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Abstract

The paper provides a representation theorem for the class of all stationary
preferences in a stochastic environment. A notion of ambiguity aversion ap-
plicable to such preferences is also proposed. The analysis helps discriminate
between dynamic models of ambiguity aversion and expected utility models
with endogenous discounting, which, as has been observed in both applied and
decision-theoretic work, share a number of predictions concerning intertempo-
ral behavior.
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1 Introduction

The standard model of intertemporal choice assumes that utility is additively sep-
arable across states of the world and over time. The tight structure of the model
has proved advantageous in many settings. The preferences are tractable and lead
to strong predictions. Yet, an increasing number of empirical findings have proved
difficult to rationalize within the standard model and have prompted researchers to
explore alternative specifications. Backus et al. [2] provide a comprehensive survey
of the literature, discussing specifications that relax each of the separability assump-
tions characterizing the standard model. The first objective of this paper is to unify
some of the different strands in this literature by providing a general representation
theorem for the class of all stationary preferences in a stochastic environment. As the
paper shows, one reason to focus on stationary preferences is that they are sufficiently
well behaved to permit a degree of separation between the individual’s ‘beliefs’ and
‘tastes’. Such separation is helpful in many economic problems. It is necessary to
isolate the effects of learning on behavior and leads to sharp comparative statics. The
second goal of the paper is to clarify how several prominent specifications within the
class of stationary preferences differ in their predictions. In particular, the paper
proposes a definition of ambiguity aversion that isolates the effects of ambiguity on
intertemporal allocations and shows how these effects differ from those of competing
models.

The main themes and results in the paper can be illustrated by considering the utility
specifications

V (c0, c1, ...) = E[u(c0) + b(c0)u(c1) + b(c0)b(c1)u(c2)...] (1.1)

V (c0, c1, ...) = minp∈P Ep[∑t
βtu(ct)] (1.2)

where (c0, c1, ...) is a stochastic consumption stream. The first model relaxes time ad-
ditivity by introducing a specific form of intertemporal complementarity: the rate of
time preference between two consecutive periods t and t+1 depends on consumption
in period t. It is common to say that discounting is endogenous. In a determinis-
tic setting, a special case of that model was introduced by Uzawa [35]. The more
general model in (1.1), including the extension to a stochastic framework, is due to
Epstein [5]. Their work has spawned many applications in international economics
and the study of small open economies in particular. See Epstein [6] and Epstein
and Hynes [8], among others. In the second model in (1.2), the intertemporal utility
index is additive and discounting takes the familiar geometric form. Its character-
istic feature is that there is ambiguity, that is, the individual cannot quantify the
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relevant uncertainty by a single prior belief. Instead, he contemplates a set P of
possible probability distributions and evaluates each consumption profile according
to a worst case scenario. As has been understood since the work of Ellsberg [4]
and Gilboa and Schmeidler [17], the specification in (1.2) departs from the standard
model by relaxing the assumption that utility is additively separable across states of
the world. The reader is referred to Epstein and Schneider [10] for a survey of the
growing literature on ambiguity and some of its recent applications to problems in
finance.

Work in decision theory has revealed that the models in (1.1) and (1.2), despite the
obvious differences, share a number of important predictions concerning intertempo-
ral behavior. The first such prediction extends Koopmans’ [22] notion of stationarity
to stochastic settings. Such an extension was originally proposed in Epstein [5], where
it is used to characterize the model in (1.1). More recently, Kochov [21] showed that
stationarity is one of the key predictions of the maxmin model in (1.2) that distin-
guish it from other models of ambiguity aversion. In addition to what is already
assumed in Koopmans [22], the extension requires that the individual’s attitude to-
ward uncertainty does not depend on the date on which consumption takes place.
In particular, it does not matter whether a given event affects immediate or future
consumption. Accounting for the passage of time, the uncertainty exacts identical
premia.

The second prediction shared by the models in (1.1) and (1.2) concerns a form
of behavior called intertemporal hedging in Kochov [21].1 Its intuitive meaning is
that an individual who is concerned about uncertainty would seek to take differ-
ent, negatively correlated bets in different time periods. Kochov [21] showed that
intertemporal hedging can be viewed as the dynamic manifestation of ambiguity
aversion. A limitation of that paper is that its conclusions depend critically on the
assumption that the utility index is additively separable across time. In particu-
lar, it is observed in Epstein [5] that the model in (1.1) generates similar behavior
whenever the discount factor β(c) is decreasing in the level of consumption. This
restriction on the rate of time preference is especially common in applications where
it is used to guarantee the uniqueness and stability of steady states. The question
arises whether the effects of ambiguity on intertemporal behavior can be successfully

1Conceptually similar conditions were formulated by Richard [30] and Epstein and Tanny [11]
where they are called multivariate risk aversion and correlation aversion respectively. These papers
consider environments in which the uncertainty is objective as in the von Neumann Morgenstern ex-
pected utility framework. Kochov [21] adopts an environment in which the uncertainty is subjective
as in Savage [32].
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disentangled from those of endogenous discounting and what kind of data or choice
situations may serve this purpose. Before we address this question, it should be
noted that its broader outlines have not escaped the attention of applied economists.
In their comments to Backus et al. [2], both Hansen and Werning observe that it is
not uncommon for different alternatives to the standard model to generate similar
or, in some cases, identical predictions especially when the focus is on intertemporal
behavior. Werning, in particular, calls for more work aimed at discriminating among
the many alternatives reviewed in Backus et al. [2]. In what follows, we explain how
stationarity, as well as the new notion of intertemporal hedging, may be helpful in
this regard.

The first goal of this paper is to characterize the class of all stationary preferences
in a stochastic framework. This is done without imposing any a priori restrictions
how the individual may evaluate uncertainty or how he discounts the future. The
analysis provides a stochastic counterpart of Koopmans [22] and generalizes the re-
sults in Epstein [5] and Kochov [21]. Two practical lessons emerge. Both of them
stem from the fact that stationarity proves to be remarkably powerful in stochastic
settings. First, the axiom implies that discounting takes the form in (1.1). This im-
plication stands in sharp contrast to the conclusions reached by Koopmans [22] in a
deterministic environment. As we explain, in such settings stationarity is consistent
with a much broader class of preferences, permitting a greater and more nuanced
array of intertemporal complementarities. It is also notable that, despite the rich-
ness of the preferences characterized by Koopmans [22], there has been little work,
axiomatic or empirical, attempting to discriminate among them. It follows from the
analysis in this paper that embedding these preferences in a stochastic framework
may be helpful. A closely related lesson stems from the fact that many of the early
applications that followed in Koopmans’ path, e.g., Lucas and Stokey [24], adopt
specifications which, when combined with the expected utility or maxmin criterion,
fail to be stationary in the stochastic sense of this paper. To the extent that one
considers applications in which the latter restriction on behavior may be desirable,
care is therefore needed in making the transition from deterministic to uncertain
environments.

The second implication of stationarity is that uncertainty is evaluated by a criterion
that is ‘almost’ maxmin. To clarify, it is helpful to recall that the maxmin criterion
in (1.2) is often viewed as exhibiting both constant absolute and constant relative
ambiguity attitude. These notions, which we formalize in the paper, are the obvious
analogues of the attitudes an individual may hold toward objective risk. For further
discussion of this analogy, see Klibanoff et al. [19] and Strzalecki [34]. Stationarity
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implies that the individual evaluates uncertainty using a criterion that exhibits both
constant absolute and constant relative ambiguity attitude. What is once again
notable is that only a few ambiguity criteria fall into the same category. In addition
to the maxmin criterion used in (1.2), popular alternatives include the Choquet
criterion of Schmeidler [33] and the α-Hurwicz criterion recently axiomatized by
Gul and Pesendorfer [18]. Within this class, the maxmin criterion is also unique in
that every specification thereof, with the exception of expected utility, exhibits strict
aversion to ambiguity. Before we explain what ‘ambiguity aversion’ means in the
intertemporal setting of this paper, it may be helpful to summarize the implications
of stationarity. In particular, taking into account its implications for discounting and
for the way the individual evaluates uncertainty, we reach the surprising conclusion
that the utility specifications in (1.1) and (1.2) isolate the essential features of all
stationary preferences. Roughly speaking, these specifications may be viewed as two
polar departures from the standard model, nesting every other stationary preference
inbetween.

The second objective of this paper is to identify intertemporal behavior that can
discriminate between the preference specifications in (1.1) and (1.2). In particular,
we seek to modify the notion of intertemporal hedging used in Kochov [21] and
isolate the demand for hedging that is driven purely by ambiguity aversion. As a
preliminary step in this direction, we prove that the class of all stationary preferences
is sufficiently well behaved to permit a degree of separation between the individual’s
‘tastes’ and his ‘beliefs’. Such a step is necessary to insure that the problem how
to define ambiguity aversion, and how to discriminate between the models in (1.1)
and (1.2), is feasible in theory. The specific solution we then propose is based on
a straight-forward distinction between two forms of uncertainty that can arise in
dynamic settings. To illustrate the main idea, it is helpful to focus on the special
case whereby the consumption space consists of a single, infinitely divisible good.
By way of contrast, consider first a static environment in which consumption takes
place at a single point in time. It is then evident that uncertainty can only affect the
level of consumption, that is, how much is consumed in each state of the world. In a
dynamic environment, one can imagine a different form of uncertainty, namely, one
concerning when the individual obtains a given, fixed level of consumption - think of
an individual expecting a tax refund but not knowing when it will arrive. The paper
shows that it is the latter type of uncertainty that brings out a sharp, qualitative
difference between the models in (1.1) and (1.2). In particular, if the individual
enters an intertemporal hedge to reduce or eliminate such uncertainty, it is necessarily
because he perceives the environment to be ambiguous. The model in (1.1) cannot
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explain such behavior, no matter how the individual discounts the future. Formally,
the paper proves that a maxmin criterion, like the one in (1.2), is implied once the
new notion of intertemporal hedging is combined with the assumption that behavior
is stationary.

2 Domain

Time is discrete and varies over an infinite horizon: t ∈ {0,1,2, ...} =∶ T . The available
information is described by a filtered space (Ω,{Ft}t) where Ω is an arbitrary set
of states of the world and {Ft}t =∶ F is an increasing sequence of algebras such
that F0 = {Ω,∅}. Let X be a compact, connected, and separable topological space,
interpreted as the set of consumption outcomes. Let h be an X-valued, F -adapted
process, that is, a sequence (ht)t∈T such that ht ∶ Ω → X is Ft-measurable for every
t ∈ T . Think of h as a stochastic consumption stream. Following Savage [32], we will
also refer to a process h as an act. If F ′ is a collection of events such that F ′ ⊂ ∪tFt,
then an act h is F ′-adapted if ht is F ′-measurable for every t ∈ T . An act h is finite
if there is a finite algebra A ⊂ ∪tFt such that h is A-adapted. To avoid technical
complications, we take the choice domain to be the space H of all finite acts. An act
h ∈ H is deterministic if, for every t ∈ T , ht ∶ Ω→X is a constant function, that is,
if the outcomes of h do not depend on the state of the world. We use d, d′ to denote
such acts. As is common in the literature, such acts are identified with elements of
X∞.

We now take the opportunity to introduce some notation and a few mathematical
concepts that will be used in the rest of the paper. Let B0 be the space of all
simple, real valued, ∪tFt-measurable functions on Ω. Given a set C ⊂ R, let B0

C

denote the set of all C-valued functions in B0. To highlight the fact that Ω is a state
space capturing the relevant uncertainty, we often refer to the functions ξ ∈ B0 as
random variables. We abuse notation and use k to denote both a real number and
the function in B0 that is identically equal to k ∈ R. With this in mind, a functional
I ∶ B0 → R is translation invariant if I(ξ + k) = I(ξ) + k for all ξ ∈ B0, k ∈ R.
It is normalized if I(k) = k for all k ∈ R. Given α ∈ R, the functional I is α-
homogeneous if I(αξ) = αI(ξ) for all ξ ∈ B0. If I is α-homogeneous for all α ∈ R++,
then I is positively homogeneous. If we endow B0 with the usual pointwise order,
a functional I ∶ B0 → R is increasing if for all ξ, ξ′ ∈ B0, I(ξ) ≥ I(ξ′) whenever ξ ≥ ξ′.
A normalized and increasing functional I ∶ B0 → R is called a certainty equivalent.
In later sections, certainty equivalents will be used to specify the individual’s ‘beliefs’.
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Thus, I(ξ) will be interpreted as the expected value assigned by the individual to the
random variable ξ ∈ B0. Going back to the introduction, we should also observe that
positive homogeneity and translation invariance are often interpreted as capturing
constant relative and constant absolute ambiguity attitude. Finally, let ∆ be the
space of all finitely additive probability measures p on the measurable space (Ω,∪tFt).
The space ∆ is endowed with the weak∗ topology, that is, the coarsest topology such
that for every ξ ∈ B0, the linear functional p ↦ Epξ, mapping ∆ into the reals, is
continuous.

3 Axioms

Given a binary relation ⪰ on a set Y , the relations ≻ and ∼ are defined as usual. A
preference relation ⪰ on a set Y is a complete and transitive binary relation such
that y ≻ y′ for some y, y′ ∈ Y . The primitive of this paper is a preference relation
on the space H of finite acts, representing behavior prior to the resolution of any
uncertainty. The next axiom is a form of continuity familiar from Ghirardato and
Marinacci [14].

Continuity (C): For every finite algebra F ′ ⊂ ∪tFt, the restriction of ⪰ to all F ′-
adapted acts in H is continuous.

The next axiom requires that the tastes of the individual are state independent,
that is, there are no taste shocks. The requirement goes back to the work of Savage
[32]. Here, it is formulated for a dynamic choice setting. As is well understood,
the importance of state independence stems from the fact that it is necessary for
the separation of beliefs and tastes, a problem that is central to the analysis in this
paper. Given h ∈ H, d ∈ X∞, t ∈ T , and an event A ∈ Ft, let dAth denote the act
g ∈ H such that gk(ω) = dk for all k ≥ t and all ω ∈ A, and gk(ω′) = hk(ω′) otherwise.
Thus, dAth is the act obtained from h by replacing its outcomes in the event A and
after period t with the respective outcomes of d. Suppose now that the acts h ∈ H

and d, d′ ∈ X∞ are such that hk = dk = d′k for all k ≤ t − 1. The axiom requires that
dAth ⪰ d′Ath whenever d ⪰ d′. Thus, evaluating d, d′ conditional of the event A
does not reverse their unconditional ranking. Note that this requirement does not
preclude the possibility that dAth ∼ d′Ath while d ≻ d′. Such rankings can arise if the
individual believes the event A to be impossible. In the maxmin model in (1.2), such
rankings can also arise if the event is deemed possible but is assigned probability
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0 under the worst case scenario. As other authors have recognized, in the study
of uncertainty it is helpful to assume that there is at least one event A for which
such possibilities do not apply, that is, for which the likelihood of both A and Ac

is bounded away from zero. Formally, say that an event A ∈ Ft, t ∈ T , is essential
if dAth ≻ d′Ath and d[Ac]th ≻ d′[Ac]th whenever d ≻ d′. As part of the statement
of state independence, we embed the requirement that there is at least one essential
event.

State Independence (SI): For all t ∈ T,A ∈ Ft, and acts h ∈ H, d, d′ ∈ X∞ such
that hk = dk = d′k for all k ≤ t − 1, if d ⪰ d′, then dAth ⪰ d′Ath. In addition, there is
some t ∈ T and some event A ∈ ∪tFt such that A is essential.

The next axiom is central to the analysis of this paper. It extends Koopmans’
[22] notion of stationarity from deterministic to stochastic environments. Such an
extension was first proposed in Epstein [5] where it was used to characterize the model
in (1.1). More recently, Kochov [21] used the axiom to characterize the maxmin
model in (1.2). In terms of choice under uncertainty, the primary implication of
the axiom is that attitudes toward uncertainty do not depend on the date on which
consumption takes place. To illustrate, fix some period t ∈ T and an event A ∈ Ft.
Observe that the event A may affect consumption in period t as well as consumption
at a more distant future date. Stationarity requires that, no matter how distant the
ramifications, the individual exhibits the same degree of uncertainty aversion. To
state the axiom formally, let (x,h) denote the act g ∈ H such that g0 = x and gt = ht−1
for all t > 0, where x ∈X and h ∈ H. Thus, the act (x,h) postpones the consumption
date of each outcome of h by one period. The axiom says that this has no effect on
preferences.2

Stationarity (S): For all h, g ∈ H, and x ∈X, h ⪰ g if and only if (x,h) ⪰ (x, g).

To simplify the exposition, from now on we say that a preference relation ⪰ on H is
stationary if it satisfies the three axioms above. Similarly, we speak of a stationary
preference on X∞ to mean a continuous preference relation on X∞ such that d ⪰ d′ if
and only if (x, d) ⪰ (x, d′), for all x ∈X and d, d′ ∈X∞. Here, by continuous we mean
simply that all the upper and lower contour sets are closed in the product topology
on X∞.

2For a more elaborate discussion of the axiom, see Kochov [21].
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For future reference, we introduce two additional axioms that can be deduced as
implications of Stationarity and State Independence. First, a preference relation
⪰ on H is said to satisfy History Independence if for all x, y ∈ X,h, g ∈ H, the
act (x,h) is preferred to (x, g) whenever (y, h) is preferred to (y, g). Thus, prior
consumption does not affect how the individual evaluates the future. This axiom
follows directly from Stationarity. Next, given an act h ∈ H and state ω ∈ Ω, let
h(ω) ∶= (h0(ω)h1(ω), ...) ∈ X∞ be the consumption stream delivered by h in state
ω. Say that ⪰ satisfies Monotonicity if an act h ∈ H is preferred to an act g ∈ H
whenever h(ω) is preferred to g(ω) for all ω ∈ Ω. As one can verify, Monotonicity
is stronger than State Independence, modulo the existence of an essential event.
Lemma 7 in the appendix shows, however, that the axioms become equivalent under
Stationarity. The lemma is of interest beyond the role it plays in the proof of Theorem
2. In particular, it is known that only a few specifications of the recursive preferences
studied in Epstein and Zin [12] satisfy Monotonicity, whereas all such preferences can
be formulated so as to be state independent. See Bommier and Grand [3] for details.
It follows from Lemma 7 that the specifications in Epstein and Zin [12] that are
not monotone are not stationary either and, therefore, fall outside the scope of this
paper.

4 Representation

This section states two results concerning stationary preferences in a stochastic set-
ting. The first reveals a feature that is shared by all utility representations of a
single, stationary preference relation. As we explain, the result is helpful in verify-
ing whether a given parametric specification induces a stationarity preference. The
second result derives one specific utility representation. As we argue in Section 5,
the latter is important in that it achieves a separation of the individual’s tastes and
beliefs.

It is helpful to begin by considering the implications of Stationarity for the ranking
of deterministic consumption streams. In particular, suppose U ∶X∞ → R is a utility
function for some preference on ⪰ on X∞. Arguments familiar from Koopmans [22]
show that ⪰ is stationary if and only if U can be written in the following recursive
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form3

U(x0, x1, x2, ...) = φ(x0, U(x1, x2, ...)), ∀(x0, x1, ...) ∈X
∞, (4.1)

where φ ∶X×U(X∞)→ U(X∞) is continuous in each argument and strictly increasing
in the second. The function φ is commonly referred to as a time aggregator for
the utility U ∶X∞ → R. The name is motivated by the fact that φ computes overall,
ex ante utility as an average of current consumption and the overall, continuation
utility.

Turning attention to choice under uncertainty, suppose that a utility function U ∶

X∞ → R representing the ranking of deterministic acts is given. In later sections, we
refer to U as capturing the tastes of the individual. Given U , a stochastic act h ∈ H
can be converted into a random variable in B0 by assigning each state ω ∈ Ω the utility
of the consumption stream h(ω) ∈X∞. This random variable is denoted by U○h ∈ B0.
The choice of notation is inspired by the fact that one can think of an act h ∈ H as a
function from Ω into X∞. Similarly, U ○H denotes the subset of all random variables
U ○ h ∈ B0 as the act h varies in H. Given U ∶ X∞ → R and a certainty equivalent
I ∶ B0 → R, we can now define a utility function V on H by letting V (h) ∶= I(U ○ h)
for every h ∈ H. A tuple (U, I) is said to represent a preference relation ⪰ on H
if the function V , thus defined, represents ⪰. Whenever the function U ∶ X∞ → R
can be written recursively as in (4.1), it is also useful to make the time aggregator
φ explicit and write (U,φ, I) in place of (U, I). It should now be mentioned that a
representation (U,φ, I) exists under very general restrictions on behavior. The proof
of Lemma 1 in the appendix provides the details. The important point is that we
have not yet accounted for the implications of Stationarity that concern the ranking
of stochastic acts. To do so, we need some notation. Given a representation (U,φ, I)
and a random variable ξ ∈ U ○H ⊂ B0, let φ(x, ξ) denote the function ω ↦ φ(x, ξ(ω)).
Observe that φ(x, ξ) is a random variable, that is, φ(x, ξ) ∈ B0. Now, take an act
(x,h) ∈ H, as such arise in the statement of Stationarity, and consider the equalities:

V (x,h) = I(φ(x,U ○ h)) = φ(x, I(U ○ h)), ∀x ∈X,h ∈ H. (4.2)

The first equality repeats the definition of V . The interesting equality is the second
one. Recall from the discussion of Stationarity that postponing the outcomes of h by
one period, while inserting x in period t = 0, does not affect how the individual feels
about the uncertainty inherent in an act h. This invariance is captured in (4.2) by

3Koopmans [22] imposes the additional assumption that consumption in the first period is separable
from the future. It is clear however that many of his results generalize.
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the fact that the certainty equivalent I and the time aggregator φ permute. That is,
there are two equivalent ways to compute the utility of an act (x,h). As a preliminary
observation, note that when we consider the act (x,h), the random variable U ○ h
represents how the continuation utility of the act varies with the state of the world.
Informally, the expression I(φ(x,U ○ h)) thus means that we first aggregate utility
across time, and then across states. Conversely, the expression, φ(x, I(U ○h)) means
that we first compute the expectation of future utility, and then aggregate across
time. The next lemma shows that the equivalence in (4.2) exhausts the implications
of Stationarity.

Lemma 1 Suppose (U,φ, I) is a representation for a preference relation ⪰ on H.
Then, ⪰ is stationary if and only if the time aggregator φ and the certainty equivalent
I permute.

As we explain at the end of this section, Lemma 1 is an important stepping stone
in the proof of our main theorem. The lemma is of independent interest as well. To
elaborate, observe that in Koopmans [22], and in axiomatic work more generally, the
utility function U ∶X∞ → R is constructed first on the basis of the observed preference
relation. A time aggregator φ for U is then defined via (4.1). In applications,
preferences are typically deduced from a given representation. It is then convenient
to reverse the way in which equation (4.1) is utilized. Namely, it becomes convenient
to first specify a function φ ∶ X × R → R and a certainty equivalent I. A utility
function U ∶ X∞ → R is then defined as the solution of the recursive equation in
(4.1).4 The convenience of this approach, which was pioneered by Lucas and Stokey
[24], stems from the fact that a function φ on X ×R is a much simpler mathematical
object than a function U on X∞. In particular, φ is easier to specify. The price one
has to pay is that many properties of behavior that arise in axiomatic work become
difficult to verify. For example, in Section 6 we discuss an axiom from Koopmans
et al. [23], which we call Impatience and which expresses a preference to advance the
consumption of desirable outcomes. Despite being a conceptually simple restriction
on behavior, the exact class of time aggregators φ that are consistent with the axiom
is yet undetermined. The source of the problem is that for many φ there is no closed

4For some φ ∶X×R→ R, there may be no function U ∶X∞ → R that solves the recursive equation in
(4.2). Another problem is that the equation may admit multiple solutions, in which case preferences
on X∞ are not well defined. We abstract from such problems since they do not concern the formal
results in this paper. It should also be noted that such problems do not arise for the specific time
aggregators characterized in Theorem 2. For the latter, there is in fact a closed form solution for
the unique function U on X∞ that solves the recursion in (4.1). It is given by the expression in
(1.1).
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form solution for the utility function U that solves (4.1). As a result, preferences on
X∞ are only implicitly defined and their properties difficult to assess. One lesson
from Lemma 1 is that such a problem does not arise when one considers Stationarity.
Given a function, φ ∶ X × R → R and a certainty equivalent I ∶ B0 → R, one can
confirm whether I(φ(x, ξ)) = φ(x, I(ξ)) for all x ∈ X,ξ ∈ B0 without having to solve
the recursion in (4.1). In particular, if I and φ permute and if we define U via (4.1),
the preference relation on H induced by (U, I) is guaranteed to be stationary. The
ease with which Stationarity can be verified is especially relevant given the fact that
the literature on endogenous discounting and the literature on non-expected utility
preferences have so far proceeded in isolation of one another. In particular, there is
little knowledge which of the existing specifications of φ and I permute in the sense
of Lemma 1.

To develop further intuition about Lemma 1, it is helpful to recall the preference spec-
ifications from the introduction and verify that the respective certainty equivalents
and time aggregators permute. These observations would also provide perspective
into the main theorem of this section. Consider first the model with endogenous
discounting in (1.1). Its time aggregator φ and its certainty equivalent I take the
form

φ(x, k) = u(x) + b(x)k ∀x ∈X,k ∈ U(X∞), and I(ξ) = Epξ ∀ξ ∈ B0, (4.3)

where u ∶X → R and b ∶X → (0,1) are continuous functions and p ∈ ∆ is a probability
measure over the states of the world. Observe that φ is linear in its second argument,
that is, in the continuation utility k ∈ U(X∞). Taking into account the familiar
linearity properties of the expectation operator, it follows immediately that I and φ
permute. A less obvious observation is that φ has to be linear in its second argument
for it to permute with the expectation operator. This allows us to deduce Epstein’s
[5] characterization of the model in (4.3) from Lemma 1: It is enough to recall that
Epstein maintains Stationarity and the expected utility hypothesis. When a function
U ∶ X∞ → R admits a time aggergator φ as in (4.3), we call U an Uzawa-Epstein
utility and φ its Uzawa-Epstein aggregator. Such an aggregator will also be
written as (u, b) where u and b are the functions that define φ as in (4.3). As part of
the definition of an Uzawa-Epstein aggregator (u, b), it is also convenient to require
that the function x ↦ u(x)(1 − b(x))−1, from X into the reals, is nonconstant. This
requirement is necessary and sufficient for the function U on X∞, defined via (4.1),
to be nonconstant.

Next, consider the maxmin model in (4.1). The time aggregator and the certainty
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equivalent take the form

φ(x, k) = u(x) + βk ∀x ∈X,k ∈ U(X∞), and I(ξ) = min
p∈P

Epξ ∀ξ ∈ B0, (4.4)

where β ∈ (0,1) and P ⊂ ∆ is a weak∗-closed, convex set of probability measures.
When a functional I ∶ B0 → R takes the form in (4.4) for some set P, we refer to
I as a maxmin certainty equivalent. Once again, a direct calculation confirms
that φ and I permute in the sense of (4.2). In anticipation of Theorem 2, however,
we should stress that the calculation exploits two well known properties of maxmin
certainty equivalents, namely, each such functional I is positively homogeneous and
translation invariant.

The next theorem is the main result of this paper. It shows that any stationary
preference on H has a representation (U,φ, I) where φ is an Uzawa-Epstein aggre-
gator and I shares the two features of maxmin certainty equivalents just noted. To
state the theorem, say that a certainty equivalent I is regular if there is some event
A ∈ ∪tFt such that I is strictly increasing when it is restricted to the subspace of
functions ξ ∈ B0 that are {A,Ac}-measurable. Regular certainty equivalents arise
whenever there is an essential event A, which is one of the requirements of State
Independence.

Theorem 2 A preference relation ⪰ on H satisfies Continuity, State Independence,
and Stationarity if and only if it has a representation (U,φ, I) such that φ is an
Uzawa-Epstein time aggregator for some continuous functions u ∶ X → R and b ∶
X → (0,1), and the certainty equivalent I is regular, translation invariant and b(x)-
homogeneous for every x ∈ X. Furthermore, when b is not a constant function, I is
positively homogeneous.

It was observed in the introduction that Stationarity implies a certainty equiva-
lent that is ‘almost’ maxmin. We can now make this claim precise. Specifically,
it is known from Gilboa and Schmeidler [17] that a certainty equivalent I takes
the maxmin form if and only if it is translation invariant, positively homogeneous
and quasiconcave. Theorem 2 shows that Stationarity delivers the first two of these
properties. In the decision-theoretic literature, the last property, quasiconcavity, is
often associated with ambiguity aversion. For example, the behavioral definitions of
ambiguity aversion introduced in Gilboa and Schmeidler [17] and Ghirardato et al.
[15] are each necessary and sufficient for the certainty equivalent to be quasiconcave.
In Section 6, we will propose a different behavioral definition of ambiguity aversion
that is based on intertemporal choice and is applicable to all stationary preferences.
We will then show that any stationary, ambiguity averse preference induces a cer-
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tainty equivalent that I is also quasiconcave so that, indeed, I is a maxmin certainty
equivalent.

Extending Koopmans’ analysis and his notion of stationarity to stochastic settings
proves to be powerful in another sense. In particular, the majority of stationary
preferences on X∞, that is, in a setting with no uncertainty, do not admit an Uzawa-
Epstein utility. A discussion of this point is deferred until Section 6, when we discuss
Impatience.

5 Uniqueness

This section investigates the uniqueness of the representation derived in Theorem 2.
A second goal is to show that Stationarity imposes enough structure on preferences
to permit the separation of beliefs and tastes. We begin the discussion with a re-
sult concerning the uniqueness of Uzawa-Epstein representations in settings without
uncertainty.

Theorem 3 Suppose a preference relation ⪰ on X∞ has two Uzawa-Epstein utility
functions U, Û ∶ X∞ → R with time aggregators (u, b) and (û, b̂) respectively. Then,
b = b̂ and U = αÛ + γ for some α ∈ R++, γ ∈ R.

Fix a stationary preference relation ⪰ on X∞ and let U be the space of all continuous
functions U ∶ X∞ → R that represent ⪰. Also, let U∗ ⊂ U be the subset of functions
that admit an Uzawa-Epstein aggregator. To understand the rest of this section, it
is important to observe that U∗ is necessarily a strict subset of U . In particular,
suppose U∗ is nonempty. Take some U ∈ U∗ and a continuous, strictly increasing,
non-affine function g ∶ R→ R. If we let Ũ ∶= g○U , it is clear that Ũ ∈ U . Yet, Theorem
3 implies that Ũ ∉ U∗. The question arises why one should single out Uzawa-Epstein
representations as we did in Theorems 2 and 3. To further stress the importance of
the question, note that each function U ′ ∈ U can be written recursively, as in (4.1), for
some time aggregator φ. Thus, the familiar advantages of recursive representations
do not allow us to discriminate in favor of Uzawa-Epstein utilities. We give two
reasons.

First, the uniqueness result in Theorem 3 suggests that b(x) has a well defined
behavioral meaning. In fact, an analogy with the standard, time separable model
suggests that b(x) may be viewed as a local measure of impatience. Following Epstein
[5] and Koopmans [22], the analogy can be made precise if we assume that X ⊂ R
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and that the function U ∶ X∞ → R is differentiable. In particular, letting ρ(x) ∶=
(1− b(x))b(x)−1 for every x ∈X, Epstein [5, p.137] observes that ρ(x)+ 1 = b(x)−1 is
the marginal rate of substitution between consumption in periods 0 and 1 along the
constant path (x,x, ...). When consumption is in a neighborhood of (x,x, ...), we can
thus think of ρ(x) as the rate of time preference and of b(x) as the discount factor.
One advantage of Uzawa-Epstein representations is now obvious: they incorporate
the discount factor b explicitly into the functional form. The additive structure of the
time aggregator and the close resemblance to the standard model is also beneficial
analytically.

As we consider choice under uncertainty, a second reason emerges why a focus on
Uzawa-Epstein representations is justified. It may be helpful to illustrate the essential
points by first focusing on the model with endogenous discounting due to Epstein
[5]. Thus, consider a preference relation ⪰ on H that admits a representation as
in (1.1). Note that the certainty equivalent I(ξ) = Epξ is uniquely defined by the
subjective belief p ∈ ∆. Conversely, we can recover the belief p ∈ ∆ from knowledge of
I. There are of course other representations (U ′, I ′) for the same preference relation.
If g ∶ R→ R is a continuous, strictly increasing function, it is enough to let U ′ ∶= g ○U
and I ′(ξ) ∶= g(I(g−1 ○ ξ)) for all ξ ∈ B0. What makes the resulting representation
(U ′, I ′) less satisfactory is that the tight connection between the certainty equivalent
I and the subjective belief p ∈ ∆ is not preserved. Specifically, knowledge of I ′ may
be insufficient to identify the belief p. In the study of expected utility preferences,
the standard response is to restrict attention to representations (U ′, I) where U ′ can
vary but the certainty equivalent I(ξ) = Epξ, ξ ∈ B0, is kept fixed as an explicit
representation of the individual’s beliefs. What we have to stress is that U ′ cannot
vary freely once I is fixed in this manner. In particular, we cannot change the
‘curvature’ of the utility index U ′. If, for example, we were to make U ′ ‘more concave’
by applying a concave transformation g ∶ R → R, we would make the individual
more risk averse, changing the entire preference relation. In the rest of this section,
we consider arbitrary stationary preferences on H and try to identify a class of
representations that shares the same features as expected utility: the utility index U ′

is free to vary up to positive affine transformations and the same certainty equivalent
I works for all U ′ within the class. We show that such a class exists for any stationary
preference. Moreover, it is unique, and it coincides with the representation derived
in Theorem 2.

Let ⪰ be a stationary preference relation onH. Since ⪰ induces a stationary preference
on X∞, we can define the sets U and U∗ as above. If U ′ ⊂ U , say that U ′ achieves
a separation of tastes and beliefs if for all representations (U, I) and (U ′, I ′)
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of ⪰ such that U,U ′ ∈ U ′, we have I = I ′. Our task is to identify sets U ′ that
posses this property. Based on the discussion of expected utility preferences, we
are led to consider sets U ′ such that any two functions U,U ′ ∈ U ′ are positive affine
transformations of one another. Formally, say that a set U ′ ⊂ U is cardinal if for
any two functions U,U ′ ∈ U ′, there are α ∈ R++ and γ ∈ R such that U = αU ′ + γ.
Once we restrict attention to cardinal sets, the obvious goal is to search for sets U ′

that are rich. Given the importance of recursive representations such as the one in
(4.1), it is natural to require that the set U ′ inherits the recursive structure of the
utility functions it contains. Formally, given a function U ∈ U and any x ∈ X, define
the function Ux on X∞ by letting Ux(d) ∶= U(x, d) for all d ∈ X∞. Say that the set
U ′ ⊂ U is recursive if for every x ∈X and U ∈ U ′, we have Ux ∈ U ′. To summarize the
discussion so far, we have argued that to achieve a separation of beliefs and tastes,
it is reasonable to restrict attention to cardinal, recursive sets U ′. Observe now that
the set U∗ is recursive by construction. By Theorem 3, U∗ is also cardinal. Hence,
U∗ is one potential candidate for the separation of beliefs of tastes. The question
remains: Are there other recursive, cardinal sets U? Remarkably, the answer is
no. Even though the arguments are formulated differently, this is proved in Epstein
[5]. Specifically, it follows from the proof of Theorem 1 in Epstein [5] that if U ′ is
a recursive, cardinal set, then U ′ ⊂ U∗. We collect these observations in the next
corollary.

Corollary 4 Let U ′ ⊂ U be a nonempty, recursive, cardinal set of utility functions
for some stationary preference relation on X∞. Then, U ′ ⊂ U∗. In particular, ⪰

admits an Uzawa-Epstein utility, that is, U∗ ≠ ∅. The set U∗ is the largest cardinal,
recursive set.

So far we have argued that to attain a separation of beliefs and tastes, it is reasonable
to restrict attention to representations (U, I) such that U has the Uzawa-Epstein
form. The next result, which is an immediate corollary of Theorems 2 and 3, confirms
that these representations do in fact attain the desired separation of beliefs and tastes.

Corollary 5 Suppose a stationary preference relation ⪰ on H has two representa-
tions (U,φ, I) and (Û , φ̂, Î) such that U, Û ∈ U∗ and I, Î have the properties outlined
in Theorem 2. Let b ∶X → (0,1) be the associated discount factor which, by Theorem
3, does not depend the chosen representations. If b is a nonconstant function, then
I = Î.

The corollary does not guarantee the uniqueness of the certainty equivalent I in the
special case when b is a constant function, that is, when the rate of time preference
is fixed. Somewhat curiously, the standard model of time preference proves to be
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a strait jacket in the elicitation of beliefs. This gap in the conclusions of Corollary
5 will be closed once we impose further structure on preferences. See Section 6 for
details.

It should be acknowledged that the analysis of this section is incomplete in that we
do not give an explicit behavioral sense in which I represents the ‘beliefs’ of the
individual. Instead, we followed an indirect route and sought representations that
preserve certain ‘nice’ features of the expected utility representation, e.g., the cardi-
nality of U , even though the underlying class of preferences is much more general.
See Ghirardato et al. [16] for another paper pursuing the same route and for further
discussion of its merits and limitations. It should be noted here that an explicit
behavioral meaning of I can be given if we require that preferences are biseparable
in the sense of Ghirardato and Marinacci [13]. Their work can also serve as a formal
justification for restricting attention to cardinal sets U ′. Rather than pursuing these
arguments at the present level of generality, the reader is once again referred to the
results in Section 6. There, after imposing a behavioral notion of ambiguity aversion,
we show that the certainty equivalent I, as singled out by Theorem 2 and Corollary
5, takes the familiar maxmin form. Thus, we have another example, which is more
general than the expected utility preferences discussed earlier, in which the certainty
equivalent I can be linked to specific behavior. The vast literature on maxmin prefer-
ences can also be used to substantiate the link further and clarify the extent in which
I captures ‘beliefs’. For example, one can carry out an analogue of the comparative
static analysis in Ghirardato and Marinacci [14], or analyze the effects of learning on
behavior and the chosen utility representation, as is done in Epstein and Schneider
[9].5

To conclude this section, we should note that Theorem 3 is stronger than the unique-
ness results obtained in Epstein [5]. The latter rely on the stochastic framework and
the assumption that the certainty equivalent I has the expected utility form. In
particular, the expected utility hypothesis implies directly that U ∶X∞ → R is cardi-

5The separation of ‘beliefs’ and ‘tastes’ delivered by Corollary 5 is also partial in the following
sense. Consider a setting in which the environment is perceived to be ambiguous. The certainty
equivalent I, as identified in Theorem 2 and Corollary 5, would then encode both the individual’s
perception of how ambiguous the environment is and his attitude toward the perceived ambiguity.
While such attitudes may be more appropriately regarded as part of the individual’s ‘tastes’, it
has been recognized that a clearcut distinction between the individual’s perception of ambiguity
and his attitude toward it is often impossible. The response has been to treat both aspects of
an individual’s preference as part of his ‘beliefs’. For recent work attempting to disentangle these
aspects, see Klibanoff et al. [20]. Their results require more structure on the environment than is
assumed here.
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nally unique. Making use of this observation, Epstein [5] proves that b = b̂. Theorem
3 is stronger in that it delivers the same conclusions on the basis of deterministic
choice alone. The proof is also different. Thus, we first establish the uniqueness of
the discount factor b. We then use the latter to prove that U ∶X∞ → R is cardinally
unique.

6 Ambiguity Aversion

Intertemporal hedging expresses the idea that an individual who is concerned about
uncertainty would seek to take different, negatively correlated bets in different time
periods. To illustrate, consider an environment in which there are only two future
periods, t and t + 1, and all the uncertainty is whether an event A obtains in period
t. Assuming X = R+, suppose that the individual is endowed with an asset that pays
x∗ > 0 in period t if the event A occurs, and x < x∗ otherwise. Prior to the resolution
of uncertainty, the individual is then given the choice between two other assets, both
of which deliver consumption in period t + 1. The first asset, which we denote by P
for ‘positively correlated’, pays x∗ if the event A obtains and x otherwise. The second
asset, which we denote by N for ‘negatively correlated’, pays x∗ if Ac obtains and
x otherwise. Suppose that the individual has no information about the likelihood
of the event A. In particular, he has no reason to believe A is more likely than
Ac. Finally, suppose that the individual has no other sources of consumption and
cannot save. Kochov [21] defined intertemporal hedging as a preference for the asset
N . The idea is that, by taking a different bet in period t + 1, the individual can
offset the uncertainty about his consumption in period t and, hence, smooth ex ante
utility across states of the world. Such ‘time diversification’ has a downside, however,
in that the individual is left with a consumption profile that fluctuates over time:
if consumption is high in one period, it will be low in the other. As is explained
in Kochov [21], when we employ the standard model of dynamic choice, the pros
and cons of intertemporal hedging offset each other exactly. This is an implication
of the fact the model treats variability across states and time symmetrically: the
curvature of the period utility function u ∶ X → R determines both risk aversion
and the elasticity of intertemporal substitution. Kochov [21] showed that many
models of ambiguity aversion generate a strict preference for intertemporal hedging.
The intuition is that ambiguity, being a more serious concern than risk, tips the
scales in favor of smoothing consumption across states rather time. A limitation
of that paper is that it assumes away intertemporal complementarities that may
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stem from the individual’s tastes, that is, from the way he evaluates deterministic
consumption streams. This assumption is not innocuous. It is shown in Epstein
[5] that an expected utility model with endogenous discounting, such as the one in
(1.1), generates similar behavior if the individual’s degree of patience decreases with
the level of consumption, that is, if b(x) < b(y) whenever U(x,x, ...) > U(y, y, ....),
x, y ∈ X. The goal of this section is to modify the notion of intertemporal hedging
given in Kochov [21] so as to insure that the demand for hedging is driven solely
by ambiguity aversion. To that end, it is helpful to first consider an axiom from
Koopmans [22], which expresses a preference to advance the consumption of desirable
outcomes.

Impatience: For all t ∈ T /{0}, a, b ∈X t, d ∈X∞, the stream (a, a, ...) is preferred to
(b, b, ...) if and only if (a, b, d) is preferred to (b, a, d).

Before we explain how this axiom is related to the study of ambiguity, we should point
out that one of the main objectives of Koopmans [22] was to investigate whether
stationary preferences on X∞ satisfy Impatience. The project was continued by
Koopmans et al. [23], who proved that, while a weaker version of the axiom is indeed
implied, Impatience fails generically.6 Epstein [5] revisited the problem in a stochastic
environment. After deriving the model in (1.1), he observed that any preference on
X∞ that admits an Uzawa-Epstein utility satisfies Impatience. His observation and
the discussion in Koopmans et al. [23] are also relevant here. They reveal a key
prediction of the Uzawa-Epstein specification that is not shared by the larger class of
all stationary preferences on X∞. The fact that Impatience is implied once we adopt
a stochastic analogue of stationarity is also of conceptual interest. As Epstein [5]
remarked, his results provide an intriguing demonstration of the often held view that
uncertainty about the future contributes to impatience. By relaxing the expected
utility hypothesis, Theorem 2 provides a much stronger demonstration of the same
view.

Still focusing on the ranking of deterministic consumption streams, recall now that
Stationarity implies History Independence. That is, within the class of preferences
we consider, current consumption does not affect how the individual ranks future out-
comes. An intertemporal complementarity may therefore arise only when the antici-
pation of future outcomes affects the individual’s decisions about prior consumption.

6The weaker property says that for every t ∈ T and a, b ∈ Xt, if (a, a, ...) is preferred to (b, b, ...),
then (a, b, d) is preferred to (b, a, d) for all d ∈ X∞ that are no better than (a, a, ...) and no worse
than (b, b, ...).
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The key observation that underlies the analysis in this section is that the scope of
such ‘future dependencies’, while nontrivial, is restricted by Impatience. Specifically,
the axiom implies that for all t ∈ T, a, b ∈X t and d, d′ ∈X∞, if (a, b, d) ⪰ (b, a, d), then
(a, b, d′) ⪰ (b, a, d′). Thus, when the individual is asked to choose the order in which
a given set of outcomes is consumed, the intertemporal complementarities that may
otherwise affect how he evaluates deterministic consumption streams do not play a
role.

Taking the implications of Impatience into account, the way to modify intertempo-
ral hedging becomes clear. Once again, the individual would seek to take different
‘bets’ in different ‘time periods’. However, the uncertainty he is trying to hedge
now no longer concerns the level of consumption in a give time period t. Instead,
it concerns the order in which a given set of outcomes is consumed. It is in those
choice situations that the taste complementarities, which confounded the elicita-
tion of ambiguity attitudes, are no longer present. To proceed formally, fix some
t ∈ T and a finite stream a ∶= (x0, x1, ..., xt−1) ∈ X t of outcomes. For every per-
mutation π ∶ {0,1, ..., t − 1} → {0,1, ..., t − 1}, let πa denote the stream outcomes
obtained from a by permuting the order of its elements according to π. That is,
πa = (xπ(0), xπ(1), ..., xπ(t)). Say that h ∈ H is a permutation act if there is some
t ∈ T and a ∈ X t such that for every ω ∈ Ω, h(ω) = (πωa, πωa, ...) for some permu-
tation πω ∶ {0,1, ..., t − 1} → {0,1, ..., t − 1}. Observe that any permutation act has a
repeating structure: the order of outcomes in the first block of t periods is exactly
the same as the order of outcomes in the second block of t periods, and so on. The
repeating structure means that uncertainty is compounded: If an event A obtains
in which the outcomes in the first t periods are ordered unfavorably, then the same
unfavorable order will prevail in all subsequent periods. Confronted with such an
act, an individual may choose to break the correlation by reversing the order in at
least one block of t periods. In particular, take some t ∈ T and a ∈ X t. Let h, g ∈ H
be two permutation acts that differ in the way the elements of a are ordered. Thus,
for every ω ∈ Ω, h(ω) = (πωa, πωa, ...) and g(ω) = (π̃ωa, π̃ωa, ...) but the permutations
πω, π̃ω are potentially different. If h ∼ g, intertemporal hedging means that the indi-
vidual would prefer the act m ∈ H where m(ω) = (πωa, π̃ωa, π̃ωa, ...), ω ∈ Ω. Below,
we state a stronger axiom whereby the individual may use any act g ∈ H to hedge
the uncertainty inherent in a permutation act h. The stronger axiom is motivated
by a desire to obtain the strongest distinction between the maxmin model in (1.2)
and the expected-utility model with endogenous discounting in (1.1). Note that in
the statement of the axiom we think of an act h ∈ H as a function, ω ↦ h(ω), from
Ω into X∞.
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Intertemporal Hedging: Let {A1,A2, ...,An} ⊂ ∪tFt be a partition of Ω. If

h ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(π1a, π1a, ...) if ω ∈ A1

. . .

(πna, πna, ...) if ω ∈ An

⪰ g ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

d1 if ω ∈ A1

. . .

dn if ω ∈ An,

,

then

m ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(π1a, d1) if ω ∈ A1

. . .

(πna, dn) if ω ∈ An

⪰ g ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

d1 if ω ∈ A1

. . .

dn if ω ∈ An

,

where a ∈ X t for some t > 1, πi ∶ {0,1, ..., t − 1} → {0,1, ..., t − 1} is a permuation for
every i = 1,2, ..., n, and h, g ∈ H.

The next result confirms that, within the class of stationary preferences, a strict desire
to hedge intertemporally can be interpreted as evidence of ambiguity aversion.7 The
result is actually stronger and shows that, once the axiom is added to the hypothesis
in Theorem 2, we obtain a maxmin certainty equivalent, that is, we can find a weak∗-
closed, convex set P of probability measures on (Ω,∪tFt) such that I(ξ) = minp∈P Epξ
for every ξ ∈ B0. It should also be noted that the certainty equivalent I and, hence,
the set P of prior beliefs are uniquely identified. In particular, the result closes the
gap left by Corollary 5, which did not cover the case when the rate of time preference
is fixed.

Theorem 6 A stationary preference ⪰ on H satisfies Intertemporal Hedging if and
only if it has a representation (U,φ, I) where φ is an Uzawa-Epstein time aggregator
and I is a maxmin certainty equivalent. Moreover, if (Û , φ̂, Î) is any other such
representation, then I = Î.

The analysis in this section is based on the distinction between two forms of uncer-
tainty: one affecting the order in which a given set of outcomes is consumed and

7Throughout the paper, we follow Ghirardato and Marinacci [14] and interpret any departure
from expected utility as evidence of ambiguity. Epstein [5] observes that some specifications of
the maxmin model are probabilistically sophisticated in the sense of Machina and Schmeidler [29]
and develops a definition of ambiguity aversion that excludes those preferences. To interpret in-
tertemporal hedging as evidence of ambiguity aversion in the sense of Epstein [5], we would have
to exclude those preferences as well. See Maccheroni et al. [28] for an elegant characterization of
such preferences.
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one affecting the level of consumption in an isolated period. While this distinction
is conceptually straight-forward, it should be acknowledged that it may be hard to
find real-world applications in which the relevant uncertainty can be so finely cate-
gorized. It is more likely that uncertainty would affect the timing and the level of
consumption simultaneously. The behavior we identify with ambiguity aversion can
thus be criticized as narrow in scope. This is the price one has to pay for relaxing
time additivity. If time additivity is maintained, it is enough for the individual to
pursue an intertemporal hedge against any form of uncertainty. Such behavior would
count as evidence of ambiguity aversion. This observation follows by combining the
conclusions of Theorem 6 with the earlier results in Kochov [21]. In defence of the
present analysis, it should be observed that providing a choice-theoretic definition
of ambiguity aversion in general choice settings, with few auxiliary restrictions on
behavior, is difficult. For example, the static definitions in Gilboa and Schmeidler
[17] and Epstein [7] take advantage of the fact that the domain of choice includes
a rich collection of unambiguous events, that is, events whose likelihood is known.
Ambiguity aversion is then defined as the preference to bet on events with known
rather than unknown probability. These definitions are not applicable in the present
framework since we do not require the existence of events with known probability.
On the other hand, the static definition in Ghirardato et al. [15] is applicable. In
this respect, we should first point out that the present analysis is complementary
as it concerns qualitatively different behavior, specific to the dynamic setting. The
definitions differ in other dimensions as well, revealing alternative compromises one
has to make to isolate the effects of ambiguity aversion. In particular, to formulate
the definition in Ghirardato et al. [15], it is necessary to first elicit the certainty
equivalents for an appropriately chosen family of bets.8 Once this is done, a wide
range of choice comparisons can be used to test if the individual is ambiguity averse.
In contrast, the notion of ambiguity aversion we propose is based on a narrow set
of choice comparisons, but does not require the prior elicitation of certainty equiva-
lents. To emphasize this point, it should be noted that intertemporal hedging can be
formulated even when the space X of outcomes is discrete and certainty equivalents
may fail to exist.

8In a static environment, a bet is an act f ∶ Ω → X that depends on the realization of a single
event, that is, there are outcomes x, y ∈X and an event A ⊂ Ω such that f(ω) = x for all ω ∈ A and
f(ω) = y otherwise. By a certainty equivalent for the bet f , we mean an outcome z ∈ X such
that z ∼ f .
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A Appendix

Given functions, f ∶ X ′ → Y ′ and g ∶ Y ′ → Z ′, we use g(f(x′)) and gf(x′) inter-
changeably to denote the value of the function g ○ f ∶X ′ → Z ′ at a point x′ ∈X ′.

A.1 Proof of Theorem 2

A.1.1 Preliminaries

Lemma 7 State Independence and Stationarity imply Monotonicity.

Proof. Let h,h′ ∈ H be such that h(ω) ⪰ h′(ω) for every ω. Because h,h′ are simple,
there is some t ∈ T such that hk, h′k are Ft-measurable for every k. Fix some a =

(x0, ..., xt−1) ∈ X t and consider the acts (a, h), (a, h′). By construction, (a, h)(ω) =
(a, h(ω)). By Stationarity, (a, h(ω)) ⪰ (a, h′(ω)) for every ω ∈ Ω. Moreover, h ⪰ h′

if and only if (a, h) ⪰ (a, h′), so it suffices to show the latter. Think of (a, h), (a, h′)
as functions from Ω into X∞. Both functions have finite range. Let {A1,A2, ...,An}
be the coarsest partition of Ω such that the functions are measurable. Replace the
infinite stream of (a, h′) on A1 by the respective infinite stream of (a, h). By State
Independence, the new act is preferred to (a, h′). Take the new act and replace
its infinite stream on A2 by the respective infinite stream of (a, h). Apply State
Independence again. After n such steps, we obtain (a, h). By transitivity, (a, h) is
preferred to the initial act (a, h′).

The following lemma lists a number of additional properties of ⪰ that will be used
in subsequent results.

Lemma 8 Suppose ⪰ satisfies C, SI and S. Then,

1. There are x, y ∈X,d ∈X∞ such that (x, d) ≻ (y, d).

2. For every x ∈ X,h ∈ H, (x,x, ...) ⪰ h if and only if (x,h) ⪰ h. Similarly,
h ⪰ (x,x, ...) if and only if h ⪰ (x,h).

3. The best and worst sequences in X∞ are constant. Denote them by (z∗, z∗, ...)
and (z, z, ...).

4. Writing d∗ for (z∗, z∗, ...), we have (z∗, z, d∗) ≻ (z, z, d∗).

5. There exists a sequence (xn)n in X, converging to z such that (xn, z, z, ...) ≻
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(z, z, z, ...). Moreover, for every n ∈ N, d ∈ X∞, there is d′ ∈ X∞ such that
(z, d′) ∼ (xn, z, d).

Proof. Property (1) is proved in Kochov [21, Lemma 5]. To prove (2), sup-
pose (x,x, ...) ⪰ h but h ≻ (x,h). Then, by S, h ≻ (x,h) ≻ (x,x, h). Repeating
the argument, we obtain h ≻ (xn, h) for every n ∈ N, where xn denotes the vec-
tor in Xn all of whose components are equal to x. By Continuity, h ≻ (x,x, ...),
a contradiction. Analogous arguments establish the converse implication and the
second equivalence postulated in (2). To prove (3), let (z∗, z∗, ...) be the best
among all constant sequences in X∞. By Continuity, it is enough to show that
(z∗, z∗, ...) ⪰ (x1, x2, ..., xn, z∗, z∗, ...) for all xk ∈ X,k = 1, ..., n, n ∈ N. From (2),
we know that (z∗, z∗, ...) ⪰ (xk, z∗, z∗, ...) for every k. Making repeated use of this
observation and Stationarity, we obtain

(z∗, z∗, ...) ⪰ (xn, z
∗, z∗, ...) ⇒

(xn−1, z∗, z∗, ...) ⪰ (xn−1, xn, z∗, z∗, ...) ⇒

(z∗, z∗, ...) ⪰ (xn−1, z∗, z∗, ...) ⪰ (xn−1, xn, z∗, z∗, ...) ⇒

...

(z∗, z∗, ...) ⪰ (x1, x2, ..., xn, z
∗, z∗, ...)

Turn to (4). By way of contradiction, suppose (z, z, d∗) ⪰ (z∗, z, d∗). Together with
the fact that d∗ ⪰ (z, d∗) and preference is stationary, we obtain

(z, d∗) ⪰ (z, z, d∗) ⪰ (z∗, z, d∗)

By S, (z∗, z, d∗) ⪰ (z∗, z∗, z, d∗). By the contradiction hypothesis,

(z, z, d∗) ⪰ (z∗, z, d∗) ⪰ (z∗, z∗, z, d∗)

Repeating the argument, we obtain (z, z, d∗) ⪰ ((z∗)n, z, d∗) for every n ∈ N. By
Continuity , (z, z, d∗) ⪰ d∗, contradicting property (2). Finally, turn to property
(5). From property (2) in that lemma, (z∗, z, z, ...) ≻ (z, z, ...). Because X is con-
nected, there is a sequence (xn)n in X converging to z such that (xn, z, z, ...) ≻

(z, z, ...). Letting d∗ = (z∗, z∗, ...) once again, another implication of property (2)
gives (z, d∗) ≻ (z, z, d∗). Since (xn, z, d∗) converges to (z, z, d∗), as n → ∞, we have
(z, d∗) ≻ (xn, z, d∗) for all n larger than some N ∈ N. By choice of xn, it is also the
case that

(xn, z, d
∗) ⪰ (xn, z, z, z, ...) ≻ (z, z, z, ...).
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Combining the last two observations gives (z, d∗) ≻ (xn, z, d∗) ≻ (z, z, z, ...) for all
n ≥ N . But (xn, z, d∗) ⪰ (xn, z, d) ≻ (z, z, ...) for all d ∈ X∞, n ∈ N. Then for every
n ≥ N , we have

(z, d∗) ≻ (xn, z, d
∗) ⪰ (xn, z, d) ≻ (z, z, z, ...)

By Continuity and the connectedness of X∞, there is d′ ∈ X∞ such that (z, d′) ∼

(xn, z, d).

Proof of Lemma 1: Let U ∶ X∞ → R represent the restriction of ⪰ to X∞. Note
that U is continuous in the product topology on X∞. For every x ∈ X,k ∈ U(X∞),
define φ(x, k) ∶= U(x, dk) where dk ∈X∞ is such that U(dk) = k. Stationarity implies
that φ is strictly increasing in its second component. Since U is continuous, the set
φ(x,U(X∞)) is connected for every x ∈X. Conclude that that φ is continuous in the
second component. Continuity in the first component follows immediately from the
continuity of U . Now focus on stochastic acts. Since X∞ is connected, a standard
argument shows that, for every act h ∈ H, we can find an act dh ∈X∞ such that h ∼ dh.
Extend U from X∞ to H by letting Ũ(h) ∶= U(dh). Let U ○H ∶= {U ○h ∶ h ∈ H} ⊂ B○.
Define I ∶ U○H → R by I(U○h) = Ũ(h). It follows from Lemma 7 that I is well defined
and monotone. By definition, I(k) = k for all k ∈ U(X∞). we have thus shown that ⪰
admits a representation (U,φ, I). It remains to show that for all such representations,
I and φ permute. Fix some x ∈X,h ∈ H and note that U ○(x,h) = φ(x,U ○h). Choose
d ∈ X∞ such that d ∼ h. By Stationarity (x, d) ∼ (x,h). Since I is normalized, we
have

I(φ(x,U ○ h)) = U(x, d) = φ(x,U(d)) = φ(x, I(U ○ h)),

completing the proof of the lemma. ∎

Take a strictly increasing function g ∶ R → R and a representation (U,φ, I). Clearly,
g ○U is a representation for the restriction of ⪰ to X∞. We omit the obvious proof.

Lemma 9 Suppose a preference relation ⪰ on H has a representation (U,φ, I).
Given a strictly increasing function g ∶ U(X∞)→ R, let V ∶= g ○U and

Î(ξ) ∶= gI(g−1 ○ ξ) and φ̂(x, k) ∶= gφ(x, g−1(k)), ∀ξ ∈ V ○H, k ∈ V (X∞).

Then, φ̂ is a time aggregator for V and (V, φ̂, Î) is a representation for ⪰ such that
φ̂ and Î permute.
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A.1.2 Constructing an Iteration Group

We need to introduce some mathematical machinery developed in Lundberg [26].
Let C be an open interval in R and let {gα} be a family of functions each from a
subinterval of C into C, where the index α ranges over an interval (−λ,λ) for some
λ ∈ R∪{+∞}. Suppose each function gα is continuous and strictly increasing, and its
graph disconnects C2. Suppose further that the graph of gα ○ gβ is contained in the
graph of gα+β for all α,β ∈ (−λ,λ) such that α+β ∈ (−λ,λ). We call such a family of
functions an iteration group over the interval C.9 Letting j ∶ C → C denote the
identify function, observe that g0 = j. More generally, when α is an integer, then gα

is the α iterate of g1. To streamline the notation, from now on, whenever a function
g and an integer m ∈ Z are given, we use gm to denote the mth iterate of g. The
following example will play a role in the rest of the proof and may clarify the notion
of an iteration group. Let C = R, λ = +∞, and suppose that all functions gα are
defined on R. Suppose further that g1 is an affine function so that g1(k) = a+ bk for
some a, b ∈ R. To be concrete, assume that b ≠ 1. Then, we can compute all functions
gα explicitly:

gα(k) = a
1 − bα

1 − b
+ bαk, ∀k,α ∈ R. (A.1)

Note that in this example all functions gα, α ≠ 0, share the same fixed point k∗ =
a(1−b)−1. This observation holds more generally. Thus, if {gα} is an iteration group
and gα(k) = k for some α ≠ 0 and k ∈ C, then gβ(k) = k whenever k is in the domain
of gβ. Say that an iteration group {gα} is fixed point free if none of the functions
gα, α ≠ 0, has a fixed point. As observed in Lundberg [26], we can then find a
function L ∶ C → R such that gα(k) = L−1(L(k) + α) for all k in the domain of gα

and all α ∈ (−λ,λ). The function L is called the Abel function for the group {gα}.
For future reference, observe that if L is an Abel function for a group {gα}, then so
is the function L+ c where c is an arbitrary real number. Also, note that when {gα}
is fixed point free, it it w.l.o.g. to assume that gα(k) > k for all k in the domain
of gα and all α > 0. Else, we can relabel the group by taking g̃α ∶= g−α for every
α ∈ (−λ,λ). Under this assumption, any Abel function L for the iteration group is
strictly increasing. In the example in (A.1), suppose D is an interval such that all
functions gα, α ≠ 0, are fixed point free when restricted to D. For instance we can
take D = (k∗,+∞). Then, L(k) ∶= logb(k − k

∗), k ∈ D, is an Abel function for the
group {gα∣D}.

9When C is a proper subset of R and λ < +∞, Lundberg [26] refers to the iteration group as
truncated. We have no reason to distinguish between the cases and omit the ‘quantifier’ truncated.
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If Z is a topological space and A is a set in Z, we use A○ to denote its topological
interior. For a sequence (An)n of sets in Z, we denote by LsAn ⊂ Z and LiAn ⊂ Z
the topological lim sup and lim inf of the sequence. See Aliprantis and Border [1,
p.109] for precise definitions of these concepts. We write An →L A if A = LiAn =

LsAn. The set A is called the closed limit of (An)n. Following Lundberg [26], a
correspondence f∗ ∶ C ⇉ R, where C is an interval in R, is called a cliff funciton if
the set f∗(k) is connected for every k ∈ C. A cliff function f∗ is increasing if k ≤ k′

and l ∈ f∗(k), l′ ∈ f∗(k′) imply l ≤ l′ for all k, k′ ∈ C. Observe that any increasing
function f ∶ C → R is an increasing cliff function. If we identify every cliff function
f∗ with its graph in R×R, we can also speak of the closed limit of a sequence (f∗n)n
of cliff functions.

Every iteration group {gα} that arises in this paper can be constructed from a se-
quence of functions (gn)n as follows. See Lundberg [26, Lemma 2.5] for details.

1. There is a sequence (qn)n in Z such that gqnn →L g1.

2. For every k ∈ Z+ such that m ∶= 2−k ∈ (−λ,λ), there is a sequence (pn)n in Z
such that gpnn →L gm.

3. For an arbitrary real number α ∈ (−λ,λ), the function gα can be obtained as
follows. Observe that we can write α as

α = a0 +
∞
∑
i=1

ai
2i

where a0 is an integer and ai is either 0 or 1 for all i > 0. Now, let h0 ∶= ga0 , hi ∶=
g2−i for i > 0 and ai = 1. For all n ∈ N, let ĥn ∶= h0 ○ ... ○ hn. Then, ĥn →L gα.

Return to the proof of Theorem 2. Choose a sequence (xn)n in X satisfying property
(5) in Lemma 8. Let C ∶= {U(z, d) ∶ d ∈ X∞}. Note that C is a closed interval in
R with nonempty interior. For every k ∈ C and n ∈ N, let fn(k) ∶= φ(xn, k). Also,
let f(k) ∶= φ(z, k), k ∈ C. Given (5), we know that fn(C) ⊂ C for every n, and
f(C) ⊂ C. Now, let A ∈ ∪tFt be an essential event. It is w.l.o.g. to assume that
A ∈ F1. Letting H(A) be the subset of acts h ∈ H that are {A,Ac}-adapted, identify
U ○H(A) ∶= {U ○ h ∶ h ∈ H(A)} with a subset in R2. Observe that C2 ⊂ U ○H(A).
Thus, I induces a function on C2. Abusing notation, we denote this function by I as
well and write I(k, k′) for its value at (k, k′) ∈ C2. Note that, by State Independence
and Continuity respectively, I is strictly increasing and continuous on C2.

Lemma 10 fn →L f .
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Proof. Continuity of the preference relation implies that (fn)n converges pointwise
to f . By Lundberg [26, Lemma 1.1], we can choose a subsequence of (fn)n that has
a closed limit f∗. It is enough to show that for any such subsequence, f∗ = f . Thus,
fix a subsequence with a closed limit f∗. Observe that, in principle, f∗ may be a
correspondence rather than a proper function. The first step is to show that this is
not the case. The fact that φ and I permute can now be written as follows

fnI(k, k
′) = I(fn(k), fn(k′)) ∀n ∈ N,∀k, k′ ∈ C. (A.2)

By Lundberg [26, Lemma 4.8], we also have

f∗(I(k, k′)) = {I(l, l′) ∶ l ∈ f∗(k), l′ ∈ f∗(k′)} ∀k, k′ ∈ C.

It follows from Lundberg [26, Lemma 4.8] that f∗ is a proper function and, from
Lundberg [26, Lemma 1.2], that (fn)n converges to f∗ uniformly on all compact sets
A, A ⊂ C○. But then, f∗(k) = f(k) for all k ∈ C○. Since f, f∗ are both continuous,
conclude that f = f∗.

For every n, let gn ∶= f−1 ○ fn. A direct calculation shows that the equality in (A.2)
is preserved if we replaced the functions fn with gn. It follows from Lemma 10 and
Lundberg [25, Thm 5.3] that gn →L j. Letting Dom gn denote the domain of gn, it
is also the case that Dom gn →L C. See Lundberg [25, Lemma 3.9]. Deduce from
Lundberg [26, 4.16] that the sequence (gn)n generates an iteration group {gα} over
C○, where α ranges over an interval Λ ∶= (−λ,λ) for some λ ∈ R∪{+∞}. Furthermore,

gαI(k, k′) = I(gα(k), gα(k′)), ∀α ∈ Λ,∀k, k′ ∈ C○. (A.3)

Because all functions gα, α ≠ 0, share the same set of fixed points, we can find a
closed interval D ⊂ C○, with nonempty interior, such that all functions gα, α ≠ 0,
are fixed point free when they are restricted to D. From now on focus on these
restrictions and write gα for gα∣D. Let L ∶ D → R be the Abel function for the
resulting iteration group. As was explained previously, it is w.l.o.g. to assume that
L is strictly increasing.

Since U ∶ X∞ → R is continuous and X is connected, we know that {U(x,x, ...) ∶
x ∈ X} is connected. It follows from property (3) in Lemma 8, that {U(x,x, ...) ∶
x ∈ X} = U(X∞). Thus, we can find x0 ∈ X such that U(x0, x0, ...) ∈ D○. Let
f0(k) ∶= φ(x0, k) for all k ∈ U(X∞). Because X is compact, there exists N ∈ N
such that fN0 (U(X∞)) ⊂ D○. Let Û = fN0 ○ U and, for every x ∈ X,s ∈ Û(X∞),

let φ̂(x, s) ∶= fN0 φ(x, f
−N
0 (s)). Observe that φ̂ is a time aggregator for Û . Now let
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xN0 ∈XN be the string of outcomes each element of which is equal to x0. Stationarity
implies

h ⪰ h′⇔ (xN0 , h) ⪰ (xN0 , h
′)⇔ I(fN0 ○U ○ h) ≥ I(fN0 ○U ○ h′)⇔ I(Û ○ h) ≥ I(Û ○ h′).

for all acts h,h′ ∈ H. Conclude that (Û , φ̂, I) is a representation for the preference
relation ⪰. As would become clear from the rest of the proof, this is the key impli-
cation of Continuity and Stationarity. It allows to deduce a representation in which
the utility function takes values in D. We can the use the Abel function L to obtain
another representation (Ũ , φ̃, Ĩ) such that Ĩ is translation invariant. First, we need
to show that an appropriate generalization of (A.3) obtains even when I is no longer
restricted to C2.

Lemma 11 I(gα ○ ξ) = gαI(ξ) for all α ∈ Λ and ξ ∈ B0
D.

Proof. Recall the definition of the functions gn given after Lemma 10. Because I
and φ permute, we know that I(gmn ○ ξ) = gmn I(ξ) for all n ∈ N,m ∈ Z, and ξ ∈ B0

D.
Now take some α = 2−m where m ∈ Z+ and α ∈ Λ. Recall from the discussion of
iteration groups that the function gα can be obtained as the limit of a sequence
(gpnn )n, where (pn)n is a suitable sequence of integers. The continuity of I and the
functions gpnn insure that the desired equality holds for all such α. An analogous use
of continuity shows that the equality holds for all α ∈ Λ.

Recall now that if L is an Abel function for a group {gα}, then so is the function
L + c where c is an arbitrary real number. Hence, it is w.l.o.g. to choose L so that
0 ∈ L(D)○. Let Ũ ∶= L ○ Û , φ̃(x, s) ∶= Lφ̂(x,L−1(s)) for all x ∈ X, s ∈ L(D), and
Ĩ(ξ) ∶= LI(L−1 ○ ξ) for all ξ ∈ B0

L(D).

Lemma 12 Ĩ(ξ + α) = Ĩ(ξ) + α for all ξ ∈ B0
L(D), α ∈ Λ such that ξ + α ∈ B0

L(D).

Proof. Take ξ and α as in the statement of the lemma. Let ξ′ ∈ B0
D be such that

L ○ ξ′ = ξ. Then,

Ĩ(ξ + α) = LI[L−1 ○ (L ○ ξ′ + α)] = LI[gα ○ ξ′] = LgαI(ξ′) = L(I(ξ′)) + α

= LI[L−1 ○ ξ] + α = Ĩ(ξ) + α,

completing the proof.
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A.1.3 Time Aggregator

In this section, it is once again convenient to think of I as a function on C2 ⊂ R2.
Analogously, Ĩ becomes a function on L(D)2. Write [c, c′] for the closed interval
L(D) and define

ψ(k) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Ĩ(c, c + k) − c if k ∈ [0, c′ − c]
Ĩ(c′, c′ + k) − c′ if k ∈ [c − c′,0]

By construction, Ĩ(k, k) = k for all k ∈ [c, c′]. Deduce that ψ(0) = 0. Since Ĩ is
continuous, we may conclude that ψ is a continuous function. Also, ψ is strictly
increasing. Since Ĩ is translation invariant, we have

Ĩ(s, t) = s + ψ(t − s), ∀s, t ∈ [c, c′].

Also, ψ(k) < k whenever k > 0 and ψ(k) > k whenever k < 0. Finally, we want to
show that ψ(k)−k is a strictly decreasing function. Pick k ∈ [0, c′ − c) and ε > 0 such
that k + ε ∈ [0, c′ − c]. Then ψ(k + ε) − ψ(k) = I(c, c + k + ε) − I(c + ε, c + k + ε) < 0.
Conclude that ψ(k) − k is a strictly decreasing on [0, c′ − c]. A similar argument for
k ∈ [0, c′ − c) confirms that ψ(k) − k is strictly decreasing on its entire domain.

Now, for every x ∈X write f̃x for the function φ̃(x, ⋅) on [c, c′]. The fact that Ĩ and
φ̃ permute can then be written as follows:

f̃x(s + ψ(t − s)) = f̃x(s) + ψ(f̃x(t) − f̃x(s)), ∀x ∈X,s, t ∈ [c, c′]. (A.4)

The above is a special case of the functional equation

g(s + ψ(t − s)) = g(s) + ψ(g(t) − g(s)), ∀s, t ∈ [c, c′], (A.5)

where we think of ψ as known and of g as an unknown function. Suppose first that
(A.5) is satisfied for some g that is affine on a subinterval in [c, c′]. It follows from
Lundberg [27, Thm 10.1,10.3] that all solutions g are affine on [c, c′]. In particular,

f̃x(k) = u(x) + b(x)k, ∀x ∈X,k ∈ [c, c′]. (A.6)

Because (Ũ , φ̃, Ĩ) is a representation for ⪰ and the preference is continuous, we know
that u, b ∶ X → R are continuous functions. Since, each function f̃x is strictly in-
creasing, we know that b(x) > 0. In addition, property (2) in Lemma 8 implies that
b(x) < 1 for all x ∈X.
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Suppose now that (A.5) has no solution that is affine on a subinterval of [c, c′]. It
follows from Lundberg [27, Thm. 11.1] that all solutions take the form

f̃x(k) = φ̃(x, k) =
1

p
ln(u(x) + b(x)epk), ∀x ∈X,k ∈ [c, c′], (A.7)

where u, b ∶ X → R, p ∈ R and p ≠ 0. Assume that p > 0 and let H(s) ∶= eps

for every s ∈ R. If p < 0, we can let H(s) ∶= −eps; the subsequent analysis would
carry through in an analogous manner. Let D∗ ∶= [epc, epc

′

] and define U∗ ∶= H ○ Ũ ,
φ∗(x, k) ∶= Hφ̃(x,H−1(k)), and I∗(ξ) ∶= HĨ(H−1 ○ ξ) for all x ∈ X,k ∈ D∗, ξ ∈ B0

D∗ .
Then,

φ∗(x, k) = u(x) + b(x)k, ∀x ∈X,k ∈D∗. (A.8)

By construction, (U∗, φ∗, I∗) is a representation for ⪰. Once again, it follows that
the functions u, b ∶X → R are continuous and b(x) ∈ (0,1) for every x ∈X.

A.1.4 Certainty Equivalent

As in the preceding section, we break the proof in two cases depending on whether
(A.5) admits an affine solution. Consider the affine case first. Since 0 ∈ L(D)○, we
can find x0 ∈ X such that u(x0) = 0. Let β ∶= b(x0) ∈ (0,1). The fact that Ĩ and φ̃
permute implies

Ĩ[u(x) + b(x)ξ] = u(x) + b(x)Ĩ(ξ), ∀x ∈X,ξ ∈ B0
L(D) (A.9)

Plugging x0 above, we obtain Ĩ(βξ) = βĨ(ξ) for all ξ ∈ B0
L(D). Furthermore, Ĩ(βtξ) =

βtĨ(ξ) for all ξ ∈ B0
L(D), t ∈ N. Observe that βtξ ∈ B0

L(D) since 0 ∈ L(D)○. We will

now show that Ĩ[b(x)ξ] = b(x)Ĩ(ξ) for all x ∈X,ξ ∈ B0
L(D). Choose t large enough so

that βtu(x) ∈ Λ and βtb(x)ξ ∈ B0
L(D). Making use of Lemma 12 and (A.9), we obtain

βtu(x) + βtb(x)Ĩ(ξ) = Ĩ[βtu(x) + βtb(x)ξ] = βtu(x) + Ĩ[βtb(x)ξ]

= βtu(x) + βtĨ[b(x)ξ].

The next step is to extend the functional Ĩ from B0
L(D) to B0. Take ξ ∈ B0 and pick

t ∈ N large enough so that βtξ ∈ B0
L(D). Then, let Ĩe(ξ) ∶= β−tĨ(βtξ). One can verify

that Ĩe is well defined and extends Ĩ. See Kochov [21]. The next step is to show that
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Ĩe is translation invariant. Take any ξ ∈ B0 and any α ∈ R. Choose t large enough
so that βtξ, βt(ξ + α) ∈ B0

L(D) and βtα ∈ Λ. Then,

Ĩe(ξ + α) = β−tĨ(βtξ + βtα) = β−t(Ĩ(βtξ) + βtα) = Ĩe(ξ) + α.

It follows from similar arguments that the extension Ĩe is b(x)-homogeneous for every
x ∈X.

Suppose now that (A.4) has no affine solution. Recall the representation (U∗, φ∗, I∗)
obtained in the preceding section and the set Λ = (−λ,λ) as employed in Lemma 12.
Recall that H(s) = eps for every s ∈ R and let O ∶=H(Λ). Observe that O is an open
interval such that 1 ∈ O.

Lemma 13 I∗(γξ) = γI∗(ξ) for all γ ∈ O and ξ ∈ B0
D∗ such that γξ ∈ B0

D∗.

Proof. Take γ and ξ as in the statement of the lemma. Observe that H(s + t) =
H(s)H(t) for all s, t ∈ R. Let ξ′ ∶=H−1○ξ and α ∶=H−1(γ). Observe that H−1○(γξ) =
ξ′ + α. Also, γ′ + α ∈ B0

L(D) and α ∈ Λ. From the construction of I∗ and Lemma 12
deduce that

I∗(γξ) =HĨ[H−1 ○ (γξ)] =H[Ĩ(ξ′ + α)] =H[Ĩ(ξ′) + α] =H[Ĩ(ξ′)]H(α) = I∗(ξ)γ,

completing the proof of the lemma.

From Lemma 1, we know that I∗ and φ∗ permute. Let C∗ ∶= {V ∗(z, d) ∶ d ∈ X∞}.
As in Section A.1.2, we can then construct an iteration group {gα} over C∗ where
α varies over an interval Λ∗ ∶= (−λ∗, λ∗) for some λ∗ ∈ N.10 Since the functions gn
employed in that construction are now affine, the iteration group {gα} can take one
of two forms:

either gα(k) = a
1 − bα

1 − b
+ bαk ∀α, or gα(k) = α + k ∀α,

where a ∈ R, b ∈ R++. It is enough to consider the first possibility; in the other, the
arguments are analogous and, in fact, simpler. From Lemma 11, we know that

I∗(a
1 − bα

1 − b
+ bαξ) = a

1 − bα

1 − b
+ bαI∗(ξ) (A.10)

for all α ∈ Λ∗ and ξ ∈ B0
C∗ . Pick a proper interval K ⊂ C∗ and ε > 0 small enough

such that bα ∈ O for all α ∈ (−ε, ε), and b−αξ ∈ B0
C∗ for all α ∈ (−ε, ε) and ξ ∈ B0

K . Let
O′ ∶= {a1−bα

1−b ∶ α ∈ (−ε, ε)}. Observe that O′ is an open interval such that 0 ∈ O′.

10Note the abuse of notation: the functions gα that we now construct are different from those in
Section A.1.2.
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Lemma 14 I∗(ξ + k) = I∗(ξ) + k for all ξ ∈ B0
K and k ∈ O′ such that ξ + k ∈ B0

K.

Proof. Pick ξ and k as in the statement of the lemma. By construction, we know
that k = a1−bα

1−b for some α ∈ (−ε, ε). Let ξ′ ∶= b−αξ. By the choice of K and ε, we
know that ξ′ ∈ B0

C∗ and bα ∈ O. Making use of (A.10) and Lemma 13, we obtain

I∗(ξ + k) = I∗(bαξ′ + a
1 − bα

1 − b
) = bαI∗(ξ′) + k = I∗(bαξ′) + k = I∗(ξ) + k,

completing the proof of the lemma.

Lemma 15 There exists γ ∈ (0,1) and a certainty equivalent Ie ∶ B0 → R that is
translation invariant, γ-homogeneous for every γ ∈ (γ,1), and Ie extends I∗ ∶ B0

K →

R.

Proof. Take x ∈ X such that U∗(x,x, ...) = u(x)(1 − b(x))−1 ∈ K○. Let f(k) ∶=

u(x) + b(x)k for all k ∈ R. Recall that b(x) ∈ (0,1). Choose γ ∈ O ∩ (0,1) such that
(1−γ)u(x)(1− b(x))−1 ∈ O′ and γu(x)(1− b(x))−1 ∈K○. Based on the first inclusion,
observe that

a(m,γ) ∶= (1 − γ)u(x)
1 − bm(x)

1 − b(x)
∈ O′, ∀m ∈ N, γ ∈ [γ,1]. (A.11)

Also, note that [γ,1] ⊂ O. Take a compact set K ′ such that K ′ ⊃ K. We are going
to find an extension Ie of I∗ from B0

K to B0
K′ such that (i) Ie(γξ) = γIe(ξ) for all

ξ ∈ B0
K′ and γ ∈ [γ,1] such that γξ ∈ B0

K′ , and (ii) Ie(ξ + k) = Ie(ξ)+ k for all ξ ∈ B0
K′

and k ∈ R such that ξ + k ∈ B0
K′ . Letting l(K ′) be the length of the interval K ′, note

that ∣k∣ ≤ l(K ′) for all k ∈ R such that ξ + k ∈ B0
K′ for some ξ ∈ B0

K′ . Recall now
that b(x) ∈ (0,1). Hence, we can choose n1 ∈ N large enough so that γ(fn ○ ξ) ∈ B0

K

for all ξ ∈ B0
K′ and all γ ∈ [γ,1] such that γξ ∈ B0

K′ . Also, choose n2 such that
b(x)n2l(K ′) ∈ O′. Letting n ∶= max{n1, n2}, define

Ie(ξ) ∶= f−nI∗(fn ○ ξ), ∀ξ ∈ B0
K′ .

Observe that I∗(fn ○ ξ) = fn(I∗(ξ)) for every ξ ∈ B0
K . Thus, Ie is an extension of I∗.

Next, take any γ ∈ [γ,1] and ξ ∈ B0
K′ such that γξ ∈ B0

K′ . Recalling (A.11), observe
that

Ie(γξ) = f−nI∗[fn ○ (γξ)] = f−nI∗[γ(fn ○ ξ) + a(n, γ)]

By the choice of n, we know that fn ○ ξ, γ(fn ○ ξ) ∈ B0
K . Since, also, a(n, γ) ∈ O′, we

have

I∗[γ(fn ○ ξ) + a(n, γ)] = I∗[γ(fn ○ ξ)] + a(n, γ) = γI∗[fn ○ ξ] + a(n, γ).
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Then, a direct calculation shows that Ie(γξ) = γIe(ξ). To show translation invari-
ance, pick any ξ ∈ B0

K′ and k ∈ R such that ξ + k ∈ B0
K′ . Then,

Ie(ξ + k) = f−nI∗[fn ○ (ξ + k)] = f−nI∗[(fn ○ ξ) + bn(x)k]

By the choice of n, we know that bn(x)k ∈ O′. Hence,

I∗[fn ○ ξ + bn(x)k] = I∗[fn ○ ξ] + bn(x)k.

Once again, a direct calculation shows that Ie(ξ + k) = Ie(ξ) + k. Finally, take a
sequence (Km)m of compact sets such that K ⊂ Km ⊂ Km+1 for all m ∈ N and
∪mKm = R. Define I1 to be the extension of I∗ to B0

K1
and, inductively, Im to be the

extension of Im−1 from B0
Km−1

to B0
Km

, m > 1. Define Ie to be the projective limit of
the sequence (Im)m. By construction, Ie is translation invariant, γ-homogeneous for
all γ ∈ [γ,1], monotone, and normalized.

Letting f ∶ R → R be as in the proof of the lemma, pick m ∈ N large enough so
that fm(U∗(X∞)) ⊂ K. Let U∗∗ = fm ○ U∗ and φ∗∗(x, k) = fmφ∗(x, f−m(k)) for
all k ∈ U∗∗(X∞). As was shown previously, (U∗∗, φ∗∗, Ie) is a representation for
⪰. Summarizing the two cases, we have thus proved that ⪰ admits a representation
(U,φ, I) such that U has an Uzawa-Epstein time-aggregator (u, b) and I ∶ B0 → R
is a regular certainty equivalent that is translation invariant and b(x)-homogeneous
for every x ∈ X. The next lemma shows that I is positively homogeneous whenever
the function b is not constant. The lemma completes the proof of Theorem 2.

Lemma 16 If I ∶ B0 → R is γ-homogeneous for all γ ∈ (a, b) ⊂ (0,1), where a < b,
then I is positively homogeneous.

Proof. It is clear that I is γ-homogeneous for all γ ∈ (at, bt) and all t ∈ T . Observe
that logb a > 1 and pick k such that 1 + 1

k < logb a. Then, bt+1 > at for all t ≥ k.
Conclude that (0, bk) ⊂ ∪t(at, bt) and, hence, that I is γ-homogeneous for all γ ∈

(0, bk). Suppose now that I(γa) ≠ γI(a) for some γ > 0 and ξ ∈ B0. Choose β ∈

(0, bk) and t large enough so that βtγ ∈ (0, bk). Then, βtI(γa) ≠ βtγI(a) = I(βtγa),
contradicting the fact that I is βtγ-homogeneous.

A.2 Proof of Theorem 3

Let f ∶ U(X) → Û(X) be the continuous, strictly increasing function such that
f(U(d)) = Û(d) for all d ∈ X∞. Let x0 ∈ X be such that (x0, x0, ...) attains the
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minimum of U . Renormalizing if necessary, we can assume that u(x0) = 0. Let E
be the set of all points in the interior of U(X) at which f is differentiable. Because
f is monotone, Ec has outer measure zero, see e.g. Royden [31, Thm 3, p.100]. For
every x ∈X, a ∈ U(X)○, and k ∈ R small enough, we have

f[u(x) + b(x)(a + k)] − f[u(x) + b(x)a]

b(x)k
=
b̂(x)

b(x)

f(a + k) − f(a)

k
(A.12)

It follows that if f is differentiable at a, then f is differentiable at u(x) + b(x)a for
every x. Moreover, for every a ∈ E,

b(x)f ′[u(x) + b(x)a] = b̂(x)f ′(a), ∀x ∈X,∀a ∈ E. (A.13)

For every a ∈ U(X), let

A(a) ∶= {u(x) + b(x)a ∶ x ∈X}.

The set A(a) is an interval because X is connected and u, b ∶X → R are continuous.
Note that a ∈ A(a) for every a ∈ U(X). We are going to show that f is differentiable
at every a > 0. Because Ec has zero measure, for every a′ in the interior of U(X),
there is a ∈ E such that a > a′ > 0. Thus it suffices to show that f is differentiable on
(0, a] for every a ∈ E,a > 0. Fix such an a and let an ∶= b(x0)na,n ∈ {0,1,2, ...}. For
every n, we have

an+1 ∈ A(an+1) ∩A(an). (A.14)

Conclude that ∪nA(an) is connected. Since an converges to zero, it follows that
(0, a] ⊂ ∪nA(an). Since f is differentiable on every A(an), the argument is complete.

For the final step, choose x ∈ X such that u(x) > 0. Plugging that x and a = 0 in
(A.12), one sees that f has a right derivative at zero. Denoting this derivative by
f ′(0), note that f ′(0) = f ′(u(x)).

Suppose that f ′(a) = 0 for some a ∈ U(X). Since b(x), b̂(x) > 0 for all x, it follows
from (A.13) that

f ′[u(x) + b(x)a] = 0, ∀x ∈X.

Conclude that f ′(a′) = 0 for all a′ in the nondegenerate interval A(a). This contra-
dicts the fact that f is strictly increasing. Conclude that f ′(a) ≠ 0 for all a. For
x ∈X, let a ∶= u(x)(1 − b(x))−1. Plugging these x, a into (A.13) gives:

b(x)f ′(a) = b̂(x)f ′(a)
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Since f ′(a) ≠ 0, it must be the case that b(x) = b̂(x) for every x ∈X. But then (A.13)
becomes

f ′[u(x) + b(x)a] = f ′(a), ∀x ∈X,a ∈ U(X). (A.15)

Fix any a > 0 amd n, once again define an ∶= b(x0)ny. It follows from (A.15) that f ′

is constant on each A(an). As argued above, A(an) ∩A(an+1) ≠ ∅ for every n and
(0, a] ⊂ ∪nA(an). Thus f ′ is constant on (0, a] for every a in the interior of U(X).
Conclude that f ′ is constant on the interior and, since f is continuous, that f is
affine.

A.3 Proof of Convexity

To be added. Please contact me for details.
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