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Abstract

We study the problem of deriving a complete welfare ordering from a choice function. Under

the sequential solution, the best alternative is the alternative chosen from the universal set;

the second best is the one chosen when the best alternative is removed; and so on.

We show that this is the only completion of Bernheim and Rangel’s (2009) welfare relation

that satisfies two natural axioms: neutrality, which ensures that the names of the alternatives

are welfare-irrelevant; and persistence, which stipulates that every choice function between

two welfare-identical choice functions must exhibit the same welfare ordering.

JEL Classification: D01.

Keywords: Choice-based welfare analysis, bounded rationality.

1 Introduction

This paper revisits the problem of extending choice-based welfare analysis to settings where agents

may not be fully rational. Bernheim and Rangel (2009) observe that choices by boundedly rational

agents generally exhibit a substantial degree of consistency that can be exploited to derive acyclic

welfare judgements. According to their approach, an agent is better off with alternative x than

alternative y if and only if the agent never chooses y from any set where x is available. From a

purely choice-theoretic perspective, this Pareto-like criterion is fairly innocuous. Unfortunately, it

is incomplete unless the agent is rational. In this paper, we are interested in extracting a complete

welfare ordering of the alternatives for any choice behavior.

Much like Bernheim and Rangel, our model-free approach is based entirely on observed choices.

In contrast with the model-specific approaches proposed in the literature (see Rubinstein and

Salant (2012) among others), it does not rely on using an underlying model of choice behavior
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Bossert, Felix Brandt, Chris Chambers, Federico Echenique, Lars Ehlers, Jean-François Laslier, Bart Lipman,
and Collin Raymond for helpful comments and discussions about the project.
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to help make welfare judgments. We refrain from comparing our model-free approach to these

model-specific approaches. The relative merits and shortcomings of each have been debated at

length in the literature and are now relatively well understood.

Obviously, we are asking a great deal from very little. If one were to consider the choice behavior

of each agent in isolation, as Bernheim and Rangel do, our task would be quite desperate. The

task becomes manageable only when one imposes conditions on the relationship among the welfare

orderings assigned to different agents. For this purpose, the natural object of study is the class

of functions that, for each choice function defined on (the subsets of) a universal set X, assign a

particular welfare ordering to the alternatives in X. We call such functions solutions.

Our approach is quite unlike previous approaches to choice-based welfare analysis.1 In terms

of practicality, we feel that it has significant appeal: by requiring some amount of “coherence”

among the welfare orderings assigned to different agents, the range of solutions can be narrowed

tremendously. What is more, we believe that this leads to sound policy: to evaluate aggregate

social welfare, it would seem important to make coherent welfare judgments across agents.

The straightforward solution that emerges from our analysis is sequential: the best alternative

is the one chosen from the universal set; the second best alternative is the one chosen from the set

obtained by deleting the best alternative from the universal set; and so on.2 We show that this

sequential solution is the only solution that satisfies admissibility, neutrality and persistence.

Admissibility means that the ordering assigned to a rational choice function must be the one

that rationalizes it. This is a very basic condition of non-paternalism: welfare judgements should

respect choices when they are rational. In turn, neutrality states that the solution covaries with

respect to permutations of the alternatives. This condition is innocuous (and even quite desirable)

when the nature of the alternatives is unspecified. Finally, persistence stipulates that if the same

ordering is assigned to two choice functions, it is also assigned to any choice function between

them. For the purpose of this axiom, a choice function is between two others if, from every set, it

picks an alternative that is selected by at least one of them.

By virtue of neutrality, a solution must assign the same welfare ordering to a wide range

of agents who make different choices.3 Persistence simply groups agents in a way that displays

a natural kind of homogeneity. Though we do not claim that this is the only compelling way

to group agents coherently, we do find it quite reasonable as a model-free approach. Clearly, a

different notion of coherence might be more appropriate if one started from a particular model of

choice behavior. While we certainly find this model-specific approach intriguing, we do not pursue

it here.

1Nishimura (2014) studies functions that, for each complete binary relation on X, assign a reflexive and transitive
(but potentially incomplete) welfare relation on X. While this bears some resemblance to our approach, it is closer
to the vast literature on extracting orderings from tournaments. See Bouyssou (2004) for a recent survey.

2This is a “folk” procedure for extracting an ordering from individual (Moulin (1988), Ex. 11.9) or group (Arrow
and Raynaud (1986), Ch. 7) choice data. See Bouyssou (2004) for a survey of other work on ranking by choosing.

3For |X| = n, any neutral solution must assign the same welfare ordering to exactly
∏n

k=1 k
(n
k)−1 choice functions.
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In our view, the result illustrates the inherent power and richness of our approach. For one, it

shows that a few natural axioms in our setting can uniquely determine a straightforward solution.

Given the formidable range of possibilities, we find this surprising.4 What is more, it shows that

axioms in our setting can combine in ways that are quite unexpected. Even though our solution

is inherently sequential, for instance, none of our axioms appear to have this feature.

With this in mind, we are more inclined to view our work as the first step towards a coherent

theory of choice-based welfare rather than the final word on the matter. Indeed, we feel that other

natural axioms in our setting, like those discussed in Section 4, merit further consideration.

2 Definitions and Axioms

Let X = {1, ..., n} denote a finite (universal) set of alternatives such that n ≥ 2. For any A ⊆ X,

let A = {B ⊆ A : |B| ≥ 2} denote the subsets of A with two or more alternatives.

A choice function on A is a function C : A → A such that C(B) ∈ B for every B ∈ A. In

words, a choice function on A selects a single alternative from every subset of A that contains

more than one alternative. Let C(A) denote the set of choice functions on A.

Let R(A) denote the set of (linear) orderings on A. Given an ordering R ∈ R(A), we use

interchangeably the standard notations (x, y) ∈ R and xRy. When convenient, we also denote

R ∈ R(A) by listing the elements of A in decreasing order according to R. For instance, the

natural ordering R1 := {(x, y) | 1 ≤ x ≤ y ≤ n} on X can also be written as R1 = 1, ..., n.

Our object of interest is a function that assigns an ordering to every choice function. Formally, a

solution on A is a function f : C(A)→ R(A). Let F(A) denote the set of solutions on A.

We consider three natural axioms on solutions: admissibility, neutrality and persistence.

To formalize the first axiom, let A ∈ X . For all R ∈ R(A), let maxR ∈ C(A) denote the choice

function that selects from every B ∈ A the best alternative in B according to the ordering R. We

call such a choice function rational. A solution f ∈ F(A) is admissible if

f(maxR) = R for all R ∈ R(A).

To formalize the second axiom, let P(A) denote the set of permutations (or bijections) on

A. For all π ∈ P(A), R ∈ R(A) and C ∈ C(A), define the ordering πR ∈ R(A) by πR :=

{(π(x), π(y)) : (x, y) ∈ R}; and define the choice function πC ∈ C(A) by πC(B) := π(C(π−1(B)))

for all B ∈ A. Then, a solution f ∈ F(A) is neutral if

f(πC) = πf(C) for all C ∈ C(A) and all π ∈ P(A).

4To get a sense of the sheer magnitude, there are n!K(n) possible solutions for |X| = n where K(n) :=
∏n

k=1 k
(n
k).
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To formalize the last axiom, define a choice function C ′′ ∈ C(A) to be between C ∈ C(A) and

C ′ ∈ C(A) if C ′′(B) = C(B) or C ′′(B) = C ′(B) for all B ∈ A.5 To denote this relationship, we

write C ′′ ∈ [C,C ′] when C ′′ is between C and C ′. Then, a solution f ∈ F(A) is persistent if

f(C ′′) = f(C) = f(C ′) for all C,C ′, C ′′ ∈ C(A) such that f(C) = f(C ′) and C ′′ ∈ [C,C ′].

Finally, the solution described in the introduction can be defined recursively. For all C ∈ C(A):

let AC
1 := A; and, let AC

k := AC
k−1 \

{
C(AC

k−1)
}

for k = 2, ..., |A|.

Using these definitions, the sequential solution on A is the solution ϕA ∈ F(A) given by

ϕA(C) := C(AC
1 ), ..., C(AC

|A|) for all C ∈ C(A).

By convention, let C({x}) := x for all x ∈ A so that C(AC
|A|) is well-defined.

3 Result

Theorem. A solution f ∈ F(X) is admissible, neutral and persistent if and only if f = ϕX .

It is straightforward to show that the sequential solution is admissible, neutral and persistent.

Proving that it is the only solution with these properties is considerably more involved. To

illustrate the kinds of arguments that our proof exploits, it is instructive to consider the special

case of three alternatives where X = {1, 2, 3}. The general proof is postponed to Section 5.

Fix a solution f that is admissible, neutral and persistent. Think of a choice function C as an

element of the Cartesian product {1, 2, 3}× {1, 2}× {1, 3}× {2, 3}. By neutrality, it is enough to

show that the set of choice functions to which f assigns the natural ordering R1 = 1, 2, 3 coincides

with the set of choice functions to which the sequential solution assigns the natural ordering.

The key observation is that the former defines a Cartesian product: for each set of alternatives

A, there exists a subset of alternatives Γ(A) ⊆ A such that

f−1(R1) = Γ({1, 2, 3})× Γ({1, 2})× Γ({1, 3})× Γ({2, 3}).

This separability property is precisely the formal content of the persistence axiom.

Since admissibility requires that the rational choice function generated by R1 belongs to

f−1(R1), it then follows that 1 ∈ Γ({1, 2, 3}) ∩ Γ({1, 2}) ∩ Γ({1, 3}) and 2 ∈ Γ({2, 3}). Since

admissibility also requires that the rational choice function generated by the ordering 1, 3, 2 can-

not belong to f−1(R1), it is moreover the case that Γ({2, 3}) = {2}.
5Note that this implies C ′′(B) = C(B) = C ′(B) whenever C(B) = C ′(B).
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The rest of the argument exploits the power of neutrality. Because there are 3×23 = 24 choice

functions and 3! = 6 orderings on the universal set, exactly 24/6 = 4 choice functions must be

assigned the natural ordering R1. In other words,

|Γ({1, 2, 3})| × |Γ({1, 2})| × |Γ({1, 3})| = 4.

As a result, |Γ({1, 2, 3})| is either 1 or 2. To rule out the latter possibility, consider the sub-class

of choice functions for which some alternative is chosen from both two-element sets to which it

belongs. Because there are 32 × 2 = 18 such choice functions, exactly 18/6 = 3 must be assigned

the natural ordering R1. If |Γ({1, 2, 3})| = 2 however, the set f−1(R1) must contain either 2 or 4

choice functions from this sub-class. Therefore |Γ({1, 2, 3})| = 1. We conclude that

Γ({1, 2, 3}) = {1} , Γ({1, 2}) = {1, 2} , Γ({1, 3}) = {1, 3} and Γ({2, 3}) = {2} .

So, f−1(R1) coincides with the set of choice functions to which the sequential solution assigns R1.

4 Discussion

(1) It is natural to strengthen admissibility. Given a choice function C ∈ C(A), define the binary

relation RC on A by (x, y) ∈ RC if and only if C(B) 6= y for all B ∈ A such that x, y ∈ B. This

is the unambiguous choice welfare relation proposed by Bernheim and Rangel (2009).

Call a solution f ∈ F(A) consistent if

RC ⊆ f(C) for all C ∈ C(A).

By definition, consistency implies admissibility. As a direct corollary of our theorem, the

sequential solution is the only solution that is consistent, neutral and persistent. In other words,

it is the only neutral and persistent way to complete Bernheim and Rangel’s welfare relation.

(2) It is equally natural to weaken persistence. Call a solution f ∈ F(A) weakly persistent if

C ′ ∈
[
C,maxf(C)

]
implies f(C ′) = f(C) for all C,C ′ ∈ C(A).

This means that the ordering assigned to a choice function C is also assigned to any choice

function that lies between C and the rational choice function generated by the ordering assigned

to C.6 By definition, persistence implies weak persistence.

The sequential solution is consistent, neutral and weakly persistent. However, it is not the

only solution with these properties. For n = 3, consider the binary relation α(C) defined by

(x, y) ∈ α(C)⇐⇒

 |{A ∈ X : C(A) = x}| > |{A ∈ X : C(A) = y}| ; or

|{A ∈ X : C(A) = x}| = |{A ∈ X : C(A) = y}| and C({x, y}) = x.

6Can and Storcken’s (2013) update monotonicity is a similar condition in the preference aggregation context.
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According to this binary relation, x is welfare preferred to y if: x is chosen more frequently than

y; or both alternatives are chosen equally frequently and x is pairwise-chosen over y.

To see that α does indeed define a solution, it is helpful to re-write it using the Cartesian

product notation C := (C({1, 2, 3}), C({1, 2}), C({1, 3}), C({2, 3})) (described in Section 3):

α(C) =



1, 2, 3 if C ∈ {(1, 1, 1, 2), (2, 1, 1, 2), (1, 1, 3, 2), (3, 1, 1, 2)}

1, 3, 2 if C ∈ {(1, 1, 1, 3), (3, 1, 1, 3), (1, 2, 1, 3), (2, 1, 1, 3)}

2, 1, 3 if C ∈ {(2, 2, 1, 2), (1, 2, 1, 2), (2, 2, 1, 3), (3, 2, 1, 2)}

2, 3, 1 if C ∈ {(2, 2, 3, 2), (3, 2, 3, 2), (2, 1, 3, 2), (1, 2, 3, 2)}

3, 1, 2 if C ∈ {(3, 1, 3, 3), (1, 1, 3, 3), (3, 1, 3, 2), (2, 1, 3, 3)}

3, 2, 1 if C ∈ {(3, 2, 3, 3), (2, 2, 3, 3), (3, 2, 1, 3), (1, 2, 3, 3)}

Written this way, it is straightforward to see that α is consistent, neutral and weakly persistent.

(3) Our three axioms are independent. The solution α in (2) shows that persistence is essential.

Neutrality cannot be dropped either. To see this, consider the tournament TC defined on X

by pairwise choices, namely (x, y) ∈ TC if and only if C({x, y}) = x. Using this tournament, one

can define a variety of solutions on X that depend only on pairwise choices. When n = 3, for

instance, consider the following:

τ(C) :=


1, 2, 3 if 1TC2TC3TC1

1, 3, 2 if 1TC3TC2TC1

TC otherwise

This solution uses the tournament TC if it is acyclic. Otherwise, it breaks the cycle in TC in favor

of the alternative that comes first in the natural ordering.

Since it gives an inherent advantage to alternative 1, τ is not neutral. However, it is admissible

and persistent. To see this, simply re-write the solution using the Cartesian product notation:

τ(C) =



1, 2, 3 if C ∈ {1, 2, 3} × {1} × {1, 3} × {2}

1, 3, 2 if C ∈ {1, 2, 3} × {1, 2} × {1} × {2}

2, 1, 3 if C ∈ {1, 2, 3} × {2} × {1} × {2}

2, 3, 1 if C ∈ {1, 2, 3} × {2} × {3} × {2}

3, 1, 2 if C ∈ {1, 2, 3} × {1} × {3} × {3}

3, 2, 1 if C ∈ {1, 2, 3} × {2} × {3} × {3}

Finally, it is clear that admissibility is also essential: the anti-sequential solution that assigns

to every choice function C the inverse of the ordering ϕX(C) is both neutral and persistent.
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(4) Using the sequential solution, one can extend a collection Fn−k of solutions on subsets of

cardinality n−k into a solution on X. Given Fn−k := {fA ∈ F(A) : A ∈ X such that |A| = n−k},
the idea is to define a solution ϕX ⊗ Fn−k ∈ F(X) that, on the “top” k alternatives, coincides

with ϕX ∈ F(X) and, on the “tail” of n− k alternatives, coincides with the appropriate solution

in Fn−k. To formalize:

(x, y) ∈ ϕX ⊗Fn−k(C)⇐⇒

 x ∈ X \XC
k+1 and (x, y) ∈ ϕX(C); or

x, y ∈ XC
k+1 and (x, y) ∈ fXC

k+1
(C|XC

k+1
).

In this formulation, XC
k+1 denotes the “tail” of n − k alternatives according to C (as per the

definition in Section 2); and C|XC
k+1

denotes the restriction of C to (the subsets of) XC
k+1. Following

this approach, one can extend the solutions α and τ (defined for n = 3) in a natural way. In either

case, the extension to n ≥ 4 inherits the properties of the base solution. Intuitively, this follows

from the separability between the “top” and the “tail” of the extension.

(5) We conclude with some potential directions for future research. Which solutions are consistent,

neutral and weakly persistent? Does some version of our theorem remain valid on: the restricted

domain of welfare-relevant choice sets (see Bernheim and Rangel (2009) for the definition)? or the

restricted space of choice functions suggested by various theories of bounded rationality? Finally,

what can one recommend when: a solution is only required to extract a weak ordering from a choice

function? there are infinitely many alternatives? or choice behavior defines a correspondence?

5 Proof of Uniqueness

Fix an admissible, neutral and persistent rule f ∈ F(X). We claim that f = ϕX .

The proof is by induction on n, the size of X. The claim is trivially true if n = 2. For the

induction step, suppose n ≥ 3 and suppose that, for all x ∈ X, the only admissible, neutral and

persistent solution on X \ {x} is ϕX\{x}. Recall that R1 = 1, ..., n denotes the natural ordering on

X. Because f is neutral, it is sufficient to show that f−1(R1) = ϕ−1X (R1).

For any R ∈ R(X) and C ∈ C(X), let R|X\{1} ∈ R(X \ {1}) denote the restriction of the

ordering R to X \ {1} and let C|X\{1} ∈ C(X \ {1}) denote the restriction of the choice function

C to (the subsets of) X \ {1}. Finally, define

f−1(R)|X\{1} := {C ∈ C(X \ {1}) : ∃C ′ ∈ f−1(R) such that C = C ′|X\{1}}.

Step 1. We show that f−1(R1)|X\{1} = ϕ−1X (R1)|X\{1}.
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For any C ∈ C(X \ {1}), first define the choice function C1 ∈ C(X) by

C1(A) :=

 1 if 1 ∈ A

C(A) otherwise.

For any C ∈ f−1(R1), observe that maxR1 ∈ f−1(R1) by admissibility. Since (C|X\{1})1 ∈
[C,maxR1 ], persistence then implies (C|X\{1})1 ∈ f−1(R1). In other words:

C ∈ f−1(R1)⇒ (C|X\{1})1 ∈ f−1(R1). (1)

Next, define

R1(X) :=
{
R ∈ R(X) : max

R
(X) = 1

}
and

C1(X) := {C ∈ C(X) : C(A) = 1 for all A ∈ X such that 1 ∈ A} .

Observe that

C ∈ C1(X)⇒ f(C) ∈ R1(X). (2)

If f(C) /∈ R1(X), consider the ordering R obtained from f(C) by pushing alternative 1 to the

first rank without altering the relative ranks of the other alternatives. Since maxR ∈
[
maxf(C), C

]
and f(maxf(C)) = f(C), we obtain f(maxR) = f(C) 6= R, contradicting admissibility.

Finally, define the solution f1 ∈ F(X \ {1}) by f1(C) := f(C1) for all C ∈ C(X \ {1}). It is

straightforward to check that f1 is an admissible, neutral and persistent solution on X \ {1}. By

the induction hypothesis,

f1 = ϕX\{1}. (3)

To complete Step 1, notice that:

C ∈ f−1(R1)|X\{1} ⇔ ∃C ′ ∈ f−1(R1) such that C = C ′|X\{1}
⇔ C1 ∈ f−1(R1) [by implication (1)]

⇔ f(C1) = R1

⇔ f(C1)|X\{1} = R1|X\{1} [by implication (2)]

⇔ f1(C) = R1|X\{1} [by definition of f1]

⇔ ϕX\{1}(C) = R1|X\{1} [by identity (3)]

⇔ C ∈ ϕ−1X\{1}(R
1
X\{1})

⇔ C ∈ ϕ−1X (R1)|X\{1} [by definition of ϕX\{1} and ϕX ].

Because f is persistent, f−1(R1) is a Cartesian product set. For each A ∈ X , there exists a

nonempty set Γ(A) ⊆ A such that f−1(R1) =
∏

A∈X Γ(A). Moreover, maxR1 ∈ f−1(R1) by
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admissibility. Hence,

max
R1

(A) ∈ Γ(A) for all A ∈ X . (4)

Denoting the cardinality of the set Γ(A) by γ(A), we have

∣∣f−1(R1)
∣∣ =

∏
A∈X

γ(A). (5)

From Step 1, Γ({x, ..., n}) = {x} for each x ∈ {2, ..., n} and Γ(A) = A for every other set

A ∈ X that does not contain 1. To prove that f−1(R1) = ϕ−1X (R1), it remains to be shown that

Γ(X) = {1} and Γ(A) = A for every set A ∈ X \ {X} such that 1 ∈ A.

Note: For ease of notation from now on, we drop any reference to X unless this causes confusion.

Thus, we write R instead of R(X), C instead of C(X), P instead of P(X) and ϕ instead of ϕX .

Step 2. We show that γ(A) = n− 1 for every set A such that |A| = n− 1 and A 6= {2, ..., n}.

Let us call a set D ⊆ C symmetric if, for all C ∈ D and π ∈ P , we have πC ∈ D. Because f is

neutral, it is easy to see that, for every symmetric set D ⊆ C,

∣∣f−1(R1) ∩ D
∣∣ =
|D|
|R|

=
|D|
n!
. (6)

It is straightforward to compute7 that

|C|
n!

=
n−1∏
k=2

k(n
k)−1. (7)

Since C is a symmetric set, (5) and (6) imply

∏
A∈X

γ(A) =
|C|
n!
. (8)

For x ∈ X, define Cx, n−1 := {C ∈ C : C(A) = x if |A| = n− 1 and x ∈ A}; and let Cn−1 :=

∪x∈XCx, n−1. The symmetric set Cn−1 contains all the choice functions on X where some alternative

x ∈ X is selected from every set of size n− 1 that contains it. It is easy to compute that

|Cn−1|
n!

= n×
n−2∏
k=2

k(n
k)−1. (9)

Since R1 ranks alternative 1 first, (4) implies that 1 ∈ Γ(A) for all A such that |A| = n − 1

and x ∈ A. Therefore alternative 1 may be chosen from every set of size n− 1 which contains it.

In other words, C1, n−1 ⊆ f−1(R1). Suppose f−1(R1) ∩ Cn−1 = f−1(R1) ∩ C1, n−1 so that 1 is the

7An easy way is to check that |ϕ−1(R1)| =
∏n−1

k=2 k
(n
k)−1 and note that |ϕ−1(R1)| = |C|/n! because ϕ is neutral.

9



only such alternative. Since γ({2, ..., n}) = 1, it then follows that

∣∣f−1(R1) ∩ Cn−1
∣∣ = γ(X)× 1×

n−2∏
|A|=2

γ(A). (10)

Denote the last factor by Gn−2. Since Cn−1 is a symmetric set, (6) and (10) imply

γ(X)×Gn−2 =
|Cn−1|
n!

.

Dividing (8) by this equation and simplifying using (7) and (9) gives

∏
|A|=n−1

γ(A) =
|C|
|Cn−1|

=
(n− 1)n−1

n
.

Denote the term on the left side of this expression by Gn−1. Since n and n − 1 are co-prime, we

conclude that Gn−1 is not an integer, which is a contradiction.

So, it must be that some alternative other than 1 may be chosen from every set of size n− 1

to which it belongs. Since Γ({2, ..., n}) = {2}, this other alternative must be 2. In other words,

f−1(R1) ∩ Cn−1 = f−1(R1) ∩ (C1, n−1 ∪ C2, n−1). Since there are γ({1, 3, ..., n}) ways to guarantee

that 2 is chosen from every set of size n− 1 that contains it,

∣∣f−1(R1) ∩ Cn−1
∣∣ = γ(X)× (1 + γ({1, 3, ..., n}))×Gn−2. (11)

Since Cn−1 is a symmetric set, (6) and (11) imply

γ(X)× (1 + γ({1, 3, ..., n}))×Gn−2 =
|Cn−1|
n!

.

Dividing (8) by this equation and using (7) and (9) gives

Gn−1

1 + γ({1, 3, ..., n})
=
|C|
|Cn−1|

=
(n− 1)n−1

n
or Gn−1 =

(n− 1)n−1

n
× [1 + γ({1, 3, ..., n})].

Since Gn−1 is an integer and n and n− 1 are co-prime, it must be that n = 1 + γ({1, 3, ..., n}) or,

equivalently, γ({1, 3, ..., n}) = n − 1. Plugging this back into the above formula establishes that

Gn−1 = (n− 1)n−1. Since γ({2, ..., n}) = 1, we conclude that γ(A) = n− 1 for every set A of size

n− 1 other than {2, ..., n}. This completes Step 2.

Note: If n = 3, Steps 1 and 2 imply that Γ({1, 2}) = {1, 2}, Γ({1, 3}) = {1, 3} and Γ({2, 3}) =

{2}. From (8), it then follows that γ({1, 2, 3}) = 1. Hence, Γ({1, 2, 3}) = {1} by (4). This means

that f−1(R1) = ϕ−1(R1). So, f is the sequential solution. From now on, we assume that n ≥ 4.

Step 3. We show that γ(X) = 1 or γ(X) = n.

10



Using Step 2, we can rewrite (8) as

γ(X)× (n− 1)n−1 ×Gn−2 =
|C|
n!
. (12)

Define Cn−1X := {C ∈ C : C(A) 6= C(X) if |A| = n− 1}. This is the symmetric set of choice func-

tions where the alternative selected from X is never chosen from any set of size n − 1. It is

straightforward to compute that

|Cn−1X |
n!

= (n− 2)n−1 ×
n−2∏
k=2

k(n
k)−1. (13)

On the other hand,∣∣f−1(R1) ∩ Cn−1X

∣∣ = [(n− 2)n−1 + (γ∗(X)− 1)(n− 1)(n− 2)n−2]×Gn−2

where γ∗(X) :=

 γ(X)− 1 if 2 ∈ Γ(X)

γ(X) otherwise.

(14)

This is because there are:

(i) (n− 2)n−1 ways of not choosing 1 from any set of size n− 1;

(ii) no ways of not choosing 2 from any set of size n− 1 (because Γ({2, ..., n}) = {2}); and,

(iii) (n− 1)(n− 2)n−2 ways of not choosing any other alternative from any set of size n− 1.

Since Cn−1X is a symmetric set, (6) and (14) imply

[(n− 2)n−1 + (γ∗(X)− 1)(n− 1)(n− 2)n−2]×Gn−2 =
|Cn−1X |
n!

.

Dividing (12) by this equation and simplifying using (7) and (13) gives

γ(X)× (n− 1)n−1

(n− 2)n−1 + (γ∗(X)− 1)(n− 1)(n− 2)n−2
=
|C|
|Cn−1X |

=
(n− 1)n−1

(n− 2)n−1
.

Further simplifying this expression gives (γ∗(X)− 1)(n− 1) = (γ(X)− 1)(n− 2). Since n− 1 and

n− 2 are co-prime: (i) γ∗(X)− 1 = γ(X)− 1 = 0; or (ii) γ∗(X)− 1 = n− 2 and γ(X)− 1 = n− 1.

In case (i), γ(X) = 1; and, in case (ii), γ(X) = n. This completes Step 3.

Step 4. We show that γ(X) = 1.

For any k ∈ {2, ..., n}, define C∗−k := {C ∈ C : ∃R ∈ R such that C(A) = maxR(A) if |A| 6= k}.
This is the symmetric set of choice functions that are rational except possibly on sets of size k. It

is straightforward to compute that ∣∣C∗−k∣∣
n!

= k(n
k). (15)
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By way of contradiction, suppose γ(X) = n. Let R2 := 2, 1, 3, ..., n. Since maxR1 ∈ f−1(R1)

and maxR2 /∈ f−1(R1), there exists some Â ∈ X such that 1 ∈ Γ(Â) and 2 ∈ Â\Γ(Â). Let k̂ := |Â|.
From Step 2 and γ(X) = n, k̂ ∈ {2, ..., n− 2}. To simplify the notation, let Gk :=

∏
|A|=k γ(A).

Substep 4.1. We claim that Gk = k(n
k)−1 for all k ∈ {2, ..., n− 1} \ {k̂} when γ(X) = n.

Fix k ∈ {2, ..., n− 1} \ {k̂}. By Step 2, Gn−1 = (n − 1)n−1 = (n − 1)(
n

n−1)−1. This proves the

claim if n = 4 since in that case {2, ..., n− 1} \ {k̂} = {2, 3} \ {2} = {3} = {n− 1}. Next, assume

n ≥ 5 and k 6= n− 1. We claim that

∣∣f−1(R1) ∩ C∗−k
∣∣ ≤ kGk. (16)

To see why this is the case, consider a choice function C ∈ f−1(R1) ∩ C∗−k. By definition of

C∗−k, there exists an ordering R ∈ R such that C(A) = maxR(A) whenever |A| 6= k. Since by

Step 1 Γ ({i, ..., n}) = {i} for i = 2, ..., n − 1, it follows that we must have C ({i, ..., n}) = i for

i = 2, ..., (n− k), (n− k + 2), ..., (n− 1). Therefore

2 R ... R (n− k) R (n− k + 2) R ... R n and (n− k) R (n− k + 1). (17)

Since 1 ∈ Γ(Â) and 2 ∈ Â \ Γ(Â), it must be that

1R2. (18)

Exactly k orderings R on X satisfy (17) and (18): these are obtained from R1 by pushing the

alternative n− k + 1 to any rank lower than or equal to n− k + 1. This proves (16).

Since C∗−k is a symmetric set,
∣∣f−1(R1) ∩ C∗−k

∣∣ =
∣∣C∗−k∣∣ /n!. Using (15) and (16), it then follows

that Gk ≥ k(n
k)−1. But, since γ({n − k + 1, ..., n}) = 1 and

∏
|A|=k |A| = k(n

k), we also know that

Gk ≤ k(n
k)−1. Combining these two inequalities gives Gk = k(n

k)−1. This completes Substep 4.1.

Substep 4.2. To complete the proof of Step 4, we derive a contradiction from γ(X) = n.

Given the assumption that Gn := γ(X) = n, Step 1 and Substep 4.1 imply

∣∣f−1(R1)
∣∣ = n×Gk̂ ×

∏
k 6=k̂,n

k(n
k)−1. (19)

Since C is a symmetric set, (6), (7) and (19) then imply

Gk̂ =
k̂(n

k̂)−1

n
. (20)

For each x ∈ X, define C−k̂x := {C ∈ C : C(A) 6= x if |A| 6= k̂} and let C−k̂ = ∪x∈XC−k̂x . This is

the symmetric set of choice functions where some alternative is never chosen except possibly from
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sets of size k̂. It is straightforward to compute that

|C−k̂|
n!

=

 n−1∏
k=k̂+1

k(n−1
k )(k − 1)(

n−1
k−1)−1

× k̂(nk̂)−1 ×

k̂−1∏
k=2

k(n−1
k )−1(k − 1)(

n−1
k−1)

 .
This simplifies to

|C−k̂|
n!

= Π̂× k̂(n
k̂)−1 ×

[
(n− 1)!

k̂ × (k̂ − 1)

]
, (21)

where

Π̂ :=

∏n−1
k=2 k

(n−1
k )−1(k − 1)(

n−1
k−1)−1

k̂(n−1

k̂ )−1(k̂ − 1)(
n−1

k̂−1)−1
.

Since, by Step 1, Γ({x, ..., n}) = {x} for each x 6= 1, alternatives 1 and (n − k̂ + 1) are

the only two alternatives that can be never chosen from any set of size other than k̂. That is,

f−1(R1) ∩ C−k̂ = f−1(R1) ∩ (C−k̂1 ∪ C−k̂n−k̂+1
). Therefore,

∣∣∣f−1(R1) ∩ C−k̂
∣∣∣ = (n− 1)×

 n−1∏
k=k̂+1

k(n−1
k )−1(k − 1)(

n−1
k−1)

×Gk̂ ×

k̂−1∏
k=2

k(n−1
k )−1(k − 1)(

n−1
k−1)


+ (n− 1)×

 n−1∏
k=k̂+1

k(n−1
k )(k − 1)(

n−1
k−1)−1

×Gk̂ ×

k̂−1∏
k=2

k(n−1
k )−1(k − 1)(

n−1
k−1)

 .
Given (20), this simplifies to

∣∣∣f−1(R1) ∩ C−k̂
∣∣∣ = Π̂× k̂(n

k̂)−1 ×

[
(n− 1)!

k̂ × (k̂ − 1)

]
×

[
k̂ − 1 + n

n

]
. (22)

Since C−k̂ is a symmetric set, (6), (21) and (22) establish that k̂ = 1. Since it must be the case

that k̂ ∈ {2, ..., n− 2}, this is a contradiction. This completes Substep 4.2 and, hence, Step 4.

Steps 1 and 4 establish that γ({x, ..., n}) = 1 for each x ∈ X. It follows from (4) and (8) that

Γ(X) = {1} and Γ(A) = A for every set A ∈ X \ {X} such that 1 ∈ A. Together with Step 1,

this implies that Γ({x, ..., n}) = {x} for each x ∈ X and Γ(A) = A for every other set A ∈ X . In

turn, this establishes that f−1(R1) = ϕ−1(R1), which completes the proof.

13



References

[1] Arrow K. and Raynaud, H. (1986). Social Choice and Multicriterion Decision-Making. MIT

Press.

[2] Bernheim, D. and Rangel, A. (2009). “Beyond Revealed Preference: Choice-Theoretic Foun-

dations for Behavioral Welfare Economics,” Quarterly Journal of Economics 124, 51–104.

[3] Bouyssou, D. (2004). “Monotonicity of Ranking by Choosing : A Progress Report,” Social

Choice and Welfare 23, 249–273.

[4] Can, B. and Storcken, T. (2013). “Update Monotone Preference Rules,” Mathematical Social

Sciences 65, 136–149.

[5] Moulin, H. (1988). Axioms of Cooperative Decision Making. Cambridge University Press.

[6] Nishimura, H. (2014). “The Transitive Core: Inference of Welfare from Nontransitive Prefer-

ence Relations.”

[7] Rubinstein, A. and Salant, Y. (2012). “Eliciting Welfare Preferences from Behavioural Data

Sets,” Review of Economic Studies 79, 375–387.

14


