (dq)

Proof. For F 2 K, let  F : �S ! [0, 1] be such that  F (q) =

u
(

f
)

�supf2F q·(u�f)
u
(

f
)

�u
(

f
)

which is

measurable. Let �F := µ �  �1
F be the image measure on [0, 1]. By a standard change of

variables (Theorem I.5.2 of Çinlar [12]),
Z

[0,1]

� (x)�F (dx) =

Z

�S

� ( F (q))µ (dq)

28



We now show that the cumulative distribution function of �F is exactly F⇢. For a 2 [0, 1],

let fa
:= faf 2 Hc. Now,

�F [0, a] = µ �  �1
F [0, a] = µ {q 2 �S | a �  F (q) � 0}

= µ

⇢

q 2 �S

�

�

�

�

sup

f2F
q · (u � f) � u (fa

)

�

First, assume fa is tied with nothing in F . Since µ is regular, µ {q 2 �S| u (fa) = q · (u � f)} =

0 for all f 2 F . Thus,

�F [0, a] = 1� µ {q 2 �S| u (fa) � q · (u � f) 8f 2 F}
= 1� ⇢ (fa, F ) = ⇢ (F, fa

) = F⇢ (a)

Now, assume fa is tied with some g 2 F so u (fa
) = q · (u � g) µ-a.s.. Thus, fa 2 gF[fa so

F⇢ (a) = ⇢ (F, fa
) = 1 = �F [0, a]

Hence, �F [0, a] = F⇢ (a) for all a 2 [0, 1]. Note that �F [0, 1] = 1 = F⇢ (1) so F⇢ is the
cumulative distribution function of �F .

For convenience, define the following.

Definition. F �m G iff
R

R xdF (x) � R

R xdG (x).

Lemma (A6). Let ⇢ and ⌧ be represented by (µ, u) and (⌫, v) respectively. Then the following

are equivalent:

(1) u = ↵v + � for ↵ > 0

(2) f⇢ = f⌧ for all f 2 Hc

(3) f⇢ =m f⌧ for all f 2 Hc

Proof. For f 2 Hc, let û (f) :=
u
(

f
)

�u(f)

u
(

f
)

�u
(

f
)

and note that

f⇢ (a) = ⇢
�

f, faf
�

= 1[û(f),1] (a)

Thus, the distribution of f⇢ is a Dirac measure at {û (f)} so
Z

[0,1]

a df⇢ (a) = û (f)
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and �f⇢ = �{R[0,1] df⇢(a)a}. Hence, �f⇢ = �f⌧ iff f⇢ =m f⌧ so (2) and (3) are equivalent.

We now show that (1) and (3) are equivalent. Let ⌫c
⇢ and ⌫c

⌧ be the two preference
relations induced on Hc by ⇢ and ⌧ respectively, and let

�

f, f
�

and
�

g, g
�

denote their

respective worst and best acts. If (1) is true, then we can take
�

f, f
�

=

�

g, g
�

. Thus, for
f 2 Hc

Z

[0,1]

a df⇢ (a) = û (f) = v̂ (f) =

Z

[0,1]

a df⌧ (a)

so (3) is true. Now, suppose (3) is true. For any f 2 Hc, we can find {↵, �} ⇢ [0, 1] such

that f↵f ⇠c
⇢ f ⇠c

⌧ g�g. Note that

↵ = û (f) =

Z

[0,1]

a df⇢ (a) =

Z

[0,1]

a df⌧ (a) = v̂ (f) = �

so f ⇠c
⇢ f↵f iff f ⇠c

⌧ g↵g. As a result, f ⌫c
⇢ g iff f↵f ⌫c

⇢ f�f iff � � ↵ iff g↵g ⌫c
⌧ g�g

iff f ⌫c
⌧ g. Thus, ⇢ = ⌧ on Hc so u = ↵v + � for ↵ > 0. Hence, (1), (2) and (3) are all

equivalent.

Theorem (A7). Let ⇢ and ⌧ be represented by (µ, u) and (⌫, v) respectively. Then the

following are equivalent:

(1) (µ, u) = (⌫,↵v + �) for ↵ > 0

(2) ⇢ = ⌧

(3) ⇢ (f, g) = ⌧ (f, g) for all {f, g} ⇢ H

(4) f⇢ = f⌧ for all f 2 H

Proof. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, v) respectively. If (1) is true, then

⇢F (f) = ⌧F (f) for all f 2 H from the representation. Moreover, since ⇢ (f, g) = ⇢ (g, f) = 1

iff ⌧ (f, g) = ⌧ (g, f) = 1 iff f and g are tied, the partitions {fF}f2F agree under both ⇢ and

⌧ . Thus, H⇢
F = H⌧

F for all F 2 K so ⇢ = ⌧ and (2) is true. Note that (2) implies (3) implies
(4) trivially.

Hence, all that remains is to prove that (4) implies (1). Assume (4) is true so f⇢ = f⌧

for all f 2 H. By Lemma A6, this implies u = ↵v + � for ↵ > 0. Thus, without loss of
generality, we can assume 1 = u

�

f
�

= v
�

f
�

and 0 = u
�

f
�

= v
�

f
�

so u = v. Now,

 f (q) := 1� q · (u � f) = 1� q · (v � f)
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where  f : �S ! [0, 1]. Let �f⇢ = µ �  �1
f and �f⌧ = ⌫ �  �1

f , so by the lemma above, they

correspond to the cumulatives f⇢ and f⌧ . Now, by Ionescu-Tulcea’s extension (Theorem
IV.4.7 of Çinlar [12]), we can create a probability space on ⌦ with two independent random

variables X : ⌦ ! �S and Y : ⌦ ! �S such that they have distributions µ and ⌫

respectively. Let � (a) = e�a, and since f⇢ = f⌧ , by Lemma A5,

E
⇥

e� f (X)
⇤

=

Z

�S

e� f (q)µ (dq)

=

Z

[0,1]

e�a df⇢ (a) =

Z

[0,1]

e�a df⌧ (a)

=

Z

�S

e� f (q)⌫ (dq) = E
⇥

e� f (Y )
⇤

for all f 2 H. Let wf 2 [0, 1]S be such that wf = 1�u�f so  f (q) = q ·wf . Since this is true

for all f 2 H, we have E
⇥

e�w·X⇤
= E

⇥

e�w·Y ⇤ for all w 2 [0, 1]S. Since Laplace transforms
completely characterize distributions (see Exercise II.2.36 of Çinlar [12]), X and Y have the
same distribution, so µ = ⌫. Thus, (µ, u) = (⌫,↵v + �) for ↵ > 0 and (1) is true. Hence, (1)

to (4) are all equivalent.

B. Evaluating option sets

In this section, consider RCRs ⇢ such that there are
�

f, ¯f
 ⇢ Hc where ⇢

�

f, f
�

= ⇢
�

f, f
�

=

1 for all f 2 H and F⇢ is a cumulative distribution function for all F 2 K. For a 2 [0, 1],
define fa

:= faf .

Lemma (B1). For any cumulative F on [0, 1],
Z

[0,1]

F (a) da = 1�
Z

[0,1]

a dF (a)

Proof. By Theorem 18.4 of Billingsley [4], we have
Z

(0,1]

a dF (a) = F (1)�
Z

(0,1]

F (a) da

The result then follows immediately.

Lemma (B2). For cumulatives F and G on [0, 1], F = G iff F = G a.e..

Proof. Note that sufficiency is trivial so we prove necessity. Let � be the Lebesgue measure

and D := {b 2 [0, 1]|F (b) 6= F (G)} so � (D) = 0. For each a < 1 and " > 0 such that
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a+ "  1, let Ba," := (a, a+ "). Suppose F (b) 6= G (b) for all b 2 Ba,". Thus, Ba," ⇢ D so

0 < " = � (Ba,")  � (D)

a contradiction. Thus, there is some b 2 Ba," such that F (b) = G (b) for all such a and

". Since both F and G are cumulatives, they are right-continuous so F (a) = G (a) for all
a < 1. Since F (1) = 1 = G (1), F = G.

Lemma (B3). Let ⇢ be monotonic and linear. Then
�

F [ f b
�

⇢
= F⇢ _ f b

⇢ for all b 2 [0, 1].

Proof. Let ⇢ be monotonic and linear. Note that if ⇢
�

f, f
�

> 0, then f and f are tied so

by Lemma A3, ⇢
�

f, f
�

= ⇢
�

f, f
�

= 1 for all f 2 H. Thus, all acts are tied, so
�

F [ f b
�

⇢
=

1 = F⇢ _ f b
⇢ trivially.

Assume ⇢
�

f, f
�

= 0, so linearity implies ⇢
�

f b, fa
�

= 1 for a � b and ⇢
�

f b, fa
�

= 0

otherwise. Hence f b
⇢ = 1[b,1], so for any F 2 K,

�

F⇢ _ f b
⇢

�

(a) =
�

F⇢ _ 1[b,1]

�

(a) =

8

<

:

1 if a � b

F⇢ (a) otherwise

Let G := F [ f b [ fa so
�

F [ f b
�

⇢
(a) = ⇢G

�

F [ f b
�

First, suppose a � b. If a > b, then ⇢
�

fa, f b
�

= 0 so ⇢G (fa
) = 0 by monotonicity. Hence,

⇢G
�

F [ f b
�

= 1. If a = b, then ⇢G
�

F [ f b
�

= 1 trivially. Thus,
�

F [ f b
�

⇢
(a) = 1 for all

a � b. Now consider a < b so ⇢
�

f b, fa
�

= 0 which implies ⇢G
�

f b
�

= 0 by monotonicity.

First, suppose fa is tied with nothing in F . Thus, by Lemma A2, fa
G = fa

F[fa = fa so

⇢F[fa
(F ) + ⇢F[fa

(fa
) = 1 = ⇢G (F ) + ⇢G (fa

)

By monotonicity, ⇢F[fa
(F ) � ⇢G (F ) and ⇢F[fa

(fa
) � ⇢G (fa

) so ⇢G (F ) = ⇢F[fa
(F ).

Hence,

⇢G
�

F [ f b
�

= ⇢G (F ) = ⇢F[fa
(F ) = F⇢ (a)

Finally, suppose fa is tied with some f 0 2 F . Thus, by Lemma A3,

⇢G
�

F [ f b
�

= ⇢F[fb

�

F [ f b
�

= 1 = F⇢ (a)

so
�

F [ f b
�

⇢
(a) = F⇢ (a) for all a < b. Thus,

�

F [ f b
�

⇢
= F⇢ _ f b

⇢ .
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Definition. u is normalized iff u
�

f
�

= 0 and u
�

f
�

= 1.

Lemma (B4). Let ⇢ be monotonic and linear. Suppose ⌫⇢ and ⌧ are represented by (µ, u).

Then F⇢ = F⌧ for all F 2 K.

Proof. Let ⇢ be monotonic and linear, and suppose ⌫⇢ and ⌧ are represented by (µ, u). By

Theorem A7, we can assume u is normalized without loss of generality. Let

V (F ) :=

Z

�S

sup

f2F
q · (u � F )µ (dq)

so V represents ⌫⇢. Since test functions are well-defined under ⇢, let f and f be the best

and worst acts respectively. We first show that ⇢
�

f, f
�

= 0. Suppose otherwise so f and

f must be tied. By Lemma A4, f b and fa are tied for all {a, b} ⇢ [0, 1]. Thus, f b
(a) = 1

for all {a, b} ⇢ [0, 1]. Hence V⇢
�

f b
�

= V⇢ (f
a
) so V

�

f b
�

= V (fa
) for all {a, b} ⇢ [0, 1]. This

implies
u
�

f
�

= V
�

f 1
�

= V
�

f b
�

= u
�

f b
�

for all b 2 [0, 1] contradicting the fact that u is non-constant. Thus, ⇢
�

f, f
�

= 0 so
Z

[0,1]

f
⇢
(a) da = 0 

Z

[0,1]

f⇢ (a) da  1 =

Z

[0,1]

f⇢ (a) da

which implies f �⇢ f �⇢ f . Thus, V
�

f
�  V (f)  V

�

f
�

for all f 2 H so u
�

f
�  u (f) 

u
�

f
�

for all f 2 Hc and
�

f, f
 ⇢ Hc. Hence, we can let f and f be the worst and best acts

of ⌧ .

Since ⌫⇢ is represented by V , we have V⇢ (F ) = � (V (F )) for some monotonic transfor-
mation � : R ! R. Now, for b 2 [0, 1],

1� b =

Z

[0,1]

f b
⇢ (a) da = V⇢

�

f b
�

= �
�

V
�

f b
��

= � (1� b)

so � (a) = a for all a 2 [0, 1]. Now, by Lemmas A5 and B1,
Z

[0,1]

F⇢ (a) da = V⇢ (F ) = V (F )

= 1�
Z

[0,1]

a dF⌧ (a) =

Z

[0,1]

F⌧ (a) da

for all F 2 K.
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By Lemma B3, for all b 2 [0, 1],
Z

[0,1]

�

F [ f b
�

⇢
(a) da =

Z

[0,1]

�

F⇢ _ f b
⇢

�

(a) da =

Z

[0,1]

�

F⇢ _ 1[b,1]

�

(a) da

=

Z

[0,b]

F⇢ (a) da+ 1� b

Thus, for all b 2 [0, 1],

G (b) :=

Z

[0,b]

F⇢ (a) da =

Z

[0,b]

F⌧ (a) da

Let � be the measure corresponding to G so � [0, b] = G (b). Thus, by the Radon-Nikodym
Theorem (see Theorem I.5.11 of Çinlar [12]), we have a.e.

F⇢ (a) =
d�

da
= F⌧ (a)

Lemma B2 then establishes that F⇢ = F⌧ for all F 2 K.

Lemma (B5). Let ⇢ be monotonic, linear and continuous. Suppose ⌧ is represented by (µ, u).

Then F⇢ = F⌧ for all F 2 K iff ⇢ = ⌧ .

Proof. Note that necessity is trivial so we prove sufficiency. Assume u is normalized without

loss of generality. Suppose F⇢ = F⌧ for all F 2 K. Let
�

f, f , g, g
 ⇢ Hc be such that for all

f 2 H,
⇢
�

f, f
�

= ⇢
�

f, f
�

= ⌧ (g, f) = ⌧
�

f, g
�

= 1

Note that
⌧
�

f, g
�

= f ⌧ (0) = f⇢ (0) = 1

so f and g are ⌧ -tied. Thus, by Lemma A3, we can assume f = g without loss of generality.

Now, suppose u
�

f
�

> u
�

g
�

so we can find some f 2 Hc such that u
�

f
�

> u (f) and f = fbf

for some b 2 (0, 1). Now,

1 = ⌧
�

f, g
�

= f⌧ (1) = f⇢ (1) = ⇢
�

f, f
�

violating linearity. Thus, u
�

f
�

= u
�

g
�

, so f and g are also ⌧ -tied and we assume f = g

without loss of generality.
Suppose f 2 H and f b are ⌧ -tied for some b 2 [0, 1]. We show that f b and f are also

⇢-tied. Note that

1[b,1] (a) = f⌧ (a) = f⇢ (a) = ⇢ (f, fa
)
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Suppose f b is not ⇢-tied with g. Thus, ⇢
�

f b, f
�

= 0. Now, for a < b, ⇢ (f, fa
) = 0 implying

⇢ (fa, f) = 1. This violates the continuity of ⇢. Thus, f b is ⇢-tied with f .
Consider any {f, g} ⇢ H such that f and g are ⌧ -tied As both ⇢ and ⌧ are linear, we

can assume g 2 Hc without loss of generality by Lemma A4. Let f b be ⌧ -tied with g, so it
is also ⌧ -tied with f . From above, we have f b is ⇢-tied with both f and g, so both f and g

are ⇢-tied by Lemma A2.

Now, suppose f and g are ⇢-tied and we assume g 2 Hc again without loss of generality.

Let f b be ⌧ -tied with g. From above, f b is ⇢-tied with g are thus also with f . Hence

⌧ (f, g) = ⌧
�

f, f b
�

= f⌧ (b) = f⇢ (b) = 1

Now, let h 2 H be such that g = fah for some a 2 (0, 1). By linearity, we have h is ⇢-tied

with g and thus also with f b. Hence

⌧ (h, g) = ⌧
�

h, f b
�

= h⌧ (b) = h⇢ (b) = 1

By linearity, f and g are ⌧ -tied. Hence, f and g are ⇢-tied iff they are ⌧ -tied, so ties agree

on both ⇢ and ⌧ and H⇢
F = H⌧

F for all F 2 K.

Now, consider f 2 G. Note that by linearity and Lemma A3, we can assume f = fa

for some a 2 [0, 1] without loss of generality. First, suppose fa is tied with nothing in

F := G\fa. Thus,

⇢G (f) = 1� ⇢G (F ) = 1� F⇢ (a) = 1� F⌧ (a) = ⌧G (f)

Now, if fa is tied with some act in G, then let F 0
:= F\fa

G. By Lemma A3, ⇢G (f) = ⇢ (f, F 0
)

and ⌧G (f) = ⌧ (f, F 0
) where f is tied with nothing in F 0. Applying the above on F 0 yields

⇢G (f) = ⌧G (f) for all f 2 G 2 K. Hence, ⇢ = ⌧ .

Theorem (B6). Let ⇢ be monotonic, linear and continuous. Then the following are equiva-

lent:

(1) ⇢ is represented by (µ, u)

(2) ⌫⇢ is represented by (µ, u)

Proof. First suppose (1) is true and assume u is normalized without loss of generality. Let

V (F ) :=

Z

�S

sup

f2F
q · (u � F )µ (dq)
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so from Lemmas A5 and B1,

V⇢ (F ) = 1�
Z

[0,1]

a dF⇢ (a) = 1� (1� V (F )) = V (F )

so (2) is true. Now, suppose (2) is true and let ⌧ be represented by (µ, u) with u normalized.

By Lemma B4, F⇢ = F⌧ for all F 2 K. By Lemma B5, ⇢ = ⌧ so (1) is true.

Lemma (B7). Let ⌫ be dominant and ⇢ = ⇢⌫. Then for all F 2 K

(1) f ⌫ F ⌫ f

(2) F [ f ⇠ f and F [ f ⇠ F

Proof. Let ⌫ be dominant and ⇢ = ⇢⌫. We prove the lemma in order:

(1) Since ⇢ = ⇢⌫, let V : K ! [0, 1] represent ⌫ and ⇢ (fa, F ) =

dV (F[fa)
da

for fa :=

af + (1� a) f . Thus,

V (F [ f1)� V (F [ f0) =

Z

[0,1]

dV (F [ fa)

da
da =

Z

[0,1]

⇢ (fa, F ) da

Now, for F = f ,

V
�

f [ f
�� V

�

f
�

=

Z

[0,1]

⇢
�

fa, f
�

da = 1

Thus, V
�

f
�

= 0 and V
�

f [ f
�

= 1. Since f ⌫ f , by dominance,

V
�

f
�

= V
�

f [ f
�

= 1

so V
�

f
�

= 1 � V (F ) � 0 = V
�

f
�

for all F 2 K.

(2) From (1), f ⌫ f ⌫ f for all f 2 H. Let F = {f1, . . . , fk}. By iteration,

f ⇠ f [ f1 ⇠ f [ f1 [ f2 ⇠ f [ F

Now, for any f 2 F , fs ⌫ f for all s 2 S so F ⇠ F [ f .

Lemma (B8). Let ⇢ be monotone, linear and ⇢
�

f, f
�

= 0. Then a.e.

⇢ (fa, F ) = 1� F⇢ (1� a) =
dV⇢ (F [ fa)

da
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Proof. Let ⇢ be monotone, linear and ⇢
�

f, f
�

= 0 and let f b
:= f1�b. We first show that a.e.

1 = ⇢
�

f b, F
�

+ F⇢ (b) = ⇢
�

f b, F
�

+ ⇢
�

F, f b
�

By Lemma A2, this is violated iff ⇢
�

f b, F
�

> 0 and there is some act in f 2 F tied with f b.

Note that if f is tied with f b, then f cannot be tied with fa for some a 6= b as ⇢
�

f, f
�

= 0.
Thus, ⇢

�

f b, F
�

+ F⇢ (b) 6= 1 at most a finite number of points as F is finite. The result

follows.
Now, by Lemma B3,

V⇢ (F [ fb) = V⇢
�

F [ f 1�b
�

=

Z

[0,1]

⇣

F⇢ (a) _
�

f 1�b
�

⇢
(a)

⌘

da

=

Z

[0,1�b]

F⇢ (a) da+ b =

Z

[b,1]

F⇢ (1� a) da+ b

Since V⇢ (F [ f0) =
R

[0,1] F⇢ (1� a) da, we have

V⇢ (F [ fb)� V⇢ (F [ f0) = b�
Z

[0,b]

F⇢ (1� a) da

=

Z

[0,b]

(1� F⇢ (1� a)) da

Thus, we have a.e.
dV⇢ (F [ fa)

da
= 1� F⇢ (1� a) = ⇢ (fa, F )

Theorem (B9). Let ⌫ be dominant. Then the following are equivalent:

(1) ⌫ is represented by (µ, u)

(2) ⇢⌫ is represented by (µ, u)

Proof. Assume u is normalized without loss of generality and let

V (F ) :=

Z

�S

sup

f2F
q · (u � f)µ (dq)

First, suppose (1) is true and let ⇢ = ⇢⌫ where W : K ! [0, 1] represents ⌫ and
⇢ (fa, F ) =

dW (F[fa)
da

for fa := af + (1� a) f . Since V also represents ⌫, W = � � V for
some monotonic � : R ! R. By Lemma B7, f ⌫ F ⌫ f so u

�

f
� � u (f) � u

�

f
�

for all

f 2 H. Let ⌧ be represented by (µ, u) so f and f are the worst and best acts of ⌧ as well.
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By Lemmas A5 and B1,

V⌧ (F ) = 1�
Z

[0,1]

a dF⌧ (a) = 1� (1� V (F )) = V (F )

so by Lemma B8, ⌧ (fa, F ) =

dV (F[fa)
da

.

Suppose ⇢
�

f, f
�

> 0 so f and f are ⇢-tied. Thus, by Lemma A2, ⇢
�

f, f
�

= ⇢
�

f, f
�

= 1

so all acts are tied under ⇢. Thus,

W (f1)�W (f1 [ f0) =

Z

[0,1]

⇢ (fa, f1) da = 1

so f � f [ f ⇠ f by Lemma B7 a contradiction. Thus, ⇢
�

f, f
�

= 0.

Now,
W

�

f [ f
��W

�

f
�

=

Z

[0,1]

⇢
�

fa, f
�

da = 1

so W
�

f
�

= 0 and W
�

f
�

= 1 by dominance. By dominance, for b � 0,

W (fb) = W (f0 [ fb)�W (f0 [ f0) =

Z

[0,b]

⇢ (fa, f0) da = b

By the same argument, V (fb) = b so

b = W (fb) = � (V (fb)) = � (b)

so W = V . By Lemma B8, we have a.e.

1� F⌧ (1� a) = ⌧ (fa, F ) =

dW (F [ fa)

da
=

dV (F [ fa)

da
= 1� F⇢ (1� a)

so F⌧ = F⇢ a.e.. By Lemma B2, F⌧ = F⇢ so by Lemma B5, ⇢⌫ = ⇢ = ⌧ and (2) holds.

Now, suppose (2) is true and let ⇢ = ⇢⌫ where W : K ! [0, 1] represents ⌫ and ⇢ (fa, F ) =

dW (F[fa)
da

for fa := af + (1� a) f . Suppose ⇢ is represented by (µ, u) and since V⇢ = V , we

have ⇢ (fa, F ) =

dV (F[fa)
da

by Lemma B8. Now, by dominance,

1�W (F ) = W (F [ f1)�W (F [ f0) =

Z

[0,1]

⇢ (fc, F ) da

= V (F [ f1)� V (F [ f0) = 1� V (F )

so W = V proving (1).

38



C. Assessing informativeness

Theorem (C1). Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively. Then the

following are equivalent:

(1) µ is more informative than ⌫

(2) F⌧ �SOSD F⇢ for all F 2 K
(3) F⌧ �m F⇢ for all F 2 K

Proof. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively and we assume u is

normalized without loss of generality. We show that (1) implies (2) implies (3) implies (1).
First, suppose µ is more informative than ⌫. Fix F 2 K and let U := u � F and h (U, q)

denote the support function of U at q 2 �S. Let  F (q) := 1 � h (U, q), and since support
functions are convex,  F is concave in q 2 �S.38 Let � : R ! R be increasing concave, and

note that by Lemma A5,
Z

[0,1]

�dF⇢ =

Z

�S

� �  F (q)µ (dq)

Now for ↵ 2 [0, 1],  F (q↵r) � ↵ F (q) + (1� ↵) F (r) so

� ( F (q↵r)) � � (↵ F (q) + (1� ↵) F (r))

� ↵� ( F (q)) + (1� ↵)� ( F (r))

so � �  F is concave. By Jensen’s inequality,
Z

�S

� �  F (q)µ (dq) =

Z

�S

Z

�S

� �  F (p)K (q, dp) ⌫ (dq)


Z

�S

� �  F

✓

Z

�S

p K (q, dp)

◆

⌫ (dq)


Z

�S

� �  F (q) ⌫ (dq)

so
R

[0,1] �dF⇢ 
R

[0,1] �dF⌧ and F⌧ �SOSD F⇢ for all F 2 K.

Since �SOSD implies �m, (2) implies (3) is trivially. Now, suppose F⌧ �m F⇢ for all
38 See Theorem 1.7.5 of Schneider [44] for elementary properties of support functions.
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F 2 K. Thus, if we let � (x) = x, then
Z

�S

 F (q)µ (dq) =

Z

[0,1]

a dF⇢ (a)


Z

[0,1]

a dF⌧ (a) =

Z

�S

 F (q) ⌫ (dq)

Thus,
Z

�S

h (u � F, q)µ (dq) �
Z

�S

h (u � F, q) ⌫ (dq)

for all F 2 K. Hence, by Blackwell [5, 6], µ is more informative than ⌫ .

Lemma (C2). Let ⇢ and ⌧ be represented by (µ, u) and (⌫, v) respectively. Then f⇢ =m f⌧

for all f 2 H iff µ and ⌫ share average beliefs and u = ↵v + � for ↵ > 0.

Proof. Let ⇢ and ⌧ be represented by (u, µ) and (v, ⌫) respectively. We assume u is normal-
ized without loss of generality. Let  f (q) := 1� q · (u � f) so by Lemma A5,

Z

[0,1]

a df⇢ (a) =

Z

�S

 f (q)µ (dq)

First, suppose µ and ⌫ share average beliefs and u = v without loss of generality. Thus,
Z

�S

 f (q)µ (dq) =  f

✓

Z

�S

q µ (dq)

◆

=  f

✓

Z

�S

q ⌫ (dq)

◆

=

Z

�S

 f (q) ⌫ (dq)

so f⇢ =m f⌧ for all f 2 H. Now assume f⇢ =m f⌧ for all f 2 H so by Lemma A6, u = ↵v+�

for ↵ > 0. We assume u = v without loss of generality so

 f

✓

Z

�S

q µ (dq)

◆

=

Z

�S

 f (q)µ (dq)

=

Z

�S

 f (q) ⌫ (dq) =  f

✓

Z

�S

q ⌫ (dq)

◆

If we let rµ =

R

�S
q µ (dq) and r⌫ =

R

�S
q ⌫ (dq), then

1� rµ · (u � f) = 1� r⌫ · (u � f)
0 = (rµ � r⌫) · (u � f)

for all f 2 H. Thus, w · (rµ � r⌫) = 0 for all w 2 [0, 1]S implying rµ = r⌫ . Thus, µ and ⌫

share average beliefs.
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D. Calibrating beliefs

Lemma (D1). Let ⇢s be represented by (µs, u) and ⇢s
�

f s, f
�

= 0.

(1) qs > 0 µs-a.s..

(2) For F 2 Ks,
Z

[0,rs]

a dF s
⇢ (a) =

Z

�S

rs
qs

✓

1� sup

f2F
q · (u � f)

◆

µs (dq)

Proof. Assume u is normalized without loss of generality. We prove the lemma in order:

(1) Note that

0 = ⇢s
�

f s, f
�

= µs

�

q 2 �S| q · �u � f s
� � 1

 

= µs {q 2 �S| 1� qs � 1} = µs {q 2 �S| 0 � qs}

Thus, qs > 0 µs-a.s..

(2) Define  s
F (q) :=

rs
qs

�

1� supf2F q · (u � f)� and let �Fs := µs � ( s
F )

�1 be the image
measure on R. By a change of variables,

Z

R
x�Fs (dx) =

Z

�S

 s
F (q)µs (dq)

Note that by (1), the right integral is well-defined. We now show that the cumulative

distribution function of �Fs is exactly F s
⇢ . For a 2 [0, 1], let fa

s := f saf and first assume

fa
s is tied with nothing in F . Thus,

�Fs [0, rsa] = µs � ( s
F )

�1
[0, rsa] = µs {q 2 �S| rsa �  s

F (q)}

= µs

⇢

q 2 �S| sup
f2F

q · (u � f) � 1� aqs

�

= µs

⇢

q 2 �S| sup
f2F

q · (u � f) � q · (u � fa
s )

�

= ⇢s (F, f
a
s ) = F s

⇢ (rsa)

Now, if fa
s is tied with some g 2 F , then

F s
⇢ (rsa) = ⇢s (F, f

s
a) = 1 = µs

⇢

q 2 �S| sup
f2F

q · (u � f) � q · (u � f s
a)

�

= �Fs [0, rsa]

Thus, �Fs [0, rsa] = F s
⇢ (rsa) for all a 2 [0, 1]. Since F 2 Ks,

1 = F s
⇢ (rs) = �Fs [0, rs]
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so F s
⇢ is the cumulative distribution function of �Fs .

Lemma (D2). Let ⇢ be represented by (µ, u).

(1) ⇢̄ is represented by (µ̄, u) where µ̄ :=

P

s rsµs.

(2) For s 2 S, qs > 0 µ̄-a.s. iff qs > 0 µs0-a.s. for all s0 2 S.

Proof. Let ⇢ be represented by (µ, u). We prove the lemma in order:

(1) Recall that the measurable sets of ⇢s,F and ⇢̄F coincide for each F 2 K. Note that ⇢s
is represented by (µs, us) for all s 2 S. Since the ties coincide, we can assume us = u

without loss of generality. For f 2 F 2 K, let

Qf,F := {q 2 �S| q · (u � f) � q · (u � f) 8g 2 F}

Thus
⇢̄F (f) = ⇢̄F (fF ) =

X

s

rs⇢s,F (fF ) =
X

s

rsµs (Qf,F ) = µ̄ (Qf,F )

so ⇢̄ is represented by (µ̄, u).

(2) Let s 2 S and

Q : =

�

q 2 �S| q · �u � f s
� � u

�

f
� 

= {q 2 �S| 1� qs � 1}
= {q 2 �S| qs  0}

For any s0 2 S, we have ⇢s0
�

f, f s
�

= 1 = ⇢̄
�

f, f s
�

where the second inequality follows
from (1). Thus, f s is either tied with f or µs0 (Q) = µ (Q) = 0. In the case of the

former, µs0 (Q) = µ (Q) = 1. The result thus follows.

Theorem (D3). Let ⇢ be represented by (µ, u). If F s
⇢ =m F⇢̄, then µ is well-calibrated.

Proof. Let S+ :=

�

s 2 S| ⇢s
�

f s, f
�

= 0

 ⇢ S. Let s 2 S+ so qs > 0 µs-a.s. by Lemma D1.
Define the measure ⌫s on �S such that for all Q 2 B (�S),

⌫s (Q) :=

Z

Q

rs
qs
µs (dq)
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We show that µ = ⌫s. Since F s
⇢ =m F⇢̄ and by Lemmas D1 and D2, we have
Z

[0,1]

adF⇢̄ (a) =

Z

[0,ps]

adF s
⇢ (a)

Z

�S

✓

1� sup

f2F
q · (u � f)

◆

µ̄ (dq) =

Z

�S

rs
qs

✓

1� sup

f2F
q · (u � f)

◆

µs (dq)

=

Z

�S

✓

1� sup

f2F
q · (u � f)

◆

⌫s (dq)

for all F 2 Ks.
Let G 2 K and Fa :=

�

Gaf
�[f s for a 2 (0, 1). Since f s 2 Fa, ⇢s

�

Fa, f
s
�

= 1 so Fa 2 Ks.
Let

Qa :=

(

q 2 �S

�

�

�

�

�

sup

f2Gaf

q · (u � f) � q · �u � f s
�

)

and note that

sup

f2Gaf

q · (u � f) = h
�

a (u �G) + (1� a) u
�

f
�

, q
�

= 1� a (1� h (u �G, q))

where h (U, q) denotes the support function of the set U at q. Thus,
Z

�S



1� sup

f2Fa

q · (u � f)
�

µ̄ (dq) =

Z

Qa

(a (1� h (u �G, q))) µ̄ (dq) +

Z

Qc
a

qsµ̄ (dq)

so for all a 2 (0, 1),
Z

Qa

(1� h (u �G, q)) µ̄ (dq) +

Z

Qc
a

qs
a
µ̄ (dq) =

Z

Qa

(1� h (u �G, q)) ⌫s (dq) +

Z

Qc
a

qs
a
⌫s (dq)

Note that qs > 0 µ̄-a.s. by Lemma D2, so by dominated convergence

lim

a!0

Z

Qa

(1� h (u �G, q)) µ̄ (dq) = lim

a!0

Z

�S

(1� h (u �G, q))1Qa\{qs>0} (q) µ̄ (dq)

=

Z

�S

(1� h (u �G, q)) lim
a!0

1{qs�a(1�h(u�G,q))}\{qs>0} (q) µ̄ (dq)

=

Z

�S

(1� h (u �G, q))1{qs>0} (q) µ̄ (dq)

=

Z

�S

(1� h (u �G, q)) µ̄ (dq)
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For q 2 Qc
a,

1� qs = q · (u � f s
) > 1� a (1� h (u �G, q))

qs
a

< 1� h (u �G, q)  1

so
R

Qc
a

qs
a
µ̄ (dq)  R

�S
1Qc

a
(q) µ̄ (dq). By dominated convergence again,

lim

a!0

Z

Qc
a

qs
a
µ̄ (dq)  lim

a!0

Z

�S

1Qc
a
(q) µ̄ (dq)


Z

�S

lim

a!0
1{qs<a(1�h(u�G,q))} (q) µ̄ (dq)


Z

�S

1{qs=0} (q) µ̄ (dq) = 0

By a symmetric argument for ⌫s, we have
Z

�S

(1� h (u �G, q)) µ̄ (dq) =

Z

�S

(1� h (u �G, q)) ⌫s (dq)

for all G 2 K. Letting G = f yields 1 = µ̄ (�S) = ⌫s (�S) so ⌫s is a probability measure on
�S and

Z

�S

sup

f2G
q · (u � f) µ̄ (dq) =

Z

�S

sup

f2G
q · (u � f) ⌫s (dq)

Thus, µ̄ = ⌫s for all s 2 S by the uniqueness properties of the subjective learning represen-

tation (Theorem 1 of DLST). As a result,
Z

Q

qs
rs
µ̄ (dq) =

Z

Q

qs
rs
⌫s (dq) = µs (Q)

for all Q 2 B (�S) and s 2 S+.

Finally, for s 62 S+, ⇢s
�

f s, f
�

= 1 so qs = 0 µs-a.s.. By Lemma D2, qs = 0 µ-a.s.. Let

Q0 :=

8

<

:

q 2 �S

�

�

�

�

�

�

X

s 62S+

qs = 0

9

=

;

and note that µ (Q0) = 1. Now,

X

s2S+

rs =
X

s2S+

Z

�S

qsµ̄ (dq) =

Z

Q0

X

s2S+

qsµ̄ (dq)

=

Z

Q0

 

X

s2S
qs

!

µ̄ (dq) = µ̄ (Q0) = 1
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which implies
P

s 62S+
rs = 0 a contradiction. Thus, S+ = S and µ is well-calibrated.

Theorem (D4). Let ⇢ be represented by (µ, u). If µ is well-calibrated, then F s
⇢ =m F⇢̄.

Proof. Note that the measurable sets and ties of ⇢s and ⇢̄ coincide by definition. As above,
let S+ :=

�

s 2 S| ⇢s
�

f s, f
�

= 0

 ⇢ S. Thus, s 62 S+ implies f s and f are tied and qs = 0

a.s. under all measures. By the same argument as the sufficiency proof above, letting
Q0 :=

n

q 2 �S|Ps 62S+
qs = 0

o

yields

X

s2S+

rs =
X

s2S+

Z

�S

qsµ̄ (dq) =

Z

Q0

 

X

s2S
qs

!

µ̄ (dq) = 1

a contradiction. Thus, S+ = S.
Let F 2 Ks and s 2 S. Since ⇢s

�

f s, f
�

= 0, by Lemmas A5 and D1 and the fact that µ

is well-calibrated,
Z

[0,ps]

adF s
⇢ (a) =

Z

�S

rs
qs

✓

1� sup

f2F
q · (u � f)

◆

µs (dq)

=

Z

�S

rs
qs

✓

1� sup

f2F
q · (u � f)

◆

qs
rs
µ̄ (dq)

=

Z

�S

✓

1� sup

f2F
q · (u � f)

◆

µ̄ (dq) =

Z

[0,1]

adF⇢̄ (a)

so F s
⇢ =m F⇢̄.

Proposition (D5). Let ⇢ be represented by (µ, u). Then µ is well-calibrated iff ⇢ satisfies

NIAS.

Proof. Let ⇢ be represented by (µ, u). First, suppose µ is well-calibrated. For f 2 F 2 K,

define

Qf
F := {q 2 �S | q · (u � f) � q · (u � g) 8g 2 F}
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so ⇢s,F (f) = µs

⇣

Qf
F

⌘

for all s 2 S and ⇢̄F (f) = µ̄
⇣

Qf
F

⌘

. Hence for any g 2 F ,

Z

Qf
F

q · (u � f) µ̄ (dq) �
Z

Qf
F

q · (u � g) µ̄ (dq)

X

s

rs

Z

Qf
F

qs
rs
u (f (s)) µ̄ (dq) �

X

s

rs

Z

Qf
F

qs
rs
u (g (s)) µ̄ (dq)

X

s

rs

Z

Qf
F

µs (dq) u (f (s)) �
X

s

rs

Z

Qf
F

µs (dq) u (g (s))

X

s

rs⇢s,F (f) u (f (s)) �
X

s

rs⇢s,F (f) u (g (s))

so ⇢ satisfies NIAS.

Now, suppose ⇢ satisfies NIAS so for all g 2 F 2 K and ⇢̄F (f) > 0,

X

s

rs⇢s,F (f) u (f (s)) �
X

s

rs⇢s,F (f) u (g (s))

X

s

rsµs

⇣

Qf
F

⌘

µ̄
⇣

Qf
F

⌘ u (f (s)) �
X

s

rsµs

⇣

Qf
F

⌘

µ̄
⇣

Qf
F

⌘ u (g (s))

qF (f) · (u � f) � qF (f) · (u � g)

where qF : F ! �S is such that qF (f) (s) :=
rsµs(Q

f
F )

µ̄
(

Qf
F )

. Hence, qF (f) 2 Qf
F for all f 2 F . For

each s 2 S, define the measure ⌫s (Q) :=

R

Q
qs
rs
µ̄ (dq) and note that

P

s rs⌫s (Q) = µ̄ (Q) =

P

s rsµs (Q). Now, we also have for all g 2 F ,
Z

Qf
F

q · (u � f) µ̄ (dq) �
Z

Qf
F

q · (u � g) µ̄ (dq)

X

s

rs

Z

Qf
F

qs
rs
u (f (s)) µ̄ (dq) �

X

s

rs

Z

Qf
F

qs
rs
u (g (s)) µ̄ (dq)

X

s

rs⌫s

⇣

Qf
F

⌘

µ̄
⇣

Qf
F

⌘ u (f (s)) �
X

s

rs⌫s

⇣

Qf
F

⌘

µ̄
⇣

Qf
F

⌘ u (g (s))

pF (f) · (u � f) � pF (f) · (u � g)

where pF : F ! �S is such that pF (f) (s) :=
rs⌫s(Q

f
F )

µ̄
(

Qf
F )

. Hence, pF (f) 2 Qf
F for all f 2 F .

Consider a partition Pn of �S such that for every P n
i 2 Pn, P n

i = Qf
F for some f 2 F and
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sup{p,q}⇢Pi
|p� q|  1

n
for every i 2 {1, . . . , n}. Since {pF (f) , qF (f)} ⇢ P n

i ,
�

�

�

�

rsµs (P
n
i )

µ̄ (P n
i )

� rs⌫s (P
n
i )

µ̄ (P n
i )

�

�

�

�

 1

n

|µs (P
n
i )� ⌫s (P

n
i )|  µ̄ (P n

i )
1

nrs

Now, for any  n
: �S ! R that is Pn-measurable, we have

X

i

⌫s (P
n
i ) 

n
i � 1

n

X

i

1

rs
µ̄ (P n

i ) 
n
i 

X

i

µs (P
n
i ) 

n
i 

X

i

⌫s (P
n
i ) 

n
i +

1

n

X

i

1

rs
µ̄ (P n

i ) 
n
i

For any measurable  : �S ! R, we can find a sequence of Pn-measurable functions such
that  n !  . Hence by dominated convergence,

lim

n!1



Z

�S

 n
(q) ⌫s (dq)� 1

n

Z

�S

1

rs
 n

(q) µ̄ (dq)

�

 lim

n!1

Z

�S

 n
(q)µs (dq)

 lim

n!1



Z

�S

 n
(q) ⌫s (dq) +

1

n

Z

�S

1

rs
 n

(q) µ̄ (dq)

�

Z

�S

 (q)µs (dq) =

Z

�S

 (q) ⌫s (dq)

Hence, µs = ⌫s and µ is well-calibrated.

E. Relation to AS

In this section, we relate our results to that of AS. We focus on the individual interpretation
for ease of comparison. AS introduces a condition called consequentialism to link choice
behavior from the two time periods.39 Consequentialism translates into the following in our

setting.

Axiom (Consequentialism). If ⇢F = ⇢G, then F ⇠ G.

However, consequentialism fails as a sufficient condition for linking the two choice behav-
iors in our setup. This is demonstrated in the following.

Example 4. Let S = {s1, s2}, X = {x, y} and u (a�x + (1� a) �y) = a. Associate each
q 2 �S with t 2 [0, 1] such that t = qs1 . Let µ have the uniform distribution and ⌫ have
density 6t (1� t). Thus, µ is more informative than ⌫. Let ⌫ be represented by (µ, u) and

⇢ be represented by (⌫, u). We show that (⌫, ⇢) satisfies consequentialism. Let F+ ⇢ F \G

39 Their second axiom deals with indifferences which we resolve using non-measurability.
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denote the support of ⇢F = ⇢G. Since f 2 F\F+ implies it is dominated by F+ µ-a.s., it is

also dominated by F+ ⌫-a.s. so F ⇠ F+. A symmetric analysis for G yields F ⇠ F+ ⇠ G.
Thus, consequentialism is satisfied, but µ 6= ⌫.

The reason for why consequentialism fails in the Anscombe-Aumann setup is that the

representation of DLR is more permissive than that of DLST. In the lottery setup, if conse-
quentialism is satisfied, then this extra freedom allows us to construct an ex-ante represen-
tation that is completely consistent with that of ex-post random choice. On the other hand,

information is uniquely identified in the representation of DLST, so this lack of flexibility
prevents us from performing this construction even when consequentialism is satisfied. A

stronger condition is needed to perfectly equate choice behavior from the two time periods.

Axiom (Strong Consequentialism). If F⇢ and G⇢ share the same mean, then F ⇠ G.

The following demonstrates why this is a strengthening of consequentialism.

Lemma (E1). For ⇢ monotonic, ⇢F = ⇢G implies F⇢ = G⇢.

Proof. Let ⇢ be monotonic and define F+
:= {f 2 H| ⇢F (f) > 0}. We first show that

F+
⇢ = F⇢. Let F 0

:= F\F+ and for a 2 [0, 1], monotonicity yields

0 = ⇢F
�

F 0
� � ⇢F[fa

�

F 0
�

Note that by Lemma A2, {F 0, F+} 2 HF . First, suppose fa is tied with nothing in F .
Hence,

⇢F+[fa

�

F+
�

+ ⇢F+[fa
(fa

) = 1 = ⇢F[fa

�

F+
�

+ ⇢F[fa
(fa

)

By monotonicity, ⇢F+[fa
(F+

) � ⇢F[fa
(F+

) and ⇢F+[fa
(fa

) � ⇢F[fa
(fa

) so

F+
⇢ (a) = ⇢F+[fa

�

F+
�

= ⇢F[fa

�

F+
�

= ⇢F[fa
(F ) = F⇢ (a)

Now, if fa is tied with some act in F , then by Lemma A3 and monotonicity,

1 = ⇢F
�

F+
�

= ⇢F[fa

�

F+
�  ⇢F+[fa

�

F+
�

Thus, F+
⇢ (a) = 1 = F⇢ (a) so F+

⇢ = F⇢.

Now, suppose ⇢F = ⇢G for some {F,G} ⇢ K. Since ⇢F (f) > 0 iff ⇢G (f) > 0, F+
= G+.

We thus have

F⇢ = F+
⇢ = G+

⇢ = G⇢
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Thus, if strong consequentialism is satisfied, then consequentialism must also be satisfied as

⇢F = ⇢G implies F⇢ = G⇢ which implies that F⇢ and G⇢ must have the same mean. Strong

consequentialism delivers the corresponding connection between ex-ante and ex-post choice

behaviors that consequentialism delivered in the lottery setup.

Proposition (E2). Let ⌫ and ⇢ be represented by (µ, u) and (⌫, v) respectively. Then the

following are equivalent:

(1) (⌫, ⇢) satisfies strong consequentialism

(2) F ⌫ G iff F ⌫⇢ G

(3) (µ, u) = (⌫,↵v + �) for ↵ > 0

Proof. Note that the equivalence of (2) and (3) follows from Theorem B6 and the uniqueness
properties of the subjective learning representation (see Theorem 1 of DLST). That (2)

implies (1) is immediate, so we only need to prove that (1) implies (2).
Assume (1) is true. Since ⌫⇢ is represented by (⌫, v), we have F ⇠⇢ G implies F ⇠ G.

Without loss of generality, we assume both u and v are normalized. First, consider only
constant acts and let f and f be the worst and best acts under v. Now, for any f 2 Hc, we

can find a 2 [0, 1] such that faf ⇠⇢ f which implies faf ⇠ f . Thus

v (f) = v
�

faf
�

= 1� a

and

u (f) = au
�

f
�

+ (1� a) u
�

f
�

= (1� v (f)) u
�

f
�

+ v (f) u
�

f
�

=

�

u
�

f
�� u

�

f
��

v (f) + u
�

f
�

for all f 2 Hc. Thus, u = ↵v+ � where ↵ := u
�

f
�� u

�

f
�

and � := u
�

f
�

. Since f [ f ⇠⇢ f

implies f [ f ⇠ f , we have u
�

f
� � u

�

f
�

so ↵ � 0. If ↵ = 0, then u = � contradicting the

fact that u is non-constant. Thus, ↵ > 0.
We can now assume without loss of generality that ⌫⇢ is represented by (⌫, u). Now,

given any F 2 K, we can find f 2 Hc such that F ⇠⇢ f which implies F ⇠ g. Thus,
Z

�S

sup

f2F
q · (u � f) ⌫ (dq) = u (g) =

Z

�S

sup

f2F
q · (u � f)µ (dq)
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so ⌫⇢ and ⌫ represent the same preference which implies (2). Thus, (1), (2) and (3) are all

equivalent.

50



Supplementary Appendix

In this supplementary appendix, we provide an axiomatic treatment of our model. We first
introduce a more general representation. Let RX be the space of affine utility functions

u : �X ! R and ⇡ be a measure on �S ⇥ RX . Interpret ⇡ as the joint distribution
over beliefs and tastes. Assume that u is non-constant ⇡-a.s.. The corresponding regularity
condition on ⇡ is as follows.

Definition. ⇡ is regular iff q · (u � f) = q · (u � g) with ⇡-measure zero or one.

We now define a random subjective expected utility (RSEU) representation.

Definition (RSEU Representation). ⇢ is represented by a regular ⇡ iff for f 2 F 2 K,

⇢F (f) = ⇡
�

(q, u) 2 �S ⇥ RX | q · (u � f) � q · (u � g) 8g 2 F
 

This is a RUM model where the random subjective expected utilities depend not only

on beliefs but tastes as well. In the individual interpretation, this describes an agent who

receives unobservable shocks to both beliefs and tastes. In the group interpretation, this
describes a group with heterogeneity in both beliefs and risk aversion. Note that in the

special case where ⇡ (�S ⇥ {u}) = 1, this reduces to an information representation where µ

is the marginal distribution of ⇡ on �S.
We now introduce the axioms. The first four are familiar restrictions on RCRs. Let extF

denote the set of extreme acts of F 2 K.40 Recall that K0 is the set of decision-problems

where every act in the decision-problem is measurable with respect to the RCR.

Axiom 1 (Monotonicity). ⇢ is monotone

Axiom 2 (Linearity). ⇢ is linear

Axiom 3 (Extremeness). ⇢F (extF ) = 1.

Axiom 4 (Continuity). ⇢ is continuous on K0.

Monotonicity follows from the fact that when decision-problems are enlarged, new acts

could become dominant so the probability of choosing old acts can only decrease. Linearity
and extremeness follow from the fact that the random utilities in our model are linear (i.e.

40 Formally, f 2 extF 2 K iff f 2 F and f 6= ag + (1� a)h for some {g, h} ⇢ F and a 2 (0, 1).
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agents are subjective expected utility maximizers). In fact, linearity is the version of the in-

dependence axiom tested in many experimental settings (see Kahneman and Tversky [27] for
example). Extremeness follows from the fact that when linear utilities are used for evalua-

tion, mixtures of acts in a decision-problem are never chosen (aside from indifferences). Note
that it rules out behaviors associated with random non-linear utilities (such as ambiguity
aversion).

For continuity, note that if H is the Borel algebra, then K0 = K and our continuity

axiom condenses to the usual continuity. In general though, the RCR is not continuous over

all decision-problems and is in fact discontinuous at precisely those decision-problems that
contain indifferences.41

These first four axioms are necessary and sufficient for random expected utility (Gul and

Pesendorfer [24]). We now present new axioms. For any act f and states s1 and s2, define

f s2
s1

as the act obtained from f by replacing the payoff in s2 with the payoff in s1. In other
words, f s2

s1
(s2) = f (s1) and f s2

s1
(s) = f (s) for all s 6= s2.

Axiom 5 (S-independence). ⇢F
�

f s2
s1

[ f s1
s2

�

= 1 for F =

�

f, f s2
s1
, f s1

s2

 

.

S-independence states that if two acts are constant over two states and each coincides

with a third act in each of the two states, then the first two will be chosen for sure over

the third provided all three coincide on all other states. This follows from the fact that
an agent will “hedge” by choosing the non-constant third act only when her taste utility

is state-dependent. This is the random choice version of the state-by-state independence
axiom.42 Finally, non-degeneracy rules out the trivial case of universal indifference.

Axiom 6 (Non-degeneracy). ⇢F (f) < 1 for some F and f 2 F .

Axioms 1-6 are necessary and sufficient for a RSEU representation (Theorems S5). This

demonstrates that the characterization of random expected utility can be comfortably ex-
tended to the realm of Anscombe-Aumann acts; the axioms of subjective expected utility

yield intuitive analogs in random choice. For an information representation, we need one
additional restriction.

41 Every decision-problem is in fact arbitrarily (Hausdorff) close to some decision-problem in K0, so
continuity is preserved over almost all decision-problems.

42 Under deterministic choice, S-independence reduces to the condition that fs2
s1 ⌫ f or fs1

s2 ⌫ f . Theorem
S5 implies that this is equivalent to state-by-state independence axiom in the presence of the other standard
axioms.
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Axiom 7 (S-determinism). ⇢F (f) 2 {0, 1} if f (s) = g (s) for all s 6= s0 and g 2 F .

S-determinism states that the RCR is deterministic over decision-problems consisting of

acts that differ only on a single state. This is because in an information representation,

choice is stochastic only as a result of varying beliefs. For acts that only vary in one state
but are otherwise the same, only payoffs in that state matter so choice must be deterministic.

Taken together, Axioms 1-7 are necessary and sufficient for an information representation

(Corollary S7). Note that if we allow the utility u to be constant, then the non-degeneracy

axiom can be dropped without loss of generality. However, the uniqueness of µ in the

representation would obviously fail in Theorem 1.
Our treatment so far assumes beliefs are completely subjective. Finally, similar to Section

7, we present an axiomatization that includes as a primitive the observed frequency of states

r 2 �S (assume r has full support as before). This provides us with additional restrictions
on the RCR and also allows us to address state-dependent utilities.43 Let u := (us)s2S be a

collection of state-dependent utilities with at least one us non-constant. Call µ well-calibrated

iff r =
R

�S
q µ (dq).

Definition (Calibrated Information Representation). ⇢ is represented by (µ, u) iff µ is well-
calibrated and for f 2 F 2 K,

⇢F (f) = µ

(

q 2 �S

�

�

�

�

�

X

s2S
qsus (f) �

X

s2S
qsus (g) 8g 2 F

)

Since a calibrated information representation allows for state-dependent utilities, S-

independence must be relaxed. We now introduce a consistency axiom that relates r with
RCR. Define a conditional best act ¯f s as the act that coincides with the best act if s occurs

and with the worst act otherwise. Let ¯f s
⇢ be the test function of ¯f s under ⇢.44

Axiom 8 (Consistency). The mean of ¯f s
⇢ is rs for all s 2 S.

Axioms 1-4, 6-8 are necessary and sufficient for a calibrated information representation

(Theorem S8). Moreover, calculating means of test functions allows an analyst to check if
the RCR is consistent with the objective frequency r.

We now present the proofs. Associate each act f 2 H with the vector f 2 [0, 1]S⇥X

without loss of generality. Find {f1, g1, . . . , fk, gk} ⇢ H such that fi 6= gi are tied and
43 This is analogous to that of Karni, Schmeidler and Vind [30] under deterministic choice.
44 Axioms 1-4, 6 and 7 ensure that a best and worst act exist and that test functions are well-defined.
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zi · zj = 0 for all i 6= j, where zi :=
fi�gi

kfi�gik . Let Z := lin {z1, . . . , zk} be the linear space

spanned by all zi with Z = 0 if no such zi exists. Let k be maximal in that for any {f, g} ⇢ H

that are tied, f � g 2 Z. Note that Lemmas A3 and A4 ensure that k is well-defined. Define

' : H ! RS⇥X such that
' (f) := f �

X

1ik

(f · zi) zi

and let W := lin (' (H)). Lemma S1 below shows that ' projects H onto a space without

ties.

Lemma (S1). Let ⇢ be monotonic and linear.

(1) ' (f) = ' (g) iff f and g are tied.

(2) w · ' (f) = w · f for all w 2 W .

Proof. We prove the lemma in order

(1) First, suppose f and g are tied so f � g 2 Z by the definition of Z. Thus,

f = g +
X

1ik

↵izi

for some ↵ 2 Rk. Hence,

' (f) = g +
X

1ik

↵izi �
X

1ik

" 

g +
X

1jk

↵jzj

!

· zi
#

zi

= g �
X

1ik

(g · zi) zi = ' (g)

For the converse, suppose ' (f) = ' (g) so

f �
X

1ik

(f · zi) zi = g �
X

1ik

(g · zi) zi

f � g =

X

1ik

((f � g) · zi) zi 2 Z

and f and g are tied.

(2) Note that for any f 2 H,
' (f) · zi = 0
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Since W = lin (' (H)) and ' is linear, w · zi = 0 for all w 2 W . Thus,

w · ' (f) = w ·
 

f �
X

1ik

(f · zi) zi
!

= w · f

for all w 2 W .

Lemma (S2). If ⇢ satisfies Axioms 1-4, then there exists a measure ⌫ on W such that

⇢F (f) = ⌫ {w 2 W |w · f � w · g 8g 2 F}

Proof. Let m := dim (W ). Note that if m = 0, then W = ' (H) is a singleton so everything

is tied by Lemma S1 and the result follows trivially. Thus, assume m � 1 and let �m ⇢ RS⇥X

be the m-dimensional probability simplex. Let V := lin (�

m � 1) so there exists an linear
transformation A : W ! V corresponding to an orthogonal matrix (i.e. A�1

= A0) where
v = Aw. Define T (w) = �Aw+�1 such that T �' (H) ⇢ �

m where � > 0 and � > 0. Now,

for each finite set D ⇢ �

m, we can find a p⇤ 2 �

m and a 2 (0, 1) such that Dap⇤ ⇢ T �' (H).

Thus, we can define an RCR ⌧ on �

m such that

⌧D (p) := ⇢F (f)

where T � ' (F ) = Dap⇤ and T � ' (f) = pap⇤. Linearity and Lemma S1 ensure that ⌧ is
well-defined.

Since the projection mapping ' and T are both affine, Axioms 1-4 correspond exactly
to the axioms of Gul and Pesendorfer [24] on �

m. Thus, by their Theorem 3, there exists a

measure ⌫T on V such that for F 2 K0

⇢F (f) = ⌧T�'(F ) (T � ' (f))

= ⌫T {v 2 V | v · (T � ' (f)) � v · (T � ' (g)) 8g 2 F}

Since v · 1 = 0 and A is orthogonal,

v · (T � ' (f)) = v · �A (' (f)) = �A�1
(v) · ' (f)
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Hence

⇢F (f) = ⌫T
�

v 2 V |A�1
(v) · ' (f) � A�1

(v) · ' (g) 8g 2 F
 

= ⌫ {w 2 W |w · ' (f) � w · ' (g) 8g 2 F}
= ⌫ {w 2 W |w · f � w · g 8g 2 F}

where ⌫ := ⌫T � A is the measure on W induced by A. Note that the last equality follows
from Lemma S1.

Finally, for any F 2 K, let F0 ⇢ F be such that f 2 F0 2 K0. By Lemma A3,

⇢F (f) = ⇢F0 (f) = ⌫ {w 2 W |w · f � w · g 8g 2 F0}

By Lemma S1, if h and g are tied, then

w · h = w · ' (h) = w · ' (g) = w · g

for all w 2 W . Thus,

⇢F (f) = ⌫ {w 2 W |w · f � w · g 8g 2 F}

Henceforth, assume ⇢ satisfies Axioms 1-4 and let ⌫ be the measure on W as specified by
Lemma S2. We let ws 2 RX denote the vector corresponding to w 2 W and s 2 S. For
u 2 RX , define R (u) ⇢ RX as the set of all ↵u + �1 for some ↵ > 0 and � 2 R. Let

U :=

�

u 2 RX
�

�u · 1 = 0

 

and note that R (u) \ U is the set of all ↵u for some ↵ > 0. We
also employ the notation ⇢ (F,G) := ⇢F[G (F ). A state s⇤ 2 S is null iff it satisfies the

following.

Definition. s⇤ 2 S is null iff f (s) = g (s) for all s 6= s⇤ implies ⇢F[f (f) = ⇢F[g (g) for all

F 2 K

Lemma (S3). If ⇢ is non-degenerate, then there exists a non-null state.

Proof. Suppose ⇢ is non-degenerate but all s 2 S are null and consider {f, g} ⇢ H. Let

S = {s1, . . . , sn} and for 0  i  n, define f i 2 H such that f i
(sj) = g (sj) for j  i and

f i
(sj) = f (sj) for j > i. Note that f 0

= f and fn
= g. By the definition of nullity, we

have ⇢ (f i, f i+1
) = 1 = ⇢ (f i+1, f i

) for all i < n. Thus, f i and f i+1 are tied for all i < n so
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by Lemma A2, f and g are tied. This implies ⇢ (f, g) = 1 for all {f, g} ⇢ H contradicting

non-degeneracy so there must exist at least one non-null state.

Lemma (S4). Let ⇢ satisfy Axioms 1-5. Suppose {s1, s2} ⇢ S are non-null. Define � : W !
U ⇥ U such that

�i (w) := wsi �
✓

wsi · 1
|X|

◆

1

for i 2 {1, 2} and ⌘ := ⌫ � ��1 as the measure on U ⇥ U induced by �. Then

(1) ⌘ ({0}⇥ U) = ⌘ (U ⇥ {0}) = 0

(2) ⌘ {(u1, u2) 2 U ⇥ U |u1 · r > 0 > u2 · r} = 0 for any r 2 U

(3) ⌘ {(u1, u2) 2 U ⇥ U |u2 2 R (u1)} = 1

Proof. We prove the lemma in order.

(1) Since s1 is non-null, we can find {f, g} ⇢ H such that f (s) = g (s) for all s 6= s1 and

f and g are not tied. Let f (s1) = p and g (s1) = q so

1 = ⇢ (f, g) + ⇢ (g, f)

= ⌫ {w 2 W |ws1 · p � ws1 · q}+ ⌫ {w 2 W |ws1 · q � ws1 · p}
0 = ⌫ {w 2 W |ws1 · r = 0} = ⌘ ({u1 2 U | u1 · r = 0}⇥ U)

for r := p� q. Since we can assume ⌘ is complete, ⌘ ({0}⇥ U) = 0. The case for s2 is
symmetric.

(2) For any {p, q} ⇢ �X, let {f, g, h} ⇢ H be such that f (s1) = f (s2) = h (s1) = p,

g (s1) = g (s2) = h (s2) = q and f (s) = g (s) = h (s) for all s 62 {s1, s2}. First, suppose

h is not tied with either f nor g. Hence, by S-independence,

0 = ⇢{f,g,h} (h) = ⌫ {w 2 W |w · h � max (w · f, w · g)}
= ⌫ {w 2 W |ws2 · q � ws2 · p and ws1 · p � ws1 · q}
= ⌫ {w 2 W |ws1 · r � 0 � ws2 · r}

for r := p� q 2 U . Note that if h is tied with g, then

1 = ⇢ (g, h) = ⇢ (h, g) = ⌫ {w 2 W |w · h = w · g}
= ⌫ {w 2 W |ws1 · r = 0}
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Symmetrically, if h is tied with f , then ws2 · r = 0 ⌫-a.s., so we have

0 = ⌫ {w 2 W |ws1 · r > 0 > ws2 · r}
= ⌫ {w 2 W |�1 (w) · r > 0 > �2 (w) · r}
= ⌘ {(u1, u2) 2 U ⇥ U |u1 · r > 0 > u2 · r}

for any r 2 U without loss of generality.

(3) First, define the closed halfspace corresponding to r 2 U as

Hr := {u 2 U | u · r � 0}

and let E be the set of all finite intersection of such halfspaces. Consider a partition

P = {0}[Si Ai of U where for each Ai, we can find two sequences Aij 2 E and ¯Aij 2 E
such that Aij % Ai [ {0}, Aij ⇢ int

�

¯Aij

� [ {0} and ¯Aij \ ¯Ai0j = {0} for all i0 6= i .
Note that since sets in E are ⌘-measurable, every Aij ⇥ Ai0j0 is ⌘-measurable. By (1)

1 = ⌘ (U ⇥ U) = ⌘

 

[

i

Ai ⇥
[

i

Ai

!

=

X

ii0

⌘ (Ai ⇥ Ai0)

=

X

i

⌘ (Ai ⇥ Ai) +

X

i0 6=i

⌘ (Ai ⇥ Ai0)

= ⌘

 

[

i

(Ai ⇥ Ai)

!

+

X

i0 6=i

lim

j
⌘ (Aij ⇥ Ai0j)

By a standard separating hyperplane argument (Theorem 1.3.8 of Schneider [44]), we
can find some r 2 U such that u1 · r � 0 � u2 · r for all (u1, u2) 2 ¯Aij ⇥ ¯Ai0j. Since
Aij\ {0} ⇢ int

�

¯Aij

�

, we must have u1 · r > 0 > u2 · r for all (u1, u2) 2 (Aij\ {0}) ⇥
(Ai0j\ {0}). By (1) and (2),

⌘ (Aij ⇥ Ai0j) = ⌘ ((Aij\ {0})⇥ (Ai0j\ {0}))
 ⌘ {(u1, u2) 2 U ⇥ U |u1 · r > 0 > u2 · r} = 0

so ⌘ (
S

i (Ai ⇥ Ai)) = 1.

Now, consider a sequence of increasingly finer such partitions Pk
:= {0} [S

i A
k
i such

that for any (u1, u2) 2 U ⇥ U where u2 62 R (u1), there is some partition Pk where
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(u1, u2) 2 Ak
i ⇥ Ak

i0 for i 6= i0. Let

Ck := {0} [
[

i

�

Ak
i ⇥ Ak

i

�

C0 := {(u1, u2) 2 U ⇥ U |u2 2 R (u1)}

We show that Ck & C0. Since Pk0 ⇢ Pk for k0 � k, Ck0 ⇢ Ck. Note if u2 2 R (u1), then
u1 2 Hr iff u2 2 Hr for all r 2 U so C0 ⇢ Ck for all k. Suppose (u1, u2) 2 (

T

k Ck) \C0.
Since u2 62 R (u1), there is some k such that (u1, u2) 62 Ck a contradiction. Hence,

C0 =
T

k Ck so

⌘ (C0) = lim

k
⌘ (Ck) = 1

Theorem (S5.1). If ⇢ satisfies Axioms 1-6, then it has a RSEU representation.

Proof. Let ⇢ satisfy Axioms 1-6, and ⌫ be the measure on W as specified by Lemma S2. Let
S⇤ ⇢ S be the set of non-null states with some s⇤ 2 S⇤ as guaranteed by Lemma S3. Define

W0 := {w 2 W |ws 2 R (ws⇤) 8s 2 S⇤}

and note that by Lemma S4,

⌘ (W0) = ⌘

 

\

s2S⇤

{w 2 W |ws 2 R (ws⇤)}
!

= 1

Let Q : W0 ! �S be such that Qs (w) := 0 for s 2 S\S⇤ and

Qs (w) :=
↵s (w)

P

s2S⇤ ↵s (w)

for s 2 S⇤ where ws = ↵s (w)ws⇤ +�s (w)1 for ↵s (w) > 0 and �s (w) 2 R. Define ˆQ : W0 !
�S ⇥ RX such that

ˆQ (w) := (Q (w) , ws⇤)

and let ⇡ := ⌘ � ˆQ�1 be the measure on �S ⇥ RX induced by ˆQ.
For s 2 S\S⇤, let {f, h} ⇢ H be such that hs =

1
|X|1 and fs0 = hs0 for all s0 6= s. By the

definition of nullity, f and h are tied so

1 = ⇢ (f, h) = ⇢ (h, f) = ⌫

⇢

w 2 W

�

�

�

�

ws · f (s) =
1

|X| (ws · 1)
�
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Thus

⇢F (f) = ⌫

(

w 2 W

�

�

�

�

�

X

s2S
ws · f (s) �

X

s2S
ws · g (s) 8g 2 F

)

= ⌫

(

w 2 W0

�

�

�

�

�

X

s2S⇤

ws · f (s) �
X

s2S⇤

ws · g (s) 8g 2 F

)

= ⇡
�

(q, u) 2 �S ⇥ RX |q · (u � f) � q · (u � g) 8g 2 F
 

Note that Lemma S4 implies that u is non-constant. Finally, we show that ⇡ is regular.

Suppose there are {f, g} ⇢ H such that

⇡
�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) = q · (u � g) 2 (0, 1)

If f and g are tied, then q · (u � f) = q · (u � g) ⇡-a.s. yielding a contradiction. Since f and
g are not tied, then

⇡
�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) = q · (u � g) = ⇢ (f, g)� (1� ⇢ (g, f)) = 0

a contradiction. Thus, ⇢ is represented by ⇡.

Theorem (S5.2). If ⇢ has a RSEU representation, then it satisfies Axioms 1-6.

Proof. Note that monotonicity, linearity and extremeness all follow trivially from the repre-
sentation. Note that if ⇢ is degenerate, then for any constant {f, g} ⇢ H,

1 = ⇢ (f, g) = ⇢ (g, f) = ⇡
�

(q, u) 2 �S ⇥ RX
�

�u � f = u � g 

so u is constant ⇡-a.s. a contradiction. Thus, non-degeneracy is satisfied.

To show S-independence, suppose f (s1) = f (s2) = h (s1), g (s1) = g (s2) = h (s2) and
f (s) = g (s) = h (s) for all s 62 {s1, s2}. Note that if h is tied with f or g, then the result
follows immediately, so assume h is tied to neither. Thus,

⇢{f,g,h} (h) = ⇡
�

(q, u) 2 �S ⇥ RX
�

� q · (u � h) � max (q · (u � g) , q · (u � g)) 

= ⇡
�

(q, u) 2 �S ⇥ RX
�

�u (h (s2)) � u (h (s1)) and u (h (s1)) � u (h (s2))
 

Note that if u (h (s2)) = u (h (s1)) ⇡-a.s., then h is tied with both, so by the regularity of ⇡,

⇢{f,g,h} (h) = 0.
Finally, we show continuity. First, consider {f, g} ⇢ Fk 2 K0 such that f 6= g and

60



suppose q ·(u � f) = q ·(u � g) ⇡-a.s.. Thus, ⇢ (f, g) = ⇢ (g, f) = 1 so f and g are tied. As ⇢ is

monotonic, Lemma A2 implies g 2 fFk
contradicting the fact that Fk 2 K0. As µ is regular,

q · (u � f) = q · (u � g) with ⇡-measure zero and the same holds for any {f, g} ⇢ F 2 K0.

Now, for G 2 K, let

QG :=

[

{f,g}⇢G, f 6=g

�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) = q · (u � g) 

and let
¯Q := QF [

[

k

QFk

Thus, µ
�

¯Q
�

= 0 so µ (Q) = 1 for Q := �S\ ¯Q. Let ⇡̂ (A) = ⇡ (A) for A 2 B ��S ⇥ RX
�\Q.

Thus, ⇡̂ is the restriction of ⇡ to Q (see Exercise I.3.11 of Çinlar [12]).
Now, for each Fk, let ⇠k : Q ! H be such that

⇠k (q, u) := argmax

f2Fk

q · (u � f)

and define ⇠ similarly for F . Note that both ⇠k and ⇠ are well-defined as they have domain
Q. For any B 2 B (H),

⇠�1
k (B) = {(q, u) 2 Q| ⇠k (q, u) 2 B \ Fk}

=

[

f2B\Fk

�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) > q · (u � g) 8g 2 Fk

 \Q

2 B ��S ⇥ RX
� \Q

Hence, ⇠k and ⇠ are random variables. Moreover,

⇡̂ � ⇠�1
k (B) =

X

f2B\Fk

⇡̂ {(q, u) 2 Q| q · (u � f) > q · (u � g) 8g 2 Fk}

=

X

f2B\Fk

⇡
�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) � q · (u � g) 8g 2 Fk

 

= ⇢Fk
(B \ Fk) = ⇢Fk

(B)

so ⇢Fk
and ⇢F are the distributions of ⇠k and ⇠ respectively. Finally, let Fk ! F and fix

(q, u) 2 Q. Let f := ⇠ (q, u) so q · (u � f) > q · (u � g) for all g 2 F . Since linear functions

are continuous, there is some l 2 N such that q · (u � fk) > q · (u � gk) for all k > l. Thus,
⇠k (q, u) = fk ! f = ⇠ (q, u) so ⇠k converges to ⇠ ⇡̂-a.s.. Since almost sure convergence implies
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convergence in distribution (see Exercise III.5.29 of Çinlar [12]), ⇢Fk
! ⇢F and continuity is

satisfied.

Lemma (S6). ⇢ satisfy Axioms 1-4, 6 and 7 iff there exists a regular µ and u = (us)s2S with

at least one us non-constant such that

⇢F (f) = µ

(

q 2 �S

�

�

�

�

�

X

s

qsus (f (s)) �
X

s

qsus (g (s)) 8g 2 F

)

Proof. We first prove sufficiency. Since ⇢ satisfies Axioms 1-4, by Lemma S2, there exists a

measure ⌫ on W such that

⇢F (f) = ⌫

(

w 2 W

�

�

�

�

�

X

s

ws (f (s)) �
X

s

ws (g (s)) 8g 2 F

)

Fix some s 2 S and y 2 X. For each x 2 X, let fx 2 H be such that fx
(s) = �x and

fx
(s0) = �y for all s0 6= s. Let F :=

S

x2X fx so by S-determinism,

⇢F (f y
) = ⌫ {w 2 W | ws (y) � ws (x) 8x 2 X } 2 {0, 1}

Hence, we can find some xs
1 2 X such that ws (x

s
1) � ws (x) ⌫-a.s. for all x 2 X and by

iteration some xs
2 2 X such that ws (x) � ws (x

s
2) ⌫-a.s. for all x 2 X.

For each w 2 W and s 2 S, let uw
s 2 RX be such that uw

s (xs
1) = 1, uw

s (xs
2) = 0 and

ws = ↵s (w) u
w
s + �s (w)1 for ↵s (w) � 0. Hence,

⇢F (f) = ⌫

(

w 2 W

�

�

�

�

�

X

s

↵s (w) u
w
s (f (s)) �

X

s

↵s (w) u
w
s (g (s)) 8g 2 F

)

By Lemma S3, there exists some non-null s⇤ 2 S. Hence, by the definition of nullity and

S-determinism, ws⇤
�

xs⇤
1

�

> ws⇤
�

xs⇤
2

�

⌫-a.s. so
P

s ↵s (w) > 0 ⌫-a.s.. Define Q : W ! �S

such that Qs (w) :=
↵s(w)P
s ↵s(w) for every s 2 S so

⇢F (f) = ⌫

(

w 2 W

�

�

�

�

�

X

s

Qs (w) u
w
s (f (s)) �

X

s

Qs (w) u
w
s (g (s)) 8g 2 F

)

Since ⇢
�

fxs
1 , fx

�

= ⇢
�

fx, fxs
2
�

= 1, by S-determinism and continuity, for every non-null

s 2 S and x 2 X, there is a unique ax 2 [0, 1] such that fx is tied with fxs
1axfxs

2 . Hence,

1 = ⇢
�

fxs
1axfxs

2 , fx
�

= ⇢
�

fx, fxs
1axfxs

2
�

= ⌫ {w 2 W | uw
s (x) = ax}
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so us is fixed ⌫-a.s.. Thus

⇢F (f) = µ

(

q 2 �S

�

�

�

�

�

X

s

qsus (f (s)) �
X

s

qsus (g (s)) 8g 2 F

)

where µ := ⌫ �Q�1 is the induced measure on �S by Q. The argument for the regularity of

µ follows by the same reasoning as in Theorem S5.1. For necessity, note that Axioms 1-4 and

6 all follow as in Theorem S5.2. S-determinism follows trivially from the representation.

Corollary (S7). ⇢ satisfies Axioms 1-7 iff it has an information representation.

Proof. Since necessity follows immediately from Theorem S5.2 and Lemma S6, we prove

sufficiency. By Theorem S5.1, ⇢ has a RSEU representation. Fix some non-null s⇤ 2 S and
y 2 X. For each x 2 X, let fx 2 H be such that fx

(s⇤) = �x and fx
(x) = �y for all s 6= s⇤.

Let F :=

S

x2X fx so by S-determinism,

⇢F (fx
) = ⇡

�

�S ⇥ �

u 2 RX | u (x) � u (z) 8z 2 X
 � 2 {0, 1}

Hence, we can find some x̄ 2 X such that u (x̄) � u (x) ⇡-a.s. for all x 2 X and by iteration

some x 2 X such that u (x) � u (x) ⇡-a.s. for all x 2 X. Note that u (x̄) > u (x) by non-

degeneracy. Normalize u (x̄) = 1 and u (x) = 0 without loss of generality and let ¯f := f x̄

and f := fx. Since ⇢
�

¯f, fx
�

= ⇢ (fx, fx
) = 1, by S-determinism and continuity, there is a

unique ax 2 [0, 1] such that fx is tied with ¯faxf . Hence,

1 = ⇢
�

¯faxf, fx
�

= ⇢
�

fx, ¯faxf
�

= ⇡
�

�S ⇥ �

u 2 RX | u (x) = ax
 �

so u is fixed ⇡-a.s.. Thus ⇡ (�S ⇥ {u}) = 1 and ⇢ has an information representation.

Theorem (S8). ⇢ satisfies Axioms 1-4, 6-8 iff it has a calibrated information representation.

Proof. Let ⇢ satisfy Axioms 1-4, 6-8. By Lemma S6, there is a regular µ and u = (us)s2S
with at least one us non-constant such that

⇢F (f) = µ

(

q 2 �S

�

�

�

�

�

X

s

qsus (f (s)) �
X

s

qsus (g (s)) 8g 2 F

)

Let
�

¯f, f
 ⇢ H be such that ¯f (s) = �xs

1
and f (s) = �xs

2
where {xs

1, x
s
2} ⇢ X are specified

by Lemma S6. Since
P

s qsus

�

¯f (s)
�

= 1 and
P

s qsus

�

f (s)
�

= 0, ¯f and f are the best and

worst acts respectively.
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Let  f : �S ! [0, 1] be such that  f (q) = 1 � P

s qsus (f) which is measurable. Let

�f := µ �  �1
f be the image measure on [0, 1]. By a standard change of variables (Theorem

I.5.2 of Çinlar [12]),

Z

[0,1]

x�f (dx) =

Z

�S

 

1�
X

s

qsus (f (s))

!

µ (dq)

For a 2 [0, 1], let fa
:= faf . Now,

�f [0, a] = µ �  �1
f [0, a] = µ {q 2 �S | a �  f (q) � 0}

= µ

(

q 2 �S

�

�

�

�

�

X

s

qsus (f (s)) �
X

s

qsus (f
a
(s))

)

= f⇢ (a)

so the cumulative distribution function of �f is exactly f⇢. Lemma B1 yields
Z

[0,1]

f⇢ (a) da =

Z

�S

X

s

qsus (f (s))µ (dq)

By Axiom 8,
rs =

Z

[0,1]

¯f s
⇢ (a) da =

Z

�S

qsµ (dq)

as desired. Necessity follows immediately from Lemma S6.
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