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1 Introduction

Many important models in mechanism design preclude the use of monetary transfers. This

may be due to ethical (school choice problems, kidney exchange problems) or institutional

(voting) reasons. A typical model in such an environment consists of a set of alternatives

and ordinal preferences (strict linear orders) of agents over these alternatives. A mechanism

or a social choice function (scf) selects a lottery over the set of alternatives. A prominent

feature of these models is that they only use ordinal information about preferences over

alternatives. In this paper, we ask if there is any loss of generality in restricting attention to

ordinal mechanisms in such environments.

If the solution concept is dominant strategy and the mechanism is deterministic (i.e.,

lotteries produced by the scf are degenerate), then incentive compatibility immediately im-

plies that the scf cannot be sensitive to cardinal information.1 However, the answer to this

question is not obvious if either (a) we allow for randomization and/or (b) we use the weaker

solution concept of Bayesian incentive compatibility. 2 The central issue in such cases is that

an agent has to evaluate lotteries based on cardinal utilities over alternatives. We follow the

standard practice of evaluating lotteries using the expected utility criterion. Consequently,

the evaluation of lotteries uses cardinal preference information of agents. Moreover, it implic-

itly imposes a domain restriction on agent preferences over the outcomes of the mechanism

(i.e. lotteries). It seems natural therefore to believe that this cardinal preference information

can be used by the mechanism designer to determine the value of the scf at various profiles.

Our main result shows this to be false. We establish that every dominant strategy

incentive compatible, cardinal and random scf that satisfies some version of continuity, is

ordinal. We discuss two notions of ordinality and, correspondingly, two notions of continuity.

To understand them, note that the type of an agent in our cardinal model is a utility vector

over alternatives and agents use expected utility to evaluate lotteries. Now, consider an

agent i and fix the utility vectors of other agents at u−i.

Our first notion of ordinality requires that we treat two utility vectors representing the

same ordinal ranking over lotteries in the same manner. In other words, we say that an scf

is vNM-ordinal if ui and u′i are two utility vectors which are affine transformations of each

1 To see this, suppose the scf picks alternative a when agent i reports some utility representation of his true

preference ordering Pi (a strict ordering), but picks an alternative b for some other utility representation.

If a 6= b, then agent i will clearly manipulate to the utility representation that picks the higher ranked

alternative according to Pi.
2 The demanding requirement of dominant strategies with deterministic mechanisms often leads to im-

possibility results in standard voting models (Gibbard, 1973; Satterthwaite, 1975). Using randomization

or the weaker solution concept of Bayesian incentive compatibility expands the set of incentive compatible

mechanisms. Randomization is a also a natural device for achieving fairness.
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other, then the outcome of the scf is the same at (ui, u−i) and (u′i, u−i).

To understand vNM-ordinality better, note that the outcome of an scf in our model is

a lottery over the set of alternatives. Agents evaluate lotteries over alternatives using the

expected utility criterion. By the expected utility theorem, the set of all utility vectors

over alternatives can be partitioned into equivalence classes where utility vectors within each

equivalence class rank lotteries in the same way. vNM-ordinality requires that scfs assign

the same lottery to all utility vectors within an equivalence class.

Note however that even though these utility vectors rank the lotteries the same manner,

they do not assign them the same expected utility values. vNM-ordinality amounts to ig-

noring the expected values of the lotteries and only considering ordinal ranking of lotteries.

Though this is without loss of generality in a model where the designer only cares about or-

dinal ranking of lotteries (i.e., utility is ordinal), as we show, vNM-ordinality is not implied

by incentive compatibility. Hence, it is not an assumption that can be imposed without loss

of generality when utility is cardinal.

Our second notion of ordinality, which we call strong ordinality, requires that the scf be

sensitive to only ordinal ranking of alternatives. In other words, strong ordinality says that if

ui and u′i are two utility vectors which represent the same ordinal ranking over alternatives,

then the outcome of the scf is the same at (ui, u−i) and (u′i, u−i). Strong ordinality implies

vNM-ordinality because if ui and u′i are affine transformations of each other, then they

represent the same ordinal ranking over alternatives.

We impose two versions of continuity. Fix the types of all agents except an arbitrary agent

i. If i varies the cardinal intensities of her preferences over alternatives without changing her

ordinal ranking over the alternatives, then the outcome of the scf must vary continuously. Our

notion of continuity is clearly weaker than the standard notion in that it applies only to sub-

domains where the ordinal rankings over alternatives are unchanged. Thus, our formulation

allows scfs to be sensitive to cardinal intensities but restricts them to be continuous in a

limited sense. We call this requirement cone continuity (c-continuity). We also consider a

stronger version of continuity where we require the outcome of the scf to vary uniformly

continuously. We call this requirement uc-continuity. 3

Our main result shows that every dominant strategy incentive compatible scf is vNM-

ordinal almost everywhere. In other words, there is a dense subset of the domain where the

scf is vNM-ordinal and the complement of this subset has measure zero. We give an example

to illustrate that dominant strategy incentive compatibility does not imply vNM-ordinality

(everywhere) - this is in contrast to the trivial conclusion in the deterministic scf case, where

3In general, uniform continuity is stronger than continuity, but they become equivalent if the domain is

compact. Since we apply our continuity requirements on subdomains which are open, this equivalence is not

true for us.
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incentive compatibility implies (strong) ordinality. We use our main result to establish two

striking results: (a) every c-continuous and dominant strategy incentive compatible scf is

vNM-ordinal and (b) every uc-continuous and dominant strategy incentive compatible scf is

strongly ordinal.

It is well known that there are incentive compatible scfs that are not strongly ordinal.

For instance, consider an scf that takes some compact and convex subset of lotteries and

an agent, and at every profile of types, it chooses the best lottery in that subset for this

agent. It is not difficult to see that such an scf will be Bayesian incentive compatible and

c-continuous. Hence, it is a vNM-ordinal scf. However, as the cardinal value of all the

alternatives approach zero for the agent, the value of the scf does not converge to any single

value. A consequence of uc-continuity is that the scf must converge to a single value in this

case. This means that such an scf is not uc-continuous.

If the solution concept is Bayesian incentive compatibility, our conclusions are in terms

of interim allocation probabilities. 4 In particular, we show that every cardinal Bayesian

incentive compatible mechanism satisfying c-continuity property must be such that an agent’s

interim allocation probability of each alternative does not change whenever she changes

her type by using an affine transformation. Similarly, every cardinal Bayesian incentive

compatible mechanism satisfying uc-continuity property must be such that an agent’s interim

allocation probability of each alternative does not change whenever she changes her type such

that the ordinal ranking over alternatives do not change. We note that the results for the

Bayesian incentive compatibility case requires no assumptions on the priors of the agents.

Our results apply to standard voting models but can also be applied to private good

allocation problems (for instance, matching models) with the additional assumption of non-

bossiness. Non-bossiness requires the following: a type change by an agent that does not

change her allocation also leaves the allocations of all other agents unchanged. Introduced

by Satterthwaite and Sonnenschein (1981), non-bossiness is a commonly used condition in

the literature (Papai, 2000; Ehlers, 2002).

A critical feature of our model is the cardinality assumption, i.e. the assumption that ev-

ery agent can associate a real number (or value) with every alternative. 5 We believe this is a

reasonable assumption in many situations of interest. For instance, the alternatives could be

possible locations of a public facility. The utility associated with each location by an agent

is the (privately observed) transportation or time cost to each location. Or the alternatives

4The interim allocation probability of an alternative being chosen at a type of agent i is the expected

probability of that alternative being chosen, where the expectation is the conditional expectation over all

possible types of other agents conditional on the type of agent i.
5There is a long standing debate in utility theory on this issue (Alchian, 1953; Strotz, 1953; Baumol,

1958).
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could be production plans relevant to several managers of a firm. The value of each plan to

a manager is the profit associated with it. Moreover, each manager’s profit is private infor-

mation because of non-publicly observed costs. We note that the use of cardinal utilities in

models without transfers, is widespread - recent instances include Schmitz and Troger (2012);

Nandeibam (2013); Ambrus and Egorov (2013); Ben-Porath et al. (2014); Ashlagi and Shi

(2014); Gershkov et al. (2014). 6 Finally, our results can be interpreted in the following way:

even if utility is cardinal, incentive compatibility and continuity imply that this cardinal

information must be ignored.

We define the type space of an agent by specifying an arbitrary set of permissible linear

orders over alternatives and considering all positive utility functions representing these or-

ders. Thus our specification requires maximal cardinal richness consistent with an arbitrary

set of ordinal restrictions. Our results therefore hold for standard unrestricted ordinal pref-

erences, single-peaked ordinal preferences, and all standard domain restrictions studied in

strategic social choice theory.

We believe that the paper contributes to the literature on mechanism design without

transfers in several ways. It provides a foundation for the use of ordinal mechanisms. More-

over, we believe that our paper makes a methodolgical contribution. We use techniques

from multidimensional mechanism design with transfers, particularly subgradient techniques

used in that literature, to prove our results. Related methods have been used in some re-

stricted one dimensional problems in the voting literature recently (Borgers and Postl, 2009;

Goswami et al., 2014; Gershkov et al., 2014; Hafalir and Miralles, 2014). To the best of our

knowledge, ours is the first paper to use the multidimensional versions of these results in

such a setting.

2 The Model

We first present a simple one-agent model. We show later how the single-agent results can

be extended to the multiple agent framework. There is a finite set of alternatives denoted

by A = {a, b, c, . . .} with |A| ≥ 2. Let P be the set of all strict linear orderings over the set

of alternatives A. For every P ∈ P, we say a utility function v : A→ R+ represents P if for

all a, b ∈ A, aPb if and only if v(a) > v(b). For every P ∈ P, let V P be the set of all utility

functions that represent P . Note that V P is a cone in R
|A|
+ .

Throughout the paper, we will fix a domain D ⊆ P and let V = ∪P∈DV
P . The type of

the agent is a vector v ∈ V . A social choice function (scf) is a map f : V → L(A), where

6 Gershkov et al. (2014) consider deterministic dominant strategy incentive compatible mechanisms,

where restricting attention to ordinal mechanisms is without loss of generality. However, they consider

cardinal utilities to compute an optimal mechanism.
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L(A) is the set of lotteries over A. Notice that our scfs allow for randomization. For every

v ∈ V , we denote the probability that the scf f chooses a ∈ A at v by fa(v).

We investigate two notions of incentive compatibility: dominant strategy and Bayesian.

Given an scf f , we define a map Πf : V → L(A) where at every v ∈ V , the component

corresponding to alternative a of this map will be denoted by Πf(v, a). In the dominant

strategy set up, for every v ∈ V and every a ∈ A, Πf(v, a) = fa(v). In the Bayesian

set up, Πf (v, a) denotes the expected probability of scf f choosing alternative a, where the

expectation is taken over types of other agents (in a multi-agent model) using the prior

information of the agent. We state the precise definition later. Notice that we do not put

any restriction on the prior - in particular, the priors across agents may be correlated.

Definition 1 An scf f is incentive compatible if for all v, v′ ∈ V , we have

v · Πf (v) ≥ v · Πf(v′).

Depending on the solution concept, incentive compatibility here may refer to dominant

strategy incentive compatibility or Bayesian incentive compatibility. The incentive com-

patibility of an ordinal scf is straightforward to define if the solution concept is dominant

strategies and the scf is deterministic. If the solution concept is Bayesian or if we consider

randomized scfs, then incentive compatibility in an ordinal model is usually defined in terms

of a first-order stochastic dominance relation (Gibbard, 1977; d’Aspremont and Peleg, 1988;

Majumdar and Sen, 2004).

2.1 Ordinal Mechanisms

We introduce two notions of ordinality here. The first one is a strong notion of ordinality in

this context.

Definition 2 An scf f is strongly ordinal if for all P ∈ D, for all v, v′ ∈ V P , we have

Πf (v) = Πf (v′).

Strong ordinality requires that we completely ignore cardinal intensities of agents on the

alternatives and only consider ordinal rankings. Note that strong ordinality only requires

the scf to produce the same outcome in each subdomain. Hence, it does not require the scf

to be a constant scf - in particular, it can be sensitive to ordinal ranking over alternatives.

However, since the outcome of the scf is a lottery over alternatives, the appropriate

notion of ordinality in this context must ignore cardinal utilities of lotteries and only consider

ordinal ranking of lotteries. Since we are using expected utility to compute cardinal utilities

of lotteries, the expected utility theorem defines a specific ordinal ranking of lotteries.
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For any u, v ∈ V , u is an affine transformation of v if there exists α > 0 and β ∈ R such

that u(a) = αv(a) + β for all a ∈ A. Any utility function v induces a ranking over lotteries

in L(A) via the expected utility theorem. If u is an affine transformation of v, then u and v

induce the same ranking over lotteries. Consequently, the set of utility functions V can be

partitioned into equivalence classes, each representing a unique ranking of lotteries in L(A).

This gives rise to the following notion of ordinality.

Definition 3 An scf f is vNM-ordinal if for every u, v ∈ V such that u is an affine

transformation of v, we have Πf(u) = Πf(v).

A vNM-ordinal scf does not distinguish between utility functions belonging to the same

indifference class. It should be noted that vNM ordinality is much weaker than strong

ordinality that we have defined.

If we use a vNM-ordinal scf, then we can restrict our domain in the following way.

Definition 4 A domain V vNM ⊆ R
|A| is a vNM domain if for every v ∈ V , v(a) = 1 if

v(a) > v(b) for all b 6= a and v(a′) = 0 if v(a′) < v(b) for all b 6= a′.

v(a)

v(b)

v(a) > v(b) > v(c)

v(b) > v(a) > v(c)

(1, 0)

(0, 1)

Figure 1: Our domain and the vNM domain

Consider an example with three alternatives A = {a, b, c} and two possible strict linear

orders in D: for every v ∈ V , either v(a) > v(b) > v(c) or v(b) > v(a) > v(c). The projection

of V to the hyperplane v(c) = 0 is shown in Figure 1, which has two cones (above and below

the 45-degree line), each representing the strict linear orders in D. The vNM domain in this

case consists of two lines as shown in Figure 1.
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If an scf f is vNM-ordinal, then its domain can be restricted to V vNM in the following

sense: for every v ∈ V , there exists a unique v′ ∈ V vNM such that v′ is an affine transforma-

tion of v and Πf (v) = Πf(v′). Moreover, any f defined on the vNM domain can be uniquely

extended to a vNM-ordinal scf over the entire domain.

3 Incentive Compatibility and vNM-ordinality

We are not assuming vNM-ordinality to begin with - we do not see any compelling reason

to do so, particularly in a cardinal setting. By not assuming vNM-ordinality we are allowing

the scf to be sensitive to the expected value of lotteries. Moreover, incentive compatibility

does not imply vNM-ordinality. The following example illustrates that we can have incentive

compatible scfs that are not vNM-ordinal.

Example 1 Let A = {a, b, c}. Fix a strict linear order P , and let the top, middle, and

bottom ranked alternatives are a, b, and c respectively. We now define an scf f as follows.

For any v ∈ V P , we define Πf(v) ≡ (Πf(v, a),Πf(v, b),Πf(v, c)) as:

Πf(v) =



















(1

4
, 1

4
, 1

2
) if [v(a) − v(b)] > [v(b) − v(c)]

(0, 3

4
, 1

4
) if [v(a) − v(b)] < [v(b) − v(c)]

(0, 3

4
, 1

4
) if [v(a) − v(b)] = [v(b) − v(c)] and v(a) − v(c) > 1

(1

4
, 1

4
, 1

2
) if [v(a) − v(b)] = [v(b) − v(c)] and v(a) − v(c) ≤ 1

Figure 2 shows the example in R
2 by projecting the type space onto the hyperplane

v(c) = 0. The regions that assign the lottery (0, 3

4
, 1

4
) are shown above the line v(a) = 2v(b)

(in red color with dashes), while the region that assign the lottery (1

4
, 1

4
, 1

2
) is shown below

the line v(a) = 2v(b) (in blue color with dots). On the line v(a) = 2v(b), f assigns the lottery

(0, 3

4
, 1

4
) for v(a) > 1 and the lottery (1

4
, 1

4
, 1

2
) for v(a) ≤ 1.

We first claim that f is incentive compatible. Pick v, v′ ∈ V P . We consider two cases.

Case 1. Suppose Πf(v) = (1

4
, 1

4
, 1

2
). Notice that, by definition of f , [v(a) − v(b)] ≥ [v(b) −

v(c)]. If Πf(v′) = Πf (v), then the agent cannot manipulate from v to v′. So, suppose that

Πf (v′) = (0, 3

4
, 1

4
). Then, truthtelling at v gives the agent an utility equal to

1

4
[v(a) + v(b)] +

1

2
v(c).

Manipulating to v′ gives the agent an utility equal to

3

4
v(b) +

1

4
v(c).
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v(a)

v(b)

lottery (1

4
, 1

4
, 1

2
)

lottery (0, 3

4
, 1

4
)

v(a) = 2v(b)

Figure 2: An example of an scf that violates vNM-ordinality

The difference in utility between truthtelling and manipulation is

1

4
[v(a) − 2v(b) + v(c)] =

1

4

[

[v(a) − v(b)] − [v(b) − v(c)]
]

≥ 0,

where the inequality followed from our earlier conclusion that [v(a) − v(b)] ≥ [v(b) − v(c)].

Hence, f is incentive compatible.

Case 2. Suppose Πf(v) = (0, 3

4
, 1

4
). Notice that, by definition of f , [v(a) − v(b)] ≤ [v(b) −

v(c)]. If Πf(v′) = Πf (v), then the agent cannot manipulate from v to v′. So, suppose that

Πf (v′) = (1

4
, 1

4
, 1

2
). Then, truthtelling at v gives the agent an utility equal to

3

4
v(b) +

1

4
v(c).

Manipulating to v′ gives the agent an utility equal to

1

4
[v(a) + v(b)] +

1

2
v(c).

The difference in utility between truthtelling and manipulation is

1

4
[−v(a) + 2v(b) − v(c)] =

1

4

[

[v(b) − v(c)] − [v(a) − v(b)]
]

≥ 0,

where the inequality followed from our earlier conclusion that [v(a) − v(b)] ≤ [v(b) − v(c)].

Hence, f is incentive compatible.

To verify that f is not vNM-ordinal, pick v ≡ (2, 1, 0) and v′ ≡ (1, 0.5, 0). Note that

Πf (v′) = (1

4
, 1

4
, 1

2
) and Πf (v) = (0, 3

4
, 1

4
), but v is an affine scaling of v′. This implies that f

is not vNM-ordinal.
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3.1 Almost vNM-ordinality

Though Example 1 showed that incentive compatibility does not imply vNM-ordinality, one

can see that vNM-ordinality is violated in that example in a small subset of the domain. We

formalize this intuition and show that incentive compatibility implies vNM-ordinality almost

everywhere.

Definition 5 A social choice function f is almost vNM-ordinal if for every P ∈ D,

there exists a cone V̄ P ⊆ V P such that V̄ P is dense in V P , V P \ V̄ P has measure zero,

and for all u, v ∈ V̄ P such that u and v are affine transformations of each other, we have

Πf (v) = Πf (u).

We emphasize that V̄ P is required to be a cone in Definition 5. The main result of the

paper is the following.

Theorem 1 Every incentive compatible scf is almost vNM-ordinal.

Proof : Define the indirect utility function Uf for any incentive compatible scf f as follows:

for all v ∈ V , Uf (v) = v · Πf(v). Fix a P ∈ D. Incentive constraints inside V P reduce to:

for all v, v′ ∈ V P ,

Uf(v) ≥ Uf(v′) + (v − v′) · Πf(v′).

Hence, Πf (v′) is a subgradient of Uf at v′. It is well known that incentive compatibility of

f implies that Uf is a convex function. For a quick proof, consider v, v′ ∈ V and λ ∈ (0, 1).

Let v′′ = λv + (1 − λ)v′. Incentive compatibility implies that

Uf (v) ≥ Uf (v′′) + (v − v′′) · Πf(v′′)

Uf (v′) ≥ Uf (v′) + (v − v′′) · Πf (v′′).

Multiplying the first constraint by λ and the second by (1 − λ) gives us λUf(v) + (1 −

λ)Uf(v′) ≥ Uf (v′′), which shows Uf is convex.

Let V̄ P be the set of points in V P at which Uf is differentiable. Using Rockafellar (1970),

a convex function is differentiable almost everywhere, and hence, the set V̄ P is dense in V P

and its complement V P \ V̄ P has measure zero. We show below that V̄ P is a cone and f

restricted to V̄ P is vNM-ordinal.

Consider any v ∈ V̄ P and consider u ∈ V P such that u(a) = αv(a) + β for all a ∈ A,

where α > 0 and β ∈ R. Using vector notation, we will write u = αv + 1β , where 1β is the

vector in R
|A| whose every component is β. We will show that (a) Πf (u) = Πf (v) and (b)

u ∈ V̄ P . We do this in three steps.
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Step 1 - Uf is affine. Incentive constraints imply that

v · Πf(v) ≥ v · Πf (u),

αv · Πf(u) + β = u · Πf(u) ≥ u · Πf (v) = αv · Πf(v) + β.

The second inequality implies that v·Πf(u) ≥ v·Πf (v), and this along with the first inequality

implies that

v · Πf (v) = v · Πf (u). (1)

Now,

Uf(u) = u · Πf (u) = αv · Πf(u) + β

= αv · Πf (v) + β

= αUf(v) + β,

where the third equality follows from Equation 1. In other words, Uf is an affine function.

Step 2. Now, for every δ > 0, for every a ∈ A, we denote by 1a
δ as the vector in R

|A| whose

all components are zero except the component of alternative a. Let δ′ = δ
α
. We note using

Step 1 that

Uf(u+ 1a
δ) = Uf(αv + 1β + 1a

δ)

= Uf(α(v + 1a
δ′) + 1β)

= αUf(v + 1a
δ′) + β,

where we used the affine property of Uf in the last equality.

Step 3. We can now conclude the proof. Consider any δ > 0 and a ∈ A. Let δ′ = δ
α
. Now,

since v ∈ V̄ P , Πf(v) is the gradient of Uf at v. Using this, we can write

Πf(v, a) = lim
δ′→0

Uf (v + 1a
δ′) − Uf(v)

δ′

= lim
δ→0

αUf(v + 1a
δ′) − αUf(v)

δ

= lim
δ→0

[

αUf (v + 1a
δ′) + β

]

−
[

αUf (v) + β
]

δ

= lim
δ→0

Uf (u+ 1a
δ) − Uf(u)

δ

= Πf(u, a),
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where we used the affine property for the fourth equality. This also shows that Uf is differ-

entiable at v. Hence, u ∈ V̄ P . �

3.2 Continuous Mechanisms

We now show that Theorem 1 can be strengthened if assume some form of continuity property

of our scf. We present two versions of continuity and show their implications.

For any scf f and any P ∈ D, consider the map Πf
P : V P → L(A), i.e. the restriction of

Πf to V P . Every continuity property that we impose will be on Πf
P for every P ∈ D. Hence,

it will not be for the whole of Πf - indeed, Πf may not be continuous. The first continuity

we impose is the standard continuity.

Definition 6 An scf f is cone continuous (c-continuous) if for every P ∈ D, Πf
P is

continuous in V P , i.e., for every v ∈ V P , for every ǫ > 0, there exists δ such that for all

v′ ∈ V P with ‖v − v′‖ < δ, we have ‖Πf (v) − Πf(v′)‖ < ǫ.

Fix an scf f and P ∈ P. By allowing for cardinal scfs, we are allowing Πf
P to be a

non-constant map, i.e., for any v, v′ ∈ V P , Πf(v) can be different from Πf(v′). Note that an

ordinal scf trivially satisfies c-continuity since for every P , Πf
P (v) = Πf

P (v′) for all v, v′ ∈ V P .

Notice that c-continuity does not impose any restriction between Πf
P and Πf

P ′ if P 6= P ′.

The c-continuity assumption strengthens Theorem 1 in the following manner.

Theorem 2 Every incentive compatible and c-continuous scf is vNM-ordinal.

Proof : Let f be an incentive compatible and c-continuous scf. By Theorem 1, f is almost

vNM-ordinal. Fix a P ∈ D. Almost vNM-ordinality implies that there exists a cone V̄ P ⊆

V P such that V̄ P is dense in V P and V P \ V̄ P has measure zero. Further, for every u, v ∈ V̄ P

such that u = αv + 1β, we have Πf(v) = Πf (u), where α > 0 and β ∈ R.

Now, consider v ∈ V P \ V̄ P . Since V̄ P is dense, there exists a sequence {vk}k such that

each vk ∈ V̄ P and this sequence converges to v. By continuity of f , the sequence {Πf(vk)}k

converges to Πf (v).

Now, consider u = αv+ 1β, where α > 0 and β ∈ R. For every vk in the sequence {vk}k,

define uk = αvk + 1β . By definition, the sequence {uk}k converges to u. Since V̄ P is a cone,

for every vk ∈ V̄ P , we have uk ∈ V̄ P . By continuity of f , the sequence {Πf(uk)}k converges

to Πf(u). By Theorem 1, Πf(vk) = Πf(uk). Hence, the sequence {Πf(uk)}k also converges

to Πf (v). Hence, Πf (v) = Πf (u). �

We now strengthen continuity by requiring uniform continuity as follows.
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Definition 7 An scf f is uninformly cone continuous (uc-continuous) if for every

P ∈ D, Πf
P is uniformly continuous in V P , i.e., for every ǫ > 0, there exists δ such that for

all v, v′ ∈ V P with ‖v − v′‖ < δ, we have ‖Πf (v) − Πf(v′)‖ < ǫ.

A uniformly continuous function is continuous - the converse is true if the domain is com-

pact (Royden, 1968). The difference between uniform continuity and continuity is that the

choice of δ in Definition 7 depends only on ǫ and not on the point in the domain considered as

in Definition 6. Given that Πf
P is a bounded function, it only rules out continuous functions

that behave badly (for instance, oscillate) at the boundary of V P .

The uc-continuity assumption strengthens Theorem 1 even further.

Theorem 3 Every incentive compatible and uc-continuous scf is strongly ordinal.

Proof : We do the proof in two steps. In Step 1, we prove a stronger result and show that

the theorem follows from this step in Step 2.

Step 1. Consider the following regularity condition.

Definition 8 The scf f is 0-regular, if for all P ∈ D and all sequences {vk}, {v
′
k} in V P ,

we have

lim
vk→0

Πf(vk) = lim
v′

k
→0

Πf (v′k).

The 0-regularity condition applies to type sequences converging to the origin in a given

subdomain. It requires the scf to converge to the same value along all such sequences. We

first show that every incentive compatible, c-continuous, and 0-regular scf is strongly ordinal.

Lemma 1 Every incentive compatible, c-continuous, and 0-regular scf is strongly ordinal.

Proof : Let f be a incentive compatible, c-continuous, and 0-regular scf. By Theorem 2, f

is a vNM-ordinal scf. Pick any v, v′ ∈ V P , where P ∈ D and v, v′ represent P . By vNM-

ordinality, for every ǫ > 0, we have Πf(v) = Πf(ǫv) and Πf(v) = Πf (ǫv). Hence, Πf (v) =

limǫ→0 Πf(ǫv) and Πf(v′) = limǫ→0 Πf (ǫv′). By c-continuity, limǫ→0 Πf(ǫv) = limǫ→0 Πf (ǫv′).

Therefore, Πf (v) = Πf(v′) as required. �

Step 2. In this step, we show that every uc-continuous scf is c-continuous and 0-regular.

Clearly, a uc-continuous scf is c-continuous (since uniform continuity implies continuity). Let

f be an incentive compatible and uc-continuous scf.

Claim 1 If Πf
P is uniformly continuous, then for every sequence of types {vk}k∈N in V P

converging to 0, the sequence {Πf
P (vk)}k∈N must converge to a point which is independent of

the sequence of types {vk}k∈N chosen in V P .
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The proof of this claim is provided in the Appendix. The proof follows from the fact that

every uniformly continuous function can be extended to its closure in a uniformly continuous

manner, and moreover, such an extension is unique (Royden, 1968). It is then easy to verify

that Claim 1 is true. We provide a self contained proof in the Appendix.

Claim 1 shows that if f is uc-continuous, then it is 0-regular, and this concludes our

proof. �

The following example illustrates that Theorem 3 is not true if we only use c-continuity

(instead of uc-continuity).

Example 2 Let A = {a, b, c}. Fix any strict ordering P of {a, b, c} such that the top,

middle, and bottom ranked alternatives are a, b, and c respectively.

We give an example of a vNM-ordinal scf that is incentive compatible but not strongly

ordinal. We specify the scf over the vNM domain - its extension to the entire domain follows

from vNM-ordinality. In the vNM domain, any utility function v representing P will have

v(a) = 1, v(c) = 0, and v(b) ∈ (0, 1). We will describe an scf for the preference ordering P .

Let θ be the value of v(b). Now, consider the following scf f :

Πf
P (θ, a) =

1

2
−
θ2

4

Πf
P (θ, b) =

θ

2

Πf
P (θ, c) =

1

2
−
θ

2
+
θ2

4
,

where we have abused notation to write Πf
P (θ, ·) instead of Πf

P (v, ·). Note that if the agent

has a type v with v(b) = θ and reports a type v′ with v′(b) = θ′, her net utility is

1

2
−
θ′2

4
+
θθ′

2
.

On the other hand, truth telling gives a net utility of

1

2
−
θ2

4
+
θ2

2
=

1

2
+
θ2

4
.

The difference between truth telling and deviating to θ′ is thus given by

θ2

4
+
θ′2

4
−
θθ′

2
=

(θ

2
−
θ′

2

)2

≥ 0.

Hence, f is incentive compatible. Note that the extension of f to the entire domain is

c-continuous, but it is not 0-regular. Hence, it is not uc-continuous.
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We also note that if |A| = 2, Theorem 3 holds without any further assumptions regarding

uc-continuity or domains. 7 To see this, suppose A = {a, b} and f is a incentive compatible

scf. Note that Πf(v, a) + Πf(v, b) = 1 for all v ∈ V . Using this, for any v, v′ ∈ V , incentive

compatibility implies that

[v(a) − v(b)]Πf (v, a) + v(b) ≥ [v(a) − v(b)]Πf (v′, a) + v(b)

[v′(a) − v′(b)]Πf (v′, a) + v′(b) ≥ [v′(a) − v′(b)]Πf(v, a) + v′(b).

Combining these two inequalities we get, Πf(v, a) = Πf(v′, a). This also highlights the fact

that we can always fix the lowest ranked alternative value at zero and work with the rest of

the alternatives, essentially reducing the dimensionality of the problem.

In cardinal environment, a well studied scf is the utilitarian scf that chooses an alternative

that maximizes the sum of utilities of all the agents at every type profile. 8 It is easy to

verify that the utilitarian scf is c-continuous. Clearly, it is not a vNM-ordinal scf. Hence, by

Theorem 2, it is not incentive compatible.

4 A General Characterization

Theorems 2 and 3 show that if we accept some form of continuity, then a corresponding form

of ordinality will be implied by incentive compatibility. However, it does not say anything

about the class of such incentive compatible mechanisms. A characterization of the set of

incentive compatible mechanisms or the set of continuous incentive compatible mechanisms

is a difficult task - later, we discuss some related literature that has addressed this question

in a limited way.

Below, we provide an indirect characterization of incentive compatible scfs. Our charac-

terization is inspired by similar characterizations in the multidimensional mechanism design

literature that we discuss later. Also, similar characterizations have been used in specific sim-

pler settings (in particular, with one-dimensional types) in the literature (Borgers and Postl,

2009; Goswami et al., 2014; Gershkov et al., 2014; Hafalir and Miralles, 2014).

To state this result, we define a standard notion of monotonicity of scfs.

Definition 9 An scf f is monotone if for every v, v′ ∈ V , we have

(v − v′) ·
[

Πf (v) − Πf (v′)
]

≥ 0.

7The two alternatives case occupies an important place in the strategic voting literature because the

Gibbard-Satterthwaite theorem does not hold in this case. (Schmitz and Troger, 2012) considers an optimal

mechanism design problem in a two-alternative model with cardinal intensities.
8A random version of the utilitarian scf will choose at every type profile, a probability distribution of

alternatives that maximize the sum of utilities of all the agents.
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For every v, v′ ∈ V , define the map ψv′,v : [0, 1] → R as follows. For every t ∈ [0, 1],

ψv′,v(t) = (v − v′) · Πf (v′ + t(v − v′)).

Notice that if V is convex, for any v, v′ ∈ V ,
∫

1

0
ψv′,v(t)dt is the line integral of Πf from v′

to v.

Theorem 4 Let V ⊆ R
|A| be a convex set and f : V → L(A) be an scf defined on V . Then,

the following statements are equivalent.

1. f is incentive compatible.

2. f is monotone and for every v, v′ ∈ V , we have

v · Πf(v) − v′ · Πf(v′) =

∫

1

0

ψv′,v(t)dt.

3. For every v, v′ ∈ V , ψv′,v is a non-decreasing function and

v · Πf(v) − v′ · Πf(v′) =

∫

1

0

ψv′,v(t)dt.

The proof of Theorem 4 is in the Appendix. The implicit characterization provided in

Theorem 4 has counterparts in the multidimensional mechanism design literature with trans-

fers and quasi-linear utilities. In these models, a mechanism consists of an allocation rule

and a transfer rule. An allocation rule is implementable if there exists a transfer rule such

that the resulting mechanism is incentive compatible. Implementable allocation rules can

be characterized by a strong monotonicity property called cycle monotonicity (Rockafellar,

1970; Rochet, 1987) and the transfer rules by a property called revenue/payoff equiva-

lence principle (Jehiel et al., 1999; Krishna and Maenner, 2001; Milgrom and Segal, 2002;

Chung and Olszewski, 2007; Heydenreich et al., 2009). The separability of allocation rule

and payoff characterization is possible because transfers are allowed. In our model, a char-

acterization of incentive compatible scfs (Theorem 4) combines elements of both allocation

rule and payoff characterizations in the model with transfers.

5 Extension to Many Agents

In this section, we discuss extensions of our result to a multi-agent model. LetN = {1, . . . , n}

be the set of agents. The type space of agent i will be denoted as Vi, and, as before, it is

the set of all utility functions consistent with some set of strict orderings Di ⊆ P. Let
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V = V1 × . . .× Vn be the set of all profiles of types. As before, A is the set of alternatives.

A social choice function f is a map

f : V → L(A)n.

Observe that f picks n lotteries at each type profile - one for each agent. This formulation

allows us to capture both public good and private good problems. We assume no exter-

nalities, i.e., the utility of an agent only depends on the lottery chosen for her. For any

scf f , fi(v) and fa
i (v) will denote the lottery chosen for agent i at type profile v and the

corresponding probability of choosing alternative a respectively.

We distinguish between two kinds of models. A voting model is one where every scf f

satisfies fi(v) = fj(v) for every pair of agents i, j ∈ N and every type profile v. In these

models, an scf must choose the same lottery for all the agents. This covers the standard

strategic voting models. Any model that is not a voting model will be called a private good

model. In these models, there is no requirement of choosing the same lottery for all agents

although there may be restrictions on the choices. For instance, in the one-sided matching

model (here A is the set of objects), an scf need not choose the same lottery over objects for

each agent, but the lotteries must satisfy feasibility conditions.

As before, we consider two notions of incentive compatibility.

Dominant Strategy Incentive Compatibility. Dominant strategy incentive compati-

bility requires that for every i ∈ N , vi, v
′
i ∈ Vi and v−i ∈ V−i, we have vi · fi(vi, v−i) ≥

vi · fi(v
′
i, v−i). We can now define Πf

i (v) := fi(v) for every i ∈ N and for every v ∈ V.

The definitions of c-continuity and uc-continuity can now be straightforwardly adapted with

additional qualifiers for each i ∈ N and each v−i.

To define the notions of ordinality here, we say that two type profiles v, v′ ∈ V are

ordinally equivalent if for every i ∈ N , vi and v′i are affine transformations of each other.

Similarly, we say two profiles v, v′ ∈ V are strongly ordinally equivalent if for every i ∈ N , vi

and v′i represent the same strict ordering in Di. An scf f is vNM-ordinal if for every pair

of type profiles v, v′ ∈ V such that v and v′ are ordinally equivalent, we have Πf
i (v) = Πf

i (v
′)

for all i ∈ N . An scf f is strongly ordinal if for every pair of type profiles v, v′ ∈ V such

that v and v′ are strongly ordinally equivalent, we have Πf
i (v) = Πf

i (v
′) for all i ∈ N .

We can now extend Theorems 2 and 3. Note here that we do not require any assumption

on {Di}i∈N .

Theorem 5 In the voting model, (a) every dominant strategy incentive compatible and c-

continuous scf is vNM-ordinal and (b) every dominant strategy incentive compatible and

uc-continuous scf is strongly ordinal.
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Proof : Let f be a dominant strategy incentive compatible and c-continuous scf. By virtue

of the voting model assumption, Πf
i (v

′′) = Πf
j (v

′′) for all i, j ∈ N and v′′. Fix any pair of

ordinally equivalent type profiles v, v′ ∈ V. We move from v to v′ by changing the types of

agents one at a time and apply Theorem 2 at each step. This immediately implies that f is

vNM-ordinal. A similar proof using Theorem 3 establishes (b). �

This argument does not work in the private good models for well-known reasons. In the

move from (vi, v−i) to (v′i, v−i) (where (vi, v−i) and (v′i, v−i) are ordinally equivalent), The-

orem 2 guarantees Πf
i (vi, v−i) = Πf

i (v
′
i, v−i) but not Πf

j (vi, v−i) = Πf
j (v

′
i, v−i) for any j 6= i.

This can be restored by the familiar non-bossiness condition adapted to our model. An scf

f is non-bossy if for all i ∈ N , vi, v
′
i ∈ Vi and v−i ∈ V−i, Πf

i (vi, v−i) = Πf
i (v

′
i, v−i) implies

Πf
j (vi, v−i) = Πf

j (v
′
i, v−i) for all j 6= i. It is now easy to see that Theorem 5 holds in private

good problem with the additional non-bossiness condition.

Bayesian Incentive Compatibility. Each agent has a conditional distribution over the

types of other agents. Thus agent i of type vi has a distribution with cdf Gi(·|vi), i.e. for

any v−i, Gi(v−i|vi) is the cummulative probability that others are of type v−i given that i

is of type vi. We do not impose any restriction on the distributions and allow for arbitrary

correlation. For any scf f , Πf
i (vi) reflects the interim allocation probability vector at vi for

agent i. Formally, for every a ∈ A, i ∈ N and vi ∈ Vi,

Πf
i (vi, a) :=

∫

V−i

fa
i (vi, v−i)dGi(v−i|vi).

An scf f is Bayesian incentive compatible if for every i ∈ N and for every vi, v
′
i ∈ Vi, we

have vi · Π
f
i (vi) ≥ vi · Π

f
i (v

′
i). With this interpretation of Πf , it is straightforward to extend

the definition of c-continuity and uc-continuity.

The scf f is vNM-ordinal in expectation (ev-ordinal) if for all i ∈ N and pairs

of ordinally equivalent types vi, v
′
i ∈ Vi, we have Πf

i (vi) = Πf
i (v

′
i). Similarly, the scf f is

strongly ordinal in expectation (es-ordinal) if for all i ∈ N and pairs of strongly

ordinally equivalent types vi, v
′
i ∈ Vi, we have Πf

i (vi) = Πf
i (v

′
i). It is important to observe

that the notion of e-ordinality is different from that of ordinality in the dominant strategy

case because interim probabilities for an agent depend only on her type rather than on the

entire type profile.

With these modifications, Theorems 2 and 3 can be directly extended as follows: every

BIC and c-continuous scf is ev-ordinal and every BIC and uc-continuous scf is es-ordinal. In

view of the notion of ordinality in the Bayesian model (see our earlier remark), the distinction

between the voting and private good models disappears and the non-bossiness assumption

is redundant. Hence, an identical proof as in Theorem 5 gives us the following theorem.
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Theorem 6 Every Bayesian incentive compatible and c-continuous scf is ev-ordinal. Every

Bayesian incentive compatible and uc-continuous scf is es-ordinal.

6 Relationship to the Literature

The primary focus of the literaure on mechanism design without monetary transfers has

been on deterministic models and dominant strategies. As we have noted earlier, the issue

of cardinal information has no bearing in these cases and is of relevance only on (a) models

involving randomization (b) models using Bayes-Nash rather than dominant strategies as a

solution concept. We comment briefly on the literature in these areas and their relationship

with our work.

The seminal paper in randomized mechanism design for voting models is Gibbard (1977).

The paper considered an explicitly ordinal problem in a dominant strategy framework when

the preferences of agents is unrestricted. It proposed a demanding notion of incentive-

compatibility where the truth-telling lottery was required to stochastically dominate the

lottery arising from any manipulation. This approach has been extended to several re-

stricted domains of ordinal preferences in voting models (Chatterji et al. (2012), Peters et al.

(2014), Chatterji et al. (2014) and Pycia and Unver (2014)) and in ordinal matching models

(Bogomolnaia and Moulin (2001), and Erdil (2014)).

Random mechanism design with cardinal utilities and dominant strategies has received far

less attention. Hylland (1980), Barbera et al. (1998); Dutta et al. (2007); Nandeibam (2013)

revisit Gibbard’s voting model with cardinal utilities in the unrestricted ordinal domain

while Zhou (1990) considers the one-sided matching problem. Significantly, all the papers

use the vNM domain except Nandeibam (2013). While Barbera et al. (1998); Dutta et al.

(2007) show that every randomized DSIC scf in the vNM domain with unrestricted ordinal

preferences must be a random dictatorship under unanimity and other additional conditions,

Nandeibam (2013) shows a weaker version of this result without assuming vNM domain but

still requiring unrestricted ordinal preferences. Zhou (1990) shows incompatibility of Pareto

efficiency, DSIC, and symmetry in the one-sided matching problem.

Majumdar and Sen (2004) consider deterministic Bayesian incentive compatible mech-

anisms in an ordinal model employing a solution concept developed for this framework in

d’Aspremont and Peleg (1988). Borgers and Postl (2009) consider a model with three al-

ternatives and two agents in the vNM domain. The two agents have fixed but completely

opposed ordinal preferences. The type of each agent is the utility of the common second-

ranked or “compromise” alternative. In the vNM domain, this model gives rise to a special

one-dimensional mechanism design problem with transfers. They characterize the set of car-

dinal Bayesian incentive compatible scfs using Myersonian techniques. The characterization
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is further extended in Postl (2011). Miralles (2012) considers a model of allocating two ob-

jects to agents without monetary transfers and Bayesian incentive compatibility. A recent

paper by Kim (2014) considers the vNM domain with Bayesian incentive compatibility. He

shows that every ordinal mechanism is dominated (in terms of utilitarian social welfare) by

a suitable cardinal mechanism in the vNM domain.

Almost all the papers on cardinal mechanisms cited above, consider vNM domains. Many

of them highlight the fact that there is an expansion in the set of incentive compatible scfs

relative to the strongly ordinal model. Our paper provides a foundation for the use of

vNM domains - in a cardinal model, c-continuity and incentive compatibility implies vNM-

ordinality. However, strengthening c-continuity to uc-continuity brings us to a completely

ordinal model giving a precise description of the boundary between vNM domain and the

strongly ordinal model. Moreover, our conclusions are completely independent of the under-

lying ordinal structure of preferences.

Gershkov et al. (2014) considers the design of expected welfare maximizing mechanism

by considering cardinal utilities when agents have particular ordinal preferences. Since they

consider deterministic DSIC mechanisms, these mechanisms must be ordinal. But they

still consider cardinal utilities to compute expected welfare maximizing mechanism. Simi-

larly, Ashlagi and Shi (2014) consider the optimal design of randomized BIC mechanisms for

matching problems by assuming that agents have cardinal utilities.

From a methodological standpoint, our paper is related to (Borgers and Postl, 2009;

Goswami et al., 2014; Gershkov et al., 2014; Hafalir and Miralles, 2014). These papers ei-

ther explicitly (Goswami et al., 2014; Gershkov et al., 2014) or indirectly (Borgers and Postl,

2009; Hafalir and Miralles, 2014) work in a model with one dimensional types. As a result,

they can use the machinery developed in Myerson (1981) for one-dimensional type spaces.

On the other hand, agents in our model have multidimensional types, and we use results from

the multidimensional mechanism design literature - see Vohra (2011) for a comprehensive

treatment of this topic.

Appendix: Omitted Proofs

Proof of Theorem 4

1 ⇒ 2. Suppose f is incentive compatible and pick v, v ∈ V ′. Incentive compatibility implies

that

v · Πf(v) ≥ v · Πf (v′)

v′ · Πf (v′) ≥ v′ · Πf (v).
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Adding these two implies that (v − v′) · (Πf (v) − Πf (v′)) ≥ 0, and hence, f is monotone.

Define the function Uf : V ′ → R as Uf (v) := v ·Πf (v). By Krishna and Maenner (2001),

we know that if f is incentive compatible and the type space V ′ is convex, then payoff

equivalence holds, and, moreover, for any two types v, v′ ∈ V ′ the difference Uf (v) − Uf (v′)

equals the line integral of Πf from v′ to v - see also Milgrom and Segal (2002); Jehiel et al.

(1999) 9:

Uf (v) − Uf (v′) =

∫

1

0

(v − v′) · Πf (v′ + t(v − v′))dt.

Since ψv′,v(t) = (v − v′) ·Πf (v′ + t(v − v′)) for all t ∈ [0, 1], we have v · Πf(v)− v′ ·Πf (v′) =
∫

1

0
ψv′,v(t)dt.

2 ⇒ 3. Consider any v, v′ ∈ V ′ and t, t′ ∈ [0, 1] with t > t′. Now, notice that monotonicity

between v′ + t(v − v′) and v′ + t′(v − v′) implies that

(t− t′)(v − v′) ·
(

Πf(v′ + t(v − v′)) − Πf(v′ + t′(v − v′))
)

≥ 0.

Since t > t′, this implies that

(v − v′) ·
(

Πf (v′ + t(v − v′)) − Πf (v′ + t′(v − v′))
)

≥ 0. (2)

But then,

ψv′,v(t) − ψv′,v(t′) = (v − v′) ·
(

Πf(v′ + t(v − v′)) − Πf(v′ + t′(v − v′))
)

≥ 0,

where the last inequality followed from Inequality 2. Hence, ψv′,v is a non-decreasing function.

3 ⇒ 1. Consider any v, v′ ∈ V ′. We know that

v · Πf(v) − v′ · Πf (v′) =

∫

1

0

ψv′,v(t)dt ≤ ψv′,v(1) = (v − v′) · Πf(v),

where the inequality followed from non-decreasingness of ψv′,v. Rearranging, we get v′ ·

Πf (v′) ≥ v′ ·Πf(v), i.e., agent with type v′ cannot manipulate by announcing v. This shows

that f is incentive compatible.

9 Krishna and Maenner (2001) showed a stronger result that the difference in payoffs at v and v′ equals

path integral of Πf from v′ to v along any smooth path. The weaker version that we use follows from facts

in convex analysis on one dimensional convex functions (Royden, 1968; Rockafellar, 1970). Essentially, every

convex function is absolutely continuous and every absolute function on an interval can be written as the

definite integral of its subgradient map. Now, for any v, v′ ∈ V P , the restriction of Uf to the line segment

joining v and v′ is a one dimensional convex function. Thus, we get the desired result.
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Proof of Claim 1

Fix a P ∈ D and consider a sequence of types {vk}k∈N in V P such that it converges to 0.

Since {vk}k∈N is convergent in the closure of V P , it must be a Cauchy sequence. We argue

that since Πf
P is uniformly continuous, the sequence {Πf

P (vk)}k∈N is a Cauchy sequence. To

see this, for every δ > 0, since {vk}k∈N is Cauchy sequence, there exists a number J such

that for all j, j′ > J we have ‖vj − vj′‖ < δ. But by uniform continuity, for every ǫ > 0,

there exists a number δ > 0 such that if ‖vj − vj′‖ < δ then ‖Πf
P (vj) − Πf

P (vj′)‖ < ǫ. This

shows that the sequence {Πf
P (vk)}k∈N is a Cauchy sequence.

As a consequence, {Πf
P (vk)}k∈N must converge. Denote this limit point as L1 ∈ [0, 1]|A|.

Similarly, pick another sequence of types {v′k}k∈N such that it converges to 0. By the same

argument, {Πf
P (v′k)}k∈N must also converge to L2 ∈ [0, 1]|A|. We will show that L1 = L2.

To do this, pick an arbitrary ǫ > 0. Now, using the definition of convergence, since

{Πf
P (vk)}k∈N converges to L1, there must exist a number n1 such that for all k > n1, we have

‖Πf
P (vk) − L1‖ <

ǫ

3
. (3)

Similarly, since {Πf
P (v′k)}k∈N converges to L2, there must exist a number n2 such that for all

k > n2, we have

‖Πf
P (v′k) − L2‖ <

ǫ

3
. (4)

By uniform continuity of Πf
P , we get that there exists δ > 0 such that for all v, v′ ∈ V P with

‖v − v′‖ < δ, we have

‖Πf
P (v) − Πf

P (v′)‖ <
ǫ

3
. (5)

Since both the sequences {vk}k∈N and {v′k}k∈N are converging to 0, there must exist a number

n3 such that for all k > n3 such that ‖vk‖ <
δ
2

and ‖v′k‖ <
δ
2
, and hence, ‖vk − v′k‖ < δ. By

Inequality 5, we get for all k > n3,

‖Πf
P (vk) − Πf

P (v′k)‖ <
ǫ

3
. (6)

Now, pick a number K > max(n1, n2, n3) and note that

‖L1 − L2‖ ≤ ‖L1 − Πf
P (vK)‖ + ‖Πf

P (vK) − Πf
P (v′K)‖ + ‖Πf

P (v′K) − L2‖ < ǫ,

where the first inequality followed from the Euclidean norm property and the second one

followed from Inequalities 3, 4, and 6. Since ǫ can be chosen arbitrarily small, we conclude

that L1 = L2.
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